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Abstract This paper presents an adaptive robust control method for trajectory tracking and
path following of an omni-directional wheeled mobile platform with actuators’ uncertainties.
The polar-space kinematic model of the platform with three independent driving
omnidirectional wheels equally spaced at 120 from one another is briefly introduced, and
the dynamic models of the three uncertain servomotors mounted on the driving wheels are
also described. With the platform’s kinematic model and the motors’ dynamic model
associated two unknown parameters, the adaptive robust controller is synthesized via the
integral backstepping approach. Computer simulations and experimental results are
conducted to show the effectiveness and merits of the proposed control method in comparison
with a conventional PI feedback control method.

Keywords Adaptive control . Backstepping . Omnidirectional mobile platform .

Robust control

1 Introduction

Recently, omni-directional mobile platforms have attracted much attention in the robotics as
well as control societies. Such platforms have been extensively used for the well-known
RoboCup competition in order to have manoeuvring movements. Moreover, this type of
platform has also been shown very suitable for material handling. In comparison with
conventional two-wheeled or four wheeled (“car-like”) mobile platforms [1, 2, 4, 7, 9, 10,
14, 15, 21], omni-directional mobile platforms have an agile ability to move toward any
direction and to simultaneously attain desired orientation, namely that they do not have
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so-called nonholonomic constraints. This manoeuvring capability is particularly useful in
designing mobile platforms for autonomous service robots, such as home-care robot,
nursing-care robots, medical robots, mobile manipulators and so on.

Omni-directional mobile platforms and their controls have been investigated by several
researchers. Pin et al. [16] presented the concepts for a family of holonomic wheeled
platforms that feature full omnidirectionality with simultaneous and independently
controlled and translational capabilities. Jung et al. [11] constructed a kind of
omnidirectional base, derived its kinematical and dynamic models, and then presented a
fuzzy controller to steer the robot. Carter et al. [3] introduced the mechanical design process
and independent PID wheel controllers for their own omnidirectional mobile platform used
as the Ohio University RoboCup team player. Kalmár-Nagy et al. [12] in Cornell University
proposed a method of generating near-optimal trajectories for an omnidirectional robot; this
method provided an efficient method of path planning and allowed a large number of
possible scenarios to be explored in real time. Watanabe et al. [19] presented a PI feedback
control method for an omnidirectional mobile platform which is equipped with three lateral
orthogonal-wheel assemblies. William II et al. [20] presented a dynamic model for
omnidirectional wheeled mobile platforms, considering the occurrence of slip between the
wheels and motion surface. With the dynamic model from [3], Tsai et al. [18] proposed the
simultaneous point stabilization and trajectory tracking method via backstepping; this
method did not consider the issues of the parameter variations and the uncertainties from
friction and slip. Yang and Red [23] constructed an on-line Cartesian trajectory control of
mechanism along complex curves and Red [17] presented a dynamic optimal trajectory
generator for Cartesian path following; however, they did not cope with polar-space
control problems.

Polar space is especially useful in situations where the relationship between two
points is most easily expressed in terms of angle and distance. There are many simple
polar-space equations which describe complex curves, for example, the rose curves and
the Limacon of Pascal. The path following and trajectory tracking problems for
nonholonomic mobile platforms in polar space have been investigated by several
researchers. Aicardi et al. [1] presented the closed loop steering of unicycle-like vehicles
via Lyapunov techniques. Point stabilization of mobile platforms via state-space exact
feedback linearization was developed by Park et al. [15]. Yang and Kim [22] presented
the sliding mode control for trajectory tracking of nonholonomic wheeled mobile
platforms. Chwa [4] presented the polar-space sliding-mode tracking controller to steer a
nonholonomic wheeled mobile platform incorporating its dynamic effects and external
disturbances; the controller was shown effective to have fast response, good transient
performance and robustness with regard to parameter variations. Many of the earlier
works addressing the tracking problem were described in [5, 6, 8]. However, as the
authors’ best understanding, the trajectory tracking and path following problems of an
omnidirectional mobile platform in polar coordinates remains open. Although it is argued
that for an omnidirectional platform there is no need to consider polar model due to the
fact that the model is not defined at the origin, we believe that the polar model can be
used to design effective controllers for the trajectory tracking and path following
problems in polar coordinates.

The goal of this paper is to put emphasis on using the adaptive backstepping approach
[7, 13] to construct a unified controller to achieve trajectory tracking and path following for
an omnidirectional platform incorporating with two motors’ uncertainties. The proposed
controller will be proven with the property of globally exponential stability. Computer
simulations are performed on an omnidirectional mobile platform with three independent
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driving wheels equally space at 120 degrees from one another. The developed control
method, assuming that the position and orientation of the platform be directly measured, is
particularly useful in developing a home-care or nursing-care omnidirectional mobile robot
or manipulator. Overall, the contributions of the paper are threefold.

1. A novel polar-space robust controller is presented for omnidirectional mobile platforms
with uncertainties for tracking the special curves that are not easily expressed in
Cartesian coordinates.

2. A new adaptive control scheme for Part 1 is proposed. Simulation and experimental
results are illustrated to examine the performance of the polar-space adaptive robust
controller.

3. The proposed adaptive robust controller is straightforward extended to address the path
following problem in order to exactly follow time-independent polar-space path.

The rest of this paper is organized as follows. In Section 2, the kinematic model of the
omni-directional wheeled mobile platform with its motors’ dynamics and uncertainties is
briefly presented in polar-coordinates. Section 3 synthesizes an adaptive robust controller
via the adaptive backstepping approach. In Section 4, the adaptive controller is applied to
address the path following problem. Section 5 conducts several simulations that are used for
illustration of the merits of the proposed control methods. Section 6 presents two
experimental results for elliptical path tracking and Limacon of Pascal path following.
Section 7 concludes the paper.

2 Platform’s Polar-space Kinematic Model and Motors’ Models with Uncertainties

2.1 Brief Description of the Platform’s Kinematic Model in Polar Coordinates

This section is devoted to briefly describing the polar-space kinematic model of an
omnidirectional mobile platform with three independent omnidirectional wheels equally
spaced at 120° from one another. Figure 1 depicts its structure and geometry that is used to
find the polar-space kinematic model of the platform, where θ denotes the vehicle
orientation. Due to structural symmetry, the vehicle has the property that the center of
geometry coincides with the center of mass.

Fig. 1 Structure and geometry of the omnidirectional mobile platform in polar coordinates
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Before deriving the polar-space kinematic model, let us define the pose of the platform
as [x(t) y(t) θ(t)]T, assume that no slips occur, and recall that the platform’s kinematic
equations in Cartesian space is given by

V1 tð Þ
V2 tð Þ
V3 tð Þ

24 35 ¼
Rω1 tð Þ
Rω2 tð Þ
Rω3 tð Þ

24 35 ¼ P θ tð Þð Þ
x� tð Þ
y� tð Þ
θ
�
tð Þ

24 35 ð1Þ

or

x� tð Þ
y� tð Þ
θ
�
tð Þ

24 35 ¼ P�1 θ tð Þð Þ
Rω1 tð Þ
Rω2 tð Þ
Rω3 tð Þ

24 35 ¼ P�1 θ tð Þð Þ
V1 tð Þ
V2 tð Þ
V3 tð Þ

24 35 ð2Þ

where

P θ tð Þð Þ ¼
� sin θ tð Þ cos θ tð Þ L

� sin π
3 � θ tð Þ� � � cos π

3 � θ tð Þ� �
L

sin π
3 þ θ tð Þ� � � cos π

3 þ θ tð Þ� �
L

24 35 and

P�1 θ tð Þð Þ ¼
� 2

3 sin θ tð Þ � 2
3 sin π

3 � θ tð Þ� �
2
3 sin π

3 þ θ tð Þ� �
2
3 cos θ tð Þ � 2

3 cos π
3 � θ tð Þ� � � 2

3 cos π
3 þ θ tð Þ� �

1
3L

1
3L

1
3L

2664
3775

and R denotes the radius of the driving wheels, and Vi(t) and ωi(t), i=1, 2, 3, respectively
denote the linear and angular velocities of each wheel.

To express the model (2) in polar coordinates, we have

r tð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 tð Þ þ y2 tð Þ

p
; x tð Þ ¼ r tð Þ cos 8 tð Þ; y tð Þ ¼ r tð Þ sin 8 tð Þ ð3Þ

where, as Fig. 1 shows, r denotes the polar radius, and 8 represents the polar angle. With
the time derivative of Eq. 3

r� tð Þ ¼ x tð Þ x� tð Þþy tð Þ y� tð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 tð Þþy2 tð Þ

p ¼ x tð Þ x� tð Þþy tð Þ y� tð Þ
r tð Þ

x� tð Þ ¼ r� tð Þ cos 8 tð Þ � r tð Þ 8� tð Þ sin 8 tð Þ
y� tð Þ ¼ r� tð Þ sin 8 tð Þ þ r tð Þ 8� tð Þ cos 8 tð Þ

ð4Þ

one can combine Eqs. 2, 3 and 4 to obtain the kinematic model of the platform in polar
coordinates. Thus, it follows from Eq. 4 that the time derivative of the polar radius is given
by

r� tð Þ ¼ x tð Þ x� tð Þ þ y tð Þ y� tð Þ
r tð Þ ¼ x� tð Þr tð Þ cos 8 tð Þ þ y� tð Þr tð Þ sin 8 tð Þ

r tð Þ
¼ x� tð Þ cos 8 tð Þ þ y� tð Þ sin 8 tð Þ

¼ � 2

3
sin θ tð Þ � 8 tð Þð Þ � 2

3
sin

π
3
� θ tð Þ � 8 tð Þð Þ

� � 2

3
sin

π
3
þ θ tð Þ � 8 tð Þ

� �� � Rω1 tð Þ
Rω2 tð Þ
Rω3 tð Þ

264
375
ð5Þ
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Using the equality

y� tð Þ cos 8 tð Þ � x� tð Þ sin 8 tð Þ ¼ r tð Þ sin2 8 tð Þ þ cos2 8 tð Þ� �
8� tð Þ ¼ r tð Þ 8� tð Þ

and Eq. 4 yields

8
�
tð Þ ¼ 1

r tð Þ y
�
tð Þ cos 8 tð Þ � x

�
tð Þ sin 8 tð Þ

� �
¼ 1

r tð Þ
2

3
cos θ tð Þ � 8 tð Þð Þ � 2

3
cos

π
3
� θ tð Þ � 8 tð Þð Þ

� ��

� 2

3
cos

π
3
þ θ tð Þ � 8 tð Þ

� �� Rω1 tð Þ
Rω2 tð Þ
Rω3 tð Þ

264
375

ð6Þ

Moreover, from Eq. 2, it is easy to obtain

θ
�
tð Þ ¼ 1

3L

1

3L

1

3L

� � Rω1 tð Þ
Rω2 tð Þ
Rω3 tð Þ

24 35 ð7Þ

Combining Eqs. 5, 6 and 7 gives the kinematical model of the omnidirectional mobile
platform in polar coordinates as follows;

r
�
tð Þ

8
�
tð Þ

θ
�
tð Þ

264
375 ¼ T�1 r tð Þ; θ tð Þ � 8 tð Þð Þ

Rω1 tð Þ
Rω2 tð Þ
Rω3 tð Þ

24 35 ð8Þ

where

T�1 r tð Þ; θ tð Þ � 8 tð Þð Þ

¼
� 2

3 sin θ tð Þ � 8 tð Þð Þ � 2
3 sin π

3 � θ tð Þ � 8 tð Þð Þ� �
2
3 sin π

3 þ θ tð Þ � 8 tð Þ� �
2

3r tð Þ cos θ tð Þ � 8 tð Þð Þ � 2
3r tð Þ cos

π
3 � θ tð Þ � 8 tð Þð Þ� � � 2

3r tð Þ cos
π
3 þ θ tð Þ � 8 tð Þ� �

1
3L

1
3L

1
3L

24 35
Note that the model (8) is undefined for zero polar radius; the model is valid for the

condition r(t)>ɛ where ɛ is an arbitrarily small and positive real number. Furthermore,
the matrix T−1(r(t), θ(t)−8(t)) is nonsingular for nonzero polar radius and the inversion
of the matrix T−1(r(t), θ(t)−8(t)) for r(t)≠0 can be found as below;

T r tð Þ; θ tð Þ � 8 tð Þð Þ ¼
� sin θ tð Þ � 8 tð Þð Þ r tð Þ cos θ tð Þ � 8 tð Þð Þ L

� sin π
3 � θ tð Þ � 8 tð Þð Þ� � �r tð Þ cos π

3 � θ tð Þ � 8 tð Þð Þ� �
L

sin π
3 þ θ tð Þ � 8 tð Þð Þ� � �r tð Þ cos π

3 þ θ tð Þ � 8 tð Þð Þ� �
L

24 35
ð9Þ

2.2 Motors’ Dynamic Models with Two Unknown Parameters

In order to derive the dynamic models for the three servomotors mounted on the driving
wheels, one assumes that the three same servomotors have two unknown but constant
parameters, the moment of inertia J and the viscous coefficient B, and three exogenous,
uncertain but bounded torques, Tdi(t), i=1, 2, 3, exerted on the driving wheels. The
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assumption of unknown but constant parameters, J and B, is relevant not only at the
modeling process, but also during operation for mission execution in case of payload
changes. The bounded exogenous torque Tdi(t) may be caused by several factors, such as
the static friction between the wheel and the surface, and the slip phenomena where the
force may vary with the surface made by the used materials. Note that Tdij j � Tdimax.

With the torque generated by each DC servomotor motor and the bounded exogenous
torque Tdi exerted on each wheel, the dynamic equations of each model with negligible
motor inductance are obtained from Newton’s second law for rotation,

Ui tð Þ ¼ RaIi tð Þ þ kergωi tð Þ
Ti tð Þ ¼ ktIi tð Þ ¼ Jrgω

�
i tð Þ þ Brgωi tð Þ þ Tdi tð Þ

ð10Þ

where Ui(t), i=1, 2, 3, is the applied voltage of each motor; ωi(t), i=1, 2, 3, respectively
denote the angular velocities of each wheel; Ra is the armature resistance of the servomotors; B
is the viscous coefficient; rg is the gear ratio; ke denotes the back-emf coefficient; kt represents
the torque coefficient; Ti(t) is the electromagnetic torque. Note that these parameters Ra, ke and
kt can be obtained from the motors’ data sheets provided by the vender.With the force (2), one
obtains the dynamics of the three servomotors in the vector-matrix

ω
�
1 tð Þ

ω
�
2 tð Þ

ω
�
3 tð Þ

24 35 ¼ α
U1 tð Þ
U2 tð Þ
U3 tð Þ

24 35� β
ω1 tð Þ
ω2 tð Þ
ω3 tð Þ

24 35�
f1 tð Þ
f2 tð Þ
f3 tð Þ

24 35 ¼ αU tð Þ � βω tð Þ � f tð Þ;α > 0;β > 0

ð11Þ
w h e r e U tð Þ ¼ U1 tð Þ U2 tð Þ U3 tð Þ½ �T ;ω tð Þ ¼ ω1 tð Þ ω2 tð Þ ω3 tð Þ½ �T ;α ¼ kt

JRarg
;β ¼

kektþB
JRa

; f tð Þ ¼ f1 tð Þ f2 tð Þ f3 tð Þ½ �T .
where fi tð Þ ¼ Tdi tð Þ

Jrg
, i=1, 2, 3. Note that the two parameters α and β are assumed constant

but unknown, and the uncertain and exogenous torque vector satisfies the inequality
fk k1� fmax since Tdij j � Tdimax.

3 Adaptive Robust Trajectory Tracking

This section synthesizes an adaptive robust controller for the platform associated with the
kinematic model (8) and the motors’ dynamic model (11) via integral backstepping. This
controller aims at steering the platform to reach the destination pose or exactly follow
desired trajectory with maneuvering capability. In order to solve for the adaptive robust
control problem, the desired and differentiable trajectory is described by rd tð Þ ϕd tð Þ½
θd tð Þ�T 2 C1. Note that if the desired trajectory is independent of time, that is, a fixed
destination pose, then the control problem is referred to the so-called regulation problem;
otherwise, the control problem is the so-called trajectory tracking. Unlike conventional two-
wheeled or four-wheeled (car-like) mobile platforms, the desired trajectory can not be
generated from the platform’s kinematics, but can be any smooth but differentiable time
function. In the following we elucidate how to use the backstepping approach to synthesize
the adaptive robust controller step by step.

3.1 Step 1: Robust Controller Design

This step is dedicated to deriving a nonlinear controller to achieve trajectory tracking under
the conditions of no unknown parameters. Unlike the wheeled mobile platforms with
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differential driving configuration, the polar-coordinate control rule for the omnidirectional
mobile platforms with the kinematic model (8) can be rather easily developed. In what
follows the kinematic controller is first designed and the complete robust controller is then
synthesized via the integral backstepping approach.

To design the controller, one defines the pose tracking error

Ze tð Þ ¼
re tð Þ
8 e tð Þ
θe tð Þ

24 35 ¼
r tð Þ
8 tð Þ
θ tð Þ

24 35�
rd tð Þ
8 d tð Þ
θd tð Þ

24 35 ð12Þ

which gives

re
�
tð Þ

8 e
�

tð Þ
θe
�
tð Þ

264
375 ¼

r
�
tð Þ

8
�
tð Þ

θ
�
tð Þ

264
375�

rd
�
tð Þ

8 d
�

tð Þ
θd
�
tð Þ

264
375 ¼ T�1 r tð Þ; θ tð Þ � 8 tð Þð Þ

Rω1 tð Þ
Rω2 tð Þ
Rω3 tð Þ

24 35�
rd
�
tð Þ

8 d
�

tð Þ
θd
�
tð Þ

264
375 ð13Þ

To stabilize the system, we propose the nonlinear control law (Eq. 14) where the matrix
Kp is symmetric and positive definite.

ω�
1 tð Þ

ω�
2 tð Þ

ω�
3 tð Þ

24 35 ¼ 1

R
T r tð Þ; θ tð Þ � ϕ tð Þð Þ �Kp

re tð Þ
8 e tð Þ
θe tð Þ

24 35þ
rd
�
tð Þ

8 d
�

tð Þ
θd
�
tð Þ

264
375

0B@
1CA; Kp ¼ KT

p > 0 ð14Þ

Taking Eq. 14 into Eq. 13, the dynamics of the closed-loop error system becomes

re
�
tð Þ

8 e
�

tð Þ
θe
�
tð Þ

264
375 ¼ T�1 r tð Þ; θ tð Þ � 8 tð Þð ÞT r tð Þ; θ tð Þ � 8 tð Þð Þ

�Kp

re tð Þ
8 e tð Þ
θe tð Þ

24 35þ
rd
�
tð Þ

8 d
�

tð Þ
θd
�
tð Þ

264
375

0B@
1CA�

rd
�
tð Þ

8 d
�

tð Þ
θd
�
tð Þ

264
375

¼ �Kp

re tð Þ
8 e tð Þ
θe tð Þ

24 35þ
rd
�
tð Þ

8 d
�

tð Þ
θd
�
tð Þ

264
375�

rd
�
tð Þ

8 d
�

tð Þ
θd
�
tð Þ

264
375 ¼ �Kp

re tð Þ
8 e tð Þ
θe tð Þ

24 35

ð15Þ

where the globally asymptotical stability of the closed-loop error system can be easily
proven by selecting the quadratic Lyapunov function

V1 tð Þ ¼ 1

2
re tð Þ 8 e tð Þ θe tð Þ½ �

re tð Þ
8 e tð Þ
θe tð Þ

24 35 ð16Þ
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Taking the time derivative of V1(t) along the trajectory of Eq. 13 obtains

V1

�
tð Þ ¼ re tð Þ 8 e tð Þ θe tð Þ½ �

re
�
tð Þ

8 e
�

tð Þ
θe
�
tð Þ

2664
3775 ¼ re tð Þ 8 e tð Þ θe tð Þ½ � �Kp

re tð Þ
8 e tð Þ
θe tð Þ

264
375

0B@
1CA

¼ � re tð Þ 8 e tð Þ θe tð Þ½ �Kp

re tð Þ
8 e tð Þ
θe tð Þ

264
375 < 0

ð17Þ

Since V
�
1 tð Þ is negative definite, Lyapunov stability theory implies that re tð Þ 8 e tð Þ½

θe tð Þ�T ! 0 0 0½ �Tas t ! 1. Moreover, it is easily shown that the origin, [0 0 0]T, is
globally exponential stable, that is, the position and orientation errors exponentially
approach zero as time tends to infinity.

Next we move to find the motors’ control voltage vector U(t)=[U1(t) U2(t) U3(t)]
T such

that the actual angular velocity vector ω(t)=[ω1(t) ω2(t) ω3(t)]
T of the three motors is

consistent with the desired velocity vector w� tð Þ ¼ w�
1 tð Þ w�

2 tð Þ w�
3 tð Þ	 
T

presented in
Eq. 14. With the motors’ model (11), this can be done easily via the well-known integral
backstepping approach.

To achieve the goal, we define the following backstepping error vectors by

η tð Þ ¼ T�1 r tð Þ; θ tð Þ � 8 tð Þð Þ ω tð Þ � ω� tð Þð Þ ¼ T�1 r tð Þ; θ tð Þ � 8 tð Þð Þ~ω tð Þ ð18Þ
where ~ω tð Þ ¼ ω tð Þ � ω� tð Þ. Taking the time derivative of the error vector η(t)

η
�
tð Þ ¼ T�1

�
r tð Þ; θ tð Þ � 8 tð Þð Þ~ω tð Þ þ T�1 r tð Þ; θ tð Þ � 8 tð Þð Þ~ω� tð Þ

¼ T�1
�

r tð Þ; θ tð Þ � 8 tð Þð Þ~ω tð Þ þ T�1 r tð Þ; θ tð Þ � 8 tð Þð Þ
αU tð Þ � β ~ω tð Þ þ ω� tð Þð Þ � f tð Þ � ω�� tð Þ
� �

¼ �βη tð Þ þ T�1
�

r tð Þ; θ tð Þ � 8 tð Þð Þ~ω tð Þ þ T�1 r tð Þ; θ tð Þ � 8 tð Þð Þ
αU tð Þ � βω� tð Þ � f tð Þ � ω�� tð Þ
� �

ð19Þ

To stabilize the dynamic equation 19, the subsequent control law is proposed

U tð Þ ¼ α�1βω� tð Þ þ α�1ω�� tð Þ � α�1T r tð Þ; θ tð Þ � 8 tð Þð Þ

T�1
�

r tð Þ; θ tð Þ � 8 tð Þð Þ~ω tð Þ þ RZe tð Þ
� �
� T r tð Þ; θ tð Þ � 8 tð Þð Þ k1η tð Þ þ k2sgn η tð Þð Þ½ �

ð20Þ

where the gain k1 and k2 can be selected by the user such that the closed-loop error
system can quickly decay to zero exponentially; sgn(.) denote the signum function.
Substituting Eq. 20 into Eq. 19 yields

η
�
tð Þ ¼ � β þ αk1ð Þη tð Þ � RZe tð Þ � αk2sgn η tð Þð Þ � T�1 r tð Þ; θ tð Þ � 8 tð Þð Þ f tð Þ½ �;

k1 > 0; k2 > 0

ð21Þ
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With the defined backstepping error vector, Eq. 13 is rewritten as

re
�
tð Þ

8 e
�

tð Þ
θe
�
tð Þ

264
375 ¼ T�1 r tð Þ; θ tð Þ � 8 tð Þð Þ

R ω�
1 tð Þ þ ~ω1 tð Þ� �

R ω�
2 tð Þ þ ~ω2 tð Þ� �

R ω�
3 tð Þ þ ~ω3 tð Þ� �

24 35�
rd
�
tð Þ

8 d
�

tð Þ
θd
�
tð Þ

264
375 ¼ �KP

re tð Þ
8 e tð Þ
θe tð Þ

24 35þ Rη tð Þ

ð22Þ
For the asymptotical stability of the overall closed-loop error system (21) an (22), a

radially unbounded Lyapunov function candidate is chosen as follows:

V2 tð Þ ¼ 1

2
re tð Þ 8 e tð Þ θe tð Þ½ �

re tð Þ
8 e tð Þ
θe tð Þ

24 35þ 1

2
ηT tð Þη tð Þ ð23Þ

which leads to the time derivative of V2(t) along the trajectories of Eqs. 21 and 22

V2 tð Þ
�

¼ re tð Þ 8 e tð Þ θe tð Þ½ �
re
�
tð Þ

8 e
�

tð Þ
θe
�
tð Þ

264
375þ ηT tð Þη� tð Þ

¼ ZT
e tð Þ �KpZe tð Þ þ Rη tð Þ� �þ ηT tð Þ � β þ αk1ð Þη tð Þ � αk2sgn η tð Þð Þ � RZe tð Þ½ �

� ηT tð ÞT�1 r tð Þ; θ tð Þ � 8 tð Þð Þ f tð Þ½ �
¼ �ZT

e KpZeðtÞ � β þ αk1ð ÞηT tð Þη tð Þ
� αk2 η tð Þk k1 � ηT tð ÞT�1 r tð Þ; θ tð Þ � ϕ tð Þð Þf tð Þ

ð24Þ

Using the inequalities T�1 r tð Þ; q tð Þ � ϕ tð Þð Þf tð Þ�� ��
1� kmaxfor any bounded and

nonzero trajectory and, k2 � kmax=a, one obtains

V2

� ðtÞ � �ZT
e KpZe tð Þ � β þ αk1ð ÞηT tð Þη tð Þ

� αk2 η tð Þk k1 þ ηðtÞk k1 T�1 r tð Þ; θ tð Þ � 8 tð Þð Þf tð Þ�� ��
1

� �ZT
e KpZe tð Þ � β þ k1ð ÞηT tð Þη tð Þ � α k2 � kmax

α

� 
η tð Þk k1 � 0

ð25Þ

which indicates that V
�
2 tð Þ is negative semidefinite and V2(t) is indeed a Lyapunov equation.

The use of the Lyapunov stability theory implies that Ze(t)→[0 0 0]T and η(t)→0 as t→∞.
The fact that η (t)→0 as t→∞ indicates that ew tð Þ ! 0 as t→∞ because T −1(r(t), θ(t)−ϕ(t))
is always nonsingular for any nonzero polar radius. The following theorem summarizes this
subsection.

Theorem 1 For the platform’s kinematic model (8) along with the motors’ dynamic model
(11) and the control law (20), the platform can be steered to reach any destination pose or
exactly track any smooth and differentiable trajectory in the sense of globally exponential
stability, i.e., r(t)→rd(t), 8(t)→8d(t) and θ(t)→θd(t) as t→∞.
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3.2 Step 2: Adaptive Robust Controller Design

This step aims to develop an adaptive robust control for the kinematic model (8) with the
motors’ dynamic model (11) under the assumption that the platform has two unknown
but constant parameters, α and β, as well as three uncertain but bounded forces, fi, i=1,
2, 3, exerted on the driving wheels. The reason why the two parameters, α and β, are
supposed unknown but constant is that they depend upon the uncertain moment of inertia
J which is caused by the abrupt load changes of the platform, and the unknown viscous
coefficient B.

To circumvent possible performance degradation caused by these two unknown but
constant parameters, we propose the following adaptive control law

U tð Þ ¼ α̂�1β̂ω� tð Þ þ α̂�1ω�� tð Þ � α̂�1T r tð Þ; θ tð Þ � 8 tð Þð Þ

RZe tð Þ þ T�1
�

r tð Þ; θ tð Þ � 8 tð Þð Þ~ω tð Þ
� �

� T r tð Þ; θ tð Þ � 8 tð Þð Þ
k1η tð Þ þ k2sgn η tð Þð Þ½ �

ð26Þ

where ba and bb are the estimates of α and β, respectively, and their parameter adjustment
rules are to be determined in the following. Substituting Eq. 26 into 19 gives

η
�
tð Þ ¼ �βη tð Þ þ ðα̂� α

α̂
ÞT �1

�
r tð Þ; θ tð Þ � 8 tð Þð Þ~ω tð Þ � α

α̂
RZe tð Þ

� α k1η tð Þ þ k2sgn η tð Þð Þð Þ � T�1 r tð Þ; θ tð Þ � ϕ tð Þð Þ f tð Þ½ �

þ T�1 r tð Þ; θ tð Þ � ϕ tð Þð Þ ðα β̂

α̂
� βÞω� tð Þ þ α� α̂

α̂

 !
ω�� tð Þ

" #

¼ �βη tð Þ � α k1η tð Þ þ k2sgn η tð Þð Þð Þ � α

α̂
RZe tð Þ �

~α

α̂

� 
T�1

�
r tð Þ; θ tð Þ � 8 tð Þð Þ~ω tð Þ

� T�1 r tð Þ; θ tð Þ � 8 tð Þð Þ f tð Þ½ �

þ ~~αT�1 r tð Þ; θ tð Þ � 8 ðtÞð Þ β̂
α̂
ω� tð Þ � ~

βT�1 r tð Þ; θ tð Þ � 8 tð Þð Þω� tð Þ

þ
~α

α̂

� 
T�1 r tð Þ; θ tð Þ � 8 tð Þð Þω�� tð Þ

ð27Þ

where ea ¼ a � ba and eb ¼ b � bb. The closed-loop stability and the parameter adjustment
rules for ba and bb can be simultaneously achieved by the Lyapunov stability theory. In doing
so, one chooses the following radial and unbounded Lyapunov function candidate

V3 tð Þ ¼ 1

2
ZT
e tð ÞZe tð Þ þ 1

2
ηT tð Þη tð Þ þ 1

2lα
~α2 þ 1

2lβ

~
β2; lα > 0; lβ > 0 ð28Þ
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which gives its time derivative along with the trajectories of Eq. 22 and 27

V3

�
tð Þ ¼ ZT

e �KpZe tð Þ þ Rη tð Þ� �þ ηT tð Þ
�βη tð Þ � α k1η tð Þ þ k2sgn η tð Þð Þð Þ � α

α̂
RZe tð Þ � ~α

α̂

� �
T�1

�
r tð Þ; θ tð Þ � 8 tð Þð Þ~ω tð Þ

�
�T�1 r tð Þ; θ tð Þ � 8 tð Þð Þ f tð Þ½ � þ ~αT�1 r tð Þ; θ tð Þ � 8 tð Þð Þ β̂

α̂
ω� tð Þ � ~

βT�1

r tð Þ; θ tð Þ � 8 tð Þð Þω� tð Þ þ ~α
α̂

� �
T�1 θ tð Þ � 8 tð Þð Þω�� tð Þg

þ 1
1α

�~αα̂
�� 

þ 1
λβ

�~
ββ̂

�� 
¼ �ZT

e KpZe tð Þ � β þ αk1ð ÞηT tð Þη tð Þ � αk2 η tð Þk k1 � ηT tð ÞT�1

r tð Þ; θ tð Þ � 8 tð Þð Þ f tð Þ½ � � ~α
α̂

� �
RηT tð ÞZe tð Þ þ ηT tð ÞT�1

�
r tð Þ; θ tð Þ � ϕ tð Þð Þ~ω tð Þ

�
�β̂ηT tð ÞT�1 r tð Þ; θ tð Þ � 8 tð Þð Þω� tð Þ � ηT tð ÞT�1 r tð Þ; θ tð Þ � 8 tð Þð Þω�� tð Þ

i
�ηT tð Þ~βT�1 r tð Þ; θ tð Þ � 8 tð Þð Þω� tð Þ þ 1

1α
�~αα̂

�� 
þ 1

1β
�~
ββ̂

� !
ð29Þ

If the parameter adjustment rules for ba and bb are selected such that

1

α̂
½RηT tð ÞZe tð Þ þ ηT tð ÞT�1

�
r tð Þ; θ tð Þ � 8 tð Þð Þ~ω tð Þ � β̂ηT tð ÞT�1

r tð Þ; θ tð Þ � 8 tð Þð Þω� tð Þ � ηT tð ÞT�1 r tð Þ; θ tð Þ � 8 tð Þð Þω�� tð Þ�
þ 1

1α
α̂
�� 

¼ 0

ð30Þ

and

ηT tð ÞT�1 r tð Þ; θ tð Þ � 8 tð Þð Þω� tð Þ þ 1

1β
β̂
� !

¼ 0 ð31Þ

then

V3

�
tð Þ ¼ �ZT

e KpZe tð Þ � β þ αk1ð ÞηT tð Þη tð Þ
� αk2 η tð Þk k1 � ηT tð ÞT�1 r tð Þ; θ tð Þ � 8 tð Þð Þ f tð Þ½ �
� �ZT

e KpZe tð Þ � β þ αk1ð ÞηT tð Þη tð Þ
� αk2 η tð Þk k1 þ η tð Þk k1 T�1 r tð Þ; θ tð Þ � 8 tð Þð Þf tð Þ�� ��

1

� �ZT
e KpZe tð Þ � β þ αk1ð ÞηT tð Þη tð Þ � α k2 � kmax

α

� 
η tð Þk k1 < 0

ð32Þ

which reveals that V3

� ðtÞ is negative semidefinite and V3(t) is indeed a Lyapunov function.
The use of the LaSalle’s invariance principle implies that Ze→0 and η→0 as time tends to
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infinity, and the estimates ba and bb are globally uniformly bounded. Similarly, η(t)→0 as
t→∞ indicates that ew tð Þ ! 0 as t→∞. Moreover, from Eqs. 30 and 31 one obtains the
parameter adjustment rules for ba and bb

α̂
�
¼ �1α

1

α̂
½RηT tð ÞZe tð Þ þ ηT tð ÞT�1

�
r tð Þ; θ tð Þ � 8 tð Þð Þ~ω tð Þ

� β̂ηT tð ÞT�1 r tð Þ; θ tð Þ � 8 tð Þð Þω� tð Þ � ηT tð ÞT�1 r tð Þ; θ tð Þ � 8 tð Þð Þω�� tð Þ�

ð33Þ

and

β̂
�
¼ �1βη

T tð ÞT�1 r tð Þ; θ tð Þ � 8 tð Þð Þω� tð Þ ð34Þ

The following theorem summarizes the aforementioned result.

Theorem 2 Consider the platform’s kinematic model (8) along with the motors’ dynamic
model (11) where the two parameters α and β are unknown but constant. If the adaptive
controller (Eq. 26) with the parameter adjustment rules 33 and 34 are applied, then the
platform can be steered to reach any destination pose or exactly follow any differentiable
and time-varying trajectory, Zd tð Þ ¼ rd tð Þ 8 d tð Þ θd tð Þ½ �T 2 C1, in the sense of globally
exponential stability, i.e., r(t)→rd(t), 8(t)→8d(t), and θ(t)→θd(t) as t→∞.

4 Adaptive Robust Path Following Control

This section is dedicated to addressing the path following control problem of the platform
in polar coordinates. As mentioned before, the trajectory tracking problem is formulated in
tracking a virtual reference at a given velocity, namely that the reference curve is some
function of time. However, in many applications, it is not necessary for the omnidirectional
mobile platforms to obtain certain postures at specified instants. Hence, path following is of
practical significance to accurately follow the geometric path. In the following we attempt
to deal with the path following problem under the assumption of desired linear velocity. To
achieve the control goal, the desired path to be followed is first described, and the path
following controller is then synthesized. Let the polar radius of the reference path be a C2

function of the polar angle, namely that

rd ¼ f 8 dð Þ ð35Þ
which gives

rd
�
tð Þ ¼ drd

dt
¼ r

0
d 8 dð Þ8 d

�
tð Þ ð36Þ

and

r
��
d tð Þ ¼ d2rd

d2t
¼ r

0 0
d 8 d tð Þð Þ8 2

d

�
tð Þ þ r

0
d 8 d tð Þð Þ8� �d tð Þ ð37Þ
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where r
0
d 8 dð Þ ¼ drd 8 dð Þ

d8 d
; r

0 0
d 8 dð Þ ¼ d2rd 8 dð Þ

d2ϕd
; 8

�
d tð Þand 8

��
d tð Þare determined as follows. With

Eq. 4 and the desired linear velocity vd(t) of the platform give

rd
�
tð Þ

� �2
þ rd 8 dð Þ8 d

�
tð Þ

� �2
¼ v2d tð Þ ð38Þ

Since r
�
d tð Þ ¼ r

0
d 8 dð Þ8� d tð Þ, Eq. 38 becomes

r
0
d 8 dð Þ8 d

�
tð Þ

� �2
þ rd 8 dð Þ8 d

�
tð Þ

� �2
¼ v2d tð Þ ð39Þ

Solving for the variable 8
�
d tð Þ from Eq. 39 yields

8 d
�

tð Þ ¼ vd tð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2d 8 dð Þ þ r

02
d 8 dð Þ

q ð40Þ

Notice that the positive sign is preferred in Eq. 40, and the desired linear velocity vd(t)
can be designated as negative. Moreover, differentiating Eq. 40 with respect to time yields

8��d tð Þ ¼ � r
0
d 8 d tð Þð Þ r

0 0
d 8 d tð Þð Þ þ rd 8 d tð Þð Þ� �

8 2
d

�
tð Þ

r2d 8 d tð Þð Þ þ r
02
d 8 d tð Þð Þ� � ð41Þ

Hence, Eqs. 40 and 41 define the motion of the parameter ϕd(t).
Furthermore, the tangential angle of the reference path (35) in polar coordinates is

obtained from

θd tð Þ ¼ π=2þ 8 d tð Þ � tan�1 r
0
d 8 dð Þ.

rd 8 dð Þ
� �

ð42Þ

which has its time derivative

θd
�
tð Þ ¼ 8 d

�
tð Þ � rd 8 dð Þr0 0d 8 dð Þ8 d

�
tð Þ � r

0
d 8 dð Þ� �2

8 d
�

tð Þ
r2d 8 dð Þ þ r

0
d 8 dð Þ� �2

¼ 8 d
�

tð Þ 2 r
0
d 8 dð Þ� �2 þ r2d 8 dð Þ � rd 8 dð Þr0 0d 8 dð Þ

r2d 8 dð Þ þ r
0
d 8 dð Þ� �2

 ! ð43Þ

Unlike the conventional two-wheeled mobile platforms, the desired vehicle’s orientation
θd(t) for the omnidirectional mobile platform can not be necessary to be the tangential angle
of the reference path, but can be arbitrarily planned. Once the desired path (Eq. 35) and the
given orientation and their first and second time derivatives 36, 37, 40 and 41 have been
obtained, the path following controller will be synthesized such that the platform will
follow the desired path in the sense of globally asymptotical stability, i.e., r(t)→rd(t),
ϕ(t)→8d(t), θ(t)→θd(t) as t→∞. The work can be done easily by proceeding with the
previous design procedure as in Section 3. To achieve the controller design for the
platform’s kinematic model (8) along with the motors’ dynamic model (11) with
unknown but constant parameters, α and β, as well as three uncertain but bounded forces,
fi, i=1, 2, 3, exerted on the driving wheels, we use the tracking error vector as in Eq. 12
and the adaptive robust controller (Eq. 26) with the parameter adjustment rules (Eq. 33)
and (Eq. 34). Then the following theorem is given.
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Theorem 3 Consider the platform’s kinematic model (8) and the motors’ dynamic model
(11) with the desired path (Eq. 35). If the adaptive robust controller (Eq. 26) with the
parameter adjustment rules (Eq. 33) and (Eq. 34) are employed and the polar radius is
always nonzero and bounded, then the platform can be steered to exactly follow the path in
the sense of globally asymptotical stability.

Remark 1 The linear velocity vd(t) of the platform can be designated by the user according
to the curvature of the path (Eq. 35), in order to avoid the generation of the large transient
tracking error. For example, if the curvature is small, then the linear velocity vd(t) becomes
fast; if the curvature is large, then the linear velocity vd(t) becomes slow. Simple fuzzy rules
with genetic algorithm might be useful in finding appropriate linear velocity vd(t) for the
platform to follow a given path.

Remark 2 Although the current trajectory generator for path following assumes linear
velocity, it is possible to generate energy-optimal or time-optimal trajectories [12, 17] for
the kind of vehicle.

5 Simulation Results

The aim of the simulations is to examine the effectiveness and performance of the proposed
control methods. These simulations were conducted with the following parameters: L=
0.23 m, R=0.0508 m, α=β=0.4, k1=k2=3, la ¼ lb¼ 2, f1=f2= f3=0.3 (N), and Kp=diag
{7.5, 7.5, 7.5}.

5.1 Adaptive Robust Trajectory Tracking of Rose Curves

The following two simulations were used to study the performance of the adaptive robust
control law (Eq. 26) by tracking the special rose curves expressed by rd tð Þ ¼
5 cos 1=38 d tð Þ

� �
þ 6 (unit:m) and rd tð Þ ¼ 5 cos 48 d tð Þð Þ þ 8 (unit:m). The initial pose of

the omnidirectional mobile platform was assumed at r0 ϕ0 θ0½ �T ¼ 1m½ 0 rad 0 rad�T
and the desired vehicle orientation was π=2. Figure 2(a) depicts the tracking performance of
the controlled platform to track the rose curve rd tð Þ ¼ 5 cos 1=38 d tð Þ

� �
þ 6, and Fig. 2(b)

presents the simulated trajectory tracking of rose curve rd tð Þ ¼ 5 cos 48 d tð Þð Þ þ 8. The
convergent tracking errors of position and orientation for rose curve described in Fig. 2(a)
are shown in Fig. 3. The results clearly reveal that the control law (Eq. 26) was capable of
steering the platform to track these special paths.

The third simulation for tracking rose curve trajectory was conducted to compare the
proposed adaptive robust controller (Eq. 26) with the non-adaptive robust controller (Eq. 20).
The two parameters α=β=0.4 are again used to perform the simulation for 0 � t � 80 s :,
but they are altered to α=β=0.41 in the time interval 30 s � t � 35 s. Figure 4 presents the
trajectory tracking performance of the non-adaptive robust controller (Eq. 20). Comparing
Fig. 4 with Fig. 2(a), the adaptive robust controller has a more smooth response to track the
rose curve than the non-adaptive one does, especially in the time interval 30 s � t � 35 s.
This result clearly indicates that the proposed adaptive robust controller (Eq. 26) outperforms
the non-adaptive roust one (Eq. 20).
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5.2 Adaptive Robust Path Following

The objective of the subsequent path following simulation is to investigate how the
adaptive robust control law (Eq. 26) along with the parameter adjustment rules (Eq. 33) and
(Eq. 34) can be applied to achieve the path following mission. The first illustrative
simulation was performed to steer the platform to follow the special path, called Limacon of
Pascal, expressed by

rd tð Þ ¼ 15þ 10 cos 8 d tð Þ Unit : mð Þ
where 8 �

dðtÞ is assumed to be 0.3 rad.; thus, the desired velocity of the platform was
obtained from Eq. 40, i.e., vd tð Þ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

29:25þ 27 cos 8 d tð Þð Þp
m=s:; the desired vehicle

orientation was π=2; the initial pose of the platform was given by r0 8 0 θ0�T ¼
h

1m 0 rad 0 rad½ �T . Figure 5(a) shows the simulation response for the special path.
Figure 5(b) shows the convergent errors of position and orientation. The result indicates
that the controller (Eq. 26) was capable of steering the platform to follow this special path.

Fig. 2 Simulation results of the
proposed adaptive controller for
tracking rose curves. a
rd tð Þ ¼ 5 cos 1=38 d tð ÞÞ þ 6

�
. b

rd tð Þ ¼ 5 cos 48 d tð ÞÞ þ 8ð
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Furthermore, the second simulation conducted the simulation of Limacon of Pascal path
following problem in Cartesian coordinates, and then compared the result with the previous
one in polar coordinates. An existing path-tracking controller proposed in [19] was adopted
to perform the simulation. Figure 6 depicts the path following simulation result of the
Limacon of Pascal in Cartesian coordinates. Comparing Fig. 6 with Fig. 5(a), the polar-
space adaptive controller (Eq. 26) exhibits a much smoother trajectory and less path
following errors, thus showing the merit of the adaptive controller in following smooth
trajectories expressed in polar-coordinates.

6 Experimental Results and Discussion

The aim of the following experiments is to examine the effectiveness and performance of
the proposed adaptive robust control method. As shown in Fig. 7, the experimental
omnidirectional mobile robot is equipped with the following components: (1) one 7” LCD
monitor; (2) one personal computer (PC); (3) three encoders mounted on the driving
motors; (4) two 12 V serial batteries; (5) three DC24V brushless servomotors with their
drivers from Oriental Motor Co., Taiwan; (6) three omnidirectional wheels from Kornylak
Corporation (Kornylak.com); (7) one five-link robot arm; (8) one laser scanner. The
personal computer is composed of a one parallel digital input and output circuit card with
three 32-bit counters HCTL2032, and one digital-to-analog card (PIO-DA9). Three driving
omnidirectional wheels are driven by three DC24V brushless servomotors with three
mounted encoders of 300 pulses per revolution. The proposed unified control law (Eq. 26)
was implemented using C++ codes and standard programming techniques. All the
experiments were conducted with the system parameters: L=23 cm and R=5.08 cm.

Moreover, in the experiments, the three encoders were employed to measure the angular
velocities of the three DC brushless motors in order to achieve the dead-reckoning of the
platform. The purpose of the dead-reckoning of the platform is, given a correct initial pose,

Fig. 4 Trajectory tracking per-
formance for rose curve
rd tð Þ ¼ 5 cos 1=38 d tð ÞÞ þ 6

�
using the non-adaptive robust
controller (Eq. 20)

�Fig. 3 Trajectory tracking performance of the proposed adaptive controller for rose curve in Fig. 2(a). a
Convergent tracking error of r. b Convergent tracking error of 8. c Convergent tracking error of θ
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Fig. 5 a Path following result for
the Limacon of Pascal
rd tð Þ ¼ 15þ 10 cos 8 d tð Þ. b Path
following errors of the proposed
adaptive controller in
Fig. 5(a)

Fig. 6 Path following result for
the Limacon of Pascal
rd tð Þ ¼ 15þ 10 cos 8 d tð Þ using
the controller proposed by [19] in
Cartesian coordinates
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to continuously keep track of its correct poses with respect to the reference frame. This
dead-reckoning pose estimation can be improved by fusing laser scanning data.

6.1 Elliptical Trajectory Tracking

The elliptic trajectory tracking experiment was employed to explore how the proposed
controller (Eq. 26) steers the mobile platform to exactly follow an elliptic trajectory
described by

rd tð Þ 8 d tð Þ θd tð Þð Þ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2r 2
1
þ 1

2r 2
2
þ cos 28 d tð Þð Þ 1

2r 2
1
� 1

2r 22

� �r ωo þ ωrt
π
2

0BB@
1CCA

The experiment assumed that the platform got started at ½r0 8 0 θ0�T ¼ ½1:0 cm
0:0 rad 0:0 rad�. The parameters in the elliptic trajectory tracking experiment were taken
as follows: ω0=0 (rad/s), ωr=0.2 (rad/s), r1=20 (cm), r2=30 (cm). Figure 8(a) depicts the
experimental elliptic trajectory tracking of the platform. The tracking errors for elliptical
trajectory are shown in Fig. 8(b). These results show that the polar-space adaptive robust
controller (Eq. 26) is capable of steering the omnidirectional mobile platform to exactly
track the elliptic trajectory.

6.2 Limacon of Pascal Path Following Experiment

The objective of the subsequent experiment is to examine and verify the effectiveness of the
proposed unified control law (Eq. 26) for path following. The illustrative experiment was
performed to steer the platform to follow the special path, called Limacon of Pascal,
expressed by

rd tð Þ ¼ 20þ 15 cos 8 d tð Þ unit : cmð Þ
where 8�dðtÞ is assumed to be 0.1 rad.; thus, the desired velocity of the platform was

obtained from (Eq. 40), i.e., vd tð Þ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6:25þ 6 cos 8 d tð Þð Þp

cm=s:; the desired vehicle

Fig. 7 Picture of the
experimental omnidirectional
mobile robot
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Fig. 8 a Experimental result of
the elliptic trajectory tracking. b
Experimental tracking errors of
the elliptic trajectory in
Fig. 8(a)

Fig. 9 Experimental result of the
Limacon of Pascal
rd tð Þ ¼ 20þ 15 cos 8 d tð Þ path
following
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orientation was π=2; the initial pose of the platform was given by [r0 80 θ0]=[1.0 cm 0 rad
0 rad]. Figure 9 depicts the experiment result of the Limacon of Pascal path following. The
result shows that the adaptive robust controller (Eq. 26) in polar-coordinates is capable of
steering the platform to follow this desired path.

7 Conclusions

This paper has developed an adaptive robust control method via backstepping for trajectory
tracking and path following of an omnidirectional mobile platform with two actuators’
uncertainties. With the platform’s wheels equally spaced at 120° from one another, the
polar-space kinematic model of the platform is briefly described, and the simplified
dynamic equations of the three DC servomotors with two unknown parameters are also
given. The adaptive robust controller has been designed in two steps. The robust controller
is first presented and the adaptive one is then constructed in order to achieve trajectory
tracking. The adaptive robust control method has been easily applied to address the path
following problem for the platform in polar coordinates. Through computer simulation and
experimental results, the proposed controllers have been shown capable of steering the
platform to achieve the tasks or missions of trajectory tracking and path following in polar
coordinates; furthermore, it outperforms the non-adaptive robust controller and the
feedback controller shown in [19].
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