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Abstract

New Zealand’s economy relies on primary production to a great extent, where use of the tech-

nological advances can have a significant impact on the productivity. Robotics and automation

can play a key role in increasing productivity in primary sector, leading to a boost in national

economy. This thesis investigates novel methodologies for design, control, and navigation

of a mobile robotic platform, aimed for field service applications, specifically in agricultural

environments such as orchards to automate the agricultural tasks.

The design process of this robotic platform as a non-holonomic omnidirectional mobile

robot, includes an innovative integrated application of CAD, CAM, CAE, and RP for devel-

opment and manufacturing of the platform. Robot Operating System (ROS) is employed for

the optimum embedded software system design and development to enable control, sensing,

and navigation of the platform.

3D modelling and simulation of the robotic system is performed through interfacing ROS

and Gazebo simulator, aiming for off-line programming, optimal control system design, and

system performance analysis. Gazebo simulator provides 3D simulation of the robotic system,

sensors, and control interfaces. It also enables simulation of the world environment, allowing

the simulated robot to operate in a modelled environment. The model based controller for kin-

ematic control of the non-holonomic omnidirectional platform is tested and validated through

experimental results obtained from the simulated and the physical robot.

The challenges of the kinematic model based controller including the mathematical and

kinematic singularities are discussed and the solution to enable an optimal kinematic model
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based controller is presented. The kinematic singularity associated with the non-holonomic

omnidirectional robots is solved using a novel fuzzy logic based approach. The proposed

approach is successfully validated and tested through the simulation and experimental results.

Development of a reliable localization system is aimed to enable navigation of the platform

in GPS-denied environments such as orchards. For this aim, stereo visual odometry (SVO) is

considered as the core of the non-GPS localization system. Challenges of SVO are introduced

and the SVO accumulative drift is considered as the main challenge to overcome. SVO drift is

identified in form of rotational and translational drift. Sensor fusion is employed to improve

the SVO rotational drift through the integration of IMU and SVO.

A novel machine learning approach is proposed to improve the SVO translational drift

using Neural-Fuzzy system and RBF neural network. The machine learning system is formu-

lated as a drift estimator for each image frame, then correction is applied at that frame to avoid

the accumulation of the drift over time. The experimental results and analyses are presented

to validate the effectiveness of the methodology in improving the SVO accuracy.

An enhanced SVO is aimed through combination of sensor fusion and machine learning

methods to improve the SVO rotational and translational drifts. Furthermore, to achieve a

robust non-GPS localization system for the platform, sensor fusion of the wheel odometry

and the enhanced SVO is performed to increase the accuracy of the overall system, as well as

the robustness of the non-GPS localization system. The experimental results and analyses are

conducted to support the methodology.
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Chapter 1

Introduction

1.1 Overview and Objectives

Application of mobile robots from indoor to outdoor usage in industries, agriculture and other

sectors has been growing vastly. For such applications that are hazardous or hardly accessible,

where it can be dangerous or difficult for humans, mobile robots can be the best choices to

carry out the tasks. Primary production in New Zealand is one of the most important sectors.

The success of New Zealand’s economy which is mostly based on the success of primary

production industries requires more productivity and efficiency [5]. Employing automation

and robotics is one of the best solutions.

Common agricultural task that can be automated are including harvesting, weeding, spray-

ing, and transportation. Many research has been carried out in the development of mobile

robotic systems to automate different agricultural tasks for greenhouses [66][55], orchards

[95][4], and agricultural fields [108][76]. The existing trend within primary production is to

use bigger, heavier vehicles to perform agricultural operations in the shortest possible time. An

alternative is to let smaller, light weight mobile robots cooperate and serve a team of workers.

Such a robotic system achieves high productivity, lower cost and lower soil compaction which

will make the production and operations more sustainable. Therefore, developing a robotic



2 Introduction

system as a mobile base platform is required to augment and automate tasks in agriculture.

This thesis investigates design and development of a mobile robotic platform for applic-

ation in unstructured environments such as orchards or agricultural fields. This platform is

called MARIO - Mobile Autonomous Rover for Intelligent. The mechatronic design and de-

velopment process of such a mobile robotic platform requires hardware and software develop-

ment. Hardware including mechanical, electronics, and sensory systems to software including

the control, sensing, and navigation system design.

The key challanges addressed in this thesis are:

• Optimal design, development, and control of the non-holonomic omnidirectional mobile

robotic platform;

• Investigation, implementation, and improvement of non-GPS localization methods for

navigation of the platform in GPS-denied environments;

1.2 Thesis Contribution

The main contributions of this thesis can be summarized into two groups follows:

Optimal design and control of the non-holonomic omnidirectional mobile robotic plat-

form

1. Design and development of the platform. As the basic component of the thesis, mechat-

ronic system design and development of a four wheel driving/steering (4WD4S) mobile

robot as a non-holonomic omnidirectional platform is proposed. The design process is

presented through an innovative integrated application of CAD/CAM/CAE and RP for

rapid development of the robot. 3D CAD design allows further CAE analysis including

motion analysis of the actuation system and structural analysis of the robot parts. CAM

and RP are utilised to reduce the manufacturing time and cost. Software development
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using Robot Operating System (ROS) in the design process enables design of the op-

timum embedded system to control the robot. The integrated design approach provides

successful prototyping of the mobile robot.

2. 3D modelling and simulation. The 3D modelling and simulation of the non-holonomic

omnidirectional mobile robot, aiming for off-line programming and system performance

analysis is investigated. For this purpose, platform is modelled and simulated based on

the physical developed model using the Gazebo simulator and ROS. The singularity

problem associated with the kinematic model-based control system is discussed. The

singularities are introduced in form of representational (mathematics) and kinematic

singularities. Mathematical singularities are solved by presenting the idea of switching

between different steering scenarios. Simulation of the world environment, physical

model, sensors, and control system are achieved in Gazebo simulator. The model-based

kinematic controller is formulated, simulated, and validated with respect to the physical

system. Modelling and simulation allows development, testing and validation of the

robotic system and required software before implementation on the real system.

3. Optimal model-based kinematic controller. The kinematic singularity associated with

the developed model-based controller is discussed. Kinematic singularities occurs in

one form of steering, which places the Instantaneous Centre of Rotation (ICR) on one of

the steering axes. This kinematic singularity damages the actuator and the steering axis,

and should be avoided. To overcome that, a novel approach using fuzzy logic control is

proposed to treat this type of singularity for the platform. The proposed methodology

can be generalized for all non-holonomic omnidirectional mobile robots.

Enhanced localization for navigation of the platform in outdoor GPS-denied environ-

ments

1. Vision based localization performance evaluation. Experimental study and analysis on



4 Introduction

the potential of using vision based localization for pose estimation of the platform in

outdoor GPS-denied environments are carried out. Stereo visual odometry (SVO) is

utilised and the SVO drift improvement as the main challenge in form of rotational

and translational drift is investigated. Sensor integration is proposed as a solution to

minimize the rotational drift.

2. Enhanced vision based localization through machine learning. The SVO translational

drift and the nature of the SVO drift are studied. A Neural-Fuzzy machine learning

model is proposed to model a translational drift estimator for the SVO. The model is

designed based on the formulation of the parameters that represents the characteristics

of SVO. The model is used to correct the translational drift at each frame and overally

reduce the SVO drift.

3. Sensor fusion for reliable localization in outdoor GPS-denied environments. Experi-

mental study and analysis of utilising sensor fusion to achieve more accurate localiz-

ation of MARIO in GPS-denied environments. Kalman Filtering enhances the pose

estimation of the platform by fusing the state information from wheel odometry (WO),

Inertial Measurement Unit (IMU), and the corrected SVO.

The enhanced vision based localization for navigation in GPS-denied environments can be

considered as the most important contribution of this thesis. However, design and develop-

ment of the platform as the base tool of this research is essential to carry out the rest of the

research work. Design and development of the robotic platform is done by considering the

main challenges and improving those in terms of the design and control system. The de-

veloped method in enhanced localization can be applied to any other ground robotic platform

by ignoring other criteria such as the specific design, locomotion, or control system used in

those robotic systems.
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1.3 Thesis Outline

This thesis is organised into nine chapters. The first chapter as presented here introduces the

motivation, research objectives, and the contribution of this research. The next chapters are as

follows:

Chapter 2. Literature Review presents the overview of the recent research and challenges in

developing the mobile robotic platforms for operation in unstructured outdoor environ-

ments, specifically agricultural environments. The review involves research carried out

in the design, control, and navigation systems with the specific focus on localization.

Chapter 3. Development of Non-holonomic Omnidirectional Mobile Robot presents the mechat-

ronic design and development process of the developed mobile robotic platform MARIO

- Mobile Autonomous Rover for Intelligent Operations, a four-wheel driving/steering

(4WD4S) as non-holonomic omnidirectional mobile platform.

Chapter 4. Modelling and Simulation of Non-holonomic Omnidirectional Robot presents the

3 dimensional (3D) modelling and simulation of MARIO, aiming for off-line program-

ming and system performance analysis. The modelling and simulation approach allows

successful development and test of the platform and different implemented robotic soft-

ware in a simulation environment before implementation on the real system.

Chapter 5. Fuzzy Singularity Avoidance for Optimal Kinematic Control discusses the singu-

larity problems of the 4WD4S platforms and provides a fuzzy control system to solve

the problem of kinematic singularity for an optimal kinematic control system.

Chapter 6. Enhanced Stereo Visual Odometry Using Sensor Fusion for Non-GPS Localiz-

ation presents the experimental study and analysis of utilizing stereo visual odometry

for MARIO as a solution for localization and navigation in outdoor unstructured GPS-

denied environment such as orchards as a main part of the research work in this thesis.
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Sensor fusion using Extended Kalman Filter is utilised to study the improvement of the

localization of the system by the fusion of stereo visual odometry and the IMU. The

challenges and drawbacks of vision based localization in terms of accuracy and drift are

discussed and analysed.

Chapter 7. Enhanced Stereo Visual Odometry Using Machine Learning presents a novel

machine learning approach to enhance the stereo visual odometry by reducing the drift

with the presented experimental results. This includes a more detail explanation of

the stereo visual odometry and analysis of the nature of the drift in the vision based

localization systems. The Neural-Fuzzy based machine learning system is formulated

as a drift estimation system to then correct the odometry drift and improve the accuracy

of the stereo visual odometry system.

Chapter 8. Enhanced Localization for Navigation in GPS-Denied Environments presents

the integration of the developed methods including the sensor fusion of the wheel odo-

metry, IMU, and the enhanced visual odometry to achieve a more accurate and reliable

localization for navigation in GPS-denied environment.

Chapter 9. Conclusion and Future Works presents the summary of the work presented in this

thesis alongside the recommendation and addressed challenges for future research.



Chapter 2

Literature Review

This thesis investigates design and development of a mobile robotic platform for potential use

in agricultural applications. This Chapter discusses the background research and motivation,

in particular, the challenges relating to the agricultural mobile robotics and in general, field

service robotics in terms of locomotion, modelling, control, and navigation.

2.1 Agricultural Mobile Robotics

The review of the trend in agricultural mobile robots shows an ascending progress during the

last few years. An autonomous Kiwi-Fruit picking robot was developed at Massey University

[92] for automation of kiwi fruit production in New Zealand. The vehicle has four wheels and

uses two front wheels for steering. This vehicle uses differential Global Positioning System

(GPS), compass and computer vision for localization and navigation in kiwifruit orchards.

U-Go robot was developed by the Service Robots Group of University of Catania [7] as a

multi-functional system to cover different field of applications especially precision farming

applications. The locomotion is provided by the rubber tracks instead of wheels and each

track is driven by a DC motor to provide differential drive skid steering. Localization is

provided by Global Navigation Satellite System (GNSS) receiver and X-Sens MTi Attitude
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and Heading Reference System (AHRS). Data from stereo camera, Sick LMS200 Laser Range

Finder and Sound Navigation And Ranging (Sonar) sensors are fused to provide information

for navigation algorithm.

(a) (b)

Figure 2.1: a) Kiwi-Fruit picking robot [92], b) U-Go Robot [7].

Zeigbee robot developed by Bio-Mechatronics group at National Pingtung University of

Science and Technology, Taiwan [18] is a semi-autonomous mobile robot gardener prototype

for spraying in the greenhouse. This robot was designed with three wheels, driven and steered

by the front-wheel. Localization was performed by wheel odometry while navigation includ-

ing row detection, row following and obstacle avoidance was provided by laser range finder

and ultrasonic sensors. VineRobot (Figure 2.2a) project is the result of collaboration between

different universities in Europe which has received funding from the European Union’s Sev-

enth Program [27], is a mobile robotic platform which is equipped with several non-invasive

sensing technologies to inspect and monitor agronomical and physiological parameters of the

vineyards. Bin-Dog robot (Figure 2.2b) is an intelligent fruit bin carrier developed at Carne-

gie Mellon University, USA by [111] to travel autonomously in orchards and move/place fruit

bins for fruit pickers to allow for efficient harvest. A four-wheel independent steering (4WIS)
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system provides steering modes such as four wheel coordinated steering, crab steering and

spinning. Localization and navigation outside the rows are provided using differential GPS

and inside rows using laser range finder and ultrasonic sensors.

(a) (b)

Figure 2.2: a) VineRobot [27], b) Bin-Dog Robot [111].

2.2 Locomotion of Ground Mobile Robots

Ground mobile robots can be categorized based on the locomotion system into legged, wheeled,

tracked and hybrid robots [12]. These require different mechanical and control system designs.

Wheeled and tracked mobile robots are the most used in field service applications. Generally,

the locomotion control system of mobile robots can be divided into differential drive, car-like,

and omnidirectional systems [105]. The existing off-road locomotion systems for mobile ro-

bots are mostly based on the conventional tracks or wheels with car like or differential drive

steering systems. With the current off-road locomotion systems, navigation and mobility in

narrow and restricted spaces such as orchards and farm rows are difficult. An omnidirectional

mobile robot fulfils these abilities very well. This type of robot is capable of moving in any dir-
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ection while keeping the platform orientation constant, which results in significant advantages

over the conventional platforms in terms of agile mobility.

There are different omnidirectional robot designs (Figure 2.3) which use different types

of wheels such as omni-wheels [6], mecanum wheels [49], conventional wheels in form of

independent steering wheels [71], and omnidirectional tracks [99]. Proper design requires a

good understanding of the application and environments that a robot should function. Omni-

wheeled or mecanum wheeled systems are limited to use for off-road applications by their

design and passive rollers and they need a completely flat surface. The omnidirectional tracked

crawler requires a complex mechanical design and is limited to provide a uniform omnidirec-

tional motion.

(a) (b) (c) (d)

Figure 2.3: omni-wheels robot (obtained from nodna.de); (b) URANUS mecanum wheels
omni-directional robot (obtained from wikipedia.org/wiki/Mecanum_wheel); (c) Omni-
Crawler (obtained from hh.mech.eng.osaka-u.ac.jp); (d) Seekur 4WD4S (obtained from mo-
bilerobots.com).

Independently steered wheels are the only solution for off-road omnidirectional mobility.

Wheeled mobile robots are the best known types of mobile robots for field service applica-

tions. Example of wheeled mobile robots for field service applications are Seekur, an omni-

directional all-terrain mobile robot developed by Adept Mobile Robotics [70]; Hortibot, an

agricultural robot developed in Institute of Agricultural Engineering at University of Aarhus

[85]; Bonirob, an autonomous field robot developed by AMAZONE and Osnabrück Univer-

sity [88]. A four-wheel independent steering and driving (4WD4S) robot design allows for
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the setup of multiple steering configurations including car-like steering, coordinated steering,

spot turn, and omnidirectional (crab) steering system (Figure 2.4).

(a) (b) (c) (d)

Figure 2.4: 4WD4S steering modes: (a) car-like steer; (b) coordinated steer; (c) spot turn
steer; (d) omnidirectional/crab steer.

2.3 Modelling, Simulation, and Control System

Nowadays modelling and simulation are the major parts of scientific and engineering pro-

cesses, especially robotic systems. Modelling and simulation play an important role in off-line

programming, performance analysis, and development of advanced control algorithms for ro-

botic systems [103]. Design, testing, and validation of robotic systems ranging from indoor

[65] to outdoor mobile robots [63], articulated industrial manipulators [107], underwater ro-

botic systems [90], and humanoid robots [61] are impossible without proper modelling and

simulation tools. Furthermore, simulation can be used as a tool to develop virtual environ-

ments for training operators [84] as well as an educational tool for teaching and learning basic

concepts of robotic systems [14]. Additionally, simulation provides low cost means of testing

and experimentation, and makes controlling disturbances much easier compared with using

real robotic systems [102].
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2.3.1 Robotics Simulation and Software Development Tools

Along with development and progress in powerful and affordable computing technologies in

last two decades, a number of proprietary and open source robotic modelling and simulation

software have been developed. Examples of open source robotic simulator software which

have achieved popularity among users and are available freely for personal or academic use

are Open Dynamics Engine (ODE) [30], Robotic Toolbox for MATLAB [26], Microsoft Ro-

botics Developer Studio (MRDS) [50], Webots [69], Virtual Robot Experimentation Platform

V-Rep [86], Modular Open Robots Simulation Engine MORSE [36], and Gazebo [56]. Se-

lecting the most suitable simulation tool for a specific purpose like research, development, or

education can be difficult. The variety of simulation tools, features provided by each tool,

user-friendliness and dependency on external packages are some of the main considerations

which can make it challenging to choose the most suitable robotic simulation tool [103].

The Gazebo Project was a part of the Player/Stage/Gazebo projects, which have been de-

veloped since 2001. The Player Project provides a network interface to different types of

robots and sensors. Stage is a simulator for a large population of mobile robots in a 2D envir-

onment [68]. Gazebo is a multi-robot simulation tool which has the capability of accurate and

efficient simulation of a population of robots, sensors and objects in a 3 dimensional world.

Gazebo generates realistic sensor feedback and has a robust physics engine to generate inter-

actions between objects, robots and environment. Furthermore, Gazebo provides high-quality

graphics, and suitable programmatic and graphical user interfaces [56]. Gazebo is offered

freely as a stand-alone software, but has also been packaged along with Robot Operating Sys-

tem (ROS) as the simulation tool. ROS was originally developed by the Stanford Artificial

intelligence Laboratory in Support of the Stanford AI Robot (STAIR) project. ROS is an open

source robotic middle-ware that provides libraries and tools to help software developers pro-

duce robot programs. It provides hardware abstraction, device drivers, libraries, visualizers,

message-passing, package management, and more [82].
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There have been many robotics research projects where Gazebo/ROS has been used widely.

BoniRob is an autonomous field robot platform for individual plant phenotyping and Gazebo

has been used to model and simulate the farm environment and robotic model [88]. Linner and

Shrikathiresan presented modelling and operating robotic environments using Gazebo/ROS

with some common examples to prove the performance and effectiveness of using ROS and

Gazebo for this aim [59]. A comprehensive simulation of quadrotor UAVs has been carried

out using ROS and Gazebo [67] and is able to simultaneously simulate different features such

as flight dynamics, on-board sensors like IMUs, external imaging sensors and complex en-

vironments. A set of simulations for manipulation tasks using ROS and Gazebo have been

completed to illustrate the techniques of implementing robot control in a short time [81].

2.3.2 Non-holonomic Omnidirectional Control System

The degree of holonomy of a Wheeled Mobile Robot (WMR) is defined by the degrees of mo-

bility and manoeuvrability. WMRs are classified into holonomic and non-holonomic classes

based on their degrees of mobility and steer-ability [62]. A holonomic WMR is capable of

moving in all available degrees of freedom (DOFs) in a workspace and it is not limited by

any mechanical constraint to move. A non-holonomic WMR is constrained by its mechanical

structure and kinematic presentation, thus cannot move in all directions without changing the

steering configuration and discontinuity in the motion.

The kinematic modelling of 4WD4S as a non-holonomic omnidirectional platforms is

achieved using the concept of instantaneous centre of rotation (ICR). These platforms are

specified by having a degree of steer-ability of two, and a degree of mobility of one[15]. The

ICR is defined as the rotation point for the platform with respect to the centre of robot frame.

The kinematic modelling of the non-holonomic omnidirectional WMRs based on the ICR can

be achieved using the Cartesian representation of the ICR [28], or the polar representation of

ICR [24]. Each of these representations has its own mathematical and kinematic singularities.
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Mathematical singularities are resulted by having null angular or linear velocities, causing

singularity for ICR vector elements. This type of singularity can be solved by introducing

different type of steering modes for the platform and switching between these modes.

Kinematic singularity results when the ICR passes through any of the steering joint axes.

In this situation, the steering angle of the wheel for the respective joint cannot be individually

defined as infinite number of solutions for steering angle are exist. Also due to kinematic

singularity, the steering rate of the joint in singular region increases unboundedly, gets over

the mechanical and electrical limits of the actuator and can damage it. To deal with kinematic

singularity, different methods have been proposed. A group of methods try to keep or push

the ICR out of the singular regions. Artificial Potential field methods have been used in [25,

28, 94] to push the ICR from placing or moving nearby the steering axes. The other group of

methods presented in [23, 77] consider limiting velocity or acceleration for the situation that

the ICR is passing on a path over the joint steering axes or stopping at the steering axes, so

that more velocity workspace is available.

2.4 Vision Based Localization and Sensor Fusion

Navigation is one of the most challenging areas in mobile robotics research. Success in mo-

bile robot navigation obliges success in four building blocks of navigation system including

perception, localization, cognition and motion control. Localization, defined as the ability of

a robot to determine its position in a 2D or 3D environment, is one of the main building blocks

of the navigation system of any mobile robotic system and it has received the most research

attention as the basic step towards reliable navigation [96].
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2.4.1 Localization

GPS is believed to be the most common method to achieve localization in outdoor environ-

ment, has been used for many years as the main core of the navigation system in different

applications. GPS has been used widely from the unmanned ground vehicles [16, 110]to un-

manned aerial vehicles [87, 106]. While GPS seems to be the most promising solution for

localization in outdoor environment, it suffers from signal occlusion which results precision

reduction or lost positioning information. This loss can be caused by the buildings in an urban

environment, tree canopies in an orchard environment, or any other object blocking the signals

between the satellites and the GPS receiver antenna. Moreover, without signal blockage, High

precision GPS units are excessively expensive, thus not affordable for many applications. Fur-

thermore, GPS alone does not provide inertial information, so an IMU is always required to

provide inertial and rotational information [33].

Other localization approaches are considered as alternatives or compliments to GPS. Util-

ising wheel odometry and IMU to localize robots add no extra cost as they are required for

the motion control system. However, both are prone to drift and error accumulation over time,

so it leaves them currently unreliable to be used for localization [20]. Recently, vision based

techniques have become the subject of research for localization.

Light Detection and Ranging (LiDAR) sensors have become one of the most attractive

solutions for localization due to their relative low cost (compare to high accuracy GPS) and

high accuracy [45]. They can be used to identify and localize landmarks based on a provided

map [10] or simultaneously building a map and localizing (SLAM) the robot in that map .

Lasers not only can be employed for mapping and localization but also for several other pur-

poses such as row and obstacle detection/extraction for navigation system [9]. Scan matching

is performed between two sets of scans and relative displacement and orientation can be ex-

tracted. Traditionally pose estimation between two lasers scans could be computed using Iter-

ative Closest Points (ICP) algorithm [80]. However due to large number of iterations, ICP is
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computationally expensive and also it diverges from global minimum without having a proper

initial estimation of the transformation matrix. ICP is still the core algorithm for scan match-

ing with different representations to optimize the performance of ICP. Point-to-point [60] and

point-to-plane [79] are the most common ICP based techniques. Their performance are very

good for structured environment but the research challenges still remain for unstructured en-

vironment [80].

2.4.2 Sensor Fusion

To accurately estimate the robot’s position, data fusion and integration of information provided

by different sensors is required. To deal with uncertainties caused by the measurement errors

in sensors, probabilistic approaches have been used to provide a more accurate pose estimation

of the robot. One of the common technique is Extended Kalman Filter (EKF) [101]. EKF has

been used widely for localization of outdoor mobile robots to fuse Odometry and GPS data

[100], Odometry, GPS and IMU [72] or integrating Odometry and laser data for SLAM [46].

Kalman Filtering is a common technique used for estimation of accurate observed sensor

data including noise and inaccuracy over time. The Kalman Filtering algorithm works recurs-

ively in two steps: prediction and update. In the prediction step, an estimation of the current

state and covariance is produced based on the previous state estimate. In the update step, the

previous estimate is combined with the current observation to produce an estimation of the

current state and covariance. The EKF is the non-linear version of the Kalman Filter, where

the state estimation and observation models are non-linear functions[101].

2.4.3 Visual Odometry for Localization

Vision based navigation systems have been the subject of research interest in the last two

decades and many vision based techniques have been developed and tested. The application

of these techniques are utilised based on their ability to process and extract the visual features
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from the sequential digital images and estimating the displacement and rotation based on those

features [8]. The term visual odometry (VO) was first introduced in [75] as the process of ego-

motion estimation of a robot using cameras. The motion is estimated based on the triangulated

extracted feature machetes of the consecutive frames from the image sequences (Figure 2.5).

VO has been widely developed and tested using monocular cameras [1, 21], stereo cameras

[22, 93], and omnidirectional cameras [57, 91]. One of the well-known successful application

of VO for localization in a GPS-denied environment has been the series of Mars Exploration

Rover missions [19]. VO also have been broadly used from unmanned ground vehicles [42,

97], to unmanned aerial vehicles [13, 17], and unmanned underwater vehicles [2, 35]. Despite

the fact that VO gives a reasonable estimate of the motion, one of the main problems of VO

in long range navigation is drift which is caused by the growth of small errors in the motion

estimation process at frame over time. The source of the VO drift is mainly the uncertainties

in the feature matching process [47].

Figure 2.5: VO processing steps.

To overcome this problem, different solutions have been proposed. These solutions can be
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categorised in two classes; the ones using sensor fusion, and the non-sensor fusion computa-

tional techniques. The sensor fusion based methods (as mentioned earlier) use probabilistic

approaches to deal with the measurement uncertainties and errors from different sensors and

provide a more accurate motion estimation. Common techniques such as Extended/Unscen-

ted Kalman filters, [3] or Particle filters, [109] have been implemented to integrate motion

information from different sensors such as VO, IMU, wheel odometry, and GPS data.

Non-sensor fusion drift minimization methods focus on reducing the drift to increase the

accuracy of VO system by implementing computational or probabilistic methods on the VO

system. Different techniques have been proposed to reduce the drift. Bundle adjustment [104]

is a common method that has been used widely to minimize the VO drift. It reduces the er-

ror accumulation by simultaneously optimizing the camera parameters, the 3D coordinates

presenting the scene geometry, and the relative estimated motion. In this case, image features

are tracked over more than two frames, and the optimization is performed by minimizing the

image reprojection error. The reprojection error is a non-linear function and real time long

range full bundle adjustment is almost impossible due to the huge number of features and

3D estimated poses. To overcome this issue in bundle adjustment, sparse bundle adjustment

(SBA) has been proposed [98] which reduces the computational complexity of the optimiza-

tion process by not considering any uncertainty of whatever kind.

Sakai et al. in [89] propose a technique based on Hybrid Neural Fuzzy Inference (HyFIS)

system to learn the noise pattern of VO system. To train this HyFIS, they consider 3 parameters

of the feature points as inputs to the learning system. These parameters are including the inlier

numbers, average distances between 3 feature points, and variance of interior angles between

those 3 feature points. Those 3 feature points are the randomly selected samples as used for

3-point algorithm in motion estimation. The output of the HyFIS is the error between the

VO estimation and GPS as the ground truth. With this approach, they could improve the VO

estimation for two runs of experiment, 45m at first run and 70m at the second run. The error
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compensation has not been quantified.

More recently, drift was seen and introduced as a bias in the estimates that grows over

time. Dubbelman and Groen in [31] investigated the existence of a bias in motion estimation

process of a stereo VO system. They identified the distribution and incorrect modelling of

uncertainties of the 3D coordinates as the main sources of bias, causing the estimator to drift

over time. In their future work (Dubbelman et al. in [32]), they developed a projective bias

model to use for error compensation. What they suggest is to assume that the camera model

used in their research is an approximation and they consider this as the source of the bias.

They use trajectory calibration to estimate parameters of a bias model off-line and use it to

compensate for bias in the online process. Rehder et al. in [83] introduce another technique to

estimate the VO bias which is based on the Monte Carlo simulation which is computationally

expensive. This has been performed by simulating a Gaussian noise model on the 2D image

feature locations for a huge number of samples. Bias is estimated as the norm of the projected

translation vector with the added Gaussian noise over the original estimated solution.

Farboud-Sheshdeh et al. in [38] dig more into the nature of the bias in VO and propose

an online method based on the modified sigma-point method for sampling and compare the

results to the typical Monte Carlo sampling and an existing analytical method. Based on their

simulations, bias estimation is achieved with the same accuracy as the Monte Carlo, but at a

fraction of the computational cost. Finally they employ the idea of bootstrapping in statistics

to estimate, correct, and reduce the bias online.

2.5 Summary

This chapter has reviewed literature from a wide varaiety of key topics related in design and

development of a mobile robotic platform, capable of operation in field service applications

with focus on agricultural environments such as orchards. The detailed review on the loco-

motion system and 4WD4S type as the optimal locomotion, introduced challanges in design
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and control for this type of locomotion system. The associated singularity problems for con-

trol system design of the 4WD4S platform as a non-holonomic omnidirectional system were

described. The importance of a reliable localization system as the core part of the navigation

system for operation of the robotic platform in GPS-denied environemnts such as orchards

was reviewed. Vision based localization and its challanges as a choice for non-GPS localiza-

tion were discussed. These challanges and the state of the art related to each of them as well

as the research gap were addressed. Each of these challanges and the solutions are presented

in the next chapters.



Chapter 3

Development of Non-Holonomic

Omnidirectional Mobile Robot

3.1 Introduction

This chapter presents the mechatronic system design and development of the four-wheel

drive/steer (4WD4S) mobile robot as a non-holonomic omnidirectional robot, MARIO - Mo-

bile Autonomous Robot for Intelligent Operations. An innovative integrated application of

Computer Aided Design (CAD), Computer Aided Manufacturing (CAM), Computer Aided

Engineering (CAE), and Rapid Prototyping (RP) has been employed for rapid development

of the robot chassis and other mechanical parts by using different software tools. Most of

the parts were designed by 3D CAD software which allows further CAE analysis including

structural and motion analysis. To reduce the manufacturing time and cost, CAM and RP have

been used to manufacture the main parts. These master parts are manufactured by workshop

machining, 3D printing, and laser cutting. Robot Operating System (ROS) has been utilized

as the core robotic software development environment.
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3.2 Mechanical Design and Development

3.2.1 Design Overview

For the mechanical design of the robot, several design criteria need to be considered such as

body weight and size, manufacturability, manufacturing time and cost. In the initial design

process of this robot, it was aimed to have a modular system for easy assembly and further

maintenance. As a four-wheel independent steering/driving mobile robot, development of the

wheel module was the most important part of the design. This module includes the steering

and driving mechanisms which is presented in Figure 3.1a.

The steering mechanism consists of a servo motor which provides steering torque, a set

of gears, bearings and output shaft. All of these parts are placed in a housing. The driving

mechanism consists of a DC motor, leg structure, a set of bevel gears, bearings and output

shaft which drives the wheel. For this robot, four of these wheel modules attach to the chassis

(built from aluminium box section) to form a 4WD4S mobile robot. This design approach

allows initial analysis, tests and validation on a single wheel module and also decreases the

production time and cost for all four wheel modules.

All the robot parts have been designed using SolidWorks (v. 2014, SolidWorks Corp.)

2014 CAD software to allow further CAM/CAE. This design includes the parts which should

be manufactured and also the other parts supplied from off the shelf. Figure 3.1a shows the

exploded view of a wheel module. The assembled wheel module is shown in Figure 3.1b.

Figure 3.1c shows the final assembly of MARIO.
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(a) (b)

(c)

Figure 3.1: 3D CAD model of MARIO; (a) exploded view of a wheel module, (b) assembled
view of a wheel module, (c) Assembled MARIO.
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3.2.2 CAE Analysis for Design Verification

3.2.2.1 Structural Analysis of Wheel Module

The servo housing part which includes all the steering mechanism parts is designed to be 3D

printed using engineering plastics. The engineering plastic material Ingeo Polylactic Acid

(PLA) was used. Table 3.1shows the mechanical properties of PLA. This part is connected to

the chassis and also holds the driving mechanism to provide steering. Thus, there would be

mechanical stresses on this part caused by the applied loads and forces. To check and validate

the structural strength and integrity of the 3D printed housing part, CAE analysis has been

conducted using ANSYS [v 14.5, ANSYS, Inc]. The finite element model of housing part is

composed of 73304 nodes and 41965 elements. To run CAE analysis, it was assumed that the

maximum applied load on this part is concentrated on the inside surface of servo housing part

which holds the output shaft and the flanged bearing. The Applied force is considered 100N

which is a heavy force compared to the total weight of the robot which is about 10 kg.

Table 3.1: Mechanical properties of Ingeo PLA [73].

Property Content

Tensile yield strength (MPa) 60

Tensile ultimate strength (MPa) 53

Tensile modulus (GPa) 3.6

Poisson’s ratio 0.39

Density(g/cm3 ) 1.25

Figure 3.2 shows the structural analysis for the housing part including the distribution of

von Mises stress and the total deformation. The stress is concentrated on the top side edges of

housing part which are connected to the chassis. With the initial analysis, the maximum stress

was 3.56 MPa. To reduce this stress, the design was modified by increasing the thickness of
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those edges. The resulting maximum stress was reduced to 1.9787 MPa which is shown in

Figure 3.2a. This modification decreased the maximum stress to 55 % of the maximum stress

achieved by initial design and test. Figure 3.2b shows the total deformation analysis. The

maximum deformation is 0.015 mm which is completely negligible. This type of analysis has

been carried out for other parts to improve the structural stiffness and safety of each part and

the assembled robot.

(a) (b)

Figure 3.2: CAE structural analysis for housing part; (a) Distribution of von Mises stress, (b)
total deformation.

3.2.2.2 Motion Analysis for Joint Torque Validation

Robot motion is provided by 8 active joints which are driven by 4 servo motors for steering

joints and 4 DC motors for driving joints. Required actuation Torque was calculated based

on the parameters depicted in Table 3.2, and Figure 3.3 shows a simple free body diagram

of MARIO and various associated forces that act on the platform. The required torque was

calculated as 3.63 N.m for the whole platform based on the specifications provided in Figure

3.3 and Table 3.2 is defined as below and the formulation in [74]:
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Table 3.2: Considered parameters in required total torque estimation.

Parameter Value

Mass 10kg

Payload 10kg

Max Speed 1m/s

Max incline 10◦

Max acceleration 0.5m/s2

Driving wheel radius 0.0825m

DC motor speed 146 RPM

T = Fw ∗ r, (3.1)

ΣForces = Ftotal = Fw −Fg = Ma, (3.2)

So that:

T = M(a+gsinθ)r (3.3)

Where in Equations 3.1, 3.2, and 3.3T is the required torque, Fw is the force pushing

against the wheel, Fgis the force pulling the robot down on the incline surface due to gravity

defined with the acceleration of g, M is the platform mass and a is the platform acceleration.

The friction force is ignored, as it is considered as the force required for the wheels to drive

the robot forward. The required driving torque for each wheel is a quarter of the total torque

as 0.9 N.m.

The maximum speed of each wheel and in total, the platform based on the DC motor
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maximum RPM is 1.263 m/s through below formulation:

Vmax =
2πr ∗RPM

60
, (3.4)

Figure 3.3: Simple free body diagram of the MARIO and the associated forces in the drive
mode.

To validate these calculations, a motion analysis has been carried out using Gazebo Sim-

ulator . Gazebo is a robotic simulation tool which has the capability of accurate and efficient

dynamical simulation of robots, sensors and objects in a 3D world. It generates realistic sensor

feedback and has a robust physics engine to generate interactions between objects, robots and

environment [18]. The 3D CAD design by SolidWorks can be imported into Gazebo. This can

be achieved by exporting 3D model as a URDF file and the associated STL files. Unified Ro-

bot Description Format (URDF) is an XML file format to describe all kinematic and dynamic

elements of a robot. The kinematic chain of the robot generated by URDF file is shown in

Figure 3.4a. This robot has 9 links and 8 joints. In URDF terminology multiple links can be

connected to one link by joints and defined parent and child links. Steering joints are defined

as revolute joint while the driving joints are defined as continuous. This robot definition al-

lows to use Gazebo for dynamic simulation. This robot has 8 DOFs in total on robot local

frame which provides 3 DOFs motion (Vx ,Vy, and ω) in the world frame. Figure 3.4b shows
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the simulated robotic model in the Gazebo environment.

(a)

(b)

Figure 3.4: Motion analysis using Gazebo Simulator; (a) Kinematic chain of MARIO, (b)
Gazebo environment and the simulated robot.

As an example, a forward motion and steering are simulated to analyse the response of the

driving and steering joints. For the forward motion, all four wheels are driven with the same

speed. The test speed was 1 m/s and the steering angle was 90 degrees for the duration of

1.5 s. These tests have been done separately. Figure 3.5 shows the resulting torque values for

these analysis for one servo (Figure 3.5a) and one DC motor (Figure 3.5b). The rated torque

for both DC motors and servos are 1 N.m. The acquired torque results are in the range of

nominal torques for the servos and DC motors.
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(a) (b)

Figure 3.5: CAE motion analysis for joint torque validation; (a) Driving joint torque response,
(b) Steering joint torque response.

3.2.3 3D Printing for Rapid Prototyping

The design process of MARIO was focused on developing a robot by considering modularity,

manufacturability and assemblability. This will provide easy maintenance and design modi-

fication for future design development. Some of the parts including the servo housing were

made using 3D printing. 3D printing provides an easy solution for early stage prototyping

to develop the required parts for the system by decreasing the manufacturing time, cost and

inventory expenses. PLA material was chosen for 3D CAM of the servo housing part using

3D printer. RP allows rapid fabrication of these parts with very low cost of production (about

10 cent per gram). Figure 3.6 shows the 3D printed parts for servo housing. Laser cutting was

also used for making the robot’s body based on the 3D CAD. The initial model was laser cut

out of medium-density fibreboard (MDF) material with the thickness of 5 mm, but perspex

material was considered for the final prototype.
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Figure 3.6: 3D printed servo housing parts.

3.3 Electronics and Software Architecture

3.3.1 Electronics and Sensory system

Each of the 4 wheel modules is equipped with a HerkuleX DRS-0101 Smart Robot Servo

for steering and a 12V Low noise 146RPM DC Motor model 28PA51G. Both servos ans DC

motors are equipped with encoders to measure the the rotation angle or speed.

The control system for the whole platform is provided using the master computer, In-

tel NUC which runs Robot Operating System (ROS) (v Indigo, Willow Garage) on Ubuntu

14.04 LTS. Figure 3.7 shows the component diagram of MARIO including the computers,

sensors, communication and interfaces, and driving component. Servos and DC motor speed

controllers are interfaced to the NUC through USB/RS232 communication for both driving

commands and the encoder data. Sensory data for control and navigation is provided by

wheel odometry from the wheel and servo encoders, a 9 DOFs Razor IMU, ZED (v 1.0,

Stereolabs) stereo camera, and Swiftnav Piksi Real Time Kinematic (RTK) GPS unit which

provides centimetre-level accuracy.

All sensor units are interfaced through USB communication to the NUC. ZED requires the

Software Development Kit (SDK) and drivers run on a computer with a Graphic Processing
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Figure 3.7: Component diagram of MARIO.

Unit (GPU), Nvidia Jetson Tegra TK1 is employed for this purpose. The ZED stereo camera

is interfaced to the Jetson Tegra TK1 through USB3 connection. Jetson Tegra TK1 as a unit is

connected to the NUC through TCP/IP communication.

The IMU is used to provides information about the relative rotation and acceleration of

the robot body while the GPS provides absolute position information. The stereo camera is

used for vision based localization and navigation purposes. Three navigation scenarios have

been considered for operation of this robot including, teleoperation, semi-autonomous and

fully autonomous navigation systems. Teleoperation control is achieved using a PS3 joystick

connected through the Bluetooth to NUC. Figure 3.8 shows the final prototype of MARIO.
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Figure 3.8: Final prototype of MARIO.

3.3.2 Software System

The software system development for MARIO includes 3 stages of modelling, simulation,

and final implementation. Modelling and simulation enable software development, test and

validation in a virtual environment. After successful development, the software system can be

transferred to the physical system. Simulation has been carried out using Gazebo simulator

which will be described with more details in Chapter 4. Software is developed in ROS and it

can be interfaced to the physical or simulated model.

ROS is an open source robotic middle-ware which provides libraries and tools to help soft-

ware developers produce robot programs. It provides hardware abstraction, device drivers,
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libraries, visualizers, message-passing, package management, and more [41]. Robot pro-

grams for each of the modules are called ROS nodes. The protocol of message subscription-

advertising enables a node, to subscribe the input data and publish the output data after pro-

cessing once the node is executed.

ROS nodes can communicate with each other by passing the messages. A ROS message

is a data structure, with a specific type that holds a specific topic name for identification. A

node can subscribe to a topic that carries a message from another node if the specific topic and

message type is defined properly for the subscriber. All the communications are handled by

the ROS Master which enables each of the nodes to identify each other. The ROS publisher-

/subscriber communication protocol is shown in Figure 3.9.

Figure 3.9: Node-Node and Node-Master interactions in ROS.

ROS nodes are programmed in C++ or Python programming languages. These programs

are included in the ROS packages. The basic packages needed for MARIO to enable the con-

trol system and the sensors are shown in Figure 3.10. The represented control system includes

mario_hw_node which is responsible for communicating with the actuators and mario_robot_control

which runs the kinematic control system.
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A kinematic-based controller (described in Chapter 4) is designed based on the kinematics

of the system to drive the robot given the desired input linear and angular velocities for three

types of steering including, spot turn, crab steering, and four wheels coordinated steering.

This controller controls the desired speed of each of the four driving DC motors and steering

servos through inverse kinematics. Rotation and translation of the robot with respect to the

world frame is obtained through forward kinematics as wheel odometry.
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Figure 3.10: All active nodes and the associated topics for basic teleoperation of MARIO.
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Teleoperation control of the robot is provided through the joy_node which is the driver of

the joystick, and the mario_teleop_node which subscribes to the /joy message and publishes

/base_ctrlr/cmd_vel as the input velocity to the MARIO control system. The ZED stereo

camera, Piksi RTK GPS, and Razor IMU are activated using package drives represented as

/camera/zed_wrapper_node, /piksi_node, and /imu_node respectively.

ROS robot_localization package from the Navigation stack is used to fuse the localization

data from the wheel odometry, stereo visual odometry, IMU, GPS for better and more accurate

localization. For this aim, /ekf_localization node receives the required topics from the sensors

and fuses all the data using and extended Kalman filter.

Trajectory planner as the main part of the navigation system is achieved by the ROS Nav-

igation Stack. 2D navigation from Navigation Stack takes pose information of the robot from

the state estimation system (/ekf_localization) and a goal pose from user input. It generates a

path from the current location of the robot to the goal location by its global planner, it then

generates the safe velocity commands ( /base_ctrlr/cmd_vel) sent to the robot base. This sys-

tem drives the robot close to the generated path toward the goal point. Figure 3.11 shows

visualization of MARIO in a simple 2D navigation situation in Rviz. Rviz is the ROS 3D visu-

alization service that provides tools for live visualization of sensor data and state information

from ROS.

3.4 Summary

In this chapter, a comprehensive mechatronic design and development procedure of the non-

holonomic omnidirectional mobile robot - MARIO has been presented. To achieve this, an

integrated application of CAD/CAE/CAM has been performed. This allowed us to develop

a mobile robot which meets the design requirements such as modularity, assemblability and
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Figure 3.11: MARIO 2D navigation visualization in Rviz, green path: global path generated
by the trajectory planner, red path: the travelled odometry from the robot state estimation
system.

manufacturability. By this integrated application, MARIO has been developed successfully

with a relatively low cost and time. MARIO has a low weight chassis and parts with adequate

stiffness which weighs 10 kg in total. After developing electronics, control and navigation

system, it drives stably with the maximum speed of 1.263 m/s . Kinematic modelling and

simulation, control, and navigation will be described in the next chapters.





Chapter 4

Modelling and Simulation of

Non-Holonomic Omnidirectional Robot

4.1 Introduction

This chapter presents 3D modelling and simulation of MARIO, using the Gazebo simulator

and ROS, aiming for offline programming and system performance analysis. For this purpose,

MARIO is modelled and simulated based on the physical developed model. Gazebo enables

simulation of the world environment, physical model, sensors and control system through the

URDF file. ROS is interfaced with Gazebo which allows utilization and implementation of

different robotic software and tools on the simulated robot. This presented approach allows

development, testing and validation of MARIO and required software before implementation

on the real system.

4.2 Model Description and Simulation

In this section, all the physical links and joints, as well as kinematics and dynamics, sensing

and basic control interfaces of MARIO are modelled and described individually. The Gazebo
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simulator provides dynamics simulation by considering gravity, friction, and contact forces

provided by the included physics engines such as Open Dynamics Engine - ODE, Simbody,

Dynamic Animation and Robotics Toolkit - DART or Bullet. Different types of Gazebo plu-

gins enable the development of control interfaces and sensing systems for the simulated robots.

The main parts required to model a controllable robotic system in general are:

1. World environment model description

2. Physical model description

• Kinematic and dynamic modelling of the robot links

• Kinematic and dynamic modelling of the robot joints

3. ROS/Gazebo Plugins to model the sensors and control/hardware interfaces

Figure 4.1 shows the general structure and the required components in Gazebo to model a

robotic system.

4.2.1 World Description

World is a general term to describe objects, global parameters and physics properties. By

default, a world is defined by Gazebo with default required parameters. The objects in the

world can be static or dynamic. Static objects such as building, lights or walls are defined

by their visual and collision geometry. Dynamic objects such as robots are defined not only

by visual and collision geometry but also by their inertia information. Objects can be created

using standard geometric shapes, or inserted from the model database, or created and by any

3D modelling tools and imported to the Gazebo simulator environment.

vineyard development, including the terrain and the vine trees with parameters
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Figure 4.1: General structure of required components to model a robotic system in Gazebo.

Figure 4.2 shows a simulated environment in Gazebo with the set physics parameters such

as gravity. Two static objects as the modelled terrain and agricultural environment (vineyard)

are also included in the simulated world environment. Both objects were created using the

SketchUp software.
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Figure 4.2: Gazebo simulator environment including objects in the world and world paramet-
ers.

4.2.2 Physical Model Description

A robot, as a dynamic object in the world, consists of links that are connected to each other by

joints. A link in Gazebo describes the kinematic and dynamic properties of a physical link in

the form of visual/collision geometry and inertia information. A joint models kinematic and

dynamic properties of a joint such as joint type, motion axes, and joint safety limits. All these

information are described in the Universal Robotic Description Format - URDF file format

[40]. URDF is an XML file format used by Gazebo and ROS to model all the components of

a robot. To model MARIO as a 4WD4S platform, 9 links and 8 joints need to be defined.

The base_link describes the chassis and four links (link1 to link4) are connected to it by

four revolute joints (servo1 to servo4) as steering links. Each of the steering links are con-

nected to a driving link (link11 to link44) as wheel by a continuous joint (motor1 to motor4).

Each sensor also should be defined as a physical link attached with a fixed type joint to the

base_link. with no attached sensor. A virtual link called base_footprint is also needed by some

of the of the ROS third party software such as navigation which is placed on the ground and

it is sized as the footprint of the platform. Figure 4.3 presents the kinematic schematics of the
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base_link a wheel module with its links and joints. Figure 4.4 shows the kinematic diagram of

MARIO platform, showing the kinematic chain of all the physical and virtual links and joints,

each joint with the 6 DOFs information of its placement with respect to the previous link.

Figure 4.3: Kinematic diagram of MARIO: Kinematic schematic and coordinates of the
base_link and one wheel module.
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Figure 4.4: Kinematic diagram of MARIO: Kinematic chain generated from URDF file.
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4.2.2.1 Physical Geometry and Inertia

The physical geometry of each link needs to be defined in the form of visual and collision

geometry. There are two ways to model the geometry of each link of a robot, inserting standard

3D shapes, or importing as mesh files. Physical geometry for a typical four-wheel mobile robot

can be modelled using a cubic box as the chassis and 4 cylindrical shapes as the wheels. Using

continuous joints, wheels can be attached to the chassis. Inertial information of each link is

essential, if a proper simulation is required. Inertial parameters define the mass, centre of

the mass, and the moment of inertia tensor matrix for each modelled link. These information

are obtained from SolidWorks. Below is the example of MARIO URDF code to model the

imu_link.

1 < l i n k name=" i m u _ l i n k ">
2 < v i s u a l >
3 < geomet ry >
4 <box s i z e =" 0 . 0 8 0 . 0 5 0 . 0 3 " / >
5 < / geomet ry >
6 < m a t e r i a l name=" b l u e ">
7 < c o l o r rgba =" 0 0 . 9 1 " / >
8 < / m a t e r i a l >
9 < / v i s u a l >
10 < c o l l i s i o n >
11 < geomet ry >
12 <box s i z e =" 0 . 0 8 0 . 0 5 0 . 0 3 " / >
13 < / geomet ry >
14 < / c o l l i s i o n >
15 < i n e r t i a l >
16 <mass v a l u e =" 0 . 0 2 " / >
17 < i n e r t i a i x x =" 0 .0001 " i x y =" 0 " i x z =" 0 " i y y =" 0 .000001 " i y z =" 0 " i z z =" 0 .0001 " / >
18 < / i n e r t i a l >
19 < / l i n k >

The alternative approach to define visual and collision geometry is to use mesh files in the

format of COLLADA or STL files. These files can be generated by CAD tools such as Blender,

SolidWorks or SketchUp. The MARIO 3D CAD model, Figure 3.1, was developed using



46 Modelling and Simulation of Non-Holonomic Omnidirectional Robot

SolidWorks as described in the previous Chapter. To provide colour information, COLLADA

file format can be used to present visual geometry of a link. Collision geometry does not need

material or colour information, therefore it can be represented as STL file format.

Joint Representation Joints are needed to connect the links to each other and form the

kinematic and dynamic relationships between them. Joint element in the URDF file defines

the kinematics and dynamics of the joint as well as joint type and safety limits. Figure 4.5

shows the tree structure of a two-link robot for better understanding of the different terms in

joint element. Below is the modelled continuous joint element that connects the steering link

(link1) to the driving link (link11) in MARIO.

1 < j o i n t name=" motor1 " t y p e =" c o n t i n u o u s ">
2 xyz=" 0 . 0 −0.10536 −0.030705 " rpy =" 0 . 0 0 . 0 0 . 0 " / >
3 < p a r e n t l i n k =" l i n k 1 " / >
4 < c h i l d l i n k =" l i n k 1 1 " / >
5 < a x i s xyz=" 0 0 1 " / >
6 <dynamics damping=" 0 . 0 " f r i c t i o n =" 0 . 0 " / >
7 < l i m i t e f f o r t =" 30 " v e l o c i t y =" 2 . 0 " / >
8 < / j o i n t >

Figure 4.5: Tree structure of a two-link robot.
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4.2.3 Sensor Modelling

With many different sensors on the robot, each sensor can be simulated independently as a

Gazebo plugin and must be physically attached to the robot model as a link. These plugins

are included in the URDF file. These plugins are typically C++ libraries loaded by Gazebo

that have access to Gazebo’s API. In general, plugins are permitted by Gazebo to perform

different kinds of task such as motion control or getting sensor data. These plugins output

sensor information in form of standard ROS messages and services. Common parameters,

such as error characteristics and transformation frame of each sensor, can be defined as well

as other parameters related to each sensor. By default, sensors in Gazebo have no noise and

they sense the simulated environment perfectly. To make them more realistic, noise can be

added. A first order Gaussian error model is typically used for all the sensors to add noise

to the measurement taken from each sensor. This is modelled by setting the mean and the

standard deviation of the Gaussian distribution. Each measurement of Y (t) at time t is given

by:

Y = Ŷ +B+NY (4.1)

Ḃ =−1
τ

B+NB (4.2)

where in Equations 4.1 and 4.2, Ŷ is the raw measured value, B is the bias, NY is additive

noise that affects the measurement, and NB defines the characteristics of random drift with

time constant τ [67].

4.2.3.1 Inertial Measurement Unit (IMU)

The inertial measurement unit (IMU) reports the robot body’s acceleration from a three axis

accelerometer, angular rates from a three axis gyroscope and absolute orientation around the
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Z axis by a magnetometer. Integration of these measurements with other sensors provides

a good reference for a localization system. Noise and bias are the two types of disturbance

that are applied to the angular rates and acceleration measurements of IMU. Four groups of

parameters need to be set for the IMU model: angular rate noise and bias, acceleration noise

and bias. Also, no noise or bias is added to the orientation measurement as it is considered

a perfect value in the world frame. Noise is sampled and added from a Gaussian distribution

by setting the mean and standard deviation of the Gaussian distribution. Bias is sampled once

and is added at the start of simulation. The physical used IMU on MARIO is modelled with

no associated noise in Gazebo, the code below shows the required URDF code to model the

IMU.

1 < j o i n t name=" i m u _ j o i n t " t y p e =" f i x e d ">

2 < a x i s xyz=" 1 0 0 " / >

3 < o r i g i n xyz=" −0.16 −0.05 0 . 5 1 " / >

4 < p a r e n t l i n k =" b a s e _ l i n k " / >

5 < c h i l d l i n k =" i m u _ l i n k " / >

6 < / j o i n t >

7 <gazebo >

8 < p l u g i n name=" i m u _ p l u g i n " f i l e n a m e =" l i b g a z e b o _ r o s _ i m u . so ">

9 <alwaysOn> t r u e < / alwaysOn>

10 <bodyName> i m u _ l i n k < / bodyName>

11 <topicName > imu_da ta < / topicName >

12 < serv iceName > i m u _ s e r v i c e < / se rv iceName >

13 < u p d a t e R a t e > 1 0 . 0 < / u p d a t e R a t e >

14 < / p l u g i n >

15 < / gazebo >

4.2.3.2 Stereo Vision Camera

Stereo camera is a vision system using at least two cameras to simulate the way human vision

works. Stereo camera gives the ability to generate 3D images. Typically, two cameras that are
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placed horizontally from each other are used to capture images from different angles. Through

several pre-processing steps, depth information is achieved as a disparity map. The disparity

map includes the information of the differences in horizontal coordinates of the two input

images. The Multi-camera plugin used by Gazebo simulates a stereo camera and synchronises

their output. This plugin is similar to the Camera plugin that simulates a monocular camera.

All the required parameters such as frame rate, image width and height, output format, base

line distance and noise parameters can be defined within Gazebo. A Gaussian disturbance is

sampled for each pixel individually and it is added to each colour channel of that pixel. In

our system, a stereo vision system is used as a visual odometry source for the state estimation

system to enhance the localization of the robot. Figure 4.6 shows the visualization of simulated

stereo camera by showing the left and right images of an example scene in Gazebo. The

parameters from the physical ZED stereo camera were used to model the simulated stereo

camera.

Figure 4.6: Visualization of the simulated stereo camera as left and right images.
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4.2.4 Control plugin

To be able to control the motion of each joint in one degree of freedom, a Gazebo control

plugin is required. Gazebo also needs to be interfaced with a robot middle-ware such as ROS

to control each joint. A meta package called gazebo_ros_pkgs provides a set of ROS packages

to interface with Gazebo. A set of packages called ros_control provide controllers, hardware

interfaces and toolboxes to control joint actuators. Common controllers such as effort, position

and velocity are provided by ros_control. These controllers (typically PID type) take joint

states and set points as inputs and output effort, position or velocity. Each joint is interfaced

with the relevant controller by the relevant hardware interface. The same developed software

control system is used to control the physical robot, so that the control messages are written to

the physical speed/position controllers to actuate control the actuation of the joints. The speed

and position feedbacks are read from the encoders back to the control system.

Figure 4.7: Overview chart of low level control system of simulated MARIO in Gazebo and
ROS.

An overview of the low level control system of simulated MARIO is shown in Figure 4.7.

By launching the ROS package containing the URDF file of MARIO, the simulated model is
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opened in the virtual world of Gazebo. This also loads the control interface and waits for all

the controllers to be loaded. The transmission tag in the MARIO URDF file defines the type

of command interface and the relationship between the joint and actuator. Controller manager

provides the infrastructure to load, start, stop and unload the controllers in a real-time manner.

A YAML configuration file is also needed which includes information of controllers such as

joint controller type and parameters. Hardware_interface provides position, velocity and effort

interfaces between ROS and Gazebo. Our system has 9 controllers of which one provides joint

states, four are position controllers to control steering joints and remaining four are velocity

controllers to control each of the driving joints. Figure 4.8 shows the performance of the PID

position controller of joint1 and the response of the controller to the step input from 0.5 radians

to 0.

Figure 4.8: Joint position controller performance.

4.2.5 Standard Kinematics Model

In general, ros_control provides a closed loop control system for each individual joint. To

model a robotic system in Gazebo, kinematic formulation of the system is not required. How-

ever, kinematic formulation is essential to develop the control system. The kinematic diagram
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of MARIO is shown in Figure 4.9. The robot frame is assumed as a rigid body that moves in

a planar motion.

Figure 4.9: Kinematic notation of MARIO.

Velocity of each of the four wheels can be formulated as:

−→vi =
−→vc + θ̇ ∗ k ∗−→Wi (4.3)

where in Equation 4.3,−→vi is the speed vector of each wheels, −→vc is the linear speed vector

and θ̇ is the angular rate of the robot’s frame in {C, x, y}coordinate with respect to the fixed

global coordinate {O, X , Y},
−→
Wi is the distance vector of each wheel from the centre of robot’s

frame, and k is a unit vertical vector.
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In the pure rolling condition, the wheel rotation rate, φ̇i and steering angle, ψi for a wheel

with the radius of r with respect to the robot’s frame coordinate system are given by:

φ̇i =
|vi|
r
, tan(ψi) =

viy

vix
, i = 1, ...,4, (4.4)

where in Equation 4.4, vix and viy are the vector components of −→vi in the robot’s local

frame{C, x, y} as:

vix = vcx −Wiyθ̇ , viy = vcy −Wixθ̇ , (4.5)

The two terms in Equation 4.4 define the kinematics constraints of driving speeds and

steering angles of wheels with respect to the linear and angular velocities at the robot’s frame.

Based on Equation 4.4, the slip angle of each wheel γi can be formulated as:

γi = cos−1
(

vix

|vi|

)
, (4.6)

Non-zero input linear and angular velocities to the base result the whole platform to rotate

around a centre of rotation based on the concept of rotational motion of rigid body. The

instantaneous centre of rotation (
−−→
ICR) based on the input velocity is formulated as:

−−→
ICR =

v⃗c

θ̇
, (4.7)

Acceleration of each wheel ai at point wi and the acceleration of robot’s frame ac at point

C based on the kinematics are given by:

ai = ac + θ̈k
−→
Wi − θ̇

2−→Wi, (4.8)
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where

ac +acx +acy, acx =
(
v̇x − θ̇vy

)
, acy =

(
v̇y + θ̇vx

)
, (4.9)

and by knowing ai = acx +acy, therefore:

aix = v̇x − θ̇vy −Wixθ̇
2 −Wiyθ̈ , (4.10)

aiy = v̇y + θ̇vx −Wiyθ̇
2 +Wixθ̈ , (4.11)

4.3 State Estimation, Control and Navigation by ROS

4.3.1 Model Base Controller (MBC)

A model based controller (MBC) based on the kinematics of the system is responsible to drive

the robot with a desired input speed. Through inverse kinematics, desired speed information

in the local frame in the form of linear and angular velocities is received and the controller

outputs driving speed and steering angle for each wheel. These outputs are set points for

the relevant ROS controllers to control the position, velocity, or effort on each joint. The

formulation provided in Equations (4.3 to 4.7) used in the process of inverse kinematics. The

MBC is designed to switch between 4 modes of steering based on the received input velocity

command as follows:

• Angular and linear velocity is zero results in a stop command for the wheels;

• Angular velocity is zero and the linear velocity is non-zero. In this case the wheels are

aligned with the linear velocity vector of the base;

• Angular velocity is non-zero and the linear velocity is zero. In this case the robot ex-
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ecutes a zero turn, where the wheels are angled tangential to the robots centroid.

• Rotational and linear velocity is non-zero. In this case the centre of rotation is calculated

(Equation 4.7) and the wheels are angled tangential to to that centre.

The forward kinematics in MBC is achieved using the Kabsch algorithm [53]. This algorithm

computes the best fit translation between two related sets of points ({P,Q}) based on the min-

imization of the Root Mean Square Deviations (RMSD). The algorithm works by calculating

the covariance matrix of the related sets of point A = PT Q. Using this covariance matrix the

rotation matrix is calculated using a Singular Value Decomposition (SVD) depicted in Equa-

tions 4.12 and 4.13.

A =V SW T , (4.12)

R =W


1 0 0

0 1 0

0 0 d

V T , (4.13)

where R is the resulting rotation matrix and d = sign(det(WV T )) in order to preserve a

right-handed coordinate system. This rotation matrix is then used to to calculate the trans-

formation between the sets of points. In terms of the odometry information each point in

the set is the old position of each wheel and the new position of each wheel. The calculated

transformation then approximates the relative motion of the base.

The kinematic calculations in the MBC are implemented in the robot as part of the propul-

sion modules. In practice the combination of linear and angular velocity commands prove

difficult to follow, especially where the resulting ICR is small. In fact, when the radius of the

ICR approaches the edge of the casing, the system barley achieves motion. This is caused by

the disparity between the mathematical representation of the robot compared to reality. In the

mathematical model, the wheels are represented as a point in space whereas, the wheels on the
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real robot have a rolling surface. This rolling surface causes friction in the system when the

robot attempts to make a tight turn. Also ICR might be placed on the rotating joint and causes

singularity which leads to joint and actuator damage. The ICR formulation and associated

issues and solution are described in detail in the next chapter.

4.3.2 State estimation and Navigation

State estimation, control, and navigation systems are key components of a mobile robotic

system to enable the robot to perform required tasks. Figure 4.10 shows an overview chart of

the control system, state estimation and navigation system.

The state estimation system includes an EKF, using robot_localization package to estimate

the robot pose by fusing all the measurements from multiple sensors. For our system, relat-

ive displacement in form of X , Y , and Z positions in the world frame is provided by wheel

odometry and visual odometry. Orientation information is provided by IMU in the form of

absolute orientations (roll, pith, and yaw) and angular velocities. In a 2D navigation scenario,

yaw and Z axis angular velocity are needed to provide orientation information for EKF. EKF

formulation and implementation is described in Chapter 6.

Figure 4.10: Overview chart of Control, state estimation and navigation system.
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To drive the robot in the world frame, a navigation system is needed. This is achieved by

the 2D navigation stack provided by ROS. Navigation stack takes pose information of the robot

from the state estimation system and a goal pose from user input. It generates a path from the

current location of the robot to the goal location by its global planner, it then generates the safe

velocity commands sent to the robot base. This system drives the robot close to the generated

path toward the goal point while avoiding obstacles.

4.4 Experimental Results and Discussions

The section provides the experimental results and discussions aiming for the validation of

MBC and the performance of ROS third party software used for the state estimation and nav-

igation systems. For each scenario, the input velocity command from a joystick has been

recorded and then played back for the both simulated and physical MARIO. The results from

each experiment were recorded for post processing and further analysis. Record/playback of

the information is provided by rosbag tools in ROS.

4.4.1 Validation of the Kinematic Model and MBC

To validate the kinematic model and MBC, both real and simulated mobile robots perform a

test trajectory by receiving the recorded velocity command from a joystick. Figure 4.11 shows

the graphs of linear and angular velocity feedbacks for both systems received from the MBC

in form of odometry (through forward kinematics).

The measured velocities from both simulated and real models present the similar beha-

viours in phase and magnitude, however the lag can be observed in the measured data from the
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(a) (b)

(c)

Figure 4.11: Graphs of measured linear and angular velocity values from the simulation, real
system and velocity command: (a) Robot frame linear velocity vx, (b) Robot frame linear
velocity vy , (c) Robot frame angular velocity θ̇ .

real model. This lag is due to the physical on-board speed controller response and the latency

in the serial communication for transmitting the data from the main on-board computer to the

physical DC motor controllers. The average percentage error for each axis velocity compared

to the input velocity has been quantified and presented in Table 4.1. Although the error from

the real model is almost the double of the simulation mainly due to the phase lag, but the

experimental results is satisfactory for the performance validation of MBC.

Figure 4.12 demonstrates the travelled trajectory of the real and simulated robots by re-
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Table 4.1: Comparison of the errors of both simulation and real model for the input velocity
commands.

Simulation error % Real error %
vx 4.36 7.38
vy 1.39 3.34
θ̇ 5.99 13.29

ceiving the same velocity command visualized by Rviz tool (ROS visualization tool). It was

aimed to have all the possible combinations of vx,, vy, and θ̇generated by the joystick for this

experiment.

(a) (b)

Figure 4.12: Travelled trajectory of both simulated and real MARIO on the same input velocity
command: a) Rviz visualization, b) Labeled plot with axis-units.

To present the performance of MBC inverse kinematics, a set of results are presented

in Figure 4.13 showing the performed steering control for each of the 4 servos during the

experiment. Figure 4.13a depicts the results from the real model, while the simulation results
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are provided in Figure 4.13b. The comparison between the real and simulation model is shown

in 4.13c for the performed steering angle of servo1, as the phase lag is seen for the same

reason described earlier. A cross correlation between the two signals quantifies 190ms phase

lag, where the simulation leads the real. The presented results validates the performance of

the MBC inverse kinematics.

(a) (b)

(c)

Figure 4.13: MBC inverse kinematics performance analysis: a) servos steering angles in real,
b) servos steering angles in simulation, c) servo1 steering angles in both real and simulation.
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4.4.2 State Estimation System Test

In this test scenario, simulated MARIO has been commanded using a joystick. A ROS teleop-

eration package has been used for this purpose to generate the velocity command for MARIO

using a PS3 joystick. The purpose of this experiment is to test the performance of the state

estimation system with the information from modelled sensors including the stereo camera

and IMU in the simulation environment. Visual odometry is achieved through feeding the left

and right images from the simulated stereo camera into viso2_ros package. Viso2_ros package

from libviso library [43], is a feature based visual odometry program that outputs odometry

measurements from a monocular or stereo camera. Visual odometry, wheel odometry, and

IMU data have been integrated by the EKF from robot_localization package.

(a) (b)

Figure 4.14: Teleoperated navigation: (a) RViz visualization of odometry information for the
travelled trajectory by MARIO, (b) The simulated vineyard environment for MARIO teleop-
eration in Gazebo.
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Figure 4.14 shows MARIO in the simulated vineyard environment in Gazebo (Figure

4.14b), and the travelled trajectory visualized in RViz (Figure 4.14a), where the blue, green,

and red plots represent the wheel odometry, visual odometry, and filtered odometry respect-

ively. The filtered odometry is obtained from the EKF, where it fuses the IMU rotational

information with both wheel and visual odometry displacement information. Both Wheel and

visual odometry suffer from the accumulated drift over time. This drift is more presented in

turns and it can be seen in Figure 4.14b. The results from the state estimation system show a

better estimation of the travelled trajectory by the fusion of wheel odometry, visual odometry,

and IMU data so that the robot is back to the home position (starting point) with the least drift

(0.3m) compared to the wheel and visual odometry. Further analysis for comparison was not

achievable, as the simulation of a GPS to provide the ground truth positioning information

was not possible in Gazebo.

Figure 4.15 shows all the ROS nodes and topics involved in this experiment generated by

the ROS command rqt_graph.

Figure 4.15: All the active ROS nodes (ellipses) and message topics (rectangles) flowing
between them obtained from rqt_graph.
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4.4.3 Semi-Autonomous 2D Navigation

In this scenario, 2D navigation has been performed to evaluate the performance of the nav-

igation system as well as the sensory system. For this aim, the 2D navigation from ROS

navigation stack has been used to command MARIO based on the planned trajectory. As

shown in Figure 4.10 previously, the trajectory planner is composed of the global and local

planners. The global planner plans and generates the trajectory in the local map, while local

planner receives the current updated state of the robot from the state estimation system (EKF)

and generates the velocity command for MARIO to drive the base on the desired trajectory.

Figure 4.16 shows visualization of MARIO in a 2D navigation situation in Rviz.

4.5 Summary

This chapter has presented the modelling and simulation of a MARIO, using Gazebo simulator

and ROS for the purpose of offline programming and system design validation. Gazebo simu-

lator allowed modelling and simulation of different components of MARIO including physical

model, sensing and control system. It also enabled the simulation of the world environment

for robot operation. Interfacing Gazebo and ROS allowed access to a wide range of different

robotic tools and software to be utilized in the simulated model. ROS provides the frame-

work to develop the control, state estimation and navigation system. The kinematic model

base controller was tested and validated successfully using the experimental results achieved

in the simulation and real environment. Furthermore, the example scenarios of Gazebo/ROS

for teleoperation control and semi-autonomous navigation of MARIO have been presented.

Through this example, the performance of the simulated sensing system alongside the ROS

state estimation and navigation system were tested and analysed. The approach provided in

this chapter allows successful development and test of MARIO and different implemented
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Figure 4.16: MARIO 2D navigation visualization in Rviz, green path: global path generated
by the trajectory planner, orange: local planer correction path; red path: the travelled odometry
from the robot state estimation system.

robotic software in a simulation environment before implementation on the real system.



Chapter 5

Fuzzy Singularity Avoidance for Optimal

Kinematic Control

5.1 Introduction

In the previous chapter, the kinematic modelling and model-based controller (MBC) of MARIO

were described. As stated in Section 4.3.1, the MBC performance decreases in the presence

of kinematic singularities. For this aim, the singularity problem for this class of robots is

discussed and formulated. Mathematical singularities are solved by presenting the idea of

switching between different steering scenarios, while kinematic singularities still occur in one

form of steering, which places the ICR on one of the steering axes. This kinematic singu-

larity can result in damage to the actuator and the steering axis, and should be avoided. A

novel fuzzy logic based approach is used to avoid a singular region around each steering axis,

so that it controls the ICR by avoiding the singular region. Simulation results shows the ef-

fectiveness of the methodology in the kinematic singularity avoidance. Experimental results

on MARIO validate the usefulness of the proposed methodology and its applicability to any

other non-holonomic omnidirectional platform with three or more active steering and driving

wheels.



66 Fuzzy Singularity Avoidance for Optimal Kinematic Control

5.2 Methodology

This section provides the formulation of the kinematic model and the mathematical and kin-

ematic singularity of MARIO. The fuzzy singularity treatment including a brief presentation

of the fuzzy inference system and fuzzy modelling is described.

5.2.1 Kinematic Model

The kinematic diagram of MARIO is shown in Figure 5.1. The robot frame is assumed to be a

rigid body with planar motion. The formulation to calculate the linear and angular velocities,

and the slip angle for each wheel are provided in the Equations 4.3- 4.6. The kinematic model

formulated as above does not represent the kinematic singularity properly. For this reason, the

ICR representation is as follow:

ICR[x,y] = [−diry,dirx]
∥vc∥∣∣θ̇ ∣∣ , dir[x,y] =

vc

∥vc∥
, (5.1)

where in Equation 5.1, ICR[x,y] is the Cartesian coordinates of ICR in the robot frame.

Robot linear velocity unit vector is defined as dir[x,y]. The polar representation of ICR is as

follow:

icr = ∥ICR∥ , λ = arctan2(ICRy, ICRx) , (5.2)

where in Equation 5.2, icr is the magnitude, and λ is the angle of the ICR vector with

respect to the x axis of the platform for representation in polar coordinates. Both linear velocity

and steering angle of each wheel can be reformulated using ICR representation as:

vi =
˙

θ

∥∥∥−→W −−−→
ICR

∥∥∥ , ψi = arctan
(

ICRy −Wiy

ICRx −Wix

)
+

π

2
, (5.3)
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Figure 5.1: The kinematic diagram and the notations of a 4WD4S.

Mathematical singularities introduced by null linear or angular velocity are solved through

switching the steering mode to one specific mode discussed in Section 4.3.1. Kinematic sin-

gularities happen with non-zero values of both linear and angular velocities, resulting in ICR

located or passing through one of the steering axes. In this situation, an infinite number of

solutions are possible to define the steering angle for this wheel and the joint steering rate

increases unboundedly. The preferred solution is to guide and push the ICR out of the singular

region optimally, so it avoids the problem.
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5.2.2 Singularity Treatment

The proposed solution is to define a circular singular region around each wheel axis with the

radius size of q centred from the wheel axis. If the ICR is located in or passing through this

region, the aim is to direct it to the edge of the region to avoid the singularity. The singular

region representation is shown in Figure 5.2. By calculating δ1 and δ2, the corrected ICR

(
−−→
ICR ) can be directed to the lower or upper edge of the singular region in the same direction

of the old ICR. The solution can be achieved geometrically, but it suffers itself from singularity

for the case when the
−−→
ICR vector is aligned with the

−→
W vector (ρ = 0 ), which produces no

solution.

Figure 5.2: Singular region representation and the notations.

To avoid the mathematical singularity in the geometrical approach of controlling ICR, a

simple and efficient solution is to use a fuzzy inference system to control the position of the

ICR based on the specific inputs.
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5.2.3 Fuzzy Singularity Avoidance

In Figure 5.2, it can be seen that for any ICR in the defined singular region, parameters −→r and

ρ are known and can be calculated as:

−→r =
−→
W −−−→

ICR, ρ = ∠
(−→r ,

−→
W
)

(5.4)

The variations in the magnitude of vector −→r and angle ρ directly affect the size of δ1 and

δ2. As discussed earlier, a geometrical approach can be used to calculate δ1 and δ2 , but the

mathematical singularity happens when
−−→
ICR is aligned to

−→
W , where ρ = 0. The mathematical

singularity can be solved by fuzzy modelling of a system to estimate δ1 and δ2 based on the

two inputs −→r and ρ . This fuzzy system acts as a fuzzy controller that controls the output δ1

and δ2 based on the two inputs, the magnitude of −→r vector and ρ angle. The followings are

the steps to model the fuzzy control system.

5.2.3.1 Fuzzification

The first step in the design of the fuzzy controller is the fuzzification, which converts the

values of the actual inputs, r (magnitude of the vector −→r ), and ρ , into the linguistic values

provided in Table 5.1. This conversion is obtained using fuzzy membership functions (MF) of

the fuzzy set for each input. The inputs are normalized in the range of [0 1]. The membership

degree of an element in a fuzzy set is defined by the value of the MF. The value 0 represents

the non-membership of the element to the fuzzy set, while 1 means full membership. Figure

5.3 shows the fuzzy sets including the MFs and the linguistic terms for fuzzification of actual

inputs r and ρ ( Figure 5.3a), and the outputs δ1and δ2 (Figure 5.3b). MFs in a fuzzy set

can have different shapes, here the triangular MFs have been used due to the simplicity of the

definition and interpretation for both inputs and outputs.
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(a) inputs r and ρ , (b) output δ1 and δ2,

Figure 5.3: Input and output fuzzy sets and MFs.

5.2.3.2 Fuzzy Rule Base

The second step of modelling the fuzzy control system is the setup of the fuzzy rules. The

rules are created based on the available knowledge of the effect of the input variables on the

output variable. For this fuzzy system, a total number of 49 fuzzy rules are needed to be

defined as each of the inputs has 7 MFs in its fuzzy set. The fuzzy rules are given in Table 5.2.

As an example, it is read as follows:

IF ( r is VS ) AND (ρis VB ) THEN (δ1is M ).

The fuzzy rules are created based on the visual and geometrical representation of the prob-

lem created in SolidWorks.

The fuzzy inference system (FIS) defines the output result of a rule. Common methods

that have been used here are max-min method, where minimum of two fuzzified values is

mapped to output as the AND-method and maximum as OR-method. Figure 5.4 shows the
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Table 5.1: Linguistic input and output variables and associated quantification.

Inputs (r,ρ) Outputs (δ1,δ2)

VVS: Very Very Small = 0.0

VS: Very Small = 0.0 VS: Very Small = 0.125

S: Small = 0.1667 S: Small = 0.25

MS: Medium Small = 0.3333 MS: Medium Small 0.375

M: Medium = 0.5 M: Medium = 0.5

MB: Medium Big = 0.667 MB: Medium Big = 0.625

B: Big = 0.8333 B: Big = 0.75

VB: Very Big = 1.0 VB: Very Big = 0.875

VVB: Very Very Big = 1.0

Table 5.2: Fuzzy rules of the fuzzy control system.

r\ρ VS S MS M MB B VB

VS M M M M M M M

S MS MS M M M MB MB

MS MS MS MS M MB MB MB

M S S MS M MB B B

MB VS S S M MB B VB

B VS VS S MS B VB VB

VB VVS VVS VVS MS B VB VVB

plotted output variable δ1 against the two input variables. As an example, r = 1 andρ = 1

results δ1 = 1.

5.2.3.3 Defuzzification

The last step of the fuzzy control system is Defuzzification of the fuzzy values to a crisp output

value as the output of the fuzzy control system. Many different methods are used to defuzzify

the fuzzy values. The Centroid (centre of the gravity) is a common useful technique that is
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Figure 5.4: Fuzzy input-output surface.

used for this fuzzy control system which returns the centre of area under the aggregated curve

mapped on the output MFs. The crisp output δ1 using the centroid is generated by:

δ1 =

49
∑

i=1
δ̄1iµi

(
δ̄1i
)

49
∑

i=1
δ̄1i

, (5.5)

The input and output variables can be normalized for generalization and application of the

designed system on any other model. The range for input r is [0 q](where q is the radius of

the singular region), and the range for the input ρ is [0 π]. The range for the outputs δ1 and

δ2 is [0 2q]. The same fuzzy control system design can be used to estimate δ2, as the inputs to

the system are r and π −ρ . Symmetrical characteristic of the singular region allows to use the
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same fuzzy control system design for the second half of the singular region. The fuzzy control

system structure is shown in Figure 5.5.

Figure 5.5: Fuzzy control system model for singularity treatment.

After the estimation of δ1 and δ2 , their values are used to correct the ICR. A simple logical

expression is used to decide whether ICR should be added to δ2 or subtracted from δ1 to keep

the ICR out of the singular region. In any case, the decision is made based on the previous

state if δ1 or δ2 had been used. The decision formulation is as follows:

ICRi

 ICRi −δ1i i f δ1i−1 < δ2i−1

ICRi +δ2i i f δ1i−1 > δ2i−1

(5.6)

where in Equation 5.6, ICRi is the modified ICR for the current step, δ1i−1and δ2i−1 are the

values of the previous δ1iand δ2i. The wheel speed and steering rates are also updated based

on the ICRi using the formulation stated in Equation 5.3.
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5.3 Experimental Results and Discussion

This section provides the simulation results of the proposed methodology and the experimental

validation on MARIO. The simulation results were obtained by simulating the ICR path to pass

through the singular region around a wheel of MARIO. Based on the proposed fuzzy method,

the expected result should cause the ICR path to avoid the singular region and pass around the

singular region boundary.

Figure 5.6 presents the simulation results in two different scenarios. In Figure 5.6a, the

original ICR (red path) enters the singular region and it is pushed down on the lower edge of

the singular region, while it is pushed up to the higher edge of singular region in Figure 5.6b.

The new corrected ICR (blue path) is calculated by the fuzzy system, while the direction of

avoidance is decided by the conditional statement provided in Equation 5.6. As the results

show in both cases, the ICR is not directed exactly on the border of the singular region. This

is due to the fuzzified/defuzzified result of the fuzzy system and the quantification of the

linguistic variables used in MFs.

Due to the change in the ICR profile in the singularity avoidance process, the velocity

information should also be updated. The updated ICR determines the steering rate for each

wheel while the driving rate (wheel velocity) needs to be updated based on the new correc-

ted ICR as stated in Equation 5.3. To evaluate the velocity updates and profiles during the

singularity avoidance, experiments are conducted on the MARIO platform. The experiment

is carried out by causing the input velocity to place the ICR on one wheel axis and analyse

the system response with and without the fuzzy singularity avoidance system. The results

are provided in Figure 5.7. The input velocity to the robot base frame (vx = 0.1m/s, vy =

−0.1m/s, θ̇ = 0.53rad/s) places the ICR on the second wheel axis at ICR[x,y] = [0.188, 0.188].
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(a) (b)

Figure 5.6: Simulated ICR results passing the singular region in two scenarios.

The results presented in Figure 5.7a show the driving rate of each wheel in both scenarios

with (dashed lines) and without (solid lines) the singularity avoidance. The ICR was placed on

the second wheel’s axis, so the second wheel is affected by the singularity and the kinematic

controller produces zero velocity for the affected wheel (ω2). All the other three wheels rotate

around the second wheel’s axis, which can cause damage to the steering axis and the wheel

itself. By avoiding the singularity using the fuzzy control system, the ICR is placed on the

border of the singular region (Figure 5.7b). The wheel velocities are different because of the

updated fuzzy ICR, in which the second wheel driving rate would not be zero (ώ2). Figure 5.7b

shows the ICR path during the experiment and the fuzzy ICR as the result of the singularity

avoidance system.

The proposed method can be applied to any non-holonomic omnidirectional wheeled mo-

bile robot with at least three active steering/driving joints. The proposed method takes nor-

malized inputs and output normalized values, so it is independent from the kinematic of the

system and it can be customized for any other platform.
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(a) velocity profile of each wheel with and without singularity
avoidance,

(b) original and corrected ICR during the ex-
periment,

Figure 5.7: Singularity avoidance results on MARIO.

5.4 Summary

In this chapter, singularity problem in the MARIO MBC was studied. In general, Non-

holonomic omnidirectional wheeled mobile robots suffer from both mathematical and kin-

ematic singularities. Kinematic singularity happens when ICR places or passes through the

steering axes, which causes singularity in defining the steering rate, while the steering rate

of the singular joint increases unboundedly, gets over the mechanical and electrical limits of

the actuator and can damage it. In this chapter, it is aimed to provide a solution in form of a

fuzzy control system for the ICR to avoid a singular region around the steering axis, so that the

kinematic singularity is avoided. The fuzzy control system controls and directs the ICR on the

border of the defined singular region while it is passing through the singular region. The sim-

ulation and experimental results proves the practicality and usefulness of the proposed method

in handling the kinematic singularity on MARIO.



Chapter 6

Enhanced Stereo Visual Odometry Using

Sensor Fusion for Non-GPS Localization

6.1 Introduction

This chapter and the next two chapters are concerned with the second major contribution of

this thesis on achieving an accurate and reliable localization for navigation of MARIO in

GPS-denied environments such as orchards. This chapter presents investigations through an

experimental study and analysis on utilizing stereo visual odometry (SVO) for vision based

localization of MARIO in outdoor GPS-denied environments. As reviewed in Chapter 2, vis-

ion based localization systems are suffering from the accumulative drift over time. To over-

come this drift, different methods were addressed including sensor fusion and computational

optimization methods.

In this chapter, two of the known open source SVO libraries are utilized for analysis and

comparisons. The performance of both SVO systems are analysed through the experimental

study. The SVO drift is analysed in form of rotational and translational. Sensor fusion using

EKF is employed to improve the rotational drift by fusing the SVO translational data and the

IMU rotational data. The effect of sensor fusion is analysed in decreasing the SVO drift by
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improving the rotational drift. Sensor fusion improves the results by reducing the rotational er-

ror and consequently minimizing the overall drift of SVO. The final remarks suggest required

future work presented in Chapter 8 to improve the translational drift using a non-sensor fusion

method.

6.2 System Setup

Typically a VO system includes one or more synchronized cameras, image processing al-

gorithms and the processing unit. In a SVO system, at least two cameras are needed. This

section presents the system setup and SVO methods that have been used to achieve the vision

based motion estimation.

6.2.1 VO Algorithms

VO algorithms focus on the estimation of ego-motion of an agent frame-to-frame from the

input camera images. These algorithms estimate the pose of the agent incrementally by pro-

cessing and evaluating changes in image frames. In a monocular VO system, the relative 3D

motion estimation is computed from a 2D image data. Therefore, all the measurements need to

be scaled by an unknown factor to convert to a metric scale. The scale factor in monocular VO

system adds a degree of uncertainty in the estimation. In a calibrated stereo camera system,

scaled measurements can be obtained by triangulation of 3D coordinates of matched points in

a single left/right image pair. Due to the importance of estimation accuracy and avoiding the

uncertainty in the measurements, SVO has been utilised for MARIO.

Two open source algorithms have been used in this experiments, fovis [48] and libviso2

[43]. Both of these algorithms provide 6 DOFs odometry.Fovis has been used successfully for

micro aerial vehicles and libviso2 has been tested on cars. Both algorithms use feature based

techniques to estimate the motion. The basic steps for a SVO system is as follows:
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1. Capturing the left and right stereo images at one frame;

2. Features detection on the captured images;

3. Feature matching/tracking;

4. Inlier detection on the matched features to reject the outliers;

5. Triangulation to achieve 3D coordinates of the matched features using the camera cal-

ibration parameters;

6. Motion detection from the 3D coordinates in two consecutive frames.

A more detailed description of SVO is provided in Chapter 7, but a brief description of fovis

and libviso2 is as follows.

6.2.1.1 Fovis

Fovis uses FAST feature detector to extract features from the left captured image. Right image

is used for disparity map to get the depth information for each pixel. Features with no depth

information are discarded. Feature matching is achieved using SIMD instructions which scores

the match between two features. Inlier detection is performed using a greedy algorithm to

approximate the maximal clique in a graph of consistent matched features to remove the bad

matches. Finally, motion is estimated through minimization of the 3D reprojection error using

Gauss-Newton method.

6.2.1.2 Libviso2

Libviso2 algorithm estimates the 6 DOFs motion of the moving monocular or stereo camera.

In a stereo system, motion estimation is performed by matching the extracted robust sparse

features. Depth information is achieved by triangulation and minimization of the reprojection

error of sparse matched features to compute the 3D coordinates. The input to the algorithm is
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a set of matched features between four images, the left and right images of two consecutive

image frames. Feature detection is performed by blob and corner detectors. To remove the

outliers, RANSAC is applied to increase the robustness of motion estimator [54].

6.2.1.3 VO algorithm performance

The performance of both fovis and libviso2 VO algorithms depend on factors such as algorithm

parameters for each stage and hardware performance. A comparison of both algorithms per-

formance has been performed by [37] that shows fovis has a better runtime than libviso2.

Table 6.1 shows the comparison of the two algorithms on the same test dataset and hardware

specifications.

Table 6.1: Computational Performance of libviso2 vs. fovis.

Method Features Mean Runtime (ms) Average CPU Usage (%)
Libviso2 2D Visual Features 39.5 29.8

Fovis 2D Visual Features and Depth 20.3 13.5

6.2.2 EKF Algorithm

The EKF algorithm used here is from the ROS robot_localization package [72]. This package

supports input data from different odometry sources providing nav_msgs/Odometry type ROS

message. Furthermore, it also supports input data from IMU in form of sensor_msgs/Imu

ROS message. EKF Formulation explained in [101] can be described as a non-linear dynamic

system with the robot state of:

x̂k|k−1 = f
(
x̂k−1|k−1

)
+Gk−1|k−1, yk|k−1 = h(x̂k|k−1)+Uk|k−1. (6.1)

where in Equation 6.1, x̂ is the robot 3D pose state at time k, G is the normally distributed

process noise, and f is the non-linear state transition function employed as a standard 3D kin-
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ematic model. The measurement at time k is defined as y, h represents the non-linear sensor

model which transfers the pose state into the measurement space, and U is the measurement

noise with a normal distribution. The algorithm functions in two stages of prediction and up-

date. In the prediction stage, the current pose state and error covariance are projected forward

in time defined as:

x̂k|k−1 = f
(
x̂k−1|k−1

)
, Pk|k−1 = FkPk−1|k−1FT

k +Qk. (6.2)

where in Equation 6.2, P is the estimate error covariance which is projected through F ,

the Jacobian of f , and further added by Q which is the process noise covariance. The update

stage is then performed to achieve the pose estimate through below formulation:

Kk = Pk|k−1HT
k
(
HT

k Pk|k−1HT
k +Rk

)−1
, (6.3)

x̂k|k = x̂k|k−1 +Kk(yk −Hkx̂k|k−1), (6.4)

Pk|k = (I −KkHk)Pk|k−1 (I −KkHk)
T +KkRkKT

k . (6.5)

where in Equations 6.3, 6.4, and 6.5, A Kalman gain K is calculated using the observation

matrix H, measurement covariance R , and P. This gain is used to update the state vector

and the covariance matrix P. Figure 6.1 shows the Kalman Filter both stages to achieve state

estimation at time k.
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Figure 6.1: The Kalman Filter algorithm, (Obtained from wikipedia.org/wiki/Kalman_filter).

6.2.3 The Hardware Setup

ZED stereo camera developed by Stereolabs is a lightweight depth camera based on the passive

stereo vision. It outputs high resolution video that contains two synchronized left and right

image streams, and generates real-time depth and disparity maps of the environment using a

graphical processing unit (GPU). In stereo video mode, it outputs ultra-high definition 2.2k

video with a frame rate of 15 fps while the highest frame rate (100 fps) can be achieved in

VGA video mode. Depth mode generates the depth map in the range of 1 to 15 meters with

the same resolution as video mode. Frame rate depends on the speed of GPU that runs the

ZED software development kit (v 0.9, Stereolabs) to create the depth map. Highly optimized

algorithms and auto-calibration system are significant features of the ZED camera. Camera

calibration is one of the major issues for stereo vision systems especially in real time. Figure

6.2 shows the ZED stereo camera.

Nvidia Jetson Tegra K1 (Jetson Tk1) board has been used to run ZED SDK. The Jetson

TK1 board has a quad-core ARM CortexA15 processor and a Keppler GPU with 192 CUDA

cores. It runs a pre-installed Linux4Tegra OS which is based on Ubuntu 14.04. The ZED SDK

requires OpenCV (v 3.2 Open Source Computer Vision Library) and CUDA 6.5 to function.
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Figure 6.2: ZED stereo camera from Stereolabs.

The system also runs ROS indigo version to launch the camera using its ROS driver.

6.3 Experimental Results and Discussions

To evaluate the performance of each VO method, an experiment was conducted in an open field

(Ilam Field, Christchurch, New Zealand). Navigating the robot in this open field assures good

satellite coverage for the RTK-GPS unit to measure pose information as ground truth. The

robot was driven on a 25m×15m commanded rectangle path for the first run and a 25m×25m

path for the second run. All the sensors data were recorded for post processing using the

rosbag tool from ROS during the test to enable supplementary experiments and evaluations

using two different VO methods. Figure 6.3 shows the test field and the commanded path of

the first run with more details shown in Table 6.2.

The recorded data including the stereo video was used as input for libviso2 and fovis SVO

algorithms. Figure 6.4 shows a captured scene from the left camera and the detected features

by fovis in two consecutive frames.
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Figure 6.3: Test location aerial image and navigation path by Google Earth Pro.

Table 6.2: Experiment details.

Item Run 1 Run 2

Total trajectory length 80m 100m

Average speed 0.25m/s 0.25m/s

Slope 0◦ 0◦

To run and compare the outputs of two algorithms with ground truth in one global frame,

the rosbag data was played back and the data from stereo camera including left and right

images and camera info were fed to fovis and libviso2 ROS packages simultaneously in one

run. The results are shown in Figure 6.5. The blue graph is the travelled trajectory and

estimated motion by the RTK-GPS as the ground truth. The red and purple graphs present the

SVO estimation by libviso2 and fovis respectively.

As the results in Figure 6.5 suggest, despite the fact that both visual odometers suffer from
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Figure 6.4: Features detected and matched by fovis and a captured scene from the left camera.

the drift, odometry by libviso2 is much closer to the ground truth compared to fovis in the

same run. Libviso2 fails in the first turn and this causes a larger drift as it increases increment-

ally. Fovis in the second run completely fails the estimation. To quantify and compare the

results numerically, average drift and error have been calculated. The numerical results are

summarized in Table 6.3. Drift in form of reprojection error for each point is calculated and

the average drift in form of Root-Mean Square Error (RMSE) is defined as:

RMSE =

√
1
n

n

∑
k=1

(
X̂Y Zi −XY Zi

)2
, (6.6)

where in Equation 6.6, X̂Y Z is the reference data (e.g. RTK-GPS 3D coordinates) and

XY Zis the measured data (e.g. SVO estimation) at frame or sample k.

Table 6.3 presents the quantified drift in form of translational drift and error, and the rota-

tional drift. Translational error is achieved by the division of the translational drift by the total

travelled path. Rotational drift is calculated based on the referenced IMU rotational data and

the SVO rotational estimate in Euler angles. The average drift and error generated by fovis in
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(a) (b)

(c) (d)

Figure 6.5: Results of libviso2 and fovis estimations in comparison to the RTK-GPS as ground
truth from the experiment in 2D and 3D plotted graphs: (a) 2D in run1; (b) 3D in run1; (c) 2D
in run2; (d) 3D in run2.

the first run is almost double of libviso2. This argument is not valid for the second run as fovis

fails the experiment to estimate, while the drift and error quantification show better results.

The comparison of initial results shows the better performance of libviso2 over fovis both

in rotational and the translational drift for this experiments. From the results in Figure 6.5,

libviso2 fails to calculate the rotation in the first turn of the rectangle path and this causes the

drift to remain high for the rest of the path. The numerical comparisons in this experiment

quantifies the translational error while rotational error plays an important role in increasing
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Table 6.3: Comparison results of drift and translational error for two methods.

Method Translational Drift (m) Translational Error % Rotational Drift (rad)

SVO-fovis_run1 11.14 13.9 1.77

SVO-fovis_run2 13.09 13.09 0.67

SVO-libviso2_run1 6.48 8.1 0.69

SVO-libviso2_run2 21.11 21.11 0.62

SVO-libviso2_run1 + IMU 1.09 1.3 0.57

the drift. To further improve the results, libviso2 was fused with IMU data to overcome the

rotational error by the help of an extra sensor. To achieve this, libviso2 (Xk , Yk , Zk) transla-

tional information and IMU rotational information (rollimu
k , pitchimu

k , yawimu
k ) at time k are

fused using EKF from ROS robot_localization package. The result is shown in Figure 6.6.

(a) (b)

Figure 6.6: The result from data fusion of libviso2 and IMU using EKF.

As it can be seen in Figure 6.6, rotational drift has been reduced in first turn and as a

result, SVO tracks the ground truth with lower drift. The average drift and translational error

is shown in Table 6.3. Integration of libviso2 and IMU has reduced the drift and translational

error significantly. EKF has also improved the large elevation drift by libviso2 in the whole

run. The average drift value is 1.09m and the translational error is 1.3% in a travel distance of
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80 meters. To describe the effect of rotational error from SVO, Figure 6.7 shows the drift in 3

scenarios on the same input data. “SVO-Libviso2” and “SVO-libviso2 + IMU” have the same

drift as the robot moves on a straight path toward the first turn. After first turn, it is seen that

libviso2 drift increases significantly compared to the integrated data. This causes continuous

increase in the drift as the robot travels to the end of the path.

Figure 6.7: Translational drift between SVO estimations from fovis, libviso2, and libviso2 +
IMU.

Sensor fusion using EKF for this experiment could overcome the rotational drift. Rota-

tional drift correction resulted translational drift improvement in some extent, specifically by

reducing the elevation drift through correcting the pitch angle of the SVO estimation. How-

ever, sensor fusion of SVO with IMU does not suppress or correct the drift completely, and

the accumulation of the SVO drift after correction is still inevitable. The ideal for a non-GPS

localization system is the lowest possible drift for an accurate pose estimation. Non-sensor

fusion methods such as local optimisation methods reviewed in Section 2.4.2, have proven to

reduce the SVO drift at each frame. The next chapter covers a non sensor fusion-method to
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overcome the translational drift of SVO system.

6.4 Summary

This chapter presented the experimental study of utilising two of the open source SVO al-

gorithms , fovis and libviso2, and the implementation of them on MARIO for localization in

outdoor GPS-denied environments. Despite the main drawback of SVO in translational drift,

it has been shown that the rotational error of SVO has a key role in increasing the translational

drift in a larger extent. The average drift and translational error have been quantified, fovis had

almost twice the error as libviso2. To overcome the rotational error, rotational information of

IMU has been integrated with libviso2 information using EKF. This improves the results as

it reduces the rotational error, specially in the corners and consequently minimizes the over-

all drift by a factor of 6.23. Next chapter presents a more in-depth description of SVO and

the SVO drift and provides a non-sensor fusion approach to decrease the translational drift of

the selected SVO (libviso2) to improve the result of SVO for reliable localization in outdoor

GPS-denied environments.





Chapter 7

Enhanced Stereo Visual Odometry Using

Machine Learning

7.1 Introduction

This chapter presents a novel non-sensor fusion approach to improve the accuracy of the SVO

by reducing the translational drift, aimed for a better localization of MARIO in GPS-denied

environments such as orchards. For this aim, one of the known open source SVO libraries

that was tested and selected for further development in Chapter 6, is considered as the core

pose estimation system. To improve the translational drift, two machine learning approaches

have been used. Radial Basis Function (RBF) Networks and Adaptive Neuro-Fuzzy Inference

System (ANFIS) have been utilized to model a translational drift estimator. Both ANFIS and

RBF network are trained using the training dataset, including the samples input and output

parameters. The input parameters are the inlier percentage and the reprojection error of the

SVO process at each frame, while the output is the translational drift ratio. Estimated transla-

tional drift is then used to correct the SVO drift at each frame. Both ANFIS and RBF network

are validated and tested using the validation and test datasets. The experimental results are

compared to present the improvements for the pose estimation of the SVO by estimation and
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correction of the translational drift.

7.2 Stereo Visual Odometry

SVO is the process of estimating the ego-motion of an agent through extracting, matching,

and tracking features frame by frame captured by a camera. In a monocular SVO system, the

motion is estimated from the 2D image data; hence, the estimation should be scaled by a factor

to convert the estimation into a metric measure. Such a problem for a SVO system using a

calibrated stereo camera is solved by triangulation of 3D coordinates of matched features in a

single stereo image (left and right) pair. Therefore, in this work a SVO system has been used.

The SVO from libviso2 open source library has been employed [43] as it was tested and

selected in the previous chapter based on its performance. Libviso2 library provides algorithms

for 6 DOFs motion estimation using monocular or stereo cameras. The general workflow of

the SVO system of libviso2 is as follows:

1. Features from the left and right rectified images are detected using blob and corner

detectors;

2. 3D coordinates of matched features are computed through triangulation using the cam-

era calibration parameters (intrinsic and extrinsic parameters);

3. Random Sample Consensus (RANSAC) is applied for the outlier rejection;

4. The estimation of motion is performed by the minimization of the reprojection error of

the matched 3D features in two consecutive frames.

The triangulation to acquire 3D coordinates of feature point is expressed as:

d = Pl
u −Pr

u , Pz =
b f
d
, Px =

Pz
(
Pl

u − cu
)

f
, Py =

Pz
(
Pl

v − cv
)

f
(7.1)
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Where in Equation 7.1, d is the feature disparity, P[x,y,z] is the 3D coordinate of the feature

point from the 2D image feature location in the left image Pl
[u,v]and right image Pr

[u,v].The

parameter f is the focal length of the camera in pixel and c[u,v] is the optical centre both in the

unit of pixels and obtained from the camera calibration intrinsic matrix, while b is the camera

baseline in meters and achieved from the camera calibration extrinsic matrix. The ZED stereo

camera intrinsic and extrinsic parameters are based on the presented parameter in Figure 7.1

achieved through the calibration process is presented in Table 7.1.

Table 7.1: ZED stereo camera intrinsic and extrinsic parameters.

Parameter Left camera Right Camera Stereo Camera
fu 672.30 672.30 ~
fv 672.30 672.30 ~
cu 648.22 648.22 ~
cv 361.63 361.63 ~
b ~ ~ 0.120

The stereo camera model and parameters are shown in Figure 7.1. The motion is estim-

ated based on the feature sets from the two consecutive frames using minimization of the

reprojection error and defined as:

Tk = g
(

Pk−1 , Pk
)
, Tk =

 Rk tk

0 1

 , Ck =Ck−1T−1
k (7.2)

Where in Equation 7.2, Tk is the homogeneous 4×4 transformation matrix which repres-

ents the transformation of the camera from the previous frame to the current frame at time k,

while Ck is the homogeneous 4×4 matrix representing the camera pose at time k achieved by

matrix concatenation. Correspondingly, Rk represents the 3×3 camera rotation matrix of the

current frame with respect to the previous frame, while tk is the 3× 1 translation vector de-

fining the translation of the current camera frame from the previous frame. The function g(.)
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refers to the Gauss-Newton iterative optimization to minimize the reprojection error which is

a function of the extracted set of features P in the current frame k and previous frame k−1.

Figure 7.1: Stereo camera model parameters and landmark projection.

7.2.1 SVO drift nature

Current pose estimation of the camera in SVO is obtained by the concatenation of each trans-

formation matrix at each time step. Each individual transformation has an uncertainty and the

camera pose uncertainty propagates through the concatenation of all previous transformations.

The source of uncertainty in transformation matrix has been a subject of interest for research-

ers while it has been defined mainly as the uncertainty or error in the feature matching process
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[52, 64]. As discussed by Fraundorfer and Scaramuzza in [39] the SVO uncertainty propaga-

tion can be formulated as follows. Both camera pose Ck and transformation Tk matrices can be

represented individually by a 1×6 vector as
−→
C k and

−→
T k including the 3D position in Cartesian

coordinates (x,y,z) and 3D orientation in Euler angles (φ ,θ ,ψ). Each transformation
−→
T k is

represented by its mean and the 6× 6 covariance matrix Mk. As stated in Equation 7.2, each

camera pose Ck, which is a function of the current transformation Tk and the previous camera

pose Ck−1with their covariances Mkand Mk−1respectively. The combined covariance matrix

for
−→
C k (Mk) from the two Mk and Mk−1, covariances is a 12×12 matrix and can be computed

using the law of error propagation presented which applies a first-order Taylor approximation:

M = J

 Mk−1 0

0 Mk

JT = J−→C k−1
Mk−1 JT−→

C k−1
+ J−→T k

MkJT−→
T k

(7.3)

where in Equation 7.3, J−→C k−1
and J−→T k

are the Jacobians of the function Ck−1 Tk variables

respectively. As it can be seen in Equation 7.3, the camera pose uncertainty is always increas-

ing through transformation concatenation at each frame. Therefore, it is essential to reduce

the uncertainties to as low as possible at each frame for each transformation to decrease the

overall SVO drift. In this regard, our approach in this chapter focuses on the estimation and

correction of SVO drift at time k to suppress the uncertainty for each individual estimated

transformation.

7.3 SVO Drift Estimation and Correction

The SVO translational drift estimation is performed using a machine learning framework,

where supervised training is employed based on a set of training data. The training dataset

includes a large samples of input parameters representing some properties of the SVO process,

and the quantified SVO drift as the output parameter. The trained and validated network can

be used as a typical function approximation system by feeding new inputs to get the estimated
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SVO drift as the output. For this aim, we use two of the machine learning approaches, RBF

network and ANFIS, and evaluate their performance in solving this problem.

7.3.1 Drift estimation system parameters

The input parameters representing different characteristics of the SVO system are described

as follows. In this context, 2 parameters are considered as the input parameters:

• The inlier percentage,

• The average error of the reprojected 2D feature points.

7.3.1.1 Inlier percentage

The matched feature points usually contain outliers, indicating incorrect data relationship.

The outliers are usually caused by image noise, illumination variations or other disturbances

which are not supported by the mathematical formulation of the feature detection system.

Outlier rejection is required for an accurate motion estimation by the SVO system. RANSAC is

a commonly used standard framework for outlier rejection. In this regard, different hypotheses

of the motion model are computed from a set of sample feature points (3 samples in libviso2).

Then these hypotheses are verified on the other feature points. The hypothesis that represents

the maximum agreement, or in other words, a reprojection error less than a certain threshold

(for libviso2 1.5 pixels) is selected as the model to estimate the motion, and its data (feature

points) are considered as the inliers. The inlier percentage can be a good measure to quantify

the performance of the feature matching process. The inlier percentage is achieved at each

time from the number of inliers over the total number of features provided by the RANSAC

process.
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7.3.1.2 Reprojection error

As stated in Equation 7.2, a Gauss-Newton iterative optimization is used to extract the mo-

tion of the camera by minimizing the reprojection error. To evaluate the performance of the

optimization process, the reprojection error is quantified to be used as an input parameter in

the training process of the machine learning system. The reprojection error is formulated by

simulating a new solution for the 3D feature coordinates of the current frame using the 3D

feature coordinates of the previous frame and the transformation matrix in form of the average

Euclidean distance, defined as:

Pk
[x,y,z] = RT

k Pk−1
[x,y,z]+RT

k tk, Pk
u = f

(
Pk

x/Pk
z

)
+ cu, Pk

v = f
(

Pk
y/Pk

z

)
+ cv, (7.4)

εk =
1
n

n

∑
i=1

∥∥∥Pk
[u,v]i

−Pk
[u,v]i

∥∥∥
2
, (7.5)

where in Equations 7.4 and 7.5, Pk
[x,y,z] is the 3D reprojected feature coordinates for the cur-

rent frame k, Pk
[u,v] is the set of n reprojected 2D feature points for the current frame obtained

from the 3D reprojected feature coordinates and the camera calibration intrinsic parameters,

and ε is the reprojection error at time k.

7.3.1.3 SVO drift ratio

SVO drift ratio is considered as the output of the machine learning system since the aim is to

estimate the SVO drift at each time k and correct the original SVO output to compensate the

drift. In this research, the focus is to reduce the translational drift. Therefore, the translational

drift ratio is quantified using the estimated motion by SVO and the GPS positioning data as



98 Enhanced Stereo Visual Odometry Using Machine Learning

the ground truth at each time, k. The SVO drift ratio at each frame is formulated as:

Ek =

∥∥∥GPSk
[x,y,z]

∥∥∥∥∥∥Ck
[x,y,z]

∥∥∥ , E ∈ [0 1] (7.6)

where in Equation 7.6, E is the computed SVO drift ratio at time k, GPS[x,y,z] is the 3D

coordinates from the GPS, and C[x,y,z] is the estimated concatenated motion by VO. The drift

ratio is expected to be in the interval of [0 1]. This is due to the nature of the SVO drift that

is increasing over time. The computed drift ratio is used in the training process, while the

estimated drift ratio as the output of the machine learning system on the test data is used to

correct the original SVO data.

7.3.2 Machine learning framework

This section describes the machine learning framework that has been used for the estimation of

the SVO drift ratio from the inputs, the inlier percentage and the reprojection error described

in the earlier section. ANFIS and RBF Network are considered as the core of the machine

learning framework. The structure of both systems are described as follows.

7.3.2.1 Adaptive Neuro-Fuzzy Inference System (ANFIS)

ANFIS functionally is a fuzzy inference system (FIS) in which the parameters of FIS have

been obtained through a neuro-learning process using a training dataset rather than determ-

ination by an expert. First ANFIS model was proposed by Jang in [51] based on the Takagi-

Sugeno-Kang (TSK) fuzzy model. This technique provides a multi-input-single-output system

modelling in form of a fuzzy modelling procedure, while the membership function paramet-

ers are adjusted through a learning process.Figure 7.2 presents the general architecture of an

ANFIS. ANFIS has five layers to build the fuzzy system including, I) fuzzy layer, II) product

layer, III) normalized layer, IV) defuzzification layer, and V) output layer.
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Figure 7.2: ANFIS architecture.

ANFIS training is supervised and the training dataset consists of inputs and their corres-

ponding desired output values. For an ANFIS model with a first-order TSK FIS as depicted

by Figure 7.2, consisting two inputs ( A1 and A2 ) and one output (Z), the typical rule set can

be presented as:

• Rule 1: if (A1 is U11) and (A2 is U21) then (Z1 = p1A1 +q1A2 + s1),

• Rule 2: if (A1 is U12) and (A2 is U22) then (Z2 = p2A1 +q2A2 + s2),

where U expresses the membership functions and p, q, and s are the assigned parameters

during the training process. Each node in the first layer outputs membership graded values

of inputs for the fuzzy sets. Different membership functions are available such as Gaussian,

triangular, trapezoid, and sigmoid. A Gaussian membership function is defined as:

Ui j = exp

(
−
(
ci j −Ai

)2

2σ2
i j

)
, i = 1, . . . ,n, (7.7)

where in Equation 7.7, Ui j is jth member function of the ith input, ci j is the centre and σi j

is the spread rate of the Gaussian membership function. These two parameters are defined as
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the premise parameters. The second layer consists of fixed nodes ∏, which output the product

of incoming inputs from the first layer. The output value represents α j, the firing strength of

each rule and for the kth node is expressed as:

α j =
o

∏
k=1

Ui jk, (7.8)

The nodes in third layer labelled as N, output the average of the fuzzy rules weights ob-

tained from the second layer:

α j =
α j
n

∑α j
j=1

, (7.9)

where in Equation 7.9, w j is the normalized firing strength. The fourth layer multiplies the

normalized firing strengths of all the rules with z which is a function of few parameters. The

output of each node in this layer is given by:

α jZ j = α j
(

p jA1 +q jA2 + s j
)
, (7.10)

where in (10), pi, qi, and ri were described earlier, are the consequent parameters set during

the training process. The only node in the fifth layer sums up the incoming inputs and outputs

the overall output value.

Z =
n

∑
j=1

α jZ j, (7.11)

Typically, ANFIS parameters are adjusted in the training process using the back-propagation

(BP) or a hybrid learning algorithm that combines BP with Least-Square-Method (LSM). The

optimal consequent parameters can be defined using LSM if premise parameters are con-

sidered as fixed values. While both premise and consequent parameters are adaptive, the

convergence of the training process slows down due to the large search space. The hybrid
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algorithm converges faster by decreasing the search space dimension of the BP algorithm.

The hybrid algorithm operates in two stages, forward pass and backward pass. In the forward

pass, the premise parameters are set fixed while inputs are injected into the process and the

consequent parameters are defined by LSM in the fourth layer. In the backward pass stage, the

output error is propagated backward from the output towards input layer. In this stage, while

the consequent parameters are set fixed, the premise parameters are updated using BP.

7.3.2.2 Radial Basis Function Network

Radial Basis Function (RBF) network is a type of artificial neural network which uses a radial

basis activation function [11]. The RBF network is a feed-forward network model with good

performance, global approximation, and is free from local minima problems. An RBF network

is a multi-input, single-output system that typically consists of an input layer, a hidden layer

with a non-linear RBF activation function, and a linear output layer. The simple architecture

of the RBF network is shown in Figure 7.3.

Figure 7.3: RBF network architecture.
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A Gaussian function is typically considered as the RBF activation function. The primary

problem in a RBF network is to approximate (tune) the centre and width of the Gaussian

activation function. The output of each hidden node (Gaussian activation function) is defined

as:

G(A) = exp

(
−(A− ci)

2

2σ2
i

)
, i = 1, . . . ,m, (7.12)

where in Equation 7.12, A is an input feature vector with n dimension, ci is the centre, and

σi is the width of the ith Gaussian function. The output node performs linear summation and

is defined as:

T (A) =
m

∑
i=1

βiGi(A), (7.13)

RBF network training is supervised and it is performed through providing the input vector

of samples and the respected desired outputs for each sample. At each iteration of the RBF

network training process, the values of the Gaussian function parameters, number of neurons,

and the weights are updated to guarantee that each of the nodes in the hidden layer is properly

parametrized and the model error is obtained.

7.4 Experimental Setup

This section describes the experimental setup used in this research to estimate and correct

the SVO drift. The first part describes the experimental material setup for this research and

the second part presents the structure and setup of the machine learning system as the core

methodology to improve the SVO drift in this research.



7.4 Experimental Setup 103

7.4.1 Experimental setup and materials

The experiments presented in this chapter have been performed in two stages, the first part has

been conducted using the data from the KITTI Vision Benchmark Suite [44], while the second

part is performed using the collected data by MARIO. The KITTI odometry dataset includes

the raw left and right image sequences, ground truth trajectories, and the camera calibration

information. As mentioned previously, MARIO is equipped with the ZED stereo camera, 9

DOFs Razor IMU, and a Swiftnav Piksi RTK GPS unit as well. The experiments were also

conducted in the open field (Ilam Field, Christchurch, New Zealand). Navigating the robot in

this open field provides good satellite coverage for the GPS unit to measure pose information

as the ground truth.

7.4.2 Machine learning structure and setup

The experiments were conducted using the KITTI benchmark database and the MARIO data-

base for both training, validation, and testing the machine learning system. For this aim, one

set of data was used for each of the stages to train the machine learning system. For each set,

the motion was estimated as the output of the SVO system while machine learning parameters

were also extracted at each time k. The total number of samples used for training of the first

set (KITTI data) was 371, and 1636 samples from a MARIO dataset. Each sample includes

the inlier percentage and reprojection error as the input data, and the SVO drift ratio as the

output for time k. Figure 7.4 shows a summary of the two datasets used in the experiments at

training, validation, and testing stages, including the number of samples (image frames).

Figure 7.5 presents the SVO estimation providing the data from the training datasets in

comparison to the ground truth (GPS) data. It is seen that the drift in Z axis is larger than the

drift in X −Y axes. The drift ratio quantification provided in Equation 7.6 does not represent
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Figure 7.4: Number of samples used for training, validation, and testing.

the right drift ratio to quantify the Z axis drift. For this reason, the drift ratio quantification is

formulated independently for Z axis. Thus, one system is trained for X −Y axes drift and one

other is trained for the Z axis drift. Both systems are trained with the same training data.

Each of the training datasets are used to train both the ANFIS and RBF network. Figure

7.6 shows the ANFIS structure used in this research. The ANFIS structure for two inputs and

one output includes 5 Gaussian membership function for each input, 25 fuzzy rules. All the

values are normalized to be in the range of [0 1]. ANFIS and RBF modelling is achieved using

MATLAB Neuro-Fuzzy Designer toolbox and NNTOOL [R2016a, Mathworks].

The training process for the first dataset to quantify the X −Y drift is shown in Figure 7.7.

As mentioned earlier, the Gaussian membership function parameters including the centre and

width are adjusted during ANFIS training process. Figures 7.7c and 7.7d show the adjusted

member functions after the training process for input1 and input2 correspondingly. Figure

7.7e shows the 3D surface between the inputs and output samples of the training data.

The structure of RBF network is also shown in Figure 7.8 Similarly to ANFIS, the same

input and output samples are used to train the RBF network. 373 Gaussian nodes are in the
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(a) (b)

(c) (d)

Figure 7.5: 2D and 3D plots of the training datasets; (a) and (b): KITTI dataset; (c) and (d):
MARIO dataset.
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(a) (b)

Figure 7.6: ANFIS structure: (a) MATLAB modelled ANFIS structure, (b) first and second
input initial membership functions.

Table 7.2: Estimation error of the trained systems using the training input samples to estimate
the SVO drift ratio, ε (m/m).

ANFIS_XY ANFIS_Z RBF_XY RBF_Z

KITTI 3.0462E-04 4.7E-04 2.9890E-04 4.5E-04

MARIO 1.7351E-04 5.4E-04 1.7352E-04 5.4E-04

RBF layer for the total 373 samples, while the linear output layer includes one node which

sums the output of the RBF nodes and results the final output.

Table 7.2 includes the quantified RMSE of the trained ANFIS and RBF network by simu-

lating them using the training data. The represented values are the error between the estimated

and actual SVO drift ratio.

To validate the trained systems, both systems are tested using the samples from a different

dataset where the same setup has been used to collect data. The validation process includes

one dataset from each KITTI and MARIO databases which the number of samples are about

the 30% of the total samples used in the training process. The validation is performed by
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(a) (b)

(c) (d)

(e)

Figure 7.7: ANFIS X-Y drift training process on KITTI data: (a) training average error, (b)
simulated training data with the trained model, (c) and (d): the tuned first and second input
after training, (e) inputs and output surface plot after training.
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(a) (b)

Figure 7.8: RBF network: (a) performance error of X-Y drift training process on KITTI data,
(b) RBF network structure.

simulating the X −Y and Z trained systems using the validation data. Both 2D and 3D results

for each scenario are presented in Figure 7.9. The validation results for both 2D and 3D

scenarios are showing extensive improvements of the SVO drift, while ANFIS has shown

better results (lower RMSE) in comparison to the RBF network results on the KITTI validation

data while both present the same performance on the MARIO validation data.

7.5 Results and Discussion

The testing results are obtained from the both KITTI and MARIO datasets using the trained

ANFIS and RBF systems and have been performed the same way as the validation results were

obtained. These results are demonstrated in Figure 7.10, where it presents the 3D results and

the associated quantified RMSE error value for each of the tests. From the results it is seen

that in all cases, the SVO results of both ANFIS and RBF trained systems have been improved

with the average improvement of 50% in comparison to the original SVO results.

The results presented in Figures 7.10a and 7.10c show the very similar performance of
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(a) (b)

(c) (d)

Figure 7.9: Validation 2D and 3D results: (a) and (b) KITTI dataset, (c) and (d) MARIO
dataset.
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both ANFIS and RBF systems. The two cases presented in Figures 7.10b and 7.10d, show the

better performance of ANFIS over the RBF network in form of smaller RMSE, resulted from

the bad estimation of RBF in the corners over turning curves. This is due to existence of input

parameters out of the normalized range of input data used for the training of ANFIS and RBF

systems. In this case, ANFIS shows better performance of being stable to such a noisy data in

comparison to the RBF network.

Figure 7.11shows the plotted original and corrected drifts over time from one of the test

data (Figure 7.10a). As it can be seen in Figure 7.11, the original drift as the output of the

libviso2, increases over time and this increase results a bigger drift at the end of the travelled

path. As it has been discussed earlier, the error from the computed transformation matrix at

each frame accumulates over time by the matrix concatenation and results a much bigger drift

over time. By limiting the error at each frame, the overall drift is corrected and improved. The

SVO drift corrections by both ANFIS and RBF systems for MARIO1 test data are presented

in Figure 7.11, while the average translational drift in form of RMSE error from libviso2 is

1.31m, the average translational drift by ANFIS and RBF systems are 0.21m which is 66%

SVO drift improvement. A summary of the results including the average drift and the error is

presented in Table 7.3.

Based on the presented summary of the testing results in Table 7.3, Both ANFIS and

RBF network were able to significantly improve and reduce the translational drift from the

original one from 46% to 70%. Despite the fact that both ANFIS and RBF achieve the same

results, ANFIS is considered as the core SVO enhancement method due to the ease of software

implementation on MARIO for real-time operation.
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(a) (b)

(c) (d)

Figure 7.10: Test results: (a) KITTI1 and (b) KITTI2 , (c) MARIO1 and (d) MARIO2.
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Figure 7.11: The SVO translational Drift over time (MARIO1).

Table 7.3: Summary of the test results presenting the average drift and drift reduction percent-
age.

Test data

SVO

average drift
(m)

SVOANFIS

average drift
(m)

SVOANFIS

drift reduction
%

SVORBF

average drift
(m)

SVORBF

drift reduction
%

KITTI1 9.74 5.29 45.6 5.28 45.7

KITTI2 20.92 7.58 63.74 7.94 62.05

MARIO1 1.31 0.44 66.48 0.44 66.48

MARIO2 3.39 1.03 69.53 1.14 66.16
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7.6 Summary

The work presented in this chapter introduced a machine learning approach to improve the

results of SVO by reducing the SVO translational drift, aiming for better localization in GPS-

denied environments. The SVO translational drift estimation was defined as a function ap-

proximation problem using ANFIS and RBF network. Both ANFIS and RBF network were

trained using the samples of the formulated input and output parameters achieved in the SVO

process. Two input parameters were 1) inlier percentage, and 2) reprojection error, and the

output parameter was the SVO drift ratio. Each system was trained, validated, and tested suc-

cessfully using the data from the two different datasets including the online KITTI benchmark

dataset, and MARIO, the dataset from the experimental equipment used in this research. The

results from both datasets presented the improved SVO by reducing the translational drift at

each frame and minimizing the overall SVO drift from 46% to 70%. The next chapter focuses

on utilizing and combining the both developed sensor fusion and machine learning methods

in improving the MARIO localization for navigation in GPS-denied environments through the

final experimental study and analysis.





Chapter 8

Enhanced Localization for Navigation in

GPS-Denied Environments

8.1 Introduction

This chapter presents the approach for enhanced localization in GPS-denied environments.

The first novel approach is to evaluate the combination of the two methods previously de-

veloped in Chapters 6 and 7 for enhancing the SVO drift, i.e. EKF sensor fusion and ANFIS

based drift correction system. For this aim, the enhanced SVO introduced in Chapter 7, is

fused with the IMU rotational data using EKF. Therefore with this approach, the SVO trans-

lational and rotational drift and in overall, the SVO drift is expected to decrease. The second

aim is to investigate the sensor fusion of wheel odometry (WO) as another available source of

localization and its influence on the overall results to achieve a reliable localization alternative

for navigation of MARIO in GPS-denied environments.



116 Enhanced Localization for Navigation in GPS-Denied Environments

8.2 Methodology

The details of sensor fusion using EKF and ANFIS drift correction system to improve the

SVO rotational and translational drift were both described previously in Sections 6.2.2 and 7.3.

This chapter investigates combination of the two mentioned methods to achieve the enhanced

SVO system, i.e. ANFIS corrected SVO fusion with the IMU data using EKF. Furthermore,

sensor fusion of WO with the IMU and ANFIS corrected SVO to achieve a reliable non-GPS

localization system is also investigated.

The experiments and analyses have been performed on the recorded experimental data

from MARIO in one run. The field experiment for this section was carried out by driving

MARIO over a 165m closed loop trajectory on Ilam field while recording all the data using

rosbag for post processing and analysis. The recorded data includes the stereo image frames,

IMU data, WO, RTK-GPS data, and other ROS related data. For each part of the experiment

and analysis, the recorded data is played back. The total number of frames acquired by the

stereo camera was 1414 frames, so that the data from the other sensors or EKF output with

faster rate were resampled to 1414 samples. The ground truth data recorded from the on-board

RTK-GPS unit is used for comparisons.

Different following scenarios were tested:

Case (A) SVO vs. SVOANF IS vs. SVOANFIS−Filtered ,

Case (B) SVO fused with IMU vs. SVOANFIS−Filtered fused with IMU,

Case (C) WO vs. WO fused with IMU;

Case (D) SVO fused with WO and IMU vs. SVOANFIS−Filtered fused with WO and IMU,

where Case (A) evaluates the performance of the ANFIS corrected SVO in comparison

to the original SVO by reiterating the method and analysis performed in Chapter 7, Case (B)

evaluates sensor fusion of the both original and corrected SVO estimates with IMU by reit-

erating the method and analysis performed in Chapter6. Case (B) combines the two methods

and aims to evaluate the performance of the final enhanced SVO. Case (C) presents the WO
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results and its performance. Case (D) aims to evaluate the performance of the sensor fusion of

all of the available sources including ANFIS corrected SVO, WO, and IMU, aiming a reliable

and lower error non-GPS localization system.

8.3 Experimental Results

Figure 8.1 shows the results achieved for Case (A) by playing back the stereo image frames

for SVO ROS node to get the original SVO and the corrected SVO (SVOANF IS) in 2D (Figure

8.1a) and 3D (Figure 8.1b) representation. SVOANF IS estimation is noisy and not as smooth as

the original SVO. This causes EKF dysfunction for fusion of the noisy data with another sensor

such as IMU. SVOANF IS is smoothed by one stage of EKF filtering through feeding (X svoANFIS
k

, Y svoANFIS
k , ZsvoANFIS

k ) and generating the filtered output of (X svoANFIS−Filtered
k , Y svoANFIS−Filtered

k ,

ZsvoANFIS−Filtered
k ).

In Case (B), both original SVO and SVOANFIS−Filtered are fused with the IMU data in two

different runs. In this regard, EKF integrates the 3D position estimate (X svo
k , Y svo

k , Zsvo
k ) at

each frame from SVO and the 3D orientation (rollimu
k , pitchimu

k , yawimu
k ) from IMU at time

k. EKF handles the synchronisation of data with the different sampling rates. The filtered

6D position estimation data (Xek f
k , Y ek f

k , Zek f
k ,rollek f

k , pitchek f
k , yawek f

k ) is reported as the

output of EKF. Figure 8.2 shows results of the data fusion for this scenario in 2D (Figure 8.2a)

and 3D representation (Figure 8.2b).

In Case (C), WO generated by the MBC forward kinematics from the wheel encoders is

also fused with the IMU rotational data. WO 2D pose estimate (Xwo
k , Y wo

k ) is fused with

only (yawimu
k ) of IMU. The results of the original WO estimation and fused IMU and WO
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(a)

(b)

Figure 8.1: SVO, SVOANF IS , and SVOANFIS−Filtered results in comparison to the ground truth
from RTK-GPS: (a) X-Y 2D presentation; (b) X-Y-Z 3D representation.
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(a)

(b)

Figure 8.2: Fusion of IMU with the original SVO and SVOANFIS−Filtered in comparison to the
ground truth from RTK-GPS: (a) X-Y 2D presentation; (b) X-Y-Z 3D representation.
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Figure 8.3: WO and the fusion of IMU with WO in comparison to the ground truth from
RTK-GPS in X-Y 2D presentation.

are presented in Figure 8.3. Unfortunately the rotational estimation of WO has failed for this

run of field experiment but the fused (WO + IMU) data just requires the 2D translational

information and relies on the IMU (yawimu
k ).

Case (D) aims to evaluate the performance of the case involving integration of the data

from all the available sources for a reliable and accurate localization in GPS-denied environ-

ment. To achieve this, SVO 3D position estimate (X svo
k , Y svo

k , Zsvo
k ), WO 2D position estimate

(Xwo
k , Y wo

k ) , and IMU 3D orientation (rollimu
k , pitchimu

k , yawimu
k ) at time k are integrated and

the EKF 6D position and orientation estimate (Xek f
k , Y ek f

k , Zek f
k ,rollek f

k , pitchek f
k , yawek f

k )

is obtained as the integrated output. Figure 8.4 shows the results of integration for both SVO

+ WO + IMU and SVOANFIS−Filtered + WO + IMU cases.
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(a)

(b)

Figure 8.4: Fusion of IMU and WO with the original SVO and SVOANFIS−Filtered in compar-
ison to the ground truth from RTK-GPS: (a) X-Y 2D presentation; (b) X-Y-Z 3D representa-
tion.
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Table 8.1: Error quantification of the results from the different parts of the experiment.

Experiment parts 2D drift
(m)

2D
error
(%)

3D drift
(m)

3D
error
(%)

Max
drift
(m)

Max
error
(%)

SVO 1.58 0.95 3.68 2.22 9.94 6.02

SVOANF IS 1.56 0.94 1.28 0.77 4.85 2.93

SVOANFIS−Filtered 0.66 0.4 0.54 0.32 2.35 1.42

WO 19.51 11.8 15.93 9.63 55.55 33.66

SVO + IMU 3.23 1.95 2.65 1.6 8.2 4.96

SVOANFIS−Filtered + IMU 2.97 1.8 2.43 1.47 7.58 4.59

WO + IMU 3.10 1.87 2.53 1.53 8.4 5.09

SVO + WO + IMU 3.16 1.91 2.59 1.56 7.83 4.74

SVOANFIS−Filtered + WO + IMU 1.63 0.99 1.33 0.8 3.77 2.28

Table 8.1 provides the overall error quantification results for each part of the experiment

in form of 2D and 3D average drift and average error percentage in comparison to the ground

truth positioning data from the RTK-GPS. The average drift is formulated in form of RMSE

between the test results and the ground truth data. It also presents the error in terms of max-

imum drift and maximum error for each case. The average 2D and 3D error is also shown as

a bar chart in Figure 8.5.
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Figure 8.5: Bar chart representation of the results errors from the different parts of the experi-
ment.

8.4 Discussion and Analysis

In Case (A), the original SVO and SVOANFIS results depicted in Figure 8.1 present better per-

formance of SVOANFIS as expected, specifically in 3D form by reducing the elevation drift

and as a results, the overall drift to 0.77% in comparison to the original SVO error 2.22%.

As mentioned earlier, SVOANFIS was filtered due to effect of noisy estimate on the EKF per-

formance. As a result, SVOANFIS−Filtered shows better performance by the average error of

0.32%. The results for this part revalidates the effectiveness of ANFIS drift correction system

developed in Chapter 7 to obtain an enhanced SVO estimation.

Case (B) investigates benefits of the sensor fusion to integrate SVOANFIS−Filtered and IMU

data. With this experiment, it is desired to show if and how the fusion of SVOANFIS−Filtered

translational data and IMU rotational data improves the overall drift by both improving the

translational and rotational drifts. The results were presented in Figure 8.2. The fusion of

SVOANFIS−Filtered and IMU, results average error of 1.8% in 2D and 1.47% in 3D while

the fusion of original SVO and IMU, results 1.95% and 1.06% correspondingly. Fusion of
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SVOANFIS−Filtered and IMU shows a better performance in error reduction in comparison to the

fusion of SVO and IMU as expected, but bigger error in comparison to the SVOANFIS−Filtered

results which is not expected. On other hand, the 2D error of fused SVO and IMU is also

bigger than the original error, while the 3D error shows better performance due to substantial

reduction of the SVO elevation. One of the main reasons to describe this behaviour might be

the EKF parameters adjustment. EKF parameters such as process noise covariance matrix is

set to the default values, while it needs a proper dynamic tuning to achieve the best perform-

ance out of EKF. However, EKF performance enhancement is not the focus of this work and

can be considered as the future work of this thesis.

In a reliable non-GPS localization approach, relying only on one source of positioning data

is risky. The reliability term matters when one of the data sources is unavailable, so that the

robot pose can be estimated through the other input sources. Thus, the integration of all of the

available positioning and inertial data is advisable. As the next part of the experiment, fusion

of WO as another available source of relative positioning data with IMU and SVO was invest-

igated. For Case (C), the original WO estimation shown in Figure 8.3 does not show a good

performance of pose estimation as expected, but the WO and IMU fusion improves the results

to a good accuracy of 1.87%. From the results, the original WO orientation estimation has

failed due to the existence of a large bias in the WO orientation estimate, however the fusion

of WO translation and IMU orientation achieves low error results in the range of SVO error.

WO translational drift is also seen in the results due to wheel slippage which is unavoidable.

The results for the last part of the experiment in Case (D) involving fusion of the data from

all the sources, aiming a reliable and accurate localization, were shown in 8.4. The results

from this part show improvement of the drift and error in comparison to all of the other parts,

where partial sensor fusion was tested, i.e. SVO + IMU, SVOANFIS−Filtered + IMU, and WO

+ IMU. The fusion of SVOANFIS−Filtered , WO, and IMU achieves better results by reducing

the error in about 50% in comparison to the case where SVO, WO, and IMU are fused. In this
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Figure 8.6: Drift trends of the fused results from the different parts of the experiment over the
experiment run.

regard, the 2D error is reduced from 1.91% to 0.99%, while the 3D error has a decay from

1.56% to the 0.8%.

Figure 8.6 shows the trend of drift over time for four different parts of the experiment.

As shown, fused SVOANFIS−Filtered , WO, and IMU achieves the best results among all the

other cases, while fusion of only SVOANFIS−Filtered and IMU also achieves better results in

comparison to the fusion of SVO,WO, and IMU.

A comparison between SVOANFIS−Filtered , fused SVOANFIS−Filtered and IMU, and fused

SVOANFIS−Filtered ,IMU, and WO depicted by Figure 8.7 shows better results of SVOANFIS−Filtered

among the three of them. However as discussed, better results do not guarantee a reliable

solution specifically for outdoor GPS denied environments. The optimal solution involving

the fusion of all data sources achieves the best results so far out of all of the other data fusion

configurations. The experimental results achieves the goal of this experiment. The proposed

solution can operate as a reliable alternative to the GPS based localization system for a mobile
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Figure 8.7: Drift trends of the SVOANFIS−Filtered , fused SVOANFIS−Filtered and IMU, and fused
SVOANFIS−Filtered ,WO, and IMU estimations over the experiment run.

robot, where the GPS data is lost and the mobile robot needs the state of the system to reliably

navigate.

Defining the acceptable error rate for a non-GPS localization system depends on the ap-

plication. While a general case cannot be considered, we can consider a specific case such as

the operation of MARIO in a typical apple orchard. If a 0.5m wide robot navigates within a

standard apple orchard with 100m long rows spaced 3m apart, a drift of1m over 100m (1%

error) at the end of the row can be considered as the acceptable error to avoid collision with

the trees. It is assumed that the GPS is not available within the 100m long row, but will be

available during the turns.

8.5 Summary

The experimental work and analysis presented in this chapter, investigates:

1. The effect of the combination of the presented approaches in Chapter 6 and 7, in order
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to achieve a more accurate SVO,

2. The effect of sensor data fusion to achieve a reliable and accurate pose estimate as an

alternative to the GPS for localization in outdoor GPS denied environments.

The fusion of ANFIS based drift correction and IMU data does not achieve a more accurate

result compared to the ANFIS corrected SVO, but it certainly performs better in comparison

to the case where the original SVO is fused with IMU. Data fusion of the pose estimates from

different sources not only provides a more reliable estimation of the robot’s pose for GPS-

Denied environments, but through the experimental work presented in this chapter, achieved

a more accurate results in comparison to the case where only one or two sources of data was

used. Furthermore, the final case including the SVOANFIS−Filtered + WO + IMU also satisfied

the hypothetical acceptable error rate of 1% in both 2D and 3D case with 0.99% and 0.8%

error.





Chapter 9

Conclusion and Future Works

This Chapter summarizes the contributions of this thesis and presents the conclusions of this

research. Recommendations for the future works are also provided.

9.1 Conclusion

The work presented in this thesis contributes to the mechatronic design, development, and

control of a non-holonomic omnidirectional mobile robotic platform, MARIO, for potential

applications in agriculture, alongside the development of an enhanced vision based localiza-

tion system, enabling navigation in GPS-denied environments such as orchards.

Development of MARIO was the initial part of this thesis that involved mechatronic system

design and development of a 4WD4S mobile robot as a non-holonomic omnidirectional plat-

form. The design was processed through an innovative integrated application of CAD/CAM/CAE

and RP for rapid development of the robot. 3D CAD design not only allowed fabrication of

the platform through CAM and RP, but it also enabled further CAE analysis including struc-

tural analysis of the robot parts and motion analysis for torque validation of the active joints.

ROS provided the software development environment for interfacing the electronics, sensory

system, and the actuation for control and navigation of the robot. With this innovative integ-
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rated design approach, successful prototyping of MARIO was achieved with a reasonably low

development time and cost.

3D modelling and simulation of MARIO as a non-holonomic omnidirectional mobile ro-

bot was essential for off-line programming and validation of the key software components of

the platform, specifically the kinematic model-based controller (MBC). MARIO 3D model-

ling and simulation was achieved using Gazebo simulator. Gazebo simulator also provided

simulation of the world environment, sensors, and the joint control interfaces. The MBC

formulation including the singularity problem associated with MBC in two forms of mathem-

atical and kinematic singularities was discussed. Mathematical singularities were solved by

presenting the idea of switching between the different steering modes. The MBC was tested

and validated on both simulated and the physical model. The ROS/Gazebo approach enabled

successful development and test of MARIO and different implemented robotic software in a

simulation environment before implementation on the real system.

To overcome the kinematic singularity of MBC, A novel fuzzy logic based system was

designed and aimed to direct the ICR in a way to avoid a defined singular region around the

steering joints axes. The fuzzy control system controlled and directed the ICR on the border

of the defined singular region, in case of the placement or pass through the singular region.

The simulation and experimental results proved the practicality and usefulness of the proposed

method in handling the kinematic singularity on MARIO.

For navigation in agricultural environments such as orchards, a reliable and accurate loc-

alization system is essential, specially in the absence of GPS data. Vision based localization

for navigation of MARIO in GPS-denied environments was utilised. SVO suffers from the ac-

cumulative drift over time in the long range. To improve the SVO performance, drift in form

of translational and rotational was identified through the experimental study. To overcome the

rotational error, sensor fusion using EKF was employed to integrate IMU rotational data and

the SVO translational data. This improved the results as it reduced the rotational drift, con-
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sequently minimized the overall drift. However, the SVO translational drift was still evident

which could be more improved.

A novel machine learning approach was introduced to improve the SVO accuracy by redu-

cing the SVO translational drift. The SVO translational drift correction system was modelled

as a function approximation problem using ANFIS and RBF network. Both ANFIS and RBF

network were trained supervised, using the training dataset. Training dataset included samples

of the formulated input and output parameters. Two input parameters were 1) inlier percent-

age, and 2) reprojection error, and the output parameter was the SVO drift ratio. Both trained

ANFIS and RBF were tested and validated successfully using the validation and test datasets.

Datasets were obtained through recording data with MARIO in different runs on the field. A

different group of datasets from the online KITTI benchmark database were also used, where

the training, validation, and testing were also successful. The estimated drift ratio based on the

two inputs at each frame, could correct and suppress the drift at that frame. Therefore reducing

the translational drift at each frame minimized the overall SVO drift from 46% to 70%. Both

RBF and ANFIS systems presented the same performance but ANFIS was selected as the core

drift correction system, due to the ease of implementation for real time processing.

An enhanced vision-based localization system was aimed through utilizing and combining

the both sensor fusion and machine learning methods in reducing the SVO drift through the fi-

nal experimental study and analysis. Sensor fusion of IMU and ANFIS corrected SVO lowered

the error in comparison to the fusion of SVO with IMU, but it did not produce better results

in comparison to the results from the ANFIS corrected SVO. Furthermore, the integration of

WO with the enhanced SVO and IMU was also investigated to achieve a reliable non-GPS

localization solution for MARIO provided by the integration of all the available sensory data.

Sensor fusion of IMU, ANFIS corrected SVO, and WO not only could provide a more reliable

estimation of the MARIO’s pose, it also achieved more accurate results in comparison to the

cases where only one or two sources of data were used.
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9.2 Future Works

The following recommendations are presented for the extension of the current work. They

include two major aspects of improvements. The first part is regarding the control system,

while the second part is around the challenges for the navigation system.

The current control system (MBC) is based on the kinematic model of the platform. This

was due to the fast implementation of the control system to reach to the next stage of the

research. For such a mobile robotic system, there are always uncertainties and time-varying

parameters which turn the system into a non-linear system. Other external factors such as

soil and wind conditions also affect the robot dynamics [78]. These mentioned internal and

external factors lead into need for a design of an optimal control system for such a non-linear

system. Such a system requires more mathematically complex model and each control func-

tion should be modelled explicitly. To provide robust control, different approaches have been

proposed and implemented from fuzzy control [58] and adaptive control [29] to sliding mode

control (SMC) [34]. Compared to other approaches, SMC has received more attention due to

its fast and robust response especially for off-road and unstructured environment. Combina-

tion, improvement, and evaluation of these methods can be investigated for MARIO to provide

a robust and stable motion control system.

Another potential area of research to improve the current work is the enhancement of the

sensor fusion system. For this work, EKF algorithm from ROS robot_localization package

provided sensor fusion, however challenges still remain for an optimally tuned EKF system.

The experimental results were achieved with the core basic required configuration of the EKF

out of many other effective parameters. The current filter does not fuse the linear acceleration

as it has not been included in the state estimator and the kinematic model of the filter. This can

be formulated and added to improve the EKF accuracy. Furthermore, the filter is set with a

default process noise covariance matrix. Finding the optimal process noise covariances is very

critical to achieve the optimal performance of the filter. An adaptive online system to define
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and tune the EKF process noise would improve the performance the current filter.

The basic navigation of MARIO using ROS navigation stack was possible for semi-autonomous

operations, however it was not the focus of this work. The navigation system requires a good

estimation of the system state which was mainly focused in this work. Therefore, the chal-

lenges are still remained for the future to achieve a reliable navigation. The basic ROS naviga-

tion stack provides a 2D semi-autonomous control system for the ground robots in a provided

map. SLAM can be employed for map building and localization in the environment using

the current stereo camera. Obstacle avoidance system including the associated challenges is

another key component of the navigation system which needs to be implemented.

The implementation of 2D or 3D LiDARs can also be investigated in the future for the

purpose of pose estimation, SLAM, and obstacle avoidance. The performance of the vision

based systems varies based on the light variations in the environment, while LiDARs are not

sensitive to the light variations. However, utilizing a LiDAR unit adds technical and research

challenges especially for 3D mapping due to the need for a large computational capacity to

process the point clouds and the poor performance in unstructured environments.
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