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Resumo

Os robôs autónomos desempenham um papel crucial no auxílio ao ser humano em várias tarefas.
No entanto, para garantir a execução segura de trajetórias autónomas, dois dos aspetos importantes
a ter em consideração são: o carregamento da bateria e o desvio de obstáculos. Além disso, o
percurso realizado por um robô pode variar significativamente com base no seu tipo específico e
dimensões, mesmo quando começa e termina nos mesmos pontos da sua trajetória. Portanto, levar
em conta essas variações é crucial para otimizar o planeamento de trajetórias e navegação do robô.

Um aspeto crítico desta pesquisa envolve o base footprint do robô, que tem uma importância
significativa em várias tipologias de robôs, influenciando a sua navegação e manobrabilidade em
ambientes diversos. A representação precisa do base footprint é essencial para o planeamento
preciso de trajetórias, acoplagem e desvio de obstáculos para robôs omnidirecionais, diferenciais
ou triciclos.

Esta tese de mestrado concentra-se no aprimoramento dos algoritmos de acoplagem e desvio
de obstáculos de robôs móveis para navegação eficiente e segura em ambientes complexos. O
estudo realizado apresenta algoritmos em modo offline e online, implementados em C++ e no
Robot Operating System (ROS), para enfrentar os desafios de acoplagem e desvio de obstáculos.
No modo offline, o algoritmo reposiciona os vértices para garantir uma acoplagem segura, evitando
colisões com paredes circundantes. Por outro lado, o algoritmo em modo online permite que o
robô ajuste dinamicamente a sua trajetória para encontrar caminhos alternativos em tempo real,
evitando colisões com obstáculos encontrados.

Os resultados demonstram a eficácia do algoritmo em modo offline, permitindo uma acoplagem
eficiente ao manter uma distância ótima das paredes circundantes. Além disso, o algoritmo em
modo online permite com sucesso a navegação dinâmica do robô, ajustando rapidamente a sua
trajetória em resposta a obstáculos encontrados, garantindo assim o desvio de obstáculos e naveg-
ação ininterrupta.
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Abstract

Autonomous robots play a vital role in assisting humans by performing various tasks. However,
ensuring the safe execution of autonomous paths requires careful consideration of two key aspects:
battery recharging and obstacle avoidance. Additionally, the path taken by a robot can vary signifi-
cantly based on its specific type and dimensions, even when starting and ending at the same points
in its trajectory. Therefore, accounting for these variations is crucial in optimising the robot’s path
planning and navigation.

A critical aspect of this research involves the base footprint of the robot, which holds signifi-
cant importance across various robot typologies, influencing their navigation and manoeuvrability
in diverse environments. The accurate representation of the base footprint is essential for precise
path planning, docking, and obstacle avoidance for omnidirectional, differential, or tricycle robots.

This master’s thesis focuses on enhancing mobile robot docking and obstacle avoidance algo-
rithms for efficient and safe navigation in complex environments. The research introduces both
offline and online mode algorithms, implemented using C++ and the Robot Operating System
(ROS), to address the challenges of optimal docking and obstacle avoidance. In the offline mode,
the algorithm readjusts the position of vertices to ensure safe docking while avoiding collisions
with surrounding walls. On the other hand, the online mode algorithm allows the robot to dynami-
cally adjust its trajectory to find alternative paths in real-time, avoiding collisions with encountered
obstacles.

The results demonstrate the effectiveness of the offline mode algorithm, enabling efficient
docking while maintaining an optimal distance from surrounding walls. Additionally, the online
mode algorithm successfully empowers the robot to navigate dynamically, swiftly adjusting its
path in response to encountered obstacles, thus ensuring obstacle avoidance and uninterrupted
navigation.
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Chapter 1

Introduction

1.1 Context

Nowadays, autonomous guided vehicles (AGV), autonomous mobile robots (AMR), and, more

recently, autonomous intelligent vehicles (AIV) increasingly represent an important role in per-

forming tasks with less added value for humans. Considered robust, flexible, and accurate plat-

forms, they enable seamless integration into different industries, environments, and scenarios.

However, when these are complex, i.e. when there is a need for the robot to navigate in envi-

ronments and/or spaces with the presence of humans, mobile industrial machinery, for example,

forklifts, and where there are areas for cargo management, the need to detect these possible ob-

stacles increases. In addition, mobile robotics in complex and unstructured environments (where

natural contours are not enough) is under constant exploration. Research concerning the docking

of the different mobile platforms at different locations is constantly being developed (charging

stations, workstations, trailers, and others). Presently, there are already different solutions, from

mechanical to software-based, that allow mobile robots to perform their functions with the desired

precision for each task.

The context of this research is driven by the increasing demand for mobile robotics applica-

tions in industries such as logistics, manufacturing, and healthcare. The adoption of autonomous

guided vehicles (AGVs) and other mobile robotic systems is accelerating due to the advantages

they offer in enhancing productivity, reducing operational costs, and ensuring a safer work envi-

ronment. As these robots operate in real-world environments, the need for sophisticated algorithms

that can adapt to dynamic and unpredictable situations becomes paramount. This thesis aims to

contribute to the advancement of mobile robotics by developing innovative solutions that enable

seamless and efficient navigation in different environments. Moreover, with the growing empha-

sis on Industry 4.0 and smart automation, the deployment of mobile robots for material handling,

goods transportation, and warehouse management is expected to further increase in the coming

years. The proposed algorithms in this thesis aim to bridge the gap between theoretical research

and practical implementation, providing real-world solutions that can be integrated into existing

robotic systems with ease. By addressing the challenges of precise docking and obstacle avoid-
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ance, this work contributes to the broader vision of achieving more autonomous and intelligent

mobile robotics applications across diverse industries.

1.2 Problem Statement and Visual Representation

Ensuring a robot’s awareness of its physical space is of extreme importance to prevent real-life

issues, particularly during crucial trajectory points like docking. Unfortunately, simulations often

neglect to consider the actual dimensions of the robot, leading to potential problems. These issues

may include the mispositioning of docking charging stations too close to obstacles or at angles

that impede proper docking, especially if the robot is too large. Therefore, this project aims to

rectify this limitation by adjusting the position of all critical points in the simulation while taking

into account the robot’s actual dimensions.

During simulation, a vertex may appear to be suitably positioned, seemingly avoiding any

collision with the wall. However, in reality, the ability of the robot to dock successfully depends

on its size and type. In some cases, the docking station might be placed too close to the wall,

impeding the robot’s docking process.

Figure 1.1 presents an illustrative example to provide a clearer understanding of this issue. It

showcases how a seemingly well-positioned vertex in the simulation might lead to unexpected col-

lisions or docking difficulties in real-world scenarios. This discrepancy highlights the importance

of accurately accounting for the robot’s dimensions and type during the vertex placement process,

ensuring seamless docking operations even in complex environments with proximity to walls.

Figure 1.1: Docking station appears to be well placed, but in this position, the robot cannot charge

In this particular scenario, despite the docking station appearing to be appropriately positioned

for the docking process, it becomes evident that an adjustment to the dock’s position is required.

To enable the robot to dock seamlessly, the station needs to be relocated further away from the

wall, as shown in Figure 1.2. This relocation ensures that the robot has sufficient clearance to

complete the docking operation successfully and avoids potential collisions or obstructions during

the process. The precise adjustment of the docking station’s position is essential to optimise the

robot’s navigation and docking performance, particularly in complex environments where obsta-

cles and wall proximity can pose significant challenges.
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Figure 1.2: Docking station properly placed

Moreover, this thesis addresses the challenge of obstacle avoidance in real-time through an

online mode algorithm. The goal is to enable the robot to find alternative paths and avoid collisions

with obstacles along its trajectory. By analysing the environment in real-time, the robot can adjust

its path, ensuring safe and efficient movement even in the presence of unexpected obstacles.

Additionally, both algorithms consider the robot’s specific type (omnidirectional, differential,

or tricycle) and adjust its behaviour accordingly, ensuring an effective docking process and obsta-

cle avoidance. The implementation and evaluation of these algorithms will be performed through

simulation, analysing their performance in various scenarios to demonstrate their effectiveness and

practical applicability.

1.3 Goals and Objectives

The core focus of this master’s thesis, as mentioned before, revolves around tackling two funda-

mental challenges in mobile robotics: docking and obstacle avoidance. The primary goal is to

develop and evaluate novel algorithms that address these critical aspects of robot navigation.

The first goal involves creating an offline mode software algorithm using C++ and ROS to

readjust the position of docking vertices. This algorithm aims to ensure collision-free docking

of the robot with precision, allowing seamless integration into complex environments and spaces

with the presence of obstacles and other machinery.

The second objective centres on designing an online mode obstacle avoidance algorithm,

which allows the robot to detect obstacles and efficiently find alternative paths, avoiding colli-

sions as it moves through its trajectory, ensuring safe and adaptive obstacle avoidance in various

scenarios.

The study will consider different types of robots, including omnidirectional, differential, and

tricycle, to validate the algorithms’ efficiency and effectiveness across diverse mobile platforms.

The ultimate goal is to enhance the robot’s autonomy and efficiency in navigation, facilitating

its integration into diverse industrial and complex environments. Through the successful develop-

ment and evaluation of these algorithms, this research aims to contribute valuable insights to the

field of mobile robotics, facilitating their integration into various industries and applications.
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1.4 Document Structure

This dissertation is comprised of eight chapters.

The first chapter corresponds to the Introduction, which includes a general framing of the

issue and a study overview.

During Chapter 2, Background and Fundamental Aspects, robotic systems are explored,

offering insights into various aspects such as an overview of the robotic field, along with robot

classifications depending on their drive and steering, some of the most popular path planning

methods, and a comprehensive review on docking systems. Additionally, diverse methods and

approaches for obstacle avoidance are presented.

Throughout Chapter 3, Literature Review, a comprehensive investigation of relevant liter-

ature is conducted to lay a robust groundwork for the research. The primary emphasis lies in

exploring algorithms previously developed by other researchers, providing valuable insights into

the methodologies employed in those algorithms. Through this comprehensive review, promising

opportunities for improving the current project are revealed.

In Chapter 4, System Architecture and Nodes Representation, the focus is on establishing

the correlation between the newly developed nodes and topics, while also examining how they

seamlessly integrate into the existing architecture.

Then, in Chapter 5, Methodology and Algorithms Developed, the dissertation outlines the

specifics of the innovative offline mode software algorithm aimed at readjusting docking vertices,

along with the online mode algorithm designed for obstacle avoidance. Extensive testing and

rigorous analysis are conducted to thoroughly evaluate the performance of these algorithms in

diverse scenarios, offering valuable insights into their efficiency and overall effectiveness.

Following, in Chapter 6, Experimental Results and Analysis, the dissertation presents the

outcomes of various experiments conducted to assess the performance of the developed algo-

rithms. A detailed analysis of the experimental results is undertaken, shedding light on the algo-

rithms’ strengths and potential areas for improvement.

Next, in Chapter 7, Conclusion and Future Work, the study provides a comprehensive sum-

mary of the research’s outcomes and essential contributions in the domain of mobile robotics

algorithms. A thorough conclusion is presented, encapsulating the achievements and valuable

insights obtained during the research. Furthermore, the chapter outlines potential avenues for fu-

ture investigations and advancements, offering valuable guidance for researchers and practitioners

interested in furthering the field.

Lastly, the References and Annexes sections contain supplementary information on certain

contents.



Chapter 2

Background and Fundamental Aspects

This chapter presents a comprehensive exploration of the foundational principles and key aspects

that underpin the research in the field of mobile robotics. A broad overview of essential subjects

is provided, offering valuable context to the work. Subsequently, the following chapter delves into

a more specific and detailed analysis of these subjects.

Understanding the background knowledge and fundamental concepts in mobile robotics is

crucial to grasp the significance and implications of the research. By laying a solid groundwork,

the aim is to pave the way for the development and evaluation of innovative algorithms that address

critical challenges in robot navigation, path planning, docking systems, and obstacle avoidance.

With a broader understanding of these essential aspects, the research will be better equipped

to explore and contribute to the advancement of mobile robotics, particularly in dynamic and

complex environments.

2.1 Robotic Field Overview

Nowadays, robots find widespread application in numerous fields, such as healthcare, warehouse

automation, manufacturing, transportation, and surveillance, among others. Therefore, having a

framework that facilitates its development and ensures continuous evolution in this field becomes

crucial. In addition, in certain environments, the various robots used for different purposes are not

fabricated by the same provider. Hence, ensuring the intercommunication between those robots is

crucial for maintaining smooth workflow integration, as well as managing robot traffic in a ware-

house, for example, [16]. In the next sections, one of the most popular frameworks is described,

as well as three important robot intercommunication standards.

2.1.1 Robot Operating System - ROS

Robot Operating System (ROS) stands out as one of the most popular frameworks used in robot

applications, and is frequently addressed in the research documents read, studied and referenced.

Its versatility, accessibility, and widespread use in various methods and algorithms position it as an

essential subject of study. ROS [1] is a free and open-source framework, backed by a robust web

5
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community, dedicated to facilitating the development of robotic applications. The architecture of

this network is a peer-to-peer topology, using the TCP (Transmission Control Protocol) and UDP

(User Datagram Protocol) [17]. ROS communication structure is presented in Figure 2.1.

Figure 2.1: ROS communication structure [1]

The main ROS concepts revolve around nodes, messages, topics and services. A node repre-

sents a process that performs computation [1]. Nodes communicate with each other by publishing

a message on a topic. A service, on the other hand, is a set of two defined messages: one for mak-

ing requests, and one for providing responses. One of the notable advantages of this framework is

its support for multiple programming languages, including C++, Python, LISP, and Octave, being

the first two the most popular. Its flexibility in language choice allows developers to work with

their preferred programming tools. It is designed with a micro-kernel architecture, providing var-

ious tools and commands to facilitate different tasks. This compromises efficiency in return of

stability and complexity management.

2.1.2 Robot Intercommunication Standards

In this section, three robot intercommunication standards will be approached: the Robotics Robotics

Middleware Framework (RMF), VDA 5050 and MassRobotics Interoperability Standard [16].

Firstly, RMF is a comprehensive standard that enables interoperability not only between robotic

systems but also with facility resources such as elevators and doors. It is built upon a set of libraries

and tools from ROS 2, which enhances its compatibility and effectiveness. Secondly, VDA 5050

is specifically designed for autonomous guided vehicles and it allows the exchange of information

about status and orders with a master control system. It uses the Message Queuing Telemetry

Transport (MQTT), which is lightweight publish/subscribe messaging transport protocol, to en-

able efficient communication. The MassRobotics Interoperability Standard, on the other hand, is

lightweight and flexible, since it does not require a specific platform to work with, unlike RMF,

which relies on ROS 2. Furthermore, it addresses different task allocation, since it was designed

for AMR, and it requires less information about route configuration than VDA 5050, which was

specifically designed for AGVs.
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2.2 Robot Classifications

2.2.1 Mobile Robot Designs

To properly evaluate different behaviours in different fields, as for path planning in docking and

obstacle avoidance, it is essential to analyse the outcomes for different robots. This approach en-

ables a more extensive assessment of diverse robotic capabilities and functionalities. Each robot

design has its unique set of strengths and weaknesses, as well as performance characteristics. By

employing a variety of robots in various testing scenarios, the conducted evaluations can yield

more robust and improved results in different configurations. When considering different types

of robots, they can be categorised according to their drive mechanisms, manoeuvring capabilities,

locomotion systems, applications, traction, and design, among others [18, 19]. According to the

literature [18, 19], there is a wide range of mobile robot designs targeted to specific applications

and environments. These designs can be divided into driving robots, omnidirectional robots, bal-

ancing robots, walking robots, autonomous planes, autonomous vessels and underwater vehicles,

robot manipulators and simulation systems. Both driving robots and omnidirectional robots play

pivotal roles in the field of robotics. Understanding these classifications is essential as they lay the

foundation for creating efficient and specialised robots for diverse tasks.

In this section, a more detailed explanation of both driving robots and omnidirectional robots

will be provided. Driving robots play a significant role in various fields, making them indispens-

able and impactful in modern society. In Table 2.1, several distinct designs will be presented, each

equipped with specific drive systems that influence their manoeuvrability and performance.

2.2.2 Base footprint and Base link

The concepts of base footprint and base link hold outstanding significance in the realm of robotics,

especially when dealing with diverse types of robots. In the context of ROS, the base link is a

key frame of reference or coordinate frame used to represent the physical body of the robot. It

typically denotes the geometric centre or reference point of the robot’s chassis or the robot’s mass

centre. The base link plays a vital role in defining the robot’s pose (position and orientation)

in three-dimensional space. On the other hand, the base footprint refers to the two-dimensional

projection of the robot’s physical base on the ground plane. Conventionally, the footprint of a

mobile robot refers to the area covered by the robot when it is stationary [21, 22]. In simpler terms,

it represents the two-dimensional view of the base link from the top, projecting in the ground plane

(z=0), with no consideration of the robot’s actual physical body. Comparing the base footprints of

various robot types is crucial as it enables to grasp how the physical design of each robot affects its

navigation capabilities and overall performance. Subjecting various robot types to path-planning

algorithms and obstacle avoidance strategies enables a thorough evaluation of their behaviour.

This analysis allows discerning how distinct base footprints, tailored for different robots, can yield

diverse results when implementing the same algorithm. The robot’s footprint is defined as the

maximum area within the camera’s field of view that can be inspected [21]. Traditionally, it is
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Single Wheel Drive
This unique configuration utilises a single wheel as the driving and steering mechanism,
providing simplicity in its conception and ease of navigation. There are also two passive

caster wheels in the back of the robot since at least three contact points are always required
to ensure stability and balance during movement [18].

Differential Drive
This design employs two independently powered wheels, completing the minimum three

ground contact points with one or two additional wheels [18].
Tracked Robots

This design can be viewed as a specialised variant of the wheeled robot, boasting improved
terrain manoeuvrability and enhanced stability due to its tracked design. The presence of

multiple points of contact with the surface provides higher traction and agility, rendering it
well-suited for navigating challenging environments [18].

Synchro-Drive
This innovative design incorporates three wheels that are all being driven and steered

together. These synchronised wheel movements enable unique locomotion capabilities by
coordinating the rotation of multiple wheels. This configuration grants the robot almost

holonomic abilities since it can drive in any desired direction. However, unlike those types
of robots, it requires stopping and realigning its wheels when transitioning from forward to

sideways motion [18].
Ackermann Steering

In this design, the two rear wheels are designed for driving, while the two front wheels are
designed for steering. Compared to the differential drive, this approach allows for smooth
straight driving, as there are no issues with veering off course. However, one limitation is
that the vehicle cannot turn on the spot, meaning it cannot rotate independently in place.
Additionally, during curves, the rear driving wheels may experience slippage, which can

affect their handling and manoeuvrability [18].
Omnidirectional Mobile Robot (OMR)

The omnidirectional mobile robot (OMR) possesses a remarkable ability to execute
holonomic motion, enabling it to move in any direction without the need to change its

heading direction. This unique characteristic empowers the OMR to navigate effortlessly
even in tight and intricate spaces. Unlike other wheeled robots that require changing their

heading direction to follow curves, the OMR can achieve smooth, continuous motion along
intricate paths without any turning manoeuvres. This exceptional capability allows the

OMR to navigate with ease and precision, even along accentuated curves, making it highly
effective for tasks that demand agile and precise movement in constrained environments

[20, 18].
Table 2.1: Different robot designs
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represented by a rectangle, although alternative representations include a circle [23] or a variable

footprint [24]. For the purpose of this thesis and to maintain coherence with the provided source

code, a rectangular footprint is considered for all types of robots. In the case of differential and

omnidirectional robots, the footprint is located at the centre of the robot, while for tricycle robots,

it is positioned in the middle of the back wheels.

2.3 Path Planning

Mobile robots were initially limited to manufacturing industries but are now widely used in agri-

culture, medicine, mining, rescue missions, and more [25, 2, 26]. Autonomous navigation is

crucial for intelligent vehicles, involving position specification, path planning, and following

[25, 27, 28]. While performing the task of navigation, robots must extract environmental in-

formation and take the necessary action required to plan feasible collision-free paths to reach their

goals [2]. Therefore, it is equipped with many intelligent equipments, which is required to map the

environment, localise its position, control the motion, detect obstacles, and avoid them by using

navigational techniques [26]. This process involves four key components: perception, the robot

uses its sensors to perceive and extract meaningful information about its environment, including

past movements, directions and locations; localisation, the robot determines its current position in

the working space; cognition and path planning, the robot decides how to steer and identify the

target direction required to reach its goal; motion control, the robot regulates its movements to

follow the desired trajectory [29, 27, 28]. In recent years, mobile robot technology has advanced

rapidly, incorporating intelligent features due to developments in electronics and information tech-

nology. Path planning is a crucial aspect of mobile robot research, with the goal of efficiently

avoiding obstacles during robot movement and swiftly calculating the shortest and safest route to

the target point, saving time and conserving energy [29, 2, 30]. Path planning involves obtaining

a collision-free route between start and goal points, using translation and rotation while avoid-

ing obstacles in the working environment[31, 32, 2, 27, 28]. Mobile robots use sensors to gather

information about the surrounding environment and their own state, enabling obstacle avoidance

and movement towards the target point [31, 29, 30, 28]. In robot path planning, there are multiple

feasible paths from the start to the target location. The best path is chosen based on criteria such

as shortest distance, smoothness, or minimum energy consumption. Typically, the shortest dis-

tance with minimal time is the most preferred criterion [32]. Safe path planning, which involves

detecting and avoiding obstacles, is a critical function in any navigational technique, whether fully

or partially automated. It is considered one of the essential problems in robotics. Therefore, se-

lecting the appropriate navigational technique is a crucial step in robot path planning [27, 26].

Path algorithms are essential for ensuring the safety and efficiency of robot and autonomous sys-

tem movements. When selecting a method for path planning, several factors must be considered,

including the intended optimisation type, such as path length, trajectory execution time, energy

consumption, or other variables. Computational complexity is another critical aspect, as some
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Global path planning Local path planning

Work offline Work online
Robot Map-based Robot Sensor-based

Deliberative navigation Reactive navigation
Workspace area is fully known and the

terrain should be fixed
Workspace is not necessarily fully known or

unknown
The algorithm produces a whole path from

the initial point to the target point before the
robot begins its movement

The algorithm produces a new pathway in
echo to environmental moveable

Approximately slower response Fast response
Table 2.2: Main differences between global and local path planning

theoretically demonstrated methods may be impractical to implement due to memory limitations

or high execution times.

Generally speaking, path planning algorithms can be broadly categorised into two types:

global or offline path planning and local or online path planning, based on the accessibility of

environment information. In global path planning, the robot has access to a full representation of

the environment, including information about all obstacles such as size, shape, and orientation,

before it starts navigating. On the other hand, in local path planning, most of the environment

information is unknown to the robot at the start, and the map is constructed or updated during nav-

igation using on-board sensors [31, 29, 2]. Offline path planning initially plans the path offline but

can switch to online mode when encountering new changes in the obstacle scenario [25]. Global

planning methods show limited applications due to less robustness in terrain uncertainty and since

they usually generate a low-resolution, high-level path based on known environmental map or its

current and past perceptive information of the environment, whereas, local path planning methods

show more flexibilities in partially known or unknown environments and provide an optimised

paths [32]. The global path planning approach will generally use some form of optimisation tech-

nique in order to maximise the efficiency and performance of the search. The main constraint,

however, is that this approach cannot be relied upon in a dynamic environment that contains mul-

tiple moving objects along its path [2]. On the other hand, local path planning algorithm does not

need a priori information of the environment. It usually gives a high-resolution low-level path only

over a fragment of global path based on information from on-board sensors. It works effectively

in dynamic environments. The method is inefficient when the target is long distance away or the

environment is cluttered. Normally, the combination of both methods is advised to enhance their

advantages and eliminate some of their weaknesses [28]. The differences between these methods

is summarised in table 2.2.

It can be further categorised as the classical approach and heuristic approach (Artificial Intel-

ligence Technique).
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2.3.1 Classical methods

In classical methods either a solution would be found or it would be proven that such a solution

does not exist. The main disadvantage of such methods is their computationally intensiveness and

their inability to cope with uncertainty. Such disadvantages make their usage brittle in real-world

applications. This is due to the natural characteristics of such applications which is being unpre-

dictable and uncertain. Some classical methods are represented in Figure 2.2, and a description of

some of them is provided.

Figure 2.2: Examples of classical methods for path planning

2.3.1.1 Potential Field Method

The potential field method comes from the concept of potential field in physics, which regards the

movement of objects as the result of two kinds of forces. It creates a virtual potential field, where

the goal point creates a potential attractive force and obstacles have potential repulsive forces. The

agent navigates along the gradient of the potential field towards the target point, under the action

of the two forces. However, potential field methods may suffer from local minima problems.

This method faces robot-blocking issues in two cases: obstacle between robot and destination

with stronger repulsion than attraction, hindering progress or combined forces resulting in zero

movement due to local minimum. Some ways address this problems include the use of potential

fields that only have local minima at the destination and the implementation of techniques to

escape from the local minima [31, 25, 29, 32, 2, 27, 30, 26].

2.3.1.2 Roadmap Method

The roadmap algorithm uses nodes and links between nodes that can have a physical meaning, i.e.,

the nodes may represent a location and the links correspond to the path between these locations

[31, 25, 29, 32, 2, 27, 30]. It builds a collision-free network of paths from the robot’s initial position
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Figure 2.3: Potential field method representation

to the goal. This approach transforms the trajectory planning into a graph research problem, which

can be solved using standard graph search techniques. The main challenge in this approach is the

construction of the roadmap. Some techniques used to construct the roadmap are the visibility

graph and the Voronoi Diagram [31, 25, 29, 32, 2, 27, 30]. The visibility graph connects visible

vertices of polygonal obstacles present between start and target points, finding the shortest path and

enabling efficient pathfinding in sparse environments using straight lines. It is commonly applied

in 2D Cspaces with nodes as the vertices of the obstacles and links only between mutually visible

nodes, i.e., there is a straight line joining the vertices and does not intersect any obstacle. On the

other hand, the Voronoi Diagram is created using equidistant points between multiple obstacles,

resulting in a safer path, though not always the shortest. It forms regions where each contains only

one obstacle, and any point within a region is closer to its obstacle than to any other. Unlike the

Visibility Graph, paths generated by the Voronoi Diagram tend to be farther away from obstacles

[31, 25, 29, 32, 2, 27, 30].

Figure 2.4: Visibility Graph (left) and Voronoi Graph (right)

2.3.1.3 Cell decomposition

The cell decomposition approach divides the robot’s workspace into non-overlapping regions or

"cells." It identifies free and occupied areas. An availability chart is created by determining con-
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tiguous cells. Relationships between adjacent cells are calculated to form a collision-free path

from start to goal. The environment is divided into larger rectangles, each continuous. If a large

rectangle contains obstacles or boundaries, it’s subdivided into smaller rectangles. The process

continues until a solution is reached at the boundaries [25, 29, 32, 2, 27, 30].

Figure 2.5: Cell decomposition method representation

2.3.1.4 Vector Field Histogram

The vector field histogram (VFH) is a real-time obstacle avoidance technique for robots. At every

instant, a polar histogram is created to show obstacle density around the robot. The robot’s steering

direction is determined by selecting the direction with the least obstacle density and the shortest

distance to the goal. As the environment changes, the polar histogram is regenerated regularly

to adapt to new obstacle positions. It uses a 2D Cartesian histogram grid as a world model,

continuously updated with data from on-board range sensors. The method involves a two-stage

data reduction process to compute control commands. The first stage creates a 1D polar histogram

from a fixed subset around the robot’s location, with each sector representing obstacle density.

The second stage selects the sector with the lowest obstacle density to align the robot’s heading.

This method is considered to be an improvement of the potential field method, allowing robots to

detect and avoid unknown obstacles in real-time while pursuing their goals [25, 2, 27].

Figure 2.6: Vector field histogram method representation.
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2.3.1.5 Bug Algorithms

Bug algorithms are used when the robot needs to reach a destination without prior knowledge of

the global environment, and when maps are not built. The robot relies on sensors to explore the

unknown environment. In Bug 1, when an obstacle is detected along the path to the goal, the

robot follows the contour of the obstacle in a full cycle, while also trying to estimate the shortest

distance to the goal. Bug 2 is more efficient, as it does not require a full cycle around the obstacle.

Instead, it computes and initial path and stores its slope, switching to obstacle avoidance mode

when needed, and returning to the initial path when the slopes match [2, 27].

Figure 2.7: Paths of Bug 1 and Bug 2 algorithms (a) No obstacle (b) Bug 1 algorithm (c) Bug 2
algorithm [2]

2.3.1.6 Rapidly Exploring Random Tree

Rapidly-exploring random trees (RRTs) are introduced for efficient exploration of nonconvex

high-dimensional spaces. They build a space-filling tree incrementally from random samples, bi-

ased to explore large unsearched areas. RRTs handle obstacles and differential constraints, making

them widely used in robotic motion planning. They generate open-loop trajectories for nonlinear

systems and approximate control policies for high-dimensional systems with state and action con-

straints. RRTs preferentially expand towards unsearched areas with controlled growth rate. Biased

sampling guides RRTs towards planning goals with a higher probability of sampling the goal state

[32, 27].

Figure 2.8: Rapidly exploring random tree method representation
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2.3.1.7 Virtual Impedance Method

A virtual impedance technique improves motion smoothness in a versatile robot. It enhances

robot performance in dynamic environments with both static and moving obstacles. Compared

to previous methods, this technique is more efficient due to its simple framework. The algorithm

incorporates impedance control into the collision avoidance process, converting the distance be-

tween the robot and obstacles into a virtual force for obstacle avoidance. The study evaluates the

approach on a physically moved robot platform in an indoor setting. Efficiency and smoothness

are crucial for advancing robot control. Combining teleoperated advancement control with au-

tonomous collision avoidance proves effective in practical applications, especially in small local

spaces [32]. The virtual impedance method enhances robot adaptability, enabling it to navigate

intricate environments and respond swiftly to obstacles. This approach shows promising potential

for improving human-robot cooperation in various real-world applications.

2.3.2 Heuristic methods

Classical approaches though found to be effective, take more time in the determination of feasi-

ble collision-free path. Also, classic approaches tend to get locked in local optimal solution which

may be far inferior to the global optimal solution. These drawbacks make the classic approaches to

be incompetent in complex environments. To solve the path planning problem quickly, evolution-

ary approaches are employed. The various methods within the heuristic or Artificial Intelligence

category are described in Table 2.3.

Method Description

Artificial Neural Network
Mapping from perceptual space to behaviour space, considering
energy to guide the robot to a low-energy path without obstacles,

but not necessarily shortest or optimal [29, 32, 2, 27, 30, 26].

Genetic Algorithm

Encodes all problem solutions into chromosomes forming an
initial population. Basic operations include crossover, mutation,
and selection. The individuals selected for each operation by the
fitness values, which are calculated for each individual based on

the goals [25, 29, 32, 2, 27, 30, 26].

Fuzzy Logic Technique

It uses human-supplied rules to convert to mathematical
equivalents for improved system performance. It is used in

combination with sensor-based, reinforced-based, and
algorithm-based navigation techniques for optimal environment
perception and managing dead-end situations [32, 2, 27, 30, 26].

Ant Colony Optimisation

Uses ant pheromones for path communication and selection.
High pheromone paths become optimal due to positive feedback.

Ants find shortest paths from nest to food, avoiding obstacles
[25, 29, 32, 27, 30, 26].
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Method Description

Particle Swarm
Optimisation

Inspired by bird cluster activity, this algorithm begins with a
random solution and iteratively finds the optimal solutions.

Fitness value evaluates solution quality, ultimately determining
the global optimum. Easy implementation, high precision, and

fast convergence [25, 29, 32, 2, 27, 30, 26].

Bacterial Foraging
Optimisation Technique

Inspired by bacteria behaviour. It incorporates chemotaxis,
swarming, reproduction, and elimination principles. Efficient

nutrient search by attracting and warning other bacteria. Seeks
highly nutrient regions on the map and disperses to explore for

new nutrient regions [32, 2, 27, 30].

Bee Colony Optimisation
Technique

Swarm-based approach inspired by honey bees. Consists of a
population of inherent solutions (food sources).

Population-based stochastic search in swarm algorithms. Food
search cycle involves employed bees evaluating nectar quality

[32, 2, 27, 30].

Firefly Algorithm
Optimisation Technique

Inspired by fireflies’ flashing behaviour, used as a metaheuristics
algorithm. It imitates fireflies’ random states and trial-and-error

nature. Fireflies use bioluminescence to communicate, select
mates, and protect themselves [32, 2, 27, 30].

Simulated Annealing

Stochastic optimisation algorithm based on the iterative strategy
of Monte-Carlo. It begins with higher initial temperature,
gradually decreasing it to find the global optimal solution
through random exploration with probability jumps [29].

Dijkstra Algorithm

Shortest path in directed graph, starts from centre to end, using
edge weights. The values of the edges of the graph are described
by the weight function. Maintains vertex sets A and B, each time

a vertex B moves to A, minimising edge weights to reach that
vertex [29, 32, 2, 27].

A* Algorithm

Based on Dijkstra algorithm. Updates weighted values of child
nodes from a specific node. Chooses the node with the smallest
weighted value to update the current node. Uses an evaluation

function for shortest path search. Higher efficiency due to
considering the mobile robot’s target point [29, 32, 2, 27].

D* Algorithm
For robot path exploration in dynamic environments. Represents
the problem space as a series of states, and the states represent

the direction of the robot’s position [27].
Table 2.3: Comparison of Various Navigation Algorithms
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2.4 Docking systems

To ensure the uninterrupted operation of the robot without the need for human intervention, it is

necessary to recharge the robots periodically to uphold their autonomous functionality. This chap-

ter presents details regarding various robot localisation methods used for docking and recharging

energy, along with an analysis of their respective advantages, disadvantages, and experimental

findings. Additionally, the mechanisms employed to power the robot and prevent errors in the

recharging process are also discussed.

2.4.1 Docking station localisation methods

Selecting the appropriate sensors for recognising the recharging station during the docking process

is one of the main challenges in the docking process. In certain scenarios, the path to the docking

station may be predefined, but for fully autonomous robots, knowing their localisation and that

of the docking station becomes essential. Moreover, the possibility of the docking station being

movable (e.g., during cleaning or maintenance) introduces the risk of slight location changes that

can lead to errors, necessitating careful consideration. The localisation of the docking station can

fall into different categories: it may be precisely known, have partial information about the general

area, or have no information at all, making the task more challenging and reducing the accuracy

and efficiency of the chosen method accordingly. There are numerous approaches and methods for

docking localisation including infrared (IR) sensor approaches [33], vision-based algorithms [34],

laser-based methods [35], the use of ultrasound sensors [36], and radio-frequency [37, 38], among

others. This chapter includes a comprehensive literature review on this subject. The literature

presents approaches with single sensors, which may not be optimal, as they rely solely on one type

of information. Alternatively, multi-fusion sensors and/or cameras are utilised, which significantly

enhance the accuracy of the docking process. By leveraging the strengths of different sensors and

compensating for their individual limitations, the docking process can capitalise on each sensor’s

advantages while mitigating their disadvantages through the integration of more suitable sensors

tailored to specific tasks.

2.4.1.1 Infrared sensors approaches

In [3], the docking process is facilitated by employing a combination of two infrared sensors.

Since the environment is known, the robot’s path can be predicted according to its self-localisation,

given that the initial point is known. As the robot approaches the vicinity of the docking station,

it relies on Infrared Transmitters (IRT) installed within the docking station to provide guidance

for the docking and recharging operations. To enhance the accuracy of the docking process, the

robot adopts a cautious approach and initiates docking only when both infrared sensors detect

its presence simultaneously (see Figure 2.9). By requiring dual sensor confirmation, the system

minimises the chances of misalignment or errors during the docking procedure, resulting in a more

reliable and precise recharging process for the robot.
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Figure 2.9: The diagram of the final docking process when the robot is detected by one of the IR
sensors on the docking station. (a) The robot is detected by one of the IR sensors. (b) The robot is
detected by both sensors. (c) The robot turns 90 degrees to face the docking station. (d) The robot
connects itself to the docking station. [3]

The experiment aimed to evaluate the accuracy of the docking process using the described

method under three different scenarios: docking, navigation, and a combination of both. Each

case was thoroughly examined, and the input from various sources was considered, namely, the

left IRT, the right IRT, both IRTs together, and without any IRT information. For each process, a

total of 10 tests were conducted. The results of the experiment showed that the docking approach

was highly successful. There were no failures observed in the first case, where input from both

IRTs was used. However, there was one failure recorded in each of the remaining cases, where the

left IRT or the right IRT was used as the sole input, and when no IRT information was available,

respectively. However, in the case of the docking process, the accuracy was subject to variability

based on the starting point of the robot. Some starting points exhibited two failures, while others

experienced only one failure. Overall, out of a total of 60 docking attempts made during the

experiment, the success rate was impressively high at 90%. These results indicate the effectiveness

of the method in achieving reliable and accurate docking and recharging for the robot, particularly

when both infrared sensors are utilised. However, it also highlights the importance of considering

the starting point for further refining the method’s performance in certain scenarios.

In [4], a combination of IR distance sensors and QR codes as landmarks is used for the docking

process. The IR sensors are also used for obstacle avoidance while docking, helping the robot

navigate safely around any potential obstacle present in the environment. Moreover, these IR

sensors play a crucial role in preventing camera miscalibration errors, which lead to inaccuracies

in the robot’s perception of its surroundings. Additionally, the IR sensors are leveraged for distance

and angle estimation, aiding the robot in precisely determining its position concerning the docking

station. The two IR sensors are strategically configured within the robot at specific angles to

optimise their sensing capabilities, as shown in Figure 2.10.

In the first step of the docking process, the robot turns around to find the QR code landmark.

It takes a picture and records distance readings from the IR sensor. If the landmark is detected, the

robot determines its location on the left or right side based on the relative sizes of the lateral edges

of the QR code landmark, represented in Figure 2.11.

If the robot fails to find a QR code in the picture taken during its initial rotation, it proceeds to

rotate an additional 30 degrees and repeats the process of taking another picture and scanning for

the QR code landmark. The IR distance values are stored throughout this procedure. If the robot
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Figure 2.10: IR distance sensors [4]

completes a full turn without detecting a QR code, it uses the IR sensors to check for any obstacles

obstructing the path to the charging station. If an obstacle is detected, the robot manoeuvres around

it and attempts to take a picture from a different perspective to find the QR code. However, if no

QR code is present in the picture, and the IR sensors do not detect any obstacles, it indicates that

the robot is located too far from the QR code (beyond 3 meters). In this case, the robot engages

in a random walk pattern until it locates a QR code. The IR sensor readings are also used for

assessing accuracy and determining whether it is possible to dock the robot at a particular angle,

but this is only considered when the robot is in close proximity to the docking station (less than

0.75 meters). The experiment results have shown this approach to be robust and fully functional.

However, it has been noted that the time spent in certain situations, such as encountering obstacles

or angles where the QR code cannot be detected, was excessive and sub-optimal. To improve

efficiency, alternatives to QR codes, such as other visual markers with real-time performance,

could be explored and analysed.

Figure 2.11: Robot’s views from: left, centre and right [4]

In [5], infrared sensors are employed to localize the docking station. In this case, the docking

station is equipped with three infrared transmitters (left IRT, central IRT, and right IRT), each

emitting two signals (far signal and near signal), totaling six different infrared signals. The robot

only considers the docking infrared transmitters (IRT) when it needs to charge. In this case, it

searches for the docking station with his three infrared receivers (IRR). Each docking station’s

transmitter covers an area, as shown in Figure 2.12.

If the robot detects the signal from the docking station, it aligns the direction of the central



20 Background and Fundamental Aspects

Figure 2.12: The global navigational space of the prototype robot [5]

IRR with the direction of the central IRT. Otherwise, it turns 45o randomly to the right or left

and continues the search for the docking station. Test results showed that an optimal angle of 75o

between the right IRR and the central IRR, and the left IRR and the central IRR resulted in the

shortest arrival time (SAT).

In [39], improvements were made by adding a fourth IR sensor to aid in the docking process.

This additional sensor cooperates with the limit switch (LS) to acknowledge when docking is

complete. In [6], the robot follows a continuous squared path (30 by 30 inches) while equipped

with an infrared receiver (IRR), as presented in Figure 2.13.

Figure 2.13: Robot Moving in a Square path [6]

The robot is equipped with an infrared receiver and the docking station with an infrared trans-

mitter. When the robot’s battery level reaches a threshold, it autonomously attempts to reach the

docking station. Upon detecting the IRT in the docking zone, the robot starts moving towards the

docking station. The docking algorithm presupposes that the robot’s movement is near the docking

station and follows a predefined path, leading to a 95% success rate.
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2.4.1.2 Vision-based algorithms - Visual Markers

Nowadays, the cost of cameras has significantly reduced due to advancements in camera technol-

ogy. Vision-based algorithms have become crucial in robotics, as they offer various benefits, such

as pose estimation, accurate localisation data, structure from motion, and environmental informa-

tion, all from a single visual marker.

As mentioned before, in [4], QR codes were used as landmarks, but their lack of real-time

video decoding limited their utilization despite their performance and information storage capa-

bilities, with a considerable amount of libraries. To address this limitation, various other visual

markers are available.

The robotics field employs several fiducial visual markers, such as AprilTag, ArUco, ARTag,

STag and ARToolKit). However, ArUco and AprilTag are the most popular markers in docking

processes. In [40], experimental tests demonstrated that both markers performed well in real-time,

even under different floor patterns, lighting conditions, and marker sizes. AprilTag, in particular,

showed faster results and allowed for the reduction of the marker size, making it a preferred choice.

In [7], a comparison of four different open-source fiducial markers (AprilTag, ArUco, ARTag,

and Stag) was conducted, evaluating their localization capabilities and computational efficiency

2.14.

Figure 2.14: The markers used in this work: (a) ARTag, (b) AprilTag, (c) ArUco and (d) STag [7]

The study’s objective was to compare four different open-source fiducial marker packages on

three different small computers. The authors also developed and released a ROS package for the

STag marker. The experiments were conducted to assess how the markers’ stability, accuracy of

pose measurements, and detection rate were affected by changes in the marker’s distance and angle

relative to the camera used (Figure 2.15) and varying lighting conditions (Figure 2.16).

In the results obtained, AprilTag, ArUco and Stag presented high detection rates in almost

all the settings tested. The markers that presented better results in orientation and pose measure-

ment are AprilTag and STag, respectively. ArUco marker came in second for both. Since STag

is a fiducial marker package that focus on stability, its superior performance in this area was ex-

pected, and it indeed showed the lowest standard deviation in most settings. AprilTag and ARTag

demonstrated comparable performances, with AprilTag displaying higher stability in orientation

measurements.

In terms of CPU and memory usage, AprilTag required the most resources, while STag had

the second highest CPU usage but low memory usage. ArUco and ARTag had the lowest compu-

tational resource usage. Considering the trade-off between measurement accuracy and detection
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rate, ArUco is recommended for low-power computers, while for more powerful computers, all

markers except ARTag represent excellent choices.

Figure 2.15: Overview of the experimental setup with the two axes gimbal on the right side of
each image, where (a) the marker position is altered in the longitudinal direction and (b) the
marker position is altered in the lateral direction. [7]

Figure 2.16: The AprilTag marker used (a) under normal lighting conditions and (b) with a shadow
being cast as seen from the Logitech camera. [7]

In [8], the same authors of [7] released a more detailed paper one year later. This subsequent

study evaluated how marker performance was affected by different configurations, such as single

markers, planar and non-planar bundles (Figure 2.17), and multi-sized marker bundles (Figure

2.18). Additionally, the study investigated the impact of lighting conditions and simulated noise

from shadows and motion blur on marker performance.

In the study, two different cameras with varying resolutions were used. Surprisingly, the lower

resolution camera outperformed the higher resolution camera in most cases. The authors attributed

this difference to the higher contrast and better white balance of the lower resolution camera.

The single marker tests were similar to the previous paper. When comparing individual markers

to bundles of multiple markers, all packages showed increased detection rates, especially ARTag.

However, the precision of ARTag was worse in the bundle configurations. The non-planar

bundle demonstrated better orientation results compared to both single markers and planar bundles.

In motion blur experiments, AprilTag’s performance was reduced in both types of motion blur
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(rotation and translation blur). The other experiments produced similar results to those mentioned

in the previous paper.

Figure 2.17: The STag multi-tag bundles (a) with two equal sized markers and (b) with three
differently sized markers [8]

Figure 2.18: The two marker bundle in the non-planar configuration. The marker is rotated about
the vertical axis [8]

Between the two papers, the STag package received improvements in computational efficiency.

Although it still had the second highest CPU usage, these enhancements brought it closer to the

least resource-consuming packages (ARTag and ArUco). In some cases, STag even outperformed

the other packages in terms of efficiency. In Table 2.4, the pros and cons of each visual marker are

presented, summarising the strengths and weaknesses of each package based on their performance

and resource requirements.

In [9], the docking process uses AprilTag as the visual marker for determining the position

between the docking station and the charging devices. When the robot’s battery level is low, it

employs the "enhanced ORB-SLAM" for self-localisation, which is more efficient and stable than

the standard "ORB-SLAM." However, as the ORB-SLAM strategy is less accurate than AprilTag,

once the robot gets close to the charging station (within a region approximately 5 meters ahead of

it), it switches to using AprilTag.

The robot actively searches for the AprilTag and uses the relative position information from the

tag to adjust its position and angle accordingly (see Figure 2.19). Despite challenging conditions
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Marker Pros Cons
ARTag Lowest computational cost overall Low detection rate for single markers

Extreme outliers & high Std Dev in
marker bundles

AprilTag Great orientation results and detection
rate

Most computationally expensive

Good position results Most sensitive to motion blur
Worst results in the non-planar setup

ArUco Good position and orientation results Sensitive to smaller marker sizes and
larger distances

Great detection rate Computational cost scales with multi-
ple markers

Low computational cost for single
markers

STag Great position results and detection
rate

Sensitive to smaller marker sizes and
larger distances

Good orientation results
Table 2.4: Experimental comparison summary: Main advantages and disadvantages of the four
evaluated packages [8]

such as noisy images and obstacles in the path, the docking operation achieves a very high success

rate of 97.33% with exceptional accuracy. This combination of localisation methods allows for

efficient and reliable docking even under challenging circumstances.

In [10], the ArUco marker detection is used to localise the charging station. This method relies

on recognising the corners of the ArUco marker. Once the marker’s corners are detected, its size

is known, and it is divided into a grid or matrix. Each cell in the grid is represented with binary

code (1 for a black cell and 0 for a white cell), as shown in 2.20.

By knowing the geometric dimensions of the ArUco marker, its position and orientation rela-

tive to the camera’s coordinate system, which is usually attached to the mobile platform structure,

can be determined. This assumption is based on the camera always being in the same position

relative to the robot’s reference frame and the ArUco marker always having a consistent position

relative to the charging station’s reference frame. Using this information, the docking task be-

comes more straightforward and precise after the ArUco marker detection by the robot’s camera.

The algorithm calculates the relative position, on the world map, of the robot relative to the charg-

ing station, or vice versa.

This approach offers the advantage of avoiding false positive detections, which could be ob-

served in LIDAR measurements for localising a charging station. Additionally, it provides a rea-

sonably high localisation accuracy. However, the accuracy of this method depends on the resolu-

tion of the camera and the size of the ArUco marker.
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Figure 2.19: In the searching zone, the robot locates itself through ORBSLAM; A, B, C represent
different results of searching the approaching point; In the approaching zone, the AprilTag locali-
sation is adapted to calculate the relative position of charging device. [9]

Figure 2.20: ArUco Marker Detection [10]
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2.4.1.3 Laser-based methods

In [11], an automatic docking process using LIDAR sensors is presented. The controlled robot is

a differential wheeled robot. When the robot needs to recharge its battery, it uses a map matching

algorithm for localisation and navigation. In the first place, the laser data information is trans-

formed to draw a map. Then, the docking station is identified based on its features among the

other lines drawn. The docking is recognised based on the parallelism of the docking station with

the wall, and the length and thickness of the line that hypothetically represents the docking station,

Figure 2.21.

Figure 2.21: Fitting results of the robot to the surrounding environment information [11]

Afterwards, the middle point of the docking station is calculated. Then, the position of the

robot is determined as well as the angle and distance deviation from the station through particle

filter position. Finally, a multi-state stabilisation controller is presented to dock the robot effi-

ciently and accurately. The error of the docking process in the x-axis is approximately 0, and the

average error in the y-axis is less than 2 cm, while the average angle error is less than 3o. The ex-

periments performed had different initial positions and angles. The coordinates obtained between

the station and the robot were accurate, as well as the final results due to the stabilisation controller.

2.4.1.4 Laser intensity methods

Although laser intensity is implemented for many different mobile robot systems and applications,

according to the author’s research in [12] it has never been directly implemented for autonomous

docking and charging in unstructured environments.

While the laser-based autonomous docking approaches detect the docking station by its con-

tours, the laser intensity based autonomous docking [12] uses the intensity of the reflected laser.

Since most mobile robots already have laser range finders equipped for localisation and map-

ping, it is not necessary to have extra hardware as IR receivers and transmitters, and allows flex-

ibility in the design of the platform, since the transmitters have to be on the same level as the

receivers to do a reading. Also, for vision-computer based methods, lighting conditions might
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affect the docking process as well as camera miss-calibrations. The other laser-based autonomous

docking approaches, that detect the docking station by its contours, require a specific design shape,

and have strong requirements for unstructured environments. The laser-intensity method not only

is very easy to implement, but also it is cheap. It consists in a retro-reflective region, which is in

the middle of two black-rubber regions, Figure 2.22. When the laser scans the area, the intensity

of the reflected laser is much lower in the black-rubber bands than in the reflective band, as can be

seen in Figure 2.23.

Figure 2.22: Reflective tape [12] Figure 2.23: Laser intensity value graph [12]

Some experiments were made with the robot in an open area, with the docking station manu-

ally placed in 4 different places, and the results obtained were very good. With the box placed at

31.33o from the robot, there are 2 valleys in the blue line, representing the black-rubber material,

with a peak in the middle, representing the retro-reflective material.

After these great results, two experiments were made to dock the robot to its station. One of

them consisted on testing the laser-intensity based autonomous docking approach in 2 scenarios,

see Table 2.5: in one of them the robot went through a corridor to the docking from the right side

of the docking station, and in the other from the left. In the following table, we can see the results

obtained, that represent 99.5% and 97.5% of success rate for docking and charging, respectively,

while in the second scenario was 98.5% and 96.5%, considering that this experiment delivered

good results in both scenarios.

Scenario Scenario1 Scenario2
Total number of trials 200 200
Number of successful trials 195 193
Number of trials with failed charging 5 7
Number of trials with failed docking 1 3

Table 2.5: Experimental results for the first set of experiments [12]

In the second experiment, the same method was used, but the contour-based autonomous dock-

ing method was compared to the laser-intensity referenced approach. The scenarios were the same

as presented in the previous experiment, but in the second one, the path between the robot and the

docking station was blocked for some time by a person, see Figure 2.24.
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Figure 2.24: Human blocking the route between the robot and the docking station [12]

The results obtained are presented in Table 2.6. Transforming the results into percentages, for

the first scenario, the success rate for the laser-intensity approach is 99.5% and 97.5% for docking

and charging, respectively, and the success rate for the contour technique is 97.5% and 95% for

docking and charging, respectively.

In the second scenario, the success rate for the laser-intensity approach is 98.5% and 95% for

docking and charging, respectively, and for the contour technique is 84.5% and 82.5% for docking

and charging, respectively.

Therefore, in the unstructured environment with dynamic moving obstacles, the laser-intensity

method presented better results than the contour-based technique.

Docking Methods
laser-intensity approach contour technique

Scenario1 Scenario2 Scenario1 Scenario2
Total number of trials 200 200 200 200
Number of successful trials 195 193 190 165
Number of trials with failed charging 5 7 10 35
Number of trials with failed docking 1 3 5 31

Table 2.6: Experimental results for the second set of experiments [12]

Although these results were great, there were some fails. For most of the failed recharging

trials in scenario 1, the autonomous docking was successful, but the charging station was tilted,

resulting in a lack of contact with the charging bars. Other phenomenons compromised perfect

results such as wheel slippage, backing motion errors, abandonment of the robot from the au-

tonomous recharging due to timeout caused by the person blocking the retro-reflective material

(second experiment, second scenario). In more complicated scenarios and for different environ-

ment conditions, such as the influence of dynamic light, different barrier materials and sunlight

effects in outdoor environments, the behaviour of the laser-intensity based approach is unknown.

However, in the tests performed in this environment, the results were great.

2.4.2 Docking station recharging methods

Another important aspect about the docking approach is how the recharging process functions.

There are many different recharging contact methods help countering angle and distance errors in
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the docking process, most of them being wireless. Different types of connections of robots with

the respective docking station are described below.

In [3], the robot’s shape for docking consists in a semi cylinder with two charging electrodes.

There is an elastic incorporated to support the impact in the process. The docking station is arched

and in the docking action, it is tolerable a position error of the robot up to 7 cm, and an angle

error up to 60 degrees. The architecture of the robot and the respective docking station is shown

in Figure 2.25.

Figure 2.25: CAD model of the proposed surveillance robot and the docking station. [3]

In [4], the powering system dock consists in a metallic bar, with two contact surfaces 0,80m

length, allowing the charging of two robots simultaneously, Figure 2.26 (tension provided: 18V;

current provided: 8A).

Figure 2.26: Dock connector [4]

In the robot there is also a smaller two contact point metallic bar, that allows the robot to

autonomously dock and recharge its battery, Figure 2.27.

In [5] a new Power Management System (PMS) is used for the battery recharging process.

Not only detects the connection status between the robot and the docking station with a limit

switch (LS) but also controls the continuous recharging process. The Power Management System’s

monitoring circuit is presented in Figure 2.28.

In [6] the recharging station consists in two metallic electric contacts, Figure 2.29, which in

contact with the respective metallic electric contacts from the robot allows powering the robot,

Figure 2.30. A 12V battery is used and its level is shown in an LCD display.
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Figure 2.27: Docking station [4]

Figure 2.28: The Power Management System monitoring circuit [5]

Figure 2.29: IR transmitter and docking station [6]
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Figure 2.30: Top view of automatic docking robot [6]

In [9], the docking station has three flat metal plates, and the robot has three metallic cylinders,

Figure 2.31. When the metals contact, the robot starts charging. This approach is more reliable

than some others since it allows misalignment.

Figure 2.31: (a) The docking and charging station. (b) The robot docking mechanism robot we
developed [9]
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2.5 Obstacle avoidance systems

Obstacle avoidance is a critical aspect of mobile robot navigation, enabling them to move safely

and efficiently in complex environments. Over the years, numerous obstacle avoidance algorithms

have been developed, each employing various path planning approaches. These algorithms play a

pivotal role in enabling robots to autonomously detect and circumvent obstacles in their surround-

ings. There are many obstacle avoidance algorithms using different path planning approaches,

such as the Fuzzy Social Force Model [41], Vector Field Histogram algorithm [42], Improved

Genetic Algorithm [43], Dynamic Recursive Ant Colony Algorithm [44], and Modified Particle

Swarm Optimisation [45]. In this section, it will be discussed in detail two algorithms with varia-

tions of the artificial potential field and dynamic window approach.

2.5.1 Obstacle avoidance methods

For a robot to travel between two given points and under its trajectory, it is important to avoid

obstacles that may appear along your route. There are many methods and algorithms for obstacle

avoidance, but most of them get stuck at the local minimum, which can result in the stoppage of

the robot when it encounters an object. The modified artificial potential field, proposed by [13],

consists in a safely avoid collision with fixed obstacles in an optimal environment, allowing the

robot to reach the final destination without facing the local minimum, unlike the conventional

artificial potential field. The artificial potential field consists in a gradient function field, where the

target (final destination) generates an attraction potential field as an attraction force (Fa), and the

obstacle a repulsive force field, as a repulsive force (Fr) and the artificial potential is the sum of

both forces (Fall), as it is possible to see in Figure 2.32.

Figure 2.32: Artificial potential field model [13]

However, in some situations, the sum of the forces can be zero, resulting in the robot wandering

around (local minimum) or it can even stop. To avoid that, the modified artificial potential field

decomposes the repulsive force (Fr) into 2 forces (Fr1 and Fr2), as seen in Figure 2.33.

A regulative factor (M) is added to the artificial potential field algorithm equations, and in

this case, the robot does not get stuck in the local minimum. In the simulations, for the artificial

potential field, the robot still got trapped in the local minimum, while in the modified artificial

potential field it never got stuck, proving to be a better solution.
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Figure 2.33: Modified artificial potential field model [13]

In [14], an hybrid obstacle avoidance method is used. It combines an informed-rapidly explor-

ing random tree (RRT) with 3D target detection model to detect obstacles and model prediction

controller (MPC) for obstacle perception, collision-free path planning and obstacle avoidance.

The experiments performed are done in unstructured environments for wheeled mobile robots.

Although LIDAR detects the location of obstacles accurately, being a great option to detect static

obstacles, it can’t determine the speed of a moving obstacle as the 3D target detection model. For

the dynamic obstacles, a parametric ellipse represents the obstacle movement and its area. The

orientation and speed of the dynamic obstacle allows to predict the future possible areas of the

robot, delimited by the ellipse, and can choose a path with a lower object collision risk, as seen in

Figure 2.34.

Figure 2.34: Collision-free path planning and tracking error [14]

For the collision-free path planning, the informed-RRT algorithm is used. This algorithm

predicts a path according to the robot states and the final point, avoiding collision. This approach

can reduce the amount of calculation not compromising its behaviour in real-time.

The control method used is the MPC optimisation function. Depending on the measured values
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in each state, it predicts the next motion of the robot, guaranteeing a safe distance between the

robot and the obstacle to reduce the possibility of collision.

The experiments were performed with different velocities of the dynamic obstacles and dif-

ferent scaling factors (ellipse size). With bigger obstacle velocities and the occupied area of the

obstacles, the tests failed. Comparatively to other algorithms (DWA, MPC abd LMPCC), this ap-

proach experienced better results in performing obstacle avoidance and a higher success rate. The

possibility of collision in the dynamic obstacles was predicted in advance comparatively to the

other algorithms, being easier to avoid obstacles.

In [15], the dynamic window approach is improved, with the name of finite distribution

estimation-based dynamic window approach (FDEDWA). This algorithm estimates the overall

distribution of obstacles through the finite memory filtering (FMF), predicting the future state and

distribution of obstacles and allowing it to avoid them. It’s performed by the estimation of its po-

sition, velocity and distribution. FMF has a good performance on estimation and response speed,

that’s why it was chosen. It has a fast and effective detection of the obstacles. The sensors used

for self-localisation of the robot were ultrawideband sensors (UWB), allowing it to move to the

final destination.

The algorithm developed on this paper (FDEDWA) maximises the objective function with the

kinematic constraint. For this purpose, the robot’s speed, angle to the final point and distance

between the predicted trajectory and the obstacle are used. It provides more robust and better

control for the robot for static and dynamic obstacles, comparing to the traditional DWA algorithm,

Figure 2.35.

Figure 2.35: Comparison of objective function computation between FDEDWA and the existing
DWA [15]

Comparing to the dynamic window for dynamic obstacles (DW4DO), which is also an im-

provement to the DWA algorithm for dynamic obstacles, the FDEDWA presents better results to
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unexpected dynamic obstacles that appear suddenly, due to the fact that FDEDWA has a low com-

putational time comparatively to the DW4DO because DW4DO uses occupancy grid estimation

for localisation and it influences in the time calculation. In the experiments performed, the FD-

EDWA presented the best results between the three algorithms. In the other two algorithms, there

were collisions due to their relatively slow convergence speed. While DWA collides in both static

and dynamic obstacles, DW4DO has a better performance, but colliding with suddenly appeared

moving obstacles. In every case, FDEDWA had great performances and avoided collision.
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Chapter 3

Literature Review

3.1 Obstacle avoidance: Path planning with graphs

In this section, some papers that explore path planning using graph algorithms will be addressed,

briefly touching upon their obstacle avoidance approaches.

In [46], an algorithm is introduced with the capability of generating smooth paths for non-

holonomic mobile robots of any shape, while considering orientation restrictions. The primary

objective of this algorithm is to navigate the robot in close proximity to obstacles, enabling efficient

and obstacle-aware movement. The key innovation lies in the extension of the A* algorithm within

a cell decomposition framework, considering both the robot’s position and orientation during the

path planning process. For this purpose, the orientation space is divided into 16 layers, each

representing a unique range of orientations.

This statement describes a method aimed at enhancing collision checking and reducing the

complexity of the state space for a robot’s path planning algorithm. The approach involves using

the robot’s oriented footprint, which represents the area occupied by the robot considering its

position and orientation during motion. By inflating the obstacles only in the orientation of the

robot’s motion, the algorithm ensures that the actual footprint of the robot can be used without

significantly increasing the computational burden of collision checking.

As a result of this approach, the path planner becomes capable of calculating paths that are

closer to obstacles, even in narrow spaces like those close to walls and inside corners. Simulation

tests have been conducted to verify the effectiveness of this planner, and it has demonstrated the

ability to create feasible paths in such challenging and constrained environments. By utilising

the oriented footprint and optimising collision checking, the planner achieves a higher level of

efficiency and adaptability, making it more suitable for navigating in complex and tight spaces.

In [47] a path planning system designed for a robot to navigate through an oil palm plantation

is introduced. The system consists of three main components: a distance estimation algorithm,

an obstacle detection method, and a path planning algorithm using the D* lite algorithm. The

distance estimation algorithm accurately identifies the location of detected oil palm trees using

37
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the Kinect camera and image processing techniques. It achieved an estimation accuracy of 80%

within a 4-6 meter range from the tree.

The obstacle detection method utilises five ultrasonic sensors placed strategically on the robot

to detect obstacles within a 4-meter range. Detected obstacles are inflated to account for the robot’s

size, ensuring a clear path for navigation. The system also includes a confirming method to filter

out random erroneous readings.

The path planning algorithm, D* lite, was chosen for its exceptional performance in partially

known or unknown environments. It rapidly re-plans paths by incrementally learning from search

information. The algorithm accounts for the robot’s kinematics by re-planning paths after each

motion, taking into consideration the current position and orientation of the robot. This allows for

efficient real-time planning, even in dynamic environments.

The integrated path planning system functions smoothly as a whole. The robot autonomously

navigates towards the target tree while avoiding obstacles detected by the ultrasonic sensors. The

path planning algorithm dynamically adjusts the path as needed when new obstacles are encoun-

tered or when the robot deviates from the planned path.

Real-time testing showed high accuracy in tree detection during robot motion, accurate es-

timation of distances to trees, and effective obstacle avoidance during navigation. The system

performed efficiently in a simulated plantation environment, demonstrating its potential for au-

tomating tasks in oil palm plantations.

3.2 Overview of the Project

This section provides an overview of the project, covering its context, the technologies, and fea-

tures of the provided code, along with the implementation of the algorithms in that specific en-

vironment. Additionally, a similar obstacle avoidance algorithm to the one used in this project is

introduced, addressing the limitations identified.

The project integrates the algorithms into the navigation stack developed at the Centre for

Robotics in Industry and Intelligent Systems (CRISS). For robot navigation and path planning, a

TEA* algorithm (Time Enhanced A-Star) is employed. The testing and simulations represent a

FEUP laboratory environment, with visualisation facilitated by RViz.

A graph-based path-planning algorithm is adopted, with nodes indicating critical point po-

sitions and edges representing transitions between these vertices (Bèzier curves). The provided

CRISS code presents the vertices and edges as shown in Figures 3.1 and 3.2.

In RViz, a vertex may appear to be colliding with a wall, but the size of the robot relative to

the vertex is smaller, indicating that the vertex’s positioning is appropriate. Conversely, when the

robot is larger than the vertex, it may appear that the vertex is correctly positioned, but in reality,

it is not. To illustrate this, Figures 3.3 and 3.4 display two scenarios: in the first figure, the robot is

smaller than the vertex, and it appears that the vertex is colliding with the wall, but in reality, the

robot, being smaller, avoids the collision. In the second figure, the robot is larger than the vertex,
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and it may not seem to collide, but in reality, it does. Precise vertex positioning is essential,

especially for vertices representing docking points, to ensure efficient charging operations.

Figure 3.1: Vertex rep-
resentation in RViz Figure 3.2: Edge representation in RViz

Figure 3.3: Vertex containing big-
ger robot Figure 3.4: Vertex containing smaller robot

In terms of obstacle avoidance, the provided navigation stack is equipped to detect obstacles,

but it merely stops the robot upon detection. Hence, an obstacle avoidance algorithm was required

to navigate around the obstacles. The algorithm developed drew inspiration from the logic found

in [31]. However, this particular approach took into account the robot’s mass centre and height,

making it suitable for navigating steep slope terrains. Given the study’s focus on representing

only 2-dimensional robots, this algorithm exhibits lower computational costs compared to the one

presented in [31].

Despite the algorithm’s robustness and versatility in various environmental scenarios, it lacks

the ability to detect the full width of obstacles. It defines the encountered obstacle as a mere point

and positions the avoidance vertex perpendicular to the detected point. A more effective approach

would involve recognising the entire obstacle based on the complete set of laser readings.

To address this limitation, a solution was devised to enhance obstacle detection. The laser

readings were divided into clusters, grouping closely spaced points within a specified Euclidean

distance. Additionally, clusters in proximity to each other within a given distance were merged.

This process allowed for the extraction of points that represent the boundaries of the cluster ob-

served in the middle laser beam (initial and final points). By doing so, the obstacle avoidance

process can be optimised to account for the specific shape of the obstacle, providing a more effec-

tive and adaptable strategy for navigation.
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Chapter 4

System Architecture and Nodes
Representation

In this chapter, the nodes developed for each algorithm and their interactions through published

and subscribed topics are presented.

Figure 4.1: Representation of developed nodes and topics

The nodes "docking" and "obstacle_avoidance" are responsible for handling the respective

algorithms. Additionally, the topics with "/miguel/" represents the created topics that share crucial

information between nodes, while the remaining topics are those subscribed to or published by

these nodes, already existing in the provided code. Below, each topic and its purpose are explained:

• jarvis/nn0/map: This topic receives data related to the grid’s width, height, coordinates

of origin, resolution, and the matrix containing occupancy mapping information (100 for

occupied cells, 0 for free, and -1 for unknown or unexplored). Then, in "docking" node, this

data is used to establish the position of each cell and the positions containing occupied cells

(representing walls) are stored in a vector, which is crucial for the docking algorithm.
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• jarvis/miguel/TestVertex: This topic receives information from a given vertex, allowing

the obstacle_avoidance node to determine whether the vertex is colliding with any obstacles.

This functionality can also be used by other nodes by sending messages of that type to this

topic.

• jarvis/miguel/check_collision: This topic publishes a message "Collision" if the vertex

received from the previous topic is colliding with a wall, and "NoCollision" otherwise.

• jarvis/miguel/radius: This topic publishes a message containing the area occupied by the

robot in the simulation, which is used by the obstacle avoidance algorithm.

• jarvis/scan: This topic contains the laser readings of the robot, enabling the detection of

imminent obstacles and providing information about the robot’s surroundings.

• jarvis/parametric_trajectories_control/TrajectoryControlStatus: This topic receives the

status of the controller, indicating whether it is currently moving or stopped. This informa-

tion is crucial to determine when the robot has finished traversing the alternative path, which

is indicated when the controller changes from "OS_WORKING" to "OS_IDLE."

• jarvis/nn0/localization_perfect_match/pose_result_2d: This topic provides the current

pose of the robot, allowing for the extraction of its coordinates and orientation. This infor-

mation is essential for placing vertices in the alternative path.

• jarvis/navigation_handler2/execution_route_states: This topic informs the current edge

the robot is navigating, which is fundamental for determining the next vertex in the trajec-

tory. Depending on the value (positive for moving forward, negative for moving backwards)

and the percentage of the vertex covered, the robot’s direction of movement can be deter-

mined. This information is used to trigger obstacle detection only when the robot is moving

in that direction.

• jarvis/navigation_handler2/Go2vertex/cancel: This topic allows for the publication of a

message to abort the controller, prompting the robot to stop and "forget" the main trajectory.

• jarvis/nn0/localization_perfect_match/PathNoStackUp2: This topic receives the Path

Set sent from the controller, which is stored. When an obstacle is detected, the current

edge the robot is on is identified, and the rest of the Path Set stored along with the alterna-

tive path are merged to a new Path Set. This combined Path Set is then published back to

this topic, informing the robot of the new path to follow.



Chapter 5

Methodology and Algorithms
Developed

The methodology employed in this study aims to address the critical aspects of docking reposition-

ing and obstacle avoidance methods for robots. This chapter presents the algorithms developed for

two ROS nodes, each tackling specific requirements: one for the docking issue and the other for

obstacle avoidance. To handle the docking problem, the different types of robots considered were

the ones available at CRISS - Centre for Robotics in Industry and Intelligent Systems, including

the differential robot, the tricycle robot (single wheel drive robot), and the omnidirectional robot.

As for obstacle avoidance, tests were conducted solely with the differential and tricycle robots.

Unfortunately, tests with the omnidirectional robot could not be performed as it has not yet been

implemented by CRISS with the required parameters in the simulation.

5.1 Optimising Critical Point’s Placement (Docking)

In this section, the methodology and algorithm developed for optimising the placement of critical

points, specifically for docking purposes, will be discussed. The preparatory steps and considera-

tions that went into devising this algorithm will be highlighted, followed by a detailed explanation

of the algorithm’s execution.

5.1.1 Preparatory Steps and Considerations

Concerning the aforementioned docking issue, the primary objective is to readjust the position

of the vertex, representing a docking station or a critical point, in response to the robot’s dimen-

sions. In the event of a collision with a wall, the vertex is shifted away from the wall’s proximity,

aiming to prevent the robot’s charging disruptions or collision incidents, especially when security

navigation is not enabled.

Firstly, to encompass various robot types with differing dimensions, the relative coordinates

of the base footprint point are calculated using three variables (already defined and implemented

in the provided source code):
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1. The distance from the base footprint of the robot to the front.

2. The dimensions of the robot (width and length).

However, before proceeding with the calculations, certain premises need to be examined:

1. The robot’s shape is assumed to be rectangular for all types of robots (omnidirectional,

differential, and tricycle)

2. For each robot typology, the base footprint is calculated based on specific assumptions:

• Differential Robot:

The base footprint is considered to be in the middle of the robot.

B fDi f f erential = (B fDi f f ,x,B fDi f f ,y), where

B fDi f f ,x =
RobotWidth

2

B fDi f f ,y = RobotLength−DistanceFromBaseToFront =
RobotLength

2

• Omnidirectional Robot:

The base footprint is considered to be in the middle of the robot.

B fOmnidirectional = (B fOmni,x,B fOmni,y), where

B fOmni,x =
RobotWidth

2

B fOmni,y = RobotLength−DistanceFromBaseToFront =
RobotLength

2

• Tricycle Robot:

The base footprint is considered to be in the middle of the back wheels.

B fTricycle = (B fTri,x,B fTri,y), where

B fTri,x =
RobotWidth

2

B fTri,y = RobotLength−DistanceFromBaseToFront

These calculations serve as the foundation for determining the base footprint of each robot

type, critical for the subsequent readjustment algorithm.
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The first two typologies allowed for the calculation of the base footprint solely based on the

robot’s length, without considering the variable DistanceFromBaseToFront. However, by using

an equation that incorporates both DistanceFromBaseToFront and RobotLength variables, we can

standardise the calculation across all three typologies. Based on the premises mentioned for each

robot, it is expected that both the differential and omnidirectional robots will have DistanceFrom-

BaseToFront equal to RobotLength
2 , thus explaining the aforementioned equations. The provided

code assumes these premises, leading to the representation of the base footprint positions for each

robot typology as shown in Figure 5.1.

Figure 5.1: Position of the base footprint for each robot

After determining the base footprint of the robot through calculations, the next step was to

define its occupied area. Ideally, considering the robot’s rectangular shape, the occupied area

should also be a rectangle, with a margin of error. However, due to the robot’s orientation, which is

closely tied to the positioning of critical points (vertices) or docking stations, it became challenging

to obtain accurate corner points when the robot was oriented in specific directions or in collision

with the wall. To address this, in the initial stages of the project, the robot’s occupied area was

approximated as a circle, where the radius represented the maximum distance from any given

corner to the base footprint.

As shown in Figure 5.2, the occupied area of each robot was represented by its larger diagonal.

For the tricycle robot, this approach did not yield an optimal representation, as the entire area

enclosed by the diagonal was considered representative of the robot’s occupied area.

While this implementation was simpler, it proved to be less accurate, as it treated the robot as if

it could be oriented in any direction. To improve accuracy, the later stages of the code development

entailed a transition to a more accurate rectangular representation, as illustrated in Figure 5.3.

With this implementation, the robot’s area would precisely correspond to its base footprint,

potentially producing improved results. However, it is crucial to consider specific aspects for each
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robot type to ensure that the robot’s orientation at each vertex aligns accordingly:

1. Omnidirectional:

The robot’s orientation at each vertex aligns with the vertex’s theta_holomonic.

2. Differential:

The robot’s orientation at each vertex aligns with the vertex’s theta.

3. Tricycle:

The robot’s orientation at each vertex aligns with the vertex’s theta.

Figure 5.2: Robot’s Area: Circular Shape

Figure 5.3: Robot’s Area: Rectangular Shape

The information regarding the vertices (id, position, orientation) is extracted from the file

named trajectory_data.yaml. This file includes the parameters for the previously mentioned ori-

entations (theta and theta_holomonic).
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The content of trajectory_data.yaml is as follows:

Edges:

- {CurveType: spline, Destination_ID: 1, Id: 17, Origin_ID: 7,

ParamB: 1.5, ParamF: 1.5,

VelocityBackwards: 0.0, VelocityForward: 0.5}

- {CurveType: spline, Destination_ID: 2, Id: 12, Origin_ID: 1,

ParamB: 1.5, ParamF: 1.5,

VelocityBackwards: 0.5, VelocityForward: 0.5}

Vertices:

- {FrameId: map/nn0, Id: 1, Label: pass, Theta: 1.5707963267,

ThetaHolomonic: 1.5699165535, X: 29.0, Y: 15.5}

- {FrameId: map/nn0, Id: 2, Label: pass, Theta: 3.1415926535,

ThetaHolomonic: 0.0, X: 27.0, Y: 17.5}

The "Edges" section contains information about the edges, including curve types, destination

IDs, and velocities. The "Vertices" section lists the vertices’ details, such as frame IDs, labels,

orientations (theta and theta_holomonic), and positions (X and Y).

Represented in Figure 5.4 is an example of a vertex along with its corresponding orientations.

Figure 5.4: Vertex’s orientations

Each vertex assumes a specific robot orientation as mentioned earlier. By hypothetically plac-

ing the robot at the centre of each vertex, aligned with its base footprint, the various robot types

produce distinct outputs. For the preceding exemplified vertex, the resulting output would resem-

ble that illustrated in Figure 5.5, with a robot larger than the vertex and centred within its base

footprint.
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Figure 5.5: Robot positioned according to vertex’s orientations

5.1.2 Algorithm performed

The algorithm’s functioning relies on the extraction of wall coordinates, which demands an un-

derstanding of the process involved. The mapping of the environment is carried out using the

occupancy grid mapping method. This approach entails representing the environment using a

grid, where each cell corresponds to a specific area in the world. By extracting the grid’s width,

height, resolution and origin, the position of each cell can be determined. Additionally, each cell

is assigned a value representing its state: 100 for occupied (wall), 0 for free, -1 for unknown or un-

explored state. Consequently, the poses of all occupied cells are extracted into a vector, effectively

containing a comprehensive set of points exemplifying the walls present in the world.

Initially, upon defining the robot’s area, potential collisions are assessed between a hypotheti-

cal robot positioned at each vertex and the array of wall points.

If a collision is detected, the point closest to the robot’s base footprint, denoted as C1, is

determined. Subsequently, the closest wall point to C1, referred to as C2, is identified. A straight

line is then drawn, representing the wall containing those two points. Utilising those points, the

equation of the form y = mx+b is obtained.

Then, a perpendicular straight line is established, passing through the base footprint of the

robot and intersecting the previous line. This additional line determines the direction for the

vertex to move away from the wall. The distance the vertex moves is calculated as the sum of the

distance the robot was inside the wall and 20% of the robot’s length.

The algorithm rechecks for collisions, and if one is detected, it iterates again to explore dif-

ferent scenarios. For instance, in the case of a corner, the robot must first distance itself from one

wall and then from the other.

A final collision check is conducted in the algorithm. If it persists, it indicates that the robot

cannot fit in that location, when the docking station is poorly placed in a narrow corridor, and

the program provides feedback to the user through the console. The user is then advised to select

an alternative location for the docking station. The pseudo-code below summarises the described
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process.

Algorithm 1 Readjustment of Vertices’ Positions
1: Read all wall points
2: Get the robot’s dimensions
3: For all critical points

Get a hypothetical robot in vertex and get corners with the robot’s orientation
For all wall points

If collision
Get closest wall point: C1
Get closest wall point to C1: C2
Trace straight line through C1 and C2: s1
Trace perpendicular to s1 passing through base footprint: p1
Check which corners are out of the map
Get distance to wall from those corners: d1
Move vertex in direction of p1 at distance d1 + 20% robot’s length

If still collision
Get closest wall point: C1
Get closest wall point to C1: C2
Trace straight line through C1 and C2: s1
Trace perpendicular to s1 passing through base footprint: p1
Check which corners are out of the map
Get distance to wall from those corners: d1
Move vertex in direction of p1 at distance d1 + 20% robot’s length

If still collision
Output a message that can’t place the vertex in that narrow corridor

In addition to the pseudo-code demonstrating the sequential algorithm, Figure 5.6 provides a

visual representation of the same algorithm using images, enhancing comprehension and facilitat-

ing a better understanding.

This ROS node includes an additional feature and implementation that is closely related to the

following node but can be beneficial for other nodes as well.

Firstly, the node subscribes to a topic of type <itrci_nav::vertex> to receive information about

a specific vertex. Upon receiving the vertex information from the other node, it checks whether

the vertex collides with any wall. If a collision is detected, the node publishes a string message

with the value "Collision" to a designated topic. Conversely, if no collision is found with any wall

cells, it publishes the string message "NoCollision" to the same topic. This implementation proves

invaluable for other nodes seeking to validate both offline docking vertices and, as implemented in

the other developed node, online vertices, created in real-time. Further elaboration on this feature

will be provided in subsequent sections of this document.
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Figure 5.6: Visual representation of the algorithm

5.2 Algorithm for obstacle avoidance

This section delves into the methodology and algorithm designed to address obstacle avoidance

challenges. The preparatory steps and essential considerations taken into account during the al-

gorithm’s development will be outlined. Additionally, a comprehensive explanation of how the

obstacle avoidance algorithm performs in different scenarios will be provided.

5.2.1 Preparatory Steps and Consideration

Regarding the obstacle avoidance problem, the primary goal was to enable the robot to avoid

encountering obstacles by planning an alternative route that takes the obstacle into account while

considering the robot’s base footprint.

To achieve this, several steps were involved. Firstly, the obstacle needed to be detected, and

the robot’s position and distance to the obstacle had to be determined. The obstacle detection and

distance measurement were accomplished using laser sensors. When the robot detected the obsta-

cle at a certain distance, a vertex was created in that position, and another vertex was generated

to encircle the obstacle. This second vertex was placed at a distance equal to the robot’s radius

(obtained from a topic published from the previous node), to ensure that there were not any col-

lisions in the course of the contouring. Additionally, two edges were formed: one connecting the

first vertex (V1) to the second vertex (V2), and the other connecting (V2) to the next vertex in the

robot’s original trajectory.

Although there is a topic displaying the robot’s trajectory, it was deemed worthwhile to con-

sider creating temporary vertices and edges during the obstacle avoidance process to ensure no

duplicates with the same ID were generated. After collision avoidance was successfully com-

pleted, these temporary vertices and edges were promptly removed from the system.
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5.2.2 Algorithm performed

In the initial phases of the project, the algorithm and thought process closely resembled the one

presented in Chapter 3.1. However, in this specific scenario, the base footprint was taken into

consideration rather than the mass centre. As the project progressed, an enhancement to this

algorithm was implemented in its final stages. The first approach, closely resembling the final

one, will be explained initially, followed by a detailed explanation of the implemented approach.

5.2.2.1 First developed algorithm

When an obstacle was detected at a distance d using either the front laser (while moving forward)

or the back laser (while moving backwards), the robot would stop, as shown in Figure 5.7.

Figure 5.7: First obstacle detection algorithm

In this scenario, a vertex named V1_tmp is created at the current pose of the robot. Subsequently,

the position of the closest point of the obstacle to the robot is determined, referred to as the "point

of collision" (PC). A straight line, denoted as s1, is drawn between V1_tmp and PC. Then, a

perpendicular straight line to s1, passing though PC, is traced, and another vertex named V2_tmp

is generated on this line at a distance d from PC. The purpose of V2_tmp is to navigate around

the obstacle. After circumventing the obstacle, the robot proceeds towards the next vertex on its

original path. Figure 5.8 offers a visual representation of the previously mentioned concept.

Figure 5.8: First algorithm designed for obstacle avoidance from the top

The alternative path (from V1_tmp to V2_tmp, and finally V2) is forwarded to the controller,

developed by CRISS. With this approach, it is possible to switch from the original route to the

alternative path created. Additionally, the previous node developed for the docking process sub-

scribes to a ROS topic published by this node that checks for collisions with walls. This step is

essential to avoid potential collisions with the robot. If a collision is detected, a new attempt is

made to move the robot at the same distance d, but in the opposite direction, as illustrated in Figure

5.9.
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Figure 5.9: First algorithm designed for obstacle avoidance from the bottom

If the alternative path still resulted in a collision with the wall, the distance d was adjusted

accordingly. In such cases, the distance 2*d was chosen initially, and if that distance still caused

a collision, it was tested at the same distance in the opposite direction. If neither of these attempts

proved successful, no new vertex was placed and the robot would wait for the obstacle removal.

5.2.2.2 Final developed algorithm

The previous algorithm was implemented during an early stage to streamline the problem. How-

ever, it is not an optimal solution. While it may work when the obstacle is represented by a single

point, it becomes less effective when dealing with obstacles of length, such as walls shown in

Figure 5.10, making it not optimal.

Figure 5.10: Test Environment Walls

Considering a scenario where a wall is perfectly centred with the middle laser beam and has

a width of 1.2*distance. In the previous algorithm, a vertex would be placed in collision with

the obstacle since the first node solely detects walls mapped in the occupancy grid and not laser

readings, leading to the robot’s collision with the wall. Even if the first node were to detect walls

using laser readings, the algorithm would fail for the first two vertex positions at distance d on

both sides.

Ultimately, a vertex would be placed 2*d from the further obstacle point. This approach is

evidently sub-optimal, and it would be better to recognise the entire obstacle as the whole set of

laser readings.
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To improve this, the set of laser readings was divided into clusters, grouping points that are

close to each other within a specified Euclidean distance. Clusters that are in proximity to each

other within a given distance were merged. Consequently, the points representing the boundaries

of the cluster observed in the middle laser beam were extracted (initial and final points). This

allows the obstacle avoidance process to be optimised for the specific shape of the obstacle.

In summary, when the robot’s middle laser beam detects an obstacle at a distance d, the coor-

dinates of point PC corresponding to that beam are stored and the robot is stopped, as illustrated

in Figure 5.11.

Figure 5.11: Final obstacle detection algorithm

Subsequently, the robot enters a waiting state for a period of 5 seconds, anticipating the re-

moval of the obstacle. If the obstacle is successfully removed within this time frame, the robot

proceeds along its original path without any further action. However, if the obstacle persists be-

yond the 5-second waiting period, the robot initiates its obstacle avoidance routine to navigate

around the obstruction.

In that case, a vertex is created at the pose of the robot, P1, and a straight line is drawn from

P1 to the initial point of the cluster. Another vertex is placed on this straight line at a specified

distance (radius received from the aforementioned node), aiming for the best and most optimal

position possible, as shown in Figure 5.12.

Figure 5.12: Final algorithm designed for obstacle avoidance from the top

Afterwards, the previously mentioned node designed to avoid placing vertices near walls is

executed. If the vertex created is found to be in collision with the wall, the same algorithm is

applied, but this time for the final point of the cluster (the other side of the obstacle), as shown in

Figure 5.13. This process ensures that the robot optimally avoids obstacles and positions itself in

the best possible location along the cluster’s boundary.
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Figure 5.13: Final algorithm designed for obstacle avoidance from the bottom

If, even in that case, the vertex created for the alternative route is placed near a wall, then the

robot will wait for the obstacle to be removed. Since avoidance of the obstacle from either side

is not possible, the robot needs to ensure a safe distance from the wall before proceeding with its

navigation.

In order to achieve these functionalities, the process begins by extracting the original path

set from an existing topic. Upon detecting an obstacle, the algorithm subscribes to another topic

providing information about the current edge. The algorithm then accesses the stored original path

set, appends the two new edges from the alternative path, and subsequently adds the remaining

positions necessary to reach the final destination. Finally, the updated path set is published to the

controller, enabling the robot to navigate along the newly adjusted trajectory.
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Experimental Results and Analysis

6.1 Readjustment of critical point’s (docking) position

First and foremost, various tests were conducted concerning the docking node that was created. In

Figure 6.1, the original graph trajectory from a laboratory in FEUP is represented in RViz.

Figure 6.1: Original trajectory in RViz

To assess the behaviour of the created node with different types of robots, the positions of

certain vertices were readjusted closer to walls on several occasions. Specifically, the positions

of the vertices 20, 26, 4, 19, 18, 8, 9 and 21 were modified to be closer to walls, aiming to test

the algorithm’s performance under various scenarios available in the simulation. These scenarios

included being near the top wall, top-left corner, left wall, bottom-left corner, bottom wall, bottom-

right wall, right wall, and top-right corner, respectively.

Additionally, two new vertices with IDs 100 and 101 were added: one placed between two

pillars and the other confined to a small compartment. The outcomes of these adjustments are
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presented in Figure 6.2 and served as a foundation for the subsequent tests that were conducted.

All of the following tests were performed for different types of robots, namely omnidirectional,

differential, and tricycle.

For better presentation of the results, the outcomes from the left side (left wall, top-left and

bottom-left corners, as well as the top wall) are presented in one table, while the results from the

right side (right wall, top-right and bottom-right corners, as well as the bottom wall) are displayed

in another table.

Figure 6.2: Testing Environment

Furthermore, a separate table is provided for the middle section, containing the isolated vertex

placed between four walls and the vertex between two pillars. Additionally, there is a final table

displaying the output of the program in the console, presenting parameters such as the robot’s size,

type of robot, base footprint coordinates, and details of vertices that collided with the wall. In case

of a placement where the robot doesn’t fit, an appropriate message indicating that the robot doesn’t

fit is included.

6.1.1 Test 1: Testing for different robot’s areas - Circle vs. Rectangle

6.1.1.1 Setup

In order to compare the area occupied by the robot when initially considering a circle and later

optimising it to a rectangle, an interesting test was conducted to assess whether the theoretical as-

sumptions align with the experimental results. This comparison was carried out for all three types

of robots, both for the robot’s original size and for double the original size (1x and 2x).

The tests involved calculating the area occupied by the robot using both the circle and rectangle

representations. By evaluating these results, valuable insights were gained regarding the accuracy

and effectiveness of each representation. This comprehensive analysis was essential to validate

the theoretical premises and their practical implications in real-world scenarios for different robot

sizes and types.

6.1.1.2 Results
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Left side
Size Area Omnidirectional Differential Tricycle

1x
Circle

Rectangle

2x
Circle

Rectangle

Table 6.1: Circle vs Rectangle - Left Side
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Right side
Size Area Omnidirectional Differential Tricycle

1x
Circle

Rectangle

2x
Circle

Rectangle

Table 6.2: Circle vs Rectangle - Right Side
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Middle Section
Size Area Omnidirectional Differential Tricycle

1x
Circle

Rectangle

2x
Circle

Rectangle

Table 6.3: Circle vs Rectangle - Middle Section
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Console Output
Size Area Omnidirectional Differential Tricycle

1x
Circle

Rectangle

2x
Circle

Rectangle

Table 6.4: Circle vs Rectangle - Console Output
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6.1.1.3 Analysis

As predicted, the node successfully adjusted the vertices that were positioned too close to the wall,

regardless of whether the area was represented by a circle or a rectangle. Notably, it was observed

that the circle representation tended to move the vertices farther away from the walls compared to

the rectangle representation. It is worth emphasising that, as anticipated, the vertices moved more

significantly away from certain walls depending on their orientation. For instance, considering

vertex 26 (top-left corner) in Table 6.1, both in the original size (1x) and double size (2x) exam-

ples with a circle area, the vertex moved away equally from the top and left walls.

However, when represented as a rectangle, the robot exhibited a greater distance from the top

wall compared to the left wall. This behaviour aligns with the expected outcome since the robot is

represented by a rectangle oriented with theta =−π

2 and theta_holomonic =−π

2 at that vertex.

This observation is consistent across all vertices, where their orientations dictate the extent to

which they move away from specific walls. The node is effectively accomplishing its intended

task, demonstrating that it adjusts the vertices correctly based on their orientations.

6.1.2 Test 2: Extensive testing for all available possible positions: different sizes

6.1.2.1 Setup

After the initial test produced the expected outcome, where the circle representation moved too far

away from the wall, subsequent tests were conducted solely considering the area of the robot as a

representative rectangle.

Consequently, various scenarios were tested for different types of robots (differential, omni-

directional, and tricycle). For each type of robot, different robot sizes were compared (1x, 1.25x,

1.5x, 1.75x, 2x, and 3x to their original dimensions) to analyse the differences for varying robot

sizes. The exaggerated size of 3x was included intentionally to better assess the results in a more

extreme case. In Appendix A, detailed results are provided for all tested sizes, along with larger

images.

For the purpose of this chapter’s analysis and comparison, the images were cropped to facilitate

better visualisation and comprehension, and only three different sizes (1x, 1.5x, and 2x) are shown.

6.1.2.2 Results
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Left side
Size Omnidirectional Differential Tricycle

1x

1.5x

2x

Table 6.5: Different sizes: Left side
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Right side
Size Omnidirectional Differential Tricycle

1x

1.5x

2x

Table 6.6: Different sizes: Right side
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Middle section
Size Omnidirectional Differential Tricycle

1x

1.5x

2x

Table 6.7: Different sizes: Middle section
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Console Output
Size Omnidirectional Differential Tricycle

1x

1.5x

2x

Table 6.8: Different sizes: Console Output
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6.1.2.3 Analysis

As mentioned in the previous test, let’s consider vertex 26 as an example. The robot moved

further away from the top wall and less from the left wall. This aligns with the expectations

traced, as in this vertex, the robot is represented by a rectangle oriented with theta = −π

2 and

theta_holomonic =−π

2 . Hence, the node is effectively performing its intended task. This pattern

applies to all vertices; their orientation determines how much they move away from certain walls.

Another crucial aspect to emphasise is the behaviour of the tricycle robot. Due to its base foot-

print being closer to the back of the robot, when the vertex is oriented in the opposite direction of

the wall, it is expected that the vertex will not move as much from the wall compared to the other

types of robots. Conversely, if the vertex is facing the wall, the tricycle robot should step back

more than the others. Again, using vertex 26 as an example in the rectangle section, the tricycle

robot indeed moves less from the wall than the others, confirming our expectations (Table 6.5).

The console outputs provide valuable information. The table displays which vertices have

collided with the wall. If there is no feasible position for a vertex, a message advises selecting a

better location. Comparing the results, the circle case collided with vertices where the robot didn’t

actually collide. In the bigger-sized robot test, the circle case collided with nearly all vertices,

while the rectangle case did not, demonstrating its proper functioning.

Upon closer examination of the console outputs, we notice that all collision vertices were

among the ten tested (four corners, four walls, and two additional vertices). However, there

was a difference for the differential robot, where vertex 7 collided with the wall for 1.5x and

2x the original robot size, but not for the omnidirectional and tricycle robots. This is because

in the trajectory_control_data.yaml, vertex 7 has theta = π

2 and theta_holomonic = 0. This ex-

plains the obtained results: for the omnidirectional robot, the orientation of the vertex matches the

theta_holomonic, which is zero, so it is not colliding. Similarly, for the tricycle robot, since the

base footprint is at the back, and the orientation is π

2 , it also avoids collision. Overall, the node

appears to be functioning as intended.

6.1.3 Test 3: Corner and closed space with different orientations and sizes

6.1.3.1 Setup

After analysing the previous tests, it became evident that no robot would fit inside the small box

represented by vertex 101, as the algorithm always failed to place the vertex in an appropriate

position. However, upon a closer examination of the box’s configuration, it was noticed that since

the box is wider than it is tall, a robot could potentially fit in that place if the orientation of the

vertex was changed. Therefore, the parameters corresponding to the theta and theta_holomonic of
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that vertex were modified to 0 and −π

2 , respectively.

Similarly, concerning vertex 26, various adjustments were made to test different scenarios.

The original setups had theta =−π

2 and thetaholomonic =−π

2 . The parameters were changed to

theta = π

2 and thetaholomonic = π

2 . Figures 6.3 and 6.4 represent the new configurations of these

vertices.

Figure 6.3: New configuration for Vertex 26

Figure 6.4: New configuration for Vertex 101
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6.1.3.2 Results

Vertex 26
Size Omnidirectional Differential Tricycle

1x

Table 6.9: Different orientations for vertex 26

Vertex 101
Size Omnidirectional Differential Tricycle

1x

Table 6.10: Different orientations for vertex 101

Vertex 26
Size Omnidirectional Differential Tricycle

1x

Table 6.11: Vertices different orientations - Console Output



6.2 Obstacle avoidance 69

6.1.3.3 Analysis

In the first case, for vertex 26, the results were as expected: for the omnidirectional and differential

robots, with theta = π

2 and theta_holomonic = π

2 , the outcome remained the same as in the previ-

ous testing. However, for the tricycle robot, with this orientation, the vertex had to move further

away from the wall.

As for the second case, vertex 101, it was observed that with a different orientation (theta = 0

and theta_holomonic=−π

2 ) than the previously tested configuration (theta=−π

2 and theta_holomonic=

−π

2 ), the vertex seemed to fit for both the tricycle and differential robots. In these cases, the tricy-

cle robot (as expected) moved away from the wall less than the differential robot. However, since

the theta_holomonic remained the same as in the previous test, the vertex still collided with the

wall and had no suitable position with that orientation. Nevertheless, for both the differential and

tricycle robots (which use theta), the vertex fit into the narrow space without any collision, as there

were no messages outputted in the console, and the changes in the vertex position were visible.

6.2 Obstacle avoidance

6.2.1 Setup

Throughout the testing process, additional vertices and edges used for the alternative path were

created in the trajectory_control_data.yaml file. However, at the end of the alternative path, they

were deleted from the file. To better observe their position, a test was performed where the appli-

cation was stopped during the alternative path. When the application was restarted, the alternative

vertices and edges were still visible in RViz, allowing for a closer examination of their positions,

as shown in Figure 6.5.

Figure 6.5: Alternative Path
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During the testing phase of the obstacle avoidance algorithm, various scenarios were examined

as follows:

1. With the robot going forward:

(a) Removing the obstacle in less than 5 seconds

(b) Encountering a vertical wall in a horizontal path with enough space to pass from the

top

(c) Encountering a vertical wall in a horizontal path without enough space to pass from

the top, necessitating passage from the bottom side

(d) Encountering an oblique wall in a horizontal path with enough space to pass from the

top

(e) Encountering an oblique wall in a horizontal path without enough space to pass from

the top, requiring passage from the bottom side

(f) Encountering an oblique wall in a curved path

2. With the robot moving backwards:

(a) Encountering a vertical wall in a horizontal path with enough space to pass from the

top

(b) Encountering a vertical wall in a horizontal path without enough space to pass from

the top, necessitating passage from the bottom side

(c) Encountering an oblique wall in a horizontal path with enough space to pass from the

top

(d) Encountering an oblique wall in a horizontal path without enough space to pass from

the top, requiring passage from the bottom side

6.2.2 Results

Throughout this subsection, the previously mentioned specific outcomes of each test scenario

will be addressed, providing a comprehensive evaluation of the obstacle avoidance algorithm’s

performance under diverse conditions.
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1. Robot moving forward
Tests Performed Differential Tricycle

(a)

(b)

(c)

(d)

(e)

(f)

Table 6.12: Different tested cases - Robot moving forward

2. Robot moving backwards
Tests Performed Differential Tricycle

(a)

(b)

(c)

(d)

Table 6.13: Different tested cases - Robot moving backwards



72 Experimental Results and Analysis

6.2.3 Analysis

Regarding the conducted tests, the overall output was satisfactory. However, there were certain

factors that influenced the results and should be taken into consideration for further improvements:

• Lower distance between clusters for merging: In some cases, when the obstacle and the

wall were too close to each other, the algorithm treated them as a single cluster, leading to

sub-optimal results. To address this, the parameter determining the distance for merging

clusters could be adjusted to a lower value. This would help in accurately distinguishing

between separate obstacles and walls, resulting in more precise path planning.

• Adjustment of control points of the Bèzier parametric curve considering the environ-
ment: While the creation of vertices for the alternative path effectively avoided collisions,

the temporary edges connecting these vertices were determined using a generic algorithm.

To achieve better results in specific environmental contexts and for different robot types,

a more adaptive algorithm for determining the control points of the Bèzier curve could be

implemented. This way, the path would be optimised according to the environment and the

robot’s characteristics.

• Consideration of a set of lasers to perform obstacle avoidance: Currently, the algorithm

allows for obstacle avoidance one obstacle at a time. In more complex scenarios with mul-

tiple obstacles, this approach may lead to inefficient path planning. To address this, a new

algorithm could be developed to incorporate a set of lasers, including frontal and lateral

ones. By adapting the distance detection parameters during the alternative path, the robot

can better handle situations with multiple obstacles and perform obstacle avoidance more

effectively.

• Addressing proximity challenges: A potential area of improvement in the obstacle avoid-

ance algorithm lies in addressing challenges when obstacles are in close proximity to the

vertices of the robot’s path. In certain scenarios, an obstacle positioned just before a vertex

could result in an excessively sharp curve, increasing the risk of collision. Additionally,

when an obstacle is detected right after a vertex while the robot is still on the previous edge,

it could lead to the next vertex being the one directly in front of the obstacle. To enhance the

robot’s adaptability in such situations, an alternative approach could be considered. Rather

than proceeding directly to the next vertex after the current edge, if available, the robot could

be redirected to the second next vertex in the path set. This adaptive strategy aims to provide

more flexibility in navigation and mitigate challenges posed by obstacles near the vertices.

In cases where no next vertex is available, further exploration of alternative strategies, such

as implementing wider turns or advanced obstacle avoidance techniques, may be considered

to ensure safe and efficient robot navigation. Future work in this area will involve refining

and optimising these approaches through extensive simulations and real-world experimen-

tation.
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• Optimising vertex placement: In the current algorithm, the vertex is positioned along the

line connecting the point where the front beam detects the obstacle and the extremity point

of the cluster. However, in the case of an oblique wall with a low angle, this placement

might lead to potential collisions with the obstacle from the side. An idea for enhancing

the algorithm in the future is to position the vertex perpendicular to the trajectory, passing

through the extremity point of the cluster. This adjustment would likely improve the robot’s

ability to avoid obstacles effectively.

• Enhancing the robot’s area inflation: Currently, the robot’s area is being inflated uni-

formly in all directions to account for its size and shape. However, in certain scenarios

with complex obstacles, this approach may not be sufficient to ensure complete collision

avoidance. To address this, a potential enhancement would be to inflate the robot’s area

selectively, focusing on areas close to obstacles or in the direction of motion. This targeted

inflation strategy could further improve the robot’s collision avoidance capabilities and al-

low it to navigate more effectively through intricate environments.

Addressing these factors would further enhance the obstacle avoidance algorithm’s performance,

making it more robust and adaptable to various environments and robot types. These improve-

ments could be considered for future work to enhance the overall efficiency and reliability of the

system.
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Chapter 7

Conclusion and Future Work

In conclusion, this master’s thesis successfully addressed the challenges of mobile robotics, specif-

ically focusing on two critical aspects: docking and obstacle avoidance. The developed offline

mode software algorithm proved effective in readjusting the position of docking vertices accord-

ing to the robot’s dimensions and base footprint. By optimising the placement of vertices, the

algorithm demonstrated seamless integration into complex environments and spaces with the pres-

ence of walls, obstacles and machinery mapped as the environment. Moreover, the online mode

algorithm for obstacle avoidance enabled the robot to dynamically find alternative paths and avoid

collisions during its trajectory.

Although the simulation environment provided for testing only included vertical and horizontal

walls, it is expected that the first developed algorithm would produce positive results with different

types of walls, including oblique walls or walls with intricate shapes. The algorithm’s adaptabil-

ity and robustness are projected to facilitate the successful repositioning of vertices in various

complex environments, encompassing a wide range of wall configurations and orientations.

However, a critical assumption in this approach was that vertices could not be placed out-

side the map. In the simulation environment used for testing, only the walls were considered as

occupied cells in the grid mapping, while the outside of the map was not defined as occupied.

As a consequence, if a vertex was mistakenly placed outside the map, the algorithm would not

recognise it as such, since the type of cell would be the same as inside the map. As a result, the

algorithm would move the vertex further away from the wall, inadvertently leading the robot to

move out of the room "into the wall."

Ideally, the algorithm should have been designed to detect when a vertex was placed outside

the room and adjust its position accordingly, optimising the distance from the walls. However,

achieving this functionality would have required the provided simulation to include an additional

algorithm to define the outside of the map as occupied. This adjustment would enable the main

algorithm to be reconfigured appropriately, ensuring the robot’s movements are optimised and

confined within the room’s boundaries.

The experimental results and analysis showcased the algorithm’s performance in various sce-

narios, validating its efficiency and practical applicability. The research outcomes highlight the

75
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significance of considering the robot’s dimensions and specific type to achieve optimal results in

docking tasks.

Although this research has made significant progress in mobile robotics algorithms, there re-

main several potential areas for future work and enhancements, particularly concerning the obsta-

cle avoidance algorithm.

Firstly, considering a set of laser beams for obstacle avoidance instead of only the front and

back beams (coordinated front and lateral laser beams, for example) could lead to more dynamic

and sophisticated navigation, allowing the robot to respond promptly to new unexpected obstacles

in its path. This approach could facilitate the exploration of recursive obstacle avoidance, enabling

the development of strategies to manage multiple obstacles simultaneously, thus enhancing the

robot’s adaptability in intricate environments.

Another encountered limitation was when the obstacle was in close proximity to the vertices.

In such cases, if the obstacle was positioned just before the vertex, the resulting curve became

excessively sharp, significantly increasing the risk of colliding with the obstacle. While the differ-

ential robot performed better in navigating such sharp curves, the tricycle robot required a certain

angle to turn, which could potentially introduce errors in the controller’s performance. On the

other hand, if the obstacle was too close but right after the vertex, the detection of the obstacle

could happen while the robot was still on the previous edge, leading to the next vertex being the

one directly in front of the obstacle.

To address both of these issues, an alternative approach could be considered. Instead of pro-

ceeding directly to the next vertex after the current edge, if available, the robot could be redirected

to the second next vertex in the path set. This adaptive strategy aims to improve navigation flex-

ibility and address challenges related to obstacles in close proximity to the vertices. However, in

scenarios where no next vertex is available, various alternative strategies can be explored, such

as implementing wider turns or employing advanced obstacle avoidance techniques, to ensure the

robot’s navigation remains both safe and efficient.

Currently, vertices are placed along the line formed by the point corresponding to the front

beam detecting the obstacle and the point corresponding to the cluster’s extremity. However, in

the case of an oblique wall with a low angle, this placement might lead to potential lateral collisions

with the obstacle. As a solution, a possible approach for future development involves situating the

vertices along a perpendicular line to the trajectory, passing through the cluster’s extremity point.

This adjustment could strengthen the algorithm’s ability to handle diverse obstacle configurations.

Another noteworthy aspect centres on the inflation of the robot’s area for collision avoidance.

At present, the robot’s area is uniformly inflated in all directions to accommodate its size and

shape. Although effective in many scenarios, this approach may fall short in dealing with complex

obstacles. To address this limitation, a potential enhancement involves selective inflation of the

robot’s area, with a greater emphasis on inflating areas close to obstacles or in the direction of

motion. This targeted inflation strategy holds promise in further fortifying the robot’s collision

avoidance capabilities, enabling it to navigate with heightened precision in intricate environments.
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While the creation of alternative path vertices effectively addressed collision avoidance in

simple configurations, the determination of temporary edge connections relied on the generic al-

gorithm provided by the source code. To further enhance the algorithm’s performance in different

environmental scenarios and with diverse robot types, a more adaptive approach for calculating the

control points of the Bèzier curve can be employed. By customising the path optimisation based

on the specific environment, the obstacle encountered and robot characteristics, this adaptive al-

gorithm promises to unlock the algorithm’s full potential, resulting in more efficient and accurate

obstacle avoidance capabilities.

This master’s thesis has been divided into two major subjects: the first node, which deals

with repositioning vertices representing critical points or docking stations, will be implemented in

ongoing projects in CRISS. Meanwhile, the second subject, though more of a proof of concept with

certain limitations, lays the groundwork for future work. The proposed algorithms make valuable

contributions to the advancement of mobile robotics, opening doors for enhanced navigation and

efficiency across a wide range of real-world scenarios. As the field of mobile robotics continues

to progress, this research serves as a stepping stone for forthcoming innovations and progressions

in this thrilling and rapidly evolving domain.
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Appendix A

Results

A.1 Tables

Middle section
Size Omnidirectional Differential Tricycle

1x

1.25x

1.5x

1.75x

2x

3x

Table A.1: Different sizes: Middle section (extended version)
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Left side
Size Omnidirectional Differential Tricycle

1x

1.25x

1.5x

1.75x

2x

3x

Table A.2: Different sizes: Left side (extended version)
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Right side
Size Omnidirectional Differential Tricycle

1x

1.25x

1.5x

1.75x

2x

3x

Table A.3: Different sizes: Right side (extended version)
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Console Output
Size Omnidirectional Differential Tricycle

1x

1.25x

1.5x

1.75x

2x

3x

Table A.4: Different sizes: Console Output (extended version)
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