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Abstract This paper presents an adaptive polar-space motion controller for tra-
jectory tracking and stabilization of a three-wheeled, embedded omnidirectional
mobile robot with parameter variations and uncertainties caused by friction, slip and
payloads. With the derived dynamic model in polar coordinates, an adaptive motion
controller is synthesized via the adaptive backstepping approach. This proposed
polar-space robust adaptive motion controller was implemented into an embedded
processor using a field-programmable gate array (FPGA) chip. Furthermore, the
embedded adaptive motion controller works with a reusable user IP (Intellectual
Property) core library and an embedded real-time operating system (RTOS) in
the same chip to steer the mobile robot to track the desired trajectory by using
hardware/software co-design technique and SoPC (system-on-a-programmable-chip)
technology. Simulation results are conducted to show the merit of the proposed
polar-space control method in comparison with a conventional proportional-integral
(PI) feedback controller and a non-adaptive polar-space kinematic controller. Fi-
nally, the effectiveness and performance of the proposed embedded adaptive motion
controller are exemplified by conducting several experiments on steering an embed-
ded omnidirectional mobile robot.
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1 Introduction

Omnidirectional mobile robots have attracted much attention in both academia and
industry in the field of robotics. Comparing with several car-like robots [1–5], this
type of omnidirectional mobile mechanism has the superior agile capability to move
towards any position and to simultaneously attain any desired orientation, namely
that such a mobile mechanism does not have so-called nonholonomic constraints.
Modeling and control of omnidirectional mobile robot in Cartesian coordinates have
been investigated by several researchers. Pin et al. [6] presented the concepts for a
family of holonomic wheeled robots. Watanabe et al. [7] proposed a PI feedback
control method for an omnidirectional mobile robot which is equipped with three
lateral orthogonal-wheel assemblies. Kalmár-Nagy et al. [8] offered the dynamic
model and the time-optimal control for an omnidirectional robot. Williams II et
al. [9] developed a dynamic model for omnidirectional wheeled mobile robots,
considering the occurrence of slip between the wheels and motion surface. Huang
and Tsai [10] discussed how to construct a FPGA-based adaptive controller for a kind
of omnidirectional mobile robot with parameter variations and uncertainties caused
by slip and abruptly changeable payloads. Overall, the aforementioned methods did
not directly cope with polar-space motion control problems.

Polar space is especially useful in situations where the relationship between two
points is most easily expressed in terms of angle and distance. There are many simple
polar-space equations which describe complex curves, for example, the Archimedes’
spiral, the rose curves and the Limacon of Pascal. The trajectory tracking problems
for nonholonomic mobile robots in polar space have been investigated by several
researchers. Park et al. [11] adopted the state-space exact feedback linearization
method to achieve point stabilization of mobile robots. Yang and Kim [12] presented
the sliding mode control for trajectory tracking of nonholonomic wheeled mobile
robots. The polar-space sliding-mode tracking controller to steer a nonholonomic
wheeled mobile robot incorporating its dynamic effects and external disturbances
was developed by Chwa [13]. To date, there have been few studies related to
polar-space omnidirectional mobile robot control. For example, Huang and Tsai
[14] proposed a kinematic control approach for both tracking and stabilization of
an omnidirectional mobile robot in polar coordinates. Based on [14], an adaptive
polar-space kinematic controller for autonomous omnidirectional mobile robot was
introduced in [15]. However, the method in [15] cannot be applied to address
both polar-space trajectory tracking and regulation problems of an omnidirec-
tional mobile robot incorporating with dynamic effect, parameter variations and
uncertainties.

Recently, the new generation of FPGA technology has enabled an embedded
processor intellectual property (IP) and custom application IPs to be integrated into
an SoPC developing environment. This new SoPC technology has been bringing a
major revolution in the design of integrated circuits [16–19]. Since both software and
hardware are integrated into a single programmable logic device, the designers can
easily combine the flexibility of software unit and high performance of hardware
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unit for building a system on a chip. Within hardware/software co-design using SoPC
technology, the circuits needed fast processing but simple computations are suitable
to be implemented by hardware in FPGA, and the highly sophisticated algorithms
with heavy computations can be realized by software in FPGA. The SoPC technology
has become increasingly important in implementing motion controllers or navigation
controllers for autonomous mobile robots [18, 19]. In comparison with the fixed-
processor DSP [20] which was shown to provide a feasible solution for developing
a powerful controller in the filed of robotics, the SoPC technology is capable of not
only achieving the same software functions running in its embedded processor, but
also providing additional hardware IP implementation and an embedded RTOS for
further purposes. This kind of SoPC implementation may offer identical functions
to hardware-oriented FPGAs [21–23] because the same hardware units can be
easily implemented in an SoPC. In addition, this SoPC-based implementation also
provides a compromise approach between the special-purpose application specified
integrated circuit (ASIC) hardware and general-purpose processors. With the merits
of low cost, low power consumption, small circuit size, IP re-usability and repro-
grammable hardware/software co-design, rapid prototyping, the SoPC technology
has been proven as a powerful means to realize sophisticated but complicated signal
processing algorithms, and high-performance but computation-intensive control laws
in many kinds of autonomous mobile robots. For example, the SoPC technology has
gained wide applications in designing soccer robots, small-scale humanoid robots,
entertainment robots, education robots and so on [24–27].

The objectives of this paper are to apply adaptive backstepping method to
construct an adaptive polar-space dynamic motion controller to achieve both sta-
bilization and trajectory tracking for an autonomous omnidirectional mobile robot,
and to implement such a motion controller in real time by employing the SoPC
technology. Overall, the contributions of the paper are threefold.

1. A dynamic model of omnidirectional mobile robot in polar coordinates is derived
by incorporating its dynamic effect and uncertainties caused by frictions, slip, and
time-varying payloads.

2. A polar-space adaptive motion control law is presented based on backstepping
techniques for regulation and trajectory tracking of the autonomous omnidi-
rectional mobile robot. The proposed controller will be proven to be globally
asymptotically stable via the Lyapunov stability theory.

3. An adaptive motion controller incorporating with an embedded processor and an
embedded operating system is constructed. This embedded adaptive motion con-
troller combining the hardware/software co-design and IP re-use concept takes
the advantages of efficient implementation, excellent flexibility and satisfactory
performance.

The rest of this paper is organized as follows. In Section 2, the polar-space dynamic
model of the omnidirectional three-wheeled mobile robot is briefly described.
Section 3 synthesizes an adaptive motion controller via the adaptive backstepping
approach in polar coordinates. Section 4 shows how to implement the polar-space
adaptive motion controller using the SoPC technology. Section 5 conducts several
simulations and experiments that are used for illustration of the merits of the
proposed controller. Section 6 concludes the paper.
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2 Dynamic Model in Polar Coordinates

This section is devoted to briefly describing the polar-space dynamic model of
an omnidirectional mobile robot with three independent omnidirectional wheels
equally spaced at 120◦ from one to another. Figure 1 shows the structure and
geometry of the omnidirectional driving configuration where θ denotes the vehicle
orientation, and L denotes the distance from any omnidirectional wheel to the centre
of the geometry of the robot. Due to structural symmetry of the robot, it is assumed
that the centre of geometry coincides with the centre of mass.

Before deriving the polar-space dynamic model, one defines the pose of the robot
as [xy θ ]T . If no slips occur, the robot’s kinematic equation in Cartesian space can be
given in [8]:
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⎣
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R denotes the radius of the omnidirectional wheels; Vi and ωi, i = 1,2,3, respectively
represent the linear and angular velocities of each wheel. Based on the kinematic

Fig. 1 Structure and geometry of the omnidirectional mobile platform in polar coordinates
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model in Cartesian space, the polar-space kinematic model of the omnidirectional
mobile robot is presented in [14]:

⎡
⎣

ṙ
ϕ̇

θ̇

⎤
⎦ = T−1 (r, θ − ϕ)

⎡
⎣

V1

V2

V3

⎤
⎦ , or

⎡
⎣

V1

V2

V3

⎤
⎦ = T (r, θ − ϕ)

⎡
⎣

ṙ
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where, as Fig. 1 shows, r denotes the polar radius, ϕ represents the polar angle,
T(r, 0 − ϕ) and T−1(r, 0 − ϕ) are respectively given by:
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Note that the model 2 is undefined for zero polar radius; the model is valid for the
condition r > ε where ε is an arbitrarily small and positive real number.

In order to derive the dynamic model of the robot, one assumes that the robot has
mass m, the moment of inertia J, and three uncertain but bounded forces exerted
on the driving wheels, and neglects the servomotors’ dynamics. The uncertain but
bounded friction forces may come from several factors, such as static friction between
the wheel and the surface, slip phenomena where the force may vary with the surface
made by the used materials, and time-varying payloads. Note that the friction force
exerted on wheeliis divided into two components: the first friction component FWi in
the wheel rolling direction and the second friction component FTi in the transverse
direction (normal to the first one) [9].

The total forces resulting from the force Fi from theith servomotor motor and the
friction force FWi exerted in the rotation direction of wheel i are given by:

Fi = αUi − βVi − FWi, i = 1, 2, 3. (3)

where Ui is the applied voltage of each motor; FWi satisfies the inequality
−mg

3 μWmax ≤ FWi ≤ mg
3 μWmax where μWmax is the maximum static friction coefficient

in the direction of wheel rotation and g is the acceleration of gravity. Note that
α = kt

J Rarg
, β = kekt+B

J Ra
, where Ra is the armature resistance of the servomotors; B is

the viscous coefficient; rg is the gear ratio; ke denotes the back-emf coefficient; kt

represents the torque coefficient; J denotes the moment of inertia; B is the viscous
coefficient. These parameters can be obtained from the motors’ data sheets provided
by the vender and the two parameters α and β are assumed constant but unknown.

With the force Eq. 3 and the friction force FTi exerted in the transverse direction
of wheel i, one obtains a second-order dynamic model of the omnidirectional
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mobile robot from Newton’s second law for translation and rotation [9] in Cartesian
coordinates:

M
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⎣
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inequality, i.e., ‖ f̄‖∞ ≤ kmax, where ‖ f̄‖∞ denotes the infinity-norm of the vector f̄
and kmax is the least upper bound of ‖ f̄‖∞.

Next, Eq. 4 will be expressed in polar coordinates. With both relations x = r cos ϕ

and y = r sin ϕ, and the model 2, it is easy to obtain:
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Note that the matrix 	 in Eq. 5 is invertible for any nonzero polar radius, r > ε > 0.
Substituting Eqs. 1 and 4 into Eq. 5 gives:

M

⎡
⎣

r̈
ϕ̈

θ̈

⎤
⎦ = α	−1 PT(θ)U − 	−1 M
 − 	−1 BP1(θ)V − ḡ (6)

where ḡ = 	−1 f̄ and ‖ḡ‖∞ ≤ c < ∞, namely that ḡ is bounded by the constant cfor
r > ε > 0. By defining the following two vectors Z1 = [

r ϕ θ
]T and Z2 = [

ṙ ϕ̇ θ̇
]T

,
one rewrites the dynamic model 6 in the following standard state space form:

Ż1 = Z2 (7a)

MŻ2 = α	−1 PT(θ)U − 	−1 M
 − 	−1 BP1(θ)V − ḡ (7b)

3 Adaptive Dynamic Motion Controller Design

This section synthesizes a polar-space adaptive motion controller for the robot’s
dynamic models 7a and 7b with two unknown but constant parameters, m and J,
and three uncertain but bounded friction forces exerted on the driving wheels. This
controller aims at steering the robot to reach the destination pose or exactly follow
desired differentiable trajectory described by Zd = [

rd ϕd θd
]T . In what follows,

the well-known adaptive backstepping technique [28] is employed to synthesize an
adaptive controller for regulation and trajectory tracking of the robot’s dynamic
models 7a and 7b with two unknown but constant parameters, m and J, and with the
uncertainty ḡ. In doing so, one defines the tracking error vector by Ze = Z1 − Zd.
Differentiating Ze and Ze yields:

Że = Ż1 − Żd = Z2 − Żd (8)

Considering Z2 as a virtual control which is designed as Z2 = φ (Ze) = −K1 Ze +
Żd, one obtains Że = −K1 Ze + Żd − Żd = −K1 Ze where the matrix K1 is diagonal
and positive definite. The asymptotic stability of the Ze dynamics can be shown via
selecting the quadratic Lyapunov function V1 = 1

2 Z T
e MK2

1 Ze, thus resulting in:

V̇1 = Z T
e − MK2

1 Że = Ż T
e MK2

1(−K1 Ze) = −Z T
e MK3

1 Ze < 0 (9)

To achieve the controller design, the following backstepping error vector is
defined by:

η = Z2 − φ(Ze) = Z2 + K1 Ze − Żd (10)
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From the definition 8, it follows that:

Że = Z2 − Żd = (
Z2 + K1 Ze − Żd

) − K1 Ze = η − K1 Ze (11)

Taking the time derivative of the error η and premultiplying η with the matrix M
give:

Mη̇ = MŻ2 + MK1 Że − MZ̈d = α	−1 PT(θ)U − 	−1 M


−	−1 BP−1(θ)V − ḡ + MK1 Że − MZ̈d

= α	−1 PT(θ)U −	−1 M
−	−1 BP−1(θ)V− ḡ+MK1η−MK2
1 Ze−MZ̈ d

(12)

Clearly, the control goal is to design an adaptive control law for U such that Ze →
0 and η → 0 as t → ∞. This can be easily done by choosing the subsequent adaptive
control law:

U = (
PT (θ)

)−1
α−1

(
M̂
 + BP−1 (θ) V + 	

[
M̂Z̈d −

(
K2 + M̂K1

)
η − ĉsgn (η)

])

(13)

where M̂ = diag
{

m̂, m̂, Ĵ
}

; K1 = diag {k11, k12, k13}; the matrix K2 is symmetric and

positive-definite and the control gain ĉ is real and positive. The parameter adjustment
rules for m̂, Ĵ and ĉ are to be determined in the following. Substituting Eq. 13 into
Eq. 12 gives:

Mη̇ = αPT(θ)
(
PT(θ)

)−1
α−1

(
M̂
+BP−1(θ)V+	[M̂Z̈d−(K2+M̂K1)η−ĉsgn(η)]

)

−	−1 M
 − 	−1 P−1(θ)V − ḡ + MK1η − MK2
e Ze − MZ̈d

= −	−1 M̃
 − M̃Z̈d + M̃K1η − K2η − MK2
1 Ze − ĉsgn(η) − ḡ (14)

where M̃ = diag
{

m − m̂, m − m̂, J − Ĵ
}

. The closed-loop stability of the feedback

error system and the parameter adjustment rules for m̂, Ĵ and ĉ can be simultaneously
accomplished by the Lyapunov stability theory. For the goal, one chooses the radial
and unbounded Lyapunov function:

V2 = 1

2
Z T

e MK2
1 Ze + 1

2
ηT Mη + 1

2λm
m̃2 + 1

2λJ
J̃2 1

2λc
c̃2, λm > 0, λJ > 0, λc > 0

(15)
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where c̃ = c − ĉ, J̃ = J − Ĵ and m̃ = m − m̂. Taking the time derivative of V2 using
the inequality ηT ḡ ≤ ‖η‖1 ‖ḡ‖∞ ≤ ‖η‖1 c yields:

V̇2 = Z T
e

(
MK2

1

)
Że + ηT Mη̇ + 1

λm

(
−m̃ ˙̂m

)
+ 1
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(
− J̃ ˙̂J

)
+ 1
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(
−c̃ ˙̂c

)

= −Z T
e MK3

1 Ze + ηT
(
−	−1 M̃
−M̃Z̈d+M̃K1η−K2η−MK2

1 Ze−ĉsgn (η)− ḡ
)

+ 1

λm

(
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)
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(
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)
+ 1
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(
−c̃ ˙̂c

)

= −Z T
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1 Ze − ηT	−1 M̃
 − ηT M̃Z̈d − ηT M̃K1η − ηT K2η − ηT MK2
1 Ze

−ηT ĉsgn (η) − ηT ḡ + 1

λm

(
−m̃ ˙̂m

)
+ 1

λJ

(
− J̃ ˙̂J

)
+ 1

λc

(
−c̃ ˙̂c

)

≤ −Z T
e MK3

1 Ze − ηT K2η + m̃
(

− 1

λm

˙̂m − (η1r̈d + η2ϕ̈d) + (
k11η

2
1 + k12η

2
2

) − W
)

+ J̃
(

− 1

λJ

˙̂J − η3θ̈d + k13η
2
3

)
+ c̃

(
‖η‖1 − 1

λc

˙̂c
)

(16)

where W = 
1 (η1 cos ϕ + η2 sin ϕ) + 
2 (η1 sin ϕ + η2r cos ϕ) .

If the following parameter update laws 17, 18 and 19 for m̂, Ĵ and ĉ are chosen by:

˙̂m = −λm (η1r̈d + η2ϕ̈d) + λm
(
k11η

2
1 + k12η

2
2

) − λmW (17)

˙̂J = λJ
(−η3θ̈d + k13η

2
3

)
(18)

˙̂c = λc ‖η‖1 (19)

then one obtains:

V̇2 ≤ −Z T
e MK3

1 Ze − ηT K2η ≤ 0 (20)

which shows that V̇2 is negative semidefinite. The use of La Salle invariance principle
indicates that Ze → 0 and η → 0 as time tends to infinity, and the estimates m̂, Ĵ and
ĉ are globally uniformly bounded. Hence, the globally asymptotical stability of the
closed-loop error system is ensured. This main result is summarized as below.

Theorem 1 Consider the robot’s dynamic models 7a and 7b with the desired
dif ferentiable trajectory Zd = [

rd ϕd θd
]T ∈ C2, rd �= 0, two unknown but constant

parameters m and J, and three uncertain but bounded forces exerted on the driving
wheels. If the adaptive control 13 along with the parameter adjustment rules 17, 18,
and 19 is applied, then the robot can be steered to achieve trajectory tracking in the
sense of globally asymptotical stability, i.e., Z1 → Zd and Z2 → Żd as t → ∞.

Remark 1 The adaptive dynamic control 13 will be reduced to the set-point stabi-
lization law if the reference trajectory is independent of time, i.e., a point. This fact
indicates that the control 13 can be though of as a unified control law to achieve both
set-point stabilization and trajectory tracking for the dynamic models 7a and 7b.
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Remark 2 The proposed polar-space adaptive controller 13 can be straightforward
extended to address the path following problem of this kind of omnidirectional
mobile robot [15].

Remark 3 Given the positive time constant τ , if the parameter adjustment rules 17,
18, and 19 for m̂, Ĵ and ĉ are modified based on the e-modification given by:

˙̂m = −λm (η1r̈d + η2ϕ̈d) + λm
(
k11η

2
1 + k12η

2
2

) − λmW − λmτ ‖η‖2 m̂ (21)

˙̂J = λJ
(−η3θ̈d + k13η

2
3

) − λJτ ‖η‖2 Ĵ (22)

˙̂c = λc ‖η‖1 − λcτ ‖η‖2 ĉ (23)

then V̇3 becomes:

V̇3 ≤ −Z T
e MK3

P Ze − ηT Kη + τ ‖η‖2

(
m̃m̂ + J̃ Ĵ + c̃ĉ

)

≤ −Z T
e MK3

P Ze − k̄min ‖η‖2
2 + τ ‖η‖2

(
(m − m̃) m̃ +

(
J − J̃

)
J̃ + (c − c̃) c̃

)

where k̄min denotes the minimum positive eigenvalue of the diagonal matrix K.

Hence, V̇3 is negative semidefinite outside the compact set
{
η| ‖η‖2 < τ(m2 + J2+

c2)/4k̄min

}
; this reveals that the tracking errors Ze and η are uniformly ultimate

bounded (UUB) and the estimates m̂, Ĵ and ĉ are also uniformly ultimate bounded
(UUB). These results indicate that the proposed adaptive control law 13 with the
parameter adaptation rules 21, 22, and 23 is capable of steering the platform with
the dynamic model 6 to reach any destination pose or follow any differentiable
and time-varying trajectory in the sense of uniformly ultimately bounded (UUB)
stability.

4 Embedded Realization

This subsection is devoted to using the SoPC technology to implement the previous
adaptive polar-space motion control law 13 for omnidirectional mobile robots.
Figure 2 depicts the architecture of the Altera FPGA implementation for the
proposed polar-space adaptive mobile robot controller, including hardware circuits
(IPs) and software code in one chip. This hardware/software co-design strategy
is more powerful and efficient than conventional hardware-only or software-only
designs do. The Avalon memory-mapped (Avalon-MM) interface is an address-
based read/write interface typical of reading/writing master–slave connections and is
used for reading/writing interfaces on master and slave components in a memory-
mapped system. As shown in Fig. 2, these components include microprocessors
(Nios II), memories, UARTs, custom logic (user IP) and timers. Note that these
components are connected by a system interconnect fabric.

The polar-space adaptive control law 13 for the mobile robot has been imple-
mented into the 32-bit Nios II processor whose numerical precision and computation
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Fig. 2 FPGA implementation of the polar-space adaptive mobile platform controller

speed are high enough to realize the adaptive control law. The user IP cores
(hardware circuits or custom logic) for this robotics application have been developed
by VHDL (VHSIC Hardware Description Language). The software-based adaptive
controller and hardware-based custom logic are connected to the system intercon-
nect fabric via Avalon-MM for achieving the adaptive motion controller in one
FPGA chip.

Figure 3 presents the embedded system design of the mobile robot in FPGA,
including hardware circuits (user IPs) and system IPs. As shown in Fig. 3, the polar-
space adaptive motion control law 13 has been efficiently implemented by software
executed by a 32-bit Nios II processor in FPGA chip. The 12-bit D/A converter,
AD7541, is employed to convert the output commands into analog voltage signals
for driving three DC brushless motors mounted on the three omnidirectional wheels.
The three quadrature-encoder-pulse (QEP) signals generated from the three motors
are fed back to the embedded motion controller. With the QEP signals, the real
position and orientation of the mobile robot can be dead-reckoned by the embedded
soft-core CPU Nios II. The QEP decoder hardware circuit was implemented by
VHDL, and the real-time OS MicroC/OS-II was ported into the FPGA chip to han-
dle the data communication with PC via TCP/IP protocol. Moreover, the embedded
soft-core Nios II processor works with the lwIP (lightweight IP) for the Ethernet
connectivity, thereby significantly reducing resource usage. The FPGA chip is Altera
Stratix EP1S10F780C6 with 10,570 LEs (Logic Element), 426 user I/O pins, 6 DSP
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Fig. 3 Embedded polar-space adaptive controller of the omnidirectional mobile platform in FPGA

blocks, 920,448 RAM bits memory, 6 PLLs (Phase-Lock Loop) and an embedded
Nios II 32-bit RISC (Reduced Instruction Set Computer) processor. The resource
usage of the proposed adaptive motion controller IC is 10,042 LEs (95% of total
LEs), 736,358 memory bits (80% of total RAM bits). With the hardware/software co-
design and SoPC technology, the adaptive motion controller takes the advantage of
software flexibility for complicated algorithm with low sampling frequency in motion
control (<1 kHz), and high sampling frequency required in hardware IP (>1 MHz)
[29].

5 Simulations, Experimental Results and Discussion

In this section, four simulations and three experiments are conducted to illustrate the
feasibility, performance and merit of the embedded adaptive polar-space dynamic
motion controller. The second and fourth simulations are respectively performed to
compare tracking performance with the non-adaptive controller in [14] and feedback
controller in [7]. All experiments are used for illustration of effectiveness of the
proposed adaptive polar-space controller for an embedded omnidirectional mobile
robot.

5.1 Simulation Results and Discussion

The aims of the simulations are to examine the effectiveness and performance of
the proposed adaptive motion control law 13 to the omnidirectional mobile robot
incorporated with the dynamic effect and friction. These simulations are done with
the following parameters: L = 0.23 m, R = 0.0508 m, m = 35 kg, J = 0.93 kg m2,
α = 0.757, β = 25.74, c = 1, K2 = diag{30,30,30} and K1 = diag{1,1,1}. All the friction
forces, FWi and FTi, i = 1,2,3, are assumed to be 5 N.
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5.1.1 Adaptive Limacon of Pascal Trajectory Tracking

This subsection aims to conduct two simulations to investigate the tracking perfor-
mance of the adaptive motion controller 13. In the first simulation, the robot gets
started at

[
r0 ϕ0 θ0

] = [
1m 0rad 0rad

]
, and then is steered to move along the special

trajectory, called Limacon of Pascal described by rd (t) = 2 + 1.5 cos ϕd (t)(unit: m),

-1 -0.5 0 0.5 1 1.5 2 2.5 3 3.5 4
-3

-2

-1

0

1

2

3

X(m)

Y
(m

)

(a)

(b)

0 2 4 6 8 10
-2.5

-2

-1.5

-1

-0.5

0

0.5

Time(s)

T
ra

ck
in

g 
er

ro
rs

-  Desired path 

O  Actual path

x  Tracking error of r

o  Tracking error of ϕ
*  Tracking error of θ

Initial pose

Fig. 4 a Simulation result of the Licamon of Pascal trajectory tracking. b Tracking errors in respect
to time
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Fig. 5 Simulation result of the Licamon of Pascal trajectory tracking using the non-adaptive
controller in [14]: the parameter m is altered to m = 41 kg in the time interval 0 ≤ t ≤ 15 s

ϕd (t) = 0.2t(unit: rad), and θd (t) = π/2 (unit: rad). To make the motion controller
exhibit its adaptive performance, the mass parameter m is changed to m = 41 kg
during the time duration 0 ≤ t ≤ 15 s. Figure 4 presents the simulated trajectory
of the controlled robot to track the Limacon of Pascal trajectory in the whole time
interval 0 ≤ t ≤ 40 s. As can be seen in Fig. 4, the simulation result indicates that
the proposed motion controller is capable of steering the mobile robot to track the
desired trajectories with the described uncertainties.

The second simulation was conducted to compare the proposed adaptive motion
controller 13 with the non-adaptive polar-space kinematic controller in [14]. Figure 5
shows the tracking performance of the non-adaptive controller for the parameter
variations identical to Fig. 4. Comparing Fig. 5 with Fig. 4, the adaptive motion
controller has a more smooth response to track the Licamon of Pascal trajectory than
the non-adaptive one does, especially in the time interval 0 ≤ t ≤15 s in Fig. 5. The
results clearly indicate that the proposed adaptive motion controller 13 outperforms
the non-adaptive one [14].

5.1.2 Adaptive Rose Curve Trajectory Tracking

This simulation is devoted to investigating the performance of the adaptive
rose curve trajectory tracking. The rose curve trajectory is expressed by rd (t) =
5 cos

(
1
3ϕd (t)

) + 6(unit: m), ϕd(t) = 0.2t(unit: rad), and θd(t) = π /2 (unit: rad). In
the simulation, the initial starting pose is given by

[
r0 ϕ0 θ0

] = [
11m 0rad 0rad

]
in the whole time interval 0 ≤ t ≤ 100 s. Figure 6 shows the simulation result of
the trajectory tracking using the proposed polar-space adaptive motion controller.
Note that the parameter m is changed to m = 41 kg during the time duration
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Fig. 6 a Trajectory tracking result of the rose curve using the polar-space control law 13. b Tracking
errors in respect to time

0 ≤ t ≤ 15 s. The result shows that the proposed motion controller steers the robot to
achieve trajectory tracking for the rose curve. The fourth simulation was conducted
to compare the proposed adaptive motion controller 13 with the Cartesian-space PI
feedback controller in [7]. Figure 7 depicts the tracking performance of the feedback
controller for the parameter variations identical to Fig. 6. In comparison with Fig. 6,
the adaptive polar-space motion controller has a more smooth response to track the
rose curve. These results also show that the proposed polar-space adaptive controller
outperforms the Cartesian-space PI controller in tracking this special trajectory.
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5.2 Experimental Results and Discussion

5.2.1 System Architecture of the Experimental Omnidirectional Mobile
Service Robot

The aim of the following three experiments is to examine the effectiveness and per-
formance of the proposed embedded polar-space adaptive motion control method
by constructing an experimental mobile service robot incorporating with the au-
tonomous mobile robot and an on-board manipulator. Figure 8 shows the block
diagram of the experimental omnidirectional mobile service robot which has three
subsystems: PC-based vision system, SoPC-based embedded one-arm control system
and SoPC-based embedded mobile robot control system. To connect these three
subsystems, the experimental setup constructed the networked embedded system
using the embedded processor, RTOS and lwIP.

The vision system is composed of CCD cameras and one compact PC to execute
image processing algorithm to determine the true position of the desired object.
The position information is delivered into genetic algorithm (GA) for resolving
redundant problem to find the optimal configuration of the mobile robot and the
manipulator. The optimal configuration information for the whole service robot is
sent to the two embedded systems to control the mobile robot and the manipulator
via standard TCP/IP protocol. The two embedded systems aim to perform motion
control of the servo motors. All the hardware and software design of the omnidirec-
tional mobile robot are integrated into the FPGA chips.

The experimental SoPC-based omnidirectional mobile service robot is shown
in Fig. 9. The proposed unified motion control law 13 was implemented using

Fig. 9 Picture of the experimental omnidirectional mobile service robot
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C/C++ code and standard programming techniques in the Altera Nios II embedded
processor. The FPGA chip integrated the embedded processor, RTOS, lwIP, and
VHDL-based IP circuits to perform the adaptive motion control law of the mobile
robot. All the experiments were conducted with the system parameters: L = 23 cm
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and R = 5.08 cm. Moreover, in the experiment, the three encoders were employed to
measure the angular velocities of the three DC brushless motors in order to achieve
the dead-reckoning of the robot. The purpose of the dead-reckoning of the robot
is, given a correct initial pose, to continuously keep track of its correct poses with
respect to the reference frame. This dead-reckoning pose estimation can be improved
by fusing the laser scanning data.
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5.2.2 Point Stabilization

The first experiment was conducted to investigate the regulation performance of
the proposed polar-space adaptive control law 13. The initial poses of the om-
nidirectional mobile robot were assumed at (x0, y0, θ0,) = (1 cm, α cm, 0rad),
and the desired final eight goal poses were located on a circle with the radius of
100cm and given by (xd, yd, θd) = (100 cos(α) cm, 100 sin(α) cm, π /2 rad), where
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α = 0, π/4, π/2, 3π/4, π, 5π/4, 6π/4, 7π/4, respectively. Figure 10a depicts all
the trajectories of the omnidirectional mobile robot from the initial pose to the eight
goal poses and Fig. 10b presents the orientation response in the case of α = π/4.

5.2.3 Polar-Space Adaptive Archimedes’ Spiral and Rose Curve Trajectory Tracking

This subsection aims at constructing two experimental results to explore how the
proposed embedded polar-space motion controller 13 steers the mobile robot to
track the Archimedes’ spiral trajectory described by rd (t) = 10ϕd (t) + 1 (Unit: cm)
with θd(t) = 0. (unit: rad) and the rose curve trajectory expressed by rd (t) = 16 +
10 cos (4ϕd (t))(Unit: cm) with θd (t) = π/4 (unit: rad). Figures 11 and 12 respectively
demonstrate the experimental results of Archimedes’ spiral and rose curve trajectory
tracking for the mobile robot. These results indicate that the proposed adaptive
motion controller 13 is capable of successfully steering the omnidirectional mobile
robot to track these special trajectories.

6 Conclusions

This paper has presented an embedded polar-space adaptive motion controller for
an autonomous omnidirectional mobile robot with three independent driving wheels
equally spaced at 120◦ from one to another. With the derived polar-space dynamic
model, the adaptive motion controller has been synthesized via adaptive backstep-
ping to achieve trajectory tracking and stabilization simultaneously. The proposed
adaptive motion controller has been efficiently implemented into an FPGA chip
using the hardware/software co-design and SoPC techniques. The reusable user IP
core library has been rapidly developed in the same FPGA chip by incorporating with
the embedded processor and the RTOS in the same chip, in order to steer the mobile
robot to follow the desired trajectory. From the simulation results, the proposed
control method has been shown to outperform the conventional Cartesian-space PI
feedback control approach in [7] and non-adaptive kinematic polar-space controller
in [14]. Through experimental results, the proposed polar-space adaptive motion
control scheme has been successfully shown to be capable of giving satisfactory
dynamic tracking performance for the embedded three-wheeled omnidirectional
mobile robot. An interesting topic for future research would be the extension of
the aforementioned technique and method to four-wheeled omnidirectional mobile
robots.
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