1,415 research outputs found

    Cloudifying Desktops – A Taxonomy for Desktop Virtualization

    Get PDF
    Compared to traditional desktops, the implementation of desktop virtualization can leverage cost reductions and enable desktop access via mobile devices. Consequently, researchers and practitioners increasingly focus on virtualized desktops and Desktop as a Service (DaaS). However, a consistent definition for these technologies and the related delivery models does not exist yet. Therefore, we conducted a literature analysis which revealed that optimized resource allocation and performant DaaS infrastructures are the primary topics in research. Afterward, we developed a taxonomy to categorize extant virtual desktop delivery models and propose a holistic definition as theoretical framework for DaaS

    Enhancing Video Streaming Quality of DASH over Cloud/Edge Integrated Networks

    Get PDF
    With the advancement of mobile technologies and the popularity of mobile devices, mobile video streaming applications/services have increased considerably in recent years. Dynamic Adaptive Streaming over HTTP (DASH) or MPEG-DASH is one of the most widely used video streaming techniques over the Internet. It adapts video sending bit rate according to available network resources, however, in case of low bandwidth, DASH performs poorly, which will cause video quality degradation and video stalling. Mobile Edge Computing (MEC) or Multi-access Edge Computing, in connection with the backend cloud has been used to reduce latency and overcome some of the video quality degradation problems for mobile video streaming services. However, an end user might be suffering from video quality drop downs when s/he moves out from the coverage of one node to another or when the mobile network condition goes down. To tackle the degradation problems and assure enhanced video streaming quality, a novel follow-me Edge Node Prefetching (ENP) scheme was proposed and developed in the project, by prefetching video segments in advance in the upcoming node used by the end-user. A test bed was set up consisting of a backend cloud (OpenStack), two edge nodes (LXD Containers) and one mobile device, the ENP algorithm was implemented on the cloud server and client sides. Experiments were carried out for the DASH streaming service based on Dash.js from the DASH Industry Forum. Preliminary results show that the ENP scheme can maintain higher video quality and less service migration time when moving from one mobile node to another, when compared to existing approaches, i.e. live migration in Follow-me-Edge and the C-up schemes. The proposed scheme could be useful in smart city applications or providing seamless mobile video streaming services in Cloud/Edge integrated networks.Ibrahim Mohammedamee

    Advances in Grid Computing

    Get PDF
    This book approaches the grid computing with a perspective on the latest achievements in the field, providing an insight into the current research trends and advances, and presenting a large range of innovative research papers. The topics covered in this book include resource and data management, grid architectures and development, and grid-enabled applications. New ideas employing heuristic methods from swarm intelligence or genetic algorithm and quantum encryption are considered in order to explain two main aspects of grid computing: resource management and data management. The book addresses also some aspects of grid computing that regard architecture and development, and includes a diverse range of applications for grid computing, including possible human grid computing system, simulation of the fusion reaction, ubiquitous healthcare service provisioning and complex water systems

    Service-centric networking

    Get PDF
    This chapter introduces a new paradigm for service centric networking. Building upon recent proposals in the area of information centric networking, a similar treatment of services – where networked software functions, rather than content, are dynamically deployed, replicated and invoked – is discussed. Service-centric networking provides the mechanisms required to deploy replicated service instances across highly distributed networked cloud infrastructures and to route client requests to the closest instance while providing more efficient network infrastructure usage, improved QoS and new business opportunities for application and service providers. </jats:p

    Archiving and Delivery of 3DTI Rehabilitation Sessions

    Get PDF
    In this paper we present CyPhy: a cyber-physiotherapy system that brings daily rehabilitation to patient’s home with supervision from trained therapist. With its archiving and delivery features, CyPhy is able to 1) capture and record RGB-D and physiotherapy-related medical sensing data streams in home environment; 2) provide efficient storage for rehabilitation session recordings; 3) provide fast metadata analysis over stored sessions for review recommendation; 4) adaptively deliver rehabilitation session under different networking capabilities; 5) support smooth viewpoint changing during 3D video streaming with scene rendering schemes tailored for devices with different bandwidth and power limitations; and 6) provide platform-independent streaming client for various mobile and PC environments

    Effective and Economical Content Delivery and Storage Strategies for Cloud Systems

    Get PDF
    Cloud computing has proved to be an effective infrastructure to host various applications and provide reliable and stable services. Content delivery and storage are two main services provided by the cloud. A high-performance cloud can reduce the cost of both cloud providers and customers, while providing high application performance to cloud clients. Thus, the performance of such cloud-based services is closely related to three issues. First, when delivering contents from the cloud to users or transferring contents between cloud datacenters, it is important to reduce the payment costs and transmission time. Second, when transferring contents between cloud datacenters, it is important to reduce the payment costs to the internet service providers (ISPs). Third, when storing contents in the datacenters, it is crucial to reduce the file read latency and power consumption of the datacenters. In this dissertation, we study how to effectively deliver and store contents on the cloud, with a focus on cloud gaming and video streaming services. In particular, we aim to address three problems. i) Cost-efficient cloud computing system to support thin-client Massively Multiplayer Online Game (MMOG): how to achieve high Quality of Service (QoS) in cloud gaming and reduce the cloud bandwidth consumption; ii) Cost-efficient inter-datacenter video scheduling: how to reduce the bandwidth payment cost by fully utilizing link bandwidth when cloud providers transfer videos between datacenters; iii) Energy-efficient adaptive file replication: how to adapt to time-varying file popularities to achieve a good tradeoff between data availability and efficiency, as well as reduce the power consumption of the datacenters. In this dissertation, we propose methods to solve each of aforementioned challenges on the cloud. As a result, we build a cloud system that has a cost-efficient system to support cloud clients, an inter-datacenter video scheduling algorithm for video transmission on the cloud and an adaptive file replication algorithm for cloud storage system. As a result, the cloud system not only benefits the cloud providers in reducing the cloud cost, but also benefits the cloud customers in reducing their payment cost and improving high cloud application performance (i.e., user experience). Finally, we conducted extensive experiments on many testbeds, including PeerSim, PlanetLab, EC2 and a real-world cluster, which demonstrate the efficiency and effectiveness of our proposed methods. In our future work, we will further study how to further improve user experience in receiving contents and reduce the cost due to content transfer
    • …
    corecore