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ABSTRACT 

This chapter introduces a new paradigm for service centric networking. Building upon recent proposals in 

the area of information centric networking, a similar treatment of services – where networked software 

functions, rather than content, are dynamically deployed, replicated and invoked – is discussed. Service-

centric networking provides the mechanisms required to deploy replicated service instances across highly 

distributed networked cloud infrastructures and to route client requests to the closest instance while 

providing more efficient network infrastructure usage, improved QoS and new business opportunities for 

application and service providers.  
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INTRODUCTION 

There is an emerging trend for more demanding services to be deployed across the Internet and in the 

cloud. Applications such as virtual and augmented reality, vehicle telematics, self-navigating cars/drones 

and multi-user ultra-high-definition telepresence are envisioned beyond the social and office-based 

applications such as email and photo sharing applications common in today’s cloud computing world. 

While future deployments such as 5G and all-optical networks are aiming to reduce network latency to 

below 5ms and increase throughput by up to 1000 times (Huawei, 2013) over both fixed and mobile 

networks, new techniques for efficiently deploying replicated services close to users and the means for 

selecting between them at request/invocation time are required. Deploying such highly demanding 

services and providing the network capabilities to access them requires a focused approach, combining 

the features of service management and orchestration with dynamic service resolution and routing 

mechanisms leading to Service-centric Networking, the subject of this chapter. The focus of this chapter is 

how to deploy low latency, high bandwidth services on today’s IP infrastructures, but as the next 

generation of wireless and optical networks are rolled out, service-centric networking techniques for the 

localisation of processing nodes and the selection of running instances will become even more crucial for 

supporting the vision of the tactile Internet (Fettweis, 2014). 

 

The Internet was originally conceived as a data communications network to interconnect end-hosts: user 

terminals and servers. The focus was on delivering data between end points in the most efficient manner. 

All data was treated in the same way: as the payload of packets addressed for delivery to a specific end-

point. In recent years, since the development of the world-wide web, the majority of traffic on the Internet 

originates from users retrieving content. The observation that many users were downloading the same 
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content led to the development of content delivery/distribution networks (CDNs). CDNs cache content 

closer to the users to reduce inter-provider traffic, and improve users’ quality of experience by reducing 

server congestion through load balancing requests over multiple content replicas. In a content-centric 

world, communications are no longer based around interconnecting end-points, but are concerned with 

what is to be retrieved rather than where it is located. CDNs achieve this by building overlays on top of 

the network layer but recent research in the domain of Information-Centric Networking has taken matters 

a stage further by routing requests for named content to caches that are dynamically maintained by the 

network nodes themselves, rather than having predefined locations of the content, pushed a priori based 

on predicted demand. Such an approach represents a basic paradigm shift for the Internet. 

 

Although content/information centric networking has received significant attention recently, the approach, 

like classical CDNs, was originally designed for the delivery of non-interactive content and additional 

means are needed to support distributed interactive applications. Cloud computing on the other hand has 

been developed to deliver interactive applications and services in a scalable manner to cope with elasticity 

of demand for computing resources, exploiting economies of scale in multi-tenancy data centres. 

However today’s typical cloud-based applications tend to be deployed in a centralised manner and 

therefore struggle to deliver the performance required by more demanding, interactive and real-time 

services. Furthermore, deploying cloud resources in highly distributed network locations presents a much 

more complex problem than those faced in individual data centres or cloud infrastructures with only a 

handful of geographical locations.  

 

Service-centric networking (SCN) is a new networking architecture which aims at supporting the efficient 

provisioning, discovery and execution of service components distributed over the network. Today’s cloud 

computing architectures are centralised and agnostic of wide-area network performance outside of the 

data centre. This makes them unfit for geographically distributed services with tight QoS constraints and 

high bandwidth and computation demands. SCN combines service instantiation and network routing at a 

fine granularity. Dynamic instantiation of services close to the consumers will naturally adapt to 

variations in demand. An important dimension includes lightweight interactions between layers for 

service placement and in-network instance selection without overburdening the latter layer with service-

specific logic. 

 

In SCN, we build upon the current trend for edge and fog computing (Cisco, 2014) and envision large 

numbers of service execution environments distributed throughout the Internet: in access points close to 

the users; co-located with routers within an ISP’s network; in local data centres owned and operated by 

ISPs; and in traditional data centres and service farms operated by cloud and service providers. As an 

example, Figure 1 shows three interconnected Autonomous Systems (ASes)/Internet Service Providers 

(ISPs), each has one or more data centres acting as service execution environments. A service has been 

instantiated in two locations. From a service management and placement perspective, the orchestrator 

logic needs to decide in which service execution environment a service should be instantiated. Given this 

rich set of resources, SCN aims to optimise the location of individual service component instances 

according to the performance requirements of the application, the location of its users and according to 

the experienced demand. Replicas of service components may be provisioned according to predicted load 

levels and furthermore they can be instantiated on-the-fly to deal with demand elasticity. The service 

placement logic needs to trade-off the costs of instantiating services everywhere in terms of the quantity 

of data-centre resources required to host these instances against the expected performance of the 

intervening network which will affect the quality of experience of the users. 
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Figure 1: Service-centric Networking – network level view 

The service instance placement problem can be formalised as provisioning service component 

instantiation points, given the location and capabilities of infrastructures, varying demand patterns and the 

QoS requirements of the service. A key challenge of service-aware networking is the routing and load-

balancing of service requests to the best instances given the existence of many different service replicas in 

the network that could serve the request. To support dynamic service instantiation, lightweight 

component-based virtualisation technology with reliable isolation properties is required, as well as service 

description and orchestration languages that can be used to describe an application in terms of service 

components and interactions. 

 

To meet the service performance targets as well as to support resilience in case of service node failure or 

network or service-level congestion there will be many replicas of the same service component instance 

running throughout the Internet. The users, the service providers or the network itself must be able to 

select an appropriate one. SCN requires a service-anycast capability for resolution in the network so that 

service instance selection can be optimised on the grounds of proximity, network performance metrics 

and server load. For instance, with reference to Figure 1, User_1 will receive better network performance 

from selecting instance X rather than Y, however, if the execution environment hosting instance X is 

overloaded it may be better for User _1’s requests to be resolved to instance Y, or for the SCN system to 

create an appropriate service instance close to the user on the fly. The user/end host should simply request 

the service by name, with the binding to instance X or Y being determined by the name resolution/routing 

system according to a combination of network and service metrics (further details are contained in the 

section on Service Resolution and Routing, below). 

 

The remainder of this chapter is organised as follows: First related work and background technologies are 

discussed, followed by the SCN-specific requirements. The problem of service management and 

orchestration is introduced highlighting the necessary functionality. Then the role of the networking 

functions for service resolution and routing are discussed. The chapter goes on to describe one possible 

overall architecture being studied in the FUSION project for bringing together the necessary service and 

network layer capabilities for SCN operations. The practicalities of designing services for being deployed 

and dynamically managed in SCN are presented in the next section. Practical system deployment 

considerations are discussed from the perspectives of the overall business model issues, the software 

developer and network operator. Finally conclusions on SCN are drawn and future research directions are 

highlighted. 

 

BACKGROUND 

Over more than a decade, Content Delivery Networks (CDNs) have become one of the most important 

technologies commonly used throughout the Internet in support of scalable delivery of content including 

rich media, web acceleration/caching/small file delivery and large file/software delivery. CDNs cache 

content closer to the users to reduce traffic in interconnection links, and improve the quality of experience 

by providing higher downloading speed, lower delays and improve availability of content compared to 



 

 

what is achievable with standalone servers. To this end CDNs perform optimisations on different levels of 

system architecture. At the network level, they intelligently optimise the allocation of content among data 

centres, and route requests so as to assign clients to optimal servers. In addition, multiple content delivery 

mechanisms are used including such features as Web application acceleration, IP acceleration, Web 

application streaming, secure content delivery, large file optimisation, download manager, to mention a 

few (Akamai, 2014b; Conboy, 2014; Deutsche Telekom, 2014; Edgecast, 2014; Incapsula, 2014). 

Accordingly, a high-level functional architecture of a typical CDN consists of threei main building blocks, 

namely content deployment (responsible for policy-based replication and caching), content delivery 

(including request routing and lower level content delivery mechanisms), and monitoring (providing 

measurement data for the purposes of two former blocks) (Buyya, Pathan, & Vakali, 2008). At the heart 

of CDN is the request routing system, which typically uses customised Domain Name System (DNS)-

based resolution to direct client requests to optimal servers in compliance with CDN provider policies. To 

offer advanced optimisation capabilities such as those mentioned before, CDN solutions are often being 

combined with network appliances to form application delivery networks (ADN). In such a setting, 

application delivery controllers (ADC) of ADN optimise the delivery of application traffic from/to 

distributed data centres at the transport level and load balance traffic within data centres, while the CDN 

is responsible for routing user requests to data centres hosting appropriate instances of the application. 

 

Application delivery networks (ADN) mentioned above share many principles with CDNs, and the basic 

difference between them is that ADNs are able to recognise multiple applications on-the-fly and optimise 

their performance by using different forms of application acceleration and employing layer 4-7 switches 

to load balance traffic over a pool of servers located in a single data centre. In fact, while CDNs are 

strongly oriented towards optimal delivery to large populations of clients using CDN resources distributed 

in many sites, most ADNs operate locally at the level of a single data centre. The latter provides an 

explanation why merging both technologies becomes a natural evolutionary step for CDN providers. A 

simpler, yet still distributed scenario assumes Geo DNS- based resolution of client requests among 

multiple instances of the application with ADCs playing the role of reverse proxies, for example see 

(Aiscaler, 2014). 

 

The concept of SCN builds on CDNs and ADNs which provide partial solutions to the problems targeted 

by SCN. In particular, SCN, accounting for service-level information, fills the gaps in network-wide 

service orchestration and introduces service routing to provide intersection with traffic engineering in 

transport network and data centres. 

 

Information Centric Networking (ICN) has attained significant attention in recent years (Aranda & 

Zitterbart, 2010), (Trossen, 2011), (Sail, 2011), (Named Data Networking, 2013), (GreenICN, 2013). A 

dedicated research group in IRTF has been established (ICNRG, 2014). Representative ICN proposals 

include such designs as CCN, PSIRP/PURSUIT and NetInf, to mention a fewii. As noted in (Ghodsi, 

Shenker, Koponen, Singla, Raghavan, & Wilcox, 2011), all these architectures share three main design 

principles, namely use of Publish-Subscribe primitives, adoption of universal (in network) caching, and 

content-oriented security model tightly coupled with the naming scheme adopted by the design. The 

Pub/Sub communication model makes the provider and the user mutually invisible and allows them to be 

online independently of each other. This feature also opens the door to the use of ubiquitous caching with 

the aim of optimising performance and saving network resources. To allow ubiquitous caching, all ICN 

designs introduce content-oriented security in place of classical models based on securing the connection. 

For a comprehensive comparative survey of all recent ICN designs the reader is referred to (Xylomenos et 

al., 2013). From our perspective, an important fact about ICN is that the introduction of this paradigm by 

itself does not provide explicit solutions to many problems related to future services. The first explicit 

attempt to extend ICN from content to services (Named Function Networking, 2013) contributes to the 

task of sequencing the services in a service chain, but it leaves open several problems including optimal 

instance selection, which require more sophisticated coordination than that needed for caching of static 



 

 

content. 

 

Cloud computing has been developed to deliver applications and services in a scalable manner to cope 

with elasticity of demand for computing resources, exploiting economies of scale in multi-tenancy data 

centres. Just as with CDN services in the past, cloud resources are now being deployed in local ISPs and 

other distributed network locations, presenting a much more complex problem than can be solved with 

generalised resource assignment algorithms in individual data centres or cloud infrastructures with only a 

handful of geographical locations. While new networking paradigms for intra-data centre communications 

have been developed to facilitate the distribution of data-processing intensive applications over a flexible 

number of computing devices within the same data centre, these techniques and technologies are limited 

to specific data centres and services, and have not been rolled out to the wider-area Internet. Although 

cloud federation has received a lot of attention in recent years the techniques have been aimed at 

improving scalability for cloud-based applications and they do not address the problem of fine-grained 

localisation of processing nodes in the network between the federated clouds. Similar conclusions apply 

also to the converged use of NaaS and cloud technologies despite a lot of research that has been done in 

this domain (Qiang, Yuhong, Vasilakos, 2012.). The latter refers in particular to related activities 

undertaken recently in the context of NFV (ETSI, 2013) where the joint use of network and data centre 

resources is key for the realisation of distributed network services. 

 

Several distributed service management architectures have been proposed with IRMOS, NGSON and 

PADIS being representative recent examples, discussed in the following paragraphs. 

 

The goal of Interactive Real-time Multimedia Applications on Service Oriented Infrastructures (IRMOS) 

(Menychtas, 2010) is to enhance SLAs in a grid/cloud computing platforms with providing strict quality 

guarantees in the transport network. Automatic deployment and instantiation of a service using resources 

distributed in a network is based on an abstract description of all the execution environment requirements 

of the service (given in the form of Virtual Service Network, VSN), including the description of the 

connectivity requirements between service components and their individual QoS demands. To this end 

IRMOS integrates the orchestration of network resource management and allocation functions for cloud 

services based on VSN specification. IRMOS relies on strict QoS guarantees so it fits best to managed 

networks and needs adoptions for wide area Internet.  

 

Next Generation Service Oriented Network (NGSON) (IEEE, 2011) identifies several individual 

architectural components and functionalities, however, restricted basically to service routing and 

composition. NGSON provides capabilities for service composition/orchestration which take the form of 

ordering the invocation of possibly multiple basic services in response to a single request. It also adopts 

the concept of centralised controller for network resource and QoS control which conceptually 

corresponds to traditional resource managers and can easily be extended to the form of an SDN controller. 

NGSON does not cover resource management in data centres and service placement. Extensions to 

NGSON should thus include service orchestration capable of allocating and load balancing among service 

instances through active cooperation with distributed execution environment. As of today, only the 

functional architecture of NGSON has been standardised, but no interface specifications are available. A 

proof-of-concept implementation was based on the RESTful protocol for service routing and the use of 

Business Process Execution Language (BPEL) notation for composite service orchestration (Lee & Kang, 

2012). 

 

PaDIS (Provider-Aided Distance Information System) (Poese at al., 2012a) is designed as an ISP-

operated system to improve server selection for users’ requests in the context of CDNs. PaDIS works at 

the level of local DNS. It intercepts DNS responses for client queries from the authoritative CDN DNS 

server and rewrites the CDN surrogate server address provided in the A/AAAA record with the address of 

the surrogate considered optimal for this query. Optimal surrogate selection by PaDIS is based on the 



 

 

local knowledge of ISP about network conditions and topological diversity of CDN surrogate servers 

learned through sniffing DNS traffic. Conceptually, PaDIS thus allows ISPs to enter the request routing 

loop of a CDN in order to improve delivery performance based only on server selection without explicitly 

changing routing in the network. This general idea of cooperation between ISPs and CDNs has 

subsequently been enhanced by allowing ISPs to (1) rank CDN surrogate servers pre-selected by the CDN 

instead of rewriting DNS responses on its own (Poese at al., 2012b) and (2) get involved in the process of 

allocating CDN surrogate servers by automated on-demand negotiation and deployment of new CDN 

surrogates based on an IaaS model (Frank et al., 2013). 

 

One of the requirements for service-centric networking is the ability of the platform to take network state 

information into account for the purposes of both the orchestration and service routing. In this context we 

note that in addition to using raw monitoring data, service-centric networking may potentially benefit 

from concepts originally developed for overlay applications. A notable example of such a solution is the 

concept of Application Layer Traffic Optimization (ALTO) (Seedorf & Burger, 2009) which provides 

network information in the form of abstractions like network map and cost map based on modelling the 

network as a set of equivalence classes known as Provider-defined Identifier (PID) being collections of 

end-point addresses. Moreover, ALTO extensions to cover data centre information have also been 

proposed recently (Lee, Bernstein, Dhody, & Choi, 2014). Despite known proof-of-concept 

implementations of ALTO (Scharf et al., 2012) and a first commercial product being available 

(Dharwadkar, 2011), practical adoption of ALTO has been slow. Considering the successful use of 

(partially) similar services like Radar offered by Cedexis (Cedexis, 2014) one can expect that ALTO 

additionally needs extensions to multi-domain environments. 

 

Summarising the above discussion, we conclude that while the integration of CDNs, ADNs, NGSON and 

other known solutions like ALTO is possible at a conceptual level, it is hard to just take existing 

technologies in order to achieve the goals of SCN. The most important missing parts are network-wide 

service orchestration and support for the implementation and propagation of network policies to allow 

service resolution taking account of server load, data centre resources and network conditions. The SCN 

approach is holistic in addressing these problems as outlined in the remainder of this chapter. 

 

REQUIREMENTS FOR SERVICE-CENTRIC NETWORKING 

In this section, the requirements for orchestrating and managing demanding interactive services and 

execution resources across a distributed set of heterogeneous execution environments are introduced, 

covering the high-level non-functional service and business requirements that impact SCN. 

 

Service-related requirements 

The services that could benefit from a service-centric networking infrastructure share a number of key 

properties and requirements that potentially have a huge impact on the overall SCN architecture.  

 

Network sensitivity 

By network sensitivity, we imply that the functional behaviour of these services is sensitive with respect 

to the network bandwidth, latency and/or jitter characteristics . Placing these services too far from the end 

users (e.g., in distant centralised cloud environments) can result in bad QoS, eventually bad QoE, or 

increased service cost. This is a key necessary property for all distributed SCN architectures, since non 

network-sensitive services can easily be deployed on classic cloud infrastructures. 

 

Real-time services 

Along with the network sensitive nature of services comes the real-time nature of the services, as these 

envisioned services need to deliver data or a data stream within a specific deadline or at a particular rate. 

Real-time services will also be sensitive to factors such as computational capacity or storage resources 



 

 

within a data centre (DC). 

 

User session longevity 

We envision that services with possibly long active sessions can benefit from service-centric networks. 

For example, a personalised video transcoding service or game rendering service can be active for several 

minutes to hours. During this period, potentially large amounts of compute and networking resources may 

be consumed. Proper service placement, deployment and selection strategies are needed to meet these 

service requirements. 

 

Resource intensity 

The combination of the above service requirements on real-time behaviour and long user sessions 

necessitates that demanding services must be deployed and managed very efficiently. Many of these 

services will have very specific resource requirements (e.g., compute-bound, memory-bound, I/O-bound, 

network-bound, etc.) and may rely on particular accelerators for efficient and effective operation (e.g., a 

3D live rendering service typically requires a GPU). Careful selection of appropriate cloud environments 

and execution nodes is essential for the intended service classes. 

 

Distributed service graphs 

Complex services typically consist of a graph of service components that together perform complex 

functions. Each of these service components in a service-centric network can be deployed in one or more 

execution environments depending on the various interconnection and execution requirements and 

constraints. Such services require a more complex orchestration and service selection/routing considering 

the overall end-to-end performance of the service across multiple domains. 

 

Instant on-the-fly deployment 

Accurately predicting service demand patterns is not trivial, especially combined with the fact that 

services need to be deployed across a potentially large number of execution environments, resulting in a 

fragmented deployment of services across the Internet. In case of unanticipated load patterns, services 

may need to be deployed instantly to be able to serve new incoming requests with similar QoS. Secondly, 

in a universal service-centric networking system where tens of thousands of services can be managed, 

there will be a long tail of services for which pre-deployment of some instances in all locations is not 

cost-effective. Under these circumstances, the service-centric networking system should be able to 

immediately deploy new instances on-the-fly in order to handle these infrequent or unpredictable service 

requests. As a result, a service-oriented networking system should incorporate on-demand service 

placement and deployment mechanisms in addition to service selection mechanisms. 

 

Security  

Due to the dynamic management and orchestration mechanisms, security (including integrity) regarding 

service management and service selection are crucial. For example, a service-centric networking system 

should be able to guarantee that misbehaving entities cannot pretend to be other services and that requests 

do not arrive at the wrong service instance. Proper service authorisation and authentication mechanisms 

should be in place. 

 

Business-related requirements 

Business-related requirements can also drive and constrain service-centric networks for a number of 

reasons: 

• First, service-centric networks must simplify service deployment without having to deal with the 

complexities of a highly distributed infrastructure.  

• Secondly, service oriented networks should allow for ISPs to provide improved service and 

network QoS/QoE by leveraging their detailed network information as well as reduce their 



 

 

network bandwidth costs thanks to smart placement and service selection. 

 

SERVICE LEVEL MANAGEMENT AND ORCHESTRATION 

This section discusses a number of candidate high-level architectures for Management and Orchestration 

(MANO) for service-centric networking, followed by an enumeration of the key service management and 

orchestration functions. We discuss how these functions are impacted by the specific service requirements 

and how they can be implemented in a flexible and scalable manner in a distributed execution 

environment.  

 

Challenges 

The requirements outlined in the previous section impose a number of key challenges for any service-

centric networking MANO architecture. We briefly elaborate on these challenges.  

 

Scalability and flexibility 

SCN architectures need to manage large amounts of service instances of many different service types 

across numerous execution environments of various types. This means that on one hand, the overall SCN 

architecture should be able to efficiently scale with increasing amounts of services that are deployed in 

such architecture. On the other hand, due to the specific requirements and capabilities of the services and 

available infrastructures, the SCN architecture should also be able to provide enough flexibility so that the 

various services can be deployed efficiently on the various execution environments. In the next section, 

we will describe various high-level MANO architectures and discuss their effectiveness with respect to 

scalability and flexibility. 

 

Heterogeneity 

As previously indicated, the services of interest could have drastically different requirements with respect 

to resources, operations and orchestration. Similarly, in a completely distributed service-centric 

networking architecture, the various execution and networking environments can be quite heterogeneous 

in nature as well, from a resource, infrastructure and management platform point of view. More 

specifically, execution environments will range from standard centralised general purpose cloud 

environments to highly distributed, small size and specialised execution environments that are located 

very close to the edge or even within the home, with tight resource and management constraints. 

 

 

Scalable distributed high-level MANO architecture 

Mapping the service-centric networking requirements as specified in the previous section to possible 

architectures, we see a number of candidate architectures. 

 

• One centralised cloud, possibly including a number of distributed execution environments or 

zones that are all fully managed by the central cloud orchestrator. 

• Collaborative or federated clouds, where each cloud environment operates completely 

independently but can interact with other cloud environments without one central coordinator.  

• Hierarchical cloud, incorporating a global orchestrator which has a high-level view and control of 

multiple decentralised lower-level cloud environments. Each of these lower-level cloud 

environments are treated mostly as a black box with respect to the high-level orchestrator and 

provide their own service management and orchestration functions.  

 

Each of these solutions has a number of advantages and disadvantages regarding scalability, level of 

control, multi-cloud-provider support, etc. For example, a single centralised cloud architecture has the 

advantage of ultimate level of visibility and control, as all services and execution nodes are under the 



 

 

immediate control of a centralised orchestrator who has full visibility. However, this solution is prone to 

scalability issues in case tens or hundreds of thousands of services must be managed across hundreds or 

thousands of distributed execution environments. A single centralised cloud environment also typically 

implies only a single-cloud-provider model, which can constrain the possible geographical deployment 

locations for the services.  

 

With a completely decentralised approach, scalability can be handled more easily. However, this model 

implies that service providers need to register, deploy and manage their services with multiple cloud 

providers and in multiple locations, making the configuration and management of widely deployed 

services more complex. 

 

A hierarchical architecture tries to combine the best of both worlds. In this approach, the advantages of 

the decentralised cloud architecture (i.e., independent MANO operations and multi-cloud-provider 

support) can be combined with global service orchestration and management functions. The reduced level 

of control can be largely mitigated using special techniques such as the concept of evaluator services as 

proposed in the FUSION architecture, discussed later in the chapter. 

 

In the next sections, we focus on describing the challenges and requirements for managing demanding 

network-sensitive services in a hierarchical cloud architecture. Two examples of hierarchical cloud 

architectures are IRMOS (Menychtas, 2010) and FUSION (discussed later in this chapter), where the 

concept of orchestration domain and execution zones (or nodes) is introduced. Note that both approaches 

allow inter-domain service orchestration and management that can be modelled either as a decentralised 

set of clouds or as an extended form of hierarchical clouds with two or more levels. 

 

Key service management and orchestration functions  

This section discusses the role and expectations of the key service MANO functions in a service-centric 

network system. 

 

Service registration 

A key service management function is the service registration that handles all registrations of new service 

types, provides updating with respect to their deployment parameters, and ultimately decommissioning of 

a particular service in the orchestration domain. Registering a new service may involve a subsequent 

automatic deployment of a number of service component instances within an orchestration domain, as 

described in a service manifest. The service manifest identifies the components of a service, the 

requirements for provisioning in terms of the computational requirements of the infrastructure and the 

network performance targets for interconnecting users to the service endpoints and between the service 

components forming the service graph. Service names are assigned at registration time and form part of 

the service manifest, with the domain orchestrator being responsible for ensuring that names are globally 

unique. The service manifest is of crucial importance, as a service-centric networking system needs to be 

able to automatically deploy, manage and interconnect service instances across a distributed set of 

heterogeneous execution environments. The service manifest needs to capture all necessary information 

regarding the service graph, its deployment and platform dependencies, lifecycle management, 

monitoring, automatic scaling as well as various security, business and other policies.  

 

Service placement 

Due to the various service requirements, load patterns and heterogeneous execution environments, it is 

essential to find the optimal execution environments when deploying new instances of particular services. 

In a hierarchical cloud environment, the service placement problem can be divided in two sub-problems, 

namely finding an optimal execution environment for hosting the service components, and finding an 

optimal host within the selected execution environment for effectively deploying and running each 



 

 

service component, not necessarily in this order. A key requirement for this mechanism to work 

efficiently is that at the domain level the service placement function should have enough information to 

appropriately assess and rank different execution environments. To avoid scalability or even 

confidentiality issues, this should not require every execution environment to expose their full resource 

capabilities and system information to the domain level. Secondly, service requirements can be very 

application and hardware specific, making it extremely difficult for capturing this in a set of static 

requirements that need to be specified and understood by a service placement function. Thirdly, as some 

of the execution environments could be close to the edge, they will likely be less powerful in terms of 

processing and storage capabilities and therefore only have a constrained set of potentially very specific 

resources. These resources need to be distributed across the services in a cost-efficient manner. Key trade-

offs to be made here will be QoS/QoE and profitability.  

 

One way of assessing the suitability of an execution environment to run a specific service is to make use 

of an associated evaluator service that can assess and score the efficiency of deploying a service in that 

environment. Execution environments can apply local policies and preferences by wrapping these scores 

into offers that remain valid for a period of time. This technique/solution allows for very service specific 

requirements (potentially incorporating historical data), execution environment capabilities such as GPU 

support as well as execution environment specific policies to be incorporated at the expense of additional 

overhead in the execution environments for hosting these service evaluators and preparing the 

corresponding offers. 

 

To effectively deal with environments that are resource constrained and for which there are multiple 

independent alternatives, the concept of auctioning has been proposed, in which orchestrators 

representing different services can bid for specific resources in the execution environments for their 

service components based on the estimated QoS/QoE their users will receive. 

 

Service placement algorithms operate at several epochs: firstly in a static fashion for the initial service 

deployment and secondly in a more dynamic mode whenever there is a significant change in user demand 

patterns or the availability of execution environments as they are added or removed. Dynamic service 

scaling is discussed further in the following subsection. 

 

Service scaling 

Service scaling goes beyond service placement. Whereas service placement mainly involves the selection 

of what execution environments should host a service, service scaling refers to the number of instances 

that should actually be deployed in each of the selected execution environments.  

 

Instance-scaling algorithms typically balance resource usage with application performance. Upscaling the 

number of service instances will improve application-level performance metrics such as response delay, 

but incurs additional costs (energy, renting). Downscaling is needed to avoid unnecessary capacity costs 

when the service demand is low. 

 

In a hierarchical architecture, service scaling can occur at the various layers, both at the domain 

orchestration layer as well as within each execution environment, each implementing their own scaling 

algorithms based on a combination of service requirements and internal scaling policies. We will refer to 

these scaling functions as inter-zone and intra-zone scaling, respectively. By zone we refer to a logical 

representation of a data centre where a service can be deployed. 

 

Regarding intra-zone scaling, a number of options are available. A first option is to leave the intra-zone 

scaling decision authority to the service itself. In this case, the intra-zone scaling is completely opaque to 

the orchestration layers. The advantage of this scenario is that application-specific elasticity rules can be 

applied without exposing Key Performance Indicators to other components. Two main drawbacks are (i) 



 

 

that a standardised scaling interface to the intra-zone orchestrator is needed, and (ii) that each service 

needs to provide and implement its own scaling mechanism.  

 

In a second intra-zone scenario, all scaling decisions are made by the intra-zone orchestrator. Service 

instances report Key Performance Indicators (KPIs) to this entity, which will then automatically scale up 

and down, based on service and other scaling rules and policies. In case this intra-zone orchestrator 

cannot further upscale, it may notify the domain-level inter-zone orchestrator, which can subsequently 

take necessary actions. 

 

At the domain level, the inter-zone orchestrator can implement global scaling decisions to ensure 

resources for a particular service are available across multiple zones. As an example there may be 

insufficient resources in a specific zone to meet the predicted load of anticipated user demand which 

require inter-zone orchestration algorithms to identify that additional service component instances should 

be deployed in alternative zones that meet the required user QoE for the service. Inter-zone scaling can 

take into account service-specific elasticity rules and policies, load pattern predictions, internal elasticity 

rules and policies as well as potential explicit triggers from either the lower-layer intra-zone orchestrators 

or even manual triggers (e.g., from a service provider to identify expected demand spikes or to modify 

over/under-provisioning policies). These inter-zone scaling decisions will subsequently trigger placement 

and corresponding deployment decisions. 

 

Service deployment 

In a hierarchical architecture, service deployment takes place at the level of the orchestration domain and 

that of individual execution zones. The domain-level service deployment function involves triggering and 

coordinating the deployment functions at the selected execution environments to start deploying new 

instances within their execution environments. How the latter is implemented and enforced is up to the 

execution environment. This decoupling improves both scalability as well as flexibility, as each execution 

environment can customise and optimise its service deployment function with respect to the execution 

environment specifications and policies. A crucial factor here is that the service placement and scaling 

functions at the domain and execution environment levels need to provide all necessary service and 

resource deployment specifications so that the execution environment can efficiently and automatically 

deploy the new service component instances within the execution environment.  

 

Service and resource monitoring 

Capturing, aggregating and propagating state and runtime information for both resources and services is a 

key MANO function in a service-centric networking architecture. It provides valuable feedback 

information to various parties, enables real-time or longer automated or manual feedback and control 

loops to improve the system and its services. Monitoring functions typically incorporate at least the 

following set of metrics:  

• Data centre or execution infrastructure related metrics 

• Networking related metrics 

• Service execution related metrics 

• Application related metrics 

• Service-oriented networking architectural related metrics 

 

Given the potential scale of service-centric networking architectures, a crucial trade-off is how much 

information should be captured at the lowest layers and how much information should or could be 

propagated and aggregated to higher layers to keep the amount of monitoring information manageable. 

Security, privacy or business incentives could restrict the amount of information that can be exposed or 

interpreted to higher orchestration layers.  

 



 

 

SERVICE RESOLUTION AND ROUTING 

The SCN routing sub-system needs to provide a new anycast primitive that combines network and service 

metrics. Names need to be converted to the best instance and the service routing system needs to be able 

to trade-off network quality with server quality. Whilst implementing this decision the service routing 

needs to try to accommodate service specific requirements to provide good quality of experience to the 

user at the same time that it load balances the service load amongst all the replicas. Obviously, service 

instance quality needs to be conveyed to the routing sub-system accurately and efficiently. 

 

An intuitive way of implementing this sub-system of SCN, would be to retrofit the Domain Name System 

(DNS) with a small set of features that would enable the finding of the best closest replica of a given 

service. This however would have limitations on what could be achieved, namely: 

 

 DNS is tied to a particular name space which is organised hierarchically. Different applications 

may want to use different name spaces, either flat (e.g., Magnet links), different hierarchies (e.g., 

ISBN), more expressive name spaces, randomly allocated names, full URLs, etc. Retrofitting 

these in DNS would only be possible by completely changing IP-level information routing and 

the client access protocol. 

 Service Anycasting could not be retrofitted in DNS without a major overhaul. One needs a 

significant amount of service routing information to be propagated, including both network and 

service metrics. This will need a new protocol and is important to tie it to the 

resolution/invocation component so that a feedback cycle can be achieved. 

 The only result returned by a standard DNS query for a service is a single IP address. However, a 

composite service could be constructed from different components executed on different servers 

or make use of multiple transport sessions, using different ports and possibly different transport 

protocols. A service-centric network will need to be able to return more complex structured 

results. 

 DNS does not allow for clear implementation and propagation of network policies. ISPs can 

“hijack” DNS queries and return preferential results but this is not done in a formal way and does 

not allow for collaboration implementing traffic engineering policies. In addition, network 

providers may want to prioritise some services to some clients. A SCN control plane should have 

a well-designed intersection with traffic engineering and traffic prioritisation. These capabilities 

can be significantly increased with recent developments in software defined networking (SDN). 

 The ability for services to restrict access to their services is becoming crucial in an increasing 

adversarial Internet. Denial of service is a top concern for the Internet ecosystem and a SCN 

should be able to restrict access at the edge of the network. This would enable the deployment of 

more secure services. Exposing IP addresses to the outside world limits this capability. 

 DNS allows for very little client parameterisation when a query is issued. A SCN will enable 

parameters to be passed at query/invocation type where the client can indirectly control the 

response it receives. For example, a client might only be interested in service instances in a radius 

of 5ms. Another important option is for the client to request for more than one instance and then 

choose which one to contact. This can be used for parallelism and resilience purposes. 

 

Another dimension to be explored is the amount of disruption a SCN may and should cause to the Internet 

architecture. In particular a choice needs to be made between a clean slate architecture or an overlay 

solution that works over an unmodified IPv4/IPv6 Internet. Although a clean slate approach would 

potentially provide a slightly more efficient control plane (since the queries/request would follow a more 

optimal path) this is not a sufficient argument to propose a complete overhaul of the Internet fabric. 

Changing network layer functionality has proven incredibly difficult in the last decades. IPv6 transition is 

the classical example but there are lots of good ideas proposed by the research community that stumble 

due to the ossification of the Internet. 



 

 

 

An overlay solution that aims to complement the Domain Name System is much easier to deploy. It will 

consist of software running on commodity servers which is easy to replace, update and deploy. Memory 

becomes much less critical allowing for a more feature-rich service-centric architecture where meta-data 

for each service can contain many attributes.  

 

Given the above context the networking requirements of a Service-centric Network are as follows: 

 

 Each service is identifiable by a globally unique name. Apart from an overall convention 

preventing naming clashes, each service can choose the naming scheme that it wishes. 

 Service instances may have to be authenticated. 

 Services are supported by the existing IPv4/IPv6 architecture where the data plane is not changed. 

 A composite service may be formed of multiple service components that may be running on more 

than one server, in different ports and using different transport protocols. 

 The service-centric network overlay needs to resolve names to locators or to directly send 

messages to service instances without exposing their IP addresses to the users. 

 End users’ clients should be able to report Quality of Experience back to the overlay and that 

information should be used to inform future service resolution/routing decisions taken by the 

overlay. 

 The service overlay should provide authentication at the edge so that services can choose to only 

be contacted by authorised clients to mitigate denial of service attacks without unwanted traffic 

being propagated far into the network. 

 A network provider running a service resolver/router as part of the service overlay should be able 

to influence the service resolution decisions according to its preferences and policies, for example 

according to the network costs to reach different instances of the same service. 

 

Although the network layer of SCN could be implemented using a variety of primitives, the following 

messages illustrate a possible set for meeting the requirements outlined above: 

 

1. REGISTER: This message is used to register service component instance(s) with the local service 

router. It is potentially authenticated to certify that the service is legitimate. 

2. UNREGISTER: This message is used to unregister service instance(s) when these stop being 

available. 

3. SERVICE_UPDATE: Message sent from the execution zone to local service router and between 

service routers for conveying the known service instances and their associated metrics. 

4. RESOLVE: This message is issued by a user’s client, or a service component in the case of a 

composite service. It requests the service routing/resolution system to resolve a given name to 

one or more network locators. 

5. INVOKE: This message is also issued by a client/service component. Rather than requesting that 

a name is resolved to a locator, the service routing overlay forwards the service invocation 

request directly to the best server instance through the overlay. 

6. QOE_REPORT: Report sent by the client to the local router about a particular flow 

7. ROUTING_UPDATE: Message sent between service routers to establish the overlay. It is not 

service specific. 

 

In the following sub-section we present an overall architecture integrating the resolution and routing 

functionality as discussed in this subsection with the service management and orchestration functions as 

presented in the preceding subsection. 

 



 

 

FUSION ARCHITECTURE 

FUSION (Future Service Oriented Networks) is an EU FP7 project developing a new networking 

architecture designed to support efficient provisioning, discovery and execution of service components 

distributed over the Internet. 

 

The FUSION framework can be seen in Figure 2Figure 2. In comparison with Figure 1, two layers are 

above the routing plane to accommodate the service routing and execution planes for enabling SCN 

functions. Functionality is divided into 3 layers. At the lower layer IP routing forwards packets using 

traditional end-to-end protocols. At the upper layer the execution plane consists of all the execution zones 

where the service instances will run. In the middle the service router layer will forward requests from 

clients to the appropriate service instances. 

 

The basic operation of the FUSION system is that orchestration domains – consisting of a potentially 

large number of geographically distributed execution zones – deploy services on behalf of application 

developers or service providers in one or more execution zones according to the expected demand by 

service users. This is depicted in the upper layer of Figure 2Figure 2. Service routing domains, consisting 

or more service routers, are responsible for matching service requests referring to a service by serviceID 

to execution zones containing running instances of the requested service. This is depicted in the middle 

layer of Figure 2Figure 2. Service routing is anycast in nature – the user simply requests a service and it is 

responsibility of the service routing plane to find the “best” available instance for that request. Once a 

specific service instance in a specific execution zone has been selected for the user request data plane 

communications take place in the data forwarding plane depicted by “IP Routing” in the lower layer of 

Figure 2Figure 2. Note that the physical data centres are depicted in the lower IP routing layer as the data 

communications will be directly established between users and service instances running in physical data 

centres, while execution zones – logical representations of a data centre – are shown in the upper 

execution plane. 
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Figure 2 - FUSION Framework 

 

FUSION architecture overview 

The main functional entities in the FUSION architecture are depicted in Figure 3Figure 3. The three main 

are the orchestrator, execution zone and service router. 

 

The orchestrator manages its orchestration domain resources including execution zones and services 

which it manages on behalf of application developers (or service providers). The orchestrator is 

responsible for service management functions including service registration, server placement (selecting 

appropriate execution zones to execute service instances), service lifecycle management and monitoring. 

 

The execution zone is the logical representation of a collection of physical computational resources in a 

specific location, such as a data centre, which is managed by an orchestrator. The orchestrator has an 

abstract view of an execution zone and the detailed internals are managed by a zone manager. The zone 

manager is responsible for managing service instances within its zone but under the instruction of the 

orchestrator. It will select the specific physical location (VM, machine, rack, etc.) of individual service 

instances and interact with the local infrastructure management platform of the data centre/cloud node for 

VM lifecycle management. The execution zone interacts with the communications infrastructure of the 

outside world through a service gateway. The service gateway interacts at the level of the service routing 

and forwarding planes and IP. 
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Figure 3: FUSION High Level Functional Architecture 

The service router is responsible for maintaining and managing service routing information to create 

forwarding paths for queries/invocation requests from users and other service instances to be resolved or 

forwarded to execution zones containing available running instances of the specified serviceID. 

Service forwarding and service routing functions are shown separatelyiii in Figure 3Figure 3. The service 

part manages the routing information injected by execution zones on available serviceIDs and runs 

routing algorithms to populate forwarding entries in the service forwarder. The service forwarder receives 

queries/invocation requests and forwards them according to the forwarding tables managed by the service 

router. The interfaces for routing updates and for forwarding queries are distinct but another reason for 

separating the functions is that we are considering two different models for implementing routing 

algorithms within the project. In one model the service routing functions are centralised within an 

orchestration domain as shown in domain 1 on the left hand side of Figure 3Figure 3 – in this 

the centralised routing algorithms may be co-located with a centralised orchestrator functionality in the 

business model case of combined orchestration and service routing domains. The second model 

distributes the routing functionality, co-locating it with service forwarding as shown in domain 2 on the 

right hand side of Figure 3Figure 3. 

 

SERVICE DESIGN REQUIREMENTS AND PRINCIPLES 

Since one goal of service-centric networking is to move services closer to the user running on distributed 

execution environments, interactive applications can be deployed more optimally across the network, 

optimising both networking and execution behaviour. These new possibilities are especially interesting 

for software vendors which require both high network and execution throughput as well as QoS. One 

example is the entertainment software industry, where similar efforts have recently been started, however 

without leading to major breakthroughs yet. Another example are the broadcasting, video and movie 



 

 

industries, where also a trend is seen to move towards more demanding and interactive applications, i.e., 

interactive EPGs (electronic program guides) or live online collaboration, which no longer only rely on 

pre-generated content but also require increasing amounts of personalised rendering. 

 

This section looks into several key technical aspects from the perspective of these stakeholders. The three 

main differences compared to traditional software are: 

1. Infrastructural level: This mainly focuses on how SCN-enabled software can be deployed and 

addresses the communication interfaces of the deployed components with the network. Changes 

to existing software may be required. However, with appropriate application wrappers and 

manifests existing services could also be adapted to the SCN environment.  

2. Architectural level: increased network throughput enables new ways of separating software 

modules. Traditionally, synchronisation for interactive internet applications was done by 

exchanging small amounts of data such as position vectors of objects and synthesising this 

information separately on each client, which required the client to perform its own calculations. 

With the new possibilities provided by SCN, especially regarding better networking performance 

due to service replication and optimal service selection, interactive media applications can move 

functionality from the client to the server, e.g., perform rendering on the server resulting in very 

thin client applications for the users. 

 

In the following paragraphs, the above mentioned challenges are described in more detail. 

 

Running media software on a service-centric networking infrastructure 

One important task of many media software vendors is to adapt their software to service-centric 

networking infrastructures. Porting software to the underlying operating system environment involves 

packaging it in a way it can be installed, run and terminated in a standardised way, for example by 

packaging it in a container or virtual machine. The virtualisation of the underlying hardware is important 

because the strengths of software oriented networking applications is that the exact hardware and hence 

its specification is not known in advance. Additionally – as today's servers are running multiple virtual 

machines – isolation of different applications from different vendors and customers is a requirement. One 

possible approach is the use of Docker or similar light-weight container technology. 

 

Classical interactive media software usually runs as a fat client or as a stand-alone application on 

consumer platforms which are optimised for such applications, for example Microsoft Windows. Because 

of the widespread usage in the consumer sector, GPU driver support for Windows is much better than for 

Linux. However, today’s cloud infrastructures are often based on Linux for good reasons, since Linux-

based platforms are well suited and proven for large-scale administration and tend to be more lightweight 

which makes deployment easier. The open source paradigm also allows faster incorporation of new 

technologies, like, for example, the integration of virtualisation functionalities in kernel modules. Last but 

not least, easier licensing and cost reduction play an important role for software, which will be deployed 

to a pool of compute resources where it is not always clear how many instances of this software are 

running at a given time. 

 

For multi-media applications like entertainment software or any other software incorporating real time 

rendering, access to highly parallelised vector arithmetic hardware, such as GPUs is crucial. Additional 

research is required to solve challenges regarding efficient and light-weight GPU access without having to 

carry a full graphical windowing environment on different platforms. For example, in Linux 

environments, accessing a GPU without a full X environment is still an issue. Research and development 

in this area is currently a very active topic. Based on the above we envision that first services without 

specific hardware accelerator requirements will be deployed in SCN.  

 



 

 

As more data centres become equipped with such hardware accelerators, (e.g., Amazon EC2 amongst 

other currently provide VM instances with GPU support), more demanding applications will be able to 

leverage SCN. 

 

Input and output channels 

Many applications fall into one of the following categories:  

1. Standalone applications running on a device. 

2. Server-client based applications with standard clients (usually a web browser). 

3. Server-client based applications with proprietary clients that implement application specific logic, 

for example performing calculations locally before sending the results to the server or performing 

calculations on the data received from the server. Such clients can be considered as fat clients. 

4. Server-client based applications with proprietary clients that perform application-independent 

functions. An example is cloud-based gaming where the client implements simple tasks such as 

input forwarding and video streaming the output. Such clients can be considered as thin clients. 

 

Standalone applications and fat clients often have drawbacks with respect to mass-deployment across 

many different devices, which often have a wide variety of hardware and software platforms with varying 

capabilities and constraints. This not only results in huge porting efforts but it can also result in different 

QoE, as some devices may support particular features, whereas others do not. For example, mobile 

devices, set-top-boxes and other upcoming devices often have very restricted hardware, allowing only a 

subset of these applications to be deployed efficiently on these devices. Furthermore, offline software is 

prone to software piracy because all of the relevant data is shipped to the end user, where software is 

subject to possible illegal copies. 

 

One example of a thin client model is the cloud gaming service provider Onlive, which is running its 

games in specialised data centres, which can be accessed by the users using custom thin client 

applications. Another example is Sony’s PS4, which addresses the problem of the PS4 hardware not being 

compatible with legacy PlayStation games by integrating their services with Gaikai delivering video 

stream-based gaming. Another advantage of running the applications in the network is that software 

maintenance and upgrades are largely simplified.  

 

This leads to a trend towards thin, general purpose clients, which mainly forward user I/O to the 

respective server. The question remains whether the output from the server should be performed using a 

higher level output description, like HTML or the X-Server protocol, or if the output is readily prepared 

as a video stream. While HTML or X-Server are often already considered as thin clients, these approaches 

have many of the disadvantages discussed above, for example requiring suitable hardware to run parts of 

the software on client-side, especially complex output generation operations. Service-centric networking 

optimises the placement and selection of service components to meet target QoS/QoE metrics for the 

services/users to improve the performance of client-server interactions, thereby enabling more services to 

be deployed in the cloud rather than as stand-alone applications. Applications can benefit from the 

advantages discussed with even thinner clients making this approach suitable for many advanced 

applications. 

 

In addition to the above architectural changes, higher level changes and challenges have to be faced. 

There are already protocols for remote desktop connections (like VNC, RDP and so on), which are 

optimised for delivering desktop video output over large distances. The disadvantage of these 

technologies is that their compression algorithm is largely based on the fact that at standard graphics 

output on desktop PCs, only small parts of the screen change with every frame. This does not normally 

work as well for multimedia applications due to greater volume of picture changes to be delivered. 

Classical video streaming, as used for video-on-demand services, is, on the other hand, optimised for the 



 

 

compression of rapidly changing pictures; however, these protocols do not typically support return 

channels for conveying user input. Therefore a combination of desktop capturing and video streaming 

approaches need to be developed and possibly standardised for implementing and deploying interactive 

media applications. In addition, video codecs add a significant computation overhead, which often 

requires specialised hardware. Developers need to be able to assess the capabilities of cloud resources 

before deploying components that depend on specialised hardware capabilities. 

 

Session slots 

In today’s highly interactive media applications, for example entertainment software, the rendering part is 

primarily designed to generate output for a single user, mainly because this was the main use-case when 

running such software on an end-user device. Therefore today the most commonly used approach for 

porting such applications into the cloud is to run a separate process instance or even dedicate a VM for 

each user. However, this approach is obviously inefficient since multiple user sessions cannot share 

common data and instantiating a new session can take a significant amount of time.  

 

For cloud computing this approach may be sufficient because scaling can be achieved by increasing the 

number of machines instantiated. However this does not solve the problem of longer start-up times. In 

service-centric networking however, the hardware at the optimal location (based on network metrics) 

cannot be increased at short notice. To make full use of the new possibilities introduced with service-

centric networking it is therefore necessary to think about possible optimisations do not dilute the 

advantages achieved. Therefore a special focus is placed on the question of how to serve multiple users 

with a single process. A single running software instance will now be able to support multiple users 

which are logically distinct but share the resources allocated to that software. Rather than dealing with the 

implementation complexity of each service a service developer will identify the quantity of session slots 

an instance can support. This is a service-independent way of identifying the resources available to serve 

multiple users simultaneously. Service placement and scaling algorithms, as introduced earlier in the 

chapter, can manage the quantity of session slots supported by the service component instances running in 

a zone without being concerned with the implementation details. 

 

SYSTEM DEPLOYMENT CONSIDERATIONS 

 

Business considerations 

Today ISPs are confronted with an increasing multiplicity of services that have to be deployed, updated 

and managed. These services, with their compute and networking requirements, and the ever increasing 

speed of service deployment time have an important impact on ISPs’ business models and business 

parameters such as target addressable market, revenues and total cost of ownership amongst others. 

 

ISPs hosting real-time-aware services are confronted with choices whether to host these services using: 

1. hardware appliances on customer basis,  

2. dedicated service offerings using centralised cloud  

3. a SaaS-like solution. 

In the SaaS-like case applications could be offered as part of a central application store whereby services 

are rolled out automatically, incurring increasing costs due to hardware and software investments caused 

by the automation itself but carrying potential revenue increases. Each of these options implies a different 

compute and network architecture whereby the investments in compute platforms (hosting these services) 

need to be balanced against network related investments. 

 

Along with the growing number of customer oriented applications to be supported, the fast-pacing 

progress in the NFV area opens a window of opportunity for ISPs and service providers to virtualise their 

core services and co-host these services with personalised customer services thereby optimising compute 



 

 

resources and operational benefits in a unified management platform. 

 

Specifically due to the automated service deployment and service routing capabilities of SCN, ISPs are 

presented with a specific set of questions and trade-offs. A key question being “centralised vs. 

distributed” whereby investments in compute platforms need to be balanced against network related 

investments at the level of their backbone, aggregation or access networks. 

 

The economical optimum for service deployment is service specific and should be determined by the 

geographical and time distribution of the services usage patterns along with its specific networking and 

QoS requirements and the possible statistical multiplexing benefits of running multiple services on the 

same infrastructure. 

 

Developer considerations 

In the past, developers of server-client software had two, very clearly distinguishable options: 

Implementing logic of their service on the server or on the client side. Either choice had some 

implications: 

 

1. If the required processing was highly computation intensive, placing them on the server was a 

good choice if not all clients (e.g., consumer PCs or mobile devices) have the required 

computational power. 

2. If low latency was needed (especially for immediate feedback from users), a short network 

distance was preferable. If this collided with the first item (heavy calculations with immediate 

feedback needed, e.g., physics simulations in virtual worlds), as a compromise it was possible to 

approximate the computation on the client side with very short feedback time and overriding 

these results with the final and more accurate server computation results when these were 

available (resulting in physics objects snapping to their correct position some milliseconds after 

an impact occurred, for example). 

Service-centric networking however enables a smoother model, where centralisation can now be traded 

against network performance with fine granularity. However, this raises several considerations for the 

service orchestration functions of placement and scaling algorithms and on the request resolution/service 

routing functions at service access time. These include: 

 

1. Which computation power is available at a given execution environment? With distributed, 

localised execution environments it may no longer always be the case that a server with the 

required resources is located in a central location remote from the client. 

2. Are there specific hardware requirements that must be fulfilled? For example, GPU support is a 

common requirement in media applications. 

3. What are the costs of running a service instance at a given execution environment? 

4. What are the network performance metrics from the client to the server and between service 

components running in a distributed fashion? 

The above questions have to be answered by the orchestration logic which decides where to place a 

service and the service resolution/routing functions which select dynamically between running service 

component instances. Service providers do not necessarily have to care about the specific deployment 

decisions made by the orchestration functions. However, if they are aware of these questions, this can 

help developing the service software in a way that optimal placement can be facilitated. 

 



 

 

ISP considerations of technical aspects of system deployment 

There are several recent trends that indicate possible deployment scenarios of SCN. Of particular 

importance is the growing interest of ISPs in adopting virtualisation techniques in order to optimise their 

infrastructure and broaden business opportunities. Some ISPs have been running relatively small data 

centres for several years to offer services like hosting, utility computing or cloud computing to their 

customers (AT&T, 2014; Deutsche Telekom, 2012). Such data centres have also hosted appliances used 

for internal purposes of the ISP like, e.g., CGNAT and DPI. Recently, several ISPs have deployed CDN 

infrastructures on their own to reduce network traffic and improve QoE for their customers (CDN Planet, 

2011; Telecompetitor, 2011; Deutsche Telekom, 2014), and some of them have subsequently established 

alliances with major CDN providers (Akamai, 2012, 2013a, 2013b, 2014a; Orange, 2012), often in order 

to extend their service offerings, e.g., (Bartley, 2014; Campbell, 2014). Obviously, existing data centres 

of the ISPs are natural candidates for the placement of CDN servers inside the ISP domain. The active 

role of major ISPs in multiple NFV proof-of-concepts (ETSI, 2014) confirms their growing interest in 

migrating their infrastructures assuming the use of virtualisation techniques for the implementation of 

many network functionalities. Migration strategies to be adopted by individual ISPs will of course depend 

on their unique preferences. However, there are good reasons to expect that options of particular interest 

to many ISPs will be based on aggregating current access and edge functions and collocating them 

together with moderate-size (mini) data centres given sufficient degree of geographical distribution of 

such new points-of-presence. In fact, the number of such locations in a single ISP domain may be quite 

large (for example, AT&T claimed to have 38 data centres around the globe with 23 of them located in 

North America, AT&T, 2008) which gives an ISP a lot of flexibility in configuring its virtualised 

infrastructure. 

 

The above facts, together with business considerations provided previously, suggest that ISPs are 

important candidates able to host SCN-enabled execution zones in direct proximity of users and 

efficiently operate the service routing plane based on their knowledge of the network. The deployment 

facilities for SCN functions can be based on the mini-data centres of the ISPs meaning that dedicated 

large data centre infrastructures may not need to be deployed. We note also that in this scenario, service 

routers of a given ISP can additionally route requests to external data centres not hosted by the ISP. Under 

these assumptions, the details of deployment scenarios for the service routing plane in a given ISP domain 

may depend on specific requirements of future services with regard to delays of the resolution process. A 

preferred option is to have a central service router (or cluster of routers) handling all queries in a given 

ISP domain. However, given stringent requirements for delays and using similar arguments as those 

provided in (Poese at al., 2012b) regarding the deployment of Content-aware Traffic Engineering (CaTE) 

resolvers, the ISP can decide to distribute service routers among its points-of-presence. Such distributed 

service routers still could constitute a logically centralised entity, i.e. there would be no forwarding of 

messages between them. Yet, we admit that explicit use of forwarding capability of service routers would 

be justified in case of attaching technologically closed subdomains such as the Evolved Packet Core 

(EPC) part of the LTE (Long-term Evolution) architecture. The latter option fits well scenarios for large 

ISPs operating both fixed and mobile domains. 

 

CONCLUSIONS AND FUTURE RESEARCH DIRECTIONS 

Today’s centralised cloud infrastructure does not provide the required flexibility for fine-grained 

deployment of real-time, interactive applications. In this chapter we presented a novel service-centric 

networking paradigm that aims to optimise bandwidth and response time of such services by combining 

advanced service placement, replication and in-network selection at fine granularity. We described 

several aspects of the architecture; the orchestration, service routing, service design and service 

deployment. For each aspect we listed the building blocks, component interactions and considerations for 

future development. 

 



 

 

Users will benefit from the bandwidth and response time optimisation potential of balancing service loads 

at the network level. Moreover, the suggested anycast routing and late binding network primitives 

increase resilience to congestion and failures as service requests are forwarded to geographically 

distributed instances at run-time.  

 

Software service providers and software vendors face new challenges but also new opportunities by 

service-centric networking infrastructures. The main challenge is to port their software to these new 

deployment platforms, which often requires not only to port to different operating systems and support 

interaction with the network (infrastructural changes), but also to change the distribution of application 

components between servers and clients (architectural changes). A main opportunity for software service 

providers and software vendors is access to a service-centric infrastructure (formed by orchestration, 

placement and scaling algorithms, service replication and dynamic instance selection on a combination of 

server and network metrics) which uses resources much more efficiently provides a much higher QoS to 

the end user. 

 

ISPs will no longer serve as “dumb pipe” providers to over-the-top services, but may directly offer 

service hosting capacity with additional advantages like flexibility, geolocality and low-latency access 

compared to today’s cloud providers. As service-oriented-networking enables on-demand deployment, 

scaling and load balancing, ISPs can lower their costs for service operation and maintenance while 

guaranteeing network and execution platform performance. In turn, this will lower the barrier for smaller 

application developers to roll out advanced services with tight networking constraints. Application 

developers will be able to describe complex deployment constraints including dynamic aspects.  

 

The service routing plane goes hand in hand with the development of a novel service orchestration layer. 

Appropriate service placement and scaling mechanics must take into account both short-term (current 

demand) and long-term (cost, policy) metrics. Given the heterogeneity and stringent requirements of the 

targeted services, traditional techniques used in centralised clouds must be augmented with novel 

capabilities like just-in-time deployment and provisioning (even triggered at service-request time). 

Service placement within a zone must exploit appropriate accelerators (GPUs, encoders, etc.) and 

efficiently share sources and resources (stored 3D objects, textures, decoded video frames, GPU buffers, 

transcoding function, subtitling service, etc.) 

 

To realise this new service-centric networking paradigm, many research challenges lie ahead. Future 

work includes detailing the service routing plane to enable routing based on a number of metrics 

including network characteristics, server load and operational costs for a multitude of services. The 

forwarding tables are managed by network components to be able to redirect requests to the best instances 

based on changing server load and network characteristics. Selection agility is required, as server and 

network characteristics may rapidly change over time and space. A major research topic is how the in-

network selection can quickly adapt to these changing conditions. Here we must find a trade-off between 

frequent monitoring to allow accurate predictions and the bandwidth which this background traffic 

consumes. A further consideration is how routing across multiple service routing domains is achieved, 

considering the trade-off between the granularity of announcements of the availability and load of service 

instances/execution zones versus the overhead and complexity of maintaining large amounts of state 

information in service routers. Another avenue of future research is the development of on-demand 

service deployment. Service management functions can detect the need for additional service instances to 

be deployed or for instances to be migrated between execution zones. At the domain level, orchestrators 

might wish to sub-contract execution zones of other domains. Developing an inter-domain orchestration 

protocol, considering the complexities of dynamic service placement and scaling is one of the research 

challenges that is still open. Finally, the requirements and designs must be validated in targeted test cases 

and large-scale prototypes. 
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ALTO Application Layer Traffic Optimization 

AS Autonomous System 

BPEL Business Process Execution Language 

CCN Content Centric Network 

CDN Content Distribution Network 

CGNAT Carrier Grade Network Address Translation 

DNS Domain Name System 

DPI Deep Packet Inspection 

EC2 (Amazon) Elastic Compute Cloud 

EPC Evolved Packet Core 

EPG Electronic Program Guide 

FUSION Future Service Oriented Networks 

GPU Graphics Processing Unit 

ICN Information Centric Networking 

IMS IP Multimedia Subsystem 

I/O Input/Output 

IRMOS  Interactive Real-time Multimedia Applications on Service Oriented Infrastructures 

IRTF Internet Research Task Force 

ISP Internet Service Provider 

LAN Local Area Network 

LTE Long Term Evolution 

MANO Management and Orchestration 

NaaS Network as a Service 

NFV Network Function Virtualisation 

NGSON Next Generation Service Oriented Network 

PaDIS Provider-Aided Distance Information System 

PID Provider-defined Identifier 

QoE Quality of Experience 

QoS Quality of Service 

RDP Remote Desktop Protocol 

SaaS Software as a Service 

SCN Service-centric Networking 

SDN Software Defined Network 

ServiceID Service Identifier 

SLA Service Level Agreement 

VM Virtual Machine 

VNC Virtual Network Computing 

VSN Virtual Service Network 

 

 

                                                   
i Accounting function is also typically employed by CDNs, but we omit this block being that it is secondary in our 

context. 

 
ii Other ICN designs have also been proposed, e.g., DONA and Curling, however, we omit them here for being 

interested in the main principles of ICN rather than in reviewing the whole domain. 

 
iii Routing and forwarding are two distinct functions although, informally, they are often grouped together and the 

unit is referred collectively as a router. This convention is used throughout this chapter. 


