
1

Enhancing Video Streaming Quality of DASH over Cloud/Edge

Integrated Networks

By

Ibrahim S. Mohammedameen

A thesis submitted to the University of Plymouth

In partial fulfilment for the degree of

Research Masters

School of Engineering, Computing and Mathematics

April 2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Plymouth Electronic Archive and Research Library

https://core.ac.uk/display/326519325?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2

April 2019

 Declaration

At no time during the registration for the degree of Research Masters has the author

been registered for any other University award without prior agreement of the Doctoral

College Quality Sub-Committee. Work submitted for this research degree at the

University of Plymouth has not formed part of any other degree either at the University

of Plymouth or at another establishment.

This is to certify that the candidate, Ibrahim Sh. Mohammedameen carried out the

work submitted herewith

Candidate’s Signature:

Ibrahim Sh. Mohammedameen Date: 23/04/2019

Supervisor’s Signature:

Dr. Lingfen Sun Date: 23/04/2019

Number of words: 13897

Copyright & Legal Notice

3

This copy of the dissertation has been supplied on the condition that anyone who consults it is understood to

recognize that its copyright rests with its author and that no part of this dissertation and information derived

from it may be published without the author’s prior written consent.

The names of actual companies and products mentioned throughout this dissertation are trademarks or

registered trademarks of their respective owners.

Acknowledgment

I wish to extend my warmest thanks and appreciation to those who have helped me during my thesis

work.

Many thanks to Dr. Lingfen Sun, for her continues support and guidance during my research work, it

was not possible without her guidance and inspiration from the start to the end of this Research degree.

Dr. Is-Haka Mkwawa thank you very much for your help in every step, following and guiding me

during every step of my test, and testbed setup.

My family, for their continues support during my journey, continues love and always believing in

me, my father for making this a living reality for me instead of a dream, without them none of this

would have been even possible.

4

Publications

Presented a paper in (SCI 2019, Aug) conference under ‘Follow-me
Prefetching for Video Streaming over Mobile Edge Computing Networks’
title. Attached to the thesis as appendix 1.

5

Abstract

With the advancement of mobile technologies and the popularity of mobile devices,

mobile video streaming applications/services have increased considerably in recent

years. Dynamic Adaptive Streaming over HTTP (DASH) or MPEG-DASH is one of the

most widely used video streaming techniques over the Internet. It adapts video

sending bit rate according to available network resources, however, in case of low

bandwidth, DASH performs poorly, which will cause video quality degradation and

video stalling.

Mobile Edge Computing (MEC) or Multi-access Edge Computing, in connection with

the backend cloud has been used to reduce latency and overcome some of the video

quality degradation problems for mobile video streaming services. However, an end

user might be suffering from video quality drop downs when s/he moves out from the

coverage of one node to another or when the mobile network condition goes down.

To tackle the degradation problems and assure enhanced video streaming quality, a

novel follow-me Edge Node Prefetching (ENP) scheme was proposed and developed

in the project, by prefetching video segments in advance in the upcoming node used

by the end-user. A test bed was set up consisting of a backend cloud (OpenStack), two

edge nodes (LXD Containers) and one mobile device, the ENP algorithm was

implemented on the cloud server and client sides. Experiments were carried out for

the DASH streaming service based on Dash.js from the DASH Industry Forum.

Preliminary results show that the ENP scheme can maintain higher video quality and

less service migration time when moving from one mobile node to another, when

compared to existing approaches, i.e. live migration in Follow-me-Edge and the C-up

schemes. The proposed scheme could be useful in smart city applications or providing

seamless mobile video streaming services in Cloud/Edge integrated networks.

6

Table of Contents
Abstract .. 5

List of Figures ... 8

List of Tables ... 9

List of Abbreviations... 10

1.Introduction .. 11

1.1 Introduction ... 11

1.2 Aim and Objectives .. 13

1.3 Structure of the thesis .. 13

2. Literature Review ... 14

2.1 Background .. 14

2.1.1 Parameters affecting video quality ... 14

2.1.2 Quality of Experience methods ... 15

2.2 Video streaming methods .. 15

2.2.1 Real time streaming protocol (RTP) .. 15

2.2.2 Progressive downloading .. 16

2.2.3 Adaptive HTTP streaming (AHS) .. 16

2.2.4 Dynamic Adaptive HTTP Streaming (DASH) .. 16

2.3 Cloud computing .. 17

2.3.1 Cloud computing categories ... 18

2.4 Mobile edge computing (MEC) .. 19

2.5 Ffmpeg ... 20

2.6 System Containers .. 20

2.6.1 OpenVZ containers .. 20

2.6.2 LXC containers ... 21

2.6.3 LXD containers... 21

3. Testbed setup ... 22

3.1 Follow me Edge Node Prefetching Scheme ... 22

7

3.2 Testbed component configurations: - .. 25

3.2.1 Containers configuration: - ... 25

3.2.2 Openstack configurations: - .. 27

3.2.3 Devstack instance configuration:- ... 28

3.2.4 Dash client data collection: - ... 29

3.3 Testbed architecture .. 30

4- Results and Performance Comparison ... 32

 .. 33

5- Conclusions and Future Work .. 38

5.1 Conclusions .. 38

5.2 Limitations and Future Work ... 38

References .. 39

Appendix -1- submitted paper ... 41

Appendix -2- squid configuration ... 53

Appendix -3- Index.html file ... 60

8

List of Figures

Fig-1- DASH system architecture [9].

Fig-2- cloud computing categories

Fig-3- cloud computing infrastructure

Fig-4- Mobile Edge computing concept

Fig-5- ENP system architecture

Fig-6- LXD containers List

Fig-7- LXD container login

Fig-8- squid caching configuration

Fig-9- Devstack GUI

Fig-10- DASH index

Fig-11- write stats script

Fig-12- Dash client while data being collected

Fig-13- Testbed setup

Fig-14- execution time for all approaches

Fig-15- bitrate level

Fig-16- buffer levels

Fig -17- Average bitrate interval

Fig-18- Average number of switching

Fig-19- Amount of bitrate received for each approach

9

Fig-20- unrecovered buffer level

Fig-21- unrecovered bitrate stats

List of Tables

Table -1- MOS SCOTE

Table-2- VIDEO REPRESENTATION

10

List of Abbreviations

M2M Machine-to-Machine
MEC Mobile Edge Computing
IOT Internet of Things
QoS Quality of Service
QoE Quality of Experience
OTT Over-The-Top
HLS HTTP Live Streaming
MOS Mean Opinion Score
D2D Device-to-Device
HEVC High efficient Video Coding
NAT Network Address Translation
RTP Real Time Streaming Protocol
UDP User Datagram Protocol

HTTP Hyper Text Transfer Protocol

MPD Media Presentation Description

MF Manifest File

DF Data Frame

11

1. Introduction

1.1 Introduction

With the advancement of mobile communications and video processing technologies in recent

years, video streaming services (such as those provided by YouTube and Netflix) have become one

of the most dominant services over the Internet. According to the latest Cisco Visual Networking

Index (VNI), video services will account for about 82% of all consumer Internet traffic by 2021,

growing threefold between 2016 to 2021 [1]; mobile video will be about 78% of the world’s mobile

data traffic by 2021, increasing 9-fold between 2016 and 2021 [1]. In this context, great efforts

have been madeto improve the quality of video streaming services over the mobile Internet.

Over the years, Over-The-Top (OTT) service providers such as YouTube and Netflix have been using

the MPEG- DASH (Dynamic Adaptive Streaming over HTTP) standard to deliver video streaming

services over the Internet [2]. MPEG-DASH has many advantages such as flexible quality adaptation

and simplicity in implementation due to its easy integration with the existing HTTP-based

infrastructure. In MPEG-DASH, the video is prepacked with short video segments for different

representations corresponding to different video qualities at the server. A DASH client predicts

available network bandwidth and sends an HTTP-request to the server for appropriate video

representation segments. Due to varying network conditions, an ideal DASH scheme should be

able to adapt between different video segments to provide acceptable video quality and hence,

acceptable Quality of Experience (QoE) to video streaming customers. Normally video contents

are located in servers in Data Centers over the Cloud and/or in cache servers provided by Content

Delivery Networks (CDN). When a client is too far away from the server (e.g. across a continent),

latency and network congestion will have adverse effects on video streaming quality. The situation

will get worse when the Internet video is streamed to mobile devices.

Mobile Edge Computing (MEC), a promising technology for 5G mobile networks, has been utilised

to assist video streaming services due to its ability to facilitate the provisioning of high data rate

and low latency services to end users and its ability to provide computational power at the mobile

edge. It has been used for MPEG-DASH to reduce the backbone traffic to the Cloud and bring video

contents close to the end user. The MEC specified by ETSI [3], is one of the Mobile Edge Network

(MEN) structures that offer intense computing capability along with real-time communication

ability with the end user.

There are many elements that make on-demand video delivery possible. One of them is the

Bandwidth. The best way to understand bandwidth is to describe the bandwidths as highways,

the video information as cars, and the internet as highways, so the car can arrive faster and easier

if no other cars or if the highway is wider. The internet takes the same concept to work, if you are

12

the only person downloading a video or a file it will transfer the data faster than if more than one

person trying to get the same video or file.

The bandwidth concept is same, imagine the bandwidth as the number of lanes on the highway, if

the bandwidth is small, the traffic will be slow, and vice versa if the bandwidth of the website is

large, information can travel both ways smoother and faster, and for video delivery purposes

bandwidth is very important because to send a high quality video and audio over the internet it

requires a high amount of bandwidth.

After the bandwidth comes the streaming audio and video, streaming helps the user to watch on-

demand videos without the need of downloading them to their personal devices or computers.

Streaming relies on the following options: -

1. Server to host the video.

2. The user requesting the video and watching it.

3. The server responding to the users request by sending all of the video segments or pieces

accordingly using streaming media protocols.

4. Finally, a player on your device, to decode and play the video for you, Firefox, VLC are two

known ones.

On demand video delivery is promising quite a lot, but it does not come without limitations, like if
the user has slow internet the data won’t arrive to the user fast enough, or it will cause video quality
degradation because of the slow internet, and also some websites are not able to provide enough
bandwidth to their users. In recent years, many services including video streaming services have
moved to the cloud, which may create new problems and new challenges as datacentres might be
far away to the end users, and latency and core network bandwidth consumption might be an issue.

Mobile Edge Computing (MEC) provides a promising approach to move some of the computing

facilities close to the mobile end user, thus, reducing the latency when delivering services to the end

user and also reducing the load to core network bandwidth consumption as in the case of cloud

services. How to combine MEC with backend cloud services to enhance the quality of mobile video

streaming remains an open and challenging question.

13

1.2 Aim and Objectives

This project aims to design and develop an approach for mobile video streaming services by
combining the strength of both mobile edge computing and backend cloud services.

The project consists of the following four objectives.

1. Carry out literature review of the state-of-the-art

2. Setup a testbed including MEC and backend cloud for DASH video streaming based on
open-source tools/software

3. Carry out experiments to assess the quality of DASH video streaming based on existing
approaches

4. Propose new solutions/approaches for video streaming services and compare the
performance with those of the existing ones.

1.3 Structure of the thesis

This thesis is divided into 3 major parts:

Chapter 2 provides an outline of the current literature in delivering Video quality services,

cloud serves how to combine both of them to ensure QoE to the end-user.

Chapter 3 devoted to the approaches and the research methodology used by the author for

carrying out the experiments in the research, which provides the approach algorithm, details

step by step installation and each part configuration.

Chapter 4 presents the results of the tests that have been carried up for approaches,

discussion and analysing the results, finally the conclusion and future work in chapter 5

shows the limitation of the work and how to improve it for future work, with a conclusion of

the thesis.

14

2.Literature Review

2.1 Background

The delivery of mobile content to users is the main motive of network systems. At present, the
delivery of high definition videos with high resolution has become the prime focus to enhance the
context of 5G network development in the future. The 5G network enables increased network
capacity along with the QoE by adding required network intelligence in all type of network
requirements.

2.1.1 Parameters affecting video quality

Delivering high-quality videos to the end user over HTTP networks is still a big challenge to the

service providers due to the number of the parameters affecting video quality, those parameters

are: -

Coding parameters: - encoding parameters controls the amount of quality losses during encoding

stages, which depends on the encoding algorithms e.g. (MPEG, H26x), Frame rate, Bitrate.

Network parameters: - those parameters affect the video during streaming or transmissions e.g.

(delay, and delay variation (Jitter)).

Other parameters: - other parameters such as image size, colour, motion might have huge effect on

the video quality.

Frames per second (FPS), resolution, and clarity also have effects on video quality your screen

resolution and how many frames per second you receive, but our prime focus in this study is on the

network parameters that affects video quality.

15

2.1.2 Quality of Experience methods

Measuring the delight or the annoyances of the video being watch by the end user is what we call

Quality of Experience, and the most widely used metric to measure the QoE level for the end user

is the mean opinion score (MOS).

2.1.2.1 Subjective methods

Subjective methods are rated using the ITU-T (International Telecommunication Standardization Sector) scale

which is called MOS (Mean Opinion Score), table -1- shows the range of MOS score from 5 to 1.

MOS Quality Impairment

5 Excellent High Quality

4 Good Not annoying

3 Fair Slightly annoying

2 Poor Annoying

1 Bad Very annoying
Table -1- MOS SCORE

2.1.2.2 Objective methods

Objective methods are based on mathematical algorithms rather than scales, which cloud be automated or

generated using mathematical equations, the usage of this method has been increased is the last decades

[21] because it give more reliable and close to reality results.

2.2 Video streaming methods

2.2.1 Real time streaming protocol (RTP)

Real Time Streaming Protocol (RTP), is one of the oldest techniques for video streaming. It is based

on User Datagram Protocol (UDP), and as known RTP uses Push protocol, that means the RTP server

pushes the video data to the end-user, but it has a lot of disadvantages like it could pass network

16

address translation (NAT) or even firewalls unless the right codec is used to support scalable video

transmission e.g. Scalable Video Codec (SVC)[3].

2.2.2 Progressive downloading

This method is very close to video downloading, it is based on hypertext transfer protocol (HTTP), it

has advantages that RTP does not has like it can be used cashes, CDNs, Proxies and it has no issues

with NAT nor firewalls unlike RTP, the disadvantages of this approach is that, the HTTP protocol

increases the transmission to the double amount of media bitrate [2].

2.2.3 Adaptive HTTP streaming (AHS)

This approach came to solve the bitrate handling issues that other protocols had, and it is one of the

first solutions inside 3GPP[4]. The idea is to cut media files into number of segments and encode

them into different bitrate and resolutions, then provide those segments on the Web server, and

download them with standard HTTP GET request, the adaptation for the bitrate and resolution is

done on the client side, the client can switch to higher resolutions per segment, if s/he has enough

network resources. AHS uses Media Presentation Description (MPD) to combine the segments,

segment orders and segment bitrate.

2.2.4 Dynamic Adaptive HTTP Streaming (DASH)

The beginning of the MPD file has all different bitrate for each segment, starting time, and the

duration of each segment, a client would browse the MPD file first, with the information inside the

MPD file it will receive the individual segments according to the available bandwidth. in case of

bandwidth change the end-user can easily receive another representation that fits the available

bandwidth, other companies like apple HTTP live streaming [6], adobe dynamic HTTP streaming [7],

and Microsoft smooth streaming [8], offers dynamic adaptive streaming, at the beginning the end-

user will request the desired MPD file start with the download of the segments and eventually adapt

dynamically to bandwidth fluctuations

The system architecture is shown in Figure 1 [9] and based on that MPEG started a new work item
called Dynamic Adaptive Streaming over HTTP (DASH).
On request, the manifest file will be provided to the client in order to initiate the session (cf. step-1
in Figure 9). The client will parse the manifest file and request individual segments compliant to the
delivery format using HTTP and according to the information found in the manifest file (cf. step-2 in

17

Figure 9). For the manifest file, DASH adopted the Media Presentation Description (MPD) as defined
by 3GPP AHS [3] as a starting point. The MPD follows a data model comprising a sequence of one or
more consecutive non-overlapping periods for which one or more representations may be available.
A single representation refers to a specific media following certain characteristics such as bitrate,
framerate, resolution, etc. Furthermore, each representation consists of one or more segments that
actually describe the media and/or metadata to decode and present the included media content.
The delivery format defines the format of the segments to be delivered to the client upon the HTTP

requests based on the MPD. Finally, as the delivery format shall be compatible to existing MPEG

formats (i.e. ISOBMFF and MPEG-2 TS), it shall be also possible to provide easy conversion from and

to these formats.

Figure -1- DASH system architecture [9]

2.3 Cloud computing

The definition of cloud computing based on NIST[NIST] is ‘Cloud computing is a model for enabling

ubiquitous, convenient, on-demand network access to a shared pool of configurable computing

resources (e.g., networks, servers, storage, applications, and services) that can be rapidly provisioned

and released with minimal management effort or service provider interaction’, and the cloud

computing can be deployed in different type of clouds e.g. (Public cloud, private cloud, hybrid cloud)

based on the needs of the consumers.

18

2.3.1 Cloud computing categories

The three main cloud computing categories nowadays are: -

1- (SaaS) software as a Service: - like Microsoft 365.

2- (LaaS) Infrastructure as a Service: - like Rackspace.

3- (PaaS) Platform as a Service: - like salesforce.com

Fig -2- cloud computing categories [2]

Cloud computing system is divided into two parts: the front end and the back-end part, and they are both
connected to each other through the internet.

The front end is the client side e.g. (mobile device or computer), and the back end it the cloud section.

19

Fig-3- cloud computing infrastructure [1]

The front end consists of the client’s computer or computer network. Also the application essential to access
the cloud computing system. It is not necessary that all cloud computing systems have the same user
interface.

On the back end of the cloud technology system, there are various computers, servers and data storage
systems that make up the cloud. A cloud computing system could potentially include any computer program,
from data processing to video games. Generally, each application will have its own dedicated server.

2.4 Mobile edge computing (MEC)

Multi-access edge computing (MEC) or Mobile Edge Computing, is a network infrastructure that IT
services and cloud computing in the mobile edge and the Radio access network (RAN), the main
advantage of MEC is preforming tasks and running applications closer to the end-user, so that the
load on the network will be less and the application performs better, its implemented in the EnodeB,
by that MEC ensures, less latency, better Quality of Experience, and better service delivery [MEC].
Mobile Edge Computing (MEC) [11] in particular is anticipated that intelligence and video content
awareness can be implemented in the edge node for optimizing the QoE for end users.

The principal objective of MEC is to place storage and computation resources at the network edge,
in the user vicinity. The data processing can be driven accordingly from inaccessible cloud to the
edge. When the data is processed locally and data streams are accelerated via several techniques
such as caching and compression, MEC reduces the bottleneck toward the core network. In addition,
it decreases end-to-end latency, enabling the offload of important computation load from power
constrained user equipment to the edge. The executive briefing of the European
Telecommunications Standards Institute (ETSI) MEC initiative argues that one edge computing shall
enable new computation-intensive services and shall yield promising business models. It also
represents a fault resilient solution for its decentralized architecture [12].

20

Most of the MEC studies are focusing about reducing the latency, Taleb [15] tackles the migration
problems in the context of smart cities. They proposed an approach to enhance video streaming
experience for the end user in smart cities based on Follow me Edge concept, unlike our studies
they are focusing on the users mobility from one node to another and not on the video quality.

Fig-4- Mobile Edge computing concept

2.5 Ffmpeg

Ffmpeg is one of the free software’s to encode videos, audios, or any other multimedia formats into different

bitrate, frame rate, resolution, and sample rate, the main point of using Ffmpeg is that it almost includes all

multimedia codecs to encode or decode uncommon formats to a common one[22].

2.6 System Containers

System containers are different from Docker containers, because they are configured to host a complete

operating system without VMware emulators, rather than just an individual application inside the containers,

there are a lot of type of system containers e.g. (openVZ containers, LXC containers, LXD containers).

2.6.1 OpenVZ containers

While virtualization technologies such as VMware and Xen provide full virtualization and can run multiple
operating systems and different kernel versions, OpenVZ uses a single patched Linux kernel and therefore
can run only Linux. All OpenVZ containers share the same architecture and kernel version. This can be a
disadvantage in situations where guests require different kernel versions than that of the host. However, as
it does not have the overhead of a true hypervisor, it is very fast and efficient.

Memory allocation with OpenVZ is soft in that memory not used in one virtual environment can be used by
others or for disk caching. While old versions of OpenVZ used a common file system (where each virtual

https://en.wikipedia.org/wiki/VMware
https://en.wikipedia.org/wiki/Xen
https://en.wikipedia.org/wiki/Patch_(computing)
https://en.wikipedia.org/wiki/Hypervisor
https://en.wikipedia.org/wiki/Disk_buffer

21

environment is just a directory of files that is isolated using chroot), current versions of OpenVZ allow each
container to have its own file system.

OpenVZ containers are still in beta version of live migration.

2.6.2 LXC containers

LXC containers are often considered as something in the middle between a chroot and a full fledged virtual
machine. The goal of LXC is to create an environment as close as possible to a standard Linux installation but
without the need for a separate kernel.

LXC combines the kernel's cgroups and support for isolated namespaces to provide an isolated environment

for applications. .LXC containers don’t support live migration

2.6.3 LXD containers

LXD is a next generation system container manager. It offers a user experience similar to virtual machines
but using Linux containers instead. Its image based with pre-made images available for a wide number of
Linux distributions and is built around a very powerful, yet pretty simple.
LXD containers fully support live migration.

https://en.wikipedia.org/wiki/Chroot
https://en.wikipedia.org/wiki/Namespace
https://images.linuxcontainers.org/
https://images.linuxcontainers.org/

22

3. Testbed setup

3.1 Follow me Edge Node Prefetching Scheme

The proposed system architecture for the ENP scheme is illustrated in Fig-1- The MPEG-DASH server
is hosted in the cloud and the mobile edge nodes are within the proximity of the ENodeBs. The edge
nodes will act as reverse Web proxies which collects data instead of the client from the requested
server then send it to the client as it is from the server itself, for the user mobile clients on behalf of
the MPEG-DASH server in the cloud. During streaming at the client side, if the video segments are
not cached in the edge node then the edge node will request these segments from the cloud, cache
them in the edge node and serve the mobile clients. If the video segments are cached in the edge
node then the edge node will serve the mobile clients without requesting the segments from the
cloud. In this system, the mobile clients also communicate directly with the MPEG-DASH by
transmitting some computed network parameters (e.g., throughput, current client buffer size,
segment number and bitrate) to the MPEG-DASH server.
When a mobile client moves e.g. from left to right as shown in Fig.1, it will cross over many different
mobile edge nodes along the path. To avoid video quality drop during video streaming from one
node to another, an appropriate amount of video segments will be prefetched in following-on
nodes, in advance, along the path in a follow-me prefetching manner. This is to make sure that video
streaming services are seamless, and the QoE for streaming services provided to the end user is well
maintained during user mobility states (e.g. watching streaming video in a moving car), by following
the follow-me prefetching algorithm we assure less video quality drop down and better QoE for the
client.

Fig-5- ENP system architecture

23

The proposed ENP scheme has two algorithms that run in the cloud server and mobile client side,
respectively. The cloud side algorithm is listed as Algorithm 1, which starts by checking the client’s
buffer size, Bt (Buffer size at time t). The buffer size is sent periodically (here every 250 ms) from
the client side (c.f., Algorithm 2), which fluctuates as a result of network conditions. When the
current buffer size is less than the predetermined buffer size threshold (Bth), the cloud side
algorithm will wake up the next closest edge node (here container C(k+1)) and start prefetching the
next predetermined number of segments (ps = 5 segments in this example). After prefetching
process has finished, the user will then be migrated to continue with streaming from the new edge
node, the old edge node (container Ck) will then be stopped. On the client side, assuming the current
serving video segment is Si and buffer size at time t is Bt, for each segment, it will calculate/estimate
the current buffer size (Bt), and then send the buffer size (Bt) and the segment number (Si) to the
cloud.
List of parameters used in this testbed is as described bellow:
Bitrate parameters 1080p, 720p, 460p, 360p

Buffer parameter 250ms

Number of executions of each approach 40runs per approach

24

25

3.2 Testbed component configurations: -

3.2.1 Containers configuration: -

LXD containers are used in this testbed as mentioned before, which are the same as virtual machines but

using Linux containers, one of the main benefits of this type of containers that it supports live migration from

nodes at the same host or nodes from different host, as known containers are image based and easy to pre

configure before usage, that is why they are light-weighted to be moved in a timely manner period from one

node to another, in this testbed we configured the containers to host Ubuntu servers with apache server

installed on them to act like reverse proxy to the back-end cloud.

All containers which are in the same host has a specific amount of memory allocated to them for usage and

data storage.

After installing lxd in your computer which will act like a node you will launch your first Lxd using the

command bellow:

As shown in the command you specify which operating system and which version you want to be installed in

our case Ubuntu version 16.04 then you name your container, LXD containers were used in both of our

presented methods, the ENP approach with live migration option and the C-up approach with instant IP

change in the next containers, after installing needed you can check how many containers you have on that

host by typing Sudo LXC list as shown in figure -6-:

Fig-6- LXD containers List

26

It shows you your container names the IP address they are running on and how many snapshots you took

from each container, the snapshots are needed when you use the live migration option to save the stats of

all running process and resume them in the next targeted host which is done by using the checkpoint/restro

properties.

After launching the needed instances we need to access using LXC exec Bash then your container name the

one that you used when you created your instance first as shown in the figure -7- below:

Fig-7- LXD container login

The last step to make the containers ready was to install the Reverse proxy inside the containers, we used

apache and configure it to act like a reverse proxy for our backend cloud, and for the caching service in the

containers we installed and configured squid to cache video segments from the cloud to the container and

store them for future use, squid configuration file was edited to meet caching requirements as shown in the

figure -8-, and the whole squid configuration will be in the appendix 2.

Fig-8- squid caching configuration

27

3.2.2 Openstack configurations: -

As explained in the literature Openstack is one of the software’s which can be used to act like cloud

environment, openstack needs a lot of resources to be installed and work perfectly on a system, as you need

one host for the networking, and other host for your controller and so on, and because we had some lack in

resources we used Devstack (openstack) which is same as openstack but installing all components on a single

host e.g.(networking, computing, storage and controller) in the same host.

After launching the devstack (openstack) successfully, you need to download the operating system image

that you need for your testbed in this testbed we downloaded the minimal Ubuntu cloud image version

16.04, and the networking part of devstack which is neutron has been configured to be able to connect to

the internet so the instance will be reachable in all of your network with a floating ip range of 172.24.4.0/24

with the gateway of 172.24.4.1, , is also needed to configure the rules in security group which you want your

instance to use for example HTTPS, HTTP, etc.

You can launch an instance using the Devstack GUI or command line in Ubuntu, figure -9- shows the Devstack

(openstack) GUI in the browser, the command to launch devstack (openstack) instances in the command line

is :

[user@localhost]$ openstack server create –flavor flavorname –image

imagename –key-name keyname.pem –security-group groupname

instancename

Openstack by default offers you a lot of flavors to start with which is compute, storage, and memory

that each instance can use, for example, we have m1.tini,m1.small and so on, m1.tini uses 1 virtual

CPU, 1 GB disk, and 512 MB ram, M1.small uses 1 virtual CPU, 20 GB disk, and 2048 MB of RAM, as

a server administrator is possible to create your own flavor with customized size of memory Virtual

CPUs and RAM, because openstack instances does not have username and password to access it

you need to use the key pair that you created every time you try to log in to the instance.

28

Fig-9- Devstack GUI

3.2.3 Devstack instance configuration:-

For our testbed devstack (openstack) instance is hosting the DASH server to stream the video to the end user,

after installing apache server in the instance, we configure the DASH server move all created video segments

to the right directory, then DASH has been configured to collect some data from the client such as: screen

resolution, bitrate, throughput, client’s IP, buffer size, etc, by creating a function inside DASH file, the function

is shown in the figure -10-, the whole index file will be attached as appendix 3.

Fig-10- DASH index

29

After collecting the data another script has been created to send the collected data from dash and write it in

a separate text file for further usage, the scripts works as a loop it prints time and print the collected data

from the DASH function, script is shown in figure -11-.

Fig-11- write stats script

3.2.4 Dash client data collection: -
After installing all the required software’s and applications and configure your dash client, now all needed is

a client to open the browser and start streaming the video, and dash automatically will start collecting bitrate,

throughput and buffer from the client and from those information’s the system will decide to move from one

node to another one, with prefetching video segments in the upcoming node for assuring better QoE to the

end user, fig-12- shows client watching a video and his data being collected.

Fig-12- Dash client while data being collected

30

3.3 Testbed architecture

To illustrate the effect of the edge-based video streaming and mobility, Ubuntu 16.04 LTS desktop was used
together with two laptops. The Desktop was used to simulate a cloud environment using Devstack (Open-
Stack), which included: network, storage, compute and controller in the same node. An instance of Ubuntu
cloud operating system was launched which had minimal Ubuntu image to host the MPEG-DASH video server.
For DASH streaming in the cloud, Dash.js was used, it is a Javascript Based dash client that has been set as
the reference client by Dash industry forum. Big Buck Bunny video sequence was used as the source video.
The length of the video was 7:58 minutes compressed under different representations using h264 codec as
shown in Table I. Apache was used as the Web Server in the cloud. The IP of the instance was taken from a
private IP range pool. Since the Devstack instance had a private IP address, it was necessary to make
interaction with the Public network by defining the static routes in the router.

 Video Rep. Bitrates

1080 P 3900k,3300k,2400k

720 P 2000k,1500k,1200k

480 p 700k,600k

360 P 500k,400k

TABLE 2 VIDEO REPRESENTATION

The edge nodes were based on the Ubuntu 16.04 virtual machines on the laptops. The Ubuntu virtual
machines were configured with LXD containers. The LXD containers are lightweight and support live
migration. For the testing purposes and to show a proof of concept, two edge nodes were used. The Squid
software was installed on the LXD containers to act as the Web reverse proxy servers to the back-end cloud
MPEG-DASH video server. Fig.13 depicts the overall testbed for this paper. Fig. 13. Testbed setup for live
migration to emulate network varying conditions between user mobiles and edge nodes, Netem tool was
used inside the containers. The network bandwidth was varied between
512 Kbps and 2 Mbps. These variations were enough to cause video quality fluctuations.

Fig -13- Testbed setup

31

The proposed system architecture for the ENP scheme is illustrated in Fig.1. The MPEG-DASH server
is hosted in the cloud and the mobile edge nodes are within the proximity of the ENodeBs. The edge
nodes will act as reverse Web proxies for the user mobile clients on behalf of the MPEG-DASH server
in the cloud. During streaming, if the video segments are not cached in the edge node then the edge
node will request these segments from the cloud, cache them and serve the mobile clients. If the
video segments are cached in the edge node then the edge node will serve the mobile clients
without requesting them from the cloud. In this system, the mobile clients also communicate
directly with the MPEG-DASH by transmitting some computed network parameters (e.g.,
throughput, current client buffer size, segment number and bitrate) to the MPEG-DASH server.
When a mobile client moves e.g. from left to right as shown in Fig.1, it will cross over many different
mobile edge nodes along the path. To avoid video quality drop during video streaming from one
node to another, an appropriate amount of video segments will be prefetched in following-on
nodes, in advance, along the path in a follow-me prefetching manner. This is to make sure that video
streaming services are seamless, and the QoE for streaming services provided to the end user is well
maintained during user mobility states (e.g. watching streaming video in a moving car).

32

4- Results and Performance Comparison

During the experiment, the impacts of buffer size and bitrate on video quality were investigated. Several tests

were conducted to determine the predetermined client buffer size threshold for migration. For the dash.js

clients and video segment sizes used in the experiments, the maximum client buffer size was always at

around 32 ms. Through empirical results the predetermined client buffer threshold size of 20 ms was set for

migration, to determine this threshold different tests were carried out under different thresholds, starting

the migration process before 20ms was not effecting any parameters and the video was continually playing

at the new node without any drop down of the quality, and starting the migration process after the threshold

was causing buffer drop down for 0 and the DASH client was not able to recover 60% of the time in some

approaches when Netem tool were used.

Three schemes (ENP, Container Wakeup (C-up), Live Migration [15]) were compared under different

bandwidth limitations, ENP and C-UP scheme are in the section above with details, the only difference

between the two proposed approaches are the prefetching part in ENP which does not exist in C-up, The Live

Migration is from liturature, . It was found that the live migration scheme had the largest delay compared to

ENP and C-up schemes. This is because live migration scheme moves the whole container, and it will use

checkpoint/restore to save the status of all the processes in the container and start them again in the new

node, while the ENP scheme only wakes up the new container and prefetches a few segments to the new

edge node. The C-up scheme experiences the least delay because it only wakes up the new container without

prefetching. Fig-14- illustrates the execution time of each aforementioned scheme.

Fig -14- execution time for all approaches

Extensive tests have been carried out to determine the most efficient among all the three approaches to

optimise QoE for the end user. We ran the test 10 times for each approach, and as expected the live migration

takes the longest time to be executed as compared to the other two approaches. The increase in time period

occurs because the whole container is moved from one node to another so it will take time to save the status

of all process, then stop the container, move it to the new node, and then start it in the new node and restore

all the process. The IPchange approach takes the minimum time to be executed, and the IPchange with

33

prefetching approach takes longer time to be executed than the IPchange one but it is still much faster than

the Live migration approach.

The relationship of the bitrate levels vs. time is shown in Fig-15-, as anticipated, because of the long execution

time of Live migration scheme. It can be seen clearly the drop of the bitrate levels. During the live migration

the video quality drops to the minimum quality available. For the C-up scheme the video quality will drop to

the medium quality for a short time then regain the original high quality. For the ENP scheme, there was no

change in the video quality because of the video segments were prefetched in the target edge node before

stopping the old edge node.

Fig-15- bitrate level

Fig-16- illustrates how buffer size changes vs. time. It can be seen that the live migration buffer size drops

the most compared to the others, because it takes the longer execution time for saving the status of the

edge nodes and restoring all the processes after migration. The ENP scheme which executes the new edge

node waking up and prefetching video segments experienced the least drop in the buffer level, this is because

the execution time was better than that of the live migration and also due to the positive impact of the

prefetching. The C-up scheme buffer level was better than that of the live migration scheme, this is because

the execution time was better than the live migration approach.

34

Fig-16- buffer levels

We further tested the system under different network conditions by emulating different network packet loss

settings via Netem. 10 tests were carried out for each approach to show the average bitrate under different

packet loss conditions. We observe that no impacts are shown in the video’s bitrate on all the approaches

when the packet loss ratio is between 5%-15%, and when the ratio is increased to 30% or more the Live

Migration approach witnesses a huge amount of bitrate drops, and sometimes not recovering at all after

releasing the packet loss condition

To overcome the not recovering stats of dash we started to use Iperf instate of Netem to play with the

network condition and put load on the network, again 10 tests were carried out for each approach to show

the average bitrate received for each approach, fig -17- shows the Average bitrate interval for each approach.

fig -17- Average bitrate interval

35

as indicated in Fig-17- that ENP scheme maintains higher bitrate levels comparing to Live migration, and C-

up, and that relates to the long time that Live migration take to use the checkpoint/restro and save the stats

of all the process then move the whole container from one node to the other then restore the stats of all

process. C-Up and ENP has close stats but ENP takes the advantage of prefetching at the new node and

recovers faster so we see less drop down in the quality for ENP scheme.

Fig-18- shows the average switching for each approach, in case of bitrate switching, it is obvious that C-Up

scheme will have the most number of switching almost every time because of the quick drop down in the

network and the slow recovery in the new node. ENP in this case will take the advantage of prefetching to

maintain a reasonable number of switching again, while Live migration approach has the less number of

switching because of the long time it takes to move a container from the old node to the new one, and fig -

19- shows the number of stats received for each bitrate in each approach.

Fig-18- Average number of switching

In ENP scheme average bitrate received is the highest one in every test we run because of the prefetching

advantage, while Live migration approach suffers from drop down in bitrate when moving from one node to

another due to the time taken by the process, so as expected the Live migration will be getting the lowest

bitrate available of the longest time compared to other approaches, C-up shows similar results to ENP scheme

apart from the movement time when the bitrate might drop for a lower quality for a short time then recovers

to the highest one.

36

Fig-19- Amount of bitrate received for each approach

In most of the tests for live migration approach when the movement was taking a bit longer than expected

the dash was unable to recover and the buffer level was drop to 0 and staying their until a new session starts

by applying the ENP scheme we can avoid that event as well, fig-20-21 shows a buffer level, and bitrate for

an unrecovered Live migration test.

Fig-20- unrecovered buffer level

37

figure-20- describes a common unrecoverable drop down in the buffer levels due to live migration approach

execution time, when the live migration execution time exceeds the normal levels and buffer level reaches

zero, even if the container got migrated successfully to the new node, the system will be unable to recover,

that gives ENP approach one more advantages which is avoiding such kind of drop downs.

Fig-21- unrecovered bitrate stats

Figure-21- shows the unrecoverable bitrate stats for live migration approach when the execution and

checkpoint/restro functions takes abnormal times to be executed.

38

5- Conclusions and Future Work

5.1 Conclusions
In this project, a study was carried out to enhance video streaming quality for mobile video

streaming applications. The key contributions are summarized as below:

1. A testbed was setup to assess the quality of mobile video streaming services based on

DASH.

2. novel follow-me Edge Node Prefetching (ENP) scheme that wakes up the target edge node
and prefetches an appropriate amount of video segments in advance in order to avoid video
quality degradation during service migration in mobile edge nodes. The testbed based on
the OpenStack, two edge nodes (LXD Containers) and a mobile device was set up and used
to obtain empirical results. The MPEGDASH scheme based on dash.js was utilised to assess
and evaluate the performance of the proposed scheme and compared with that of the
existing approaches. Preliminary results have shown that the ENP scheme can achieve
better video quality and less service migration time than that of live migration and C-up
schemes.

5.2 Limitations and Future Work
Due to time constraints, the testbed and experiment carried out was limited, and the proposed

approach, e.g. when to wake up and/or move the container was fixed and not flexible. Future work

can be done in the following two directions, e.g.

1. More intelligent approach for containers wake-up/movement for seamless mobile video

streaming services.

2. An appropriate Quality of Experience (QoE) assessment for mobile video streaming services.

This could involve an appropriate subjective assessment method or utilise the latest

objective quality assessment methods for mobile video streaming services to compare the

performance between the proposed approach and existing ones.

39

References

1- Cisco. (2017, Sep) Cisco Visual Networking Index:Forecast and Methodology, 2016-2021.
[Online].
Available:https://www.cisco.com/c/en/us/solutions/collateral/serviceprovider/visual-
networking-index-vni/complete-white-paper-c11-481360.html

2- B. Wang, J. Kurose, P. Shenoy, and D. Towsley, “Multimedia Streaming via TCP: An Analytic
Performance Study”, ACM Transactions on Multimedia Computing, Communications and
Applications, vol. 4, no. 2, May 2008, pp. 16:1-16:22.

3- H. Schwarz, D. Marpe, T. Wiegland, “Overview of the scalable video coding extension of the
H.264/AVC standard”, IEEE Transactions on Circuits and Systems for Video Technology, vol
17, no. 9, Sep. 2007, pp. 1103-1120.

4- 3GPP TS 26.234, “Transparent end-to-end packet switched streaming service (PSS)”,
Protocols and codecs, 2010.

5- S. Wang, X. Zhang, Y. Zhang, L. Wang, J. Yang, and W. Wang, “A survey on mobile edge
networks: Convergence of computing, caching and communications,” IEEE Access, vol. 5, pp.
6757–6779, 2017.

6- R. Pantos, W. May, “HTTP Live Streaming”, IETF draft, March. 2011,
http://tools.ietf.org/html/draft-pantos-http-live-streaming-06

7- Adobe HTTP Dynamic Streaming, http://www.adobe.com/products/httpdynamicstreaming/
8- Microsoft Smooth Streaming, http://www.iis.net/download/smoothstreaming
9- C. Müller, C. Timmerer, “A Test-Bed for the Dynamic Adaptive Streaming over HTTP featuring

Session Mobility”, ACM Multimedia Systems, San Jose, California, USA, Feb. 2011, pp. 271-
276.

10- M. Patel, B. Naughton, C. Chan, N. Sprecher, S. Abeta, A. Nealet al., “Mobile-edge computing
introductory technical whitepaper,” White Paper, Mobile-edge Computing (MEC)
industryinitiative, 2014.

11- Y. C. Hu, M. Patel, D. Sabella, N. Sprecher, and V. Young,“Mobile edge computinga key
technology towards 5g,”ETSIwhite paper, vol. 11, no. 11, pp. 1–16, 2015.

12- H. Chang, A. Hari, S. Mukherjee, and T. Lakshman, “Bringing the cloud to the edge,” in
Computer Communications Workshops (INFOCOM WKSHPS), 2014 IEEE Conference on. IEEE,
2014, pp. 346–351.

13- J. O. Fajardo, I. Taboada, and F. Liberal, “Improving content delivery efficiency through multi-
layer mobile edge adaptation,” IEEE Network, vol. 29, no. 6, pp. 40–46, 2015.

14- Y. Jararweh, L. Tawalbeh, F. Ababneh, and F. Dosari, “Resource efficient mobile computing
using cloudlet infrastructure,” in Mobile Ad-hoc and Sensor Networks (MSN), 2013 IEEE
Ninth Int. Conf. on. IEEE, 2013, pp. 373–377.

15- T. Taleb, S. Dutta, A. Ksentini, M. Iqbal, and H. Flinck, “Mobile edge computing potential in
making cities smarter,” IEEE Communications Magazine, vol. 55, no. 3, pp. 38–43, 2017.

16- J. W. Kleinrouweler, S. Cabrero, and P. Cesar, “Delivering stable high-quality video: An sdn
architecture with dash assisting network elements,” in Proceedings of the 7th Int. Conf. on
Multimedia Systems. ACM, 2016, p. 4.

40

17- S. Chen, B. Shen, S. Wee, and X. Zhang, “Segment-based streaming media proxy: modeling
and optimization,” IEEE Transactions on Multimedia, vol. 8, no. 2, pp. 243–256, 2006.

18- C. Ge, N. Wang, G. Foster, and M. Wilson, “Towards qoe-assured 4k video-on-demand
delivery through mobile edge virtualization with adaptive prefetching,” IEEE Tran. on
Multimedia, vol. 19, no. 10, pp. 2222–2237, 2017.

19- V. Krishnamoorthi, N. Carlsson, D. Eager, A. Mahanti, and N. Shahmehri, “Bandwidth-aware
prefetching for proactive multivideo preloading and improved has performance,” in
Proceedings of the 23rd ACM int. conf. on Multimedia. ACM, 2015, pp. 551–560.

20- J. Davidson, B. Liebald, J. Liu, P. Nandy, T. Van Vleet, U. Gargi, S. Gupta, Y. He, M. Lambert,
B. Livingston et al., “The youtube video recommendation system,” in Proc. of the 4th ACM.

21- Mahdi, A. E. (2007) voice quality measurement in modern telecommunication networks.
14th international workshop on system, signals and image processing,2007 and 6th EURASIP
conference focused on speech and image processing, multimedia communication services.
Pp25-32.

22- www.ffmpeg.org

41

Appendix -1- submitted paper

Follow-me Prefetching for Video Streaming
over Mobile Edge Computing Networks

Ibrahim S. Mohammedameen, Is-Haka Mkwawa and Lingfen Sun

School of Computing, Electronics and Mathematics

Plymouth University, Plymouth PL4 8AA, UK

E-mail: {Ibrahim.mohammedameen; Is-haka.mkwawa; L.Sun}@plymouth.ac.uk

Abstract—Mobile video streaming services have in-

creased exponentially in recent years due to the popularity of
mobile devices, the advancement of mobile networks, and the
availability of a variety of video contents over the Inter- net.
Mobile Edge Computing (MEC), in connection with the
backend Cloud computing, has been used to bring contents
close to the end user in order to reduce transmission latency.
However, the quality of video streaming services suffers from
degradation when an end user moves from the coverage of
one node to another or when the condition of a mobile
network degrades. In this paper, we propose a novel follow-
me Edge Node Prefetching (ENP) scheme to prefetch
appropriate video segments in advance in the following- on
mobile node to avoid video quality degradation during video
streaming. We set up a test bed consisting of a back- end cloud
(OpenStack), two edge nodes (LXD Containers) and a mobile
device, and implemented the ENP algorithms on cloud server
and client sides. Extensive experiments for Dynamic Adaptive
video Streaming over HTTP (DASH) services were carried out
based on dash.js from the DASH Industry Forum. Preliminary
results show that the ENP scheme can achieve better video
quality (in terms of provisioning of average video bit rate per
segment) and less service migration time between mobile
nodes when compared with existing approaches. The scheme
might be useful in supporting video streaming services over
MEC, and/or in future smart city applications.

Index Terms—QoE, MEC, MPEG-DASH, prefetching,
Migration

I. INTRODUCTION

With the advancement of mobile communications and

video processing technologies in recent years, video

streaming services (such as those provided by YouTube

and Netflix) have become one of the most dominant

services over the Internet. According to the latest Cisco

Visual Networking Index (VNI), video services will

account for about 82% of all consumer Internet traffic by

2021, growing threefold between 2016 to 2021 [1];

mobile video will be about 78% of the world’s mobile

data traffic by 2021, increasing 9-fold between 2016 and

2021 [1]. In this context, great efforts have been made

42

to improve the quality of video streaming services over

the mobile Internet.

Over the years, Over-The-Top (OTT) service

providers such as YouTube and Netflix have been using

the MPEG- DASH (Dynamic Adaptive Streaming over

HTTP) stan- dard to deliver video streaming services

over the Internet [2]. MPEG-DASH has many

advantages such as flexible quality adaptation and

simplicity in implementation due to its easy integration

with the existing HTTP-based infrastructure. In MPEG-

DASH, the video is prepacked with short video

segments for different representations corresponding to

different video qualities at the server. A DASH client

predicts available network bandwidth and sends an

HTTP-request to the server for appropriate video

representation segments. Due to varying network

conditions, an ideal DASH scheme should be able to

adapt between different video segments to provide ac-

ceptable video quality and hence, acceptable Quality

of Experience (QoE) to video streaming customers.

Normally video contents are located in servers in Data

Centres over the Cloud and/or in cache servers provided

by Content Delivery Networks (CDN). When a client is

too far away from the server (e.g. across a continent),

latency and network congestion will have adverse

effects on video streaming quality. The situation will get

worse when the Internet video is streamed to mobile

devices.

Mobile Edge Computing (MEC), a promising

technol- ogy for 5G mobile networks, has been utilised

to assist video streaming services due to its ability to

facilitate the provisioning of high data rate and low

latency services to end users and its ability to provide

computational power at the mobile edge. It has been

used for MPEG-DASH to reduce the backbone traffic

to the Cloud and bring video contents close to the end

user. The MEC specified by ETSI [3], is one of the

Mobile Edge Network (MEN) structures that offers

intense computing capability along with real-time

communication ability with the end user.

The MEC has provided an ability to bring video

45

contents close to mobile users. However, with mobil- ity

of users across different mobile nodes and varying mobile

network conditions, maintaining and achieving high QoE

for video streaming services remain a great challenge. In

this paper, we propose a novel follow-me Edge Node

Prefetching (ENP) scheme to prefetch some video

segments in advance in following-on mobile nodes to

avoid video quality degradation due to transition from one

node to another. In this scheme, the user will be served

from the new node with seamless interruption and

assurance of high quality video delivery. We set up a test

bed consisting of a back-end cloud (OpenStack), two

edge nodes (LXD Containers) and a mobile device, and

carried out extensive experiments for DASH services

based on dash.js. Preliminary results show that the ENP

scheme can achieve better video quality (in terms of

provisioning of average video bit rate per segment) and

less service migration time between mobile nodes when

compared with existing approaches.

The proposed ENP scheme can be applied in several

scenarios, such as,

1) the user’s current edge node experiences bad net-

work conditions (such as poor signal strength and

low bandwidth). In this scenario, the user will be

redirected to the next closest edge node to

continue with video streaming with seamless

interruption and video quality degradation.

2) the user is on the move from one mobile node to

the next. In this case, the user will be redi- rected

to the next node with better signal strength to

continue with video streaming with seamless

interruption.

In these scenarios, video segments are prefetched

before the user is redirected to the next edge node. The

main problem with the existing approaches are that they

suffer from processing delays which affect video

streaming quality at the end user.

The main objective of this study is to optimise QoE for

the end user using MEC regardless of the mobility of the

user. The approach ensures that the user is always served

from the closest nodes with better network quality.

The main contributions of the paper are twofold:

• A novel follow-me Edge Node Prefetching (ENP)

scheme. The scheme is able to prefetch video

segments in advance in following-on mobile edge

node to tackle the problem of video quality drop for

video streaming services due to service migration.

• The proposed ENP algorithms on cloud and client

sides. The algorithms have been implemented for

video streaming services in a cloud/MEC inte-

grated testbed using OpenStack, LXD Container and

dash.js. The performance is evaluated and compared

with the existing approaches, and better video

streaming quality is obtained for the proposed

scheme.

The rest of this paper is organised as follows. The

related work is discussed in Section II. Section III

presents the ENP scheme and its algorithms for the cloud

server and the client sides. Section IV explains the

experimental setup including the testbed used of all

approaches. The results and discussion are summarized in

Section V. Conclusions and future work are given in

Section VI.

II. RELATED WORK

The delivery of mobile content to users is the main

motive of network systems. At present, the delivery of

high definition videos with high resolution has be- come

the prime focus to enhance the context of 5G network

development in the future. The 5G network enables

increased network capacity along with the QoE by adding

required network intelligence in all type of network

requirements. The recent development of new network

paradigms, Mobile Edge Computing (MEC) [4] in

particular is anticipated that intelligence and video

content awareness can be implemented in the edge node

for optimizing the QoE for end users.

The principal objective of MEC is to place storage and

computation resources at the network edge, in the user

vicinity. The data processing can be driven accordingly

from inaccessible cloud to the edge. When the data is

processed locally and data streams are accelerated via

several techniques such as caching and compression,

MEC reduces the bottleneck toward the core network. In

addition, it decreases end-to-end latency, enabling the

offload of important computation load from power

constrained user equipment to the edge. The executive

briefing of the European Telecommunications Standards

Institute (ETSI) MEC initiative argues that one edge

computing shall enable new computation-intensive ser-

vices and shall yield promising business models. It also

represents a fault resilient solution for its decentralized

architecture [5].

The research work in [6] uses network assisted adap-

tive streaming applications for multimedia content deliv-

ery inside MEC to enhance Quality of Experience (QoE).

The research work in [7] makes use of edges as caches

along with proxies to store media content.

Most of the MEC studies are focusing about reducing

the latency, Taleb [8] tackles the migration problems in

the context of smart cities. They proposed an approach

46

to enhance video streaming experience for the end user in

smart cities based on Follow me Edge concept, unlike our

studies they are focusing on the users mobility from one

node to another and not on the video quality.

Several studies have been carried out on the concept of

prefetching, and how to determine the right video to be

prefetched to the user, without wasting resources. The

study in [9] does neither include prefetching nor caching

at the network edge, they only predict the network

condition parameters and send them to the controller.

Authors in [10] proposed a scheme which decides when

and how many segments to prefetch, however, they did

not consider varying network conditions. This could lead

to the video quality drop because of segments download-

ing delays. Chang’s work [11] showed the importance of

content localization and how to reduce end-to-end delay

when the video is on the global Internet, by proposing an

approach called Mobile edge Virtualization with

Adaptive Prefetching (MVP).This was done by checking

RAN parameters and prefetch video segments into the

edge node to maintain a progress gap from the users actual

request , but they didnt mention/consider edge node

changing or users mobility in their work.

Krishnamoorthi [12] focused on bandwidth-aware

prefetching. Three approaches were proposed to prefetch

the alternative videos that the user might watch after

finishing the main one. Based on the bandwidth they

predicted the maximum buffer size, after reaching the

maximum buffer size the application will stop download-

ing the main video and start downloading the alternative

ones. Other approaches [13] determined which video the

user most likely to watch next, however, these approaches

may sometimes prefetch unwanted videos which lead to

resource wastage. In this paper, the pro- posed ENP

scheme combines the prefetching with the migration

approach to prefetch the video segments in a new edge

node before that node starts to serve the user. This will

make sure that video streaming services can be delivered

to an end user without quality degration when serving

mobile edge node is migrated from one to another.

III. FOLLOW-ME EDGE NODE PREFETCHING (ENP)

SCHEME

The proposed system architecture for the ENP scheme

is illustrated in Fig.1. The MPEG-DASH server is hosted

in the cloud and the mobile edge nodes are within the

proximity of the ENodeBs. The edge nodes will act as

reverse Web proxies for the user mobile clients on behalf

of the MPEG-DASH server in the cloud. During

streaming, if the video segments are not cached in the

edge node then the edge node will request these seg-

ments from the cloud, cache them and serve the mobile

clients. If the video segments are cached in the edge node

then the edge node will serve the mobile clients without

requesting them from the cloud. In this system, the mobile

clients also communicate directly with the MPEG-DASH

by transmitting some computed network parameters (e.g.,

throughput, current client buffer size, segment number

and bitrate) to the MPEG-DASH server. When a mobile

client moves e.g. from left to right as shown in Fig.1, it

will cross over many different mobile edge nodes along

the path. To avoid video quality drop during video

streaming from one node to another, an appropriate

amount of video segments will be prefetched in

following-on nodes, in advance, along the path in a

follow-me prefetching manner. This is to make sure that

video streaming services are seamless, and the QoE for

streaming services provided to the end user is well

maintained during user mobility states (e.g. watching

streaming video in a moving car).

Fig. 1. The ENP system architecture

The proposed ENP scheme has two algorithms that run

in the cloud server and mobile client side, respectively.

The cloud side algorithm is listed as Algorithm 1, which

starts by checking the client’s buffer size, Bt (Buffer size

at time t). The buffer size is sent periodically (here every

250 ms) from the client side (c.f., Algorithm 2), which

fluctuates as a result of network conditions. When the

current buffer size is less than the predetermined buffer

size threshold (Bth), the cloud side algorithm will wake

up the next closest edge node (here container C(k+1))

and start prefetching the next predetermined number of

segments (ps = 5 segments in this example). After

prefetching process has finished, the user will then be

migrated to continue with streaming from the new edge

47

{ }

node, the old edge node (container Ck) will then be

stopped.

On the client side, assuming the current serving video

segment is Si and buffer size at time t is Bt, for each

segment, it will calculate/estimate the current buffer size

(Bt), and then send the buffer size (Bt) and the segment

number (Si) to the cloud.

Bunny video sequence was used as the source video. The

length of the video was 7:58 minutes compressed under

different representations using H.264 codec as shown in

Table I. Apache was used as the Web Server in the cloud.

The IP of the instance was taken from a private IP range

pool. Since the Devstack instance had a private IP address,

it was necessary to make interaction with the

 public network by defining the static routes in the router.

Algorithm 1: The Cloud side ENP algorithm

Let t= 0,...,T

∆t= 250 ms

Current segment Si

current container : Ck

let ps be the number of segments to prefetch

Bt : Clients buffer size at time t

Bth: predefined buffer

threshold foreach ∆t do

obtain Bt

if Bt <Bth then

wake up container C(k+1)
for (j=i; j <i +ps; j++) do

prefetch segment Sj in Ck+1
end

stop Ck

end;

TABLE I

VIDEO REPRESENTATION

Video Rep. Bitrates

1080 P 3900k,3300k,2400k

720 P 2000k,1500k,1200k

480 P 700k,600k

360 P 500k,400k

The edge nodes were based on the Ubuntu 16.04 virtual

machines on the laptops. The Ubuntu virtual ma- chines

were configured with LXD containers. The LXD

containers are lightweight and support live migration. For

the testing purposes and for a proof of concept, two edge

nodes were used. The Squid software was installed on the

LXD containers to act as the Web reverse proxy servers to

the back-end cloud MPEG-DASH video server. Fig. 2

depicts the overall testbed used.

Algorithm 2: The client side ENP algorithm

Current segment Si

Client buffer size at time t, Bt

foreach Si do

calculate Bt

send Bt to the cloud

send

Si

;

to the cloud

IV. EXPERIMENTAL SETUP

To illustrate the effect of the edge-based video stream-

ing and mobility, Ubuntu 16.04 LTS desktop was used

together with two laptops. The Desktop was used to sim-

ulate a cloud environment using Devstack (OpenStack),

which included network, storage, compute and controller

in the same node. An instance of Ubuntu cloud oper- ating

system was launched which had minimal Ubuntu image to

host the MPEG-DASH video server. For DASH streaming

in the cloud, dash.js was used, which is a Javascript-Based

dash client that has been set as the reference client by

DASH Industry Forum. Big Buck

Migration

192.168.2.1

192.168.1.1

LXD container (squid)

LXD container
(squid)

192.168.56.111

48

IP 192.168.1.129

Fig. 2. Testbed setup for live migration

To emulate network varying conditions between user

mobiles and edge nodes, Netem tool was used inside

the containers to emulate different network bandwidth

or different network packet loss conditions. The network

bandwidth was varied between 512 Kbps and 2 Mbps

with buffer size of 1600, 3200, or 6400 bytes. For

the packet loss tests, all approaches were tested under

different packet loss conditions between 5 -30% packet

49

loss, where packet loss was introduced to the network at

a fixed time for 20 seconds then released. These network

variations were sufficient to cause video quality

fluctuations.

V. RESULTS AND DISCUSSION

During the experiment, the impacts of buffer size and

bitrate on video quality were investigated. Several tests

were conducted to determine the predetermined client

buffer size threshold for migration. For the dash.js clients

and video segment sizes used in the experiments, the

maximum client buffer size was always at around 32 ms.

Through empirical results the predetermined client buffer

threshold size of 20 ms was set for migration.

Three schemes (ENP, Container Wakeup (C-up), Live

Migration [8]) were compared under different bandwidth

limitations. Both the ENP and the C-up are proposed by

the authors and the differenc between them is that C-up

does not do prefetching. The Live Migration is from

liturature. It was found that the live migration scheme had

the largest delay compared to ENP and C-up schemes.

This is because live migration scheme moves the whole

container, and it will use checkpoint/restore to save the

status of all the processes in the container and start them

again in the new node, while the ENP scheme only wakes

up the new container and prefetches a few segments to the

new edge node. The C-up scheme experiences the least

delay because it only wakes up the new container without

prefetching. Fig. 3 illustrates the execution time of each

aforementioned scheme.

Fig. 3. Execution Time

The relationship of the bitrate levels vs. time is shown

in Fig. 4, as anticipated, because of the long execution

time of Live migration scheme. It can be seen clearly the

drop of the bitrate levels. During the live migration the

video quality drops to the minimum quality available. For

the C-up scheme the video quality will drop to the

medium quality for a short time then regain the original

high quality. For the ENP scheme, there was no change in

the video quality because of the video segments were

prefetched in the target edge node before stopping the old

edge node.

Fig. 4. Bitrate levels vs Time

Fig.5 illustrates how buffer size changes vs. time. It can

be seen that the live migration buffer size drops the most

compared to the others, because it takes the longer

execution time for saving the status of the edge nodes and

restoring all the processes after migration. The ENP

scheme which executes the new edge node waking up and

prefetching video segments experienced the least drop in

the buffer level, this is because the execution time was

better than that of the live migration and also due to the

positive impact of the prefetching. The C- up scheme

buffer level was better than that of the live migration

scheme, this is because the execution time was better than

the live migration approach.

We further tested the system under different network

conditions by emulating different network packet loss

settings via Netem. 10 tests were carried out for each

approach to show the average bitrate under different

packet loss conditions. We observe that no impacts are

shown in the videos bitrate on all the approaches when

the packet loss ratio is between 5%-15%, and when the

ratio is increased to 30% or more the Live Migration

approach witnesses a huge amount of bitrate drops,

50

achieve better video quality and less service migration

time than that of live migration and C-up schemes.

The future work will enhance the proposed ENP

scheme with more intelligence to adapt to different

network conditions and different video contents in order

to maintain better QoE for video streaming services. The

QoE metrics, in addition to stalling events, initial/average

buffering time will also be assessed. More edge nodes and

different mobility patterns will be considered. The

applications of the ENP scheme in smart city will also

beexplored.

51

Fig. 5. Buffer levels vs Time

and sometimes not recovering at all after releasing the packet loss condition. Table II shows the average bitrate

per segment adopted for each approach under different packet loss ratio.

TABLE II

AVRAGE VIDEO BITRATE ADOPTATION PER SEGMENT

Approaches 5-10% 15% 20% 30%

ENP 2400P 2400P 2400p 2400P

C-UP 2400P 2400P 1200p 700P

Live Migration 2400P 1200P 700p 400P

Based on the obtained results, it can be observed that in spite of the live migration approach being dynamic,

it wont ensure high level of video quality to the end user, at the same time the ENP scheme is much reliable than

both live migration and C-up schemes. The ENP scheme is characterized by less resource wasting and

maintaining high video quality level for end users.

VI. CONCLUSION

This paper has proposed a novel follow-me Edge Node Prefetching (ENP) scheme that wakes up the target

edge node and prefetches an appropriate amount of video segments in advance in order to avoid video quality

degradation during service migration in mobile edge nodes. The testbed based on the OpenStack, two edge nodes

(LXD Containers) and a mobile device was set up and used to obtain empirical results. The MPEG- DASH

scheme based on dash.js was utilised to assess and evaluate the performance of the proposed scheme and

compared with that of the existing approaches. Preliminary results have shown that the ENP scheme can

52

REFERENCES

[1] Cisco. (2017, Sep) Cisco Visual Networking Index: Forecast and Methodology, 2016-2021. [Online]. Available:
https://www.cisco.com/c/en/us/solutions/collateral/service- provider/visual-networking-index-vni/complete-white-paper-c11-
481360.html

[2] S. Wang, X. Zhang, Y. Zhang, L. Wang, J. Yang, and W. Wang, “A survey on mobile edge networks: Convergence of computing, caching
and communications,” IEEE Access, vol. 5, pp. 6757– 6779, 2017.

[3] M. Patel, B. Naughton, C. Chan, N. Sprecher, S. Abeta, A. Neal et al., “Mobile-edge computing introductory technical white paper,”
White Paper, Mobile-edge Computing (MEC) industry initiative, 2014.

[4] Y. C. Hu, M. Patel, D. Sabella, N. Sprecher, and V. Young, “Mobile edge computinga key technology towards 5g,” ETSI white paper,
vol. 11, no. 11, pp. 1–16, 2015.

[5] H. Chang, A. Hari, S. Mukherjee, and T. Lakshman, “Bringing the cloud to the edge,” in Computer Communications Workshops
(INFOCOM WKSHPS), 2014 IEEE Conference on. IEEE, 2014, pp. 346–351.

[6] J. O. Fajardo, I. Taboada, and F. Liberal, “Improving content delivery efficiency through multi-layer mobile edge adaptation,” IEEE
Network, vol. 29, no. 6, pp. 40–46, 2015.

[7] Y. Jararweh, L. Tawalbeh, F. Ababneh, and F. Dosari, “Resource efficient mobile computing using cloudlet infrastructure,” in Mobile
Ad-hoc and Sensor Networks (MSN), 2013 IEEE Ninth Int. Conf. on. IEEE, 2013, pp. 373–377.

[8] T. Taleb, S. Dutta, A. Ksentini, M. Iqbal, and H. Flinck, “Mo- bile edge computing potential in making cities smarter,” IEEE
Communications Magazine, vol. 55, no. 3, pp. 38–43, 2017.

[9] J. W. Kleinrouweler, S. Cabrero, and P. Cesar, “Delivering stable high-quality video: An sdn architecture with dash assisting network
elements,” in Proceedings of the 7th Int. Conf. on Multimedia Systems. ACM, 2016, p. 4.

[10] S. Chen, B. Shen, S. Wee, and X. Zhang, “Segment-based stream- ing media proxy: modeling and optimization,” IEEE Transactions
on Multimedia, vol. 8, no. 2, pp. 243–256, 2006.

[11] C. Ge, N. Wang, G. Foster, and M. Wilson, “Towards qoe-assured 4k video-on-demand delivery through mobile edge virtualization
with adaptive prefetching,” IEEE Tran. on Multimedia, vol. 19, no. 10, pp. 2222–2237, 2017.

[12] V. Krishnamoorthi, N. Carlsson, D. Eager, A. Mahanti, and
N. Shahmehri, “Bandwidth-aware prefetching for proactive multi- video preloading and improved has performance,” in Proceedings
of the 23rd ACM int. conf. on Multimedia. ACM, 2015, pp. 551– 560.

[13] J. Davidson, B. Liebald, J. Liu, P. Nandy, T. Van Vleet, U. Gargi,
S. Gupta, Y. He, M. Lambert, B. Livingston et al., “The youtube video recommendation system,” in Proc. of the 4th ACM conf. on
Recommender systems. ACM, 2010, pp. 293–296.

http://www.cisco.com/c/en/us/solutions/collateral/service-

53

Appendix -2- squid configuration
WELCOME TO SQUID 2.7.STABLE6

This is the default Squid configuration file. You may wish

to look at the Squid home page (http://www.squid-cache.org/)

for the FAQ and other documentation.

The default Squid config file shows what the defaults for

various options happen to be. If you don't need to change the

default, you shouldn't uncomment the line. Doing so may cause

run-time problems. In some cases "none" refers to no default

setting at all, while in other cases it refers to a valid

option - the comments for that keyword indicate if this is the

case.

Configuration options can be included using the "include" directive.

Include takes a list of files to include. Quoting and wildcards is

supported.

For example,

include /path/to/included/file/squid.acl.config

Includes can be nested up to a hard-coded depth of 16 levels.

This arbitrary restriction is to prevent recursive include references

from causing Squid entering an infinite loop whilst trying to load

configuration files.

54

OPTIONS FOR AUTHENTICATION

TAG: auth_param

This is used to define parameters for the various authentication

schemes supported by Squid.

format: auth_param scheme parameter [setting]

The order in which authentication schemes are presented to the client is

dependent on the order the scheme first appears in config file. IE

has a bug (it's not RFC 2617 compliant) in that it will use the basic

scheme if basic is the first entry presented, even if more secure

schemes are presented. For now use the order in the recommended

settings section below. If other browsers have difficulties (don't

recognize the schemes offered even if you are using basic) either

put basic first, or disable the other schemes (by commenting out their

program entry).

Once an authentication scheme is fully configured, it can only be

shutdown by shutting squid down and restarting. Changes can be made on

the fly and activated with a reconfigure. I.E. You can change to a

different helper, but not unconfigure the helper completely.

Please note that while this directive defines how Squid processes

authentication it does not automatically activate authentication.

To use authentication you must in addition make use of ACLs based

on login name in http_access (proxy_auth, proxy_auth_regex or

external with %LOGIN used in the format tag). The browser will be

challenged for authentication on the first such acl encountered

55

in http_access processing and will also be re-challenged for new

login credentials if the request is being denied by a proxy_auth

type acl.

WARNING: authentication can't be used in a transparently intercepting

proxy as the client then thinks it is talking to an origin server and

not the proxy. This is a limitation of bending the TCP/IP protocol to

transparently intercepting port 80, not a limitation in Squid.

=== Parameters for the basic scheme follow. ===

"program" cmdline

Specify the command for the external authenticator. Such a program

reads a line containing "username password" and replies "OK" or

"ERR" in an endless loop. "ERR" responses may optionally be followed

by a error description available as %m in the returned error page.

By default, the basic authentication scheme is not used unless a

program is specified.

If you want to use the traditional proxy authentication, jump over to

the helpers/basic_auth/NCSA directory and type:

% make

% make install

Then, set this line to something like

auth_param basic program /usr/local/squid/libexec/ncsa_auth /usr/local/squid/etc/passwd

"children" numberofchildren

The number of authenticator processes to spawn. If you start too few

56

squid will have to wait for them to process a backlog of credential

verifications, slowing it down. When credential verifications are

done via a (slow) network you are likely to need lots of

authenticator processes.

auth_param basic children 5

"concurrency" numberofconcurrentrequests

The number of concurrent requests/channels the helper supports.

Changes the protocol used to include a channel number first on

the request/response line, allowing multiple requests to be sent

to the same helper in parallell without wating for the response.

Must not be set unless it's known the helper supports this.

"realm" realmstring

Specifies the realm name which is to be reported to the client for

the basic proxy authentication scheme (part of the text the user

will see when prompted their username and password).

auth_param basic realm Squid proxy-caching web server

"credentialsttl" timetolive

Specifies how long squid assumes an externally validated

username:password pair is valid for - in other words how often the

helper program is called for that user. Set this low to force

revalidation with short lived passwords. Note that setting this high

does not impact your susceptibility to replay attacks unless you are

using an one-time password system (such as SecureID). If you are using

such a system, you will be vulnerable to replay attacks unless you

also use the max_user_ip ACL in an http_access rule.

auth_param basic credentialsttl 2 hours

Recommended minimum configuration:

57

Example rule allowing access from your local networks.

Adapt to list your (internal) IP networks from where browsing

should be allowed

Auth

auth_param basic program /usr/lib64/squid/basic_ncsa_auth /etc/squid/squid_passwd

acl ncsa_users proxy_auth REQUIRED

http_access allow ncsa_users

acl all src all

acl manager proto cache_object

acl localhost src 127.0.0.1/32

acl to_localhost dst 127.0.0.0/8 0.0.0.0/32

acl localnet src 10.0.0.0/8 # RFC1918 possible internal network

acl localnet src 172.16.0.0/12 # RFC1918 possible internal network

acl localnet src 192.168.0.0/16 # RFC1918 possible internal network

acl localnet src fc00::/7 # RFC 4193 local private network range

acl localnet src fe80::/10 # RFC 4291 link-local (directly plugged) machines

acl SSL_ports port 443

acl Safe_ports port 80 # http

acl Safe_ports port 21 # ftp

acl Safe_ports port 443 # https

acl Safe_ports port 70 # gopher

acl Safe_ports port 210 # wais

acl Safe_ports port 1025-65535 # unregistered ports

acl Safe_ports port 280 # http-mgmt

acl Safe_ports port 488 # gss-http

58

acl Safe_ports port 591 # filemaker

acl Safe_ports port 777 # multiling http

acl CONNECT method CONNECT

Recommended minimum Access Permission configuration:

Deny requests to certain unsafe ports

http_access deny !Safe_ports

Deny CONNECT to other than secure SSL ports

http_access deny CONNECT !SSL_ports

Only allow cachemgr access from localhost

http_access allow localhost manager

http_access deny manager

We strongly recommend the following be uncommented to protect innocent

web applications running on the proxy server who think the only

one who can access services on "localhost" is a local user

#http_access deny to_localhost

INSERT YOUR OWN RULE(S) HERE TO ALLOW ACCESS FROM YOUR CLIENTS

Example rule allowing access from your local networks.

Adapt localnet in the ACL section to list your (internal) IP networks

from where browsing should be allowed

http_access allow localnet

http_access allow localhost

And finally deny all other access to this proxy

http_access deny all

Squid normally listens to port 3128

http_port 3128

59

Uncomment and adjust the following to add a disk cache directory.

#cache_dir ufs /var/spool/squid 100 16 256

Leave coredumps in the first cache dir

coredump_dir /var/spool/squid

Add any of your own refresh_pattern entries above these.

refresh_pattern ^ftp: 1440 20% 10080

refresh_pattern ^gopher: 1440 0% 1440

refresh_pattern -i (/cgi-bin/|\?) 0 0% 0

refresh_pattern . 0 20% 4320

60

Appendix -3- Index.html file

<!DOCTYPE html>

<html lang="en">

<head>

 <meta charset="utf-8"/>

 <script src="js/dash.all.debugmod.js"></script>

 <script>

 var player,firstLoad = true;

var info={

 timeOpened:new Date(),

 timezone:(new Date()).getTimezoneOffset()/60,

 pageon(){return window.location.pathname},

 referrer(){return document.referrer},

 previousSites(){return history.length},

 browserName(){return navigator.appName},

 browserEngine(){return navigator.product},

 browserVersion1a(){return navigator.appVersion},

 browserVersion1b(){return navigator.userAgent},

 browserLanguage(){return navigator.language},

 browserOnline(){return navigator.onLine},

 browserPlatform(){return navigator.platform},

 javaEnabled(){return navigator.javaEnabled()},

 dataCookiesEnabled(){return navigator.cookieEnabled},

 dataCookies1(){return document.cookie},

 dataCookies2(){return decodeURIComponent(document.cookie.split(";"))},

 dataStorage(){return localStorage},

 sizeScreenW(){return screen.width},

 sizeScreenH(){return screen.height},

 sizeDocW(){return document.width},

 sizeDocH(){return document.height},

61

 sizeInW(){return innerWidth},

 sizeInH(){return innerHeight},

 sizeAvailW(){return screen.availWidth},

 sizeAvailH(){return screen.availHeight},

 scrColorDepth(){return screen.colorDepth},

 scrPixelDepth(){return screen.pixelDepth},

 latitude(){return position.coords.latitude},

 longitude(){return position.coords.longitude},

 accuracy(){return position.coords.accuracy},

 altitude(){return position.coords.altitude},

 altitudeAccuracy(){return position.coords.altitudeAccuracy},

 heading(){return position.coords.heading}

 speed(){return position.coords.speed},

 timestamp(){return position.timestamp},

 };

 function init() {

 player = dashjs.MediaPlayer().create();

 player.getDebug().setLogToBrowserConsole(false);

 load(this);

 }

 function showEvent(e)

 {

 }

 function log() {

 var type = "video";

 var metrics = player.getMetricsFor(type);

 var dashMetrics = player.getDashMetrics();

 var streamInfo = player.getActiveStream().getStreamInfo()

 var periodIdx = streamInfo.index;

 var repSwitch = dashMetrics.getCurrentRepresentationSwitch(metrics);

 var bufferLevel = dashMetrics.getCurrentBufferLevel(metrics);

62

 var maxIndex = dashMetrics.getMaxIndexForBufferType(type, periodIdx);

 var index = player.getQualityFor(type);

 var throughPut = player.getThroughPut(type);

 var bitrate = repSwitch ?

Math.round(dashMetrics.getBandwidthForRepresentation(repSwitch.to, periodIdx) / 1000) : NaN;

 var droppedFPS = dashMetrics.getCurrentDroppedFrames(metrics) ?

dashMetrics.getCurrentDroppedFrames(metrics).droppedFrames : 0;

 var output = type+" "+bufferLevel +" "+bitrate+" "+throughPut+"

"+navigator.appCodeName+" "+info.browserName()+" "+info.sizeScreenW()+" "+info.sizeScreenH();

 writeStats(output);

 }

 function setListener(eventName)

 {

 player.on(dashjs.MediaPlayer.events[eventName],showEvent);

 var element = document.createElement("input");

 element.type = "button";

 element.id = eventName;

 element.value = "Remove " + eventName;

 element.onclick = function() {

 player.off(dashjs.MediaPlayer.events[eventName],showEvent);

 document.getElementById("eventHolder").removeChild(element);

 };

 document.getElementById("eventHolder").appendChild(element);

 }

 function load(button)

 {

 var url = "bbb_1080p2400b_dash.mpd";

 if (!firstLoad)

 {

 player.attachSource(url);

 }

63

 else

 {

 firstLoad = false;

 player.initialize(document.querySelector("video"), url, true);

 setInterval(log,500)

 }

 }

function writeStats(stats){

var util="";

var xmlhttp;

if (window.XMLHttpRequest)

 {// code for IE7+, Firefox, Chrome, Opera, Safari

 xmlhttp=new XMLHttpRequest();

 }

else

 {// code for IE6, IE5

 xmlhttp=new ActiveXObject("Microsoft.XMLHTTP");

 }

 xmlhttp.onreadystatechange=function()

 {

 if (xmlhttp.readyState==4 && xmlhttp.status==200)

 {

 util = xmlhttp.responseText;

 }

 }

xmlhttp.open("GET","writestats.php?stats="+stats,true);

xmlhttp.send();

}

 </script>

 <style>

 video {

64

 width: 640px;

 height: 360px;

 }

 </style>

 <body onload="init()">

 <div>

 <video controls="true">

 </video>

 </div>

 </body>

</html>

