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Abstract

Cloud computing has proved to be an effective infrastructure to host various applications

and provide reliable and stable services. Content delivery and storage are two main services provided

by the cloud. A high-performance cloud can reduce the cost of both cloud providers and customers,

while providing high application performance to cloud clients. Thus, the performance of such cloud-

based services is closely related to three issues. First, when delivering contents from the cloud to

users or transferring contents between cloud datacenters, it is important to reduce the payment

costs and transmission time. Second, when transferring contents between cloud datacenters, it is

important to reduce the payment costs to the internet service providers (ISPs). Third, when storing

contents in the datacenters, it is crucial to reduce the file read latency and power consumption

of the datacenters. In this dissertation, we study how to effectively deliver and store contents on

the cloud, with a focus on cloud gaming and video streaming services. In particular, we aim to

address three problems. i) Cost-efficient cloud computing system to support thin-client Massively

Multiplayer Online Game (MMOG): how to achieve high Quality of Service (QoS) in cloud gaming

and reduce the cloud bandwidth consumption; ii) Cost-efficient inter-datacenter video scheduling:

how to reduce the bandwidth payment cost by fully utilizing link bandwidth when cloud providers

transfer videos between datacenters; iii) Energy-efficient adaptive file replication: how to adapt to

time-varying file popularities to achieve a good tradeoff between data availability and efficiency, as

well as reduce the power consumption of the datacenters.

In this dissertation, we propose methods to solve each of aforementioned challenges on the

cloud. As a result, we build a cloud system that has a cost-efficient system to support cloud clients,

an inter-datacenter video scheduling algorithm for video transmission on the cloud and an adaptive

file replication algorithm for cloud storage system. As a result, the cloud system not only benefits

the cloud providers in reducing the cloud cost, but also benefits the cloud customers in reducing
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their payment cost and improving high cloud application performance (i.e., user experience).

Finally, we conducted extensive experiments on many testbeds, including PeerSim, Planet-

Lab, EC2 and a real-world cluster, which demonstrate the efficiency and effectiveness of our proposed

methods. In our future work, we will further study how to further improve user experience in re-

ceiving contents and reduce the cost due to content transfer.
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Chapter 1

Introduction

Cloud computing has proved to be an effective infrastructure to host various applications

and provide reliable and stable services. Content delivery and storage are two main services provided

by the cloud such as online gaming [61,62] and video streaming services [6,60,104]. Cloud providers

(e.g., Amazon) offer various pay-as-you-use cloud based services (e.g., Amazon Web Services) to

cloud customers (e.g., Netflix and Hulu) [15, 89]. A high-performance cloud can reduce the cost of

both cloud providers and customers, while providing high application performance to cloud clients.

In this dissertation, we aim to develop a high-performance cloud for the content delivery and storage

service.

In these cloud-based services, several issues need to be studied in order to maintain stable

and superior performance as shown in Figure 1.1. The figure shows some key issues in cloud com-

puting, i.e., content delivery and storage, while the content delivery issue can be further divided into

delivery from the cloud to users and delivery inside the cloud. First of all, as the cloud needs to deliv-

er a large amount of contents to the users continuously, we need to reduce cloud bandwidth costs for

the cloud-based service providers and reduce the transmission time. Second, as the cloud providers

store user data in datacenters that are in different geographical areas and frequently transfer files

between two datacenters to replicate and backup user data, it is important to reduce the bandwidth

payment costs for these inter-datacenter data transmissions. Third, the cloud providers store user

data in datacenters, which is a cluster of commodity servers. Cloud-based services generate frequent

and intensive file read operations towards files stored in the datacenter, so we need to reduce the

file read latency and power consumption of datacenters. To sum up, in this dissertation, we aim to

1
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Figure 1.1: Overview of the key issues in cloud computing and the proposed solutions in this dissertation

study how to improve the effectiveness of content delivery and storage on the cloud. Specifically,

for the first issue, we aim to facilitate the content delivery from the cloud to users by extending the

cloud architecture with supernodes. For the second issue, we aim to reduce the bandwidth costs

by developing a cost-efficient inter-datacenter video scheduling algorithm. For the third issue, we

design an adaptive file replication system reduce the file read latency and power consumption of

datacenters.

In the following, we present the importance of each of the issues to enhance the cloud

performance and the motivation for us to address the issues.

Cloud computing to support Massively Multiplayer Online Game (MMOG).

With the increasing popularity of MMOG and fast growth of mobile gaming, thin-client MMOG

will become a new gaming model. To support thin-client MMOG, game service providers begin

to deploy their gaming service on the cloud, which is called cloud gaming. Cloud gaming exhibits

great promises over the conventional MMOG gaming model as it frees players from the requirement

of hardware and game installation on their local computers. However, as the graphics rendering

is offloaded to the cloud, the data transmission between the end-users and the cloud significantly

increases the response latency and limits the user coverage, thus preventing cloud gaming to achieve

high QoE. To solve this problem, previous research suggested deploying more datacenters, but it

comes at a prohibitive cost.

Inter-datacenter video scheduling. As a large collection of videos are stored and trans-

ferred between datacenters in the cloud, cloud providers are charged by ISPs for inter-datacenter

transfers under the dominant percentile-based charging models. In order to minimize the payment

costs for cloud providers, existing works aim to keep the traffic on each link under the charging

2



volume (i.e., 95th percentile traffic volume from the beginning of a charging period up to current

time). However, these methods cannot fully utilize each link’s available bandwidth capacity, and

may increase the charging volumes. Therefore, the cloud providers need a new inter-datacenter video

scheduling algorithm to minimize the payment costs.

Adaptive file replication. Besides that, cloud providers store files in datacenters, where a

large amount of files are stored, processed and transferred simultaneously. To increase the file avail-

ability, some cloud storage systems create and store three replicas for each file in randomly selected

servers across different racks. However, they neglect the file heterogeneity and server heterogeneity,

which can be leveraged to further enhance data availability and cloud storage system efficiency. As

file have heterogeneous popularities, a rigid number of three replicas may not provide immediate

response to an excessive number of read requests to hot files, and waste resources (including energy)

for replicas of cold files that have few read requests. Also, servers are heterogeneous in network

bandwidth, hardware configuration and capacity (i.e., the maximal number of service requests that

can be supported simultaneously), it is crucial to select replica servers to ensure low replication delay

and request response delay.

1.1 Problem Statement

In this section, we present the details of each of the three problems addressed in this disser-

tation: i) cloud gaming to support thin-client MMOG, ii) payment costs for inter-datacenter video

transfers, and iii) file replication in cloud storage system.

1.1.1 Cloud Gaming to Support Thin-Client MMOG

Though the advantages of cloud gaming makes it a very promising model to cater to thin-

client MMOG, it currently faces severe challenges (i.e., latency, network connection, user coverage

and bandwidth cost) that prevent it from becoming a leading gaming model. First, response latency

is a critical factor in user quality of experience (QoE). By offloading computation to a remote

host, cloud gaming suffers from long response latency, which is the delay in sending the user action

information and game video between the end-user and the cloud. Second, cloud gaming services

post a strict requirements of high-speed network connection for a relatively high constant downlink

3



bandwidth (e.g., 5Mbit/s recommended by OnLive). Third, the shortage of datacenters limits user

coverage. Players begin to notice a response delay of 100ms [63]; 20ms attributed to playout delay on

client side and processing delay on the cloud, 80ms attributed to the network latency. The playout

delay of a client includes the time to send action information, receive and play the game video. Choy

et al. [36] found that Amazon’s EC2 (with 13 datacenters) can provide a median latency of 80ms or

less to only fewer than 70% of their 2500 tested end-users in the US. Existing cloud infrastructure

is not sufficient for hosting cloud gaming, as a sizeable portion of the population would experience

significantly degraded QoE. Fourth, besides server time, bandwidth costs represent a major expense

when renting on-demand resources. An average traffic of 27TB per 12 hours leads to about $130k

monthly fee for bandwidth with Amazon EC2’s price (i.e., $0.085 per GB) [29]. Considering the

MMOG’s huge user scale, these costs can significantly affect the feasibility of the cloud computing of

thin-client MMOG [26]. In spite of the previous research efforts on cloud gaming, except deploying

more datacenters which is costly, no other approaches have been proposed to handle its critical

challenges. We propose light-weight strategies to tackle the challenges to support thin-client MMOG.

1.1.2 Payment Costs for Inter-Datacenter Video Transfers

At the same time, a large amount of videos are store in the cloud storage system and

accessed by the viewers. The storage and replication of these videos will lead to large volume of

inter-datacenter traffic. Many previous studies focus on controlling the new traffic volume below

the charging volume [45,48,71,72,81,107,116] in order to minimize the bandwidth payment cost on

inter-datacenter video traffic to ISPs. We can mainly classify such previous studies into two groups:

store-and-forward and optimal routing path.

The store-and-forward methods [71, 72, 81] take advantage of the spatial and temporal fea-

tures of the inter-datacenter video traffic. The spatial feature means that at a specific time, datacen-

ters in different geographic areas exhibit different traffic loads and available bandwidth capacities,

which highly depend on the user demands from different geographic areas. The temporal feature

means that the traffic loads on a datacenter exhibit strong diurnal patterns that are correlated with

the local time [50]. Based on these two features, these methods predefine peak and off-peak hours

for each datacenter based on its local time and geographic area, and then utilize the leftover traffic

volume (which is the charging volume minus the actual traffic volume) during off-peak hours to

transfer delay-tolerant data flows. For example, for datacenters on the East Coast, their off-peak
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hours are 3-6am EST, and their peak hours are 9-12pm EST. When datacenter i wants to send some

delay-tolerant data flows to datacenter j, which however is at its peak hours and there is no overlap

between i and j’s off-peak hours, datacenter i then sends the data flows to an intermediate datacen-

ter k which is in off-peak hours. k stores these flows temporally and forwards them to j when both k

and j are in off-peak hours. However, the store-and-forward methods perform the transmissions of

delay-tolerant data flows during the predefined off-peak hours. They fail to fully utilize the available

bandwidth capacities of the light-traffic links during the peak hours, also, the link’s charging vol-

ume will increase when a large number of non-delay-tolerant videos are transmitted during the peak

hours. Such coarse-grained scheduling of data flows cannot reduce the bandwidth costs as much as

possible.

The optimal routing path [45, 48, 107, 116] optimize the routing paths for video flows to

minimize the charging volume on each link. As the bandwidth costs of transmitting the same amount

of videos vary across different inter-datacenter links, if the transmission of a video is expected to

exceed the charging volume on a link, the video will be transferred over an alternating path to

maximize the utilization of other links without increasing their charging volumes. However, these

methods transmit each video immediately when the video transmission request arrives at the source

datacenter regardless of their deadlines. Therefore, these methods can easily reach the charging

volume of current link and create many reroute requests when a large number of video transfer

requests arrive simultaneously, which many increase the charging volumes of some links. Also, a

link’s available bandwidth capacity is not fully utilized when the cumulated transmission rates of

all currently transmitted videos is less than the link’s available bandwidth capacity.

1.1.3 File Replication in Cloud Storage System

The uniform replication policy neglects the file and server heterogeneity, which can be

leveraged to further enhance data availability and file system efficiency. First, the files in a large

cluster exhibit wide disparity in popularity. For example, the data in HDFS can be classified into

four categories according to their access patterns and popularity [32,98]: hot data, cooled data, cold

data and normal data. For cold data that is rarely requested, too many replicas may not improve

file availability, but instead lead to unnecessary storage cost. Therefore, in order to improve replica

efficiency, we should increase the replication factor (i.e., the number of replicas of a file) of hot data

to guarantee data availability and load balance, and reduce the replication factor of cold data to
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save the storage cost.

Second, energy consumption contributes a significant portion of management cost for data-

centers [106]. The energy cost of equipment during its lifetime is comparable to the initial equipment

purchase price [30]. Existing file systems randomly select servers in each rack to replicate data (called

replica destinations), but do not consider selecting replica destinations to reduce energy consump-

tion. The file replication system actually can reduce energy consumption based on file popularity

heterogeneity. We can separate the cluster into hot servers with high CPU utilization (i.e., high

power consumption) and cold servers with low CPU utilization (i.e., low power consumption), and

place the replicas of popular data in hot servers, which provide high performance, and place the

replicas of cold data in cold servers as data backup.

Third, the random selection of replica destinations neglects server heterogeneity (i.e., d-

ifferent servers vary in network capacities and data request handling capacities). The writes due

to creating replicas in production clusters at Facebook and Microsoft account for almost half of all

cross-rack traffic [33]. Though the network inside clusters is generally underutilized, there exist some

bottleneck links resulting from the network usage imbalance [49]. As the traffic in multi-tenant dat-

acenters is not controlled, the traffic congestion of bottleneck links leads to performance degradation

inside clusters [24]. If a large number of replicas are written to the same server simultaneously, the

server may run out of network capacity and data request handling capacity. Thus, it is important to

choose replica destinations to steer replica transfers away from network bottlenecks and overloaded

servers.

1.2 Research Approach

According to the discussion of the challenges in Section 1.1, the cloud providers need a

cost-efficient gaming system to support thin-client MMOG, an inter-datacenter video scheduling

algorithm to save the bandwidth costs and an adaptive file replication solution for effective file

storage on the cloud. In this dissertation, we have proposed different algorithms to solve these

problems. We briefly describe our solution for each problem below and will present the details in

the next section.
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1.2.1 Extend Cloud Gaming for Thin-Client MMOG with High Quality

of Experience

The great promises of cloud gaming and the obstacles it faces motivate us to explore ap-

proaches to efficiently handle the challenges. Though previous study suggested to deploy more

datacenters [63], building and maintaining a large number of datacenters is cost-prohibitive. In

this dissertation, we propose a lightweight system called CloudFog. We introduce a concept called

“fog”, formed by powerful supernodes, that are close to end-users and connect them with the cloud.

Considering that most desktop systems are underutilized in most organizations; they are idle around

95% of the time [70], the supernodes can be from these idle resources or from players’ computers. In

CloudFog, the intensive computation [10,21] of the new game state of the virtual world is conducted

in the cloud. The cloud sends update messages to supernodes, which updates their virtual world,

render game videos for different players and streams videos to them. Thus, users without high speed

network connection to cloud or out of the coverage of the cloud can be supported by nearby supern-

odes, and the cloud does not need to transmit entire game videos to far-away users, which increases

user coverage, shortens response latency and ensures relatively high-speed network connection for

high QoE and reduces bandwidth cost. The difference between EdgeCloud and CloudFog lies in the

responsibility of newly added servers. In EdgeCloud, the addition of a small number of servers are

used to store and compute game status and render new game videos; while in CloudFog, the storage

and computation are carried out on the cloud, servers are only used to render new game videos and

stream them back to the players. As the rendering work does not require high hardware configura-

tion, given the same amount of revenue, CloudFog can deploy more servers than EdgeCloud by using

proper incentives to motivate players or organizations to contribute their spare machines. Specif-

ically, CloudFog incorporates the following strategies to handle the challenges and enhance QoE.

Strategies (2) and (3) are based on the phenomenon that different games have different tolerance on

packet loss rate and response delay [73].

(1) Fog-assisted cloud gaming infrastructure. We leverage the hardware and bandwidth

capacity of some idle machines, and deploy them as supernodes. These supernodes constitute

the ”fog”, and are responsible to stream game videos for nearby players.

(2) Receiver-driven encoding rate adaptation. In order to ensure the playback continuity

even in network congestion, when a supernode streams a game video to a player, it adaptively

7



changes the encoding rate (hence the quality) of the video based on the segment size in the

player’s buffer according to the game’s tolerance on delay and packet loss.

(3) Deadline-driven sender buffer scheduling. To meet response latency requirement of each

game, supernodes give higher priority to lower delay-tolerant game videos to send out, and

drop different numbers of packets from different game videos based on their packet loss tolerant

degree.

(4) Social network based server assignment. The communication between servers in a data-

center for generating game videos leads to latency. As social friends always play together [23],

we assign social friends who usually play together to the same server, so their interaction will

not trigger communication between different servers, thus reducing response latency.

1.2.2 Economical and Deadline-Driven Inter-Datacenter Video Flow Schedul-

ing

We propose an economical and deadline-driven video flow scheduling system, called EcoFlow.

It is based on the fact that different video flows have different deadlines. Different applications from

cloud customers have different service-level agreements (SLAs) that specify data Get/Put bounded

latency [59] or a service probability [8] by ensuring a certain number of replicas in different locations

[91]. Thus, cloud providers would like to assign shorter transmission deadlines (deadline in short) to

videos in applications with more stringent SLAs in order to minimize the SLA violation penalty to

maximize their profits [16,45]. Different videos in one application also have different deadlines. For

example, the flows for new video dissemination to a datacenter to serve user requests should have

more stringent deadlines than the flows for video replication backups to boost availability. Based

on the different deadlines of video flows, the basic idea of EcoFlow is to postpone the transfers of

some delay-tolerant videos while still ensure their transmission within deadlines if the transmission

of these videos will increase the current charging volume. The EcoFlow system includes three key

steps.

• Step 1: available bandwidth capacity estimation. By comparing the charging volume

and expected traffic volume, we estimate the available bandwidth capacity on each link, which

is the maximum transmission rate that a link can provide in the next time interval without

increasing the current bandwidth cost.
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• Step 2: deadline-driven flow scheduling. Based on the estimated traffic capacity, we sort

the flows on each link based on their deadline tightness so that videos with early deadlines

have high priorities to finish transmission. Flows that are expected to miss their deadlines are

splitted into subflows, which will be rerouted to other under-utilized links in order to meet

their deadlines.

• Step 3: alternating routing path identification. In order to deliver these subflows by their

deadlines, we rely on Dijkstra’s algorithm [43] to find the shortest path between the source

and the destination datacenters in the inter-datacenter network that guarantees the successful

transmission by flow deadlines.

1.2.3 EAFR: An Energy-Efficient Adaptive File Replication System

A number of important challenges need to be overcome to achieve the aforementioned goals

in file replication systems. First, the replication factor of each file should be dedicated assigned

based on the request rate and availability of the file. Second, we need to maintain data availability

when reducing energy consumption. Third, in order to avoid network bottlenecks, we need to effec-

tively identify overloaded servers and dynamically change the transmission rate to prevent network

congestion. In this dissertation, we propose an Energy-Efficient Adaptive File Replication System

(EAFR), which incorporates three components. 1) It is adaptive to the time-varying file popularities

to achieve a good tradeoff between data availability and efficiency. Higher popularity of a file on

overloaded servers leads to more replicas and vice versa. 2) To achieve energy efficiency, servers

are classified into hot servers and cold servers with different energy consumption, and hot/cold files

are stored in hot/cold servers, respectively. 3) It selects servers with sufficient capacity (including

network bandwidth and capacity) as replica destinations. 4) When replicating a file to a server,

EAFR dynamically tunes the transmission rate to prevent potential incast congestion.

1.3 Contributions

We summarize our contributions of the dissertation below:

• We propose a lightweight system called CloudFog, which incorporates “fog” consisting of su-

pernodes that are responsible for rendering game videos and streaming them to their nearby
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players.

(1) We design a fog-assisted cloud gaming infrastructure. We leverage the hardware and band-

width capacity of some idle machines from players and organizations, and deploy them as

supernodes. These supernodes constitutes the “fog”, which are responsible to stream game

videos for nearby players.

(2) We propose a reputation based supernode selection strategy. In order to assign each player

with a suitable supernode that can provide satisfactory game video streaming service, each

player calculates reputation scores for all candidate supernodes according to previous inter-

actions, and selects a supernode that has high reputation score, available capacity and low

transmission delay.

(3) We propose a receiver-driven encoding rate adaptation strategy. In order to ensure the

playback continuity even in network congestion, when a supernode streams a game video to a

player, it adaptively changes the encoding rate of the video based on the segment size in the

player’s buffer according to the game’s tolerance on delay and packet loss.

(4) We propose a social network based server assignment strategy. The communication be-

tween servers in a datacenter for generating game videos leads to latency. As social friends

always play together [23], we assign social friends who usually play together to the same serv-

er, so their interaction will not trigger communication between different servers, thus reducing

response latency.

(5) We propose a dynamic supernode provisioning strategy. When a large number of players

join a game within a short time during peak hours, the cloud servers face a heavy burden. In

order to deal with user churns and reduce server loads, we dynamically predict the number

of players and then determine the number of pre-deployed supernodes based on the predicted

value.

• We propose EcoFlow, an economical and deadline-driven video flow scheduling system to

reduce the bandwidth payment costs of cloud providers.

(1) To make the EcoFlow design more comprehensive, we use rate limiters to control that the

flows are transmitted using the links’ available bandwidth capacities.

(2) At the beginning of the charging period, we set an initial charging volume on each link to

reduce the scheduling latency.
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(3) We provide discussion on how to deal with prediction errors and lack of prior knowledge

in EcoFlow.

(4) We design both a centralized implementation and a distributed implementation of EcoFlow;

• We propose EAFR, an Energy-Efficient Adaptive File Replication System, which can reduce

file read latency, power consumption and replication completion latency.

(1) EAFR is adaptive to the time-varying file popularities to achieve a good tradeoff between

data availability and efficiency. Higher popularity of a file on overloaded servers leads to more

replicas and vice versa.

(2) To achieve energy efficiency, we classify servers into hot servers and cold servers with

different energy consumption, and hot/cold files are stored in hot/cold servers, respectively.

(3) To reduce replication latency, we selects servers with sufficient capacity (including network

bandwidth and capacity) as replica destinations.

(4) We further propose three strategies to improve the performance of EAFR. First, when

replicating a file to a server, EAFR dynamically tunes the transmission rate to prevent potential

incast congestion. Second, when a compute node needs to read a file, EAFR uses a network-

aware data node selection strategy to reduce file read latency. Third, when replica node failure

occurs, EAFR uses a load-aware replica maintenance strategy to quickly create file replicas in

other nodes.

Finally, we conducted extensive experiments on many testbeds, including PeerSim, Planet-

Lab, EC2 and a real-world cluster, which demonstrate the efficiency and effectiveness of our proposed

methods. Experimental results show that compared to existing methods, CloudFog can increase user

coverage, reduce response latency and bandwidth consumption; EcoFlow achieves the least band-

width costs for cloud providers and transmits more video flows within their deadlines; EAFR is

effective in reducing file read latency, replication time, and power consumption in large clusters.

1.4 Dissertation Organization

The rest of this proposed is structured as follows. Chapter 2 introduces the related works.

Chapter 3 details the proposed method, extending cloud gaming for thin-client MMOG with high

quality of experience. Chapter 4 presents EcoFlow, economical and deadline-driven video flow
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scheduling system. Chapter 5 introduces EAFR, an energy-efficient adaptive file replication system.

Finally, Chapter 6 concludes this dissertation with remarks on our future work.
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Chapter 2

Related Work

Over the past few years, many works are proposed to solve the challenges in delivering and

storing contents on the cloud. In this chapter, we present the related works on each of the proposed

research problems in Chapter 1.

2.1 Cloud Gaming for Thin-Client MMOG

MMOG on the client-server architectures has gained much attention in the research commu-

nities in recent years. Common approaches of MMOG divide the virtual environment into regions

and assign each region to different servers [21]. Bezerra et al. [20] proposed a kd-tree mechanism

to partition the game environment into regions, and perform load balancing among multiple servers

based on the distribution of avatars in the virtual world. Many works proposed to leverage the

bandwidth contribution of peer-to-peer (P2P) networks to reduce server load [9]. Ahmad et al. [9]

presents a P2P live video system to help players share screen-captured video of their games. Chen

et al. [28] proposed a content-oriented pub/sub system that exploits the network condition and end-

systems to enable efficient player management and decentralized information dissemination. These

P2P and information dissemination methods cannot be directly applied to the context of cloud gam-

ing, in which each player receives its own game video that cannot be shared with other players. Also,

the players with thin clients may not be able to conduct rendering, computation and storage [36],

which are offloaded to the cloud.

Previous works developed different cloud gaming systems. GamingAnywhere [56] is the first
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open cloud gaming system with high extensibility, portability, and reconfigurability. Zhao et al. [117]

designed a game cloud with a visualized cluster of CPU/GPU servers to reduce game latency of thin

computers. Wang et al. [108] proposed to shift the burden of executing gaming engine from mobile

devices to cloud servers, and developed a mobile gaming user experience model to characterize user

experience. Hemmati et al. [52] presented a content adaptation encoding scheme, in which only the

most important objects from the perspective of the player’s activity are encoded in the scene and

irrelevant or less important objects are omitted. EdgeCloud [35] augments the cloud infrastructure

with a number of servers with specialized resources located near end-users to increase user coverage,

these servers are responsible for computing new game state and rendering game video for players.

The difference between EdgeCloud and CloudFog lies in the responsibility of newly added servers.

In EdgeCloud, the addition of a small number of servers are used to store and compute game status

and render new game videos; while in CloudFog, the storage and computation are carried out on the

cloud, servers are only used to render new game videos and stream them back to the players. As the

rendering work does not require high hardware configuration, given the same amount of revenue,

CloudFog can deploy more servers than EdgeCloud by using proper incentives to motivate players

or organizations to contribute their spare machines.

Early works also studied user experience in cloud gaming. Hobfeld et al. [54] discussed

some technical challenges emerging from shifting gaming services to the cloud, and studied impacts

caused by this change on user QoE. Jarschel et al. [63] conducted user studies to measure and model

the QoE of OnLive during game play. Studies [63, 73] investigated how the response latency in

cloud gaming affects QoE in various online games. There are also plenty of works on analyzing

the challenges and benefits of system design in cloud gaming. Claypool et al. [37] studied detailed

measurements of motion and scene complexity for a wide variety of video games, and measured the

efficiency of streaming video games for thin clients. Choy et al. [36] demonstrated that the expansion

of potential users for an on-demand gaming service is hindered by strict latency requirements, and

indicated that the addition of a small number of servers can increase user coverage. Ojala et al. [82]

studied a successful cloud gaming business model. They pointed out that deploying the games on

cloud makes illegal copying practically impossible. Thus, cloud gaming can save the game developers

from worrying about illegal copying.

In spite of the previous research efforts on cloud gaming, except deploying more datacenters

which is costly, no other approaches have been proposed to handle its critical challenges. We propose
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light-weight strategies to tackle the challenges to support thin-client MMOG.

2.2 Inter-Datacenter Video Flow Scheduling Systems

Recently, many methods have been proposed to schedule the inter-datacenter traffic in order

to minimize the ISP bandwidth costs of cloud providers, which can be classified to two groups: store-

and-forward and optimal routing path.

Store-and-forward. The methods in this group postpone the transmissions of the delay-

tolerant data flow from peak hours to off-peak hours, so as to utilize the leftover traffic during

off-peak hours. Laoutaris et al. [71, 72] proposed to employ a number of storage servers to collect

delay-tolerant traffics and perform data transmission only when the destination datacenter is in

predefined off-peak hours, so that the charging volume will not increase during peak hours. Net-

Sticher [81] performs transmissions of delay-tolerant data between two datacenters only when both

datacenters are in off-peak hours. If there are no common off-peak hours between both datacen-

ters, it uses an intermediate datacenter that has an overlap in off-peak hours with the destination

datacenter as a relay datacenter to store the delay-tolerant data temporarily.

Such store-and-forward transfer systems predefine off-peak hours of each datacenter. Delay-

ing the transmission of delay-tolerant videos from peak hours to off-peak hours is a coarse-grained

scheduling strategy. It does not fully utilize the link’s available bandwidth capacity when actual

traffic load is light during peak hours. Also, the transmission of a large number of non-delay-tolerant

videos during the peak hours will increase the link’s charging volume. Instead, EcoFlow is a fine-

grained video flow scheduler which estimates the available bandwidth capacity on each link during

a short time interval (i.e., 1 hour), and schedules the pending flows using a link’s available band-

width capacity in an earliest-deadline-first manner. The flows expected to missed their deadlines

are rerouted to other under-utilized links so as not to increase the current charging volume.

Optimal routing path. The optimal routing path methods identify routing paths for video

flows with the objective of minimizing the bandwidth payment costs. Multihoming is a scenario in

which a user is connected to the internet through multiple links operated by different ISPs, and

the links have different bandwidth capacities, availabilities and prices. In order to optimize the

user’s bandwidth costs and network performance in multihoming, Goldenberg et al. [48] used liner

programming techniques to dynamically assign traffic among different links. Entact [116] applies a
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route-injection mechanism to estimate the bandwidth costs of alternating paths that are not being

currently used. Based on information of payment costs, traffic, and link capacity, it jointly computes

the optimal routing path for online service providers. In order to reduce users’ bandwidth costs in

multihoming, Wang et al. [107] applied both dynamic programming algorithm and greedy algorithm

to select links operated by different ISPs) to transfer the user data. Dhamdhere et al. [42] considered

monetary cost and network availability in multihoming, and used the first fit decreasing algorithm

to select an optimal set of ISPs. Jetway [45] aims to control the transmissions of video flows under

the link’s charging volume. When a video flow is expected to increase a link’s current charging

volume, the video will be split into subflows, and the subflows are transmitted on a multi-hop path

to utilized the available bandwidth capacity of each link. These methods do not take advantage

of the fact that some delay-tolerant videos are elastic to delay when scheduling the traffics. The

charging volume of all option links will be increased when a large amount of videos need to be sent

concurrently. Instead, EcoFlow takes advantage of different deadlines of flows and postpones the

delivery of delay-tolerant videos to utilize a link’s available bandwidth capacity when the current

traffic load is high, so that the charing traffic volume will not further increase.

2.3 File Replication Systems in Data-Intensive Clusters

File replication is a common strategy to improve data reliability and availability in large

clusters. HDFS [98], Lustre [102] and PVFS [83] maintain a constant number of replicas for each

file, and replicas of the same file are placed in randomly selected servers. Many methods [5,14,109]

have been proposed to improve the replication policy for different purposes. CDRM [109] adjusts the

replication factor to maintain a required availability for each file under server failures based on the

relationship between file availability and replication factor when servers have a certain probability

to fail. Scarlett [14] aims to speed up the jobs by increasing the replication factor in the MapReduce

systems. It is an off-line system that studies the file access patterns, and computes a replication

factor for each file with a replication budget for load balance. In order to improve data locality in the

MapReduce systems, DARE [5] replicates remote data into the local node when a map task processes

data from remote nodes. It also applies a replication budge to limit the amount of replicas to save

storage resource. Unlike the above replication works, EAFR aims to improve the data availability

with the consideration of file popularity and file storage system efficiency.
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Network bottleneck [115] is critical issues in data-intensive clusters but are neglected in

previous file replication methods. Hedera [11] aims to maximize aggregate network utilization by

collecting flow information from constituent switches. It studies the traffic demands and routing

flows, and instructs switches to re-route traffic accordingly. Orchestra [34] studies the short-term

traffic, then incorporates scheduling policies such as multipath routing and transfer priority at the

transfer level to improve network performance inside clusters. These schedulers are based on the

constraint that the traffic sources and destinations are already fixed, EAFR flexibly selects the

servers with available network capacity to avoid network bottlenecks.

Energy-conservation in large-scale datacenters has drawn considerable research attention.

Some studies [75, 114] aim to reduce the power costs by dynamically transitioning the servers to a

sleeping state in datacenters. Recent research [13, 27, 74] proposes maintaining a minimal subset of

nodes that are guaranteed to be on, and put other nodes to sleeping mode. This strategy ensures that

a primary replica of each file is stored on active servers to provide service to file requests; however,

it does not consider file popularity and replicas of popular file are also stored on inactive nodes.

This generates a large number of replicas for popular files in order to ensure the file’s immediate

availability, and it suffers from degraded write-performance as the writes need to be executed on all

servers storing the file replicas. GreenHDFS [65–67] trades performance for energy saving by logically

separating the Hadoop cluster into hot and cold zones. Cold zone keeps low power consumption

but provide less critical response for file accesses (i.e., long latency); while hot zone consumes more

power and has strict performance requirements. It then uses data classification policies to place data

onto a suitable temperature zone, that is, data that is frequently accessed by Hadoop framework is

placed in hot zone, while unpopular data is place in cold zone. Different from these works, EAFR

considers file popularity when allocating file replicas in order to save energy.
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Chapter 3

CloudFog: Extend Cloud Gaming

for Thin-Client MMOG with High

Quality of Service

In this chapter, we explore how to extend cloud gaming for thin-client MMOG with high

quality of experience. We first introduce our proposed CloudFog system, which incorporates mul-

tiple strategies to enhance its QoS. Experimental results from PeerSim and PlanetLab show the

effectiveness and efficiency of CloudFog and our individual strategies in increasing user coverage,

reducing response latency and bandwidth consumption.

3.1 Overview

Previous studies [36,63] revealed that the uploading from the players to the cloud does not

seriously affect the response latency, and downstream latency is an important factor for QoS [63],

which is affected by the game video streaming rate. Thus, we aim to reduce the downstream latency

by reducing the traffic transmitted from the cloud. In our design, game videos are streamed from

nearby supernodes to players, instead of from remote game servers. As the computation of a virtual

world for MMOG has a very high demand on server capacities [21], cloud is responsible for this task.

Figure 3.1 shows our fog-assisted cloud gaming infrastructure. The fog is formed by supernodes,
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Figure 3.1: Fog-assisted cloud gaming infrastructure.

and normal nodes are connecting to their nearby supernodes. The normal nodes that cannot find

nearby supernodes directly connect to the cloud.

We use ni to denote a normal node, and snj to denote a supernode in the system. When each

supernode is initially deployed, it is pre-installed with the game client. During the game playing,

when node ni makes an action (e.g., launching a strike or moving to a new place), this information

is sent to the cloud server. The server collects action information from all involved players in the

system and performs the computation of the new game state of the virtual world (including the new

shape and position of objects and states of avatars). The cloud then sends the update information

to the supernode of ni (snj), which updates its virtual world accordingly. snj then renders game

video for ni based on n′is viewing position and angle. snj finally encodes the game video and stream

it to ni. As a player is close to its supernode in network distance, and the traffic from the cloud is

significantly reduced, so the game video transmission delay is much shorter than that of downloading

game video directly from the cloud as in the current cloud computing systems. Important notations

used in this dissertation are listed in Table 5.1.

3.2 System Design of CloudFog

3.2.1 Requirements and Incentives for Supernodes

Rendering game video is relatively less hardware demanding than computation and commu-

nication in MMOG [35]; most modern computers with discrete graphics cards are sufficient to meet

the rendering requirement. The nodes with sufficient hardware are chosen as supernodes, and the

emerging technique of rendering multiple videos makes it possible for a supernode to suport multiple

players simultaneously [1,93]. As shown in [22,79], desktop PCs in office are idle for about 12 hours

per day, and 67% of desktop PCs remain powered on outside work hours (including nighttime). On
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Table 3.1: Table of important notations.

ni a normal node
snj a supernode
cs reward for one unit of bandwidth contributed by snj

Ps(j) profit gained by supernode snj

cj supernode snj ’s upload capacity
uj snj ’s bandwidth utilization
costj cost paid by snj ’s contributor in the same unit of cs
N(t) number of existing users at time t
n number of normal nodes
m number of supernodes
Λ bandwidth usage for the cloud to send update infor-

mation to one supernode
Gs(j) game service provider’s revenue gain by deploying snj

sij overall reputation score of supernode snj evaluated by
player ni

rk kth rating that ni gives to snj

Nr total number of ratings
λ aging factor of ratings
dk age of rating rk in days
qi game video quality for quality level i
bqi game video bitrate for quality level i
s(tk) size of the video buffered at time tk
r number of video segments in the buffer
τ game video segment size
β game video bitrate adjust-up factor
θ game video bitrate adjust-down threshold
ρ latency tolerance degree
Γ modularity of network communities

the other hand, the number of players in online games reaches a peak during the nighttime [25],

which matches the idle time of office desktop PCs. So the supernodes can be contributed by different

organizations that have idle computer resources, and game players that have powerful computers

can also be selected as supernode candidates. Besides, game service providers can deploy their own

supernodes by placing servers in different areas or rent on-demand resources from existing cloud

providers like Amazon EC2. A game client of MMOG usually takes about 5-6GB storage space,

and it is pre-installed in the supernode. The supernodes are required to be: 1) reliable, as malicious

supernodes may distribute spam or virus that may degrade player experience or harm players’ ma-

chines; 2) stable, supernodes need to provide stable support and notify the central server of game

service providers before leaving the system; and 3) superior network connection, as supernodes need

to stream game videos to players within short latency. To satisfy these requirements, organizations

and individual players need to provide credentials to game service providers, game service providers

will verify the information of supernode contributors and have contracts with them. The purpose of

this contract is to ensure that supernodes can provide high QoS for players and will not leave the

system abruptly during their service time. Contributing a machine as a supernode generates costs
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of running the machine (e.g., electricity and maintenance costs). Therefore, to incentivize other

organizations and players to contribute supernodes, an incentive mechanism is needed to reward

supernodes based on the amount of upload bandwidth they contribute. The reward can be in the

form of real money or virtual money for online games, and we use cs to denote the reward for each

bandwidth unit contributed by a supernode. An organization or a player considers to contribute a

supernode only when it brings about certain profit, which is calculated by subtracting its running

costs from its earned rewards. We use Ps(j) to denote the profit gained by supernode snj :

Ps(j) = cs × cj × uj − costj , (3.1)

where cj represents snj ’s upload capacity, uj denotes snj ’s bandwidth utilization, and costj denotes

the cost paid by snj ’s contributor in the same unit of cs. Ps(j) quantifies the profit of contributing

a supernode. Contributing a supernode is lucrative when Ps(j) is greater than a certain threshold

(different contributors set their own thresholds based on their expectations on profits). Then, the

supernode’s owner is motivated to contribute this supernode. Also, studies in [22, 79] found that

67% of desktop PCs remain powered on when they are idle, so there are powered idle PCs available

to serve as supernodes. Companies and organizations are motivated to earn rewards by contributing

these idle resources. Though some desktop PCs do not always serve players, as long as they function

as supernodes in CloudFog, they can still receive a small amount of monthly sign up bonus. When

they contribute bandwidth and support players, they can receive more credits. We will evaluate the

effectiveness of this incentive mechanism in Section 3.3.

3.2.2 Economic Benefits for Game Service Providers

The game service provider needs to guarantee that the money spent on rewarding supernodes

is smaller than the bandwidth costs saved by the contribution of supernodes. We use N(t) to denote

the number of existing users at time t. For simplicity, we omit t in the notations. Given the streaming

rate of game video R, the total system demand for bandwidth equals N × R. Suppose there are

m supernodes, each having cj upload capacity with utilization uj . Then, supernode bandwidth

contribution equals Bs =
∑m

j=1 cj × uj . We use Λ to denote the bandwidth usage for the cloud to

send update information to one supernode, and use n to denote the number of users that supernodes

support. Then, in CloudFog, the bandwidth consumption for one player action for nodes connecting
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to supernodes equals Λ ×m, and that for users directly connecting to the cloud equals (N − n)R.

The bandwidth reduction (B−r ) of CloudFog compared to current cloud computing system equals:

B−r = N ×R− Λ×m− (N − n)R

= n×R− Λ×m
(3.2)

Suppose cc is the revenue gained by saving each server bandwidth unit, the goal of the game service

provider is to maximize the saved cost by leveraging supernode bandwidth contribution, which can

be formulated as below.

Cg = max(cc ×B−r − cs ×Bs)

= max{cc[n×R− Λ×m]− cs ×Bs} (3.3)

s.t.

m∑
j=1

cj × uj ≥ n×R (3.4)

uj ≤ 1, ∀j ∈ {1, 2, ...m} (3.5)

Equation (3.4) guarantees that the total supernode bandwidth contribution must reach the required

node support bandwidth, while Equation (3.5) restricts the utilization of a supernode’s upload

bandwidth within its bandwidth capacity. In Equation (3.3), we see that given a specific number

of n (i.e. the coverage of normal nodes is determined), saved cost Cg increases when m decreases;

that is, a smaller number of supernodes lead to higher cost saving. For the game service provider,

it should consider the pay and gain before deploying a supernode. Suppose a new supernode snj

is deployed in an area; as a result, the coverage of players supported by supernodes is increased by

ν new players. We use Gs(j) to denote the game service provider’s revenue gain by deploying snj ,

and Gs(j) is estimated by:

Gs(j) = cc[ν ×R− Λ]− cs × cj × uj . (3.6)
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If Gs(j) > 0, the cost of deploying supernode snj is surpassed by the benefit of bandwidth saved

from the ν new players supported by snj .

3.2.3 Reputation Based Supernode Selection

3.2.3.1 Supernode Reputation Management

We define supernode snj ’s capacity as the maximum number of normal nodes that snj can

support. Though supernodes are encouraged to contribute their computation and bandwidth re-

sources to support other players’ gaming activities, a supernode’s quality of service to a given player

is affective by three factors. First, there exits capacity heterogeneity among supernodes due to dif-

ferent upload bandwidth and computation power. A supernode may not be able to support all game

video streaming requests with satisfactory QoS due to its limited available capacity. Second, differ-

ent supernodes have different physical distances and transmission delays to a given player. Third,

a supernode may not be willing to support players and deliberately throttles its upload bandwidth

under certain circumstances. For example, when a supernode’s owner runs many applications on

the supernode, the owner may not be willing to support many players. Thus, jointly considering

these three factors in selecting reliable supernodes is crucial to provide players with high QoS during

gaming activities. To consider the third factor, we use a reputation system, which is an effective

tool to guide the selection of supernodes that are willing to be cooperative in providing game video

streaming service. In the reputation system, a player evaluates its supernode’s reputation based on

its performance in providing fluent game video streaming (i.e., playback continuity).

To facilitate the first two factors, the cloud stores the information of supernodes in the

system in a table including their IP addresses and available capacities. When a newly joined node

ni requests a supernode, the cloud returns a number of supernodes that have available capacities

and are physically close to player ni by referring to the table. To do this, it first identifies the

supernodes with available capacities. It then calculates the distance between each of the supernode

candidates and the player, and selects a certain number of physically close supernodes. To calculate

the distance, the cloud uses a supernode’s IP address [92, 95] to determine its coordinate, and then

uses the coordinate to calculate its distance from a player.

A physically close supernode may not guarantee a short transmission delay. Therefore,

after the newly joined node ni receives its close supernode candidates from the cloud, it tests the

transmission delay to all of them. It then removes candidates with transmission delay greater than
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its threshold Lmaxi , which is determined based on the response latency requirement of the genre

of its game [64]. This threshold is used to ensure that its supernode is capable of providing quick

streaming support. From the remaining supernode candidates, node ni then chooses the supernode

with the highest reputation score. If there are no remaining supernode candidates, ni directly

connects to the cloud. Below, we describe the details of the reputation system.

To evaluate a supernode’s willingness to be cooperative, a straightforward scheme is to

evaluate a supernode’s overall reputation by gathering opinions from all players interacted with this

supernode [90]. However, this scheme is vulnerable to sybil attack [55], where a malicious supernode

forges multiple identities and gains advantage by receiving high ratings from these identities. Also,

it cannot prevent collusion in which a collective of nodes intentionally rate each other with high

scores. To circumvent these problems, we let each player use its own evaluation without gathering

opinions from other players.

Specifically, a player evaluates its supernode’s performance in providing fluent game video

streaming service after each game. It periodically calculates the overall reputation scores of its

supernodes that provided it game video streaming service. As recent interactions between players and

supernodes can more accurately reflect the supernodes’ future performance than earlier interactions,

we weight the ratings according to their ages when calculating a supernode’s overall reputation score.

Each rating is associated with an age measured by the number of days that have passed since the

rating is given. We use sij to represent the overall reputation score of supernode snj evaluated by

player ni. It is computed as the weighted average of all ratings that snj receives from ni:

sij =

Nr∑
k=1

rkλ
dk , (0 < λ < 1), (3.7)

in which rk is the kth rating that ni gives to snj , Nr is the total number of ratings, λ is the aging

factor used to control the weights of ratings according to their ages, and dk is the age of rating

rk in days. The reputation scores of the supernodes that have no previous interactions with the

player equal to 0. The computation complexity of calculating reputation scores for all supernodes

is O(mnNr), where m and n are numbers of supernodes and normal nodes.
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3.2.3.2 Player and Supernode Churns Management

Recall that player ni receives a number of supernode candidates from the cloud when it

joins the system. In order to select supernodes with high reputations, it orders these candidates in

descending order of their reputation scores. During the time when a player selects a supernode, a

supernode candidate may be connected by more players and no longer has available capacity. To

ensure that the selected supernode has available capacity, the player sequentially asks the supernodes

in the ordered list whether it has available capacity. Once a supernode has available capacity, the

player selects this supernode to connect to. If no supernode is selected after the player examines all

supernode candidates, the player connects to the cloud for game video streaming.

Normal nodes probe their supernodes periodically for connection maintenance. When a nor-

mal node disconnects from its supernode, it first tries to find qualified supernode from its candidate

supernode list by choosing the one with high preference ranking and available capacity. If it fails to

find a new supernode from the candidate list, it contacts the cloud to find a new supernode using

the method introduced above. When a new supernode is deployed, that is, a player or organization

devotes a spare machine to earn rewards, the machine’s location is identified based on the IP ad-

dress. The cloud then notifies the normal nodes that are physically close to the new supernode, and

these normal nodes will test the transmission delay to the newly deployed supernode. Finally, the

suppernode will be added to the normal node’s supernode candidate list if the transmission delay is

less than Lmaxi
.

3.2.4 Receiver-driven Encoding Rate Adaptation

A player stores its received segments into its buffer while playing the game video. To

guarantee the continuity of the video playback, the player needs to continuously fetch segments from

the buffer and play. Game video bitrate affects the number of video segments received by a player

during a unit time period, hence the player’s playback continuity. Thus, we can adjust game video

bitrate based on the size of buffered segments. The game video can be encoded to different bitrates

based on the requirements on pixel size (resolution), hence the video quality level. A video segment

with a higher quality level (i.e., a higher bitrate) leads to longer transmission latency. In order

to illustrate the differences in video resolution, bitrate, latency requirement and tolerance degree

for videos with different quality levels, we generate Table 3.2 as an example of parameter settings.

Note that the parameter values in Table 3.2 are not precise, and the game service providers can
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Table 3.2: Video parameters for different quality levels.

Quality
level

Video
resolution

Video bitrate
Latency

requirement

Latency
tolerance

degree
5 1280x720 1800 kbps 110 ms 1

4 720x486 1200 kbps 90 ms 0.9

3 640x480 800 kbps 70 ms 0.8
2 384x216 500 kbps 50 ms 0.7

1 288x216 300 kbps 30 ms 0.6

set the parameters based on actual needs. As shown in Table 3.2, 500kbps corresponds to 384x216

resolution, and such a segment leads to 50ms latency. We use qi (i ∈ [1, ..., Q]) to denote the video

quality for quality level i and use bqi to denote the corresponding bitrate.

Different genres of games have different requirements on response latency [73]. Based on

Table 3.2, if a game video has a latency requirement of 90ms, the supernode should use 1200kbps

encoding bitrate, corresponding to a quality level of 4. To reduce the latency of the game video

under unfavorable network condition, the supernode can choose encoding bitrates corresponding to

quality level lower than 4; that is, sacrificing quality for lower latency. Due to unexpected network

condition (e.g., network congestion), packets may be transmitted at a lower speed. Users may prefer

fluent play of the game though the game video gets a bit blur when the encoding rate is reduced.

To provide flexible options, users can also disable the encoding rate adaptation strategy before they

start the game. In this case, the game video rate is fixed to the game’s default video rate.

We aim to ensure that the playback rate is always lower than or equal to the segment

downloading rate. When this condition cannot be satisfied, the video quality needs to be reduced by

one level. When the size of buffered video at current quality level qi is expected to reach the size of

buffered video at quality level qi+1 (i.e., the downloading rate is faster than the playback rate), the

current encoding bitrate bqi can be increased to bqi+1
to increase the video quality to qi+1. Below,

we explain the details of the adjustment operation. The estimated size of the video buffered at time

tk (denoted by s(tk)) is calculated by:

s(tk) = s(tk−1) + (tk − tk−1)(d(tk)− bp(tk)), (3.8)

where d(tk) and bp(tk) denotes the downloading rate and video playback rate at time tk. We use r

to denote the number of segments in the buffer:

r =
s(tk)

τ
=
s(tk−1) + (tk − tk−1)(d(tk)− bq(tk))

τ
, (3.9)
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Figure 3.2: Receiver-driven encoding rate adaptation.

where τ denotes video segment size. If

r > 1 + β, (3.10)

the video bitrate adjusts up. β is an adjust-up factor, and

β = max{(bqi+1
− bqi)/bqi ,∀i ∈ [1, 2, ..., Q]}. (3.11)

β guarantees that the size of the buffered segments reaches that of the incremented quality level.

When the video bitrate adjusts up, the user will not suffer from playback delay during the game.

The adjust-down operation is performed if

r < θ (θ ≤ 1), (3.12)

where θ denotes adjust-down threshold. Formula (3.12) enables to proactively adjust down video

bitrate to ensure the playback continuity in network congestion, in which the segment transmission

time is typically much longer than usual. In order to prevent the fluctuation of the video bitrate for

a client, the client can conduct the calculations of r for a number of times consecutively. The video

bitrate is adjusted only when all results satisfy Formula (3.10) or Formula (3.12). Figure 3.2 shows

an example of the encoding rate adaptation. When r > 1 + β for several consecutive estimations,

the supernode increases the video encoding quality by one level; from 800kbps to 1200kbps for the

player. When r < θ, the supernode decreases the video quality by one level; from 800kbps to

500kbps.

Different games have different latency-tolerant degree [73]. We consider this property to

further enhancing the probability of meeting the response latency requirement for different games.

Specifically, we require higher latency-sensitive games to have larger buffered video size for the

encoding rate adjustment. We use ρ ∈ [0, 1] to denote the latency tolerance degree; higher ρ means
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Figure 3.3: Server assignment based on social networks.

higher latency tolerance degree. We then change Formula (3.10) to r > (1 + β)/ρ and change

Formula (3.12) to r < θ/ρ for triggering encoding bitrate adjustment. As a result, latency-sensitive

(lower latency-tolerant) games have a higher r threshold while latency-tolerant games have a lower

threshold for adjusting the encoding bitrate.

3.2.5 Social Network Based Server Assignment

A cloud datacenter consists of many servers, which cooperate to accomplish the computation

and storage function of the datacenter. Therefore, when multiple players assigned to different

servers interact with each other in the game (e.g., fighting each other in a battle), their servers

need to communicate with each other in order to receive game states of all players and compute the

game state of the virtual world. Online games involve intensive player interactions, if two players

are assigned to different servers within datacenters, the interactions among these two players will

lead to communications between the two servers. For example, in Figure 3.3, when player ni is

playing with player nj , it will result in communication between server A and server B. Such server

communications contribute to the response latency and degrade QoS. Thus, we propose the social

network based server assignment strategy to reduce the interactions between servers by assigning

players who are likely to play games together to the same server. In Figure 3.3, if ni is playing with

nk, their interactions will not lead to server interactions.

When a new player signs up in CloudFog, if it builds friendships with other players, this

new player is assigned to a server that most of its friends are allocated to; otherwise, it is randomly

assigned to a server. To improve the accuracy of friend clustering and reduce the interactions between

servers, we propose the social network based server assignment strategy that runs periodically (e.g.,

weekly) to reassign players to servers.

The players in the system can be represented by an undirected graph G = (V,E); V is the
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set of players and E is the set of edges between the players. eij = 1 if player ni is a friend of player

nj . We use a set F (i) to store all friends of ni. The friendship relationship can be determined by

two schemes: explicit friendship and implicit friendship. 1) Studies in [23] show that players tend

to build friendship with each other in online computer games and players tend to play with their

friends. By “friends” we mean that players who build friendship in the game. 2) CloudFog keeps

record of each user’s playing activities (e.g., who they are playing with, how long do they play),

when the number of times that two players play together within the recent week CPij is larger than

a threshold υ, we regard it as an implicit friendship. Thus, given z servers, this problem turns to

finding z network communities (also sometimes referred to as modules or clusters), and the game

information of each community is allocated in a distinguished server.

Modularity Γ is commonly used to evaluate the quality of resultant network communi-

ties [80]. It first defines a z × z symmetric matrix Q, whose element qab is the fraction of edges

connecting community A and B over |E|, then calculates Γ by:

Γ =

z∑
b=1

(qab − p2a) = tr(Q)− ||Q2||. (3.13)

tr(Q) is the trace of matrixQ; pa =
∑z

b=1 qab; and ||X|| is the sum of elements of matrix X. High val-

ue of Γ indicates a good community clustering, in which the game information of friends are likely to

be allocated to the same server. Existing works generally partition a user and its friends to the same

server by using replication [88], that is, a user’s data is copied to multiple servers. These approaches

are not applicable in the gaming area where a single copy of each player’s data (e.g., profile data and

game status data) is kept on a server to avoid the synchronization of user data on different servers.

CloudFog first greedily assigns a player and its friends to the same community; then in order to op-

timize the community structure (i.e., increase the value of Γ), it repeatedly selects some players and

switches their communities. The performance of community clustering and computation overhead

can be controlled by setting different number of repetitions. We present the detailed steps below.

At first, all players are assigned to one community g1, then we divide it into z communities

using the following steps. 1) Randomly select a player ni and put it and all its friends into a new

community g2. 2) Select a random play nj from g2, and put F (j) (nj ’s friends) into g2. 3) Repeat

step 2 until the number of player in g2 is larger or equal to |V |/z. 4) Repeat step 2 and 3 to

assign all players into z communities. 5) Calculate the modularity Γpre for current communities.

29



Randomly select player ni and nj from 2 random communities, swap the communities of ni + F (i)

and nj + F (j), and calculate the current modularity Γcur. If Γcur > Γpre, swapping communities

for players ni + F (i) and nj + F (j) leads to a better communities structure, so we keep the current

structure; otherwise, we call it a Miss and rollback the swapping operation. 6) Repeat step 5 by

h1 times or until there are h2 consecutive Miss (h2 < h1). Assuming z2 > |E|, the computation

complexity of calculating Γcur and Γpre is O(z2). Therefore, the computation complexity of this

server assignment method is O(h1z
2).

3.2.6 Dynamic Supernode Provisioning

In MMOGs, the number of online players generally varies with a diurnal pattern [84, 85].

When a large number of players join a game within a short time during peak hours, the surge

in player arrival rate places a heavy burden on the cloud servers. MMOG designs should take into

account the dynamicity of players and minimize the overhead of the cloud servers during peak hours.

Provisioning supernodes to assist the cloud in game video streaming is an effective way to deal with

player dynamicity.

In our dynamic supernode provisioning algorithm, the cloud pre-deploys a sufficient number

of supernodes before the peak time to support players and removes these supernodes after the

peak time. These supernodes serve newly-arrived players’ requests and thus mitigate the peak

bandwidth demand towards the cloud. A key challenge in our algorithm is to determine the number

of supernodes that should be pre-deployed. If the game service provider reserves an excessive number

of supernodes from players and organizations, some of them may be idle. If an insufficient number

of supernodes are reserved, most requests for game video streaming will still be served by the cloud

during peak hours.

We predict the number of players and then determine the number of pre-deployed supernodes

based on the predicted value. Accurate prediction of online players is possible since previous works

[84, 85] show that the workload of MMOGs has a regular weekly pattern and week-to-week load

variations of players are less than 10%, for example, the trend of this Friday’s online players mirrors

that of last Friday. Thus, we can forecast the number of online players based on the data from

previous weeks and reserve sufficient supernodes in advance. This forecasting and reservation process

can be carried out at a frequency of every m-hour time window. Then, each week is divided into

24 ∗ 7/m (denoted by T ) time windows. We use N̂t to denote the expected number of players in
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time window t. N̂t can be predicted from the number of players at the same time of last week, i.e.,

Nt−T . We use the seasonal ARIMA model [68], which is widely used to forecast time series with

seasonal patterns, to forecast the number of players. It predicts N̂t based on the data of the current

time window (i.e., t− 1) and data of the same time windows of last week (i.e., t−T and t−T − 1),

N̂t = Nt−T +Nt−1 −Nt−T−1 − θWt−1 − θWt−T + θΘWt−T−1, (3.14)

in which θ is the moving average MA(1) coefficient and Θ is the seasonal moving average SMA(1)

coefficient. {Wt} ∼ WN(0, σ2) is a sequence of white noise with zero mean and variance σ2. To

support N̂t number of players, the number of supernodes that need to deploy (denoted by Nst) is

calculated by:

Nst = (1 + ε)N̂t/Ĉ, (3.15)

where Ĉ is the average capacity of supernodes, and ε is the scale factor for the number of supernodes.

After determining the number of supernodes, the game service provider needs to select

supernodes from available candidates. In order to maximize the number of players supported by the

supernodes and utilization of supernodes’ capacities, we need to select supernodes that are likely to

receive a large number of service requests considering its location. Since the density of players in

each area tends to be stable [118], a supernode that supports a large number of players previously

has a high probability to attract a large number of players in the future. We leverage this intuition

and select supernodes based on the number of players they support in the previous time slot. We use

Ni to denote the number of players supported by supernode sni in the previous time slot. We then

rank all supernode candidates by Ni in descending order. Finally, we create a supernode preference

vector V =< sn1, sn2, ..., snNs >. We select a supernode with rank j with probability Pj calculated

by:

Pj =
1/j∑Ns

n=1 1/n
, (3.16)

whereNp is the number of supernodes. Finally, the pre-deployed supernodes have sufficient capacities

to handle the request surge in their areas.

31



Figure 3.4: Sample code of a PeerSim program.

3.2.7 Discussion on Security Issues of CloudFog

As supernodes can be contributed by players and organizations, attackers can control su-

pernodes to reach their malicious goals such as gaining undeserved rewards and destroying normal

functionality of the gaming system. For example, some supernodes may generate a large amount

of junk files and send them to players so as to earn rewards from the game service provider; some

supernodes can intercept or wiretap users’ personal information; some supernodes may deliberately

delay the transmission of game videos in order to destroy user satisfactions. These issues are critical

but beyond the scope of this dissertation, and we will study them in our future work.

3.3 Performance Evaluation

3.3.1 Introduction to PeerSim Simulator and PlanetLab Real-world Testbed

We conducted experiments on the PeerSim [99] simulator and the PlanetLab [86] real-world

testbed to evaluate the performance of CloudFog in comparison with other systems.

PeerSim is a single-threaded P2P simulator that can carry out large-scale experiments with

millions of nodes. It simulates a typical P2P system where nodes join and leave continuously. In

our experiments, we used a cycle-based simulation model that executes a simulation step in each

cycle. Figure 3.4 shows a sample code of our developed PeerSim program. In this sample, we

implement the GamingProtocal protocol whose parameters are initialized by the configuration file.
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Figure 3.5: Sample code of a Java program running on PlanetLab.

In this protocol, we can perform arbitrary actions by calling different methods (e.g., we implemented

a method name get netx packet to let nodes fetch packets from other peers.) Finally, the status and

useful information are passed to the next execution cycle by using the method nextCycle.

PlanetLab is an overlay testbed which contains nodes across the world and runs over the real

internet. The nodes in PlanetLab are machines contributed by various academic institutions and

universities. The advantage of PlanetLab lies in the fact that it can enable communications between

two nodes from different areas, which is more realistic than simulation. A users of PlanetLab

is allocated with a slice (i.e., computing and storage resources) and add nodes to its slice. A

user then can run its programs on the distributed nodes. Figure 3.5 shows a sample code of our

program running on PlanetLab. In this example, a node acts as a video game player. Its operations

are defined by the method run. Particularly, it actively listens to sockets from other peers and

establishes connections with them. Once a connection is established, it executes a thread to handle

the interactions with the other peer.

3.3.2 Experimental Settings

We measured the performance in response latency, playback continuity and user coverage.

Basic CloudFog (CloudFog/B) denotes the fog-assisted cloud gaming infrastructure without applying

our proposed strategies; Advanced CloudFog (CloudFog/A) denotes our system with all proposed

strategies. We compared CloudFog with the current cloud gaming model [56] (denoted by Cloud)
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and CDN [35]. In CDN, a number of powerful CDN nodes are deployed to increase user coverage,

which take over all the cloud’s tasks (including storing and computing game status and rendering

new game videos). The default number of main datacenters is 5 and 2 for all systems in simulation

and PlanetLab, respectively. The number of servers within each datacenter is 5. As shown in Figure

3.18(b), the cost of renting a cloud server is twice as much as deploying a supernode, so the number

of servers in CDN is set to 1/2 of the number of supernodes in CloudFog. We also conducted

additional experiments for CDN with 45 and 8 randomly distributed servers in simulation and

PlanetLab (denoted by CDN-45 and CDN-8 ). Other default settings are: θ = 0.5, λ = 1, h1 = 100

and h2 = 10. We used the statistics in [31, 57] for the distribution of download bandwidth in the

simulation. To simulate real-world internet connections, a node’s upload bandwidth capacity was set

to 1/3 of its download bandwidth [3, 94]. In order to simulate a system with supernodes of various

capacities, the capacity of supernodes (i.e., maximum number of normal nodes that can support) in

the system follows a Pareto distribution [87,110] with parameter α = 2.

The experiment is divided into 28 cycles with each cycle representing one day’s gaming

activities; each cycle is further divided into 24 one-hour subcycles. According to [84,85], we assume

that 8pm-12am (i.e., subcycle 20 to 24) are peak hours when large number of online players are

playing games. According to studies in [51], we randomly selected 50% nodes and 30% nodes to play

for a period randomly selected from (0, 2] and (2, 5] hours a day, and let the remaining 20% nodes to

play for a period randomly selected from (5, 24] hours a day. Inside one cycle, the game start time

of each player is randomly selected from subcycle [1,19] with a probability of 30%, and randomly

selected from subcycle [20,24] with a probability of 70%. To simulate supernodes’ willingness in

providing satisfactory streaming service, we randomly chose 1/5 and 1/10 supernodes that set their

upload bandwidth at 80% and 50% of their capacities, respectively, with 50% probability in each

cycle. After each experiment cycle, each player rates the supernode using the value of its game

video playback continuity during this gaming activity. As defined in Figures 3.10(a) and 3.10(b),

continuity is measured by the proportion of packets arrived within the required response latency over

all packets in a game video. We use the first 21 cycles (i.e., 3 weeks divided into 126 time windows)

as a warmup period to accumulate reputation scores for all supernodes. We record the number of

online players for each subcycle and used this data to predict the number of online players. We then

record the experimental results of the last 7 cycles and report the average value of these cycles.

Simulation settings. In the simulation, there were 10,000 game players (including online
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and offline players), 10% of which have the capacity to be supernodes. We randomly selected

600 supernodes for CloudFog. This is reasonable as the hardware requirement of servers in CDN is

much more demanded than that of supernodes in CloudFog, thus, given the same amount of revenue,

CloudFog can deploy more supernodes than the number of servers. The number of friends for each

player follows power-law distribution with skew factor of 0.5 [4]. In order to simulate the dynamics

of supernodes and players, the players join the system following the Poison distribution with an

average rate of 5 players per second [111]. Each node leaves the system after it finishes playing and

joins the system for the next experiment cycle. As in [17, 96, 101], the capacities of nodes follow

Pareto distribution with a mean of 5 and shape parameter α = 1.

We defined 5 games, their quality levels and latency requirements are shown in Table 3.2.

When a player joins the system, if none of its friends is playing, it randomly chooses a game to play;

otherwise, it chooses the game that has the largest number of its friends playing. OnLive provides

gaming service at a frame rate of 30fps [62]. Thus, the frame rate of game videos in our experiment

is set to 30fps. The communication latency between each pair of nodes was randomly selected from

the ping latency traces from the League of Legends [2] based on each latency’s occurrence frequency.

PlanetLab experiment settings. We used 750 distributed nodes nationwide, and 300 of

them have the capacity to be supernodes. The nodes with IP 128.112.139.43 in Princeton University

and IP 131.179.150.72 in the University of California, Los Angeles were set as cloud datacenters,

due to their stable connection during the experiment. All other settings are the same as in the

simulation.

3.3.3 Experimental Results for Overall Performance

We first tested the effectiveness of building datacenters in increasing user coverage in Cloud-

Fog/B. Recall that the general response latency requirement is 100ms [63]; 20ms is attributed to

playout and processing delay and 80ms is the network latency. A user is covered by a datacenter

or a supernode if the response latency is no more than the latency requirement of the user’s game,

and we measured the ratio of covered players as the number of players covered by a datacenter or a

supernode over all players in the system. Figure 3.6(a) and Figure 3.7(a) show the ratio of covered

players with different number of deployed datacenters and different network latency requirements

of games on Peersim and PlanetLab, respectively. The figures illustrate that more datacenters lead

to increased user coverage, as users are more likely to connect to close datacenters. Also, given a
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(b) User coverage VS # of super nodes.

Figure 3.6: Impact of # of datacenters and supernodes on PeerSim.
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Figure 3.7: Impact of # of datacenters and supernodes on PlanetLab.

certain number of datacenters, stricter latency requirement leads to a smaller user coverage. In order

to guarantee a better coverage of the user population, previous research suggested deploying more

datacenters nationwide [35]. If OnLive chooses to build its own datacenters and building a medium

size datacenter of approximately 300,000 gross square feet costs around 400 million dollars [18, 47],

it would cost OnLive around 8 billion dollars to build 20 more datacenters; however, 25 datacenters

can only cover 60% players with the general response latency requirement. Thus, increasing user

coverage by deploying more datacenters is cost-prohibitive for game service providers. bandwidth

costs represent In CloudFog, a game service provider can offer a small amount of monetary rewards

as incentives to encourage supernodes, and user coverage can be increased by deploying supernodes.

We then examined the effectiveness of supernodes in increasing user coverage in CloudFog/B

using 5 datacenters on PeerSim and 2 datacenters on PlanetLab. We see from Figure 3.6(a) that

when the network latency requirement is 90ms, deploying 10 datacenters can increase about 10%

user coverage than deploying 5 datacenters in PeerSim. Figure 3.7(a) reflects a similar trend as that

in Figure 3.6(a), the two figures show that the effectiveness of increasing user coverage by deploying

more datacenters weakens when the number of datacenters reaches a specific value. Figure 3.6(b)

and Figure 3.7(b) show the ratio of covered players with different number of randomly selected

supernodes and network latency requirements, Figure 3.6(b) shows that 100 supernodes can increase
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(b) The PlanetLab real-world testbed.

Figure 3.8: Server bandwidth consumption.
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Figure 3.9: Response latency.

user coverage from 0.25 to 0.65 when the network latency requirement ranges from 110ms to 30ms.

200 supernodes can help achieve user coverage of deploying 25 datacenters. Figure 3.6(b) and Figure

3.7(b) show that instead of building datacenters, deploying supernodes is an effective alternative in

increasing user coverage.

As players do not need to pay for bandwidth usage when they subscribe for internet services,

we measure bandwidth consumption of different gaming systems from the side of cloud servers. Fig-

ures 3.8(a) and 3.8(b) show the bandwidth consumption of the cloud versus the number of players in

the system. As CloudFog/A does not influent the bandwidth consumption of CloudFog, thus we use

CloudFog/B to represent the bandwidth consumption of both CloudFog/A and CloudFog/B. We see

that the result follows Cloud>CDN>CDN-45/CDN-8>CloudFog/B. The bandwidth consumption

of CDN does not include those of additional servers. If we include them, CDN ’s bandwidth con-

sumption is similar to that of Cloud ’s. CDN generates less bandwidth consumption than CDN-45

and CDN-8 as more servers are deployed to stream game videos to the players. CloudFog/B saves

significant bandwidth consumption cost due to its employment of supernodes to stream game videos

to the players. The cloud only needs to send update information rather than the entire game video

to the supernodes.

Figures 3.9(a) and Figure 3.9(b) show the average response latency per player in different
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Figure 3.10: Playback continuity.
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Figure 3.11: System setup latency and player join latency.

systems in PeerSim and PlanetLab, respectively. We see that CDN-45 and CDN-8 generate slight

shorter response latency than Cloud due to the use of scattered servers, and users are more likely to

connect to servers within a short distance. CDN further reduces the response latency as more servers

are deployed. However, the improvement is not significant because the servers need to cooperate

with each other to compute new game status, which lead to relatively long latency. CloudFog/B

shows a slight reduction in response latency than that of CDN, which indicates the effectiveness

of our fog-assisted infrastructure in reducing the latency. In CloudFog, users are supported by

supernodes that are physically close to them. As the game video is streamed from supernodes to

the users, instead of from servers that are physically far away. Thus, CloudFog is able to reduce

the response latency for users. This result shows that our system not only reduces the response

latency of the system of deploying many datacenters but also saves the prohibitive cost of building

more datacenters. CloudFog/A further reduces the latency, which indicates the effectiveness of our

proposed strategies in reducing response latency.

Video playback continuity is an important metric for QoS. We measured continuity by the

proportion of packets arrived within the required response latency over all packets in a game video.

Figures 3.10(a) and 3.10(b) show the average playback continuity of game videos when different

number of players are playing games concurrently, which is a metric to measure weather a player
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(b) The PlanetLab real-world testbed.

Figure 3.12: Effectiveness of reputation based supernode selection.
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Figure 3.13: Effectiveness of encoding rate adaptation.

can enjoy smooth video playback. We see that Cloud yields the lowest playback continuity because

there are only a small number of cloud servers, which may locate far away from some players.

So most game videos need to be transmitted from remote servers to clients, thus large portion of

packets cannot be received within the required response latency. CDN-45 and CDN-8 produce

higher continuity than Cloud because players are supported by their nearby servers. CDN increases

the playback continuity of CDN-45 and CDN-8 as players are more likely to find nearby servers when

more servers are deployed. CDN generates smaller continuity than CloudFog/B and CloudFog/A,

because not all users in CDN are able to connect to a nearby server due to the shortage of servers.

So game video packets need to travel longer distance than that in CloudFog. CloudFog/B increases

the continuity of CDN due to the effectiveness of the fog-assisted infrastructure, a large portion of

users are supported by supernodes that are close to them. CloudFog/A provides an average of more

than 90% continuity, with the contribution of all other proposed strategies.

We further tested: 1) server assignment latency, which is the time needed to allocate all

players to cloud servers based on the social network based server assignment strategy; 2) average

supernode join latency, which is average time from the time a supernode joins CloudFog until the

time when it is connected to the cloud; 3) average player join latency, which is the average time

from the time a player joins CloudFog until the time that it is connected to a supported supernode;
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Figure 3.14: Effectiveness of social network based server assignment.

4) average migration latency, which is the average time needed for a player to connect to a new

supernode when its supported supernode fails. When a player’s supported supernode is out of

service, the player needs to connect to a new supernode. We call the process of connecting to a

new supernode a migration. In this experiment, we randomly chose 100 supernodes on PeerSim

and 10 supernodes on PlanetLab, we then simulated supernode failures by disconnecting all players

from these supernodes. In order to test the scalability of CloudFog on PeerSim, we varied the

numbers of players from 10,000 to 60,000 and set the numbers of supernodes to 6/100 of players.

Figure 3.11(a) shows the latency results on PeerSim. We see that when the numbers of players

increase, the server assignment latency rises because the cloud needs to assign more players to

servers, however, the server assignment latency does not increase rapidly. As the server assignment

operation is conducted periodically (e.g., weekly), so the assignment latency does not compromise

the QoS of CloudFog. The average supernode join latency remains low because supernodes only

need to connect to the cloud; the the average player join latency remains constant since each player

only needs to select a supernode from a small number of candidates. We also see that the migration

latency is around 0.08 second, which is low. Because the game status is calculated on the cloud and

supernodes do not need to store players’ gaming information, there is no information transfer from

the disconnected supernode to the new supernode. Thus, the migration overhead is small. During

the migration, a player does not need to restart the game, and the game will resume after around

0.08 second. Figure 3.11(b) shows the latency performance when different numbers of supernodes

are deployed on PlanetLab. We see that server assignment latency keeps stable as it is not affected

by the number of supernodes. We also see that supernode and player join latency and migration

latency stay low due to the same reason as in Figure 3.11(a). Figure 3.11(a) and Figure 3.11(b)

indicate that the setup and dynamical reconfiguration of CloudFog can be completed within a short

time.
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3.3.4 Experimental Results for Proposed Strategies

In the following, we show the effectiveness of each of our proposed strategies: i) reputation

based supernode selection, ii) encoding rate adaptation, iii) social network based server assignment,

and iv) dynamic supernode provisioning.

3.3.4.1 Performance of Reputation Based Supernode Selection Strategy

QoS is determined by packet loss rate and response delay. Thus, if a user can receive 95%

of its game packets within the game’s response latency, we consider this user as a satisfied player,

and this definition is adopted in all figures within the dissertation. Figures 3.12(a) and 3.12(b)

show the percentage of satisfied players with and without the reputation based supernode selection

strategy, denoted by CloudFog-reputation and CloudFog/B, respectively. In CloudFog/B, among

the final selected supernode candidates (introduced in Section 3.2.3), a player randomly selects a

supernode from this set. We see that CloudFog-reputation significantly increases the percentage of

satisfied players due to the reason that players are prone to select supernodes that can provide high

QoS in streaming game videos. In CloudFog-reputation, each player evaluates supernodes’ quality

of service from previous interactions and selects the supernode that provides high QoS with high

probability. Thus, the selected supernode is likely to support the player with high QoS in game

video streaming. On the other hand, CloudFog/B randomly assigns supernodes to players. Though

the assigned supernode is within the player’s transmission delay threshold, the supernode may not

be willing to provide all connected players with satisfactory streaming services.

3.3.4.2 Performance of Encoding Rate Adaptation Strategy

Figure 3.13(a) and Figure 3.13(b) show the percentage of satisfied players with and without

(denoted by CloudFog-adapt and CloudFog/B) the encoding rate adaptation strategy, in PeerSim

and PlanetLab, respectively. We see that CloudFog-adapt increases the percentage of satisfied users

in CloudFog/B. The increase rate reaches 27% when the number of supported players of a supernode

is 25 in the simulation. When the network condition is not good enough to support high quality

streaming of game videos, this strategy decreases the video quality level to meet the response latency

based on loss rate tolerance, thus increasing the number of satisfied players.
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(b) The PlanetLab real-world testbed.

Figure 3.15: Effectiveness of the dynamic supernode provisioning strategy in reducing cloud bandwidth consumption.
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(b) The PlanetLab real-world testbed.

Figure 3.16: Effectiveness of the dynamic supernode provisioning strategy in reducing response delay.

3.3.4.3 Performance of Social Network Based Server Assignment Strategy

Figures 3.14(a) and 3.14(b) show the average response latency with (w/ ) and without (w/o)

the social network based server assignment strategy on PeerSim and PlanetLab, respectively. In

w/o, the users are randomly assigned to servers in a datacenter. We decompose the response latency

to server latency (the communication latency among servers) and other latency. We see that w/

produces about 20ms reduction in server latency, which leads to the reduction of overall response

latency. This is because with this strategy, users that interact with each other in a game are more

likely to be assigned to the same server within a datacenter, thus their interaction is less likely to

involve communication among servers.

3.3.4.4 Performance of Dynamic Supernode Provisioning Strategy

In order to test the performance of CloudFog under user churns, we manually set different

player arrival rates for peak hours and off-peak hours. In PeerSim simulation, we set the average

player arrival rates during off-peak hours (subcycles 1-19) at 5 players/minute, and varied the

average user arrival rate during peak hours (subcycles 20-24) from 10 to 60 players/minute with 10

players/minute increase in each step. In PlanetLab experiment, we set the average player arrival rates

during off-peak hours at 1 players/minute, and varied the average user arrival rate during peak hours
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Figure 3.17: Effectiveness of the dynamic supernode provisioning strategy in increasing continuity.

from 2 to 7 players/minute with 1 player/minute increase in each step. In CloudFog/B, the game

service provider reserves a constant amount of supernodes, i.e., 400 supernodes in PeerSim simulation

and 40 in PlanetLab experiments, while in CloudFog-provision, we dynamically set the number of

supernodes according to the method in Section 3.2.6. The game service provider predicts the number

of online players every 4 hours (subcycles) and reserves supernodes based on the prediction. Figures

3.15(a) and 3.15(b) show the cloud bandwidth consumption with and without the proposed dynamic

supernode provisioning strategy. We see that as user arrival rate increases in CloudFog/B, cloud

bandwidth consumption drastically rises in both PeerSim and PlanetLab experiments. This is due

to the reason that CloudFog/B reserves a fixed number of supernodes regardless of the online player

population. Then, when a large number of players are crowded into the system, most players cannot

find support from supernodes and need to resort to the cloud for game video streaming. CloudFog-

provision greatly reduces the cloud bandwidth consumption because it forecasts the potential rise

in player population and reserve a sufficient number of supernodes in advance.

Figures 3.16(a) and 3.16(b) show the average response latency for CloudFog/B and CloudFog-

provision in PeerSim and PlanetLab experiments, respectively. We see that CloudFog-provision can

reduce the average response latency due to the reason that it reserves a sufficient number of su-

pernodes in advance. When there are a large number of concurrent online players, these players can

find support from supernodes that are physically close to them, so the response latency is reduced

compared to downloading game videos from the cloud. While in CloudFog/B, a large portion of

players rely on the cloud for game videos due to lack of supernodes, which generates long response

latency as the cloud is physically far from the players.

Figures 3.17(a) and 3.17(b) show the average continuity for CloudFog/B and CloudFog-

provision in PeerSim and PlanetLab experiments, respectively. We see that when user arrival rate

increases, CloudFog/B leads to deteriorated average continuity for players. This is because when
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Figure 3.18: Economical incentives for supernodes and game service providers.

there are insufficient supernodes for an excessive number of concurrent players, the cloud needs

to stream game videos to most players. As the video packets need to travel a long distance to

the players, game interruption occurs when the packets cannot arrive within the game’s required

response latency. CloudFog-provision manages to sustain a high average continuity due to the same

reason as in Figures 3.16(a) and 3.16(b).

These results verify that CloudFog is resilient to user churns. That is, when user arrival

rate increases, the performance of CloudFog in providing high QoS in gaming activities will not be

degraded.

3.3.5 Analysis of Incentives for Supernodes and Savings for Game Service

Providers

As supernodes play important roles in CloudFog, we also evaluate the incentives for su-

pernodes and the costs of deploying supernodes for game service providers. We select a random

supernode and depict the profits earned by its owner. Assume that a supernode is a typical server

that uses approximately 0.25kW electric power [46], and it is located in a region where the electricity

cost is 10.8 cents/kWh, which is the US average price of electricity [7]. The hourly electricity cost

of running the server is then 0.25 × 0.108 cents = 0.027 dollar. We also assume that the game

service provider pays 1 dollar for 1GB bandwidth a supernode contributes. Figure 3.18(a) shows the

monetary rewards the supernode’s owner earns from the game service provider, the costs of running

the supernode and the owner’s profits (calculate by Equation (3.1)) when the supernode runs for

different number of hours. We see that the costs are trivial comparing to the rewards, so players

and organizations are motivated to contribute their machines to earn profits.

For a game service provider, if it deploys 300 supernodes and all supernodes run 24 hours a
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day for a full year, it needs to spend about 2.9 million dollars on rewarding the supernodes each year.

While building a medium size datacenter costs around 400 million dollars, deploying supernodes

rather than building extra datacenters is a more economical strategy for game service providers, and

previous experimental results already show that supernodes are effective in providing high quality of

service to users. Instead of building data centers, game service providers can rent instance resources

from existing cloud providers. Assuming a game service provider rents a “g2.8xlarge” GPU instance

from Amazon EC2 with 2.6 dollar per hour [38], we first plot the renting fees (denoted by Renting

fees) in Figure 3.18(b). Compared to deploying a supernode with rewards (denoted by Rewards to

SNs), we then plot the savings (denoted by Savings) for the game service provider by subtracting

the Rewards to SNs from Renting fees. From Figure 3.18(b), we see that CloudFog is able to save

game service providers’ expenses.
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Chapter 4

EcoFlow: Economical and

Deadline-Driven Inter-Datacenter

Video Flow Scheduling

In this chapter, we introduce our economical and deadline-driven video flow scheduling

system (EcoFlow). We first introduce the objective of inter-datacenter video flow scheduling, which

is to minimizes the bandwidth costs for cloud providers. We then provide an overview of EcoFlow

and introduce our proposed EcoFlow in detail. Experimental results on PlanetLab and EC2 show

that compared to existing methods, EcoFlow achieves the least bandwidth costs for cloud providers

and transmits more video flows within their deadlines.

4.1 Overview

4.1.1 Objective of Inter-Datacenter Video Flow Scheduling

We consider a cloud with multiple geographically distributed datacenters operated by a

single cloud provider. Every datacenter in the cloud is connected to all other datacenters. We use

a complete directed graph G = (V,E) to represent the inter-datacenter network, where V is the set

of datacenters and E denotes the set of direct links connecting datacenters. For each link eij ∈ E,
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Table 4.1: Table of important notations.

G a graph of inter-datacenter network
V a set of datacenters operated by a cloud provider
E a set of links connecting each pair of datacenters
eij a direct link connecting datacenter i and j
fk video flow k

fIk an indirect video flow

fDk a direct video flow
F (t) a set of video flow at time t

F I(t) a set of indirect video flow at time t

FD(t) a set of direct video flow at time t
Fij(t) a set of video flow on link eij at time t
Tp time window for traffic volume prediction
Tr time window to record actual traffic volume
[ti, ti+Tp/Tr

) time interval for traffic volume prediction

[ti, ti+1) time interval to record traffic volume, ti+1-ti=Ta
aij bandwidth cost per unit traffic on eij
vij(ti, tj) traffic volume on link eij at time interval [ti, tj)
v̂ij(ti) charging volume on link eij at time ti
P c
ij(ti) bandwidth cost on link eij at time ti
ṽij(ti, tj) estimated traffic volume on link eij at [ti, tj)
cij maximum bandwidth capacity on link eij
∆cij(ti, tj) available bandwidth capacity on link eij at [ti, tj)
tstartk starting time for video flow fk
tend
k completion time for video flow fk
P reroute path for an indirect video flow
sk flow size of video flow fk
dk transmission deadline of video flow fk
v̂0ij(t0) initial charging volume on each link eij
¯̄V (tend) average charging volume at time tend of all links

we use a positive value aij to denote the cost per traffic unit from datacenter i to datacenter j,

a non-negative value cij to denote the maximum link capacity, which is the maximum available

transmission rate from datacenter i to datacenter j. We use v̂ to denote the charging volume.

Important notations used in this dissertation are listed in Table 5.1.

The objective of EcoFlow is to design a schedule strategy so that 1) the overall bandwidth

cost is minimized, and 2) all flows can finish transmission before their deadlines. We use Tr to denote

the time window to record traffic volume (i.e., 5-minute interval) for calculating the charging volume,

and P c
ij(ti) denotes the bandwidth cost at time ti. v̂ij(ti) represents the charging volume on link eij

at time ti and vij(ti−1, ti) denotes the total actual traffic during time interval [ti−1, ti). Assume the

charing period begins at time t0, the bandwidth cost on link eij at time ti can be calculated by:

P c
ij(ti) =

 aij
v̂ij(ti−1)

Tr
(ti − t0) If vij(ti−1, ti) < v̂ij(ti−1)

aij
v̂ij(ti)

Tr
(ti − t0) otherwise

(4.1)
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Figure 4.1: An example of bandwidth cost of inter-datacenter video traffic.

As shown in Equation (4.1), when the actual traffic volume during [ti−1, ti) is smaller than

the charging volume at time ti−1, the bandwidth cost at time ti is calculated by applying the

cost function to the charging volume at time ti−1; otherwise, the new bandwidth cost at time ti is

calculated by applying the cost function to the new charging volume at time ti. The goal of the cloud

providers is to minimize the bandwidth costs on all inter-datacenter links: min
∑
∀eij∈E P

c
ij(t).

4.1.2 Strategy of EcoFlow

Constrain charging volume. Many recent methods try to constrain the charging volume

on each link to reduce the bandwidth costs. We first present an example to explain the basic idea of

these methods. Figure 4.1 shows an example of an inter-datacenter link’s bandwidth cost under the

95th percentile charging model. The traffic volume in time interval [t1, t2) is the 95th percentile value

until time tn, and is marked as the charging volume that needs to be paid by the cloud provider at

tn. When a larger traffic volume vij comes up in time interval [tn, tn+1), it becomes the new charging

volume at time tn+1. Then, from time t0 to tn+1, the unused bandwidth below vij is wasted, that

is, the cloud provider does not fully utilized the charging volume. Given this observation, a feasible

way to reduce bandwidth cost is to maximize the utilization of the charging volume at different time

intervals. For this purpose, when the bandwidth needed is greater than current charging volume,

EcoFlow postpones the delivery of later-deadline videos to the time when the traffic load is light. For

example, the increased traffic volume in time interval [tn, tn+1) can be postponed to time interval

[tn+1, tn+2). In this way, when a fixed amount of video flow is transmitted between two datacenters

over a period, the 95th percentile of video volumes over all time intervals is minimized.

Three steps of EcoFlow. Specifically, EcoFlow schedules the video flow transfers on

a link to different time slots or to other links in order to fully utilize the charging volume while
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guaranteeing the successful flow transfer within deadlines. The EcoFlow scheduling mechanism can

be divided into three steps. We first briefly introduce the three steps using an example in Figure

4.2, which demonstrate the flow scheduling on two links.

Step 1: available bandwidth capacity estimation. We use Tp to denote the time

window used to estimate the available bandwidth capacity on each link, and use Tr (Tr<Tp) to

denote the time window to record traffic volume in current charging model. Based on historical

data, we estimate the total volume of video traffic needed to be transmitted on each link during

time interval [t0, tn), tn− t0 = Tp, denoted by ṽ(t0, tn). Assume link e1’s charging volume at time t0

is v̂1(t0), it then can transfer a volume of v̂1(t0)×Tp/Tr video during time interval [t0, tn). We define

a link’s available bandwidth capacity as the maximum transmission rate that can be used to

transfer videos without increasing the current charging volume during a certain time interval. We

then calculate the available bandwidth capacity ∆c1(t0, tn) on link e1 during time interval [t0, tn):

∆c1(t0, tn) = v̂1(t0)/Tr − ṽ1(t0, tn)/Tp. (4.2)

Step 2: deadline-driven flow scheduling. On each link, the pending video flows are

scheduled on an earliest-deadline-first base. When the traffic capacity is fully occupied at the current

interval, we postpone the transfer of flows with later deadlines to later time interval but still guaran-

tee their deliveries by deadlines. On link e2, the transmission of flow f21 fully utilizes the available

bandwidth capacity on link e2 in time interval [t0, t1), so f22 with a later deadline than f21 will be

sent after f21 finishes transmission. However, when f24 is scheduled after f23, its expected transmis-

sion time is at t5, which is later than its deadline. We divide f24 into two subflows: fD24 and f I24. On

link e1, all pending videos are scheduled to finish transmission before t3, its available capacity during

[t3, tn) is not utilized (highlighted in dashed fill). We call the available bandwidth capacity that are

not utilized during [t3, tn) extra bandwidth capacity (δc1(t3, tn)), δc1(t3, tn)=∆c1(t0, tn). We

define the links with extra bandwidth capacity during a time interval as the under-utilized links. The

extra bandwidth capacity on link e1 can be utilized to reroute subflow f I24 from e2 by its deadline.

Step 3: routing path identification. For the video rerouting, we aim to identify an

alternating path that has extra bandwidth capacity to transmit the video by its deadline. To this

end, we reply on the Dijkstra’s algorithm [43] and propose a path identification method.

Advantages of EcoFlow. We then use an example to show the advantage of EcoFlow
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Figure 4.2: An overview of EcoFlow.

compared to existing methods. In Figure 4.3, the time interval in X axis is one second, that is,

t1-t0=1s. Y axis denotes the available bandwidth capacity on a link. Four videos of 1GB in size

need to be transferred on a link, and the link’s available bandwidth capacity is 4Gb/s. We assume

that time interval [t0, t3) is the link’s peak hours, while [t3, t8) is in the link’s off-peak hours defined

in the store-and-forward methods [71,72,81]. The transmission requests of video flows f1, f2, f3 and

f4 arrive at the source datacenter at time t0, t1, t2 and t3. All four videos are delay-tolerant with

transmission deadlines at time t6, t7, t8, and t9, respectively. In the store-and-forward method, the

delay-tolerant videos temporarily wait during peak hours during time interval [t0, t3). As no video

transmission is performed during peak hours, the link’s bandwidth capacity is wasted. The videos

are sent out during off-peak hours in [t3, t8). However, as a total amount of 2.5 GB data can be

transmitted using the link’s available bandwidth capacity during the off-peak time, thus only 2.5

videos can finish transmission.

We take Jetway [45] as a representative method of the routing path optimization methods.

In JetWay, all videos are sent out when their transmission requests arrive at the source datacenter.

The transmission rate of each video flow is calculated by dividing the size of video by the time span

between the transmission request arrival time and the video’s deadline. Thus, each video is trans-

mitted at the rate of 1GB/6s=1.33Gb/s. f1, f2 and f3 will be transmitted at the rate of 1.33Gb/s

at time t0, t1 and t2, respectively. When f4 arrives at time t3, the link’s bandwidth capacity is fully

occupied by other videos, then f4 has to be rerouted to other links. In this example, the bandwidth

capacity marked in blue is wasted.

In EcoFlow, all videos are transmitted using the available bandwidth capacity, and the

transmission of later-deadline videos will be postponed to future time slots if current traffic increases

the charging volume. In this example, f2 will be postponed until f1 finishes its transmission, and
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Figure 4.3: A comparison of bandwidth utilization between different methods.

f3 and f4 are then transferred one by one. All four videos can be transmitted before their deadlines

and the link’s bandwidth capacity is fully utilized. Therefore, EcoFlow can fully utilize the link

bandwidth capacity to reduce the bandwidth payment cost of existing methods.

4.2 System Design of EcoFlow

4.2.1 Available Bandwidth Capacity Estimation

When the total traffic volume at current time interval [ti, ti+1) (ti+1 − ti = Tr) exceeds

the current charging volume, EcoFlow postpones the transmission of later-deadline videos to utilize

the link’s available bandwidth capacity in future time intervals. In order to predict whether a link

has enough bandwidth capacity to transmit these videos, EcoFlow estimates each link’s available

bandwidth capacity during Tp by two steps: 1) traffic volume prediction during Tp, and 2) available

bandwidth capacity estimation, which is the maximum volume of traffic a link can transfer without

further increasing the current bandwidth cost.

Traffic volume prediction Exponentially weighted moving average (EWMA) [77] is widely

used for prediction for a given series of data points. Note that the traffic transmitted on link eij

includes traffics transmitted from datacenter i to j and from datacenter j to i. We use EWMA to

estimate the traffic volume during [ti, ti + Tp] on link eij (denoted by ṽij(ti, ti + Tp)) based on the

actual historical traffic volume (denoted by vij(·)):

ṽij(ti, ti + Tp) = β × vij(ti − Tp, ti) + (1− β)× ṽij(ti − Tp, ti). (4.3)

ṽij(ti − Tp, ti) is the estimated traffic volume in time interval [ti − Tp, ti), and β (0 < β < 1) is a

constant used to control the degree of weighting decrease.
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Available bandwidth capacity estimation From historical flow records, we calculate

the charging volume on link eij at time ti, v̂ij(ti). Thus, during time interval [ti, ti + Tp), a total

volume of v̂ij(ti)× Tp/Tr video traffic can be transferred under the current bandwidth cost. Given

estimated traffic volume ṽij(ti, ti + Tp), we can calculate the available bandwidth capacity in time

interval [ti, ti + Tp):

∆cij(ti, ti + Tp) = min{cij , v̂ij(ti)/Tr − ṽij(ti, ti + Tp)/Tp}. (4.4)

When ∆cij(ti, ti + Tp) > 0, the current charging volume on link eij is larger than the expected

traffic volume, and the available bandwidth capacity can be used to reroute video flows from other

links.

4.2.2 Deadline-driven Flow Scheduling

Like existing works [45,112] that assume the existence of a centralized server connecting to

all datacenters that functions as a scheduler to schedule the video flows in all datacenters, we first

introduce EcoFlow in a centralized manner. We will further introduce a distributed way to realize

EcoFlow in Section 4.2.8.

In order to maximize the number of videos that can be transmitted by their deadlines, we

use the earliest-deadline-first strategy, that is, video with the earliest deadline will be put at the front

of the sending queue. The network scheduler maintains a sending queue Q(ti)=(< f1, d1, s1 >,<

f2, d2, s2 >,... < fm, dm, sm >) to store all pending flows on each link eij at time ti, which are

ordered based on their deadlines. Note that flows on link eij includes all flows that are transmitted

bidirectionally between datacenter i to j (i.e., from i to j or from j to i). Each triple < fk, dk, sk >

in Q(ti) contains the flow information of fk, where dk and sk are the deadline and size of fk,

respectively.

All pending videos in Q(ti) are sent out sequentially, that is, fk will be sent only when all

videos f1, f2, ..., fk−1 have finished transmission. As we see from Figure 4.3, when a number of

videos are transmitted on a link simultaneously and their cumulated transmission rate is less than

the link’s available bandwidth capacity, the bandwidth resource of this link is wasted as the extra

bandwidth capacity is not utilized. Thus, EcoFlow aims to maximize the bandwidth utilization by

sending video at a rate that fully utilizes the available bandwidth capacity. The estimated flow
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transmission time for flow fk can be computed as:

Tk = A/∆cij(ti, ti + Tp). (4.5)

A =
∑

fp∈F<k
sp, where F<k is a subset of flows in Q(ti) that have earlier deadlines than flow fk

(including fk), and ∆cij(ti, ti +Tp) is the estimated available bandwidth capacity on link eij in time

interval [ti, ti + Tp). As the flows in Q(ti) are sent sequentially, the flow completion time for fk is

tendk :

tendk =

 ti + Tk If k=1

tendk−1 + Tk otherwise
(4.6)

The flow start time for f1 is ti. For flow fk (k > 1), the flow start time is the completion time

of the previous flow, that is, tstartk = tendk−1. dk is the deadline of video fk. When tendk ≤ dk,

flow fk is expected to finish transmission before its deadline, and we call it a Direct Flow (DF).

When tendk > dk, flow fk is likely to miss the transmission deadline under the expected bandwidth

capacity. Then, fk can be split to two subflows: fDk and f Ik . fDk is the volume with size sDk that can

be transmitted directly on link eij before its deadline; while f Ik is the residual volume with size sIk

(sIk=sk − sDk ), which should be rerouted in an alternating path before its deadline. We call f Ik an

Indirect Flow (IF).

sDk = max(0, dk ×∆cij(ti, ti + Tp)−A). (4.7)

Using the alternating routing path identification method in Section 4.2.7, we identify alternating

paths for each indirect flow f Ik which can transmit f Ik before its deadline.

After all IFs find alternative paths, the scheduler creates a schedule table for all pending

flows, in which each item is expressed in a quadruple S(ti) =< fk, S,D, t
start
k >, which denotes the

flow ID, source datacenter, destination datacenter and flow start time. This table is used to guide

the transfers of flows initiated from all datacenters.

4.2.3 Alternating Routing Path Identification

F I(ti) denotes the set of all IFs in the network at time ti, which are sorted by their deadlines

in ascending order. Assume f Ik is an IF from datacenter i to datacenter j, in this section, we

describe how the scheduler identifies an alternating routing path P for f Ik, P = (v1, v2, . . . , vp). The
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centralized scheduler identifies an alternating path for each IF in an earliest-deadline-first manner.

The selected alternating path P uses extra bandwidth capacities of its constituent links to

transmit f Ik, with the requirement of finishing the transmission before its deadline. The path that

can transmit f Ik with the minimum transmission time among all possible alternating paths is the

best path to satisfy this requirement. Thus, we first identify the alternating path P that leads to

minimum transmission time. If the identified path can transmit f Ik before its deadline, we reroute

f Ik to this alternating path; otherwise we split f Ik into two parts: fk1 and fk2, where fk1 is the part

of f Ik that are expected to finish transmission on P . We reroute fk1 along P , and identify another

alternating path for fk2 by using the same process. If the new identified alternating path cannot

transmit fk2 before its deadline, fk2 is further split into two parts: f1k2 and f2k2. f1k2 is transmitted

on the new alternating path and f2k2 is transmitted on eij by increasing the charging volume on eij .

When f Ik is transmitted on path P , its transmission rate is the minimum extra bandwidth

capacity on all P ’s constituent edges [44], that is min∀i∈(1,p−1){δci,i+1(ti, ti+Tp)}. f Ik ’s transmission

completion time tendk is calculated by:

tendk = sIk/ min
∀i∈(1,p−1)

{δci,i+1(ti, ti + Tp)}+ ti. (4.8)

sIk denotes the flow size of f Ik and δci,i+1(ti, ti + Tp) denotes the extra bandwidth capacity on link

ei,i+1. We then express the requirement that the transmission of flow f Ik on path P would be finished

before its deadline by: tendk ≤ dk. The path that can transfer f Ik with the minimum transmission

time is the best path to satisfy this requirement, which is shown in Equation (4.9).

min
∀P
{tendk (P )} (4.9)

As Dijkstra’s algorithm can be adopted to find the path that can transmit f Ik with the

minimum transmission time, we develop a modified Dijkstra’s algorithm shown in Algorithm 1 to

identify an alternating routing path for f Ik. In this algorithm, we input the flow information including

its size, deadline, source datacenter and destination datacenter, together with network information

including all link’s extra bandwidth capacity. Algorithm 1 will return an alternating path P for

f Ik , and splits f Ik into two parts if P cannot finish transmission before its deadline. In algorithm 1,

we modify the original Dijkstra’s algorithm by adding line 25 to 29, which is to check whether the

identified alternating path P meets the deadline requirement. If the identified path can transmit f Ik
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before its deadline, alternating path P is returned (Line 25); otherwise f Ik is split into fk1 and fk2

(Line 26-29). The simplest implementation of the Dijkstra’s algorithm requires a running time of

O(|E|+ |V |2) = O(|V |2).

Algorithm 1: Pseudocode for identifying alternating path for flow fIk .

1: Input: G = (V,E); sk, δcij(ti, ti + Tp), ∀ij ∈ E;
2: Output: alternating path P from source i to destination j
3: for each vertex u in V
4: rate[u] := 0 //The maximum transmission rate on each path
5: pre[u] := null //Record last hop on the path
6: tend

k [u] := ti //Transmission completion time
7: Q+ = j //Q is a temporal set
8: end for
9: rate[i] := infinity

10: while Q is not empty do
11: u := vertex in Q with max rate[u]
12: remove u from Q
13: for each neighbor v of u with δcuv(ti, ti + Tp) > 0 do
14: tend

k [v]:=sIk/min{rate[u], δcuv(ti, ti + Tp)}+ ti
15: alt :=max{rate[v], δcuv(ti, ti + tend

k [v])}
16: if alt ≥ rate[v]: // A path with higher transmission rate
17: rate[v] := alt
18: pre[v] := u
19: end if
20: P := empty sequence
21: while pre[j] is defined do //Construct the alternating path
22: insert j at the beginning of P
23: δcj,pre[j](ti, ti + tend

k [j]) := 0
24: j := pre[j] // Traverse from destination to source
25: if tend[v]<dk Return P
26: if tend[v]>dk //P cannot transmit fIk before its deadline

27: split fIk into fk1, fk2
28: Return P , fk1, fk2
29: end if

If P cannot finish f Ik ’s transmission before its deadline and f Ik is split into fk1 and fk2, we

will use Algorithm 1 to identify an alternating path for fk2. If the new identified alternating path

cannot transmit fk2 before its deadline, fk2 is further split into two parts: f1k2 and f2k2. f1k2 is

transmitted on the new alternating path and f2k2 is transmitted on eij by increasing the charging

volume on eij . The new charging volume v̂ij(ti) at time ti is calculated by:

v̂ij(ti) = (A− sk + s(f2k2)× Tr/(dk − ti). (4.10)

Where s(f2k2) is the size of f2k2. The flow start time and completion time of all flows on link eij will

then be updated based on Equation (4.5), and the schedule table S(ti) =< fk, S,D, t
start
k > will

also be updated.
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4.2.4 Forwarding Subflows with Rate Limiters

When sending video flows in the inter-datacenter network, we need to control the transmis-

sion rate so that the flows are sent out by using the links’ available bandwidth capacities. Each

datacenter i deploys a scheduler Ci to organize the sending queue of video flows, which attaches

labels to all packets of each flow that record their corresponding transmission paths. For each video

flow, the datacenter also uses a rate limiter [12, 97] to control its sending rate within the available

bandwidth capacity, so that the links’ current charging volume on the flow’s transmission path will

not increase. We will describe how to use rate limiter to split the packets of each flow in two different

cases, i.e., DFs and IFs.

If flow fk is a DF sending from datacenter i to datacenter j, all packets of fk are transmitted

using available bandwidth capacity on link eij (i.e., ∆cij(ti, ti + Tp)). The number of packets

transmitted per second rk is calculated by:

rk = ∆cij(ti, ti + Tp)/µ, (4.11)

where µ is the size of a packet. The cloud provide specifies the value of µ, typically, µ is set to

1KB [58,113].

If flow fk is split into multiple subflows, e.g., fk is split into fDk and f Ik , and f Ik is further

split into fk1 and fk2, the rate limiter needs to split the packets proportionally according to each

link’s available bandwidth capacity. Assume fk is split into (fk1, fk2,...,fkm), which are transmitted

using links (ei1, ei2,...,eim). The total number of packets sent per second for fk is:

rk =

m∑
j=1

∆cij(ti, ti + Tp)/µ. (4.12)

In this way, the fk’s packets are proportionally distributed across all paths.

4.2.5 Setting Initial Charging Volume

According to the 95th percentile charging model, the charging volume at the beginning of

the charging period is 0 and it increases gradually as the bandwidth usage goes up. Figure 4.4 shows

an example of a link’s charging volume increases over time. In this example, the charging volume
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rises drastically in early time intervals and keeps relatively stable after a certain time interval. This

property leads to a problem in our design. During early time intervals, as available bandwidth

capacity of a direct link is 0 and can not transmit a video flow fk on this path, fk then needs to

look for an alternating path. fk cannot find any alternating path due to the reason that available

bandwidth capacities of all links are 0. Finally, the direct link needs to increase its charging volume

in order to transmit fk. This process leads to extra scheduling latency due to insufficient available

bandwidth capacities in all links.

To reduce the scheduling latency and make the schedule process simple during early time

intervals of a charging period, we set an initial charging volume on each link, as shown in the dash line

in Figure 4.4. Assume each charing period is divided into a number of time points < t0, t1, ...tend >,

i.e., it starts from time t0 and ends at time tend. The initial charging volume on each link eij at

time t0 is denoted by v̂0ij(t0). v̂0ij(t0) should be set properly. If v̂0ij(t0) is too small, the scheduling

latency cannot be reduced since a direct link does not have enough available bandwidth capacity

to transmit flow fk, and also we can hardly find an alternating path because other links’ initial

charging volumes are small. On the other hand, if v̂0ij(t0) is too large, the initial charging volume is

not fully utilized throughout the charging period, and the proposed scheduling scheme will not be

effective in reducing each link’s bandwidth cost. In this section, we introduce how to set the initial

charging volume on each link based on the historical data, i.e., actual charging volume at the end of

the last charging period (denoted by tend), since it can be an indicator of how much traffic volume

will be transmitted during current charging period.

We consider two factors in setting v̂0ij(t0), which are the actual charging volume at time

tend on link eij (v̂ij(tend)) and the average actual charging volume at time tend on all links in the

inter-datacenter network (denoted by V̄ (tend)). V̄ (tend) is calculated as:

V̄ (tend) =
∑

eij∈E
v̂ij(tend)/2|E|. (4.13)

v̂ij(tend) plays a major role in determining the initial charging volume on eij , because EcoFlow

encourages sending video flows using direct link eij to reduce transmission time. As introduced in

Section 4.2.1, v̂ij(tend) can be calculated based on the actual historical traffic volume during previous

charging period. We consider V̄ (tend) because EcoFlow aims to transmit video flows using available

bandwidth capacities of all links in the inter-datacenter network so as to control the charging volume
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Figure 4.4: An example of setting an initial charging volume at the beginning of a charging period.

on a specific link and offload partial traffic to alternating paths. Combining these two factors, we

calculate v̂0ij(t0) by:

v̂0ij(t0) = φv̂ij(tend) + ϕV̄ (tend). (4.14)

φ ∈ (0, 1) is a weight placed on v̂ij(tend); ϕ ∈ (0, 1) is a weight placed on V̄ (tend). At the beginning of

each charging period, charging volume on link eij is set to v̂0ij(t0). In Section 4.3.2, we will evaluate

the performance of this strategy by setting different values of φ and ϕ.

4.2.6 Deal with Prediction Errors and Lack of Prior Knowledge

Our design is based on prediction. That is, we estimate the available bandwidth capacity

on each link and utilize it to reroute videos. When there are prediction errors, e.g., there are more

video flows waiting to be transmitted on a link than the estimated value because we overestimate

the available bandwidth capacity, excessive number of videos will be waiting in the sending queue.

To handle the prediction errors, our design can adapt to these prediction errors by revising the

transmission schedule. When there are an excessive number of pending videos in the sending queue

and EcoFlow can not find alternating paths for these videos, it then uses Equation (4.10) to calculate

a new charging volume on this link.

When we lack prior knowledge of the charging volume during previous charging periods, as

describe in Section 4.2.5, the cloud service provider will set each link’s initial charging volume based

on how much bandwidth cost it is willing to pay, or it can set the initial charging volume to 0 and

let the charging volume increases gradually as more videos are transmitted.
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4.2.7 Centralized Implementation of EcoFlow

In this section, we will put all components of EcoFlow together and describe the centralized

implementation of EcoFlow. As mentioned in Section 4.2.2, each scheduler maintains a sending

queue Q(ti)=(<f1, d1, s1>, <f2, d2, s2>,...,<fm, dm, sm>) to store all pending video flows on each

link eij at time ti, and the flows are sorted in ascending order based on their deadlines. The goal

of EcoFlow is to calculate a schedule table S(ti). That is, it decides a transmission path for each

flow, and splits a flow into subflows and identifies alternating paths for them if a flow is estimated

to miss its transmission deadline. We describe the process of scheduling video flows on link eij in

Algorithm 2. If ti is the beginning of a charging period, the scheduler first sets an initial charging

volume on eij (Line 3-5). It then calculates eij ’s available bandwidth capacity (Line 6). For each

fk in the sending queue, EcoFlow calculates expected transmission time tendk . If tendk is earlier than

fk’s transmission deadline, fk will be transmitted on link eij (Line 9-10). Otherwise, EcoFlow splits

fk into fDk and f Ik and identifies an alternating path for f Ik (Lines 12-13). If an alternating path P

is found to transmit f Ik , we update the available bandwidth capacity on each edge of P (Line 14). If

no alternating path can be found to transmit the whole volume of f Ik , we increase charging volume

on eij at time ti according to Equation (4.10) (Lines 15-17). Finally, the scheduling table S(ti) is

updated based on the scheduling results (Line 20).

Algorithm 2: Pseudocode for scheduling video flows on link eij .

1: Input: G = (V,E); Q(ti);
2: Output: schedule table S(ti) for all flows in Q(ti)
3: if ti is the beginning of a charging period
4: set initial charging volume v̂0ij(t0)
5: end if
6: calculate available bandwidth capacity ṽij(ti, ti + Tp)
7: for each fk ∈ Q(ti)
8: calculate expected transmission time tend

k

9: if tend
k is smaller than deadline dk

10: fk is transmitted directly on link eij
11: else
12: split fk into subflows: fDk and fIk
13: find alternating path P for fIk using Algorithm 1
14: update available bandwidth capacity on each link of P
15: if P cannot transmit whole volume of fIk
16: increase v̂ij(ti) on eij according to Equation (4.10)
17: end if
18: end if
19: end for
20: update scheduling table S(ti) for fk and subflows
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4.2.8 Distributed Implementation of EcoFlow

In order to prevent the single point of failure problem, we propose a distributed implementa-

tion of EcoFlow. As mentioned before, each datacenter i has a scheduler Ci. For flow scheduling on

link eij , we select a scheduler on datacenter i or j as a master scheduler, denoted by scheduler Cij ,

and the other schedule then becomes the slave scheduler. Scheduler Cij is responsible for scheduling

transmission of flows on eij , calculating the available bandwidth capacity (∆cij) on link eij using the

same technique as in Section 4.2.1, and broadcasts this information to all schedulers in the network

for alternating path identification.

At each time interval Tr, scheduler Ci and scheduler Cj report information of its pending

flows on link eij (including flow ID, size and deadline) to scheduler Cij . Scheduler Cij then orders

the flows by their deadlines in ascending order, and calculates start time and completion time for

each flow using the same technique in Section 4.2.8. All flows on link eij are divided into DFs

(FD(ti)) and IFs (F I(ti)). Scheduler Cij builds a schedule table S(ti) =< fk, S,D, t
start
k > for

flows in FD(ti) and forwards it to both scheduler Ci and scheduler Cj . As DFs can be transmitted

directly through eij , scheduler Ci and scheduler Cj transfer flows in DFs according to the schedule

table. Scheduler Cij also need to find the alternating paths for F I(ti) and notifies scheduler Ci and

scheduler Cj the alternating paths.

Assume f Ik is an IF flow from datacenter i to datacenter j, we need to identify an alternating

path that can transfer f Ik before its deadline. Due to lack of a centralized scheduler, the challenge

of the distributed identification method lies in finding an alternating path through the cooperation

of multiple schedulers. Under this scenario, identifying a path with the minimum transmission

time f Ik is complicated, so we aim to find a path that can transfer f Ik before its deadline. As

each datacenter has direct links connected to all other datacenters, sufficient number of datacenters

can be chosen as relay datacenters in the alternating paths. With a high probability, we can find

a relay datacenter and build a 2-hop alternating path which can transfer f Ik before its deadline.

While identifying a multi-hop (more than 2-hop) alternating path requires cooperation of more

schedulers and is not efficient in time complexity, in order to simply the implementation and achieve

algorithm time efficiency, we identify a 2-hop alternating path P = (i, h, j) for f Ik in our proposed

method, that is, find an intermediate datacenter h and transfer f Ik on path P = (i, h, j). Multiple

candidate datacenters might be able to relay and transfer f Ik before its deadline, we then contact
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each datacenter’s scheduler and randomly choose a datacenter h who are able to relay f Ik as the

intermediate datacenter. Note that this routing path identification method can be extended to

identify alternating paths with more than two hops.

The information of available bandwidth capacity on each link at each time interval is shared

among all schedulers by broadcasting. The intermediate datacenter h is selected according to Algo-

rithm 4. In this algorithm, we try each datacenters in V \j to build a candidate path (Line 3). For

each candidate path, we then calculate f Ik ’s transmission time on this path (Line 4). If path P can

transfer f Ik before its deadline, we further check if the links on P have extra bandwidth capacities

(Line 5-10). When intermediate datacenter h is found, scheduler Ci then forwards f Ik to datacenter

h, and scheduler Ch further forwards it to its destination j. If scheduler Ci cannot find a transit

datacenter h, scheduler Ci increases the charging volume on eij according to Equation (4.10).

Algorithm 3: Pseudocode for finding intermediate datacenter h.

1: Input: δcij(ti, ti + Tp), ∀ij ∈ E;
2: Output: intermediate datacenter h between source i to destination j
3: for each vertex q in V \j:
4: tend

k :=sk/min{∆ciq ,∆cqj}+ ti //Calculate completion time

5: if tend
k < dk: //Guarantee the transmission deadline

6: scheduler Ci contacts scheduler Cq

7: if δciq(ti, ti + tend
k ) > 0 and δcqj(ti, ti + tend

k ) > 0:
8: h := q
9: end if

10: end if
11: end for

4.3 Performance Evaluation

We conducted experiments on the PlanetLab [86] real-world testbed and Amazon EC2 plat-

form [39] to evaluate the performance of EcoFlow in comparison with other systems. For EcoFlow,

we tested both the implementation with a centralized scheduler (denoted as EcoFlow-C) and dis-

tributed implementation (denoted as EcoFlow-D). We compare the performance of EcoFlow with

three datacenter traffic scheduling strategies: 1) Direct transfer (denoted as Direct), which directly

transfers video flows to the destination whenever the video transfer requests are initiated by the

cloud provider without considering each link’s charging volume; 2) JetWay [45], which transfers

video flows whenever the video transfer requests are initiated by the cloud provider, at a rate calcu-

lated by its size divided by its corresponding maximum tolerable transfer time. When a video flow is

expected to increase a link’s current charging volume, it splits the video flow into two sub-flows, and
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the sub-flows are transmitted along alternating paths to utilize the available bandwidth capacity of

each link; and 3) NetSticher [81], which is a store-and-forward method. NetSticher transfers delay-

tolerant data between two datacenters only when both datacenters are in off-peak hours. When

there are no common off-peak hours between both datacenters, an intermediate datacenter is used

to store the data temporarily and then forward it to the destination datacenter. In both PlanetLab

and EC2 experiments, we defined two types of videos: Standard Definition (SD) videos with sizes

randomly selected in [500, 800] MB, and High Definition (HD) videos with sizes randomly selected

in [2, 4] GB [45]. We assumed that the traffic load for each datacenter displays a periodic diurnal

pattern [81]. For simplicity, we further assumed that 10-12am and 6pm-12am of a node’s local time

are peak hours. A datacenter transfers x and y videos per hour (including both SD and HD videos)

to all other datacenters during its peak hours and off-peak hours, respectively, where x and y were

randomly selected from [2, 5] and [0, 1], respectively. The transfer request of each video is initiated

at a random time during the selected hours, and its deadline is chosen in [30, 120] minutes after the

transfer request’s initiated time. We assumed a video with maximum tolerable transfer time longer

than 60 minutes to be a delay-tolerant. We set Tp = 1 hour and Tr = 5 minutes. We simulated

an inter-datacenter network running for 48 hours for all methods. We set this 48 hour period as

an independent charging period and calculated the bandwidth cost on each link at the end of the

experiment. In EcoFlow-C and EcoFlow-D, we had a 48 hour warmup period and used the traffic

records in this period to predict the traffic volume on each link during the charging period. We also

set the initial charging volume based on the charging volume in this warmup period according to

Section 4.2.5. We calculated the bandwidth costs under the 95th percentile charging model.

4.3.1 Experimental Results for Overall Performance

We first present the overall performance of EcoFlow in terms of bandwidth cost, percentage

of flows transmitted within the charging volume and percentage of transferred flows within deadlines.

In order to compare EcoFlow with other scheduling methods, we set the initial charing volume to 0

in these experiments.

4.3.1.1 Experiments on PlanetLab

We used 15 distributed nodes worldwide to simulate 15 datacenters, including 7 nodes in

North America, 5 nodes in East Asia and 3 nodes in Europe. On each link between two datacenters,
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(b) Results at different flow rates.

Figure 4.5: Average bandwidth cost per link on PlanetLab.
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Figure 4.6: Average unit bandwidth cost on PlanetLab.

the bandwidth capacity is randomly selected in [10, 600] MB, and the bandwidth cost per unit (MB)

is randomly selected in [50, 400] [45]. Each node’s time zone is determined based on its location. In

the experiment, we used the TCP protocol to transfer data between different nodes.

We first defined a metric of bandwidth cost per link as the sum of bandwidth payment cost

on all links divided by the total number of links in the network. Figure 4.5(a) shows the average

bandwidth cost per link at each time interval. We see that as time evolves, bandwidth payment cost

for each method is increasing due to the reason that bandwidth payment cost is a function of how

long the link’s bandwidth is used according to Equation (4.1). The result also follows: EcoFlow-

C<EcoFlow-D<JetWay<NetSticher<Direct. Direct results in the highest bandwidth cost. When a

video transfer request arrives at the source datacenter, it immediately transfers the video by using

only the direct link between two datacenters without considering the current charging volume on the

link. NetSticher postpones the transmission of delay-tolerant videos until both source datacenter

and destination datacenter are during off-peak hours, so that the traffic load during peak hours

is alleviated and it generates less average bandwidth cost than Direct. However, as the available

bandwidth capacity is not fully utilized during peak hours, there is still room for NetSticher to

further reduce the bandwidth cost. JetWay is able to incur less bandwidth cost than NetSticher
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(a) Results at different time intervals.
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(b) Results at different flow rates.

Figure 4.7: Average percentage of flows transmitted within the charging volume on PlanetLab.

by controlling the transmissions of current videos within the charging volume. Also, when a video

is expected to increase a link’s charging volume, it splits the video into subflows and reroutes the

subflows to links that are under-utilized. However, as videos are transmitted immediately when

the video transfer requests are initiated by the cloud provider, the bandwidth cost will increase

when a large number of video transfer requests arrive simultaneously. EcoFlow generates the least

bandwidth cost among all comparison methods. EcoFlow schedules the flows on each link based

on their deadline tightness, and postpones the transmission of video flows to make the current

traffic within the charging volume. Flows that are expected to miss their deadlines are splitted

into subflows, which will be rerouted to alternate paths that are constructed by under-utilized

links. Also, EcoFlow transmits each video with the link’s available bandwidth capacity, so that the

charging volume is fully utilized. Note that EcoFlow-C performs better than EcoFlow-D as it gains

full knowledge of all under-utilized links in the network, and thus has higher probability to identify

a reroute path for IFs using under-utilized links.

Next, in order to test the performance of each method at presence of different traffic loads,

we changed the flow arrival rates during a link’s peak hours from 2 to 10 flows per hour on each

link. Figure 4.5(b) shows the bandwidth cost per link at the end of the 48-hour charging period at

different flow rates. We see that as more flow transmission requests are initiated hourly, the average

cost per link tends to increase. This is because when a larger number of videos need to transfer

between datacenters during the charging period, more bandwidth is generally required on each link

to transmit all videos, so the charging volume on each link increases. The relative performance of

different methods in Figure 4.5(b) concurs with that in Figure 4.5(a) due to the same reason.

We then present a performance metric of average unit bandwidth cost, which is defined as

the sum of bandwidth payment cost on all links divided by the total volume of video flows (MB)
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(a) Results at different time interval.
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(b) Results at different flow rates.

Figure 4.8: Percentage of transferred flows within deadlines on PlanetLab.

transmitted in the network. An effective scheduling system should be able to reduce the average

unit bandwidth cost, i.e., use the same bandwidth cost to transmit a larger size of videos. Figure

4.6(a) plots average unit bandwidth cost at each time interval. We see that as time evolves, the

average unit bandwidth cost for all methods generally increases because bandwidth payment cost is

increased as explained in Figure 4.5(a). The relative performance between different methods follows:

EcoFlow-C<EcoFlow-D<JetWay<NetSticher<Direct. EcoFlow generates the unit bandwidth cost

among all methods as it postpones the transmission of video flows to make the current traffic within

the charging volume, and it splits the flows that are expected to miss their deadlines into suflows

and utilizes other links’ available bandwidth capacities to reroute these subflows. Thus, EcoFlow

can efficiently reduce the average unit bandwidth cost.

As in Figure 4.5(b), we changed the flow arrival rates during a link’s peak hours from 2 to

10 flows per hour and tested EcoFlow’s performance with respect to average unit bandwidth cost.

Figure 4.6(b) plots the average unit bandwidth cost at the end of the 48-hour charging period at

different flow rates. We see that the average unit bandwidth cost generally drops when the flow

arrival rate increases from 2 to 8 flows per hour, and it then keeps stable when the flow arrival rate

increases from 8 to 10 flows per hour. This is due to the reason that when a larger number of videos

are transmitted between datacenters during the charging period, the links connected the datacenters

have higher utilization and more videos are sent by using current charging volume, which reduces

the bandwidth payment cost per video unit. However, when the flow arrival rate reaches a specific

point (8 flows per hour in this case), the links’ available bandwidth capacities are overutilized and

they need to increase the charging volumes in order to transmit higher rates of video flows. Thus,

the average unit bandwidth cost keeps stable. The relative performance of different methods in

Figure 4.6(b) concurs with that in Figure 4.5(b) due to the same reason.
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Link Cap. (Mbps)/Cost North California Oregon Virginia Sao Paulo Ireland Singapore Tokyo
North California − 520.40/1 252.67/2 116.75/15 98.67/20 103.69/27 173.06/30
Oregon 545.06/1 − 215.84/3 81.18/17 104.22/15 81.99/25 152.75/27
Virginia 240.78/2 210.64/3 − 139.41/10 221.55/10 81.44/15 110.10/17
Sao Paulo 40.98/15 60.84/17 11.85/10 − 22.41/25 9.59/18 62.42/22
Ireland 106.45/20 135.02/15 215.85/10 90.12/25 − 77.89/23 76.10/20
Singapore 124.40/27 110.95/25 84.54/15 57.31/18 80.92/23 − 242.80/5
Tokyo 178.36/30 143.44/27 99.40/17 61.99/22 43.61/20 116.33/5 −

Table 4.2: Link Capacities and Costs per Traffic Unit in the Amazon EC2 Inter-Datacenter Network [45]
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Figure 4.9: Average bandwidth cost per link on EC2.

Figure 4.7(a) shows the average percentage of flows transmitted within the current charg-

ing volume at different time intervals. If a large portion of the flows are transmitted by utilizing

the current charging volume, a link’s charging volume will not further increase. An effective flow

scheduler should provide a large percentage of flows transmitted within the current charging vol-

ume, so that the bandwidth cost during current time interval will not further increases. We see that

performance of different methods with respect to average percentage of flows transmitted within

the charging volume follows: EcoFlow-C>EcoFlow-D>JetWay>NetSticher>Direct. In JetWay and

Direct, if a large number of video transfer requests arrive at a specific time interval, the videos will

be transmitted immediately. And these videos are likely to result in high bandwidth usage at the

time interval and increase the charging volume. NetSticher performs transmissions of delay-tolerant

videos only during off-peak times, the charging volume is likely to increase when a large number

of non-delay-tolerant videos are transmitted during the peak hours. EcoFlow-C and EcoFlow-D

aim to transfer flows within the charging volume by postponing the transmission of flows with late

deadlines, thus yield the highest percentage of flows transmitted within the charging volume.

Figure 4.7(b) shows the average percentage of flows transmitted within the charging volume

at different flow rates. We see that as more videos need to transfer between datacenters hourly,

smaller percentage of flows can be transmitted within the charging volume, i.e., the charging volumes

on all links need to increase in order to accommodate higher flow rates. This is due to the reason
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Figure 4.10: Average unit bandwidth cost on EC2.
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(a) Results at different time intervals.
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(b) Results at different flow rates.

Figure 4.11: Average percentage of flows transmitted within the charging volume on EC2.
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(a) Results at different time interval.
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(b) Results at different flow rates.

Figure 4.12: Percentage of transferred flows within deadlines on EC2.
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that increased bandwidth is needed to transfer a large number of videos during each time interval

and thus likely to increase the charging volume. As a result, larger percentage of flows are likely

to be transmitted by increased charging volume on the links. The relative performance of different

methods mirrors that in Figure 4.7(a) due to the same reason.

Figure 4.8(a) and Figure 4.8(b) show the percentage of video flows that are transferred

within their deadlines across different time intervals and at different flow rates, respectively. We see

that the result follows: JetWay>EcoFlow-C>EcoFlow-D>Direct >NetSticher. NetSticher provides

the least percentage of transferred videos within the deadlines due to the reason that it postpones

the transmission of delay-tolerant videos from peak hours to off-peak hours, and if a link’s available

bandwidth capacity during the off-peak hours is not enough to transfer all waiting videos postponed

from peak hours, a number of videos are likely to miss their transmission deadlines. Direct produces

higher percentage of transferred videos within the deadlines than NetSticher, due to the reason that

a video begins transmission whenever the transfer request arrives at the source datacenter. EcoFlow

and JetWay generate comparably high percentage of transferred videos within the deadlines, as they

both consider a video’s transmission deadline when scheduling the video’s transmission and aims

to use the available bandwidth capacities from all links to finish the video’s transmission before its

deadline.

4.3.1.2 Experiments on EC2

We have conducted our experiments in the Amazon EC2 platform, which is one of the

dominant Infrastructure as a Service (IaaS) cloud providers. There are a total of 7 datacenters on

EC2, the capacity and cost per traffic unit of each link are set according to the studies in [45]. The

settings are shown in Table 4.2. We assigned the diurnal load described above to each datacenter

based on the time zone it resides in.

Figure 4.9(a) shows the average cost per link at different time intervals for the 95th percentile

charging model. We see that the per link cost follows: EcoFlow-C<EcoFlow-D<JetWay<NetSticher<Direct

due to the same reason in Figure 4.5(a). Figure 4.9(b) shows the average bandwidth cost per link at

the end of the 48-hour charging period under different flow rates. We obtain the same observation

as that in Figure 4.5(b) due to the same reason, i.e., more bandwidth is generally required on each

link to transmit a larger number of videos during a specific charging period, so the charging volume

on each link increases as well.
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Figure 4.13: Effectiveness of setting initial charging volume in EcoFlow-C on PlanetLab.

Figure 4.10(a) shows the average unit bandwidth cost at different time intervals under the

95th percentile charging model. We see that the relative performance between different methods

follows: EcoFlow-C<EcoFlow-D<JetWay<NetSticher<Direct due to the same reason as in Figure

4.6(a). Figure 4.10(b) shows the average bandwidth cost per link at the end of the 48-hour charging

period under different flow rates. We obtain the same observation as that in Figure 4.6(b) due to

the same reason.

Figure 4.11(a) shows the average percentage of flows transmitted within the charging volume

at different time intervals. JetWay and Direct do not take advantage of temporal features of the

video traffic on each link, they both transfer the video immediately after a transfer request arrives.

Thus, during peak hours, a datacenter may transfer more traffic than the charging volume; while in

off-peak hours, the transmission of small volume of traffic results in the under-utilization of links.

EcoFlow-C and EcoFlow-D both yield a high percentage of flows transmitted within the charging

volume, due to the reason that when the charging volume is fully utilized by some emergent flows

currently, they postpone the transmission of some delay-tolerant video flows to off-peak hours when

the links are light of traffic. Figure 4.11(b) shows the average percentage of flows transmitted

within the charging volume at different flow rates. We see that a smaller percentage of flows can be

transmitted within the charging volume as flow rate increases. This is due to the same reason as in

Figure 4.7(b).

Figure 4.12(a) and Figure 4.12(b) show the percentage of video flows that are transferred

within their deadlines across different time intervals and at different flow rates, respectively. We

see that the result follows: JetWay>EcoFlow-C>EcoFlow-D>Direct >NetSticher due to the same

reason as in Figure 4.8(a) and Figure 4.8(b) .
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Figure 4.14: Effectiveness of setting initial charging volume in EcoFlow-D on PlanetLab.
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Figure 4.15: Effectiveness of setting initial charging volume in EcoFlow-C on EC2.
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Figure 4.16: Effectiveness of setting initial charging volume in EcoFlow-D on EC2.
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4.3.2 Effectiveness of Setting Initial Charging Volume

In this section, we tested the performance of both EcoFlow-C and EcoFlow-D when we set

an initial charging volume at the beginning of the charging period according to Section 4.2.5. We

set ϕ in Equation (4.14) to a fixed value of 0.2, and varied the value of φ from 0.2 to 0.8.

4.3.2.1 Experimental Results on PlanetLab

Since the purpose of setting an initial charging volume is to reduce the scheduling latency

during early time intervals of a charging period, we first present the average scheduling latency on

all links. It is the time span from when a scheduler receives a sending queue of videos on a link

until the time when the scheduler finished the scheduling of these video and updating the schedule

table. Figure 4.13(a) shows the average scheduling latency of EcoFlow-C from the 0th to the 16th

hour of the charging period. We see that the scheduling latency gradually increases with time.

This is because when few videos are pending at early time intervals, a large portion of videos can

be transmitted directly by using available capacities of direct links, so the scheduling latency is

short since the scheduler does not need to search alternating paths for these videos. As more video

flows are transmitted in the network, available bandwidth capacities of some links are used up and

videos on these links need to be split and rerouted to other links, so the scheduler needs longer

latency to update the scheduling table. We also see that larger value of φ leads to shorter scheduling

latency. According to Equation (4.14), large value of φ leads to large initial charging volume and

high available bandwidth capacities on the links. The scheduling latency is short because most

videos can be transmitted through direct links. On the other hand, small value of φ leads to longer

scheduling latency as the scheduler needs to search alternating paths for some videos that are not

able to be transmitted on direct links.

The negative effect of large value of φ is that it may lead to underutilization of the initial

charging volume, and the bandwidth cost is not minimized at the end of the charging period. To

further evaluate the effect of initial charging volume in bandwidth cost reduction, we then plot

average bandwidth cost per link at the end of the 48 hour charging period in Figure 4.13(b). We see

that higher value of φ generally leads to higher bandwidth cost due to the reason that smaller charging

volume may be adequate in transmitting all video flows. Therefore, it is important to determine an

appropriate initial charging volume to reduce scheduling latency and meanwhile constrain bandwidth
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cost.

We then evaluate the effectiveness of setting initial charging volume in EcoFlow-D. Figure

4.14(a) shows the average scheduling latency of EcoFlow-D from the 0th to 16th hour of the charging

period. Compared to Figure 4.13(a), we observe that EcoFlow-D generates higher scheduling latency

due to the reason that in EcoFlow-D, each datacenter has its own scheduler, and schedulers need to

communicate with each other in order to search alternating paths for indirect flows. Figure 4.14(b)

shows average bandwidth cost per link for EcoFlow-D at the end of the 48 hour charging period.

We see that the experimental results concur with that in Figure 4.13(b) due to the same reason.

4.3.2.2 Experimental Results on EC2

We also evaluate the effectiveness of setting initial charging volume on EC2. Figure 4.15(a)

shows the average scheduling latency of EcoFlow-C in different time intervals of the charging period.

Compare to Figure 4.13(a), we observe that the scheduling latency is generally shorter on EC2 than

on PlanetLab because there are more datacenters on PlanetLab, so EcoFlow-C needs longer latency

to calculate the available bandwidth capacities of all links and search alternating paths for indirect

video flows when scheduling video flows. Figure 4.15(b) shows the average bandwidth cost per link

for EcoFlow-C. We see that higher value of initial charging volume leads to higher bandwidth cost

because the initial charging volume can be larger than the actual charging volume needed to transmit

all video flows. The relative performance between different settings of φ in both Figure 4.15(a) and

Figure 4.15(b) concurs with that in Figure 4.13(a) and Figure 4.13(b) due to the same reason.

Figure 4.16(a) plots the average scheduling latency of EcoFlow-D in different time intervals

of the charging period. Compared to Figure 4.14(a), we see that EcoFlow-D generates shorter

scheduling latency on EC2 than on PlanetLab due to the reason that EC2 has fewer datacenters

and the scheduling complexity is smaller. Figure 4.16(b) shows average bandwidth cost per link for

EcoFlow-D at the end of the 48 hour charging period. We see that the results in Figure 4.16(a) and

Figure 4.16(b) concur with those in Figure 4.14(a) and Figure 4.14(b) due to the same reason.
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Chapter 5

EAFR: An Energy-Efficient

Adaptive File Replication System

In Cloud Storage System

In this chapter, we introduce an Energy-Efficient Adaptive File Replication System (EAFR).

We first introduce the background of file replication in data-intensive clusters. We then introduce

our proposed EAFR system in detail. Experimental results on a real-world cluster show the effec-

tiveness of EAFR and proposed strategies in reducing file read latency, replication time, and power

consumption in large clusters.

5.1 Overview

A typical cluster file system uses a hierarchical storage architecture, as shown in Figure

5.1. The bottom layer consists of a set of storage servers, where the files (aka objects or blocks)

are stored. In order to guarantee data availability in face of network failure or hardware damage,

cluster file system makes multiple replicas for each file [14]. A replication factor (ri) and a fault-

tolerance factor (πi) for file (fi) are predefined in the system, which ensure that each file fi has ri

replicas and the replicas are distributed in more than (πi < ri) fault domains (i.e. racks). Typically,

HDFS uses ri = 3 and πi = 1, i.e., each file is stored in three servers across at least two racks.
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Figure 5.1: Architecture of hierarchical storage system.

When one rack suffers from a failure, the file is still available. The red arrows in Figure 5.1 shows

an example of the distributed writes when storing a file with ri = 3 and πi = 1. By creating a

constant number of replicas for each file, current replication systems neglect the heterogeneity in file

popularity. Some hot files attract a large amount of read requests from clients, while some cold files

attract few visits. As a result, copying files to only three servers is insufficient to meet the stringent

response requirement for hot files but wastes resources for cold files.

On top of the servers are ToR switches, which are located within the Ethernet to aggregate

the connectivity of all servers. The ToR switches maintain connections to the rest of network

through aggregation switches, on top of which is the core switch. In this network architecture,

the link capacity between switches is bounded by hardware limitations (e.g., NIC speed). Though

link utilizations inside clusters are generally low and stable, there exist network congestions due

to skewed link utilization [49]. For example, link L1 (marked in red) in Figure 5.1 may become

a bottleneck if the there are many writes to Rack 1. Current replication policy does not consider

link utilization when transmitting file replicas. Also, current clusters must keep all servers running

constantly to guarantee file availability, which is very costly in power consumption. The files are

skewed in popularity, and many files rarely get accessed during their lifetime [5]. Thus, we can save

power and management expense by putting servers storing the cold files in a “powernap” state. We

summarize the shortcomings of current file replication methods as follows:

• A fixed number of replicas for each file is insufficient to provide quick file read for hot files

while wastes resources for storing replicas of cold files.
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Figure 5.2: An overview of EAFR.

• Random selection of replica destinations requires keeping all servers active to ensure data

availability, which however wastes power consumption.

• As the random selection of replica destinations does not consider destination bandwidth and

request handling capacity, network congestions may occur due to capacity limitation of some

links and server may become overloaded by data requests.

The goal of EAFR is to cope with these problems and provide an effective and energy-

efficient file replication strategy. In this dissertation, if a file is striped into multiple blocks, we treat

each block as an independent file.

5.2 System Design of EAFR

5.2.1 Energy-efficient and Popularity-adaptive File Replication

In large data-intensive clusters, most popular files are generally small in size, while large files

seldom get read [41]. Therefore, replicating and migrating popular files is relatively light in storage

and bandwidth cost. Taking advantage of this characteristic in clusters, EAFR increases the number

of replicas of popular files in order to boost their availability and reduces the number of replicas of

cold files in order to save resources. Figure 5.2 shows an overview of EAFR. EAFR divides servers

into hot servers and cold servers: hot servers consume more power and provides prompt response

for file requests; while cold servers stay in sleeping mode with 0% CPU utilization and low energy

consumption. Each file fi must have r replicas in all servers and ε < r replicas in hot servers, where

r and ε are pre-defined numbers to guarantee file availability under server failures. For a file with
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a high visit rate, EAFR creates an extra replica and places it to a hot server, which is shown in

step 1. The new replica is used to balance the read requests of a hot file among servers where the

file replicas are stored. For a file with a low visit rate (i.e., a cold file), EAFR reduces the number

of replicas of the file in the hot servers if it is larger than ε. That is, a replica in a hot server is

either deleted or migrated to a cold server in order to save the power consumption, which is shown

in step 2. This operation does not affect the availability of the cold file as it rarely gets read. In the

following, we introduce how to set hot servers and cold servers (Section 5.2.1.1), how to identify hot

files and cold files based on their visit rates (Section 5.2.1.2), and the details of the energy-efficient

and popularity-adaptive file replication algorithm (Section 5.2.1.3). Table 5.1 shows the notations

used in this dissertation.

Table 5.1: Table of important notations.

fi: File i

sj : Server j

ri: # of replicas

πi: Fault-tolerance factor

aij : Replica j for fi
vi: Total # of reads for file fi
vij : # of reads for replica aij
ccj : Service capacity of server j

bj : Size of file j

φj : Remaining capacity of server j

csi : Storage capacity of server i

∇: Remaining storage threshold

τu: Upper bound for total # of reads of hot file

σu: Upper bound for total # of reads of hot replica

τl: Lower bound for total # of reads of cold file

σl: Lower bound for total # of reads of cold replica

Vt: Transmission speed in time window t

wtj : Weight of selecting server j based on transmission rate

wrj : Weight of selecting server based on remaining capacity

pj : Chance of selecting server j based on overall evaluation

cb: Bandwidth capacity of the destination node

Ba: Proportion of available bandwidth

η1: Highly utilized network capacity threshold

η2: Under-utilized network capacity threshold

δi: Transmission rate adjust-up factor

βi: Transmission rate adjust-down factor

ε: minimum # of replicas stored in hot servers
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5.2.1.1 Different Types of Servers Based On Energy Consumption

Transitioning servers to an inactive, low power sleep

/standby state (i.e., scale-down) is a technique to conserve energy. It trades energy consumption with

server performance (e.g., CPU utilization). Table 5.2 shows the power consumption characteristics

of the HP ProLiant ML110 G5 server at different server performances represented by server CPU

utilization [19]. Higher CPU utilization consumes more power, and when a server runs at 0% CPU

utilization (e.g., in sleeping state), the power consumption is 93.7Watts. In EAFR, we define three

types of servers: hot servers, cold servers and standby servers. A hot server runs at the active state,

i.e., with CPU utilization greater than 0. A cold server is in the sleeping state with 0 CPU utilization

and inactive DRAM and disks and it does not serve any file read request. A standby server is a

temporary hot server that will be transitioned to a cold server. To maintain the consistency of stored

files, cold servers wake up periodically (e.g., once a week) and check for file consistency. When there

is a rack failure or a server failure inside clusters, cold servers storing the lost files will be turned on

and become hot servers.

Table 5.2: Energy consumption for different CPU utilizations in Watts [19].

CPU Utilization 0% 20% 40% 60% 80% 100%

HP ProLiant G5 93.7 101 110 121 129 135

Server status cold hot hot hot hot hot

As a cold server runs at smaller power consumption compared to a hot server, switching hot

servers to cold mode can save energy. A cold server stores cold files with few read requests. Writing

a file to a cold server needs to wake up the server, which consumes more energy and may offset the

benefit of sleeping [76]. Also, it creates excessive latency to transition a server from sleeping mode

to active mode and thus delays the write operation. Therefore, we use a standby server to collect

all cold files and turn into a cold server when its storage is full. A standby server still serves file

requests as hot servers do.

5.2.1.2 Different Types of Files Based on Read Rates

In HDFS, more than 90% files exhibit a relatively short hotness lifespan (i.e., less than 3

days) and a significant portion of data is cold (i.e., never gets read) [67]. In order to justify the

heterogeneity of file popularity in large clusters, we analyzed the file storage system trace data from

Sandia National Laboratories [105], which records the number of file reads for 16,566 accessed files
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Figure 5.3: Trace analysis on file read pattern.

during 4 hour run. Figure 5.3(a) shows the percentage of files attracting different range of file reads.

We see that about 43% files receive less than 30 reads and 4% files receive a large number of reads

(i.e., >400). The results confirm that most of these files attract a small amount of file reads and

hence do not need many replicas. Popular files constitute a small percentage of files, thus will not

generate a large overhead by creating more replicas. We sorted the files by their number of reads

within a 4 hour period, then identified files with the 99th, 50th, and 25th percentiles and plotted

their read count over time in Figure 5.3(b) from the top to the bottom, respectively. These figures

demonstrate the variation in file access pattern for files with different popularities over time. We

see that these files tend to attract a relatively stable number of reads within a short period of time.

Thus, extra replicas can be created to meet the frequent short-term read requests for hot files, and

then are deleted when they become cold. Inspired by the observations of the previous works and the

above analysis, we can group files into different categories based on popularity and perform different

operations according to their popularity. We present how to determine hot files and cold files below.

Current replication factor of fi is ri, and the replicas of fi is denoted by vector Ai =

{ai1, ai2, ...airi}. The number of reads for replica aij at time interval T is denoted by vij , and the

total number of reads for file fi is denoted by vi, and

vi =

ri∑
j=1

vij . (5.1)

First of all, a hot file should have a large number of concurrent reads across all its replicas. We

define a hot file as a file with average read rate per replica exceeds a pre-defined threshold (τu):

vi/ri > τu. (5.2)

78



Secondly, we also consider the read rate of individual replicas. In locality-aware file reads in large

clusters, clients read nearby replicas, so a large amount of concurrent reads for a file may be drawn

by some replicas, which also reflects the popularity of the file. Therefore, a hot file may gain high

read rate in some of its replicas. Thus, if more than a certain fraction (denoted by γ) of a file’s

replicas attract an excessive number of reads (denoted by σu), we consider this file a hot file:

ri∑
j=1

I(vij > σu) > riγv (0 < γv < 1), (5.3)

where I(·) is an indication function, and I(A)=1 when the assertion A is satisfied. If either Equation

(5.2) or Equation (5.3) is satisfied, file fi is a hot file represented by H(fi) = 1.

Similarly, we use Equation (5.4) and Equation (5.5) to determine if file fi is a cold file. In

the equations, τl is the lower bound of the number of reads per replica in T .

vi/ri < τl. (5.4)

Equation (5.4) shows that a cold file receives a small amount of concurrent reads across its replicas.

A cold file waste storage space if the number of its replicas is large.

ri∑
j=1

I(vij < σl) > riγv (0 < γv < 1) (5.5)

In Equation (5.5), σl denotes the lower bound for the number of reads that a file replica receives

in T . If more than γv fraction of a file’s replicas attract few reads, the file is potentially cold. As

creating a replica consumes network traffic and CPU usage, and the cost of mistakenly deleting a

file replica is expensive, so we adopt a conservative way to determine if a file is cold. Only when

both Equation (5.4) and Equation (5.5) are satisfied, file fi is considered a cold file, represented by

C(fi) = 1.

After a file is labeled with its popularity (i.e., hot file or cold file), EAFR adjusts the number

of its replicas according to its popularity. The details are presented in Section 5.2.1.3.

5.2.1.3 Adaptive File Replication

EAFR constantly monitors file popularity and adaptively tunes the number of replicas of a

file based on whether it is hot or cold according to Section 5.2.1.2. If a file is a hot file and many of
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its replica servers are overloaded, EAFR creates more replicas for this file to reduce overload degree

and increase file availability. If a file is a cold file, EAFR reduces its replicas or transfers its replicas

to standby servers. We first define r and ε (ε < r), which are the minimum number of replicas a file

needs to maintain in all servers and in hot servers, respectively, to guarantee file availability.

Consider a large cluster consisting of: 1) p hot servers, which are denoted by a set HS=(hs1,

hs2,..., hsp); 2) q cold servers CS=(cs1, cs2,..., csq); and 3) w standby servers SS=(ss1, ss2,..., ssw).

For a file fi with ri replicas, we use a set Si=(s1, s2,..., sri) to represent the servers that store its

replicas. For server sj , we define its service capacity (ccj ) as the maximum number of concurrent

file reads it can support. We use hj to denote the concurrent reads sj receives. If hj/ccj > τc, where

τc is a threshold (e.g., 0.8), server sj is considered as overloaded; otherwise, it is a lightly loaded

server. The remaining capacity of a lightly loaded server sj is calculated by φj = ccj − hj , which

indicates the number of additional file requests it can handle.

At time T , if file fi is hot (H(fi) = 1), EAFR examines the load status of all server in

Si=(s1, s2,..., sri). An extra replica is needed for fi if more than γs (0 < γs < 1) fraction of these

servers are overloaded, that is:

∑
sj∈Si

I(hj/ccj > τc) > riγs (0 < γs < 1). (5.6)

When the inequality in Equation (5.6) is met, the current replica servers of fi do not have enough

capacity to handle an excessive number of file reads. Then, EAFR increases the number of replicas

of fi by 1. Otherwise, the current replica servers of fi can handle the file reads even though fi is

hot, and there is no need to increase the number of replicas of fi. The new replica will be placed

in a hot server, so that it can serve new incoming file requests. The details of selecting the replica

destination for the replica is presented in Section (5.2.2).

If C(fi) = 1, fi is cold and it draws few file reads. Then, the number of fi’s replicas can

be reduced in order to save the storage. The rule of replica reduction is to delete a replica in a hot

server, while still maintaining at least ε replicas in hot servers in order to guarantee file availability.

In the replica reduction stage, EAFR first checks the number of replicas for fi, i.e., ri. If ri > r

and the number of replicas in hot servers is larger than the threshold ε, EAFR chooses the server

with the least remaining capacity and deletes the replica of fi from it. That is, the selected server
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sj satisfies:

sj = arg min
sj∈Si

{φj}. (5.7)

In the case of ri = r, if there are ε replicas in hot servers, no action is performed; if more

than ε replicas are stored in hot servers, one replica is moved from a hot server to a cold server

in order to save energy. EAFR selects a hot server sj with the least remaining capacity according

to Equation (5.7), and migrates the replica of fi from sj to a standby server. The standby server

functions like hot server (i.e., it serves file requests) before turning to a cold server. Suppose the

storage capacity of standby server si is csi , if:

csi −
m∑
j=1

bj < τs, (5.8)

a standby server is ready to turn cold. bj is the size of file j, m is the number of cold files that are

currently stored in the standby server, and τs is the remaining storage threshold.

Algorithm 4: Pseudo-code of EAFR.

1: Determine the popularity of file fi
2: if H(fi) = 1: //create one replica
3: Select hsj from the hot server pool; place replica in hsi
4: end if
5: if C(fi) = 1: //reduce number of replica by one
6: if number of replicas ri > r
7: Select sj according to Equation (5.7)
8: Delete the replica of fi in hsj
9: else

10: if more than ε replicas of fi are stored in HS
11: Migrate one replica of fi from hsi to ssk
12: if Equation (5.8) is satisfied for ssk
13: ssk turns into a cold server
14: end if
15: end if
16: end if

Algorithm 1 shows the pseudo-code of EAFR. This algorithm runs periodically to adaptive-

ly tune the number of replicas for each file. When a new replica of a file is created, hot servers

that do not store the file’s replica are candidates to be the new replica holders. In order to reduce

the replication completion time and balance server load, EAFR selects the replica destination by

considering both the expected transmission rate and server workload status.
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5.2.2 Replica Destination Selection

When a network link suffers from congestion, the consequence is reflected in long write

latency. In order to complete the file replication within a short time, the connection from source

server to destination server should have high transmission rate. For this purpose, we can use an

existing method [33] that monitors the network status (e.g., concurrent traffic, link utilization)

and selects the links with light traffic [33]. However, such a monitoring method is complicated

and requires additional monitoring overhead for large clusters. EAFR estimates a server’s network

condition based on recent completion time of transmitting a file to the server. This method is based

on the rationale that the recent replication completion time can be an indicator of the server’s

network condition. To verify this rationale, we conducted an experiment as below.

We randomly selected a server as the source and 20 destination servers in Palmetto Cluster

in Clemson University [40]. The source replicated 20 files to each destination server at the rate

of once every 15 seconds. The file size is 100MB. We recorded the replication completion time

on these servers, and showed the maximum, median and minimum replication completion time in

Figure 5.4. We can make two observations from the figure. First, the replication completion time

towards different servers exhibits obvious variance. The replications towards some servers (e.g.,

servers 1, 5 and 8) have smaller replication completion times than those towards other servers, while

replications towards some servers (e.g., servers 2, 4 and 9) generally take longer completion time.

This observation justifies the necessity and motivation of allocating the new replica to a server that

has good network condition. Second, each server shows relatively stable replication completion time

with a small variance between the maximum and minimum completion time. Thus, when multiple

replicas are transmitted to the same server within a short period, the completion time for these

replications should be similar. Therefore, a server’s recent transmission speed can be used to predict

the transmission speed in the near future. EAFR does not need to look into the link utilization

and monitor the network congestion status when allocating a new file replica. It selects the replica

destination based on the transmission speed of recent files.

To more accurately estimate the transmission delay of the next file based on the delays of

previous file transmissions, we use an exponentially weighted moving average (EWMA) [77]. Using

T as a time window size, EAFR calculates the average file transmission speed from source server ss

to destination serversd by sliding the time window. Then the transmission speed in the next time
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Figure 5.4: Replication completion time for different servers.

window (denoted by Vt) is calculated by:

Vt = α× Yt + (1− α)× Vt−1(0 < α < 1), (5.9)

where Vt−1 is the estimated transmission speed in time window t− 1, and Yt represents the actual

average transmission speed at time t. α is a constant used to control the degree of weighting decrease;

a larger value of α discounts older observations faster. The weighting for each older EWMA data

point decreases exponentially, but never reaches zero.

In addition to replica transmission latency, the replica destination must have enough storage

capacity for new replicas. Also, as a new replica is created to serve an excessive amount of file

requests, the replica should be placed in a server that has sufficient capacity to serve incoming file

requests. Then, given a file from source server ss, and a set of hot servers HS to place the new

replica, EWMA selects a replica destination sd ∈ HS such that transmitting the file replica from ss

to sd takes a short time and sd has a high service capacity and enough storage capacity. For this

purpose, EWMA first selects candidates from all hot servers HS that have enough storage space for

this file replica.

EAFR calculates the expected transmission speed from ss to all candidate servers, then or-

ders the candidates based on the decreasing order of the transmission delays IDt ={hs1, hs2, ...hsm}.

EAFR also orders the candidates based on the decreasing order of their remaining capacities IDr ={hs1, hs2, ...hsm}.

A server having a faster transmission speed or a higher remaining capacity should have a higher

probability to be selected. We use wt and wc to denote these two probabilities for a server. The
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probability of the jth server in these two ordered lists can be calculated by Equation 5.10.

1

j
/

m∑
k=1

1

k
. (5.10)

The probability of selecting a server in the candidates is calculated by the weighted average of both

of its wt and wc:

p = β × wt + (1− β)× wc (5.11)

We use vector P =(p1, p2, ...pm) to record all probabilities of selecting the candidate servers. Then,

ss selects the destination server based on P . The selection process first generates a random value x

within the range of [0,
∑m

k=1 pk], then server with order y in the list P is selected by:

y =

 1 if x < p1

j if pj−1 ≤ x <
∑j

k=1 pk and j > 1
(5.12)

As we can see from Equation (5.12), the new replica is more likely to be allocated to a server with

a high p value.

5.2.3 Dynamic Transmission Rate Adjustment

TCP incast occurs when a number of files from multiple storage servers are being sent to a

server concurrently [78], and network congestion is likely to arise on the receiver side when multiple

connections contend for bandwidth resources. TCP incast congestion increases the packet drop rate

and reduces the transmission throughput, thus degrading network performance. To avoid incast

congestion, while transmitting a file replica to a new server, EAFR dynamically adjusts transmission

rate to prevent incast congestion.

Each server has a TCP receive window [69], which is a limited size of buffer that prevents

a fast sender from overflowing a slow receiver’s buffer. In EAFR, a destination server monitors

its available bandwidth by using a bandwidth estimation tool [100] to detect sudden throughput

burstiness. When it notices that a congestion is likely to occur, it reduces its receive window in

proportion to the extent of congestion and notifies senders to reduce their transmission rates. If the

destination node has enough available bandwidth to support larger transmission rates, it increases
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the TCP receive window.

Algorithm 5: Pseudo-code of dynamic transmission rate adjustment.

1: Input: set of server S sending data through the link;
2: Output: adjust-down factor βi and adjust-up factor δi for each sender in S;
3: for each si ∈ S do:
4: calculate available bandwidth on the link: Rcb = (cb − ub)/cb
5: if Rcb < ηl //network capacity is highly utilized
6: calculate adjust-down factor βi = i∑p′

k=1
k
× (η1 −Rcb)

7: end if
8: if Rcb > ηh //enough network capacity on the receiver side
9: calculate adjust-up factor δi = i∑p′

k=1
k
× (Rcb − ηh)

10: end if
11: record βi and δi for sender si
12: end for

Assume the link bandwidth capacity of the destination node is cb (which is determined by

its NIC and system settings), and the total bandwidth utilized by all incoming traffic is ub. We then

define the proportion of available bandwidth ub on that link as:

Rcb = (cb − ub)/cb. (5.13)

Rcb is an indicator of potential oversubscribed bandwidth for a destination node. EAFR has two

thresholds ηl and ηh to determine whether a network link capacity is highly utilized or underutilized.

When Rcb < ηl (e.g., ηl=0.2), the network capacity is highly utilized and thus the receive window

needs to be reduced. Suppose the destination server is receiving traffic from a number of connections

from a set of servers S = (s1, s2, ..., sp′). These connections have different priorities based on the

connection establishment times. Since we aim to reduce the transmission latency of each flow,

the connections with older establishing times have higher priorities. The senders are ordered in

descending order of the priorities of their connections. For a sender with priority i, its adjust-down

factor βi is define as:

βi =
i∑p′

k=1 k
× (η1 −Rcb). (5.14)

When Rcb > ηh (e.g., ηh=0.5), there is enough network capacity on the receiver side, then the receive

window is increased for each connection to increase the transmission rate. The adjust-up factor for
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Figure 5.5: An overview of data flow in a cluster.

the server with priority i is δi defined by:

δi =
i∑p′

k=1 k
× (Rcb − ηh). (5.15)

After rate adjustment calculation, the destination node notifies the corresponding senders about the

new transmission rates. Each sender then reduces its transmission rate by βi times or increase its

transmission rate by δi times.

Algorithm 5 shows the pseudo-code of dynamic transmission rate adjustment. For each

sender si which establishes connection with the receiver, Algorithm 5 first calculates the link’s

available bandwidth capacity (Line 4); when the network capacity is highly loaded, EAFR reduces

the sender’s transmission rate by βi; when the link’s network capacity is lightly loaded, EAFR

deliberately increases the sender’s transmission rate by δi accordingly (Lines 5-7). The computation

complexity of Algorithm 5 is O(p), where p is the number of senders in the cluster. By dynamically

adjusting the receive window in proportion to the extent of congestion, EAFR reduces the latency

for file transmission in replications by avoiding incast congestions.

5.2.4 Network-aware Data Node Selection

Figure 5.5 shows an overview of data flow inside a cluster. As we can see, user requests

are processed in compute nodes, and the compute nodes need to fetch files from data nodes where

the requested files are stored. The file read latency is affected by two factors: 1) transmission delay

between a compute node and a data node, and 2) queueing delay in a data node. As the intra-
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rack connection has much higher bandwidth than the cross-rack connection, choosing a data node

in the same rack as the requester computer node to transmit its requested file generates shorter

latency than choosing a data node in a different rack. Also, when a cluster consists of heterogeneous

servers, the service capacities of servers may vary significantly. A high-capacity data node can

finish reading a file stored in its local disk faster than low-capacity nodes, resulting in smaller queue

size and queueing delay. Accordingly, we propose a network-aware data node selection strategy by

considering the aforementioned factors, i.e., a compute node should fetch its requested file from a

data node within the same rack and with a short queue size.

Suppose compute node sj needs to read file fi when processing a user request, and fi has ri

replicas stored in a number of servers. We use set Si=(s1, s2,..., sri−1) to represent all hot servers and

standby servers that store fi’s replicas. We use hk to denote the queue size of file read requests on

server sk, which is the number of reads that sk has received but has not been processed. Algorithm

6 shows the pseudo-code of selecting data nodes for compute node sj . For each file fi that sj needs

to read from data nodes, Algorithm 6 first identifies all hot servers and standby servers storing fi’s

replicas (Line 4). It then selects the data nodes within the same rack as sj and puts them in a set

S1
i =(s1, s2,..., sr1

i−1
) (Line 5). In order to reduce transmission delay between a compute node and

a data node, we prefer intra-rack connection over cross-rack connection. Thus, if S1
i is not empty,

Algorithm 6 selects data node sk with the minimum queue size from S1
i : sk = argminsk∈S1

i
{hk}

(Lines 6-7); otherwise, it chooses a data node with the minimum queue size from Si (Lines 8-10).

The computation complexity of Algorithm 6 is O(m× r), where m is the number of files needed to

read and r is the average number of replicas for these files.

Algorithm 6: Pseudo-code of network-aware data node selection for compute node sj .

1: Input: set of file F needed to fetch from data nodes;
2: Output: select a data node to read each file in F ;
3: for each fi ∈ F do:
4: find servers storing fi’s replicas Si=(s1, s2,..., sri−1)
5: select S1

i from Si that are in the same rack with sj : S
1
i =(s1, s2,..., sr1

i−1
)

6: if S1
i 6= null //find a data node within the same rack

7: select a data node by sk = argminsk∈S1
i
{hk}

8: else //find a data node within another rack
9: select a data node by sk = argminsk∈Si{hk}

10: end if
11: record sk as the data node to read file fi
12: end for
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5.2.5 Load-aware Replica Maintenance under Node Failure

As each server stores a large number of files, when a server failure happens, we create these

lost files in other servers in order to maintain the minimum number of replicas per file. Suppose all

files stored in a failed server are represented by F=(f1, f2,..., fm). For each file fi in F , we make

a replica from a non-failed server (called source server) and place it in another non-failed server

(called destination server). In order to minimize the energy consumption and time for the recovery

process, we consider two objectives. First, we try to avoid waking up cold servers as it consumes

extra energy and may lead to long recovery time. Second, we try to balance the incast traffic load

caused by the file replications on the destination servers, i.e., the number of replicas allocated to

destination servers, in order to avoid incast congestion in the destination servers and hence constrain

the recovery latency.

Recall that each file has ri replicas; at least ε replicas are stored in different hot servers,

other replicas are stored in standby servers and cold servers. A hot server runs at active state and

serves file requests; a standby server is a temporary hot server that stores cold files, and it turns to

a cold server when its storage is fully utilized; and a cold server stores cold files, and it is in sleeping

mode and does not serve file requests.

To achieve the first objective of avoiding rebooting the cold servers from the sleeping mode,

we first try to select source servers from hot servers and standby servers. A cold server is waken

up and selected as the source server only when a file stored in the failed server does not have any

replicas stored in hot servers or standby servers. Specifically, for a file fi in a failed server, we first

put all hot servers and standby servers that store fi in a server set Si=(s1, s2,..., sp). In order to

find a server that has the maximum available service capacity to support the file reading operation,

we first sort servers in Si in decreasing order of their available service capacities. Then, we choose

the first server as the source server. If there are no hot servers or standby servers storing file fi (i.e.,

Si is an empty set), we check the cold servers that store file fi in the same manner and choose a

cold server with the maximum available service capacity.

We use DS=(ds1, ds2,..., dsw) to denote a set of candidate destination servers, DS is

determined based on the popularity of fi. If fi is a hot file, DS is a set of non-failed hot servers; if

fi is a cold file, DS is a set of non-failed standby servers. Here, we do not choose a cold server as the

destination server in order to avoid waking up the cold server for file replication, which otherwise
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Algorithm 7: Pseudo-code of load-aware replica maintenance for a failed server

1: Input: set of files F , counter = 1;
2: Output: source server and destination server for files in F ;
3: for each fi ∈ F do:
4: order hot servers and standby servers storing fi’s replicas by their remaining service capacities,
Si=(s1, s2,..., sp)

5: select s1 as the source server
6: if Si is empty
7: choose a cold server with the maximum available service capacity as the source server
8: end if
9: while true //select a destination server from DS

10: choose server dsk with index equaled to counter
11: if csi −

∑m

j=1
bj ≥ τs, //enough storage

12: select dsk as the destination server
13: break
14: else
15: increase counter by 1
16: end if
17: end while
18: record fi’s source server and destination server
19: end for

increases the recovery latency. To meet the second objective of balancing the incast traffic load of

destination servers, we evenly place the replicas of all files of the failed server to DS by using a

round robin [53] assignment method. We use a counter to record the index of the destination server

candidates; counter increases from 1 to w in a circular manner, i.e., counter restarts from 1 after

it reaches w. Assume counter = k and we need to select a destination server for file fi. We first

examine the server dsk whose index in DS equals the value of counter. If dsk has enough storage

capacity calculated by Equation (5.8), it is selected as the destination server for fi where we store

the replica of fi; otherwise, we increase the value of counter by 1 until a server with enough storage

capacity is detected. After we find a destination server for fi, we add 1 to the counter and use it to

identify the destination server for the next file fi+1.

Algorithm 7 shows the pseudo-code of load-aware replica maintenance for a failed server, in

which we choose a source server and a destination server for file fi stored in the failed server. For

each file fi stored in the failed server, Algorithm 7 first orders all hot servers and standby servers

storing fi’s replicas by their remaining service capacities (Line 4); it then selects a hot server or

standby server with the maximum available service capacity as the source server (Line 5); if no hot

servers or standby servers that store file fi, it checks all cold servers that store file fi and chooses a

cold server with the maximum available service capacity as the source server (Lines 6-8); Algorithm

7 continues to select a destination server for file fi by using a round robin assignment method (Lines
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Figure 5.6: Performance under different number of replicas.

0

1

2

3

4

5

6

7

8

9

10 20 30 40 50 60

Fi
le

 re
ad

 la
te

nc
y 

(m
s)

# of concurrent accesses

EAFR
HDFS
CDRM

(a) File read response time.

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

10 20 30 40 50 60

Pe
rc

en
ta

ge
 o

f r
ea

d 
tim

eo
ut

s

# of concurrent accesses

EAFR
HDFS
CDRM

(b) Percentage of file read timeouts.

Figure 5.7: Performance under different # of concurrent accesses.

9-17). The computation complexity of Algorithm 7 is O(mr log r), where m is the number of files in

the failed server and r is the average number of replicas for these files.

5.3 Performance Evaluation

We conducted trace-driven experiments in a large-scale HPC cluster located in Clemson

University’s Palmetto Cluster [40] which has 1,978 nodes. We deployed EAFR on 300 servers evenly

scattered in 10 racks. The storage capacities of these servers were randomly chosen from (250GB,

500GB, 750GB) [103]. We compared EAFR with HDFS [98] and CDRM [109] that are similar to our

work. In HDFS, every file has a fixed number of 3 replicas placed across different randomly selected

servers. CDRM aims to deal with server failures. In our experiment, CDRM creates 2 replicas for

each file initially, it increases the number of replicas to maintain the required file availability 0.98

for server failure probability 0.1, and required file availability 0.8 for server failure probability 0.2.

CDRM allocates the newly created replica to the server with the least concurrent reads.

Unless otherwise specified, the distributions of file reads and writes follow those in the CTH

trace data [105] and each file read request was forwarded to a randomly selected server that owns

the replica of the requested file. This trace records 3,972,284 I/O calls on 16,566 files during about
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Figure 5.8: Performance under different access arrival rates.

4 hours in a large cluster with 3300 client size. We created 50,000 files and randomly placed them

on the servers. The sizes of 16,566 files were set according to the CTH trace data, and the sizes

of other files were chosen from the range (100KB, 10GB). The server capacity follows the normal

distribution [98] with a mean of 15 and variance of 10. When the number of concurrent file reads

is larger than a server’s service capacity, new coming file requests will be put into a waiting queue

until the server has available capacity. The remaining storage threshold ∇ was set to 10GB; other

system parameters were set as: τu=20, τl=10, σu=8, σl=1, r = 2 and ε=1. The power consumption

for different types of servers was calculated based on Table 5.2. We randomly selected 70% of servers

as hot servers, and 30% of servers function as standby servers. A standby server with full storage

turns into a cold server. The experiment runs 2 days by repeatedly using the read rates from the

trace data. We are interested in the following performance metrics:

• File read latency : the latency from a user requests a file until the user receives a response from

the server.

• Replication latency : the latency from when a file replication is initiated until the replication

operation is finished.

• Energy cost : the server power consumption in kilowatt hour (kWh) in each day.

• Load balance status including: 1) server utilization, which is defined as the ratio of the number

of concurrent file requests a server is serving over the server’s capacity; and 2) percentage of

overloaded servers that are defined as the servers with more than 80% utilization.

• Memory consumption: the storage usage to store all file replicas (including the original copy)

in the system.
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• Maintenance overhead. An update’s maintenance overhead is defined as the product of the

latency of this update and the update message size. A file’s maintenance overhead is the sum

of the maintenance overheads of the updates on all of its replicas.

• Recovery latency : the time span from when the creation of file replicas in a failed server is

initiated until all file replicas stored in the failed servers are recovered.

5.3.1 Experimental Results for Overall Performance

5.3.1.1 File Read Response Latency

When a hot file attracts a large amount of concurrent reads, some file requests may contend

for server capacity and network bandwidth, and hence suffer from response latency.

Number of replicas. We first study the effectiveness of creating extra file replicas for

hot files in reducing the file read response time. We selected 20 random files, varied the number

of replicas for each file, and generated 60 concurrent read requests towards each file. Figure 5.6(a)

shows the 1st percentile, median and 99th percentile read response time when each file has a different

number of replicas. We see that more replicas lead to decreased read response time, i.e., when the

number of replicas for each file increases from 2 to 7, the median read response time drops from

about 11ms to 4ms. This is due to the reason that when there are only 3 replicas allocated in 3

individual servers, large numbers of concurrent read requests are flooded to the same server, and

some read requests need to wait if the server capacity is already fully occupied by requests. However,

when more replicas are created in different servers, more server capacity can be utilized to serve the

read requests. Thus, concurrent read requests are forwarded to different servers and are less likely

to contend for server capacity. We define 10ms as the required latency threshold, and record the

percentage of file read requests that are served past the required latency. Figure 5.6(b) shows the

percentage of file read timeouts when a different number of replicas are created for each file. We

see that the percentage of read timeouts drops gradually when more replicas are created for each

file for the same reason as in Figure 5.6(a). That is to say, creating more replicas for hot files can

prevent resource contention between excessive number of synchronous requests. Figure 5.6(a) and

Figure 5.6(b) prove the rationale of EAFR that increasing the replicas of hot files can shorten the

read response time and increase data availability.

Number of concurrent read requests. We then varied the number of concurrent read
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Figure 5.10: Load balance status.

requests by replacing one read in the trace data by x reads. x is varied from 10 to 60 increasing by

10 in each step. Figure 5.7(a) shows the average file read response time with different number of

concurrent reads to the same file (i.e., x) in the system. We see that the response latency increases

as the number of concurrent reads increases. This is because servers can serve a limited number of

requests at a time and new file requests must wait in queues until the servers have available capacity.

We also see that CDRM yields less latency than HDFS. This is because CDRM chooses the server

with the least workload as the replica destination, then the server storing the new file replica is

likely to have enough capacity to serve file requests. HDFS randomly selects replica destination,

which may not have enough capacity to handle requests. Thus HDFS incurs longer latency than

other two methods as read requests are likely to wait for server response. EAFR produces the

least read latency because it adaptively increases the number of replicas for hot files, and the new

replicas share the read workload of hot files. Thus, a large number of concurrent file requests are

not likely to overload the servers and wait for response. As CDRM does not consider file popularity

in replication, file requests towards hot files still need to contend for server capacity.Figure 5.7(b)

shows the percentage of file read timeouts versus the number of concurrent reads. We see that the

result follows HDFS>CDRM>EAFR for the same reasons as in Figure 5.7(a).
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Figure 5.11: Overhead.
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Figure 5.12: File availability.

Access arrival rate. Access arrival rate is defined as the number of file requests generated

in the system in each second. In order to investigate the performance of EAFR under different

workload distributions, we varied the file read arrival rates by changing the time interval between

two consecutive reads in the trace data (e.g., reduce the time interval between two successive reads to

increase the file read rate). Figure 5.8(a) shows the average file read response latency with different

arrival rates. We can see that as the access arrival rate grows from 100 to 300 reads per second,

HDFS and CDRM both rise quickly. This is due to the reason that a limited number of replicas are

insufficient to serve large number of read requests, and as the access arrival rate gets higher, more

requests are likely to stay in waiting queue. EAFR adaptively increases the number of replicas for

hot files, thus produces less file read response latency than HDFS and CDRM due to same reasons

as in Figure 5.7(a). Figure 5.8(b) shows the percentage of read timeouts with different arrival rates.

We see that EAFR produces fewer read timeouts than HDFS and CDRM for the same reasons as

in Figure 5.7(b). As applications (such as some web-based applications) deployed on large clusters

need to provide prompt service to their clients, and the above figures show the effectiveness of EAFR

in reducing file read latency and providing high quality support for time-sensitive applications.
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5.3.1.2 Replication Completion Time

We grouped the files with the same size (ranging from 1MB to 10,000MB) together and

calculated the average replication latency of each group of files. Figure 5.9(a) shows the replication

completion time for different file groups. We also set the replication completion time of HDFS as

base and plot the ratio of other methods’ replication completion time over the base in the embedded

figure. We see that replication operations can be completed with short latency for small files due

to the high-speed network connections on Palmetto clusters. However, the replication completion

time grows rapidly for files with large sizes. EAFR speeds up the file replication especially for large

files, and the improvement reaches about 30% when the file size is 10,000MB. This is because EAFR

predicts the transmission speed based on previous file transmission experience and selects the server

with a high transmission rate with high probability, i.e., file replicas are more likely to be allocated

to servers with good network condition. Also, it dynamically adjusts the file transmission rate

during replication process in order to prevent incast congestion on the receiver side, thus reducing

transmission latency.

5.3.1.3 Energy Efficiency

We examined the effectiveness of EAFR in reducing energy consumption. We set the power

consumption of different genre of servers according to Table 5.2. Figure 5.9(b) shows the total

amount of energy consumption per day for different methods when various number of servers are

used in the cluster. Due to the adoption of cold servers to store cold files that are rarely read by

clients, EAFR manages to reduce the power consumption by more than 150kWh per day in a cluster

consisting of 300 servers. Given a fixed number of servers in the cluster, EAFR aims to allocate

popular files to servers that are guaranteed to be on (hot servers), and it stores some replicas of

cold files in cold servers (in sleeping mode), which results in substantial power saving. It is worth

noting that while the adoption of cold servers can reduce the energy consumption in large cluster,

performance of the cluster in serving file requests is not compromised, which is demonstrated in the

previous figures.
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5.3.1.4 Load Balance Status

It is crucial to constrain the workloads of servers under their capacities (i.e., achieving load

balance), which help reduce file read response latency. Server utilization is an indicator of how

balance the file requests are distributed among servers in the system. For each server, we sampled

10 utilization values within 10 minutes at a frequency of once per minute, then selected the highest

value as the server’s utilization to report. Figure 5.10(a) plots the 1st percentile, median and 99th

percentile of server utilization of different methods. We see that EAFR achieves better load balance

than CDRM and HDFS with a smaller 99th percentile value and a larger 1st percentile value.

EAFR adaptively increases the number of replicas for hot files to serve excessive file requests and

reduces the number of replicas for cold files. Also, it creates new replicas in servers with the highest

remaining capacity with a high probability. As the workloads are better balanced in EAFR, it can

effectively prevent the servers storing hot files from becoming overloaded, and file requests are less

likely to be blocked. We then tested the performance of EAFR under different workload distributions

by varying the file read arrival rates using the same method as in Section 5.3.1.1. Figure 5.10(b)

shows the percentage of overloaded servers during the experiment in the system. We see that the

percentage of overloaded servers rises gradually with increased read arrival rates for all methods, as

more server capacity is consumed to serve read requests. EAFR maintains the least percentage of

overloaded servers due to the same reason as in Figure 5.10(a).

5.3.1.5 Overhead

Figure 5.11(a) shows the memory consumption of different methods when a various number

of original files are stored in the system. We see that EAFR has lower memory consumption than

other two methods because cold files only maintain 2 replicas in the system, and small amount

of extra replicas are created for hot files to meet the short-term intensive read requests. In HDFS,

keeping a fixed number of 3 replicas consumes more storage resource than EAFR. CDRM maintains 2

replicas for each file initially, and increases the number of replicas to meet the required file availability,

so it demands more memory consumption than EAFR.

When a file is modified, each replica of the file should be updated in order to maintain

consistency, and the update of file is accomplished by performing a write operation to synchronize

each of its replica. In EAFR, as cold servers do not serve file read requests, when a file is updated,
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Figure 5.13: Replication latency for files of various sizes.
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Figure 5.14: File read response time.

the writes need not be sent to its replicas stored in cold servers immediately. Instead, the updates

of replicas in cold servers are postponed, until the servers are switched from sleeping mode to

active mode. More precisely, the cold servers are woken up once per week to check for file updates.

Whenever a file replica is dirty (i.e., not updated), a write operation is performed to synchronize

the replica. We generated the updates of files from the trace data, and defined a file’s maintenance

overhead as the product of total amount of latency (in ms) to send writes to all its replicas multiplied

by the size of the file (in MB). Figure 5.11(b) shows the 1st percentile, median and 99th percentile

of maintenance overhead for all methods. We see EAFR displays substantially smaller median,

1st percentile and 99th percentile maintenance overhead than the other two methods due to three

reasons. First of all, EAFR creates a smaller number of replicas for cold files compared to CDRM

and HDFS, thus, fewer writes are needed if a cold file needs to be updated. Secondly, the replicas in

cold servers in EAFR do not need updates when the servers are in sleeping mode. Thirdly, EAFR

tries to reduce network congestions in file replication, which may also help reduce the updating

latency. As a result, EAFR produces relatively low maintenance overhead.

97



5.3.1.6 Server Failure Resilience

We tested EAFR’s resilience to server failures though it is not EAFR’s objective. Each

server has a failure probability λ, and when all servers storing a file’s replicas fail, requests for

this file fail. We measured the file availability as the percentage of available files among all files

stored in the system, a good file system in cluster should provide high file availability to clients.

Figure 5.12(a) shows the percentage of successful read requests when λ = 0.2 and λ = 0.1, and the

minimum number of replicas in EAFR is 3. We see that EAFR achieves the highest percentage

of successful file requests. This is because EAFR creates extra replicas for hot files, which in turn

increase the percentage of successful requests of hot files in server failures. HDFS keeps a fixed

number of 3 replicas for each file and achieves lower percentage of successful requests than EAFR.

CDRM stops increasing the file replicas when the percentage is higher than 0.8. Figure 5.12(b)

shows the percentage of successful read requests when the minimum number of replicas in EAFR is

2. We see that EAFR provides relatively lower percentage of successful read requests than the other

two methods due to the reason that only 2 replicas are maintained for most files. CDRM increases

the number of file replicas to maintain a required file availability, so it provides high file availability

under different server failure probabilities.

5.3.2 Experimental Results for Enhancement Strategies

In the following, we show the effectiveness of each of our proposed strategies for enhancemen-

t: i) dynamic transmission rate adjustment strategy, ii) network-aware data node selection strategy

and iii) load-aware replica maintenance strategy. In the following figures, we use EAFR/B to denote

the basic EAFR without any enhancement strategies.

5.3.2.1 Effectiveness of Dynamic Transmission Rate Adjustment Strategy

Figure 5.13 shows the replication completion time for different file groups with and without

the dynamic transmission rate adjustment strategy (denoted by EAFR-rate and EAFR/B). We set

the replication completion time of EAFR/B as base and plot the ratio of EAFR-rate and EAFR/B ’s

replication completion time over the base. We see that EAFR-rate effectively reduces replication time

compared to EAFR/B. The reason is that EAFR-rate dynamically adjusts the senders’ transmission

rates based on the receiver’s bandwidth consumption, which can prevent incast congestion on the
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Figure 5.15: Percentage of file read timeouts.

receiver side. As a result, the receiver is not likely to be congested and file replication operations

can be completed within short latency.

5.3.2.2 Effectiveness of Network-aware Data Node Selection Strategy

We denote EAFR with and without applying the proposed network-aware data node selec-

tion strategy by EAFR-net and EAFR/B, respectively. In EAFR/B, a compute node fetches its

requested file from a randomly selected data node among the data nodes storing the file’s replicas.

Figure 5.14(a) and Figure 5.14(b) show the average file read response time with different

number of concurrent reads and different access arrival rates, respectively. We see that the response

latency increases as the number of concurrent reads increases due to the same reason as in Figure

5.7(a). We also see that EAFR-net reduces the file read response latency. A compute node in

EAFR-net tends to fetch files from data nodes within the same rack as the requester computer

nodes to minimize the file transmission time, and from data nodes with small queue sizes to reduce

the queueing delay. Therefore, a compute node can finish reading a file within shorter latency in

EAFR-net than that in EAFR/B. We also notice that the reduction in response latency becomes

larger when there are a larger number of concurrent reads and access arrival rates in the system. This

is because when the number of concurrent reads and access arrival rates increase, servers in EAFR/B

are more likely to be overloaded as the read requests are assigned to servers without considering

their queue sizes, which leads to file read response time increase. On the other hand, EAFR-net

aims to assign read requests to servers with small queue sizes, which reduces the file read latency

compared to EAFR/B. Figure 5.15(a) and Figure 5.15(b) show the percentage of file read timeouts

with different number of concurrent reads and different access arrival rates, respectively. We see

that EAFR-net reduces the percentage of file read timeouts due to the same reason as explained in
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Figure 5.14(a) and Figure 5.14(b). EAFR-net aims to minimize file read response time by letting a

compute node to fetch files from data nodes within the same rack and from data nodes with small

queue sizes; while EAFR/B randomly assigns read requests to data nodes, which results in high

percentage of file read timeouts. Figure 5.14(a), Figure 5.14(b), Figure 5.15(a) and Figure 5.15(b)

show the effectiveness of our proposed network-aware data node selection strategy in reducing file

read response time.

5.3.2.3 Effectiveness of Load-aware Replica Maintenance Strategy

We denote EAFR with and without applying the proposed load-aware replica maintenance

strategy by EAFR-load and EAFR/B, respectively. In this experiment, we randomly selected a

number of servers as failed servers every 30 minutes and recovered all file replicas stored in each failed

server. We then recorded the average recovery latency. EAFR/B randomly selects a source server for

a file’s replica without considering server capacities, and also randomly selects a destination server

with enough storage capacity to place a file’s replica without balancing the number of replicas stored

in each destination server to constrain the incast network load. Figure 5.16 shows the average replica

recovery latency for a various number of failed servers. We see that as the number of failed servers

increases, both EAFR-load and EAFR/B generate longer replica recovery latency. The reason lies

in that more failed servers lead to the replication of a larger number of file replicas. As more files

are transmitted from source servers to the identified destination servers, these transmissions need

to compete for limited bandwidth capacity and thus lead to longer transmission delay. We also see

that EAFR-load improves EAFR/B by generating shorter recovery latency. In EAFR-load, we aim

to select servers with the maximum remaining service capacity as source servers, so file can be read

from source servers with short latency. Also, compared to EAFR/B, EAFR-load can balance the

load (i.e., the number of replicas allocated) of destination servers as it aims to evenly allocate file
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replicas to all destination servers, which effectively prevent incast congestion in destination servers

and generate shorter file transmission time. As a result, EAFR-load generates shorter recovery

latency.
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Chapter 6

Conclusion

A high-performance cloud can reduce the cost of both cloud providers and customers, while

providing high application performance to cloud clients. To build a high-performance cloud, in this

dissertation, we propose three methods to solve the challenges in delivering and storing contents on

the cloud. Specifically, the three methods aim to provide a cost-efficient gaming system to support

thin-client MMOG, an inter-datacenter video scheduling algorithm for video transmission on the

cloud, and an adaptive file replication algorithm for cloud storage system. We summarize the works

in this dissertation below.

Firstly, cloud gaming is a very promising model for thin-client MMOG since it frees players

from this requirement, but it faces formidable challenges that prevents it from achieving high user

QoE and low cost. We propose CloudFog, which leverages supernodes functioning as “fog” to connect

the cloud to users. The cloud conducts the intensive computation for producing game state and

sends update information to supernodes. The supernodes then generate game videos to stream to

players. To select a suitable supernode that can provide satisfactory game video streaming service,

we propose a reputation based supernode selection strategy. Considering that different games have

different degrees of response latency tolerance and packet loss tolerance, we propose a receiver-

driven encoding rate adaption strategy to balance these two factors in guaranteeing QoS. Since

social friends in online games tend to play game together, we assign these players to the same server

in a datacenter to reduce the interactions of servers to further reduce the latency. We also propose

a dynamic supernode provisioning strategy to deal with user churns and relieve server loads. As a

result, CloudFog reduces response latency and bandwidth consumption and increases user coverage.
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These advantages are verified by our experiments on the PeerSim simulator and the PlanetLab

real-world testbed.

Secondly, to provide video streaming services to users across different regions, cloud provider-

s need to transfer video contents between different datacenters. Such inter-datacenter transfers are

charged by ISPs under the percentile-based charging models. We take advantage of the particular

characteristic of these models and propose EcoFlow to minimize cloud providers’ payment costs on

inter-datacenter traffics. EcoFlow is an economical and deadline-driven video transfer strategy. It

first estimates the total volume of video traffic needed to be transmitted between every two datacen-

ters within a time period, compares it with the charging volume and calculates the under-utilized

traffic volume on each link. EcoFlow then schedules video flows with the objective that these flows do

not incur additional charges on the link and guaranteing that each video flow meets its transmission

deadline. Finally, the under-utilized links with low traffic burden are used to build alternating paths

for video flows that are estimated to miss their deadlines. To enhance EcoFlow, we also propose

setting each link’s initial charging volume to reduce the scheduling latency at the beginning of the

charging period. We further discuss how to deal with link available bandwidth prediction errors and

lack of prior knowledge of the charing volume. Moreover, we design the implementation of EcoFlow

in both a centralized manner and a distributed manner. Experimental results on PlanetLab and EC2

show the effectiveness of EcoFlow in reducing bandwidth costs and at the same time guaranteing

that each video flow meets its transmission deadline for inter-datacenter video transfers.

Finally, in this dissertation, we propose EAFR to reduce file read latency, power consumption

and replication completion latency. EAFR adaptively increases the number of replicas for hot files

to alleviate intensive file request loads, and thus reduce the file read latency, and also decreases the

number of replicas for cold files without compromising their read efficiency. Some replicas of cold

files with few accesses are transferred to cold servers with 0% CPU utilization to save power. EAFR

selects servers with sufficient capacities to place new replicas to shorten replication completion time

and avoid overloading servers. EAFR also has a transmission rate adaptation strategy to further

prevent potential incast congestion, a network-aware data node selection strategy to reduce file read

latency and a load-aware replica maintenance strategy to maintain a certain number of replicas upon

server failures. Experimental results from a real-world large cluster show the effectiveness of EAFR

and the proposed strategies in meeting the demands of file systems in large clusters.

The future work will be three folds. First, in cost-efficient gaming system to support thin-
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client MMOG, we will study the security issues such as dealing with malicious supernodes and

preventing cheating behaviors in CloudFog, as well as study how to evaluate the user Quality of

Experience (QoE) when using the CloudFog system; Second, for inter-datacenter video scheduling,

we will investigate how to improve the routing algorithm of finding alternating paths for video flows.

Third, for adaptive file replication in cloud storage system, we will study increasing data locality in

replica placement, and determining the optimal number of cold servers to maximize energy saving

without compromising the file read efficiency.
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