61 research outputs found

    Bio-inspired image enhancement for natural color images

    Get PDF
    Capturing and rendering an image that fulfills the observer's expectations is a difficult task. This is due to the fact that the signal reaching the eye is processed by a complex mechanism before forming a percept, whereas a capturing device only retains the physical value of light intensities. It is especially difficult to render complex scenes with highly varying luminances. For example, a picture taken inside a room where objects are visible through the windows will not be rendered correctly by a global technique. Either details in the dim room will be hidden in shadow or the objects viewed through the window will be too bright. The image has to be treated locally to resemble more closely to what the observer remembers. The purpose of this work is to develop a technique for rendering images based on human local adaptation. We take inspiration from a model of color vision called Retinex. This model determines the perceived color given spatial relationships of the captured signals. Retinex has been used as a computational model for image rendering. In this article, we propose a new solution inspired by Retinex that is based on a single filter applied to the luminance channel. All parameters are image-dependent so that the process requires no parameter tuning. That makes the method more exible than other existing ones. The presented results show that our method suitably enhances high dynamic range images

    High Dynamic Range Image Rendering Using a Retinex-Based Adaptive Filter

    Get PDF
    We propose a new method to render high dynamic range images that models global and local adaptation of the human visual system. Our method is based on the center-surround Retinex model. The novelties of our method is first to use an adaptive surround, whose shape follows the image high contrast edges, thus reducing halo artifacts common to other methods. Secondly, only the luminance channel is processed, which is defined by the first component of a principal component analysis. Principal component analysis provides orthogonality between channels and thus reduces the chromatic changes caused by the modification of luminance. We show that our method efficiently renders high dynamic range images and we compare our results with the current state of the art

    Tone mapping for high dynamic range images

    Get PDF
    Tone mapping is an essential step for the reproduction of "nice looking" images. It provides the mapping between the luminances of the original scene to the output device's display values. When the dynamic range of the captured scene is smaller or larger than that of the display device, tone mapping expands or compresses the luminance ratios. We address the problem of tone mapping high dynamic range (HDR) images to standard displays (CRT, LCD) and to HDR displays. With standard displays, the dynamic range of the captured HDR scene must be compressed significantly, which can induce a loss of contrast resulting in a loss of detail visibility. Local tone mapping operators can be used in addition to the global compression to increase the local contrast and thus improve detail visibility, but this tends to create artifacts. We developed a local tone mapping method that solves the problems generally encountered by local tone mapping algorithms. Namely, it does not create halo artifacts, nor graying-out of low contrast areas, and provides good color rendition. We then investigated specifically the rendition of color and confirmed that local tone mapping algorithms must be applied to the luminance channel only. We showed that the correlation between luminance and chrominance plays a role in the appearance of the final image but a perfect decorrelation is not necessary. Recently developed HDR monitors enable the display of HDR images with hardly any compression of their dynamic range. The arrival of these displays on the market create the need for new tone mapping algorithms. In particular, legacy images that were mapped to SDR displays must be re-rendered to HDR displays, taking best advantage of the increase in dynamic range. This operation can be seen as the reverse of the tone mapping to SDR. We propose a piecewise linear tone scale function that enhances the brightness of specular highlights so that the sensation of naturalness is improved. Our tone scale algorithm is based on the segmentation of the image into its diffuse and specular components as well as on the range of display luminance that is allocated to the specular component and the diffuse component, respectively. We performed a psychovisual experiment to validate the benefit of our tone scale. The results showed that, with HDR displays, allocating more luminance range to the specular component than what was allocated in the image rendered to SDR displays provides more natural looking images

    Rendering non-pictorial (Scientific) high dynamic range images

    Get PDF
    In recent years, the graphics community is seeing an increasing demand for the capture and usage of high-dynamic-range (HDR) images. Since the production of HDR imagery is not solely the domain of the visualization of real life or computer generated scenes, novel techniques are also required for imagery captured from non-visual sources such as remote sensing, medical imaging, astronomical imaging, etc. This research proposes to integrate the techniques used for the display of high-dynamic-range pictorial imagery for the practical visualization of non-pictorial (scientific) imagery for data mining and interpretation. Nine algorithms were utilized to overcome the problem associated with rendering the high-dynamic-range image data to low-dynamic-range display devices, and the results were evaluated using a psychophysical experiment. Two paired-comparison experiments and a target detection experiment were performed. Paired-comparison results indicate that the Zone System performs the best on average and the Local Color Correction method performs the worst. The results show that the performance of different encoding schemes depend on the type of data being visualized. The correlation between the preference and scientific usefulness judgments (R2 = 0.31) demonstrates that observers tend to use different criteria when judging the scientific usefulness versus image preference. The experiment was conducted using observers with expertise (Radiologists) for the Medical image to further elucidate the success of HDR rendering on these data. The results indicated that both Radiologists and Non-radiologists tend to use similar criteria regardless of their experience and expertise when judging the usefulness of rendered images. A target detection experiment was conducted to measure the detectability of an embedded noise target in the Medical image to demonstrate the effect of the tone mapping operators on target detection. The result of the target detection experiment illustrated that the detectability of targets the image is greatly influenced by the rendering algorithm due to the inherent differences in tone mapping among the algorithms

    Variational models for color image processing in the RGB space inspired by human vision Mémoire d'Habilitation a Diriger des Recherches dans la spécialité Mathématiques

    Get PDF
    La recherche que j'ai développée jusqu'à maintenant peut être divisée en quatre catégories principales : les modèles variationnels pourla correction de la couleur basée sur la perception humaine, le transfert d'histogrammes, le traitement d'images à haute gammedynamique et les statistiques d'images naturelles en couleur. Les sujets ci-dessus sont très inter-connectés car la couleur est un sujetfortement inter-disciplinaire

    High dynamic range images: processing, display and perceptual quality assessment

    Get PDF
    2007/2008The intensity of natural light can span over 10 orders of magnitude from starlight to direct sunlight. Even in a single scene, the luminance of the bright areas can be thousands or millions of times greater than the luminance in the dark areas; the ratio between the maximum and the minimum luminance values is commonly known as dynamic range or contrast. The human visual system is able to operate in an extremely wide range of luminance conditions without saturation and at the same time it can perceive fine details which involve small luminance differences. Our eyes achieve this ability by modulating their response as a function of the local mean luminance with a process known as local adaptation. In particular, the visual sensation is not linked to the absolute luminance, but rather to its spatial and temporal variation. One consequence of the local adaptation capability of the eye is that the objects in a scene maintain their appearance even if the light source illuminating the scene changes significantly. On the other hand, the technologies used for the acquisition and reproduction of digital images are able to handle correctly a significantly smaller luminance range of 2 to 3 orders of magnitude at most. Therefore, a high dynamic range (HDR) image poses several challenges and requires the use of appropriate techniques. These elementary observations define the context in which the entire research work described in this Thesis has been performed. As indicated below, different fields have been considered; they range from the acquisition of HDR images to their display, from visual quality evaluation to medical applications, and include some developments on a recently proposed class of display equipment. An HDR image can be captured by taking multiple photographs with different exposure times or by using high dynamic range sensors; moreover, synthetic HDR images can be generated with computer graphics by means of physically-based algorithms which often involve advanced lighting simulations. An HDR image, although acquired correctly, can not be displayed on a conventional monitor. The white level of most devices is limited to a few hundred cd/m² by technological constraints, primarily linked to the power consumption and heat dissipation; the black level also has a non negligible luminance, in particular for devices based on the liquid crystal technology. However, thanks to the aforementioned properties of the human visual system, an exact reproduction of the luminance in the original scene is not strictly necessary in order to produce a similar sensation in the observer. For this purpose, dynamic range reduction algorithms have been developed which attenuate the large luminance variations in an image while preserving as far as possible the fine details. The most simple dynamic range reduction algorithms map each pixel individually with the same nonlinear function commonly known as tone mapping curve. One operator we propose, based on a modified logarithmic function, has a low computational cost and contains one single user-adjustable parameter. However, the methods belonging to this category can reduce the visibility of the details in some portions of the image. More advanced methods also take into account the pixel neighborhood. This approach can achieve a better preservation of the details, but the loss of one-to-one mapping from input luminances to display values can lead to the formation of gradient reversal effects, which typically appear as halos around the object boundaries. Different solutions to this problem have been attempted. One method we introduce is able to avoid the formation of halos and intrinsically prevents any clipping of the output display values. The method is formulated as a constrained optimization problem, which is solved efficiently by means of appropriate numerical methods. In specific applications, such as the medical one, the use of dynamic range reduction algorithms is discouraged because any artifacts introduced by the processing can lead to an incorrect diagnosis. In particular, a one-to-one mapping from the physical data (for instance, a tissue density in radiographic techniques) to the display value is often an essential requirement. For this purpose, high dynamic range displays, capable of reproducing images with a wide luminance range and possibly a higher bit depth, are under active development. Dual layer LCD displays, for instance, use two liquid crystal panels stacked one on top of the other over an enhanced backlight unit in order to achieve a dynamic range of 4 ÷ 5 orders of magnitude. The grayscale reproduction accuracy is also increased, although a “bit depth” can not be defined unambiguously because the luminance levels obtained by the combination of the two panels are partially overlapped and unevenly spaced. A dual layer LCD display, however, requires the use of complex splitting algorithms in order to generate the two images which drive the two liquid crystal panels. A splitting algorithm should compensate multiple sources of error, including the parallax introduced by the viewing angle, the gray-level clipping introduced by the limited dynamic range of the panels, the visibility of the reconstruction error, and glare effects introduced by an unwanted light scattering between the two panels. For these reasons, complex constrained optimization techniques are necessary. We propose an objective function which incorporates all the desired constraints and requirements and can be minimized efficiently by means of appropriate techniques based on multigrid methods. The quality assessment of high dynamic range images requires the development of appropriate techniques. By their own nature, dynamic range reduction algorithms change the luminance values of an image significantly and make most image fidelity metrics inapplicable. Some particular aspects of the methods can be quantified by means of appropriate operators; for instance, we introduce an expression which describes the detail attenuation introduced by a tone mapping curve. In general, a subjective quality assessment is preferably performed by means of appropriate psychophysical experiments. We conducted a set of experiments, targeted specifically at measuring the level of agreement between different users when adjusting the parameter of the modified logarithmic mapping method we propose. The experimental results show a strong correlation between the user-adjusted parameter and the image statistics, and suggest a simple technique for the automatic adjustment of this parameter. On the other hand, the quality assessment in the medical field is preferably performed by means of objective methods. In particular, task-based quality measures evaluate by means of appropriate observer studies the clinical validity of the image used to perform a specific diagnostic task. We conducted a set of observer studies following this approach, targeted specifically at measuring the clinical benefit introduced by a high dynamic range display based on the dual layer LCD technology over a conventional display with a low dynamic range and 8-bit quantization. Observer studies are often time consuming and difficult to organize; in order to increase the number of tests, the human observers can be partially replaced by appropriate software applications, known as model observers or computational observers, which simulate the diagnostic task by means of statistical classification techniques. This thesis is structured as follows. Chapter 1 contains a brief background of concepts related to the physiology of human vision and to the electronic reproduction of images. The description we make is by no means complete and is only intended to introduce some concepts which will be extensively used in the following. Chapter 2 describes the technique of high dynamic range image acquisition by means of multiple exposures. In Chapter 3 we introduce the dynamic range reduction algorithms, providing an overview of the state of the art and proposing some improvements and novel techniques. In Chapter 4 we address the topic of quality assessment in dynamic range reduction algorithms; in particular, we introduce an operator which describes the detail attenuation introduced by tone mapping curves and describe a set of psychophysical experiments we conducted for the adjustment of the parameter in the modified logarithmic mapping method we propose. In Chapter 5 we move to the topic of medical images and describe the techniques used to map the density data of radiographic images to display luminances. We point out some limitations of the current technical recommendation and propose an improvement. In Chapter 6 we describe in detail the dual layer LCD prototype and propose different splitting algorithms for the generation of the two images which drive the two liquid crystal panels. In Chapter 7 we propose one possible technique for the estimation of the equivalent bit depth of a dual layer LCD display, based on a statistical analysis of the quantization noise. Finally, in Chapter 8 we address the topic of objective quality assessment in medical images and describe a set of observer studies we conducted in order to quantify the clinical benefit introduced by a high dynamic range display. No general conclusions are offered; the breadth of the subjects has suggested to draw more focused comments at the end of the individual chapters.XXI Ciclo198

    Retinal drug delivery: rethinking outcomes for the efficient replication of retinal behavior

    Get PDF
    The retina is a highly organized structure that is considered to be "an approachable part of the brain." It is attracting the interest of development scientists, as it provides a model neurovascular system. Over the last few years, we have been witnessing significant development in the knowledge of the mechanisms that induce the shape of the retinal vascular system, as well as knowledge of disease processes that lead to retina degeneration. Knowledge and understanding of how our vision works are crucial to creating a hardware-adaptive computational model that can replicate retinal behavior. The neuronal system is nonlinear and very intricate. It is thus instrumental to have a clear view of the neurophysiological and neuroanatomic processes and to take into account the underlying principles that govern the process of hardware transformation to produce an appropriate model that can be mapped to a physical device. The mechanistic and integrated computational models have enormous potential toward helping to understand disease mechanisms and to explain the associations identified in large model-free data sets. The approach used is modulated and based on different models of drug administration, including the geometry of the eye. This work aimed to review the recently used mathematical models to map a directed retinal network.The authors acknowledge the financial support received from the Portuguese Science and Technology Foundation (FCT/MCT) and the European Funds (PRODER/COMPETE) for the project UIDB/04469/2020 (strategic fund), co-financed by FEDER, under the Partnership Agreement PT2020. The authors also acknowledge FAPESP – São Paulo Research Foundation, for the financial support for the publication of the article.info:eu-repo/semantics/publishedVersio

    Perceptually inspired image estimation and enhancement

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Brain and Cognitive Sciences, 2009.Includes bibliographical references (p. 137-144).In this thesis, we present three image estimation and enhancement algorithms inspired by human vision. In the first part of the thesis, we propose an algorithm for mapping one image to another based on the statistics of a training set. Many vision problems can be cast as image mapping problems, such as, estimating reflectance from luminance, estimating shape from shading, separating signal and noise, etc. Such problems are typically under-constrained, and yet humans are remarkably good at solving them. Classic computational theories about the ability of the human visual system to solve such under-constrained problems attribute this feat to the use of some intuitive regularities of the world, e.g., surfaces tend to be piecewise constant. In recent years, there has been considerable interest in deriving more sophisticated statistical constraints from natural images, but because of the high-dimensional nature of images, representing and utilizing the learned models remains a challenge. Our techniques produce models that are very easy to store and to query. We show these techniques to be effective for a number of applications: removing noise from images, estimating a sharp image from a blurry one, decomposing an image into reflectance and illumination, and interpreting lightness illusions. In the second part of the thesis, we present an algorithm for compressing the dynamic range of an image while retaining important visual detail. The human visual system confronts a serious challenge with dynamic range, in that the physical world has an extremely high dynamic range, while neurons have low dynamic ranges.(cont.) The human visual system performs dynamic range compression by applying automatic gain control, in both the retina and the visual cortex. Taking inspiration from that, we designed techniques that involve multi-scale subband transforms and smooth gain control on subband coefficients, and resemble the contrast gain control mechanism in the visual cortex. We show our techniques to be successful in producing dynamic-range-compressed images without compromising the visibility of detail or introducing artifacts. We also show that the techniques can be adapted for the related problem of "companding", in which a high dynamic range image is converted to a low dynamic range image and saved using fewer bits, and later expanded back to high dynamic range with minimal loss of visual quality. In the third part of the thesis, we propose a technique that enables a user to easily localize image and video editing by drawing a small number of rough scribbles. Image segmentation, usually treated as an unsupervised clustering problem, is extremely difficult to solve. With a minimal degree of user supervision, however, we are able to generate selection masks with good quality. Our technique learns a classifier using the user-scribbled pixels as training examples, and uses the classifier to classify the rest of the pixels into distinct classes. It then uses the classification results as per-pixel data terms, combines them with a smoothness term that respects color discontinuities, and generates better results than state-of-art algorithms for interactive segmentation.by Yuanzhen Li.Ph.D

    A comparative review of tone-mapping algorithms for high dynamic range video

    Get PDF
    Tone-mapping constitutes a key component within the field of high dynamic range (HDR) imaging. Its importance is manifested in the vast amount of tone-mapping methods that can be found in the literature, which are the result of an active development in the area for more than two decades. Although these can accommodate most requirements for display of HDR images, new challenges arose with the advent of HDR video, calling for additional considerations in the design of tone-mapping operators (TMOs). Today, a range of TMOs exist that do support video material. We are now reaching a point where most camera captured HDR videos can be prepared in high quality without visible artifacts, for the constraints of a standard display device. In this report, we set out to summarize and categorize the research in tone-mapping as of today, distilling the most important trends and characteristics of the tone reproduction pipeline. While this gives a wide overview over the area, we then specifically focus on tone-mapping of HDR video and the problems this medium entails. First, we formulate the major challenges a video TMO needs to address. Then, we provide a description and categorization of each of the existing video TMOs. Finally, by constructing a set of quantitative measures, we evaluate the performance of a number of the operators, in order to give a hint on which can be expected to render the least amount of artifacts. This serves as a comprehensive reference, categorization and comparative assessment of the state-of-the-art in tone-mapping for HDR video.This project was funded by the Swedish Foundation for Strategic Research (SSF) through grant IIS11-0081, Linköping University Center for Industrial Information Technology (CENIIT), the Swedish Research Council through the Linnaeus Environment CADICS

    Two Methods for Display of High Contrast Images

    Get PDF
    High contrast images are common in night scenes and other scenes that include dark shadows and bright light sources. These scenes are difficult to display because their contrasts greatly exceed the range of most display devices for images. As a result, the image contrasts are compressed or truncated, obscuring subtle textures and details. Humans view and understand high contrast scenes easily, ``adapting'' their visual response to avoid compression or truncation with no apparent loss of detail. By imitating some of these visual adaptation processes, we developed two methods for the improved display of high contrast images. The first builds a display image from several layers of lighting and surface properties. Only the lighting layers are compressed, drastically reducing contrast while preserving much of the image detail. This method is practical only for synthetic images where the layers can be retained from the rendering process. The second method interactively adjusts the displayed image to preserve local contrasts in a small ``foveal'' neighborhood. Unlike the first method, this technique is usable on any image and includes a new tone reproduction operator. Both methods use a sigmoid function for contrast compression. This function has no effect when applied to small signals but compresses large signals to fit within an asymptotic limit. We demonstrate the effectiveness of these approaches by comparing processed and unprocessed images
    • …
    corecore