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Abstract

Tone mapping is an essential step for the reproduction of “nice looking” images.
It provides the mapping between the luminances of the original scene to the
output device’s display values. When the dynamic range of the captured scene
is smaller or larger than that of the display device, tone mapping expands or
compresses the luminance ratios.

We address the problem of tone mapping high dynamic range (HDR) im-
ages to standard displays (CRT, LCD) and to HDR displays. With standard
displays, the dynamic range of the captured HDR scene must be compressed
significantly, which can induce a loss of contrast resulting in a loss of detail
visibility. Local tone mapping operators can be used in addition to the global
compression to increase the local contrast and thus improve detail visibility, but
this tends to create artifacts. We developed a local tone mapping method that
solves the problems generally encountered by local tone mapping algorithms.
Namely, it does not create halo artifacts, nor graying-out of low contrast ar-
eas, and provides good color rendition. We then investigated specifically the
rendition of color and confirmed that local tone mapping algorithms must be
applied to the luminance channel only. We showed that the correlation between
luminance and chrominance plays a role in the appearance of the final image
but a perfect decorrelation is not necessary.

Recently developed HDR monitors enable the display of HDR images with
hardly any compression of their dynamic range. The arrival of these displays
on the market create the need for new tone mapping algorithms. In particu-
lar, legacy images that were mapped to SDR displays must be re-rendered to
HDR displays, taking best advantage of the increase in dynamic range. This
operation can be seen as the reverse of the tone mapping to SDR. We propose
a piecewise linear tone scale function that enhances the brightness of specular
highlights so that the sensation of naturalness is improved. Our tone scale
algorithm is based on the segmentation of the image into its diffuse and spec-
ular components as well as on the range of display luminance that is allocated
to the specular component and the diffuse component, respectively. We per-
formed a psychovisual experiment to validate the benefit of our tone scale. The
results showed that, with HDR displays, allocating more luminance range to
the specular component than what was allocated in the image rendered to SDR
displays provides more natural looking images.

Keywords: high dynamic range images, tone mapping, Retinex, HDR displays
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Résumé

La reproduction des tons est une étape essentielle pour l’affichage d’images
qui plaisent à l’utilisateur. Cette étape fait la correspondance entre les lumi-
nances de la scène originale et les valeurs affichées à l’écran. Par exemple, si le
rang dynamique de la scène est supérieur ou inférieur à la capacité de l’écran,
un algorithme de reproduction des tons devra compresser ou étendre le rang
dynamique de manière à rendre l’image compatible avec l’écran.

Dans cette thèse, nous adressons spécifiquement le problème de repro-
duction des scènes à grand rang dynamique (appelées “scènes HDR”) pour
l’affichage sur écrans standards (LCD, CRT) ainsi que sur de nouveaux écrans
à très grand rang dynamique appelés “écrans HDR”.

Lors de l’affichage sur un écran standard, le rang dynamique d’une scène
HDR doit être compressé de manière significative, ce qui peut provoquer une
perte de contraste et un manque de visibilité dans les détails. Des opérateurs
locaux peuvent être utilisés en plus de la compression globale pour améliorer
le contraste local ainsi que la visibilité des détails, mais les méthodes exis-
tantes génèrent souvent des artefacts visuels. Notre algorithme de reproduction
des tons agit locallement et propose des solutions aux problèmes de halos, de
zones grisâtres ou du mauvais rendu de la couleur. Suite à cela, nous avons
étudié spécifiquement le traitement de la couleur. Notre recherche confirme
que les opérateurs locaux doivent être appliqués seulement sur la luminance.
La corrélation entre la luminance et la chrominance joue un rôle dans le rendu
final de la couleur mais une décorrélation parfaite n’est pas nécessaire.

Le récent développement d’écrans HDR rend possible l’affichage d’images
contenant de très grands contrastes sans presque aucune compression du rang
dynamique. L’arrivée de tels écrans sur le marché crée un besoin pour de
nouveaux algorithmes de reproduction des tons. En particulier, les images
traitées dans le but d’être affichées sur des écrans standards doivent être re-
traitées pour être affichées sur un écran HDR en tirant le plus grand bénéfice
de l’augmentation du rang dynamique de l’écran. Nous proposons l’utilisation
d’une fonction linéaire par morceaux dont la forme permet d’augmenter la
clarté des spécularités de l’image, améliorant ainsi la sensation de naturel que
provoque sa visualisation. Notre algorithme est basé sur une segmentation de
l’image en ses composants diffus et spéculaires ainsi que sur le pourcentage
de rang dynamique de l’écran réservé à la composante spéculaire. Le bénéfice
de notre fonction linéaire par morceaux est validé par une expérience psycho-
visuelle. Les résultats de cette expérience montrent qu’avec un écran HDR,
allouer une plus grande partie du rang dynamique à la composante spéculaire
que celle allouée lors de l’affichage sur un écran standard conduit à des images
plus agréables à regarder et plus naturelles.
Mots-clés: Images à grands rang dynamique, reproduction des tons, écrans HDR
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Frequently Used Terms,

Abbreviations, and Notation

Terms and abbreviations

Brightness: Attribute of a visual sensation according to which an area ap-

pears to emit more or less light (CIE 45-25-210).

Contrast ratio: See “dynamic range”.

CRT: Cathode Ray Tube.

Chrominance: The two components of an image that contain the color infor-

mation.

Display black point: Neutral color with the lowest luminance that can be

produced by the display (ISO 22028-1 2004).

Display white point: Neutral color with the highest luminance that can be

produced by the display (ISO 22028-1 2004).

Dynamic range: The ratio between the brightest and the darkest object in

a scene.

Floating point map: Image built with a multiple exposure technique (also

called radiance map).

HDR: High Dynamic Range.

HDR image: An image that represents an HDR scene.

HDR scene: A scene whose dynamic range exceeds the dynamic range of the

output medium.

High key image: Image containing mainly bright elements.

HVS: Human Visual System.

xi



xii Frequently Used Terms, Abbreviations, and Notation

Image black point: Pixel value corresponding to the perceived black in a

scene.

Image white point: Pixel value corresponding to the perceived white in a

scene.

Key: Average log luminance of a scene.

LCD: Liquid Crystal Display.

LED: Light Emitting Diodes.

LDR: Low Dynamic Range.

LDR image: An image that represents an LDR scene.

LDR scene: A scene whose dynamic range is lower than the dynamic range

of the output medium.

Low key image: Image containing mainly dark elements.

Luminance: Physical measure of scene radiances, given in candela per meter

square (cd/m2).

Luminance (in a luminance/chrominance representation): Achromatic

information in an image.

Lightness: Visual impression of brightness.

Middle key image: Image composed mainly of midtones.

MSR: Multi-Scale Retinex.

MSRCR: Multi-Scale Retinex with Color Restoration.

PCA: Principal Component Analysis.

Radiance map: Image constructed using a multiple exposure technique.

Re-rendering: Mapping of an image tone-mapped to one output medium (e.g.

an SDR display) to a different output medium (ISO 22028-1 2004).

Scene: Real environment that becomes the topic of an image (Reinhard et

al. 2005).

SDR: Standard Dynamic Range.

SDR image: An image that represents an SDR scene.



Frequently Used Terms, Abbreviations, and Notation xiii

SDR scene: A scene whose dynamic range is approximately the same as the

dynamic range of the output medium.

Specular highlight: Reflection of a light source on a non-lambertian surface,

such as metal or glossy paint.

Notation and variables

Matrices, images and binary maps;

B Binary map;

C1 Chrominance channel 1;

C2 Chrominance channel 2;

E Surround suppressed edge image;

I Linear image encoded with RGB primaries;

I ′ Non-linear image encoded with RGB primaries;

Inew Image encoded with RGB primaries, after processing;

IHDR Radiance map constructed with the ghost removal algorithm;

R Image computed with a Retinex operator;

U Magnitude image;

Z Image compensated to a reference exposure time;

∆ Difference image for motion detection;

λ LED image;

Λ Luminance image, linear with scene radiances;

Λ′ Luminance image, non-linear;

Λnew Luminance image, after processing;

Υ Inhibition term;

{, , } Representation of a color image under the form of a vector of three color channels;

{R, G, B} RGB image, alternative notation for I;

{Λ, C1, C2} Luminance/chrominance representation of an image.

Fixed constants;

J Number of images in a set;

K Number of paths in an image;

N Number of pixels in an image;

Q Number of observations in the psychovisual experiment;

T Number of tone scale functions tested by the psychovisual experiment;

Color transforms and filters;

Fm Two-dimensional averaging filter of size m;



xiv Frequently Used Terms, Abbreviations, and Notation

Gσ Two-dimensional Gaussian filter of spatial constant σ;

H Filter for morphological operators;

M Color transform;

Other variables, functions, symbols and operators;

• Average operator;

∗ Convolution operator, matrix multiplication;

•↓n Downsampling by n;

•↑n Upsampling by n;

•lp Low-passed version of an image;

O(•) Order of complexity;

a1, a2 Variables for cross-talk correction;

b Black point of an image;

c Color channel of an RGB image;

d Physical distance between two LEDs;

e Black level error for monitors;

f Tone mapping function;

h Histogram of an image;

H Cumulative histogram of an image;

i, j, k, m, n, o Indexes, variable numbers;

L Measured luminance produced at the screen, given in cd/m2;

mask(x, y) Weighted average of pixels surrounding pixel (x,y);

(x, y) Coordinate of a pixel;

p Pixel in I;

P Set of pixels in an image;

q Score in a pair comparison experiment;

r Radius;

s Slope;

S Set of images;

T Threshold operator;

t1, t2 Threshold for detecting specular highlights;

u Coefficient of agreement;

v Vector;

V Input voltage controlling a monitor;

w White point of an image;

α Factor for inhibition term;
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β Sigmoidal weighting factor;

δ Shift value in Retinex;

ε Small number;

η Measure of consistency;

γ Exponent for gamma correction;

Γ Path in an image;

ι Intermediary variable to count circular triads;

κ Factor for saturation enhancement;

µ Measure of correlation;

ν Number of circular triads;

Ψmax Maximum display luminance given in cd/m2;

ρ Percentage of display luminance allocated to maximum diffuse white;

σ Spatial constant of a Gaussian function;

τ Exposure time;

θ Angle;

ω Maximum diffuse white;

Ω Retinex reset operator;
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Chapter 1

Introduction

1.1 Tone Mapping

The fundamental goal of image reproduction is to display images that corre-

spond to the visual impression an observer had when watching the original

scene. Tone mapping is a major component of image reproduction. It provides

the mapping between the light emitted by the original scene and display values.

For good image reproduction, it is necessary to take into account the way

the human visual system (HVS) processes light information. Scene radiances

are captured by the rods and the cones in the retina and passed further to the

visual pathway. These signals are processed non-linearly by several layers of

neurons. They form an image that we call percept, which does not correspond

to the physical radiances of the scene.

Natural scenes can have a wide range of illumination conditions, ranging

from night scenes to outdoor scenes. Examples of scenes and corresponding

maximum luminances are given in Figure 1.1 (Johnson 2005). For us to “see”

all these different scenes and form a percept where details are visible, our visual

system adapts to the illumination conditions in different ways (Webster 1996,

Pattanaik et al. 1998). A first adaptation to global illumination takes place

at the pupil, which changes its diameter depending on the amount of light

entering the eye. Second, the photoreceptors (cones) adapt their sensitivities

to the mean luminance in the field of view, given by total retinal illumination.

Third, local adaptation modulates local contrasts as our gaze visually scans

the scene.

Capturing devices produce an image that is linear with respect to scene

radiances (after flare correction, if necessary). Thus, one role of tone mapping

is to process the image captured by the camera to simulate the processing of the

HVS and make its representation more perceptually meaningful (Figure 1.2).

1



2 Chapter 1.

Figure 1.1: Maximum luminance values for various scenes. This Figure was taken
from (Johnson 2005).

Adaptation
Non−linear
processing

Scene

Scene
Displayed
image

Tone mapping

Percept

Figure 1.2: The HVS processes the scene radiances in a non-linear manner through
different adaptation processes. It forms a percept where all details are visible.
Electronic devices capture the scene radiances linearly. A tone mapping operator is
necessary to non-linearly encode the image as well as to map it to the display char-
acteristics so that the displayed image corresponds to our memory of the original
scene.

The top image of Figure 1.3 shows the image captured by the camera (after

demosaicing) and the bottom image shows the corresponding image “seen” by

an observer. The image captured by the camera looks too dark. The image

perceived by our visual system has more contrast in the shadows.

1.1.1 Dynamic Range of Scenes and Displays

A second role of tone mapping is to match the dynamic range of the scene to

that of the display device. The dynamic range (or contrast ratio) is the lu-

minance ratio between the brightest and the darkest object in a scene. Lumi-

nances are the physical measure of scene radiances, given in candela per meter

square (cd/m2). When the dynamic range of the captured scene is smaller or

larger than that of the display device, tone mapping expands or compresses the

luminance ratios.
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Figure 1.3: Top: Image that is captured by the camera (after demosaicing).
Bottom: Image that is perceived by our visual system.

Scenes

A scene is said to be low dynamic range (LDR) when its dynamic range is

lower than that of the output medium. In this case, the dynamic range of the

input image has to be expanded to fit the output medium dynamic range. A

scene whose dynamic range corresponds approximatively to that of the output

medium is called standard dynamic range (SDR). A high dynamic range (HDR)

image is the representation of an HDR scene whose dynamic range exceeds by

far that of the output medium. With HDR scenes, it is likely that some parts of

their representation are clipped by the capturing process1. Typical examples of

HDR scenes are sunny outdoor scenes or a view of an indoor room with objects

visible outside the window.

The dynamic ranges of several natural scenes were measured and 1:160 was

1The generation of images representing HDR scenes is addressed in Appendix A.
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found to be an average contrast ratio (Hunt 1995). Outdoors scenes usually

have a larger dynamic range, which can reach a contrast ratio of three orders

of magnitude (1:1000) or more. Scenes with fog tend to have a small contrast

ratio.

Displays

Currently used display technologies are Cathode Ray Tube (CRT) or Liquid

Crystal Displays (LCD). We will call these standard displays and define their

dynamic range as being standard as opposed to HDR displays which have a

much larger dynamic range. The contrast ratio of standard displays is generally

1:100 but new LCD monitors can reach 1:400. Prints have a contrast ratio

of 1:50-1:500, depending on the printing technology. Newly developed HDR

displays have a contrast ratio reaching 1:25’000, depending on the viewing

conditions.

1.2 Global and Local Tone Mapping

Tone mapping methods can either be global (also called spatially invariant)

or combined with a local processing (also called spatially variant), modeling

either only the global adaptation, or the global and local adaptation of the

HVS. Global tone mapping algorithms apply the same function to all pixels

of the image, i.e. one input value results in one and only one output value.

They can be a power function, a logarithm, a sigmoid, or a function that

is image-dependent (see Chapter 2). Local tone mapping algorithms apply

different functions for different spatial pixel positions. In this case, one input

value can result in more than one output value depending on the pixel position

and on surrounding pixel values. A third class of tone mapping algorithms,

not treated here, are time-dependent (Pattanaik et al. 2000). They consider

adaptation over time for the mapping of video sequences.

In general, global tone mapping algorithms are fast and local tone mapping

methods are computationally more expensive. With global methods, look-up

tables can process the images even faster, which makes them suitable for in-

camera and/or video processing.

Global tone mapping methods are suitable for scenes whose dynamic range

corresponds approximately to that of the display device, or is lower. When

the dynamic range of a scene exceeds by far that of the display (HDR scene),

global tone mapping methods compress the tonal range too much, which results

in a perceived loss of contrast and detail visibility. A local processing is thus

necessary in addition to global compression for the reproduction to be visually
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appealing. Local processing allows to increase local contrast, which improves

the detail visibility of some parts of the image while the global compression

scales the image’s dynamic range to the output device’s dynamic range.

Figure 1.4 shows an example of an HDR scene that requires local processing

when displayed on an SDR monitor. The left image was rendered using just a

global tone mapping and the right image was rendered using our tone mapping

method described in Chapter 3 that combines global compression and local

processing. We observe that our method retrieves details in the shadowed part

of the scene, which remains too dark with just a global tone mapping.

Figure 1.4: Example of an HDR scene that requires local processing. Left:
Image rendered using a global tone mapping. Right: Image rendered with the
Retinex-based adaptive filter method described in Chapter 3 that combines global
compression and local processing.

HDR monitors whose dynamic range is close to that encountered in the real

world have just started to come on the market. These new monitors make it

possible to display HDR images without compressing the dynamic range much.

Thus, new tone mapping methods must be developed for the rendering of LDR,

SDR and HDR scenes to these displays. In addition, since a significant number

of images are already tone-mapped to SDR displays, it is necessary to develop

tone mapping algorithms that re-render theses images to HDR displays. This

conversion can be seen as the inverse operation of tone mapping.
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1.3 Tone Mapping and Color Images

The color in a displayed image can be represented by three numbers, usually

controlling colors red (R), green (G), and blue (B). A color image is thus

referred to as an RGB image, where each R, G, and B component is called

a color channel. Tone mapping can be applied to the three color channels

independently by performing the same operation three times. This is commonly

used for global tone mapping and provides good color rendition.

However, with local tone mapping, treating the R, G, B color channels in-

dependently may lead to bad color rendition (see Chapter 4). Another way

of applying a tone mapping algorithm to a color image is to transform the

RGB image into a luminance/chrominance representation where the achro-

matic and chromatic information are separated, and to process the achromatic

channel only. The luminance/chrominance image is composed of one luminance

channel containing the achromatic information and two chrominance channels

containing the color information. The chrominance channels are often encoded

with opponent colors (i.e. red-green and yellow-blue). In this context, the word

luminance is different from the physical quantity that we introduced earlier. It

refers to the achromatic content of the image and can represent the perceived

values if a non-linearity has been applied. Because it is often called “lumi-

nance” in the literature, we will keep the same term for both definitions while

asking the reader to remain attentive to that.

The color transform from an RGB image {R, G, B} to a luminance/chrominance

representation {Λ, C1, C2} can be performed by a linear transform as follows:

{Λ, C1, C2} = M ∗ {R, G, B}, (1.1)

where M is a 3× 3 matrix, Λ is the luminance channel, and C1, C2 are the

chrominance channels.

In general, these transforms are applied to non-linear RGB. In this thesis, we

use color transforms to decorrelate the color channels and process the luminance

only. We apply them on linear RGB.

Several color transforms have been standardized for different purposes. For

example, YUV, YIQ, YCrCb (Poynton 2003) are used in the television broad-

casting system and compression. CIE Lab, CIE Luv are used in colorimetry

to define perceptually uniform color spaces for color difference evaluation (CIE

15:2004 2004).
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1.4 Contributions and Overview

In this thesis, we focus on the reproduction of HDR scenes, i.e. scenes with

very large luminance ratios. Such scenes are problematic when shown on SDR

monitors since their dynamic range exceeds by far that of the display. Local

tone mapping can be used to increase the local contrast and thus reduce the loss

of detail visibility caused by the global compression. However, these algorithms

often introduce artifacts such as halos or graying-out of low contrast black and

white areas. Also, the rendition of color appears to be an issue to most existing

methods.

We propose a local tone mapping method based on the Retinex model of

color vision (Section 2.5) that renders HDR images to SDR displays while

solving the problems mentioned above. As halos are generally created along

high contrast edges, we use an adaptive filter that prevents areas separated by

a high contrast edge from influencing each other. Thus, the increase in local

contrast is performed only within an area of similar illumination. The benefit

of our adaptive filter is illustrated by an example where it helps removing

halos. The high contrast edges are detected using a Canny algorithm with fixed

thresholds. As an alternative, we propose the use of a boundary detector that

takes into account surround information. The local treatment is then weighted

by a sigmoidal function to conserve black and white low contrast areas. This

processing is applied only to the luminance channel to avoid color artifacts. The

application of our algorithm to HDR images shows that it efficiently increases

local contrast while preventing artifacts and providing good color rendition.

We then study the issue of color reproduction with local tone mapping

algorithms. We apply different local methods with different color transforms,

which convert an RGB image into a luminance/chrominance representation.

Our research shows that the correlation between luminance and chrominance

channels plays a role in the color rendition of the final image. However, a

perfect decorrelation is not always necessary.

While working on the rendering of HDR images, we create our own image

database. These images are either RAW images captured with a Canon camera

or radiance maps created with a multiple exposure technique, which enables

the capture of very high dynamic range scenes (Appendix A). The drawback

of this technique is that it is limited to still scenes. We propose an extension

of the multiple exposure technique to allow the capture of scenes with moving

objects (Appendix B).

With the development of HDR monitors, a global compression combined or

not with local contrast enhancement is no longer necessary. Nevertheless, it

raises new questions about how to take advantage of this increase in dynamic
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range when re-rendering images that were tone-mapped for standard displays

to HDR monitors. We address this issue for images representing HDR scenes,

which are often clipped or compressed by the capturing and rendering process.

We develop a tone scale function,2 whose goal is to recreate the brightness

of specular highlights (i.e. the reflections of light sources on metal or glossy

surfaces). This enhances the sense of naturalness of the re-rendered images

when displayed on an HDR monitor. We validate the benefit of our tone scale

with a psychovisual experiment. The results of the experiment show that with

HDR displays, allocating more display range to the specular parts of an image

than what was allocated when rendered to SDR is preferred over applying a

linear scaling.

1.4.1 Overview

Chapter 2 reviews global and local tone mapping methods. We start by de-

scribing basic global algorithms and continue with more sophisticated ones that

take inspiration from traditional photography techniques. Then, we present the

Retinex theory of color vision, which inspired several local tone mapping tech-

niques. We review local algorithms that are derived from Retinex followed by

other significant tone mapping methods.

Chapter 3 presents the Retinex-based adaptive filter method that we de-

veloped to render HDR images to SDR displays. We first present the treatment

of the luminance channel that includes a global pre-processing followed by a

local processing based on Retinex. The local processing uses an edge map

computed using a Canny edge detector. We propose an improved edge detec-

tor that uses surround suppression to differentiate texture edges from object

boundaries. We integrate it in our local processing instead of the Canny edge

detector and compare the results. We then discuss computational complexity

and describe a way to reduce it by applying the processing on a downsampled

image. Finally, we explain the processing of the chrominance. We show the

results of our algorithm applied to HDR images and compare them with images

rendered by state of the art methods.

In Chapter 4, we study the influence of the choice of color space for local

tone mapping methods. We apply two local tone mapping algorithms to the

luminance channel given by four different color transforms. We introduce a

measure to evaluate how well the color transforms decorrelate luminance and

chrominance information and relate it to visual results.

Chapter 5 proposes a tone scale function to convert images that were

rendered to standard displays into images rendered to HDR displays, with

2The term tone scale is used as a synonym of tone mapping.



1.4. Contributions and Overview 9

the goal of recreating the brightness of specular highlights. We describe the

psychovisual experiment that was conducted to validate the use of such a tone

scale. We provide a statistical analysis of the collected data and discuss the

results.

Chapter 6 presents an automatic way of computing the tone scale previ-

ously used in the psychovisual experiment. We propose a masking technique

to apply it locally and show the results on images.

Appendix A describes the generation of floating point images called ra-

diance maps, using a multiple exposure technique. Appendix B proposes a

ghost removal algorithm that extends this technique for the capture of HDR

scenes containing a moving object. Appendix C explains the processing ap-

plied to an image so that what is seen at the screen corresponds to the input

image.
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Chapter 2

Global and Local Tone

Mapping

2.1 Introduction

Global tone mapping algorithms range from basic functions (logarithm, power

function, sigmoid) to more sophisticated ones that are image dependent. Their

goals can be to approximate the HVS non-linearity, to compensate for the

display characteristics, or to render visually more appealing images.

In Section 2.2, we describe “simple” tone mapping functions. Image depen-

dent algorithms whose aim is to obtain visually pleasing images are presented

in Section 2.3. Then, Section 2.4 provides a method to scale the image black

and white points to the black and white points of the display. This scaling is

included in all global tone mapping algorithms and can be performed in many

ways. We present one technique that is subsequently used in Chapter 3.

Local tone mapping operators can be used in addition to global tone map-

ping to improve the local contrast. Many local tone mapping algorithms take

inspiration from a theory of color vision called Retinex. The goal of Retinex

is to recover the perceived colors from the captured scene radiances. In Sec-

tion 2.5, we present the Retinex theory and the experiments that lead to it.

Section 2.6 describes tone mapping operators derived from Retinex followed

by other local tone mapping operators not based on it (Section 2.7). Finally,

Section 2.8 reviews psychovisual experiments conducted for the evaluation of

existing tone mapping algorithms.

11
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2.2 Simple Global Tone Mapping

2.2.1 Logarithm

A logarithm function is often used to approximate the non-linear encoding

of the HVS. Thus, in the log-encoded image, equal steps in log-luminances

correspond to equal visual sensations. This enables a perceptually uniform

quantization where the perceived difference between two digital code values

remains constant over the digital code value range. Such a logarithm function

is used in the Retinex model of color vision that is described in Section 2.5 of

this chapter.

2.2.2 Power of 1
3

A logarithm function can be approximated by a power law with exponent 1
3 in

a given interval [1, 100]. These two functions are illustrated in Figure 2.1. The

power of 1
3 function is used in perceptually uniform color spaces such as CIE

Luv and CIE Lab (CIE 15:2004 2004) to model the HVS non-uniformity.
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Figure 2.1: Approximation of the luminances non-linear encoding performed by
the HVS.

2.2.3 Gamma

Display devices have a non-linear relationship between input voltage and dis-

play luminance. This non-linearity is described by a power law and is commonly

called gamma, referring to the numerical value of the exponent. The output of

a monitor can be modeled as follows:

L = V γ , (2.1)
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where V is the input voltage, γ is the gamma value of the display and L is

the luminance produced at the screen.

This non-linearity has to be inverted in order to display luminances that

correspond to those of the captured scene. To do so, each color channel of an

input image I is processed as follows:

I ′c = I
1
γ
c , (2.2)

where c denotes one of the R, G, B color channel of the input image I , and

I ′ is the gamma corrected image. The γ value depends on the monitor; a

common average value is 2.2.

In addition to compensating for the display non-linearity, an advantage of

the gamma encoding is that it approaches the functions described above that

model the HVS non-linearity. Thus, a gamma-encoded image is also approxi-

mately perceptually uniform.

Gamma Correction for Real Monitors

In practice, a pure power function is not sufficient to model real monitor char-

acteristics. Indeed, it forces zero voltage to map to zero luminance and can not

accommodate errors around zero voltage called black level errors. Black level

errors offset the curve upward or downward as illustrated in Figure 2.2.
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Figure 2.2: Example of black level error (dotted red curves) versus theoretical
model (solid blue curve).

A better model is obtained by using an offset to accommodate for black

level errors (Poynton 2003):

L = (V + e)γ , (2.3)
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where e models the black level error.

Gamma Correction with Adaptation to the Image Key

In addition to compensating for the output medium non-linearity, we may also

want to improve the reproduction of an image depending on its content. An

image can be characterized by its dominant tones, which is called the key.

The key of an image indicates whether it is subjectively light, normal or dark.

Tumblin and Rushmeier (1993), Reinhard et al. (2002), and Kuang et al. (2004)

approximated it by the log average luminance Λ:

Λ = exp(
1

N

∑

p∈I

log(ε + Λ(p))), (2.4)

where p is a pixel in the image I whose luminance channel is given by Λ,

N is the number of pixels, and ε is a small value to avoid singularities caused

by the presence of black pixels.

A good indication of an image key is given by the histogram of the luminance

channel. Figure 2.3 shows the histograms for a low key, normal key and high

key image (from top to bottom) as well as the corresponding images. For the

low key image, the histogram peaks toward the left end, representing the dim

tones. The histogram peak moves to the right as the key becomes higher, i.e.

the image becomes globally brighter.

The gamma exponent value may be adapted to the key of the image to

render more pleasing images. When rendering a low key image, it is desirable

to carry out gamma correction with a greater gamma value to improve detail

visibility in dim areas. Figure 2.4 shows an example of a photograph with γ = 1

(top left), γ = 2.2 (top right) and γ = 3 (bottom). We observe that with γ = 1

and γ = 2.2, the center of the image appears too dark. γ = 3 provides better

detail visibility.

In Chapter 3, we apply a power function with an adaptive exponent value

in addition to a logarithm for the pre-processing of very low key images. Other

methods (Holm 1996, Reinhard et al. 2002, Ward et al. 1997) also adapt the

shape of the tone mapping function to the key of the image. They are reviewed

in the next section.

2.3 Sophisticated Global Tone Mapping

Many global tone mapping methods take inspiration from the traditional pho-

tography technique called zone system (Adams 1971a, Adams 1971b, Adams

1972, White et al. 1977). The principle of the zone system is to define zones
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in a scene using physical measures and match them to output display zones.

Traditionally, the zones are indicated with roman letters with I indicating a

black zone containing detail and IX indicating a white zone also still contain-

ing detail. A crucial part of the zone system is to predict how the mapping

from scene to display zones will happen. Traditionally, a middle-gray surface

is mapped to zone V, the darkest object in the scene is mapped to zone I, and

the brightest object to zone IX.

Holm (1996) defines an s-shaped (sigmoidal) tone reproduction function.

The parameters are defined according to the zone characteristics of the input

scene (maximum luminance, mean luminance and minimum luminance) and the

output medium’s dynamic range. This method works well for SDR images but

is not always sufficient for HDR images as it may compress the local contrast

too much.

Braun and Fairchild (1999) also use a sigmoidal function, but apply it for

gamut mapping tasks. The sigmoid parameters are tuned according to the

input image statistics, such as mean and standard deviation.

The method of Reinhard et al. (2002) first maps the log average luminance

(2.4) to a display luminance value defined by the image key. If the image

is normal key, it is matched to the middle-gray of the displayed image. If

the scene is low key or high key, the log average is mapped to a lower or

higher value, respectively. As many scenes contain more information in the

midtones than in low and high luminance areas, s-shaped curves compress

these areas. Instead of an s-shaped curves, Reinhard et al. use a function

that only compresses the highlights. They also introduce a clipping since it

is not always desirable to bring all luminances within display range. A local

processing based on automatic dodging and burning photographic technique is

added when an increase in local contrast is necessary.

The histogram adjustment method of Ward et al. (1997) is not directly

inspired by the zone system but is based on similar principles. It is an extension

of histogram equalization, which redistributes pixel values so that the treated

image histogram has a uniform distribution. In the histogram adjustment

method, the histogram equalization is performed on the log luminance image

that was first low-passed, so that each pixel corresponds to an area of 1◦ of

visual field. The goal of histogram adjustment is to conserve the perceived

contrast while preventing details that were not visible to the human eye in the

original scene to become visible in the image after processing. In short, just

noticeable difference in the real world is mapped to just noticeable difference

on the display device. A model of glare is also used in the post-processing stage

to further improve the displayed image realism.
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Figure 2.3: Histograms for (a) low key, (b) normal key, (c) high key image (from
top to bottom).
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Figure 2.4: Example of gamma correction with different 1
γ

exponent values. Top
left: γ = 1. Top right: γ = 2.2. Bottom: γ = 3



18 Chapter 2.

2.4 Black and White Point Correction

Tone mapping always includes an operation that matches the perceived black

(image black point) to the darkest display luminance and the perceived white

(image white point) to the brightest display luminance. This operation is called

black and white point correction. It is critical for a pleasing reproduction of

images.

Black and white point correction can be automatically included in the tone

mapping algorithm such as with histogram equalization method, or it can be

performed as a pre- or post-processing in addition to the tone mapping oper-

ator. Here, we present the black and white point correction method that we

implemented as a post-processing of our tone mapping operator based on a

histogram scaling.

The black and white points of the input image can not simply be determined

by the darkest and brightest pixel. Indeed, one pixel can be an outlier due to

noise and not represent significantly the image content. Group of pixels of low

and high digital values must be used. One solution to define the black and white

points that significantly represent the image content is to use a histogram-based

method on the luminance image. The luminance image is obtained by applying

a color transform on the RGB image as described in Section 1.3.

A histogram is a mapping that counts the number of pixels whose value

falls in an given interval of the image encoding range. Each interval is called a

bin.

Let N be the number of pixels in the image and n the number of bins.

The histogram h(i) corresponds to the number of pixels in bin i and meets the

following condition:

N =

n
∑

i=1

h(i), (2.5)

where i is the index over the bins.

A cumulative histogram H is a mapping that counts the cumulative number

of pixels in all the bins up to to the specified bin j.

H(j) =

j
∑

j′=1

h(j′) (2.6)

H is a monotonically increasing function. The black and white points b and

w are defined by the pixel value associated to the bin number in which 1% and

99% of the image data points fall, respectively (illustrated in Figure 2.5).

The input image I is then linearly scaled by matching b and w to normalized

code values (2.7). Inew is encoded in the range [0,1]. The pixel values below
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b and above w are clipped to 0 or 1. The scaling is applied similarly to each

color channel c of I .

Inew,c(p) = min(1,
max(0, Ic(p) − b)

w − b
) (2.7)

Figure 2.5 shows an example of black and white point correction. The image

on the left is the original badly scaled image. We can see in the corresponding

histogram (bottom left) that only a few pixels have very low or high digital

values. The black and white correction defines new minimum and maximum

values and redistributes the pixel values over the image range. The resulting

image and histogram are shown in the right images of Figure 2.5.

Before black and white point correction After black and white point correction

1%

b w

99%

Figure 2.5: Example of black and white point correction using a histogram-based
method. Top left: Original badly scaled image. Bottom left: Badly scaled
histogram. The dark and bright extremities of the histogram form long tails. Top
right: Image after black and white point correction. Bottom right: Corrected
histogram.

2.5 The Retinex Theory of Color Vision

The Retinex theory, developed by Edwin Land, intends to explain how the

visual system extracts reliable information from the scene despite changes of

illumination (Land 1964, Land and McCann 1971, Land 1977). It is based
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on a series of experiments carried out with one or three projectors and a flat

surface made of color patches called a Mondrian1. This theory inspired the

development of several tone mapping algorithms presented later in this chapter.

2.5.1 Experiment with Black and White Mondrian

In a first experiment, a black and white Mondrian was illuminated uniformly

with a projector. The illumination falling on the gray patches was measured

by a light meter. Then, a filter was inserted in front of the projector so that

the illumination varied smoothly and monotonically over the vertical direction

of the Mondrian. The measured energy coming from the surface was changed

dramatically. Despite this change of illumination, the observer reported that

the perceived gray levels remained the same. Land varied the illumination in

different ways. In some cases, the black could have the same energy than the

white in a previous scene but the perceived gray level did not change. An

example of black and white Mondrian illuminated non-uniformly is given in

Figure 2.6.

Figure 2.6: Black and white Mondrian illuminated non-uniformly. The bottom is
brighter than the top but appears similar to an observer. This figure was taken
from (Land and McCann 1971).

2.5.2 Experiment with Color Mondrian

In a next experiment, the gray Mondrian was replaced with surfaces made of

colored papers, which were illuminated by three independent light sources of

short, medium, and long wavelength radiations.

1The stimuli were called Mondrian because they resembled the paintings of Pieter Mon-
drian (Pieter Cornellis Mondrian, Dutch painter, 1872-1944).
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Land used two identical color Mondrians. One was illuminated by three

monochromatic lights that could be varied and the other was illuminated by

a constant light. He selected one color patch from the first one and adjusted

the power of the three monochromatic light sources (R,G,B) so that the color

signal emitted by the selected color patch equates the color signal of the white

color patch in the second Mondrian. Even though the measured values were

the same, the observers did not perceive the same color when looking at both

Mondrians together. The white patch remained white while the selected color

patch retained the color given by its reflectances.

Land showed with these experiments that there was little correlation be-

tween the amount of radiation falling on the retina and the apparent lightness

of an object. He concluded that the perceived color of a unit area was deter-

mined by the relationship between this unit area and the rest of unit areas

in the image, independently in each wave-band, and did not depend on the

absolute value of light. In other words, ratios between color surfaces tend to

remain constant instead of absolute values. This was also studied by Foster

and Nascimento (1994) who showed by computational simulation that spatial

ratios of cone excitations were almost invariant under changes of illumination.

Land supposed the formation of lightness to occur partly in the retina and

partly in the cortex. He thus constructed the term Retinex for his theory of

color vision.

2.6 Retinex Computational Models

The Retinex theory of color vision is a simplified model of the HVS, thus making

it possible to apply it on images with a not too high computational complexity.

A large number of local tone mapping methods take inspiration from it.

A common principle of these methods is to assign a new value to each pixel

of an image based on spatial comparisons of the input pixel values. Their dif-

ferences are the order in which the pixels are addressed, as well as the distance

weighting functions.

2.6.1 Path Version

The primary goal of Retinex is to decompose the image into the reflectance

image and the illuminant image to remove the illumination effect and retain

the lightness of the objects. Land implemented an algorithm called path-based

Retinex (Land 1964). This algorithm computes subsequent additions of pixel

differences along a set of one-dimensional random paths contained in the image

(2.8). A threshold operation T is added to remove the effect of smooth illumi-
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nant (2.9). The new value of each pixel, which represents the lightness image

(i.e. the perceived reflectance of objects in their surround, independent of the

illuminant) is determined by the average over all paths (2.10). These operations

are performed independently in each color channel. The log-encoded image is

used such that ratios become differences and products become additions.

The image computed by Retinex (called Retinex image) along a path Γ, at

pixel p is noted RΓ
c (p) and is given by:

RΓ
c (p) =

∑

k∈Γ,k<p

T [log(Ic(k + 1)) − log(Ic(k))], (2.8)

where Ic(k) is the pixel value at pixel k for color channel c and T is a

threshold operator. Here the operation k < p is true if pixel k is located before

p along the path Γ.

T [x] =

{

0 x < threshold

1 otherwise
(2.9)

Finally, the Retinex image is averaged across different paths:

Rc(p) =
1

K

K
∑

Γ=1

RΓ
c (p), (2.10)

where Rc(p) is the reflectance estimate for pixel p in color channel c and K

is the number of paths.

The generation of random paths is a non-trivial problem. It can be per-

formed in various ways and leads to different results. Rizzi et al. (2003) have

developed a Retinex path-based version using Brownian motion for path gen-

eration. This idea was first proposed in 1993 (Marini and Rizzi 1993) and is

inspired by the results of neurophysiological research on human cortical vision

areas, where the distribution of receptive fields’ centroids can be approximated

by Brownian motion. This way of generating paths has also been applied by

Finlayson et al. (2002) to remove shadows in an image. An extension of this

work uses a Hamiltonian path that visits each pixel once (Fredembach and

Finlayson 2005).

A major drawback of the Retinex path version is that it does not converge

to a stable solution. In particular, the final value of a pixel depends on the

choice of paths. This instability raised the interest of researchers that started

to formalize the algorithm and study its convergence.

Horn (1974) reformulated Land’s Retinex and showed that the illuminant

can be estimated using a two-dimensional Laplacian. Brainard and Wandell

(1986) attempted to formally describe the Retinex model focusing on path gen-
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eration. They demonstrated that the process is stochastic (due to the random

order in which pixels are compared) and is well described by a Markov model.

They studied the convergence properties of Land’s Retinex and showed that,

as the number of paths and their lengths increase, the result converges to a

simple normalization by the maximum pixel value. Hurlbert (1986) formalized

the Retinex theory mathematically and showed that it is equivalent to solving

a Poisson equation. She reviewed several algorithms based on Retinex and

put them into a compact and single mathematical form. She postulated that

the full solution is given by Green’s theorem2 and demonstrated that these

algorithms can be seen as an approximation to the real solution.

In addition to its lack of formalism, the practical problems with the Retinex

path version are high computational complexity and free parameters, such as

the number of paths, their trajectories, and their lengths.

An interesting approach to Retinex is provided by Kimmel et al. (Kimmel

et al. 2003, Elad et al. 2003). They showed that Retinex can be formulated

as a quadratic programming optimization problem. As decomposing the im-

age into reflectance image and illumination image is mathematically ill-posed

(West and Brill 1982), they redefined the problem using physically motivated

considerations such as illumination smoothness and limited dynamic range of

the reflectances. Adding these constraints allows their algorithm to converge

to a unique solution, the optimal illumination. However, the computational

complexity of quadratic programing optimization is high since each pixel is an

unknown to the minimization formula. In a later article, Elad et al. (2003)

propose several methods for reducing the complexity of the above approach by

restricting the solution to have a pre-defined structure using either a look-up

table, linear or non-linear filters, or a truncated set of basis functions. These

simplifications involve less free parameters and yield reasonable yet sub-optimal

results.

2.6.2 Iterative Version

The iterative version of Retinex is a two-dimensional extension of the path

version. It computes a new value for each pixel by iteratively comparing pixels

in the image (Frankle and McCann 1983, McCann 1999, Funt et al. 2004). The

algorithm starts by computing long-distance shifts between pixels and then

progressively moves to shorter distances. Like the path version, it is based on

four basic operations, ratio, product, reset, average. The reset operation is

different than the threshold as it acts as a clipping to the maximum value. In

2Green’s theorem expresses the relationship between surface and line integrals of a scalar
function.
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(2.12), the maximum value is 1. New pixel values are computed as follows for

each color channel c:

Rj
c(p) =

Ω[log(Ic(p)) − log(Ic(p + δ)) + Rj−1
c (p + δ)] + Rj−1

c (p)

2
, (2.11)

where

Ω[x] =

{

1 x > 1

x otherwise,
(2.12)

δ is the pixel shift for comparison, and j is the index for recursive iteration.

One shift is defined by the distance between the treated pixels and a direction.

Equation (2.11) is iterated an arbitrary number of times for each shift. It is

repeated for four directions corresponding to horizontal and vertical shifts and

for each shift distance. The shift distance starts from δ = 1
2 × the image size

in one dimension and is then divided by two until δ = 1 is reached.

The drawback of this implementation is that the number of iterations, which

controls the degree of spatial interaction is not defined and has a critical effect

on the final result. One iteration is generally not enough and an infinite number

of iterations would converge to an output image that corresponds to the input

image scaled by its maximum. Although attempts to automatically define the

number of iterations using an early stopping technique have been carried out

(Ciurea and Funt 2004), it remains an important issue.

Sobol (2004) contributes to the improvement of the Retinex iterative version

by introducing a ratio modification operator in the form of a look-up table. This

additional operation allows a better compression in high contrast areas while

increasing the visibility in low contrast areas and thus improve the rendering

of HDR images. However, the problems of non-convergence and non-defined

parameters remain.

2.6.3 Surround-Based Version

A non-iterative version of Retinex called center/surround or surround-based

was proposed by Land (1986). With surround-based Retinex, each pixel is

selected sequentially and treated only once. New pixel values are given by the

ratio between each treated pixel and a weighted average of its surround.

Based on the early work of Land, Jobson and Rahman (Jobson et al. 1997,

Rahman et al. 2004) developed a method called Multi-Scale Retinex with Color

restoration (MSRCR). A single-scale Retinex image Rc,σ is computed for three

different surround scales (2.13). The weighted average of each scale is given
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by a two-dimensional Gaussian filter Gσ of spatial constant σ. σ is usually

defined by a ratio of the image size. Logarithmically, the ratio is expressed as

a difference operator:

Rc,σ(p) = log(Ic(p)) − log(Ic(p) ∗ Gσ), (2.13)

where c indicates one color channel and the two-dimensional Gaussian filter

is given by (2.14) for p, a pixel of coordinate (x, y).

Gσ(x, y) =
1

2πσ
e−

x2+y2

2σ2 (2.14)

The multi-scale version aims to improve the results obtained with one scale.

The final image is simply the average of the three single-scale Retinex.

Rc(p) =
1

3
(Rc,σ1(p) + Rc,σ2(p) + Rc,σ3(p)). (2.15)

In addition, a color restoration factor is introduced to compensate for the

loss of color saturation inherently present in their method. This color correction

greatly enhances the saturation but does not ensure a correct rendition of colors

(Barnard and Funt 1998).

In a previous work, we proposed a method based on MSRCR (Meylan and

Süsstrunk 2004a). Instead of using three single-scale Retinex, all spatial con-

stants are included into a single filter. The algorithm is applied to the lumi-

nance channel and no color restoration is added. Figure 2.7 gives an example

of our filter and the three MSRCR filters.

Rahman et al. 2004 Meylan and Süsstrunk 2004

Figure 2.7: Example of filters used for MSRCR of Rahman et al. 2004 (left) and
the filter used in Meylan and Süsstrunk 2004a (right).



26 Chapter 2.

iCAM (Fairchild and Johnson 2004) is another rendering algorithm based

on spatial properties of vision (local adaptation and spatial filtering). The

first stage of iCAM accounts for chromatic adaptation. The adapted image is

transformed into an opponent representation. Then, a local treatment using

Gaussian kernels is applied to the luminance only. Unlike other surround-

based methods, it is a complete model of image appearance and quality. It was

specifically developed to render HDR images.

Common drawbacks of surround-based local tone mapping methods are the

possible appearance of halo artifacts around light sources and graying-out of low

contrast areas (see Figure 2.8). Some of the Retinex-based methods mentioned

above accounted for theses problems: Kimmel et al. (Kimmel et al. 2003,

Elad et al. 2003) added a halo reduction term in their quadratic programming

optimization formulation. The methods of Sobol (2004) also contributes to

reducing halo artifacts by introducing a ratio modification operator.

2.7 Solving the Halo Artifact Problem

Halo artifacts and local graying-out are well-known issues when rendering HDR

images. Using a local operator involves a trade-off between the increase in local

contrast and the rendition of the image: a strong increase in local contrast

leads to artifacts while a weak increase in local contrast does not provide the

expected improvement of detail visibility. Halo artifacts are due to the local

filtering of two areas of very different illumination. For example, if a dim area

is close to a bright window, the bright pixels influence the processing of the

dim pixels, which causes a black halo around the bright area. Moreover, local

filtering tends to make pure black and pure white low contrast areas turn gray.

These phenomena are illustrated in Figure 2.8. The top image was obtained

with single-scale Retinex using a small spatial constant. Detail visibility is

improved but undesirable shadows (halos) appear along high contrast edges

and the black t-shirt looks washed out. The shadow on the face of the person

is a halo artifact due to the bright window. The bottom image was obtained

with the same method using a larger filter. No artifacts are created but the

increase in local contrast is not satisfying.

These issues were addressed by a number of local tone mapping methods

not based on Retinex. Tumblin and Turk (1999) propose a method called

Low Curvature Image Simplifiers (LCIS) to increase the local contrast while

avoiding halo artifacts. LCIS uses a form of anisotropic diffusion to enhance

boundaries while smoothing non-significant intensity variations. This method

does not take into account whether details are visibly significant. Consequently,

the resulting images tend to look unnatural due to excessive detail visibility.
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Fattal et al. compress the dynamic range using a gradient attenuation function

defined by a multiresolution edge detection scheme (Fattal et al. 2002). A new

image of lower dynamic range is obtained by solving a Poisson equation on

the modified gradient field. This approach provides good results but requires

parameter tuning. Reinhard et al. (2002) developed a local method based on

the photographic dodging and burning technique. They use a circular filter,

whose size is adapted for each pixel by computing a measure of local contrast. A

related method was proposed by Ashikhmin (2002), which computes a measure

of the surround luminance for each pixel. This measure is then used for the

definition of the tone mapping operator. Both methods provide an efficient

way of compressing the dynamic range while reducing halo artifacts. However,

the restriction to a circular surround limits their performance. DiCarlo and

Wandell (2000) investigated tone mapping algorithms and the creation of halo

artifacts. They suggest the use of robust operators to avoid these. A robust

Gaussian includes a second weight that depends on the intensity difference

between the current pixel and its spatial neighbors. This technique preserves

the sharpness of large transitions. A recent approach based on LCIS and robust

operators was proposed by Durand and Dorsey (2002). Their method renders

HDR images using bilinear filtering, an alternative for anisotropic diffusion. It

does not attempt to imitate human vision.

2.8 Evaluation of Tone Mapping Algorithms

Considering the numerous existing tone mapping algorithms, being able to as-

sess their quality has become an important issue. Subjective methods of com-

parisons have been performed under the form of psychophysical experiments.

However, since each of the tone mapping algorithms has different strengths

and weaknesses and different reproduction goals, it is difficult to draw general

conclusions. Tone mapping algorithms have to be tested against perceptual at-

tributes and with a large variety of scenes. Here, we review existing evaluation

procedures although our algorithm has not yet been tested by any of them.

Drago et al. (2003) asked observers to judge similarity and dissimilarity of

pairs of tone-mapped images. They obtained psychophysical scale values for

three perceptual attributes (apparent image contrast, apparent level of details,

apparent naturalness). They analyzed the results for the perceptual attributes

in a “stimulus space” derived from the analysis of dissimilarity rating.

Kuang et al. (2004) developed a paired comparison using eight tone mapping

algorithms and ten HDR images. Observers were presented two tone-mapped

images and selected the one they prefer according to different perceptual at-

tributes. General rendering performance, tone compression, natural appear-
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ance, color saturation, image contrast and image sharpness were evaluated.

Yoshida et al. (2005) performed a comparison with real scenes. Observers

stood in front of a real scene that was captured prior to the experiment. It

was then rendered using different tone mapping methods and displayed on a

standard monitor. The subjects could browse through the tone-mapped images

and had to rank them with respect to perceptual attributes, using the real scene

for comparison. Tested attributes were image naturalness, overall contrast,

overall brightness, and detail reproduction in the dark and bright regions.

Ledda et al. (2005) proposed a psychophysical experiment to validate six

tone mapping operators against a reference image displayed on an HDR moni-

tor. Using an HDR display rather than direct comparison with real scene pro-

duces less uncontrolled variables. Observers were presented two tone-mapped

images on an SDR display along with the reference scene projected on the HDR

display. Their task was to choose the image that matches the best the reference

scene. Overall similarity to reference and detail reproduction were tested. The

data were studied with a multiple comparisons score test. For the first task of

overall similarity, the iCAM algorithm (Fairchild and Johnson 2004) and the

photographic operator of Reinhard et al. (2002) performed the best. For the

second task of detail reproduction, the local eye adaptation (Ledda et al. 2004)

which is based on Pattanaik’s model (Pattanaik et al. 1998), had the best score.

Histogram adjustment (Ward et al. 1997) had a fair overall performance. It is

interesting to note that algorithms such as the bilateral filtering (Durand and

Dorsey 2002) that were well ranked in other comparisons did not obtain a good

score in this experiment due to the presence of a reference image.

2.9 Conclusion

Global tone mapping methods are essential to display visually appealing im-

ages. Not only they perform the mapping between the scene’s to the display’s

dynamic range and compensate for the display non-linearities, but they can

also treat the image differently according to scene statistics. In addition to

global tone mapping, a local tone mapping may be applied to improve local

features of the image.

The Retinex theory of color vision has often served as a basis for local tone

mapping algorithms. Most of these methods give satisfying results for SDR

images. However, in the case of HDR images, halo artifacts start to appear as

well as graying-out of black and white low contrast areas. In the next chapter,

we propose a method to solve the problem of halo artifact using a variant of

the surround-based Retinex.
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Figure 2.8: Example of the trade-off between increase in local contrast and image
rendering. Top: Image treated with single-scale Retinex using a small scale. The
increase in local contrast is significant but halo artifacts are visible along high
contrast edges and the black t-shirt looks washed-out. The shadow on the face of
the person is a halo artifact. Bottom: Image treated with single-scale Retinex
using a large scale. There is no halo artifact nor graying-out but the increase in
local contrast is not sufficient.
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Chapter 3

The Retinex-Based Adaptive

Filter Tone Mapping Method

3.1 Introduction

This chapter presents our local tone mapping algorithm that renders HDR

images to SDR displays. It belongs to the class of surround-based Retinex

algorithms (Land 1986, Rahman et al. 2004, Meylan and Süsstrunk 2004a) but

differs in many ways. First, an adaptive filter is used instead of the traditional

circular surround, thus avoiding halo artifacts. Then, the local processing is

weighted by a sigmoidal function to conserve black and white low contrast areas.

Finally, instead of treating the R, G, and B color channels independently, we

treat the luminance channel only to ensure good color rendition.

Figure 3.1 shows the global framework of our method that processes the

luminance and the chrominance in parallel. The left part describes the global

processing that is applied to the RGB input image I , which is linear with

respect to scene radiances and encoded with RGB primaries, and the right

part shows the local processing applied to the luminance channel only. The

luminance channel Λ is obtained by performing a principal component analysis

(PCA) on the input image. A PCA is a statistical procedure that transforms

a set of correlated variables into a set of uncorrelated variables called principal

components. The transform is given by the eigen vectors of the covariance ma-

trix computed for the centralized data (i.e. the mean of the data is subtracted).

The first principal component corresponds to a vector that provides the largest

variance of projected data. Applied to an RGB image, it provides a represen-

tation where the first principal component corresponds the luminance channel

Λ, and the second and third components correspond to the chrominance chan-

31
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nels C1, C2 (Buchsbaum and Gottschalk 1983). With PCA, the luminance is

decorrelated from the chrominance, which allows the color to remain relatively

unchanged despite the processing of the luminance.

This chapter is structured as follows: Section 3.2 presents the processing

applied to the luminance channel illustrated in the right part of Figure 3.1. It

describes the global compression followed by the local processing. The local

processing includes the construction of a mask using an edge map, and the

application of a sigmoidal function that weighs the effect of the local filtering.

Section 3.3 presents an alternative to improve the edge detection and shows

the results obtained by applying our method using the new edge map. Then,

Section 3.4 describes the color image processing illustrated in the left part of

Figure 3.1. The PCA transform and the saturation enhancement are described.

In Section 3.5, we analyze the computational complexity of our method. We

propose a way to reduce it by computing the mask on a downsampled version

of the image. Finally, Section 3.6 provides comparisons with other methods

that are state of the art; we discuss the different properties of these methods

and show our results. A conclusion is given in Section 3.7.
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Figure 3.1: Simplified global framework. Our method uses parallel processing;
one for luminance and one for chrominance. A first global compression is applied
to both the luminance image Λ and the linear RGB image I . Then, the Retinex-
based adaptive filter method is applied to the logarithm of the globally corrected
luminance Λ′ (see 3.2.2) while a logarithm is also applied to the globally corrected
RGB image I ′. I ′ is then transformed into a luminance/chrominance encoding
through PCA. Its first component is replaced by the treated luminance Λnew (3.17).
The image thus obtained is transformed back to RGB.
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3.2 The Retinex-Based Adaptive Filter Method: Lu-

minance Processing

3.2.1 Step 1: Global Tone Mapping

Our algorithm consists of two parts: a preliminary global tone mapping followed

by the Retinex-based local processing. The global tone mapping that is applied

to the linear luminance image Λ performs a first compression of the dynamic

range. It can be compared to the early stage of the human visual system where

a global adaptation takes place (Alleysson and Süsstrunk 2002, Poynton 2003).

We design our global tone mapping function to be similar to the adaptation of

photoreceptors, which can be approximated by a power function. The curvature

of the function that determines the adaptation state depends on the mean

luminance of the total field of view (Alleysson and Süsstrunk 2002).

The average image luminance Λav is computed by taking the average of the

log-encoded pixels:

Λav =

∑

p∈I ln(Λ(p))

N
, (3.1)

where N is the number of pixels and p is a pixel in I . Λ is the luminance

given by the first principal component of a PCA applied to the RGB image I .

It is encoded linearly and normalized to 1 but in order to perform the logarithm

operation, it is temporarily scaled to a maximum value of 100.

The non-linear luminance Λ′ is given by

Λ′(p) = Λ
1
γ (p), (3.2)

where the value of 1
γ

is an affine function of the average luminance Λav

(3.3). The resulting luminance image Λ′ is still normalized to 1.

1

γ
= min (1,

1

6
Λav +

2

3
). (3.3)

The coefficients of the affine function were defined experimentally as fol-

lows: a high or normal key image is not globally compressed and is therefore

assigned 1
γ

= 1. As the average luminance decreases, the exponent 1
γ

decreases,

increasing the sensitivity for dark areas.

3.2.2 Step 2: Local Adaptation

After global processing, local adaptation is performed using a surround-based

Retinex method. Traditionally, surround-based Retinex methods (Land 1986,

Rahman et al. 2004, Meylan and Süsstrunk 2004a) compute a new value for
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each pixel by taking the difference between the log-encoded treated pixel and

the log-encoded value of a mask (3.4). Here, we use a natural logarithm (ln)

but a logarithm in base 10 (log) could be used as well. The mask represents a

weighted average of the treated pixel’s surrounding area.

Λ′′(p) = ln(Λ′(p)) − ln(mask(p)), (3.4)

where Λ′ is the non-linear luminance image computed in (3.2) and mask

is computed by convolving the luminance Λ′ with a surround function (i.e. a

two-dimensional filter).

The Sigmoidal Weighting Function

A drawback of surround-based methods is that small filters tend to make pure

black or pure white low contrast areas turn gray, due to the local normalization.

We overcome this problem by introducing a weighting factor β(p) that ensures

the conservation of white and black areas.

With our method, each pixel value of the treated luminance image Λ′′ is

computed as follows:

Λ′′(p) = ln(Λ′(p)) − β(p) · ln(mask(p)), (3.5)

Both Λ′ and mask are encoded in floating points in the range [0,1]. To

compute the logarithm, we temporarily scale them to a larger range and clip

them to a minimum value of 0.1. The logarithm is thus performed in the

range [0.1,100]. The log-encoded Λ′ and mask that we call Λ′
ln and maskln,

respectively are then normalized back to 1. The operation performed by (3.6)

and (3.7) lets Λ′
ln and maskln have negative values. However, since maskln

represents a low-pass version of the image, most of the very small values have

disappeared. In practice, maskln is unlikely to have negative values.

Λ′
ln(p) =

1

ln(100)
· ln(max(0.1, Λ′(p) ∗ 100)) (3.6)

maskln(p) =
1

ln(100)
· ln(max(0.1, mask(p) ∗ 100)) (3.7)

We thus reformulate (3.5):

Λ′′(p) = Λ′
ln(p) − β(p) · maskln(p), (3.8)

The log operation performed on Λ′ and mask in (3.6) and (3.7) can be

approximated by a power function of exponent 1
6 (illustrated in Figure 3.2).

Compared to a logarithm in the range [1,100], which can be approximated by
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y = x
1
3 (generally used to model the HVS non-linearity), our log operation

expands the shadows more (Figure 3.2). This helps retrieve details in dark

areas but also has the drawback of compressing the highlights extensively, as

shown later in Figure 3.6.

Shadows Midtones Highlights
 

 

ln 1:100
ln 0.1:100

y=x1/3

y=x1/6

Figure 3.2: Comparison of a logarithm function applied in the range [1,100] and
[0.1,100]. These functions can be approximated by a power law of exponent 1

3 and
1
6 , respectively.

As for β, it weighs the mask depending on the pixel values of Λ′
ln:

β(p) = 1 − 1

1 + e−10·(max(Λ′

ln
(p),0)−0.5)

. (3.9)

The β factor is based on a sigmoid function (Figure 3.3). It maps the white

to white and the black to black, which is necessary to obtain visually pleasing

images. For a pixel of high intensity, the mask is weighted by a value close to

0. Since the mask is subtracted from the log-encoded luminance, it effectively

keeps the pixel bright. Similarly, a pixel of low intensity is weighted by a value

close to 1, which has the effect of maintaining black. This function lets the

middle gray values change without constraint while restricting the black to

remain black and the white to remain white.

Λ′′ resulting from (3.5) may have negative values. A final processing is

needed to remove outliers and to scale the luminance in the range [0,1] before

it is integrated back in the color image. This is done using histogram scaling

and clipping (Section 2.4). Λ′′ is scaled to [0,1] with 1% of its pixels clipped at

both extremities of the histogram.

The scaled luminance image Λnew is computed as follows:

Λnew(p) = min(1,
max(0, Λ′′(p) − b)

w − b
), (3.10)

where b and w are given by the pixel values associated to the histogram bin
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Figure 3.3: Illustration of the β(p) function that weighs the mask according to
the log luminance value.

in which 1% and 99% of the image data points fall, as explained in Section 2.4.

The Adaptive Filter

Another important drawback of surround-based Retinex methods is that there

is a trade-off between the increase in local contrast and a good rendition of

the image (Section 2.7). A small surround allows a significant increase in local

contrast but induces halo artifacts along high contrast edges. Using a larger

surround reduces the artifacts, but provides less increase in local contrast. This

trade-off has already been mentioned by Jobson et al. (1997) and Barnard and

Funt (1998), remarking that MSRCR caused halo artifacts along high contrast

edges.

Our adaptive filter method prevents halo artifacts by adapting the shape of

the filter to the high contrast edges in the image. The position of the edges are

given by a binary map (Figure 3.5). Since the filter follows image contours, a

bright area has less influence on the treatment of a neighboring dim area. This

modification does not change the principle of Retinex surround-based methods,

that is, to compute the difference between each pixel value and a weighted

average of its surround. What changes with the adaptive filter method is the

way the mask is computed. Since the filter is different for each pixel, it is not

possible to use a convolution anymore. The mask is thus computed specifically

for each pixel (3.11). The weighted sum of pixels is normalized by the sum of

weights so that each pixel has an equal contribution to the mask even if it is

surrounded by edges.
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mask(x, y) =

∑360
θ=0

∑rmax

r=0 Λ′(x + r · cos(θ), y + r · sin(θ)) · e
− r2

σ2
θ,r

∑360
θ=0

∑rmax

r=0 e
− r2

σ2
θ,r

, (3.11)

where (x, y) is the coordinate of pixel p. θ is the angle of the radial direction,

r is the distance to the central pixel and σθ,r is defined as follows:

σθ,r =

{

σ0 no high contrast edge was crossed along r with θ const.

σ1 a high contrast edge was crossed along r with θ const.

Equation (3.11) can be interpreted as follows. The value of the mask at

coordinate (x, y) is given by a weighted average of pixels surrounding the posi-

tion (x, y). The weights of surrounding pixels are given by a Gaussian function,

whose spatial constant varies according to the image high contrast edges. It is

done by selecting one pixel after the other in a radial manner. The first pixel

to be selected is the central pixel. Then, all pixels along a radial direction are

added, weighted by a Gaussian function with spatial constant σ0. If an edge is

crossed along the radial direction, σθ,r is assigned a smaller value σ1 and keeps

the same value until r = rmax with rmax = 3 ·σ0. For each new radial direction,

σθ,r is reset to its initial value σ0. The weighted sum of pixels continues for

each direction until the surround is completed.

Some limitations of precision arise from the fact that a pixel has only 8

neighbors. For simplification, we described the mask computation with an

iterative process. Practically, this process is performed recursively starting

from the center, as illustrated in Figure 3.4. It is thus possible to explore more

than eight directions since each time a pixel is visited, three directions are

added in the process. Each pixel is used only once in the weighted sum.

central pixel

Figure 3.4: Illustration of the recursive process that visits each pixel in the sur-
round.
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The numerical values for σ0 and σ1 are chosen to be fractions of the image

size ( 1
16 for σ0). Experimentally, we have found that σ1 needs to be at least

1
2σ0 to avoid halos in most of our images. We did not use σ1 = 0 to ensure

that no artifacts will be introduced by the hard threshold even when the edge

is very close to the treated pixel.

Construction of the Edge Map

We use a Canny edge detector to detect high contrast edges (Canny 1986). The

Canny method finds edges by looking for local maxima of the image gradient.

It detects strong and weak edges. Weak edges appear in the output only if

they are connected to strong edges. The thresholds for strong and weak edges

are fixed values chosen experimentally and kept the same for all images. Fixed

thresholds are desirable since we only want to detect high contrast edges. It

is thus possible to obtain no edge for an image that has no high contrast edge

and where circular, non-adaptive surrounds are sufficient.

The construction of the filter according to a segmented image is illustrated

in Figure 3.5. The top left and top right images represent the original image

and its corresponding edge map, respectively. The filter was computed for

the pixel indicated by the cross using (3.11). The bottom image shows the

corresponding adaptive filter.

Some Limitations of the Method

Our method works best for low key images containing important details in dark

areas. It efficiently increases the local contrast in the shadow while preventing

halo artifacts. However, it is not adequate for high key images as the logarithm

operation applied in the range [0.1,100] (3.6) tends to compress the highlights

too much. This effect is illustrated in Figure 3.6. With this image, our al-

gorithm was able to retrieve details in the room but the outdoor details seen

through the window are compressed extensively.
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Figure 3.5: Construction of the adaptive filter for the pixel indicated by the cross.
Top left: Luminance image Λ′. Top right: Luminance image segmented with
a Canny edge detector. Bottom: 3D representation of the filter corresponding to
the pixel indicated by the cross.
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Figure 3.6: Limitation of the method. Top: Gamma-encoded image. Bottom:
Image treated with our method. Our algorithm was able to retrieve details in the
room but the outdoor details seen through the window are compressed too much.
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3.3 An Alternative to Canny Edge Detection using

Surround Suppression

The drawback of Canny operator (Canny 1986) is that it only detects local

luminance changes and thus can not make a distinction between texture edges

and object boundaries. Despite the high threshold value that we use, texture

edges may appear in the edge map controlling the adaptive filter. For our

Retinex-based adaptive filter algorithm, it would be interesting to make this

distinction and only retain edges corresponding to region boundaries illumi-

nated by two different illuminants.

We implemented a boundary detector based on the work of Grigorescu et

al. (Grigorescu et al. 2004, Grigorescu et al. 2003)1. Their method takes

inspiration from the surround suppression mechanisms of the HVS and allows

to distinguish between texture edges and object boundaries.

In this section, we study the advantage of this boundary detector compared

to a Canny edge detector. We then include the boundary detection algorithm

in our Retinex-based adaptive filter method and compare the resulting images.

3.3.1 Surround Suppression in the Human Visual System

Surround suppression or equivalently called non-classical receptive field inhibi-

tion takes place in the early stages of the HVS visual information processing

(Petkov and Westenberg 2003). It changes the perception of a stimulus depend-

ing on the presence of other such stimuli in the surrounding neighborhood. In

other words, the response of a neuron to a stimulus is reduced by the addition

of stimuli in the surround. There exist two types of surround suppression: the

anisotropic surround suppression that takes into account the relative angle of

the stimuli, and the isotropic surround suppression that is independent from the

stimuli angle. In the anisotropic behavior, the inhibitory effect is small when

the orientations of the surround stimuli are orthogonal to the central stimulus.

In the isotropic behavior, the inhibitory effect is present irrespectively of the

relative orientation of the surround stimuli.

3.3.2 A Boundary Detector

Grigorescu et al.’s method (Grigorescu et al. 2004, Grigorescu et al. 2003)

integrated a surround suppression step in a Canny-like edge detector so that

the edges in an image that are part of a texture are suppressed while edges

that belong to a an object contour or region boundary are retained. First, the

1This work was done in collaboration with Sebastian Pittet (semester project, June 2005).
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magnitude of the input image gradient is computed to detect the high contrast

local luminance changes. The image resulting from this first step is called the

magnitude image and is noted U :

U(x, y) =
√

(∇xΛ′(x, y))2 + (∇yΛ′(x, y))2, (3.12)

where Λ′ is the non-linear luminance image resulting from (3.2) and (x, y)

is the coordinate of a pixel in the image.

The surround suppressed image E is obtained by subtracting an inhibition

term Υ to the magnitude image U . Thus, the importance of texture edges is

reduced.

E(x, y) = U(x, y) − α · Υ(x, y), (3.13)

where α is a factor that determines the extent of the inhibition.

The suppression step can be isotropic or anisotropic. Here, we only use

isotropic surround suppression as we saw with our natural images that the

stimuli relative angle did not influence the results much. For isotropic suppres-

sion, the inhibition term Υ is given by the convolution between the magnitude

image U and the normalized difference of Gaussian operator (DoG).

Υ(x, y) = U(x, y) ∗ g, (3.14)

where

g =
DoG(x, y)

‖DoG(x, y)‖ (3.15)

and

DoG(x, y) =
1

2π(4σ)2
e
−

x2+y2

2(4σ)2 − 1

2πσ2
e−

x2+y2

2σ2 . (3.16)

The next two steps, similar to Canny edge detection, include thinning the

detected edges by non-maxima suppression and a binarization using hysteresis

thresholding. They are applied on the surround suppressed image where edges

are characterized by high pixel values (close to 1). A pixel value close to zero

indicates the absence of an edge. As the edges of the surround suppressed

image can be a few pixel wide, they must be thinned to single pixel. Thinning

by non-maxima suppression transforms the wide edges into single pixel edges

and position them at the location of greatest magnitude. This results in a

thinned image which still has to be transformed into a binary map also called

edge map (Figure 3.7 and Figure 3.8). This binarization operation must remove

false edges while preserving true edges connectivity. This is done by using two
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different threshold values. The first threshold detects strong edges, and the

second threshold detects weak edges. The binary edge map includes strong

edges, and weak edges under the condition that they are linked to strong edges.

This method is called hysteresis thresholding. Images (a) to (d) of Figure 3.7

and 3.8 illustrate each of these steps and (e) is the resulting edge map. Image

(f) shows the edge map obtained by a simple Canny edge detection when using

the same parameters than for (e). We see that the surround suppression step

brings an improvement over a simple Canny edge detection.

3.3.3 Using Surround Suppression with the Adaptive Filter

Method

Figure 3.9 and 3.10 compare the images obtained by our Retinex-based adaptive

filter method using either an edge map computed by a simple Canny edge

detector (top left) or by the boundary detector using surround suppression (top

right). The top images show the edge maps while the middle and bottom images

show the corresponding final images rendered by our Retinex-based adaptive

filter algorithm. We see that the spatial processing is performed differently,

which induces visual differences in the final image. However, it is difficult to

judge which one of the two edge detection methods provides the most visually

pleasing images.

This study leads to the conclusion that the addition of a biologically mo-

tivated step to the traditional Canny algorithm could potentially improve the

result of the Retinex-based adaptive filter. Nevertheless, further investigation

and testing is needed to fully validate this statement.
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Magnitude image

(b)

Surround suppressed magnitude image

(c)

(a)

Original image

Figure 3.7: Illustration of the different steps of the boundary detection using
surround suppression method of Grigorescu et al. and comparison with a simple
Canny edge detection. (a) Original image. (b) Magnitude image. (c) Magnitude
image after surround suppression.
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Thinned image

(d)

Edge map after hysteresis thresholding

(e)

Canny edge detection

(f)

Figure 3.8: Illustration of the different steps of the boundary detection using
surround suppression method of Grigorescu et al. and comparison with a simple
Canny edge detection. (d) Image after thinning by non-maxima suppression. (e)
Edge map obtained after applying a hysteresis thresholding on (d). (f) Edge map
obtained with a simple Canny edge detection for comparison.
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Original edge map

Original

Edge map with surround suppression

With surround suppression

Figure 3.9: Comparison of Canny edge detection and boundary detection using
surround suppression, when included in our adaptive filter algorithm. Top left:
Edge map obtained with a simple Canny edge detection. Top right: Edge map
obtained with the boundary detector described in this section. Middle: Final
image obtained with a simple Canny edge detection. Bottom: Final image
obtained with the boundary detector described in this section.
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Original edge map Edge map with surround suppression

Original

With surround suppression

Figure 3.10: Comparison of Canny edge detection and boundary detection using
surround suppression, when included in our adaptive filter algorithm. Top left:
Edge map obtained with a simple Canny edge detection. Top right: Edge map
obtained with the boundary detector described in this section. Middle: Final
image obtained with a simple Canny edge detection. Bottom: Final image
obtained with the boundary detector described in this section.
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3.4 The Retinex-Based Adaptive Filter Method: Color

Processing

The color processing of our method takes inspiration from the HVS, which

treats chromatic and achromatic data independently (Figure 3.1). In the retinal

pathways, the long, medium, and short wavelengths (LMS) signals captured by

the cones are decorrelated. After being processed by subsequent neural stages,

they form two major parallel circuits. One is achromatic and non-opponent.

The other is chromatic and opponent (Wandell 1995, Kaiser 1996).

Based on this knowledge, we use a PCA to decorrelate the RGB represen-

tation of the input image into three principal components. Our motivation is

that PCA has properties that intrinsically lead to an opponent representation

of colors. Buchsbaum and Gottschalk (1983) described the relation between

PCA and the HVS. They showed that optimum transformations in terms of in-

formation processing, such as PCA, result in one and only one component that

is all positive and has the largest share of signal energy. It is the achromatic

channel, carrying luminance information. The second and the third compo-

nents are opponent. They represent the chrominance channels: Red-Green and

Yellow-Blue.

In Section 3.2, we described the treatment applied to the luminance channel

only. The result of the luminance processing is inserted back into the parallel

color image processing as illustrated in Figure 3.1.

For the processing of the RGB image I , we follow the same steps that were

applied to the luminance Λ with the exception of the local Retinex-based pro-

cessing. The global compression defined in (3.2) is applied to each R, G, and B

color channel to obtain I ′. Then, a logarithm is applied. The log-encoded im-

age ln(I ′) is transformed via PCA into a decorrelated space to obtain ln(I ′)pca.

The first principal component is replaced by the treated luminance Λnew and

recomposed with the chrominance channels. The chrominance channels are

weighted by a factor κ, in order to compensate for the loss of saturation in-

duced by the increase in luminance. The increase in luminance is partly due

to the logarithm operation applied to Λ′. Since this operation is similar to all

images, we use a constant factor κ. We found experimentally that κ = 1.6 is a

suitable value.

Converting an RGB image into a luminance/chrominance representation

could also be done using an existing color transform. However, with most

existing transforms, some luminance information remain in the chrominance

and vice versa, due to the non-orthogonality of the color space basis vectors.

Unlike these transforms, PCA provides an orthogonal representation of the

luminance and chrominance components, which ensures good color rendition
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despite the processing of the luminance. We could observe that another color

transform such as YUV (Poynton 2003) provided good color rendition as well2.

However, there are visible color differences in the resulting images. Figure 3.11

compares an image treated by our algorithm using a PCA transform with the

same image treated using a YUV transform. The image computed using YUV

looks slightly green but it is hard to justify which one is more visually appealing.

A limitation of using PCA is that it works only for natural scenes which

contain a reasonable diversity of colors. Indeed, particular cases such as a

singular color image lead to an ill-conditioned transformation matrix and thus

to the failure of the PCA algorithm. This does not usually happen when

treating natural images even in the presence of a color cast, but is more likely

to happen with synthetic images. In this case, it is necessary to use an existing

color transform such as YUV.

3.5 Computational Complexity

The use of an adaptive filter instead of a fixed surround shape involves a sig-

nificant increase in computational complexity. Indeed, when the filter is the

same for each pixel, the mask can efficiently be computed by a convolution

or equivalently, a multiplication in the Fourier domain. The introduction of

the adaptive filter prevents the use of a convolution and therefore makes the

method computationally very expensive. The adaptive filter method such as

computed in (3.17) has an order of complexity of O(N + N 2), where N is

the number of pixels in the image. The first term N is due to the difference

operation and the N2 term is due to the mask computation.

We propose two solutions to reduce the computational time. The first

solution consists in limiting the size of the surround by taking the decay of

the Gaussian weighting function into account. Our default value for the radius

surround size is rmax = 3σ0. This reduces the computational complexity to

O(N + N · (2rmax)2).

The second solution is to use a downsampled version of the image to com-

pute the mask. The mask is then upsampled before being subtracted from the

high resolution image (3.17). The upsampling and downsampling operations

are performed using bilinear interpolation. A similar method to reduce the

computational complexity was introduced by Moroney (Moroney 2004).

Let us use the symbol •↓n for downsampling by n and and •↑n for upsam-

pling by n. Equations (3.8) and (3.11) for computing the treated luminance

become

2The influence of the luminance definition on the rendered image is discussed in Chapter 4.
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Λ′′(p) = Λln(p) − β(p) · maskln,↑n(p), (3.17)

mask(x, y) =

∑360
θ=0

∑rmax

r=0 Λ′
↓n(x + r · cos(θ), y + r · sin(θ)) · e

− r2

σ2
θ,r

∑360
θ=0

∑rmax

r=0 e
− r2

σ2
θ,r

, (3.18)

where (x, y) is the coordinate of a pixel p and n is chosen such that the larger

dimension of the downsampled image Λ↓n equals a constant, whose default

value is 200.

Considering this second simplification, the computation time of the mask is

fixed and is bounded by N
n2 · (2rmax)2

n2 . That makes the computational complexity

of order:

O(N +
N

n2
· (2rmax)2

n2
). (3.19)

Transforming the RGB input image into a luminance/chrominance encoding

takes O(N) operations but this is compensated by the fact that processing only

the luminance requires less computational time than processing an RGB image.

Indeed, treating separately the R,G,B channels would multiply by three the

complexity of (3.19), which is significantly more time consuming than adding

an O(N) operation. The PCA transform costs more in term of computational

time than a fixed transform such as YUV. However, the additional time spent

to compute the PCA is neglectable compared to the time spent to compute the

mask.

3.6 Discussion, Comparisons and Results

In this section, we justify the need for an adaptive filter by showing an example

where it helps to prevent halo artifacts. Then, we compare our method to other

local tone mapping methods: the MSRCR of Rahman et al. (2004), the gradient

attenuation method of Fattal et al. (2002) and the fast bilateral filtering method

of Durand and Dorsey (2002), currently recognized as one of the best published

methods (Kuang et al. 2004). Finally, we apply the adaptive filter method to

a set of images and show the results.

3.6.1 Importance of the Adaptive Filter

Figure 3.12 illustrates the difference between using an adaptive filter that fol-

lows the high contrast edges in the image and a non-adaptive filter, whose
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shape is circular for every pixel. The two images were computed with exactly

the same method except for the filter’s shape. The non-adaptive case was com-

puted with an edge map set to zero everywhere, such that the surround’s shape

is always circular and does not follow high contrast edges.

The benefit of the adaptive filter is clearly shown in Figure 3.12: the details

of the tower and in the forest are more visible using the adaptive filter method.

This is due to the edge-preserving properties of the mask as illustrated

in Figure 3.13. The use of the adaptive filter method prevents the areas of

different intensity to influence areas beyond high contrast edges.
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Figure 3.11: Difference between using a PCA and a YUV transform to compute
the luminance. The image computed using YUV looks slightly green. Top: Image
computed using PCA. Bottom: Image computed using YUV.
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Figure 3.12: The adaptive filter method allows to preserve detail visibility even
along high contrast edges. Top: Non-adaptive filter method. Bottom: Adaptive
filter method.
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Figure 3.13: The edge-preserving properties of the mask prevents areas of different
intensity to influence areas beyond high contrast edges. Top: Input image Λ′.
Middle: Mask with adaptive filter. Bottom: Mask without adaptive filter.
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3.6.2 Comparison with Other Methods

Our algorithm finds its basis in the MSRCR algorithm of Rahman et al. (2004).

It is therefore natural to make a comparison with their results. The MSRCR

images were obtained with the free version of the software “PhotoFlair” using

the default settings3, which puts “demo” tags across the image. Figure 3.14

and 3.15 show a comparison between MSRCR and our adaptive filter method.

The benefit of the adaptive filter is clearly seen in both images. With MSRCR

(top image of Figure 3.14), there is a shadow on the person near the window

and on the red dog. Moreover, the black t-shirt tends to become gray. Due

to the adaptive filter, our method does not generate halos on the face of the

person and on the t-shirt. The β factor (3.5) prevents the t-shirt to turn gray.

Similarly, in the bottom image of Figure 3.15, the detail of the tower is more

visible on the image treated by the adaptive filter method.

The presence of halo artifacts comes from the fact that MSRCR is based

on the assumption that the illuminant is spatially smooth. This results in a

mask similar to the bottom panel of Figure 3.13, which leads to halos when

subtracted from the log-encoded luminance. Other methods that are based on

the same smooth illuminant assumption (Land 1986, Rahman et al. 2004, Horn

1974, Funt et al. 2004) suffer from the same drawback. Nevertheless, they are

good at rendering images of lower dynamic range or in the absence of large

intensity ratios.

Fattal et al. (2002) treat HDR images with a gradient attenuation method.

Figure 3.16 shows their result. Their method is very good at increasing local

contrast without creating halo artifacts but the effect tends to be exaggerated.

A border effect appears on the left of the image and the colors seem unnatural.

3PhotoFlair was developed by TruView Imaging Company (http://trueview.com)
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Figure 3.14: Top: Image treated with MSRCR. Bottom: Image treated with
the adaptive filter method.
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Figure 3.15: Top: Image treated with MSRCR. Bottom: Image treated with
the adaptive filter method.
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Figure 3.16: Top: Image treated with Fattal’s gradient attenuation method.
Bottom: Image treated with the adaptive filter method.
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3.6.3 Comparison with Fast Bilateral Filtering

We also compared our method to the fast bilateral filtering method developed

by Durand and Dorsey (2002) for two reasons. First, it is recognized as one

of the best algorithms tested on HDR images that has been published so far

(Kuang et al. 2004). Second, although the initial approach is different, the

actual treatment of pixels is comparable to that of our method. Fast bilateral

filtering is based on an alternative of anisotropic diffusion to enhance bound-

aries while smoothing non-significant intensity variations. The new pixel values

are computed by weighting surrounding pixels as a function of their spatial po-

sition as well as their intensity difference. Our method computes the new pixel

values by weighting surrounding pixels as a function of their spatial position

and their spatial relation to high contrast edges. Our method gives more im-

portance to spatial information. Figure 3.17 illustrates this difference. In the

case of fast bilateral filtering, the weight of one surrounding pixel is decreased

if its intensity is different from that of the intensity of the treated pixel. How-

ever, the weight increases again if the intensity of the next pixel is similar to

the currently treated pixel. With our method, as soon as a high contrast edge

is detected, the weight of the current pixel is decreased as well as that of pixels

located after the edge.

input spatial filter

input spatial filter
fast bilateral filtering    adaptive filtering method

fast bilateral filtering    adaptive filtering method
weight for the considered pixel

weight for the considered pixel
pixel position

pixel position

Figure 3.17: In the case of fast bilateral filtering, the weight of one pixel is
decreased if its intensity is different from that of the intensity of the treated pixel.
However, the weight increases again if the intensity of the next pixel is similar to
the currently treated pixel. With our method, as soon as a high contrast edge
is detected, the weight of the current pixel is decreased as well as that of pixels
located after the edge.

Figure 3.18 compares the images obtained with the two methods. We ob-

serve that Durand and Dorsey’s method is better at increasing the local contrast
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in bright areas while our method provides a better result in dim areas. The

head of the person is rendered better by our algorithm. This is due to the

adaptive shape of the filter that prevents the sky to influence the color of the

face and thus avoids the usual backlight effect. The way the color is rendered

also influences the judgment of images. Fast bilateral filtering algorithm ren-

ders images that are more saturated than our method. It is suitable for some

images but leads to unnatural impression in other cases, such as the reddish

skin in Figure 3.18.

3.6.4 Image Acquisition and Results

We applied our algorithm on radiance maps constructed with a multiple expo-

sure technique4 as well as RAW images. In both cases, the captured images

represent HDR scenes. We assume that input images use sRGB primaries (IEC

61966-2-1 1999). No color transformation is applied prior to processing. For

the images that were generated by the multiple exposure technique (Debevec

and Malik 1997), there is no guarantee that the images are in sRGB color space.

As many of them are used in the literature, we still use them for comparison.

The output of our algorithm are 24 bits/pixel images rendered for standard

displays, i.e. the color image encoding is sRGB (IEC 61966-2-1 1999).

Figure 3.19 to 3.26 show HDR images treated by our algorithm. They were

all obtained with the same parameter values given in this chapter. However,

it is possible that an image-dependent tuning of the parameters such as the

exponent γ or the adaptive filter spatial constants σ0 and σ1 still lead to better

visual results.

3.7 Conclusion

The problem of rendering HDR images has been widely studied and a large

number of methods exists. These methods enhance the quality of rendered

images but still suffer from some problems. Common drawbacks are the ap-

parition of halo artifacts when increasing the local contrast, graying-out of low

contrast areas and bad color rendition.

We provide a method to render HDR images taking inspiration from the

Retinex model of color vision. Our method is based on center/surround Retinex

but uses an adaptive filter whose shape follows the image high contrast edges

instead of a circularly-symmetric Gaussian filter. In this way, the influence

of applying a local filtering on a bright area located next to a dim area is

decreased, thus preventing halo artifacts. We also include a sigmoid function

4The generation of HDR images was discussed in Appendix A.
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that weighs the mask in order to prevent the graying-out of pure white or

pure black low contrast areas. The Retinex-based adaptive filter is applied

to the luminance channel only, which is defined by the first component of a

PCA performed on the input image. Using PCA provides an image-dependent

color-space transform that guarantees perfect decorrelation between channels.

It minimizes the chromatic changes induced by the processing of luminance.
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Figure 3.18: Top: Gamma-encoded image. Middle: Image treated with the
adaptive filter method. Bottom: Image treated with the fast bilateral filtering
method.
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Figure 3.19: Results of the Retinex-based adaptive filter method. Top: Gamma-
encoded image. Bottom: Image treated with our method. This image is courtesy
of the RIT Munsell Color Science Laboratory.
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Figure 3.20: Results of the Retinex-based adaptive filter method. Top: Gamma-
encoded image. Bottom: Image treated with our method. This image is courtesy
of Paul Debevec.
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Figure 3.21: Results of the Retinex-based adaptive filter method. Left: Gamma-
encoded image. Right: Image treated with our method. This image is courtesy
of Paul Debevec.
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Figure 3.22: Results of the Retinex-based adaptive filter method. Top: Gamma-
encoded image. Bottom: Image treated with our method. This image is courtesy
of Clement Fredembach.
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Figure 3.23: Results of the Retinex-based adaptive filter method. Top: Gamma-
encoded image. Bottom: Image treated with our method. This image is from
our database.
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Figure 3.24: Results of the Retinex-based adaptive filter method. Top: Gamma-
encoded image. Bottom: Image treated with our method. This image is from
our database.
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Figure 3.25: Results of the Retinex-based adaptive filter method. Top: Gamma-
encoded image. Bottom: Image treated with our method. This image is from
our database.
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Figure 3.26: Results of the Retinex-based adaptive filter method. Top: Gamma-
encoded image. Bottom: Image treated with our method. This image is from
our database.
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Chapter 4

The Influence of Luminance

on Local Tone Mapping

4.1 Introduction

The method presented in Chapter 3 ensures good color rendition by applying

the local processing to the luminance channel only. Indeed, many local tone

mapping methods do not perform well when applied independently to the three

color channels of an RGB image. While treating R, G, and B independently

provides good results with global tone mapping methods, local tone mapping

algorithms may create artifacts such as local graying-out, hue shifts, or color

fringes. This is illustrated in Figure 4.1. The top image was obtained by ap-

plying the Multi-Scale Retinex (MSR) algorithm (Jobson et al. 1997, Rahman

et al. 2004) to all three R, G, B channels independently. The middle image was

processed similarly with the Retinex-based adaptive filter algorithm discussed

in Chapter 3 (Meylan and Süsstrunk 2004b, Meylan and Süsstrunk 2006). Pro-

cessing R, G, and B independently causes a hue shift in both cases.

Treating the luminance independently from the chrominance is a well-

accepted solution to avoid these artifacts (Funt et al. 1997, Fairchild and

Johnson 2004, Durand and Dorsey 2002, Sobol 2004, Meylan and Süsstrunk

2004b, Meylan and Süsstrunk 2006). However, none of these publications in-

vestigates the influence of the chosen color transform on the appearance of the

treated image. The correlation between luminance and chrominance is known

to have an influence on the rendered image but the relation between a measure

of correlation and the appearance of the image has not yet been found.

73
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Figure 4.1: Top: MSR applied to all R, G, B channels (green hue shift). Middle:
The Retinex-based adaptive filter method applied to all R, G, B channels (pink hue
shift). Bottom: Original gamma-encoded image.
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In this chapter, we investigate the influence of the color transform in the

case of luminance-based local tone mapping methods on the rendered image

color appearance. In particular, we focus on surround-based Retinex methods

that were introduced in Section 2.6.3.

Our aim is to relate a measure of the correlation between luminance and

chrominance with the color rendition of images treated by surround-based

Retinex methods. We consider four color transforms and define a measure

to evaluate how well they decorrelate luminance and chrominance. Then, we

test two Retinex-based local tone mapping algorithms with the four different

color transforms and relate the results with our measure. We show that there

is a relation between the visual representation of the rendered image and the

measure of correlation. Color artifacts become visible when luminance and

chrominance are significantly correlated.

This chapter is structured as follows: Section 4.2 reviews background work

about color rendition in the case of local tone mapping algorithms. Section 4.3

presents our measure and the four color transforms that we consider. Sec-

tion 4.4 presents the two algorithms used for the test. Then, Section 4.5 com-

ments the images obtained with the two algorithms and the different color

transforms. A conclusion is given in Section 4.6.

4.2 Background

The way color is processed by tone mapping methods has already been discussed

in the literature. Rahman et al. (Jobson et al. 1997, Rahman et al. 2004) com-

mented on the graying-out effect of surround-based Retinex algorithms and

added a color restoration step to their MSR algorithm. The MSRCR was stud-

ied by Funt and Barnard (Funt et al. 1997, Barnard and Funt 1998). They

argued that MSRCR tends to desaturate the colors, due to the averaging op-

eration on small neighborhoods that have a graying-out effect on the image.

Moreover, the color restoration step added to compensate for the loss of sat-

uration can at best approximate the color that was removed and acts in an

unpredictable way. Funt and Barnard thus suggested applying MSR to the

luminance channel only. The treated luminance is then combined with the

chrominance to obtain the final color image. They defined the luminance as

the average of the three color channels R, G, B. With this definition of lumi-

nance, some chromatic information remains in the luminance and vice-versa,

which may lead to artifacts.

In Chapter 3, we presented a Retinex-based method that applies an adaptive

filter to the luminance channel only. The luminance is defined by a PCA

computed over the RGB input image.
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iCAM, developed by Fairchild and Johnson (2004), also applies a local treat-

ment only to the luminance channel to avoid desaturating the image. This

method was described earlier in Chapter 2.

Kimmel et al. developed their quadratic programming optimization algo-

rithm for a monochrome image (Kimmel et al. 2003, Elad et al. 2003). They

apply it separately either to the three color channels of an RGB image or to

the V channel of an HSV-encoded image. They found that the first approach

could lead to exaggerate color shifts or to a loss of saturation. As previously

found (Barnard and Funt 1998, Funt et al. 1997), applying it only to the V

channel yields better results.

Sobol (2004) also applies his Retinex-based algorithm to the luminance

channel. Unlike previously mentioned methods that define the luminance as

the weighted sum of R, G, B color channels, his luminance definition is given by

the maximum between these three channels. The final color image is obtained

by adding the new luminance to the log-encoded RGB image.

Thus, many local tone mapping methods first transform the input image

into a luminance/chrominance representation and treat the luminance only:

{Λ, C1, C2} = Mcs ∗ {R, G, B}, (4.1)

where {Λ,C1,C2} is the luminance/chrominance opponent representation of

{R, G, B}. Mcs is defined by the color transform considered.

In most cases, the luminance is defined by a weighted average of R, G, B

color channels (Jobson et al. 1997, Rahman et al. 2004, Meylan and Süsstrunk

2004b, Funt et al. 1997, Fairchild and Johnson 2004, Durand and Dorsey

2002, Barnard and Funt 1998), with the exception of Sobol’ s method (Sobol

2004). Then, the final RGB image is obtained either by converting the lumi-

nance/chrominance image back to RGB (4.2) or by using a scaling technique

where the ratio of the initial luminance and the treated luminance multiplies

the three color channels (4.3). The particular case of Sobol’ s method adds the

treated luminance to the log-encoded RGB image (4.4).

{R, G, B}new = M−1
cs ∗ {Λnew, C1, C2} (4.2)

{R, G, B}new =
Λnew

Λ
· ({R, G, B}) (4.3)

{R, G, B}new = Λnew + ({log(R), log(G), log(B)}) (4.4)

Here “·” and “+” are component per component operations, and “∗” is a

matrix multiplication.
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In this chapter, we study the effect of different luminance definitions on

the rendered image for the case of MSR (Jobson et al. 1997, Rahman et al.

2004) and Retinex-based adaptive filtering of Chapter 3 (Meylan and Süsstrunk

2004b, Meylan and Süsstrunk 2006).

4.3 A Measure of Correlation

The four color transforms that we chose for our tests are described in Ta-

ble 4.1. Each of them transforms the linear RGB input image in a lumi-

nance/chrominance encoding (4.1). The first one, “MRGB” transform, simply

defines the green channel G as being the luminance and the red and blue chan-

nels R, B as being the chrominance. With this transform, the luminance is

strongly correlated with the chrominance. The second transform is “MY UV ”,

which is a linear transform widely used for video processing (Poynton 2003).

The third one “MLab” is the CIE definition of opponent color and is not a

linear transform (Hunt 1995). The last one “MPCA” is an image-dependent,

linear transform based on a PCA applied to the input image. It guarantees

perfect decorrelation between components. The luminance is defined by the

first principal component.

Table 4.1: The four color transforms tested.

Mcs Luminance Λ Chrominance C1, C2 Transform
RGB Linear G R,B MRGB

YUV Linear Y U,V MY UV

Lab Non-Linear L a,b MLab

PCA Linear Λ: 1st principal C1: 2nd principal MPCA: defined by
component component the eigen vectors

C2: 3rd principal of the input’s
component covariance

matrix

We define a simple correlation measure µ obtained by computing the mean

of the correlation coefficients between the luminance and the chrominance chan-

nels over a set of representative images S:

µ =
1

J

J
∑

j∈S

µj , (4.5)

where J is the number of representative images in the set S.

The correlation measure for one image j is given by the average correlation

between luminance and chrominance channels:
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Figure 4.2: µ for MRGB , MPCA, MLab, MY UV .

µj =
corr(Λj , Cj,1) + corr(Λj , Cj,2)

2
, (4.6)

where the correlation between luminance and chrominance is defined by the

normalized covariance (4.7),(4.8).

cov(Λj , Cj,c) =
1

N

N
∑

p=1

(Λj(p) − Λ) · (Cj,c(p) − Cj,c) (4.7)

corr(Λj , Cj,c) =
cov(Λj , Cj,c)

√

cov(Λj , Λj) · cov(Cj,c, Cj,c)
(4.8)

In (4.7) and (4.8), Cj,c represents one of the two color channel Cj,1 or Cj,2.

N is the number of pixels in the image j.

Figure 4.2 shows the measure of correlation of the four considered color

transforms. Uncorrelated data results in a correlation coefficient of 0; equiva-

lent data sets have a correlation coefficient of 1. It shows how well the color

transforms decorrelate the luminance from the chrominance. Our aim is to

see how this measure is related to color rendering. In particular, we want to

test if MPCA, which is image dependent and guarantees perfect decorrelation

between components, leads to the best reproduction.
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4.4 Two Local Tone Mapping Methods

Two surround-based local tone mapping are used for our tests. For the first

one, we implemented the MSR algorithm of Rahman et al. (Jobson et al. 1997,

Rahman et al. 2004). In these articles, the MSR is applied separately to the

R, G, B color channels. A color restoration factor is added. Here, we do not

use the color restoration factor but apply MSR only to the luminance channel

as suggested by (Funt et al. 1997, Barnard and Funt 1998). The second tested

tone mapping method is our Retinex-based adaptive filter method (Meylan and

Süsstrunk 2004b, Meylan and Süsstrunk 2006). They were both described in

Chapters 2 and 3.

We apply these two local tone mapping algorithms to a set of test images.

Each input image is first converted from RGB to a luminance/chrominance

opponent representation using the color transforms of Table 4.1. Then, each of

the local tone mapping methods is applied to the luminance channel. Finally,

the chrominance channels and the new luminance are transformed back to RGB

encoding. In the next section, we visually compare the images obtained with

different color transforms and algorithms and comment them.

4.5 Results and Discussion

Figure 4.4 and 4.5 shows the results obtained with MSR and the four color

transforms defined in Table 4.1. It shows that different transforms, thus dif-

ferent luminance definitions, result in different output images. The images ob-

tained using MRGB and MSR algorithm clearly show a pink color shift, more

apparent in the center of the image. This is due to the fact the G channel

is strongly correlated with the R and B channels. Then, there is little visible

difference between the images obtained with MLab, MY UV and MPCA. The

graying-out of low contrast areas such as the sky and the clouds is due to

the local averaging induced by Retinex surround-based methods. As already

mentioned, the Retinex-based adaptive filter method prevents graying-out by

introducing a factor that weighs the mask depending on the input image val-

ues. This, in addition to the saturation compensation factor, results in visually

more appealing images.

Figure 4.6 and 4.7 show the same image treated by our Retinex-based adap-

tive filter method and the four color transforms. The image computed with

MRGB also presents a color shift (green). We can observe as well that MY UV

and MPCA lead to images with a better increase in local contrast than MLab.

In other words, the detail of the central part of the image is more visible.

Moreover, the sky is slightly more saturated with MPCA and MY UV than with
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MLab
1. These differences may come from the fact that the MLab transform is

non-linear with respect to the scene radiances. We see no difference between

the image computed using MY UV and the image computed using MPCA.

If we compare the results of MPCA and MY UV on another image (Fig-

ure 4.8), color differences appear. In Figure 4.8, the top image (MY UV ) appears

greener than the bottom image (MPCA). This hue shift is confirmed by the

a, b chromaticity plane of these two images (Figure 4.3). The image treated

using MY UV is plotted in cyan, while the image treated using MPCA is plotted

in magenta. The cyan cloud is shifted to the left of the magenta cloud, i.e.

the image treated using MY UV tends to appear greener than the image treated

using MPCA. This causes the face of the person to look slightly green on the

MY UV image.

Figure 4.4 to 4.8 show that the choice of the luminance definition on which

a local tone mapping algorithm is applied plays a role for the image appear-

ance. However, a small correlation between luminance and chrominance does

not affect significantly the final result. MRGB had the worst decorrelation mea-

sure and the images obtained using this transform clearly present color shift

artifacts. MY UV and MLab had good decorrelation measure but not as good as

MPCA that ensures perfect decorrelation between components. The fact that

the luminance of Lab-encoded image is non-linear induces some differences with

the MY UV and MPCA images. However, the images computed using MY UV

and MPCA are very similar, which makes it difficult to judge which transforms

leads to the best resulting image.

a

b

 

 
PCA
YUV

Figure 4.3: Plot of the a,b chromaticities of the two images of Figure 4.8. The
image treated using MY UV is plotted in cyan while the image treated using MPCA

is plotted in magenta.

1As printing the images might introduce other color shifts, we suggest the reader looks at
the images on a display.
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4.6 Conclusion

The goal of our study was to investigate the role of the luminance definition

on the final image appearance in the case of luminance-based local tone map-

ping algorithms. For that purpose, we tested two algorithms and four color

transforms (MRGB , MY UV , MLab and MPCA). A measure of correlation was

established for these four transforms. The MRGB transform had highly cor-

related components. MY UV , MLab were slightly correlated and MPCA was

designed to ensure perfect decorrelation for all images. We observed that there

were little visible differences between the images treated using MY UV , MLab,

and MPCA. Local color shifts started to appear when using a transform where

luminance and chrominance are highly correlated such as MRGB . That suggests

that there is a relationship between the amount of correlation between lumi-

nance and chrominance, and the quality of the image appearance. However, a

perfect decorrelation is not necessary to obtain visually pleasing images.
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Figure 4.4: Results obtained with MSR. Top: MRGB. Bottom: MLab.
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Figure 4.5: Results obtained with MSR. Top: MY UV . Bottom: MPCA.
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Figure 4.6: Results obtained with the adaptive filter method. Top: MRGB.
Bottom: MLab.
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Figure 4.7: Results obtained with the adaptive filter method. Top: MY UV .
Bottom: MPCA.
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Figure 4.8: Results obtained with the Retinex-based adaptive filter method. The
top image (MY UV ) appears greener than the bottom image (MPCA).



Chapter 5

The Reproduction of Specular

Highlights on High Dynamic

Range Displays

5.1 Introduction

HDR monitors capable of displaying simultaneously bright highlights and dark

shadows have just started to come on the market. As their usage will in-

crease, we will be confronted with the problem of re-rendering images that

have been mapped to SDR displays so that they look “good” on HDR moni-

tors. A straightforward solution is to use a linear scaling from the input image

range to the HDR display range. Instead of a linear scaling, we propose a tone

mapping method that enhances the specular parts of the image. We validate

its use with a psychovisual experiment.

This chapter starts with a short description of the HDR display (Sec-

tion 5.2). The software correction algorithm to display images on an HDR

display (Seetzen et al. 2004) is described in Appendix C. Then, Section 5.3

presents our proposed tone scale, which is evaluated by a psychovisual exper-

iment. The generation of stimuli, the experimental set up and procedure are

described in Section 5.4. Measurement performed on the HDR display in the

experimental conditions are presented in Section 5.5. Finally, Section 5.6 ex-

plains the statistical analysis applied on the experiment data and discusses the

results.

87
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5.2 High Dynamic Range Display Technology

Current flat panels LCD are composed of a uniformly bright backlight and

an LCD array. These displays have a contrast ratio of about 1:400, which is

not sufficient to display scenes of high dynamic range such as outdoor scenes.

With HDR displays (Seetzen et al. 2004), the uniform backlight is replaced by

an array of white light emitting diodes (LEDs). These LEDs can be as bright

as 200,000 cd/m2 at their maximum capacity and emit no light when turned

off. Each LED is controlled individually and lights up a small area of the LCD

array through a diffusion screen. Multiplying the modulation of the LCD and

LED arrays provides a gain in dynamic range.

Practically, HDR displays can reach a contrast ratio up to 1:25,000, depend-

ing on the ambient light. This enables rendering HDR scenes without having

to compress the dynamic range much. It results in an impressive and highly

realistic representation of HDR scenes. Figure 5.1 shows a picture of the small

HDR display prototype. A larger display (37 inches) is now also available.

Figure 5.1: HDR display prototype. This Figure was taken from (Seetzen et al.
2004).

5.3 A Tone Mapping Method to Enhance the Rep-

resentation of Specular Highlights

The input to HDR displays are generally radiance maps encoded in the “hdr”

format (Appendix A). These radiance maps represent an accurate representa-

tion of the scene radiances. However, most available images are already mapped

to SDR displays and have lost part of their dynamic range. In particular,

specular highlights are badly reproduced due to strong luminance compression

and/or clipping taking place during the image capturing and rendering process
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to SDR. As they offer important visual cues about three dimensional shapes and

increase the sense of realism (Interrante et al. 1997, Blake and Bülthoff 1991),

it would be beneficial to use part of the extension of dynamic range of HDR

displays to enhance their representation.

Figure 5.2 illustrates luminance profiles of a diffuse (a.) and glossy (b.)

half-sphere illuminated by a point light source. The narrow region with high

luminance is referred to as specular highlight. A specular highlight is the

reflection of a light source on a non-lambertian surface, such as metal, glossy

paint, etc. It occurs when the specularly reflective surface is illuminated by

a light source that has the same half-angle as the camera, i.e. the surface

normal is located exactly halfway between the direction of incident light and

the camera. Figure 5.2 (c.) and (d.) show the luminance profile of a glossy

half-sphere illuminated under the same point light source after it was captured

by a camera. The effects of compression (c.) and clipping (d.) are illustrated.

a. b. c. d.

Figure 5.2: Luminance profiles of a half-sphere illuminated by a point light source.
a. Diffuse surface. b. Glossy surface. c. Glossy surface captured by a camera,
example of compression. d. Glossy surface captured by a camera, example of
clipping.

The presence of specular highlights in an image suggests that the original

scene had a high dynamic range, as specular highlights can be several orders

of magnitude brighter than diffuse highlights (Wolff 1994). We address the

problem of rendering images mapped to SDR and representing HDR scenes to

HDR displays. We propose the use of a tone scale function that expands the

luminance range allocated to the specular parts of an image with the goal of

recovering the natural look of the original HDR scene.

In a psychovisual experiment, we test different tone scale functions by vary-

ing the display luminance range allocated to specular highlights. We prove that

allocating some of the additional display range provided by an HDR monitor to

specular highlights leads to a more natural displayed image than using a simple

linear scaling of code values. In addition, the proposed tone scale prevents the

re-rendered image to look too bright, which is likely to happen when applying

just a linear scaling (illustrated in Figure 5.3).
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HDR
Scene

Tone
mapping

Figure 5.3: Simulation of re-rendering SDR images to HDR displays. If a simple
linear scaling is applied, the image can appear too bright.

5.3.1 The Tone Scale Function

Input Images and Pre-processing

The images used for our psychovisual experiment were either standard images

rendered to SDR display or radiance maps built with a multiple exposure tech-

nique, clipped to a standard dynamic range, and stored in a “.hdr” file format.

The set of images is shown in Figure 5.4. A pre-processing step ensures that

the input to the algorithm is an image that is a linear representation of the

scene radiances.

Most of our images are legacy images, i.e. images whose original capture

device is unknown. We assume that these images are encoded in sRGB as

most SDR images from consumer cameras currently are. We thus apply the

inverse color component transfer function specified by the sRGB standard (IEC

61966-2-1 1999). For images built with a multiple exposure technique and

clipped to standard dynamic range, we assume that they are already a linear

representation of the scene radiances.

An image resulting from this pre-processing step is linear and encoded with

sRGB primaries. It is noted I or equivalently {R, G, B}.

From RGB to Luminance

Our tone scale function is applied only to the luminance channel to avoid

color artifacts. We thus transform our RGB encoded image into a lumi-

nance/chrominance representation (5.1) and only process the luminance Λ.

We chose to use the NTSC color transform Mntsc (Poynton 2003) but any
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Figure 5.4: Set of images used in the experiment.

transform that converts an image encoded with sRGB primaries into a lumi-

nance/chrominance representation would work as well (see Chapter 4).

{Λ, C1, C2} = Mntsc ∗ {R, G, B}, (5.1)

where

Mntsc =







0.299 0.587 0.114

0.596 −0.274 −0.322

0.211 −0.523 0.312






, (5.2)

Λ is the luminance channel, C1, C2 are the chrominance channels, and

{R, G, B} is the linear input RGB image.

Construction of the Tone Scale Function

The luminance channel is processed by our tone scale function so that more

dynamic range is allocated to the specular image than that allocated in the SDR

input. It is a piecewise linear function composed of two slopes (Figure 5.5).

The shape of the tone scale is entirely defined by ω, the normalized code

value of the maximum diffuse white in the image, and ρ, the percentage of the

maximum display luminance allocated to ω.

ω is determined by segmenting the image into its diffuse and specular com-
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diffuse
input image
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Figure 5.5: Piecewise linear tone scale function.

ponents, which we call “diffuse image” and “specular image,” respectively. The

specular image is composed of the parts of the image that contain specular

highlights. The diffuse image can include glossy and non glossy objects and

is composed of the rest of the image that is not part of the specular image.

Figure 5.6 gives an example of a segmentation. The minimum digital value of

the specular image defines the maximum diffuse white ω. For the psychovisual

experiment, the segmentation was done manually for each image. A way to

automatically segment the image and compute ω is described in Chapter 6.

Since small variations of ω do not change the general shape of the tone scale,

the results of the psychovisual experiment will remain valid for the automatic

algorithm.

ρ is the parameter tested in the psychovisual experiment. It varies for each

tone-scaled image. The tone scale function f is defined as follows:

f(Λ(p)) =

{

s1 · Λ(p) if Λ(p) ≤ ω

s1 · ω + s2 · (Λ(p) − ω) if Λ(p) > ω
, (5.3)

where

s1 =
ρ

ω
, (5.4)
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200 250 300 350 400 450 500 550 600

0

1
Original image

pixel position along horizontal direction
200 250 300 350 400 450 500 550 600

0

1
Diffuse image

pixel position along horizontal direction
200 250 300 350 400 450 500 550 600

0

1
Specular image

pixel position along horizontal direction

Figure 5.6: Example of an image segmentation into its specular and diffuse com-
ponents. The white line in the top three images represents the position of the
traces in the bottom graphs. Top left: Original image. Top center: Diffuse
image. The specular part of the image is filled with black. Top right: Specular
image. The diffuse part of the image is filled with black. Bottom left: Horizon-
tal trace in the original image. Bottom center: Horizontal trace in the diffuse
image. Bottom right: Horizontal trace in the specular image.

s2 =
1 − ρ

Λmax − ω
. (5.5)

Λ is the normalized luminance and p is a pixel in the image. The maximum

digital value of the input image is noted Λmax. Λmax is normalized to 1 to

make the method independent of the digital code value range.

The shape of the tone scale (Figure 5.5) allows the allocation of more dy-

namic range to the specular image than that allocated in the SDR input (hor-

izontal axis). All pixels of the input image whose normalized code values are

smaller than ω are considered being part of the diffuse image and are scaled by

s1. s2 has a steeper slope and is used to scale the specular image defined by

pixels having a value greater than ω.

We added a clipped version of the tone scale where the specular highlight

maximum value is not matched to the maximum display luminance (s2′ in

Figure 5.5). This enables us to test if participants preferred specular highlights

clipped or enhanced given a particular overall image brightness.
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From Luminance back to a Color Image

After applying the tone scale to the luminance, the RGB image is recovered

by multiplying the original RGB color channels by the ratio of the treated

luminance Λnew, where Λnew(p) = f(Λ(p)), and the original luminance Λ (5.6).

The result is scaled to the theoretical maximum display luminance called Ψmax.

For the display used in the experiment (Brightside 37”), Ψmax = 2500 cd/m2.

Practically, this value is reached when measuring a large white patch. With

smaller areas such as specular highlights, Ψmax tends to have a lower value.

However, the effect of our tone scale function remains valid as long as its general

shape is conserved, i.e. s1 remains smaller than s2. This is the case for all but

extremely small specular highlights, as discussed in Section 5.5.

Inew = {R, G, B}new =
Λnew

Λ
· {R, G, B} (5.6)

5.4 Experimental Set Up

5.4.1 Stimuli Preparation

For each tested scene, different tone-scaled images are constructed by varying

the luminance allocated to the diffuse white. We tested four different values

of ρ varying from 20% to 67% of Ψmax using logarithmic increments, as well

as a linear scaling. The tone scale functions used in the experiment are shown

in Figure 5.7. Table 5.1 shows the corresponding ρ values. For tone scales 1

to 4, ω is matched to 20, 30, 47, and 67 percent of Ψmax, while the maximum

code value of the input image is matched to Ψmax. Tone scale 5 corresponds

to linear scaling. For one of these tone scales (ρ = 0.47), we constructed a

clipped version, where the maximum code value of the input image is matched

to ρ · Ψmax.

Table 5.1: Tone scales used in the experiment.

1 2 3 4 5 6
Percentage of max. 0.2 0.3 0.47 0.67 lin. 0.47
display luminance clipped
allocated to ω

For the non-clipped tone scales (1 to 5), changing the value of ρ affects

both the image global brightness and the reproduction of specular highlights.

The more luminance range is allocated to the diffuse image, the brighter the

image appears while simultaneously decreasing the range allocated to specular
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Figure 5.7: Illustration of the 6 tone scale functions used in the psychovisual
experiment (ω = 0.94).

highlights. A smaller luminance range allocated to the diffuse image causes the

image to look dimmer and the specular highlights to look brighter. Figure 5.8

illustrates these two cases.
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Figure 5.8: Example of tone scale functions for two different input parameters.
The top image corresponds to the case where a small range is allocated to the
diffuse image. The bottom image corresponds to a larger range. ω for this image
was 0.94.
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A Smoothing Technique to Remove Unnatural Contours

The discontinuity in the tone mapping function may produce unnatural con-

tours, which influence the participants’ judgment in an undesirable way. We

added a smoothing step to our algorithm to overcome this problem. Our solu-

tion is to introduce a slight blur around each specular highlight, thus removing

unnatural contours.

Extract
luminance

Dilation and
low−pass filter F

Tone−scaled image (Inew)

Tone scale

Low−pass
filter F

Threshold
with ω

lp lpMerge I      and I    using Bnew

Original image (I) Luminance (Λ)

Low−passed image  (Ilp)

Stimulus image (Istimuli)

(Blp)Low−passed map

Binary map (B   )1

Figure 5.9: Illustration of the smoothing technique to remove unnatural contours
(see text for explanation).

The principle of the smoothing step is to smooth the contour around specu-

lar highlights by applying a low-pass only at the location of specular highlights

(Figure 5.9). First, a thresholding operation is applied to the luminance chan-

nel of the original image Λ to find the location of specular highlights:

B1(p) =

{

0 if Λ(p) ≤ ω

1 if Λ(p) > ω.
(5.7)

B1(p) is a binary map, where 1 indicates the presence of a specular highlight.

p is a pixel in the image I .

Then, a dilation is applied to B1(p). A pixel is turned from 0 to 1 if more

than one of its neighbors are 1:
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B2(p) =

{

1 if B1(p) = 1 or (B1(p) ∗ H > 1)

0 otherwise,
(5.8)

where

H =







1 1 1

1 0 1

1 1 1






. (5.9)

Both the tone-scaled image Inew and the binary map B2(p) are then low-

passed with a moving average filter of size 5 denoted by F5.

Ilp(p) = Inew(p) ∗ F5

Blp(p) = B2(p) ∗ F5

(5.10)

The final image Istimuli where contours are removed is simply computed by

merging the tone-scaled image Inew and the low-passed tone-scaled image Ilp

using the blurred mask Blp as a matrix of weighting coefficients.

Istimuli(p) = Inew(p) · (1 − Blp(p)) + Ilp(p) · Blp(p) (5.11)

An example of application of the smoothing technique on a zoomed version

of the red pool ball image is given in Figure 5.10. The largest benefit of this

method is seen when a low luminance value is allocated to diffuse white (e.g.

ρ = 0.2). The contour of the specular highlight looks too sharp in the top

left image. Its smoothed version at the bottom left looks more natural. The

difference between the tone-scaled image and the smoothed tone-scaled image

becomes less visible as ρ increases. The pairs of images on the right look more

similar.

The Generation of Pairs of Tone-Scaled Images

The images thus processed are presented in pairs to the observers. Each image

in the pair is computed by a different tone scale. Prior to the experiment, all

possible combinations of pairs of images generated with the tone scale functions

are computed.

The number of possible pairs Npair generated by T number of tone scale is

given by

Npair =
T · (T − 1)

2
(5.12)

In our case, T = 6 and Npair = 15 for each tested image.
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Figure 5.10: An example of application of the smoothing technique on a zoomed
version of the red pool ball image.

The two tone-scaled images composing a pair are scaled and stored as an-

other image having the resolution of the HDR display (1980× 1280). A black

border of 80 pixels (1.3 degree of visual angle) separates them. We experi-

mented with different border sizes and empirically found that 1.3 degree was a

good size to prevent the brightness of one image from influencing the color of

the other one, which would influence the observer judgment in an uncontrolled

way. The left/right position of the tone-scaled images is chosen randomly.

Examples of stimuli pairs are shown in Figure 5.11.

5.4.2 Experimental Procedure

A computer program displayed pairs of scaled images in random order. For

each image of the test set, 15 pairs were presented. The 15 pairs of the next

image were shown until all images from the test set have been used.

Then, the process was repeated one more time with a different image se-

quence. The pairs for one image were still displayed randomly. The left and

right position of the tone-scaled images which was random for the first sequence,

was swapped.

Each time a pair was displayed, the observer used the keyboard to select

an image according to the following question, which they could read on an

information sheet:

Which image looks more natural (i.e. more like a real scene, like real light-

ing)? Focus on the tone reproduction; try not to be influenced by other factors

(contouring, noise, etc).
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Figure 5.11: Example of stimuli shown in pairs.

Observers

20 observers participated in the experiment. 14 were naive observers, and 6

were experts in judging image quality, including 2 that had some knowledge

about the purpose of the experiment. Each of them saw 330 images, which

took about 25 minutes.

Viewing Conditions

The experiment was set up in a room with no window. The lights were on,

which created an ambient luminance of 22 cd/m2. The images were displayed

on the Brightside’s 37” HDR monitor. Observers sat at a viewing distance of

three times the display height, which resulted in a total viewing angle of 33

degrees.
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5.5 Measurements Performed on the HDR Display

The maximum displayed luminance of our HDR monitor was obtained by dis-

playing and measuring a large white patch. However, for very small bright

areas, this measured value can not be reached. This is due to the charac-

teristics of the HDR display and to the software that provides the conversion

between the ideal tone-scaled image (input to the HDR monitor) and the image

displayed at the screen. The displayed image is the multiplication of the images

sent to the LEDs and to the LCD panel, respectively. The algorithm that com-

putes these two images is explained in Appendix C. One important part of this

algorithm is the cross-talk correction, which computes the LED driving values.

The goal of the cross-talk correction is to compensate for the fact that the

luminance measured at one LED physical position is not only due to one LED

but also to remaining light emitted by neighboring LEDs. The model used for

cross-talk is limited to only six neighboring LEDs, which correspond to direct

neighbors. However, the light contribution of other surrounding LEDs, which

are not direct neighbors is not null. When measuring a large white patch, these

LEDs, not taken into account by the cross-talk correction, tend to increase the

measured value. Therefore, a small bright area on a dim background suffers

from the fact that there is not enough contribution coming from neighboring

LEDs and can not reach the maximum displayed value. Consequently, the

measured luminances at the screen differ from what is intended by the tone

scale function applied to the image.

To understand this behavior better, we measured white patches of varying

sizes (simulating specular highlights) using a spectrophotometer (Pr650). We

used patches of 8, 16, 32, and 64 pixels corresponding to 0.14, 0.27, 0.55, and

1.1 degrees of visual angle.

Backgrounds of varying gray levels (black, 0.1 ·Ψmax, 0.5 ·Ψmax) were used

to simulate the luminance allocated to the maximum diffuse white. Example

of generated images are shown in Figure 5.12.

Figure 5.12: Generated images for measurements. Left: Background: 50% of
Ψmax, Specular highlight size: 1.1 degree. Right: Background: 10% of Ψmax,
Specular highlight size: 0.55 degree.



102 Chapter 5.

Measurements of these simulated specular highlights are plotted in Fig-

ure 5.13. We observe that the smaller the specular highlight is, the lower is

the display luminance. Moreover, the luminance of the area surrounding the

specular highlight also influences the practical measured value. The darker it

is, the lower the specular highlight measured value is.
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Figure 5.13: Measurements for generated images. The horizontal axis shows
four different sizes of specular highlights. Each color corresponds to a different
background luminance value.

Consequently, the practical applied tone scale varies locally and depends on

the size of the specular highlights as well as on the luminance value allocated

to the maximum diffuse white.

Figure 5.14 illustrates a theoretical tone scale and two corresponding prac-

tical tone scale functions for different specular highlight sizes. With large

specular highlights, the practical tone scale approaches the intended behav-

ior. However, with small specular highlights, it is possible that the measured

luminance of a large diffuse white area exceeds that of a specular area, despite

the behavior intended by the tone scale function.

This display limitation has an influence on the type of images that need

to be chosen for the psychovisual experiment. Images with small specular

highlights can not be used to validate our proposed tone scale. Based on our

measurements, we consider that the diameter of a specular highlight must be

at least 16 pixels for the results to be meaningful.
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maxΨ

large specular highlight

Measured tone scale
small specular highlight

Measured tone scale

Theoretical tone scale

Figure 5.14: Illustration of a theoretical tone scale and two corresponding prac-
tical tone scale functions. With large specular highlights, the practical tone scale
approaches the intended behavior. With small specular highlights, the measured
luminance of a large diffuse white area exceeds that of the specular area.

5.6 Statistical Analysis

5.6.1 Interval Scale of Preferences

Thurstone law of comparative judgment Case V (Engeldrum 2000) was applied

to convert the paired comparison observer data into an interval scale of pref-

erences. We used the toolbox provided in (Green 2003), which calculates the

z-scores and confidence intervals from such data.

With Thurstone law of comparative judgment, unanimous judgments (i.e.

when a stimuli is preferred by all observers or no observer) are problematic

as corresponding z-value are undefined. This problem is referred as “zero pro-

portion matrix problem”. Is it solved by substituting missing z-values using a

linear regression technique.

Results

The interval scale of preferences along with 95 % confidence limits are shown

in Figure 5.15. For two tone mapping to be significantly different, their error

bars must not overlap. Tone scale number 6 is the clipped version of tone scale

number 3. Their diffuse brightness is the same but specular highlights of tone

scale 6 are not boosted up.

The six plots represent six different images that we selected from our set

to give representative results. Indoor and outdoor scenes are shown. The

term “prefer” is used to describe observer choice. However, it is important to
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remember that it relates to a sensation of naturalness.

For the two images at the top, participants significantly preferred tone scale

4 over a simple linear scaling (5). At equal brightness (tone scales 3 and 6),

they selected the tone scale with bright specular highlights (3) significantly

more than the clipped one (6).

For images c, d, and e, our tone scale is slightly preferred than linear scaling

but not statistically different. At equal brightness, the bright specular highlight

images are statistically judged to be better than the clipped highlights. For

these three images it seems that participants expected a very bright scene while

images a and b benefit from a low luminance allocated to diffuse white. For

image a, which is an indoor scene, observers do not expect a very bright image.

For image b, the lower luminance choice can be explained by some capture

artifacts becoming more visible as the image becomes brighter.

Image f is an example of a problematic image. We showed with the mea-

surements performed on the HDR monitor that small specular highlights were

not scaled as much as predicted due to some display limitations. Consequently,

in image f, the increase in luminance of the specular highlights performed by

the tone scale function could not be displayed on the screen. This explains why

tone scale 3 and 6 are statistically equivalent.
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Figure 5.15: For images a and b, participants significantly preferred tone scale 4 over

a simple linear scaling (5). At equal brightness (tone scales 3 and 6), they selected the

tone scale with bright specular highlights (3) significantly more than the clipped one

(6). For images c, d, and e, our tone scale is slightly preferred than linear scaling but

not statistically different. At equal brightness, the bright specular highlight images are

statistically judged to be better than the clipped highlights. For image f, tone scale 5

(linear) is statistically preferred over 1,2,3. Clipped (6) and non-clipped tone scales (3)

are equivalent. These results are due to the small size of specular highlights.
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5.6.2 Coefficient of Agreement and Consistency

In addition to the interval scale of preference plots, we tested observer agree-

ment and consistency following the method described in (Kendall and Smith

1940, Ledda et al. 2005).

Agreement between observers

Agreement between observers was measured using Kendall coefficient of agree-

ment (Kendall and Smith 1940). Let Q be the number of observations (the

number of observers × the number of repetitions), T be the number of tested

tone scale functions, and qij be the number of times tone scale i was preferred

over tone scale j. We first compute

Σ =

T
∑

i=1,j=1,i6=j

(

qi,j

2

)

(5.13)

Then, the coefficient of agreement between observers is given by:

u =
2Σ

(

T

2

)

.

(

Q

2

) − 1 (5.14)

Complete agreement between observers leads to u = 1. The value of u if

observers were making their selection randomly is given by:

urandom =

{

− 1
Q−1 if Q is even

− 1
Q

if Q is odd
(5.15)

In our case, urandom = −0.0256.

We then performed a test χ2 to assess the statistical significance of u. Our

H0 hypothesis was “There is no agreement among observers”. H0 can be re-

jected when χ2
t with (T ·(T−1))

2 = 15 degrees of freedom is larger than the

quantile of the χ2
15 distribution (5.16).

χ2
t = T (T−1)(1+u(Q−1))

2

χ2
15 = 25

(5.16)

Coefficient of Consistency

The coefficient of consistency is determined for one image and one observer

repetition by the number of circular triads in the data. The number of circular

triads in paired comparison data is given by ν (Kendall and Smith 1940).

ν =
T

24
(T 2 − 1) − 1

2
ι, (5.17)
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where

ι =

T
∑

i=1,i6=j

(

T
∑

j=1

qi,j −
T − 1

2
)2. (5.18)

The coefficient of consistency is then

η =

{

1 − 24ν
T 3−4T

if Q is even

1 − 24ν
T 3−T

if Q is odd
(5.19)

Full consistency leads to η = 1 while total inconsistency leads to η = 0.

Results

Table 5.2 shows the agreement and consistency coefficients for images of Fig-

ure 5.15. Since our experiment does not lead to a typical ranking of the tone

scale functions, it is possible for observers to disagree on some pairs while

agreeing on which tone scale provides the most natural overall look. Therefore,

global agreement between observers is rather small but still passes the χ2 test

of statistical significance. The H0 hypothesis “There is no agreement among

observers” can be rejected for all images of Table 5.2. The average consistency

is high for all images.

Table 5.2: Observer agreement and consistency coefficients. For each image, the
coefficient of agreement passes the χ2 test (χ2 > 25) ensuring a non random
agreement between observers.

image obs. obs. χ2 image obs. obs. χ2

name agr. u cons. η name agr. u cons. η
atrium (a) 0.16 0.82 111 boat (b) 0.15 0.83 105
tramway (c) 0.32 0.81 205 pool balls (d) 0.35 0.89 217
ice twig (e) 0.20 0.80 130 color check.(f) 0.21 0.81 140

In Table 5.2, we computed the consistency coefficient for each image aver-

aged over the observers’ responses. We now compute the consistency coefficient

for each observer averaged over the set of images. This allows us to detect if

one observer was completely inconsistent. Table 5.3 presents the average con-

sistency of all observers. It shows that all observers were consistent in their

judgment.

Finally, we test intra-observer agreement and consistency for two observers

who did 4 repetitions of the experiment. The results show that the agreement

coefficient over the four repetitions was high. The consistency coefficient was

good as well.
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Table 5.3: Average consistency of observers over all images.

Obs 1 2 3 4 5 6 7 8 9 10
Av. cons. 0.81 0.69 0.91 0.93 0.84 0.88 0.81 0.91 0.79 0.96
Obs 11 12 13 14 15 16 17 18 19 20
Av. cons. 0.83 0.84 0.69 0.79 0.69 0.83 0.81 0.94 0.91 0.73

Table 5.4: Intra-observer agreement with 4 repetitions, for two observers.

Observer 1 Observer 2
Average agreement u = 0.60 u = 0.5
Average consistency η = 0.86 η = 0.79

χ2 72 68

5.6.3 Discussion

The results of this experiment show that the preferred luminance range allo-

cated to the diffuse image varies with the image content. Different results are

obtained for indoor scenes and outdoor scenes. For outdoor scenes, observers

tend to select images where only a small part of the dynamic range is allocated

to specular highlights. However, with images of equal diffuse brightness, they

prefer the image with bright highlights.

For indoor scenes, the participants clearly prefer to allocate more range to

the specular highlights instead of a linear scaling, which would result in an

unnaturally bright image. When comparing images of equal diffuse brightness,

the image with bright specular highlights is also significantly preferred.

At the end of the experiment, each observer had to answer some questions

and could write down their comments. An example of the form given to par-

ticipants is shown in Figure 5.16.

In response to question 1, most observers reported occasional artifacts but

almost none of them were disturbed by them. Answers to the second question

were “no” for most participants, which confirms that 1.3 degree of visual angle

for the black line separating the two images was sufficient. Concerning question

3, some comparisons were reported difficult. They correspond to the images

with very small specular highlights where it was really difficult to see any

difference in the highlights. For these images, the answers were still consistent

if participants agreed on the global diffuse brightness that the rendered image

should have. We put one of these images in the results (image f). In general,

observers’ feed-back was coherent with the statistical results. Finally, more

than two third of the participants found that the duration of the experiment

was acceptable. Some reported fatigue while looking at the last few images.
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When you are done with the experiment, please write down your
comments and answer the following questions

Often                       Occasionally               Never

2) Did you feel like a very bright image next to a dark image influenced 
your preferences in other way than the tone scale itself?

3) Were some comparisons too difficult?

You comments:

4) Was it too long?

Questions and comments

1) Did you notice artifacts in the specular highlights?

Figure 5.16: Example of form given to the participants.

Nevertheless, our analysis of the observers’ consistency did not allow us to

discard any participants from our data analysis.

To conclude, the use of a tone scale that boosts up the specular high-

lights instead of rendering a globally brighter image is validated for indoor

scenes. Most importantly, the results of the comparison between clipped and

non-clipped specular highlights in images of equal diffuse brightness confirmed

that bright specular highlights lead to a more natural impression for all tested

images.

5.7 Conclusion

The recent marketing of HDR displays opens new research opportunities in the

field of HDR imaging as well as related applications. This chapter focuses on

the conversion of SDR images (whose original scenes were HDR) into images

that can be displayed on an HDR monitor. We present a tone scale function

whose goal is to improve the realism of specular highlights. The benefit of such

a tone scale is confirmed by a psychovisual experiment.

This experiment suggests that when using an HDR display, it is preferable

not to use the entire dynamic range for the diffuse component of the input

image despite the reduction in mean brightness. Instead, part of the dynamic

range could be used to provide a better reproduction of specular highlights

and thus increase the realism of the displayed image. More importantly it

shows that at equal diffuse brightness, images with brighter specular highlights

provide a more natural visual sensation.
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Chapter 6

The SDR to HDR Algorithm

6.1 Introduction

For the psychovisual experiment described in the previous chapter, the max-

imum diffuse white of an image, which defines the shape of the tone scale

function, was chosen manually. In this chapter, we propose an automatic way

to construct the tone scale. The maximum diffuse white ω is determined us-

ing an automatic segmentation of the input image into a diffuse and specular

image (Figure 5.6). This segmentation is performed by detecting the specular

highlights in the image.

First, background work on the detection of specular highlights is reviewed.

Then, we introduce our method to find the specular components in an image,

compute ω, and construct the tone scale. An alternative way of applying the

tone scale function using spatial information is proposed and compared to the

global application used in the psychovisual experiment. Finally, we show the

results of applying our tone scale using the automatic detection of ω on the

images used in the experiment.

6.2 Detection of Specular Highlights

Detecting specular highlights, which often means separating an image into dif-

fuse and specular components, is not an easy task. It has been addressed by

many researchers for various purposes. Klinker et al. (Klinker et al. 1987,

Klinker et al. 1988) separate diffuse from specular components using the dis-

tribution of color clusters in color spaces. They show that diffuse and specular

surfaces form a “T” in the dichromatic plane of the RGB color space. The

base of the “T” points to the color of the illuminant (Figure 6.1). However,

111
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this does not hold for saturated pixels since these pixels do not generally obey

the characteristics of the dichromatic reflection model.

The dichromatic   plane

Figure 6.1: Example of “T” shape formed by diffuse and specular pixels (A,B).
This figure was taken from (Park and Kak 2003) and also shows some clipped
pixels (C).

The specular highlights in an image are often clipped and this creates prob-

lems for most detection algorithms based on the dichromatic model. In (Tan

et al. 2004), the goal is to estimate the illuminant using specular highlights.

The first part of their method, based on earlier work (Lee 1986), consists in

finding the specular highlights by thresholding on brightness and saturation.

They then estimate the illuminant using an inverse chromaticity space in which

the correlation between illumination chromaticity and image chromaticity can

be obtained. No special care is taken for clipped pixels. A method to discard

clipped pixels is proposed in (Park and Kak 2003) so that the distribution

obeys the characteristics of the dichromatic model. Osadchy et al. (2003) use

specularities for recognition of a known 3D object in an image. They detect

specular highlight candidates using a threshold operation but also use 3D in-

formation of the known object to reject false candidates. They use additional

assumptions that are worth mentioning as our technique is also based on them:

specular highlights are usually monotonically decreasing and rotationally sym-

metric. Similar to these methods, the algorithm presented in the next section

uses thresholding to discriminate between the diffuse and the specular com-

ponents of an image. A key difference is that our threshold is determined
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by spatial filtering and morphological operators, which makes the detection of

specular highlights more robust.

6.3 Automatic Detection of Maximum Diffuse White

Our algorithm detects the specular highlights by applying two low-pass filters

to the luminance channel of the input image, combined with morphological

operators. The luminance image is obtained by the pre-processing described

in Section 5.3.1. The detection of specular highlights results in a binary map

where 1 indicates a pixel belonging to a specular highlight. Figure 6.2 illustrates

the process.
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Figure 6.2: Definition of maximum diffuse white ω using two low-pass filters and
morphological operators.
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Assuming that the specular highlights are small and bright in the image, a

low-pass filtered image corresponds to the diffuse version of the image. How-

ever, it can occur that white diffuse parts of the image are brighter than the

region bordering specular highlights. We take that into account by using two

low-pass filters of different sizes. The luminance channel Λ of the input image

I is low-passed by a first filter Fm. Taking the maximum digital value of the

low-passed image results in a first threshold t1 (6.1) that is used to define the

specular highlight candidates under the form of a binary map M1 (6.2).

t1 = max
p∈I

(Λ(p) ∗ Fm), (6.1)

where p is a pixel in the image I and Fm is an m ×m averaging filter. We

use m equals 1
50 of the image size in the vertical direction.

M1(p) =

{

0 if Λ(p) ≤ t1

1 if Λ(p) > t1
(6.2)

Independently of this first step, the input image is low-passed again by a

filter that is twice as large F2m+1. The maximum of the second low-pass filtered

image defines a second threshold t2:

t2 = max
p∈I

(Λ(p) ∗ F2m+1). (6.3)

The specular highlight candidate map M1 obtained in (6.2) is now processed

with morphological operators. At first, an erosion is applied in order to remove

single pixels (6.4). After this first step, we consider that each group of white

pixels corresponds to the center of a specular highlight. Dilation is performed

iteratively on the specular highlight candidate map M2 constrained by the

second threshold t2. That is, a pixel is turned from non-specular to specular

if more than three of its neighbors are specular and if Λ(p) is greater than

t2 (specular regions are shown white in Figure 6.2). Iterations continue until

a stable state is reached. Usually only a few iterations are necessary. The

sequence of morphological operators is given by the following equations:

M2(p) =

{

0 if M1(p) = 0 or M1(p) ∗ H < 1

1 otherwise
, (6.4)

where

H =







1 1 1

1 0 1

1 1 1






. (6.5)
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M3(p) =

{

1 if M2(p) = 1 or (M2(p) ∗ H > 3 and Λ(p) > t2)

0 otherwise
(6.6)

The binary map thus obtained can be used as a mask to discriminate be-

tween diffuse and specular image. Λd and Λs are respectively described as:

Λs(p) = Λ(p) ·M3(p), (6.7)

Λd(p) = Λ(p) · (1 −M3(p)). (6.8)

We can then define a threshold ω given by the minimum digital value of

the specular image Λs, which in turn determines the maximum diffuse white of

the image. The advantage of using the minimum value of the specular image

rather than the maximum value of the diffuse image is that it does not depend

on the presence of a white surface in the image.

ω = min
p∈P

(Λs(p)), (6.9)

where P is the set of pixels for which Λs(p) > 0.

6.3.1 Application of the Segmentation Method

In Figure 6.3, we show the results of segmentation into diffuse and specular

components (Λs, Λd) for images used in the psychovisual experiment. The

detected specular highlights (given by the specular image) are shown in red.

Small and middle size specular highlights are detected successfully.

The detection of specular highlights is dependent on the size of the filter Fm.

Using two filters brings some flexibility but detecting large bright highlights

remains a problem. In the presence of such a bright area, the maximum of

both low-pass filtered images equals the maximum of the input image. ω takes

the value of the maximum display luminance, which results in a linear tone

scale. An extension to our algorithm for bright large light sources should be

considered as future work.

6.4 Applying the Tone Scale Function using a Mask

Knowing ω, we can compute the tone scale function as described in Sec-

tion 5.3.1. For the psychovisual experiment, the tone scale was simply applied

globally to each pixel of the image (6.10). Nevertheless, due to the way ω is
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Figure 6.3: Result of the segmentation for images used in the experiment. The
detected specular highlights are shown in red. Small and middle size specular
highlights are detected successfully.

computed using morphological operators, there could be diffuse parts of the

image whose pixel values are greater than ω. In this case, it is advantageous to

use the mask M3 (6.6) to scale the diffuse image and the specular image dif-

ferently. The diffuse image is scaled by the first linear function even for pixels

whose values are greater than ω and the specular image is scaled by the second

linear function. This is illustrated in Figure 6.4. We call it local application

of the tone scale. Global and local application of the tone scale are given by

(6.10) and (6.11), respectively.

Λnew(p) = f(Λ(p)) (6.10)
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Λnew(p) =

{

s1 · ω + s2 · (Λ(p) − ω) if M3(p) = 1

s1 · Λ(p) if M3(p) = 0
(6.11)

(b) local(a) global

(b) local

diffuse white

(a) global

1

digital values
diffuse input image

specular input image

truck local

truck

+

+truck global

s2

s

ω

Figure 6.4: Comparison between global and local application of the tone scale.
The truck is scaled to a lower value by the local application and appears darker
than if it was scaled by the global method since it is not part of the specular image.

Figure 6.4 shows a comparison between global and local application of the

tone scale function. For the local application, the diffuse image is scaled with

the dotted slope (s1) while the specular image is scaled by the solid slope (s2).

The difference can be seen in the zoomed images on the roof of the white truck.

The truck is part of the diffuse image but has a luminance value greater than

ω. It is scaled to a lower value when the tone scale is applied locally than when

it is applied globally and appears darker in the image treated with the local

method.

Two other examples are given in Figures 6.5 and 6.6. The top left image

(a) shows the image scaled by our tone scale applied locally using the specular

highlight candidate map (c). The top right image (b) shows the image scaled

globally, not taking spatial information (M3) into account. Diffuse pixels whose

value is greater than the computed ω are also boosted up. Differences between

(a) and (b) are visible in the area around the number in the pool ball image

(Figure 6.5) and in some parts of the big snow statue in Figure 6.6. Another

way of illustrating these differences is to compute the binary map Md(p) (6.12).

In Md(p), all pixels whose value is greater than ω is set to 1, as illustrated by

the bottom images (d) of Figure 6.6 and 6.5.
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Md(p) =

{

0 if Λ(p) ≤ ω

1 if Λ(p) > ω
(6.12)

(b)(a)

Specular highlight candidate map

Local application

(c)

Global application

(d)

Figure 6.5: Comparison between local and global application of the tone scale
function. A global application enhances the brightness of some diffuse pixels while
a local application prevents that.

6.5 Combining the Automatic Detection of ω and

the Tone Scale Function

We combined the automatic detection of ω with the local application of the

tone scale and present the results in Figure 6.7 to 6.10. The only definitive way

to assess the quality of the tone-scaled images is to compare them visually on an

HDR display. For this thesis, we simulated an HDR display by increasing the

brightness of the displayed images, but the enhancement of specular highlights
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Specular highlight candidate map

Local application

(a)

(c)

(b)

(d)

Global application

Figure 6.6: Comparison between local and global application of the tone scale
function. A global application enhances the brightness of some diffuse pixels while
a local application prevents that.

can not be reproduced here.

Figure 6.7 to 6.10 compare images originally tone-mapped to SDR display

that are scaled linearly (left, a and c), with images treated by our piecewise

linear tone scale function (right b and d). According to the results of the

psychovisual experiment, we use ρ = 67%. The first row (a,b) shows what

happens if the images are shown on an SDR device or a print. We can see that

the specular highlights of (b) have been boosted but at the expense of global

brightness. The second row (c,d) simulates what would happen if these images

were displayed on an HDR monitor. This is done by increasing the brightness

of the images (a,b) similarly. Image (d) gives about the same impression of

brightness than image (a). The brighter specular highlights of image (d) will

only be visible when displayed on an HDR monitor. The simulation of the

linearly scaled image displayed on an HDR device (c) shows that the image

looks too bright due to the increase in brightness.

6.6 Conclusion

The tone scale presented in Chapter 5 is entirely defined by two parameters,

the maximum diffuse white of the input image and the percentage of display
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luminance allocated to it. This chapter presents a method to define automat-

ically the maximum diffuse white of an input image. We also propose a more

effective way of applying the tone scale, which treats the diffuse and specular

images differently. ρ was chosen based on the results of the experiment but re-

mained fixed for all images. Changing ρ automatically according to the image

content is suggested for future work.

(a) (b)

(c) (d)

Figure 6.7: Comparison between linear scaling (left) and our tone scale (right).
First row: images displayed on an SDR device or print. Second row: Simulation
of images (a,b) when displayed on an HDR device. Only the diffuse brightness of
these images is simulated. The bright specular highlights of image (d) can not be
reproduced.
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(a) (b)

(c) (d)

Figure 6.8: Comparison between linear scaling (left) and our tone scale (right).
First row: images displayed on an SDR device or print. Second row: Simulation
of images (a,b) when displayed on an HDR device. Only the diffuse brightness of
these images is simulated. The bright specular highlights of image (d) can not be
reproduced.
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(a) (b)

(c) (d)

Figure 6.9: Comparison between linear scaling (left) and our tone scale (right).
First row: images displayed on an SDR device or print. Second row: Simulation
of images (a,b) when displayed on an HDR device. Only the diffuse brightness of
these images is simulated. The bright specular highlights of image (d) can not be
reproduced.
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(a) (b)

(c) (d)

Figure 6.10: Comparison between linear scaling (left) and our tone scale (right).
First row: images displayed on an SDR device or print. Second row: Simulation
of images (a,b) when displayed on an HDR device. Only the diffuse brightness of
these images is simulated. The bright specular highlights of image (d) can not be
reproduced.
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Chapter 7

Conclusion

7.1 Thesis Summary

In this thesis, we investigated tone mapping methods for images representing

high dynamic range (HDR) scenes and developed new algorithms.

The display of HDR images on standard dynamic range (SDR) monitors is

known to be problematic since the dynamic range of the input image has to

be compressed. Using only global tone mapping induces too much of a loss of

contrast information either in the shadow areas or in the bright areas. This

is due to the decrease in local contrast caused by the compression in dynamic

range. Local tone mapping methods that increase the local contrast can be

combined with a global tone mapping to avoid this loss of contrast and improve

detail visibility. However, local tone mapping methods often introduce artifacts

such as halos, graying-out of low contrast areas, or bad color rendition. We

presented a local tone mapping method that overcomes these problems. It uses

an adaptive filter to increase the local contrast while preventing areas of very

different illumination to influence each other. Our algorithm also introduces

a weighting function of the local mask to prevent the black and white low

contrast areas to turn gray and keep a visually pleasing global contrast. This

local tone mapping algorithm is combined with a global pre-processing, which

applies an additional gamma function depending on the key of the image. The

application of our method on HDR images showed that it efficiently increases

the local contrast while preventing halo artifacts and graying-out of low contrast

areas.

Our method treats only the luminance channel to avoid color artifacts. The

color image is recovered by putting the treated luminance back with the chromi-

nance channels. Many existing local tone mapping methods proceed similarly.

However, the influence of the choice of the color transform used to extract the

125
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luminance and the chrominance is often not taken into consideration. We in-

vestigated two existing local tone mapping methods using four different color

transforms to compute the luminance. We found that the correlation between

luminance and chrominance plays a role in the final image appearance. How-

ever, a perfect decorrelation is not necessary.

The capture of HDR scenes is an issue as standard cameras have a limited

dynamic range. A multiple exposure technique can be used to capture the

whole dynamic range of still scenes. We extended this technique to the capture

of HDR scenes containing a moving object. We tested a preliminary version

on a few images and obtained promising results.

With these recently developed HDR monitors, HDR images can be displayed

with hardly any compression of dynamic range. This brings the need for new

tone mapping operators. After having studied the rendering of HDR images

to SDR displays, we focused on the re-rendering of images representing HDR

scenes that were mapped to SDR, to display them on HDR monitors. This is

a very important topic as legacy images rendered to SDR displays represent

a large amount of data. We propose the use of a piecewise linear tone scale

function that recovers the brightness of specular highlights, which were clipped

or compressed by the capturing and rendering process to SDR. We conducted a

psychovisual experiment and showed that our tone scale provides more realistic-

looking images than a linear scaling. With this research, we showed that re-

rendering images representing HDR scenes to HDR displays benefits from an

adequate tone mapping function. We hope that this work will encourage future

research on that topic.

7.2 Future Research

During the course of this thesis, new questions were raised, which brought new

opportunities for investigations. Here, we present ideas for future research that

are a direct continuation of this work.

Tone Mapping Algorithms for SDR Displays

A large amount of work has been performed on the topic of tone mapping

HDR images to SDR displays. Different algorithms have different goals, such

as our method presented in Chapter 3 whose goal is to render pleasing images

while avoiding halo and graying-out artifacts. Subjective testings have been

conducted to evaluate tone mapping algorithms but none of the tests has led

to satisfying conclusions yet. It is now becoming increasingly important to

conduct more psychovisual experiments to evaluate existing algorithms and
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assess their performances according to their goals.

Color Rendering. Most tone mapping algorithms focus on the rendering

of luminance while the processing of color is barely addressed. Future tone

mapping algorithms should study the “correct” rendition of color. Subjective

testings focusing on color should also be conducted.

Generation of HDR Content Images and Videos

The extension of the multiple exposure technique using ghost removal has

shown promises. It has to be developed further and tested on more images.

In particular, a motion compensation algorithm should be integrated to han-

dle global motion of the scene, which may be caused by moving the camera.

Then, a natural extension is the generation of HDR videos. This can be done

by merging frames of changing exposures. Another direction for improvement

would be to combine the multiple exposure technique applied on video frames

with a superresolution technique.

Tone Mapping for HDR Displays

The arrival of HDR displays provides a large number of opportunities for future

work. In this thesis, we proposed a tone mapping method to re-render images

representing HDR scenes. A continuation of this work is to extend it to the

re-rendering of LDR scenes and SDR scenes. Direct rendering of RAW images

and radiance maps (not tone-mapped to SDR) to HDR displays should be

addressed as well.

Extension to Video. The extension of these tone mapping methods to

video represent a key step toward their use in practical applications. We be-

lieve that the simplicity of our proposed algorithm is an advantage and makes

the extension to video straightforward. A common problem when going from

single image to video frames processing is the appearance of flickering between

frames. Since, our tone scale is based on the maximum of the low-pass filtered

image, it is less subject to flickering than controlling the exposure using just

the maximum of the image. If some flickering still occurs, computing the tone

scale using more than one frame would further ameliorate the problem.

Other Applications Related to HDR Displays. Additional future

work for HDR displays includes creation of new standards, compression algo-

rithms, evaluation and development of image quality metrics, and adaptation

of existing perception models to the new conditions of vision.
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Appendix A

The Generation of Radiance

Maps Representing an HDR

Scene

Consumer-level cameras can not capture the full spectral content and dynamic

range of all natural scenes. When the scene’s dynamic range exceeds the capa-

bilities of the capture device, the exposure setting (time and aperture) deter-

mines which part of the scene will be properly exposed in the captured image.

The dynamic range (DR) of a digital camera is defined by the charge ca-

pacity divided by the noise (A.1) (Nakamura 2006). The charge capacity is

given by the maximum number of electrons that can be captured by a pixel,

inducing a linear response. Beyond this limit, additional electrons falling on

the sensor do not increase its response linearly. In this case, we say that the

sensor is saturated. Current consumer-level cameras have a dynamic range of

about 4000:1, which can numerically be represented with 12 bits. It follows

that most of the camera’s RAW output is encoded with 12 bits. The dynamic

range can be increased by larger pixel size.

DR =
max # of electrons

read-noise
(A.1)

The exposed range of the captured scene depends on the dynamic range of

the camera, on its flare, and on the exposure setting. A long exposure or large

aperture provides detail visibility in the shadow areas but tends to over-expose

the bright parts of the scene, which are clipped. With a short exposure or

small aperture, less light is captured. The bright areas are exposed correctly at

the expense of detail visibility in the shadow. This is illustrated in Figure A.1.
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In the top image (long exposure time), details in the room are visible but the

outdoor view through the window is over-exposed. In the bottom image (short

exposure time), the buildings outside the window are visible but the objects in

the room are under-exposed.

Figure A.1: Example of the same scene taken with different exposure settings.
Top: Long exposure time. The objects in the room are visible but the window is
over-exposed. Bottom: Short exposure time. The building outside the window is
visible but the objects in the room are under-exposed.

A.1 Multiple Exposure Technique

Capturing the full dynamic range of any natural scene is however possible with

conventional camera equipment using a multiple exposure technique (Mann

and Picard 1995, Debevec and Malik 1997). This technique spans the range of

scene radiances by taking several images with different exposure settings. The

captured images are processed to compensate for the camera response curve,
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the flare, and the exposure settings and then fused into a floating point image

that is an accurate representation of the scene. We will call radiance maps the

digital representation of an HDR scene as introduced by Debevec and Malik

(1997).

Several software packages exist for the generation of radiance maps using

this technique: Photosphere1, HDRshop2, or Photomatix 3. Adobe Photoshop

PCS2 also provides a script that automatically merges a set of images into

a radiance map. Beside software solutions, the progress in developing HDR

sensors has enabled the construction of cameras with larger dynamic range

(Nayar and Branzoi 2003). Nayar and Mitsunaga (2000) also generate radiance

maps using spatially varying pixel exposure.

Kang et al. (2003) propose a method to create videos representing HDR

scenes from a sequence of alternating light and dark exposures. Each frame

is transformed into a radiance map using neighboring frames. Their method

includes a highly accurate motion estimation algorithm to compensate for the

motion between frames.

Figure A.2 illustrates the construction of a radiance map. The left image is

the result of the fusion of the three images on the right. Each of these images

contributes to the radiance map differently depending on the pixel exposition:

only properly exposed pixels are used for the construction of the radiance map.

Pixels that are clipped or that have a small signal to noise ratio are excluded.

In Figure A.2, the top image contributes to outdoor details while the middle

and bottom image contribute to indoor details.

A.2 Radiance Map File Format

Radiance maps must be stored in a file format that can encode HDR data

without loosing information. A file format is defined by an encoding technique,

side information such as a header, and an optional compression method.

For all radiance maps used in this thesis, we use the “hdr” format originally

known as radiance. This format was first developed for the computer graphic

community but is now commonly used in digital photography. The pixel data

come in a four byte rgbe encoding. The first three bytes r, g, and b share the

same exponent e given by the fourth byte.

Let us denote vrgbe, a vector of 4 entries representing a pixel value encoded

in rgbe. The vector of 3 entries vRGB representing the same pixel value encoded

with RGB primaries is retrieved as follows:

1www.anyhere.com
2www.hdrshop.com
3www.hdrsoft.com
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Figure A.2: Generation of a radiance map using multiple exposures of a scene.
The left image shows the result of the fusion of the three images on the right.

vRGB(i) =
vrgbe(i) + 0.5

28
· 2(vrgbe(4)−27) (A.2)

where i = 1, 2, 3, indicating one of the R,G,B color channel.

The rgbe encoding enables to encode a dynamic range sufficient for natu-

ral scenes using only 4 bytes per pixel. The “hdr” format is composed of a

header followed by the rgbe encoded image. A lossless compression (run-length

encoding) is then applied.

Another possible format to store radiance maps is “floating point tiff”.

Because it uses 96 bits per pixel (12 bytes), it can encode a very high dynamic

range (∼ 79 orders of magnitude) with a better precision than the radiance

format. The drawback of “floating point tiff” is that it takes three times more

storage room than radiance. More formats for radiance map encoding are

described in (Reinhard et al. 2005), Chapter 4.

A.3 Image Sources used in this Thesis

Several databases of HDR images are available on the Internet. In addition to

our own images, we used radiance maps provided by various authors. Reinhard

put together images from Peter Shirley and Greg Ward.4 Debevec used his

implementation of the multiple exposure technique (Debevec and Malik 1997)

4http://www.cs.utah.edu/∼reinhard/cdrom/hdr.html
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and made available the resulting images.5 Xiao et al. built a database of well-

calibrated radiance maps (Xiao et al. 2002) that can be downloaded from their

website.6 The Munsell Color Science Laboratory (RIT/MCSL) created more

than 50 radiance maps using Photosphere software.7

We also use RAW images representing HDR scenes taken with a Canon

(EOS30, 300D, or Powershot G2) digital camera. Our image database is avail-

able on our webpage. 8

5http://www.debevec.org/
6http://pdc.stanford.edu/hdri/
7http://www.cis.rit.edu/mcsl/icam/hdr/
8http://lcavwww.epfl.ch/∼lmeylan
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Appendix B

Adapting the Multiple

Exposure Technique for

Scenes Containing a Moving

Object

The problem of using a multiple exposure technique is that it can only be used

to capture still scenes. Indeed, if objects move in the scene, they will appear

at different positions in the captured images, which will create “ghosts” in the

merged image. An example of a ghost created by a tennis ball moving in the

scene is shown in Figure B.1. While motion of a few pixels can be treated as

a pixel registration problem and solved using motion compensation (Kang et

al. 2003), larger amplitude moving objects are still an issue.

B.1 A Method to Remove Ghosts in Radiance Maps

We developed a technique that detects and prevents ghosts in images con-

structed with a multiple exposure technique.1 Its principle is to merge the still

parts of the images and to use only a single exposure for the moving objects.

This requires that the dynamic range of each moving object can be captured by

a single exposure. We tested it for one moving object and propose an extension

when several moving objects are present.

The problem of ghost elimination in radiance maps has to our knowledge

1This work was done in collaboration with Olivier Hochreutiner (semester project, June
2005).
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ghost

Figure B.1: Example of ghost caused by a moving object in an HDR scene captured
by a multiple exposure technique.

only been described in (Reinhard et al. 2005). Their method is based on the

same idea but differs in various ways. In particular, the motion detection and

the computation of the motion mask differ. They are based on the variance at

each pixel, while we use an image differencing algorithm.

B.1.1 Motion Mask Computation

The first step of our ghost removal method is to compute the motion mask,

which defines the areas that must be excluded from the image fusion. Prior

to any operation, we have to compensate for the difference of exposure during

image capture. We assume that the device is perfectly linear and that im-

ages were taken by regularly changing the exposure time. Each image is then

weighted by the inverse of its exposure time, using one image for the reference

time (τref ).

Zi(p) =
τref

τi

· Ii(p) (B.1)

Ii(p) is the captured image with exposure time τi. τref is the reference

exposure time and Zi(p) is the image originally taken with exposure time τi

that has been compensated to the reference exposure time.

The motion mask is computed by the image differencing technique described

in (Radke et al. 2005). Pairs of images are subtracted resulting in non-zero
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values where motion occurs:

∆i,j(p) = Zi(p) − Zj(p). (B.2)

The results for all image pairs are added and thresholded to obtain a binary

map B (Figure B.2 (a)):

∆(p) =

J
∑

i=1

J
∑

j=1,i6=j

∆i,j(p), (B.3)

where J is the number of captured images.

B(p) =

{

1 if ∆(p) ≥ threshold

0 otherwise
(B.4)

Using a differencing technique for motion detection tends to emphasize the

edges of the moving object, since the difference between the background and

the object is likely to be larger than adjacent areas within the object. We

can see in Figure B.2 (a) that the mask does not completely cover the area

where motion occurs. Since the detected motion corresponds to the edges of

the moving object across images, the convex hull of the detected moving pixels

contains the moving object. The convex hull is defined by the smallest polygon

containing a set of points in a two-dimensional space. In our case, the set of

points is given by the pixels having a value of 1 (shown white in Figure B.2)

in the binary map B(p). The convex hull is computed using the Graham scan

algorithm (Graham 1972). Applying this algorithm on Figure B.2 (a) and filling

in the shape defined by the convex hull results in Figure B.2 (b). We call this

new binary map Bhull.

The example of Figure B.2 has only one moving object. An extension to

more than one moving object can be done by creating clusters of white pixels

in the binary map B. A maximum distance between pixels belonging to the

same object is chosen and determines n, the number of moving objects. Each

of the n clusters corresponds to one moving object and is put in a separate

binary map. The convex hull algorithm is applied on each of these separately.

B.1.2 Using the Motion Mask in the Fusion

Now that the location of pixels belonging to moving objects is known, we can

exclude them from the fusion of images. The best-exposed image, called Zbest

is selected for each moving object and used in the radiance map at the object

location. Zbest is defined by the image having the longest exposure time and

no saturated pixel at the moving object location.
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Figure B.2: Computation of the motion mask. Left: Motion mask resulting
from the image differencing and thresholding operations (B). Right: Motion
mask after the computation of the convex hull (Bhull).

The radiance map IHDR resulting from the fusion is computed as follows.

For one moving object:

IHDR(p) = (
1

|Pi|

J
∑

i=1,p∈Pi

Zi(p) · (1 − Bhull(p))) + Zbest(p) · Bhull(p), (B.5)

where Pi is the subset of well-exposed (non-saturated) pixels used in the

fusion.

For n moving objects, we have n binary maps Bhull,k and n best exposed

images Zbest,k , where k indicates one moving object:

IHDR(p) =
1

|Pi|

J
∑

i=1,p∈Pi

Zi(p) · (1−Ball(p)) +
n
∑

k=1

Zbest,k(p) · Bhull,k(p), (B.6)

where

Ball(p) =

n
∏

k=1

Bhull,k(p). (B.7)

B.2 Results

Figure B.3 and B.4 show the result of our ghost removal algorithm for two

scenes containing one moving object. The top row (a) illustrates the motion

mask computation for each scene. The second row (b) shows the image obtained

without the ghost removal algorithm. The bottom row (c) shows the result

obtained with our algorithm.
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  (a)

  (b)

  (c)

moving object

Figure B.3: Result of our ghost removal algorithm. (a) Motion mask computation.
(b) Result without ghost removal algorithm. (c) Result obtained with our ghost
removal algorithm.
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(a)

(b)

(c)

moving object

Figure B.4: Result of our ghost removal algorithm. (a) Motion mask computation.
(b) Result without ghost removal algorithm. (c) Result obtained with our ghost
removal algorithm.



Appendix C

Software Correction

Algorithm for High Dynamic

Range Display

In an HDR display, the uniform backlight common to standard displays is

replaced by an array of white LEDs, which can be controlled independently.

The image formed by the LEDs projected through a diffusion screen serves as

backlight to the LCD panel.

Thus, displaying images on an HDR monitor requires some processing. The

input image must be split into a low resolution image sent to the LEDs and

a high resolution color image sent to the LCD such that what is seen on the

screen represents accurately the input image.

The process applied to the input images before display is illustrated in

Figure C.1. It is also described in (Seetzen et al. 2004). In short, it consists

in resizing the input image to screen resolution, computing the values to drive

the LEDs, simulating the backlight image generated by the LEDs seen through

the diffusion screen, and computing the LCD image using this backlight image.

Each of these steps is described in this appendix.

C.1 Scaling to Screen Resolution

First, the input image is resized to the display resolution (1280× 1024 for the

model described in (Seetzen et al. 2004)). If the aspect ratio is different than

5/4, zero padding is added where necessary. This is illustrated in Figure C.2.
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LED layer
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x
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Using LED

Figure C.1: Global processing applied to the input image to compute the LED
driving values and the LCD image.

C.2 LED Control Line Computation

The next step is to compute the control line that drives the LEDs. Let us

call Is the scaled image obtained at the previous step. Since the LED image

will multiply with the LCD image,
√

Is is used for the LEDs contribution. We

compute its luminance Λ′
s:

Λ′
s = 0.265 ∗

√

Is,1 + 0.670 ∗
√

Is,2 + 0.065 ∗
√

Is,3, (C.1)

where Is,1, Is,2, and Is,3 are the red, green and blue color channels of Is.

Then, Λ′
s is downsampled to the LED array resolution (46 × 33).

λ = Λs ↓n,m, (C.2)

where λ is the downsampled image called LED image. n and m are the

downsampling factor so that λ is of size 46 × 33.

In order to accommodate the fact that the LEDs are arranged on the screen

in a hexagonal pattern, the LED image has twice the number of columns than

the horizontal dimension of the physical LED array. This is illustrated in

Figure C.3, which presents the process to compute the LED driving values.

After downsampling, the cross-talk correction step corrects the LED image

pixel values to compensate for the light contribution of neighboring LEDs on

the physical position of one considered LED. It is assumed that all LEDs have
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padding
Scaling and

Figure C.2: Scaling and padding. The input image is scaled to the display reso-
lution. Zero-padding is used if the aspect ratio of the source differs from that of
the display.

the same point spread function, i.e. the measured luminance decreases similarly

when increasing the distance from the center of the light source, and that their

light contribution only affects direct neighbors.

The matrix in (C.3) shows the six neighbors of one LED at position (x, y)

that are used for cross-talk correction. Due to the physical arrangement of the

LEDs, they are at equal distance d. The symbol ’×’ shows a physical position

in the grid where there is no LED. ’0’ corresponds to an existing LED, whose

light contribution is considered to be null at position (x,y).

















0 × (x, y + 2) × 0

× (x − 1, y + 1) × (x + 1, y + 1) ×
0 × (x,y) × 0

× (x − 1, y − 1) × (x + 1, y − 1) ×
0 × (x, y − 2) × 0

















(C.3)

The pixel values of the cross-talk corrected image λcross are determined by

subtracting the light contribution of the six neighbors for each LED position.

λcross(x, y) =











0 if x and y are odd or x and y are even

a1 · λ(x,y) − a2 · (λ(x−1,y+1) + λ(x+1,y−1)+

+λ(x+1,y+1) + λ(x−1,y−1) + λ(x,y+2) + λ(x,y−2)) otherwise

(C.4)

We measured the luminance L(d) emitted by one LED at distance d of its

center and compute a1 and a2 by solving a linear system (C.5). Since the

LEDs’ point spread function is linear with input voltage, a1 and a2 only have

to be computed once.
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Figure C.3: Computation of the LED driving values. The luminance image is
first downsampled to the resolution of the LED array. Then, compensation for
cross-talk between LEDs is applied as well as compensation for the LED response
curve. The LED driving values are transformed into a control line by removing
pixels which do not correspond to an LED location.
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(C.5)

where λ’s are the ideal values that would be used to drive the LEDs if

there was no cross-talk between them. λcross are the LED driving values after

cross-talk correction, which are computed with (C.4). Let us call L, the central

matrix in (C.5). The two coefficients a1 and a2 are obtained by inversing L as
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shown in (C.6).

L−1 =























a1 a2 ... a2

a2 a1 a2 ... ...

... a2 a1 a2 ...

... a2 a1 a2 ...

... a2 a1 a2

a2 ... ... a2 a1




















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(C.6)

Then, a compensation for the LED response curve is performed by sim-

ply applying a power function. The function exponent is based on physical

measurements.

These steps define the input voltage values that will drive the LEDs. They

are integrated in the image sent to the HDR display under the form of a control

line. Each pixel of the line controls one LED. The step of making a correspon-

dence between control line and spatial position in the LED array is called raster

decoding (Figure C.1) and is performed by a simple look-up table.

C.3 Simulating the Backlight Image

Knowing the LED driving values (λcross), we can simulate the backlight image

that lights up the LCD panel through the diffusion screen. First, the cross-

talk corrected image computed in the previous step is upsampled to the screen

resolution. The point spread function of the LED seen through the diffusion

screen is approximated by an addition of two Gaussian, which is then used

to filter the upsampled image. The simulated backlight image is shown in

Figure C.4.

C.4 Computing the LCD Front Image

The LCD image is computed by dividing each color channel of the input image

with the simulated backlight image (Figure C.4). A small compensation for

LED’s yellow color cast is also performed.

The LCD image is sent to the LCD panel and backlighted by the LEDs.

For large luminance patches, the resulting image at the screen is an accurate

representation of the input image. For small spatial luminance variations, the

cross-talk correction is not sufficient, as discussed in Section 5.5.
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Figure C.4: The simulated backlight is computed from the LED array image. It
is then used to compute the LCD image that is sent to the LCD layer of the HDR
display.
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Meylan, L. and Süsstrunk, S. (2006), High dynamic range image rendering with

a Retinex-based adaptive filter, to be published in IEEE Transactions on

Image Processing.



152 Bibliography

Moroney, N. (2004), Method and system of local color correction using back-

ground luminance mask. US patent #6,741,753.

Nakamura, J., ed. (2006), Image sensors and signal processing for digital still

cameras, CRC press, Taylor & Francis Group, Boca Raton, FL.

Nayar, S. and Branzoi, V. (2003), Adaptive dynamic range imaging: Optical

control of pixel exposures over space and time, in Proc. Ninth International

Conference on Computer Vision (ICCV), Vol. 2, Nice, France, pp. 1168–

1175.

Nayar, S. K. and Mitsunaga, T. (2000), High dynamic range imaging: Spatially

varying pixel exposures, in Proc. IEEE Computer Society Conference on

Computer Vision and Pattern Recognition (CVPR 2000), Vol. 1, Head

Island, SC, pp. 472–479.

Osadchy, M., Jacobs, D. and Ramamoorthi, R. (2003), Using specularities for

recognition, in Proc. Ninth International Conference on Computer Vision

(ICCV), Vol. 2, Nice, France, pp. 1512–1519.

Park, J. B. and Kak, A. C. (2003), A truncated least squares approach to

the detection of specular highlight in color images, in Proc. International

Conference on Robotics and Automation, Taipei, Taiwan, pp. 1397–1403.

Pattanaik, S. N., Ferwerda, J. A., Fairchild, M. D. and Greenberg, D. P. (1998),

A multiscale model of adaptation and spatial vision for realistic image

display, in Proc. ACM SIGGRAPH 98, Annual Conference on Computer

Graphics, Orlando, FL, pp. 287–298.

Pattanaik, S. N., Tumblin, J., Yee, H. and Greenberg, D. P. (2000), Time-

dependent visual adaptation for fast realistic image display, in Proc. ACM

SIGGRAPH 2000, Annual Conference on Computer Graphics, New Or-

leans, LO, pp. 47–54.

Petkov, N. and Westenberg, M. A. (2003), Suppression of contour perception by

band-limited noise ans its relation to nonclassical receptive field inhibition,

Biological Cybernetics 88, 236–246.

Poynton, C. (2003), Digital video and HDTV, algorithms and interfaces, Mor-

gan Kaufmann publishers, San Francisco, CA.

Radke, R. J., Andra, S., Al-Kofahi, O. and Roysam, B. (2005), Image change

detection algorithms: A systematic survey, IEEE Transactions on Image

Processing 14(3), 294–306.



Bibliography 153

Rahman, Z.-U., Jobson, D. D. and Woodell, G. A. (2004), Retinex process-

ing for automatic image enhancement, Journal of Electronic Imaging

13(1), 100–110.

Reinhard, E., Stark, M., Shirley, P. and Ferwerda, J. (2002), Photographic tone

reproduction for digital images, in Proc. ACM SIGGRAPH 2002, Annual

Conference on Computer Graphics, San Antonio, CA, pp. 267–276.

Reinhard, E., Ward, G., Pattanaik, S. and Debevec, P. (2005), High Dynamic

Range Imaging. Acquisition, Display, and Image-Based Lighting, Morgan

Kaufmann Publishers, San Francsisco, CA.

Rizzi, A., Marini, D., Rovati, L. and Docchio, F. (2003), Unsupervised cor-

rections of unknown chromatic dominants using a brownian-path-based

Retinex algorithm, Journal of Electronic Imaging 12(3), 431–440.

Seetzen, H., Heidrich, W., Stuerzlinger, W., Ward, G., Whitehead, L., Trenta-

coste, M., Ghosh, A. and Vorozcov, A. (2004), High dynamic range display

systems, ACM Transactions on Graphics (special issue SIGGRAPH 2004)

23(3), 760–768.

Sobol, R. (2004), Improving the Retinex algorithm for rendering wide dynamic

range photographs, Journal of Electronic Imaging 13(1), 65–74.

Tan, R. T., Nishino, K. and Ikeuchi, K. (2004), Color constancy through

inverse-intensity chromaticity space, Journal of the Optical Society of

America A 21(3), 321–334.

Tumblin, J. and Rushmeier, H. (1993), Tone reproduction for realistic images,

IEEE Transactions Computer Graphics and Applications 13(6), 42–48.

Tumblin, J. and Turk, G. (1999), LCIS: A boundary hierarchy for detail-

preserving contrast reduction, in Proc. ACM SIGGRAPH 99, Annual

Conference on Computer Graphics, Los Angeles, CA, pp. 83–90.

Wandell, B. (1995), Foundations of Vision, Sinauer Associates, Inc, Sunder-

land, MA.

Ward, G., Rushmeier, H. and Piatko, C. (1997), A visibility matching tone

reproduction operator for high dynamic range scenes, IEEE Transactions

on Visualization and Computer Graphics 3(4), 291–306.

Webster, M. A. (1996), Human colour perception and its adaptation, Network:

Computation in Neural Systems 7(4), 587–634.



154 Bibliography

West, G. and Brill, M. (1982), Necessary and sufficient conditions for von Kries

chromatic adaptation to give color constancy, Journal of Mathematical

Biology 15, 249–258.

White, M., Zakia, R. and Lorenz, P. (1977), The new zone system manual,

Morgan & Morgan, Dobbs Ferry, NY.

Wolff, L. (1994), On the relative brightness of specular and diffuse reflection,

in Proc. IEEE Computer Society Conference on Computer Vision and

Pattern Recognition (CVPR 1994), Seattle, WA, pp. 369–376.

Xiao, F., DiCarlo, J., Catrysse, P. and Wandell, B. (2002), High dynamic

range imaging of natural scenes, in Proc. IS&T/SID Tenth Color Imag-

ing Conference: Color Science, Systems, and Application, Scottsdale, AZ,

pp. 337–442.

Yoshida, A., Blanz, V., Myszkowski, K. and Seidel, H.-P. (2005), Perceptual

evaluation of tone mapping operators with real-world scenes, in Proc.

IS&T/SPIE Electronic Imaging 2005. The Human Vision and Electronic

Imaging X, Vol. 5666, San Jose,CA, pp. 192–203.



Curriculum Vitae

Laurence Meylan

Audiovisual Communications Laboratory II
Ecole Polytechnique Fédérale de Lausanne (EPFL)

1015 Lausanne, Switzerland
laurence.meylan@a3.epfl.ch

Personal

Date of birth: September 26, 1978.
Nationality: Swiss.
Civil status: Single.

Education

2002 - 2006 PhD candidate, Computer & Communication Sciences

Ecole Polytechnique Fédérale de Lausanne (EPFL), Switzerland

Research topics: high dynamic range images and displays, tone reproduc-
tion and color imaging

1997 - 2002 Master’s degree, Computer Engineering

Ecole Polytechnique Fédérale de Lausanne (EPFL), Switzerland

1992 - 1996 Science high school diploma with honors

Lycée Rousseau, Neuchâtel, Switzerland

Exchange with other universities:

2001 - 2002 University of Stanford, California, USA (5 months)

Master’s thesis as a visiting student in the Computer Science Robotics
Laboratory: “Automatic Tuning of a Physical Model through Video and
Force Feedback Information”

1999 - 2000 University of Waterloo, Ontario, Canada (2 semesters)

Undergraduate exchange student in Computer Engineering

155



156 Curriculum Vitae

Professional Experience

Internships:

2004-2005 Sharp Laboratories of Americas, Camas, WA (2 × 4 months)
• Developed Matlab applications for a high dynamic range display pro-
totype, including image and video processing and psychophysical experi-
ments.
• Implemented motion estimation algorithms in C++

2001 Orange Communications, Lausanne, Switzerland (3 months)
• Development of a client server application in JAVA

2000 Cambridge Technology Partners, Geneva, Switzerland (3 months)
• Functional modeling of a reporting application, implemented using SQL
Database, Oracle Server, PHP

Academic:

2002-2006 Student project supervision, EPFL
• Seven bachelor’s and master’s student projects (image processing)

2002-2006 Teaching Assistant, EPFL
• Color Imaging for master’s students
• Digital Photography for master’s students
• C++ Programming for bachelor’s students
• Introduction to Computer Science for first-year students
• Ada Programming for first-year students

PATENTS

L. Meylan and S. Daly, Generating High Dynamic Range Image Data from
Low Dynamic Range Image Data by the Use of Spatial Operators, US Serial
No. 11/233,747 (filed on 9/22/05).

PUBLICATIONS
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