209 research outputs found

    Spanish Sign Language synthesis system

    Full text link
    This is the author’s version of a work that was accepted for publication in Journal of Visual Languages and Computing. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Journal of Visual Languages and Computing,23, 3, (2012) DOI: 10.1016/j.jvlc.2012.01.003This work presents a new approach to the synthesis of Spanish Sign Language (LSE). Its main contributions are the use of a centralized relational database for storing sign descriptions, the proposal of a new input notation and a new avatar design, the skeleton structure of which improves the synthesis process. The relational database facilitates a highly detailed phonologic description of the signs that include parameter synchronization and timing. The centralized database approach has been introduced to allow the representation of each sign to be validated by the LSE National Institution, FCNSE. The input notation, designated HLSML, presents multiple levels of abstraction compared with current input notations. Redesigned input notation is used to simplify the description and the manual definition of LSE messages. Synthetic messages obtained using our approach have been evaluated by deaf users; in this evaluation a maximum recognition rate of 98.5% was obtained for isolated signs and a recognition rate of 95% was achieved for signed sentences

    Application-driven visual computing towards industry 4.0 2018

    Get PDF
    245 p.La Tesis recoge contribuciones en tres campos: 1. Agentes Virtuales Interactivos: autónomos, modulares, escalables, ubicuos y atractivos para el usuario. Estos IVA pueden interactuar con los usuarios de manera natural.2. Entornos de RV/RA Inmersivos: RV en la planificación de la producción, el diseño de producto, la simulación de procesos, pruebas y verificación. El Operario Virtual muestra cómo la RV y los Co-bots pueden trabajar en un entorno seguro. En el Operario Aumentado la RA muestra información relevante al trabajador de una manera no intrusiva. 3. Gestión Interactiva de Modelos 3D: gestión online y visualización de modelos CAD multimedia, mediante conversión automática de modelos CAD a la Web. La tecnología Web3D permite la visualización e interacción de estos modelos en dispositivos móviles de baja potencia.Además, estas contribuciones han permitido analizar los desafíos presentados por Industry 4.0. La tesis ha contribuido a proporcionar una prueba de concepto para algunos de esos desafíos: en factores humanos, simulación, visualización e integración de modelos

    Neural Radiance Fields: Past, Present, and Future

    Full text link
    The various aspects like modeling and interpreting 3D environments and surroundings have enticed humans to progress their research in 3D Computer Vision, Computer Graphics, and Machine Learning. An attempt made by Mildenhall et al in their paper about NeRFs (Neural Radiance Fields) led to a boom in Computer Graphics, Robotics, Computer Vision, and the possible scope of High-Resolution Low Storage Augmented Reality and Virtual Reality-based 3D models have gained traction from res with more than 1000 preprints related to NeRFs published. This paper serves as a bridge for people starting to study these fields by building on the basics of Mathematics, Geometry, Computer Vision, and Computer Graphics to the difficulties encountered in Implicit Representations at the intersection of all these disciplines. This survey provides the history of rendering, Implicit Learning, and NeRFs, the progression of research on NeRFs, and the potential applications and implications of NeRFs in today's world. In doing so, this survey categorizes all the NeRF-related research in terms of the datasets used, objective functions, applications solved, and evaluation criteria for these applications.Comment: 413 pages, 9 figures, 277 citation

    Virtual human modelling and animation for real-time sign language visualisation

    Get PDF
    >Magister Scientiae - MScThis thesis investigates the modelling and animation of virtual humans for real-time sign language visualisation. Sign languages are fully developed natural languages used by Deaf communities all over the world. These languages are communicated in a visual-gestural modality by the use of manual and non-manual gestures and are completely di erent from spoken languages. Manual gestures include the use of hand shapes, hand movements, hand locations and orientations of the palm in space. Non-manual gestures include the use of facial expressions, eye-gazes, head and upper body movements. Both manual and nonmanual gestures must be performed for sign languages to be correctly understood and interpreted. To e ectively visualise sign languages, a virtual human system must have models of adequate quality and be able to perform both manual and non-manual gesture animations in real-time. Our goal was to develop a methodology and establish an open framework by using various standards and open technologies to model and animate virtual humans of adequate quality to e ectively visualise sign languages. This open framework is to be used in a Machine Translation system that translates from a verbal language such as English to any sign language. Standards and technologies we employed include H-Anim, MakeHuman, Blender, Python and SignWriting. We found it necessary to adapt and extend H-Anim to e ectively visualise sign languages. The adaptations and extensions we made to H-Anim include imposing joint rotational limits, developing exible hands and the addition of facial bones based on the MPEG-4 Facial De nition Parameters facial feature points for facial animation. By using these standards and technologies, we found that we could circumvent a few di cult problems, such as: modelling high quality virtual humans; adapting and extending H-Anim; creating a sign language animation action vocabulary; blending between animations in an action vocabulary; sharing animation action data between our virtual humans; and e ectively visualising South African Sign Language.South Afric

    FACSGen: A Tool to Synthesize Emotional Facial Expressions Through Systematic Manipulation of Facial Action Units

    Get PDF
    To investigate the perception of emotional facial expressions, researchers rely on shared sets of photos or videos, most often generated by actor portrayals. The drawback of such standardized material is a lack of flexibility and controllability, as it does not allow the systematic parametric manipulation of specific features of facial expressions on the one hand, and of more general properties of the facial identity (age, ethnicity, gender) on the other. To remedy this problem, we developed FACSGen: a novel tool that allows the creation of realistic synthetic 3D facial stimuli, both static and dynamic, based on the Facial Action Coding System. FACSGen provides researchers with total control over facial action units, and corresponding informational cues in 3D synthetic faces. We present four studies validating both the software and the general methodology of systematically generating controlled facial expression patterns for stimulus presentatio

    3D Human Face Reconstruction and 2D Appearance Synthesis

    Get PDF
    3D human face reconstruction has been an extensive research for decades due to its wide applications, such as animation, recognition and 3D-driven appearance synthesis. Although commodity depth sensors are widely available in recent years, image based face reconstruction are significantly valuable as images are much easier to access and store. In this dissertation, we first propose three image-based face reconstruction approaches according to different assumption of inputs. In the first approach, face geometry is extracted from multiple key frames of a video sequence with different head poses. The camera should be calibrated under this assumption. As the first approach is limited to videos, we propose the second approach then focus on single image. This approach also improves the geometry by adding fine grains using shading cue. We proposed a novel albedo estimation and linear optimization algorithm in this approach. In the third approach, we further loose the constraint of the input image to arbitrary in the wild images. Our proposed approach can robustly reconstruct high quality model even with extreme expressions and large poses. We then explore the applicability of our face reconstructions on four interesting applications: video face beautification, generating personalized facial blendshape from image sequences, face video stylizing and video face replacement. We demonstrate great potentials of our reconstruction approaches on these real-world applications. In particular, with the recent surge of interests in VR/AR, it is increasingly common to see people wearing head-mounted displays. However, the large occlusion on face is a big obstacle for people to communicate in a face-to-face manner. Our another application is that we explore hardware/software solutions for synthesizing the face image with presence of HMDs. We design two setups (experimental and mobile) which integrate two near IR cameras and one color camera to solve this problem. With our algorithm and prototype, we can achieve photo-realistic results. We further propose a deep neutral network to solve the HMD removal problem considering it as a face inpainting problem. This approach doesn\u27t need special hardware and run in real-time with satisfying results

    Synthesization and reconstruction of 3D faces by deep neural networks

    Get PDF
    The past few decades have witnessed substantial progress towards 3D facial modelling and reconstruction as it is high importance for many computer vision and graphics applications including Augmented/Virtual Reality (AR/VR), computer games, movie post-production, image/video editing, medical applications, etc. In the traditional approaches, facial texture and shape are represented as triangle mesh that can cover identity and expression variation with non-rigid deformation. A dataset of 3D face scans is then densely registered into a common topology in order to construct a linear statistical model. Such models are called 3D Morphable Models (3DMMs) and can be used for 3D face synthesization or reconstruction by a single or few 2D face images. The works presented in this thesis focus on the modernization of these traditional techniques in the light of recent advances of deep learning and thanks to the availability of large-scale datasets. Ever since the introduction of 3DMMs by over two decades, there has been a lot of progress on it and they are still considered as one of the best methodologies to model 3D faces. Nevertheless, there are still several aspects of it that need to be upgraded to the "deep era". Firstly, the conventional 3DMMs are built by linear statistical approaches such as Principal Component Analysis (PCA) which omits high-frequency information by its nature. While this does not curtail shape, which is often smooth in the original data, texture models are heavily afflicted by losing high-frequency details and photorealism. Secondly, the existing 3DMM fitting approaches rely on very primitive (i.e. RGB values, sparse landmarks) or hand-crafted features (i.e. HOG, SIFT) as supervision that are sensitive to "in-the-wild" images (i.e. lighting, pose, occlusion), or somewhat missing identity/expression resemblance with the target image. Finally, shape, texture, and expression modalities are separately modelled by ignoring the correlation among them, placing a fundamental limit to the synthesization of semantically meaningful 3D faces. Moreover, photorealistic 3D face synthesis has not been studied thoroughly in the literature. This thesis attempts to address the above-mentioned issues by harnessing the power of deep neural network and generative adversarial networks as explained below: Due to the linear texture models, many of the state-of-the-art methods are still not capable of reconstructing facial textures with high-frequency details. For this, we take a radically different approach and build a high-quality texture model by Generative Adversarial Networks (GANs) that preserves details. That is, we utilize GANs to train a very powerful generator of facial texture in the UV space. And then show that it is possible to employ this generator network as a statistical texture prior to 3DMM fitting. The resulting texture reconstructions are plausible and photorealistic as GANs are faithful to the real-data distribution in both low- and high- frequency domains. Then, we revisit the conventional 3DMM fitting approaches making use of non-linear optimization to find the optimal latent parameters that best reconstruct the test image but under a new perspective. We propose to optimize the parameters with the supervision of pretrained deep identity features through our end-to-end differentiable framework. In order to be robust towards initialization and expedite the fitting process, we also propose a novel self-supervised regression-based approach. We demonstrate excellent 3D face reconstructions that are photorealistic and identity preserving and achieve for the first time, to the best of our knowledge, facial texture reconstruction with high-frequency details. In order to extend the non-linear texture model for photo-realistic 3D face synthesis, we present a methodology that generates high-quality texture, shape, and normals jointly. To do so, we propose a novel GAN that can generate data from different modalities while exploiting their correlations. Furthermore, we demonstrate how we can condition the generation on the expression and create faces with various facial expressions. Additionally, we study another approach for photo-realistic face synthesis by 3D guidance. This study proposes to generate 3D faces by linear 3DMM and then augment their 2D rendering by an image-to-image translation network to the photorealistic face domain. Both works demonstrate excellent photorealistic face synthesis and show that the generated faces are improving face recognition benchmarks as synthetic training data. Finally, we study expression reconstruction for personalized 3D face models where we improve generalization and robustness of expression encoding. First, we propose a 3D augmentation approach on 2D head-mounted camera images to increase robustness to perspective changes. And, we also propose to train generic expression encoder network by populating the number of identities with a novel multi-id personalized model training architecture in a self-supervised manner. Both approaches show promising results in both qualitative and quantitative experiments.Open Acces

    Application-driven visual computing towards industry 4.0 2018

    Get PDF
    245 p.La Tesis recoge contribuciones en tres campos: 1. Agentes Virtuales Interactivos: autónomos, modulares, escalables, ubicuos y atractivos para el usuario. Estos IVA pueden interactuar con los usuarios de manera natural.2. Entornos de RV/RA Inmersivos: RV en la planificación de la producción, el diseño de producto, la simulación de procesos, pruebas y verificación. El Operario Virtual muestra cómo la RV y los Co-bots pueden trabajar en un entorno seguro. En el Operario Aumentado la RA muestra información relevante al trabajador de una manera no intrusiva. 3. Gestión Interactiva de Modelos 3D: gestión online y visualización de modelos CAD multimedia, mediante conversión automática de modelos CAD a la Web. La tecnología Web3D permite la visualización e interacción de estos modelos en dispositivos móviles de baja potencia.Además, estas contribuciones han permitido analizar los desafíos presentados por Industry 4.0. La tesis ha contribuido a proporcionar una prueba de concepto para algunos de esos desafíos: en factores humanos, simulación, visualización e integración de modelos

    A review on visual privacy preservation techniques for active and assisted living

    Get PDF
    This paper reviews the state of the art in visual privacy protection techniques, with particular attention paid to techniques applicable to the field of Active and Assisted Living (AAL). A novel taxonomy with which state-of-the-art visual privacy protection methods can be classified is introduced. Perceptual obfuscation methods, a category in this taxonomy, is highlighted. These are a category of visual privacy preservation techniques, particularly relevant when considering scenarios that come under video-based AAL monitoring. Obfuscation against machine learning models is also explored. A high-level classification scheme of privacy by design, as defined by experts in privacy and data protection law, is connected to the proposed taxonomy of visual privacy preservation techniques. Finally, we note open questions that exist in the field and introduce the reader to some exciting avenues for future research in the area of visual privacy.Open Access funding provided thanks to the CRUE-CSIC agreement with Springer Nature. This work is part of the visuAAL project on Privacy-Aware and Acceptable Video-Based Technologies and Services for Active and Assisted Living (https://www.visuaal-itn.eu/). This project has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 861091. The authors would also like to acknowledge the contribution of COST Action CA19121 - GoodBrother, Network on Privacy-Aware Audio- and Video-Based Applications for Active and Assisted Living (https://goodbrother.eu/), supported by COST (European Cooperation in Science and Technology) (https://www.cost.eu/)
    corecore