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Abstract

The past few decades have witnessed substantial progress towards 3D facial modelling and recon-

struction as it is high importance for many computer vision and graphics applications including

Augmented/Virtual Reality (AR/VR), computer games, movie post-production, image/video editing,

medical applications, etc. In the traditional approaches, facial texture and shape are represented as

triangle mesh that can cover identity and expression variation with non-rigid deformation. A dataset

of 3D face scans is then densely registered into a common topology in order to construct a linear

statistical model. Such models are called 3D Morphable Models (3DMMs) and can be used for 3D

face synthesization or reconstruction by a single or few 2D face images. The works presented in this

thesis focus on the modernization of these traditional techniques in the light of recent advances of

deep learning and thanks to the availability of large-scale datasets.

Ever since the introduction of 3DMMs by over two decades, there has been a lot of progress on it and

they are still considered as one of the best methodologies to model 3D faces. Nevertheless, there are

still several aspects of it that need to be upgraded to the ”deep era”. Firstly, the conventional 3DMMs

are built by linear statistical approaches such as Principal Component Analysis (PCA) which omits

high-frequency information by its nature. While this does not curtail shape, which is often smooth in

the original data, texture models are heavily afflicted by losing high-frequency details and photoreal-

ism. Secondly, the existing 3DMM fitting approaches rely on very primitive (i.e. RGB values, sparse

landmarks) or hand-crafted features (i.e. HOG, SIFT) as supervision that are sensitive to ”in-the-wild”

images (i.e. lighting, pose, occlusion), or somewhat missing identity/expression resemblance with the

target image. Finally, shape, texture, and expression modalities are separately modelled by ignoring

the correlation among them, placing a fundamental limit to the synthesization of semantically mean-

ingful 3D faces. Moreover, photorealistic 3D face synthesis has not been studied thoroughly in the

literature.

This thesis attempts to address the above-mentioned issues by harnessing the power of deep neural

network and generative adversarial networks as explained below:

Due to the linear texture models, many of the state-of-the-art methods are still not capable of recon-

structing facial textures with high-frequency details. For this, we take a radically different approach

and build a high-quality texture model by Generative Adversarial Networks (GANs) that preserves

details. That is, we utilize GANs to train a very powerful generator of facial texture in the UV space.
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And then show that it is possible to employ this generator network as a statistical texture prior to

3DMM fitting. The resulting texture reconstructions are plausible and photorealistic as GANs are

faithful to the real-data distribution in both low- and high- frequency domains.

Then, we revisit the conventional 3DMM fitting approaches making use of non-linear optimization to

find the optimal latent parameters that best reconstruct the test image but under a new perspective. We

propose to optimize the parameters with the supervision of pretrained deep identity features through

our end-to-end differentiable framework. In order to be robust towards initialization and expedite the

fitting process, we also propose a novel self-supervised regression-based approach. We demonstrate

excellent 3D face reconstructions that are photorealistic and identity preserving and achieve for the

first time, to the best of our knowledge, facial texture reconstruction with high-frequency details.

In order to extend the non-linear texture model for photo-realistic 3D face synthesis, we present a

methodology that generates high-quality texture, shape, and normals jointly. To do so, we propose

a novel GAN that can generate data from different modalities while exploiting their correlations.

Furthermore, we demonstrate how we can condition the generation on the expression and create

faces with various facial expressions. Additionally, we study another approach for photo-realistic

face synthesis by 3D guidance. This study proposes to generate 3D faces by linear 3DMM and

then augment their 2D rendering by an image-to-image translation network to the photorealistic face

domain. Both works demonstrate excellent photorealistic face synthesis and show that the generated

faces are improving face recognition benchmarks as synthetic training data.

Finally, we study expression reconstruction for personalized 3D face models where we improve gen-

eralization and robustness of expression encoding. First, we propose a 3D augmentation approach on

2D head-mounted camera images to increase robustness to perspective changes. And, we also pro-

pose to train generic expression encoder network by populating the number of identities with a novel

multi-id personalized model training architecture in a self-supervised manner. Both approaches show

promising results in both qualitative and quantitative experiments.
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One of the most ubiquitous class of data in computer vision is, without doubt, human face with more

than a seven billion real unique samples. Having such variation and deformation within very similar

characteristic patterns distinct from other objects, makes it scientifically interesting for many. Thus,

human faces have always been featuring in many computer vision and machine learning applications

such as detection [ZZLQ16, DGZ+19], identity/expression recognition [DGXZ19, SKP15, GBK17,

PVZ15, VA19], 3D modeling/reconstruction [EST+20, BV99, BV03, RBSB18, CWZ+14, BAP+17,

JZD+18, CKPZ18, TZK+17, RSK16, LMG+20, THM+18, SRK17], 2D/3D generation [BSM17,

KALL18, KLA19, KLA+20, SSK19b, SSK19a, GLP+20], person reenactment/swapping [TZS+19,

NKH19, TZN+15, KRZ20] and so on. This thesis will cover a series of work around photorealistic

deep 3D face reconstruction and synthesis.

The first evidence of proper 3D face reconstruction date back 3rd millennium B.C. of antique Egypt

and Greece where artists use sandstone, marble, clay and other materials to make a sculpture of

political leaders or commanders. Even if it is moved to digital platforms these days, the way that artists

shape their artworks still enlightens the approaches pursued automated digital face reconstruction.

25
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One key aspect of this artistry is that the reconstruction has to be distinguishable from other faces and

should resemble the targeted subject. This can only be achieved by careful examination of identity-

related characteristics of the facial features.

One of the earliest and still very popular approach for digital 3D face modeling and reconstruction

is called 3D Morphable Models (3DMMs) [BV99]. 3DMMs are basically linear statistical models

of shape and appearance that are constructed by a set of 3D faces. Such a model provides analytic

definition of human face which later becomes a priori to synthesize novel faces in 3D or to solve 3D

face reconstruction from a single 2D image, which is otherwise an ill-posed problem. The success of

its descendants [EST+20] that builds upon it, validates the effectiveness of this approach and indicates

there is a lot more to explore.

In the past two years, a lot of work has been conducted on how to harness Deep Convolutional Neural

Networks (DCNNs) for 3D shape and texture reconstruction. The first such methods either trained

regression DCNNs from image to the parameters of a 3DMM [THMM17] or used a 3DMM to synthe-

size images [RSK16, GZC+19] and formulate an image-to-image translation problem using DCNNs

to estimate the depth1 [SRK17]. The more recent unsupervised DCNN-based methods are trained to

regress 3DMM parameters from identity features by making use of differentiable image formation

architectures [CBK+17] and differentiable renderers [GCM+18, TZK+17, RSOK17]. The most re-

cent methods such as [TZG+18, TL18, GZC+16] use both the 3DMM model, as well as additional

network structures (called correctives) in order to extend the shape and texture representation.

3D face reconstruction and modeling empower many useful applications such as Augmented Real-

ity/Virtual Reality (AR/VR) [LSSS18, WSS+19], computer games [HSW+17], movie post-production [TZS+19,

CHZ14, GVS+15, BWP13], medical applications such as plastic surgery [PCKO15], personalized fa-

cial mask [SPH20], etc. Photorealistic face modeling can also advance computer vision algorithms

by providing synthetically generating training data with accurate annotation [SRK17].

That said, 3D face reconstruction and modeling is still an open research topic that contains many

challenges to this date, including maintaining photorealism and generalization, preserving identity,

expression, and other facial features. This thesis studies novel techniques for high-quality digital-

1The depth was afterwards refined by fitting a 3DMM and then changing the normals by using image features.
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Figure 1.1: Top: UV textures with high-frequency details. Bottom: Projection of top images to a PCA

space built by 10,000 high resolution images [BRZ+16]

ization of Faces into a 3D virtual world (i.e. AR/VR) while preserving identity-, expression- and

motion-related attributes. For that, it explores photorealistic 3D Face reconstruction, modeling, and

synthesis by Generative Adversarial Networks (GANs) and Deep Neural Networks (DNNs).

The remainder of the introductory chapter is organized as follows. Firstly, we summarize the chal-

lenges and the problem scope in Section 1.1, and then we introduce the proposed contributions of

this thesis in Section 1.2. Finally, in Section 1.3 we list relevant publications that appeared in peer-

reviewed conferences and journals. Additionally, in Chapter 2, we explain the concepts and scope

briefly on which this thesis will be based. Specifically, Section 2.1 gives a smooth introduction to

conventional 3D face models, i.e. 3DMMs, and non-linear generative models, i.e. GANs, and subse-

quently, Section 2.2 explains the traditional steps necessary for 2D and 3D face synthesis. And finally,

Section 2.3 briefly formulates 3D face reconstruction from a single image by putting the pieces to-

gether.

1.1 Challenges

The past few decades have witnessed a lot of progress towards 3D face modeling and reconstruction

from single images by traditional approaches, such as 3D Morphable Models (3DMMs). Recently,

there have been quite a few works that improve these approaches significantly by harnessing deep neu-
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ral networks. Nevertheless, there are still a number of aspects that can be advanced by discriminative

and generative deep approaches. In the following, we mention a few of these aspects.

Firstly, the appearance component of a 3DMM often modeled by components of a linear texture space

such as PCA which omits high-frequency information by its nature as shown in Fig. 1.1. Some oth-

ers proposed to learn non-linear texture models by auto-encoders directly from in-the-wild images

which unfortunately include severe noise due to various illumination and occlusions. In all cases,

the quality of the facial texture reconstruction of the state-of-the-art methods is still limited for mod-

eling textures with high-frequency details and photorealism. On the other hand, there is increasing

literature on generating high-resolution photorealistic images by Generative Adversarial Networks

(GANs). Within just a few years, there have been many approaches to generate up to 1024 × 1024

2D face images that are fairly indistinguishable from real images. Nevertheless, as shown in Fig. 1.2,

these approaches often generates images that are globally inconsistent as it is not possible to fully

align images, i.e. by non-rigid registration, without a proper 3D prior. Although recent latent space

manipulation techniques [KLA19, KLA+20] improves this aspect, its reconstruction ability is still

limited due to limited network capacity (i.e. the network has to learn the pose, expression, illumina-

tion variation along with identity variation).

The energy function is another key aspect of accurate 3D reconstruction by 3DMM and learning-

based approaches. The existing approaches rely on very primitive (i.e. pixel values, sparse landmarks,

edges) [BV03, RV05, BSBW17, TZK+17] or hand-crafted features (i.e. HOG, SIFT) [BAP+17,

BRV+18]. The primitive features are quite sensitive to ”in-the-wild” conditions (i.e. lighting, pose,

occlusion) and either too local or too global to maintain identity/expression resemblance with the tar-

get image. Although hand-crafted features offer more robust and mid-level supervision, deep learning

is shown to be offering superior features for many other tasks. Thus, there is an unexplored poten-

tial to leverage 3D reconstruction by deep features specialized for facial patterns which are, in fact,

well-provided by face recognition CNNs.

Another direction covered in this thesis is to generate realistic faces by 3D which is of high importance

for many computer graphics and computer vision applications. This can be accomplished either

by improving the realism of the 3D models directly or by augmenting rendered images from 3D
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models to be more photorealistic. For 3D model photorealism, recent studies [SSK19b, GPKZ19]

demonstrated that GANs can be used for generating high-quality textures of faces. Nevertheless,

the generation process either omits the geometry and normals, or independent processes are used to

produce 3D shape information. Moreover, shape, texture, and expression modalities are separately

modeled by ignoring the correlation among them, placing a fundamental limit to the synthesization

of semantically meaningful 3D faces. An alternative approach would be formulating this problem

as an image-to-image translation from 3D rendered images to real images in order to bridge the gap

between the two domains.

Finally, we are interested in robust and generalized expression reconstruction for personalized 3D

models. Recently introduced Codec Avatars [LSSS18, WSS+19] have shown promising results for

creating authentic 3D avatars from a multi-camera capture system. These personalized avatars can be

animated by using headset mounted cameras (HMC) that are commercially available on VR headsets.

The current reconstruction pipeline of [LSSS18, WSS+19] contains strong reliance on the training

data and is sensitive to slight changes in perspective, lighting, background, and day-to-day facial

attribute changes (e.g. make-up, facial hair, etc.). In a dataset of ∼200 subjects, where each subject’s

model is trained individually with a fixed background, lighting, pose, etc., there is still a room for

improvement in robustness and generalization to these conditions by accumulating the variation in

the whole dataset.

To sum up, we can summarize the challenges this thesis is concerned with the following keywords:

• Non-linear 3D Face Models

• Preserving identity and expression for 3D face reconstruction

• Photorealistic 3D face synthesis

• Robust and generalized reconstruction
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Figure 1.2: Some cherry picked failure cases of Progressive Growing GAN [KALL18]

1.2 Contributions

In this section, we summarize the contribution of this thesis in line with the aforementioned scope

and challenges. The main objective of the works presented in this thesis is to modernize multiple

aspects of 3D face modeling and reconstruction with the recent deep generative and discriminative

techniques.

In Chapter 3, we propose to replace linear texture models by a GAN trained on high-resolution UV

maps as our statistical representation of the facial texture. Later, we show that it is possible to replace

PCA-based texture models by this GAN model and reconstruct textures with high-frequency details

and precise facial features.

GANs are shown to be very effective at capturing such details. However, they suffer from preserving

3D coherency [Goo16] of the target distribution when the training images are semi-aligned like 2D

face images. At this point, we empirically observe that a GAN trained with UV representation of

real textures addresses this problem and can generate realistic and coherent UVs almost all the time

and generalize well. This is mainly thanks to the dense 3D registration of UV representations which

nullify the need for the network to comprehend global structure. Therefore, we take advantage of this

perfect harmony and train a progressive growing GAN [KALL18] to capture the distribution of UV

representations of 10,000 high-resolution textures and use it as a texture model that replaces linear

texture model.

Chapter 3 also covers the novel deep cost functions and deep pipeline for 3D face reconstruction

from a single image. Basically, instead of other cost functions used in the literature such as low-level

ℓ1 or ℓ2 loss (e.g. RGB values [PB16], edges [RV05]) or hand-crafted features (e.g. SIFT [BAP+17]),

we propose a novel cost function that is based on features extracted from the various layers of a face
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recognition network. Unlike others, deep identity features are very powerful at preserving identity

characteristics of the input image. This is because they are trained to be sensitive to the subtle details

that are crucial to identify an individual while being robust to environmental conditions.

Moreover, we replace object-space rendering of 3DMM fitting approaches with an image-space dif-

ferentiable renderer in a GPU accelerated deep learning framework [AAB+15]. The first benefit,

GPU acceleration, provides cheaper derivatives through the above-mentioned deep architectures to

keep running time reasonable. Also, to the best of our knowledge, image-space rendering is em-

ployed into 3DMM fitting for the first time in Chapter 3. This allows the usage of image-based deep

feature extractors such as face recognition networks which we exploit as explained above. Although

this concludes the modernization of optimization-based approaches by deep learning, we later extend

it to regression-based approaches by a novel CNN architecture trained in a self-supervised manner.

In Chapters 4 and 5, we present two works to synthesize photorealistic faces by 3DMMs which

are visually plausible and potentially useful as a synthetic training data. In Chapter 4, we propose

to model and synthesize coherent 3D faces by jointly training a novel Trunk-branch based GAN

architecture for shape, texture, and normals modalities. This architecture is specifically designed

to maintain correlation while tolerating domain-specific differences of the three modalities and can

be easily extended to other modalities. Additionally, the proposed network can be conditioned by

expression to synthesize correlated shape, texture, and normals with expression.

In Chapter 5, we follow a different approach to synthesize; we randomly sample and render faces

from a PCA-based 3DMM. Then, we bridge the gap between 3DMM and real images by a novel

semi-supervised image-to-image translation network. The main novelty of this study is to exploit a

small number of paired real and synthetic images, along with a large volume of unpaired data in a

semi-supervised manner. As a result, the framework can generate photorealistic synthetic face images

conditioned by samples rendered from a 3DMM. Both of these works are validated by synthesizing

training data to boost face recognition performance.

In Chapter 6, we study several approaches to generalize Codec Avatars animation pipeline by head-

mounted camera inputs. First, we augment the existing HMC training data in 3D space to simulate

physical displacements of the VR headset. We change the perspective slightly by rotation and trans-
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lation of the geometry and camera parameters optimized by [WSS+19]. Secondly, we combine the

training data of multiple subjects to improve the robustness. This is done by designing a common

expression encoder network trained by a self-supervised reconstruction loss of all subjects. The re-

sults show that the proposed approaches improve expression reconstruction under varying conditions

meaning that the pipeline becomes more robust to the environment.

Finally, we draw conclusion and elaborate on future works in Chapter 7.

1.3 Publications

Some of the works in this thesis have been published in peer-reviewed conferences and journals. We

aim to keep each chapter of this thesis as close to the original publication as possible to help the reader

to refer to the relevant publications. For this reason, the chapters are narrated independently with their

own introduction, related work, methodology, and experiments. Publications and their corresponding

chapters are as follows:

• Chapter 3: Baris Gecer, Stylianos Ploumpis, Irene Kotsia, and Stefanos Zafeiriou. GANFIT:

Generative Adversarial Network Fitting for High Fidelity 3D Face Reconstruction. In 2019

IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pages 1155–

1164, Long Beach, CA, USA, June 2019. IEEE

• Chapter 3: Baris Gecer, Stylianos Ploumpis, Irene Kotsia, and Stefanos Zafeiriou. Fast-

GANFIT: Generative Adversarial Network for High Fidelity 3D Face Reconstruction. Sumitted

to IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), 2020

• Chapter 4: Baris Gecer, Alexander Lattas, Stylianos Ploumpis, Jiankang Deng, Athanasios

Papaioannou, Stylianos Moschoglou, and Stefanos Zafeiriou. Synthesizing Coupled 3D Face

Modalities by Trunk-Branch Generative Adversarial Networks. In European Conference on

Computer Vision (ECCV), 2020

• Chapter 5: Baris Gecer, Binod Bhattarai, Josef Kittler, Tae-Kyun Kim, Baris Gecer, Binod

Bhattarai, Josef Kittler, and Tae-Kyun Kim. Semi-supervised Adversarial Learning to Generate
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Photorealistic Face Images of New Identities from 3D Morphable Model. In European Con-

ference on Computer Vision (ECCV), volume 11215, pages 230–248. Springer International

Publishing, 2018

Chapter 6: contains the work that has been carried out during a Research Internship at Facebook

Reality Labs, Pittsburgh, USA, in collaboration with Amin Jourabloo, Te-Li Wang, Fernando De la

Torre, Yaser Sheikh.
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In this chapter, we briefly introduce definitions, concepts, and basic components regarding 3D face

modeling and reconstruction for a smooth transition into the scope of this thesis. More specifically,

we first define the conventional linear 3D face models in Section 2.1.1 and non-linear models in Sec-

tion 2.1.2. then we outline the fundamentals of face synthesis by geometry and photometry properties
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of mesh rendering as well as recent progress on differentiable renderers for 3D reconstruction. Fi-

nally, we explain 3D face reconstruction by optimization- and regression-based methods and give

details about the commonly used energy functions in Section 2.3.

2.1 3D Face Modeling

Figure 2.1: Illustration of 3D mesh pre-processing steps. In (a) we present a raw mesh, in (b) the

registered mesh using the Large Scale Face Model (LSFM) template [BRZ+16], in (c) the unwrapped

3D mesh in the 2D UV space, and finally in (d) the interpolated 2D UV map. Interpolation is carried

out using the barycentric coordinates of each pixel in the registered 3D mesh.

Every childbirth is a natural face generation that forms a face in real 3D space by bone, flesh, and

skin. The length and size of different bones, the formation of muscles, pigment density of the skin, the

angles of the joints are the basic factors that shape the manifold of the real human face distribution.

From the data science point of view, the human face is a single class of objects with local geometry

and appearance variation and the same global structure. A 3D face model is essentially a digital data

representation that aims to capture this variation while maintaining topological structure and fine-

correspondence among different faces. It can also be viewed as a dimensionality reduction of real

human face distribution to a semantically meaningful manifold. In the following subsections, we

briefly describe and formulate a range of 2D and 3D face models studied in the literature.
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2.1.1 Linear Models

The seminal work of 3D morphable models (3DMMs) [BV99] has shown, for the first time, that is

possible to learn a linear statistical model from a population of 3D faces [PS09, BSBW14]. The

first public 3DMM model for identity variation was the Basel Face Model built from 200 peo-

ple [PKA+09] by Principal Component Analysis (PCA) [WEG87] followed by recent large scale

statistical models of face and head [BRZ+16, DPSD17]. Facial expressions are also modeled by

applying PCA [YMW+11, LBB+17, BBC11, AKV08] or are manually defined using linear blend-

shapes [LWP10, TZN+15, BWP13].

Since the introduction of 3DMMs, most of the related work preferred PCA [WEG87] as a linear

statistical analysis to construct a generative model. Briefly speaking, PCA constructs a manifold

where each dimension captures one orthonormal basis (i.e. eigenvectors) of the distribution and is

ordered by the magnitude of respective variation (i.e. eigenvalues). Practically, the data is normalized

by subtracting the mean (m) before computing the covariance matrix. Now, the eigenvectors of

the covariance matrix can be interpreted as the basis of 3DMM denoted by U. Usually, the first n

dimensions are kept in order to omit high-frequency signals which are mostly caused the noise from

3D capture systems. The resulting model can sample novel instances from this new parametric space

(p ∼ N (0, In)) by simply m+Up.

A complete 3D face model typically contains a deformable shape and its corresponding dense texture.

Based on that, usually, the following three models are built: 1) shape model to model the variation

in the identity space, 2) expression model to capture the geometry variation across different facial

expressions, and 3) texture model for the appearance dressed on the vertices. In the following, we

give more depth of these representations by linear models.

Shape and Expression Model

A standard face model is built by a set of aligned 3D faces and should generalize to the unseen

samples. Thus, the first step is to establish dense point-to-point correspondences of 3D facial meshes

to a reference topology by a non-rigid registration method [ARV07, YDXZ20]. A mesh comprises
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a fixed set of N vertices, such that S =
[

xT

1 , . . . ,x
T

N

]T

where xi ∈ R
3 denotes a vertex in a 3-

dimensional space. And the topology (T ) is defined by M triangles such that T =
[

xT

t1
, . . . ,xT

tM

]

where ti = (t1i , t
2
i , t

3
i ) ∈ N

3, t
j
i < N denotes the indices of i-th triangle’s vertices. An example of

such registration can be seen in Fig. 4.2 (a-b) where we illustrate a raw 3D scan and its registered 3D

mesh to the LSFM [BRZ+16] template.

Usually, two separate linear models are built to represent identity and expression variations. The

former is learned from facial scans displaying only neutral expression to capture identity variation

and the latter is learned from displacement vectors of scans with a certain set of expressions. After

the models are built by PCA as explained above, a sample mesh (S(ps,e)) can be reconstructed from

linear combination of PCA bases according to the latent parameters (ps,e) by the following:

S(ps,pe) ≈ms,e +Usps +Uepe (2.1)

where ms,e(= ms + me) is the mean shape vectors, Us ∈ R
3N×ns are the bases that correspond to

identity variation, and Ue ∈ R
3N×ne to expression variation. Finally, ps ∈ R

ns and pe ∈ R
ne are the

latent parameters of the identity and expression bases.

Texture Model

A triangular mesh can be textured either by per-vertex colors or by a texture map in UV space like

in Fig. 1.1 (top). The per-vertex color method is relatively easy to implement by assigning a single

RGB value to each vertex or triangle. On the other hand, UV texture maps can offer higher resolution

by filling triangles with barycentric interpolation. UV maps are obtained by registration of 3D texture

data into 2D planes with universal per-pixel alignment for all textures. A commonly used UV map

is generated by cylindrical unwrapping the mean shape into a 2D flat space, which we use to create

an RGB image IUV . Each vertex in the 3D space has a texture coordinate (tcoord) in the UV image

plane as an example of it can be seen in Fig. 4.2 (c). The texture information can be stored in

these maps at any arbitrary resolution and one can sample from it to acquire per-vertex colors as by

T = P(IUV , tcoord). Likewise, one can interpolate per-vertex colors to acquire the texture in UV
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space by IUV = P−1(T, tcoord).

In order to define a statistical texture representation, all the training textures are vectorized and PCA

is applied. Under this model, an arbitrary texture T0 can be approximated as a linear combination of

the mean texture mt and a set of basis Ut as follows:

T(pt) ≈mt +Utpt (2.2)

where pt is the texture parameters for the sample T0.

2.1.2 Non-Linear Generative Models

Most of the traditional 3D face works revolved around linear generative models that are constrained by

a small number of anthropometric statistics (e.g. sparse face measurements in a population) [DMS98].

The recent 3D face fitting methods [TZG+18, TL18, GZC+16] still make use of similar statistical lin-

ear models. Linear models, despite their advantages, under-represents the high-frequency information

and often result in overly-smoothed geometry and texture models. Hence, they can naturally represent

only the low-frequency components of the facial texture.

In terms of preserving photorealism and high-frequency signals, non-linear generative models have

been shown to be very successful in 2D image synthesis [MPK09, GPM+14, KW14, RMC16, Goo16,

KALL18, KLA19, KLA+20, BSM17, GAA+17, ZXL+19, BDS19, VK20]. Therefore, after briefly

mentioning traditional non-linear approaches, we introduce two families of works on deep non-

linear generative models: Generative Adversarial Networks (GAN) [GPM+14] and Variational Auto-

Encoders (VAE) [KW14].

Traditional Non-linear Models

There have been some bilinear and multilinear approaches for face modeling prior to deep learn-

ing [VT05, MMS08, BW15]. For example, [VT05] proposed a multifactor model to generalize In-

dependent Component Analysis (ICA), called Multilinear-ICA (MICA). The study demonstrates that
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(a) Target distribution (b) Generated (c) G manifold (d) D prediction (e) All

Figure 2.2: Toy experiment by GAN Lab [KTC+19] to illustrate capabilities of GAN for capturing

sophisticated distributions. (a) Distribution of the target distribution. (b) Generated samples by GAN

after training. (c) The generator’s transformation manifold from noise space. Darker the areas, more

likely to generate at that area. (d) The discriminator’s decision space: Green for real, Purple for

generated. (e) All of them overlayyed.

MICA can disentangle identity, pose, lighting, expression, etc. inherent to image formation and ex-

plicitly represents the higher-order statistics of each factor. Another study [MMS08] proposed to use

bilinear models to jointly model identity and expression. The proposed approach can establish point

correspondence based on an elastically deformable 3D model. Lastly, [BW15] jointly optimizes a

multilinear model and the registration of 3D scans to build a high-quality face model. The study has

shown that their method leads to more accurate correspondence and more efficient computation time

than linear models.

Generative Adversarial Networks

Generative Adversarial Networks (GANs) is a recently introduced family of techniques that train

samplers of high-dimensional distributions by a minimax game between two networks [GPM+14]. It

has been demonstrated that when a GAN is trained on facial images, it can generate photo-realistic

high-resolution faces [KALL18, KLA19, BDS19, KLA+20].

GANs are designed to emulate real data distribution by training two competing networks simultane-

ously: Generator (G) and Discriminator (D). While the Discriminator is being trained to classify real

samples (x ∼ pdata) and the generated ones (G(z)), the Generator is encouraged to produce samples

that are indistinguishable by the Discriminator. Thus, a vanilla GAN training is often a zero-sum
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game optimized by the following:

θD = argmin
θD

[

−Ex∼pdata
logD(x)− Ez∼N (0,I) log(1−D(G(z)))

]

(2.3)

θG = argmin
θG

[

−Ez∼N (0,I) log(D(G(z)))
]

(2.4)

where θD and θG are the parameters of the Discriminator and the Generator Networks, z ∼ N (0, I)

is random noise as input to the Generator and x ∼ pdata is a random sample from the real data

distribution.

Fig. 2.2 demonstrates a simple experiment on a toy dataset. Apparently, GANs are quite effective in

terms of capturing sophisticated data distribution. In fact, linear models (i.e. PCA) would fail this

experiment by generating samples mainly at the center of two clusters. Another such evidence is

visible in Fig. 1.1 where we compare GAN generated (top) and PCA generated (bottom) UV textures

of 3D faces.

GANs can be conditioned by a class, text, or image input as well [MO14, RAY+16, IZZE17]. Some

other GAN-based studies allow to condition synthetic faces by rendered 3DMM images [SRK17], by

landmarks [BJC18] or by another face image [BCW+18] (i.e. by disentangling identity and certain

facial attributes). Similarly, the facial expression is also conditionally synthesized by an audio in-

put [JCZ19], by action unit codes [PAM+18], by predefined 3D geometry [ZLGS03] or by expression

of another face image [LDW+14].

Recently, GANs have been applied for generating 3D face components for various applications. In

particular, [SSK19b] trained a GAN to synthesize facial textures, [MPN+19] trained a GAN that

models face geometry based on UV representations for neutral faces and [WZX+16] synthesizes

high-quality 3D objects by volumetric convolutional GANs.

Variational Auto-Encoders

Another recently popularized deep generative approach is Variational Auto-Encoders (VAE), firstly

proposed by [KW14] and improved the generation quality over time [VK20]. Essentially, a VAE
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is a probabilistic version of an auto-encoder (AE) which compresses a set of data to a latent space

by sequential encoder and decoder networks. In VAE, the encoder network outputs a probability

distribution over the latent space and a separate sampler generates a latent code from this distribution.

The code is then reconstructed by the decoder network and the reconstruction loss computed and

backpropagated during training. Compared to AE, VAEs give smoother and more generalized latent

space, therefore the quality of novel generations is diverse and more visually plausible.

Similar to GANs, VAEs can be used for 2D image generation [vVk17, VK20] as well as 3D face

modeling [BWS+18, LSSS18, WSS+19, RBSB18]. [BWS+18] models 3D facial shape variation hi-

erarchically by different layers of the network from global to local features. [LSSS18, WSS+19] learn

a personalized appearance model by encoding shape and texture jointly in a VAE space conditioned

by pose. [RBSB18] models identity and expression geometry by variational autoencoders with mesh

convolutions and [ZDKZ19] extends this approach to model both texture and geometry. In Chapter 6,

we present an approach to improve personalized appearance models [LSSS18, WSS+19] by VAEs.

2.1.3 Person-specific face models

There have been several studies that propose to model the appearance and geometry of only a single or

a few identities with superior quality. [GGW+05] utilizes appearance models for the identities whose

large number of images captured in a controlled environment. Similarly, [LSSS18] propose deep

appearance models by variational autoencoders. Even though it produces very high rendering quality

with various expressions, this method also requires to capture ∼20 million images of subjects in a

controlled environment. [CWW+16] and [NSX+19] reduce this number to a few in-the-wild images

by interpolating different captures, but the quality of identity geometry and appearance is limited with

the number and quality of the provided images.
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2.2 2D & 3D Face Synthesis

3DMMs can synthesize novel 3D faces by sampling from the latent space of both linear or non-linear

models. However, sampling from PCA space is not trivial. Closer to the mean vector, generated faces

become not sufficiently distinctive from each other and further from it, they become unrealistic with

overly-exaggerated facial features. Usually, keeping the latent vectors within the standard deviation

gives reasonable results with the sacrifice of potential realistic faces beyond that point. A similar

concept is introduced in GANs as truncation trick [KLA19, BDS19] which limits latent vector by a

threshold to improve individual sample quality while reducing overall variation. One way or another

one can generate 3D face of a novel identity with an arbitrary expression by S(ps,pe),T(pt) as

explained in Sec. 2.1. And this generated 3D face can either be used in a 3D platform like AR/VR or

be rendered to synthesize many 2D face images by manipulating camera and illumination parameters.

From a computer graphics point of view, a photorealistic face rendering requires some elements to

be tailored, i.e. shape, normals, and albedo maps, some of which should be specific to a particular

identity. Currently, 3D faces rendered in computer games and movies are captured by expensive

camera systems or by professional technical artists. 3DMMs can offer automated 3D face generation

at large-scale, yet photorealism and level of details of the capturing systems are quite challenging to

obtain by a generic model. This dilemma is one of the main issues that this thesis will cover in the

following chapters.

2.2.1 Image Formation

Image formation from a 3D face, i.e. Rendering, is not only important to synthesize 2D face images

but also required by 3D face reconstruction methods that are optimized or trained with analysis-by-

synthesis approaches. 3D face rendering is an extensively studied subject in computer graphics and

we briefly explain its basics in the following sections.
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Geometry

In this section, we briefly describe perspective projection in order to estimate the projections of every

3D face vertices to the 2D image plane. This camera model consists of two sets of parameters:

intrinsic which refers to camera-specific parameters and extrinsic which consist of pose parameters

that transform the world to camera coordinates. intrinsic parameters include focal lengths of both

axes (fx, fy ∈ R>0 ) and the principal points (cx, cy) which often correspond to the center of the

image. Assuming that the camera view vector is perpendicular to the camera sensor, the intrinsic

transformation matrix can be written as the following:

K =













fx 0 cx

0 fy cy

0 0 1













(2.5)

The extrinsic pose parameters usually consist of rotation (R ∈ R
3×3) and translation t ∈ R

1×3

matrices. And the final projection can be computed by the following:

s = K[R t]S

where s denotes the 2D projection of the vertices S.

Photometry

The final image is formed based on the 2D image projection of the geometry (s ∈ R
N×2) as well

as material properties (i.e. [Td,s,Nd,s]), illumination (i.e. [la, li, ŵi]), and the preferred reflectance

model. Usually, a Bidirectional Reflectance Distribution Function (BRDF) is used to define re-

flectance of light on a facial surface which essentially depends on two direction vectors: one pointing

to a light source (ŵd), and the other to the camera (ŵc). In a typical BRDF, there are four facial com-

ponents to describe material properties: diffuse albedo (Td), specular albedo (Ts), diffuse normals

(N̂d), and specular normals (N̂s).
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(a) Dif. Albedo (Td) (b) Spec. Albedo (Ts) (c) Dif. Normals (N̂d) (d)Spec. Normals(N̂d) (e) Shininess Coef.(α)

(f) Td (g) Td,Ts, α = 0.7 (h) Td,Ts, N̂d, α = 0.7 (i)Td,Ts, N̂d, N̂s, α = 0.7 (j) Td,Ts, N̂d, N̂s, α =(e)

(k) Td rendered per-

vertex

(l) N̂d rendered per-

vertex

(m) N̂d rendered as

UV

Figure 2.3: Progressive renderings by Blinn-Phong Reflectance Model. (a-e) BRDF components of

a subject scanned in a light stage. (f-j) Full face and zoom-in rendering results by adding one com-

ponent at a time. (k) Per-vertex diffuse albedo rendering. (l) Per-vertex diffuse normals rendering.

(m) Diffuse normal rendering from UV map. All images rendered by a differentiable renderer imple-

mented within the scope of this thesis.
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Rendering starts with triangle rasterization to the image plane. This is achieved by barycentric inter-

polation of UV maps into the 2D projection of the mesh (s) regarding the texture coordinates (tcoord).

After that, we can render the image IR ∈ R
w×h×3 by Blinn-Phong Reflectance Model as the following:

IR = R(S,Td,s,Nd,s,K, [R t]) = kala +
m
∑

i=1

(

kdliTd(|ŵi · N̂d|
+) + ksliTs(|

ŵi + ŵc

||ŵi + ŵc||
· N̂s|

+)α
)

(2.6)

where la ∈ R
3 denotes RGB ambient lighting intensity, li, ŵi ∈ R

3, i = {1, . . . ,m} denote RGB

intensities and direction of the m light sources respectively. Rectification and vector normalization

functions are defined as | ∗ |+ = max(∗, 0) and ∗̂ = ∗
||∗||

. Finally, α stands for the shininess coefficient

of the face which can be defined as a constant value or as a UV map.

As can be seen in Fig. 2.3, Blinn-Phong Reflectance Model provides excellent shading for facial

details and quite efficient to compute; nevertheless, many 3D face reconstruction approaches omit

specular components, which becomes Lambertian Reflectance Model, and calculate diffuse normals

(N̂d) from the mesh (S) to simplify optimization and avoid ambiguities. On the other side, BRDFs

are short to describe the actual subsurface scattering, which can be better addressed by a Bidirectional

Subsurface Scattering Reflectance Distribution Function (BSSRDF) [NRH+92, JMLH01]. That be-

ing said, BSSRDFs are considered to be very difficult to optimize in 3DMM fitting pipelines.

2.2.2 Differentiable Renderers

Every pixel in the rendered image is a weighted average based on barycentric coordinates as described

in the previous section. Thus, the rendering function is continuous and differentiable. Even the orig-

inal 3DMM fitting study [BV99] and others that follows it [RV05, BSBW17], optimized 3D recon-

struction through object-space per-vertex differentiable renderer. For example, [BAP+17, BRV+18]

only project vertices on image-plane and optimize based on per-vertex SIFT features. Recent stud-

ies employ differentiable renderers into deep learning frameworks to train 3DMM regression net-

work [TZK+17, GCM+18] or to learn corrective space supplementary to 3DMM [TZG+18] or a

complete non-linear 3DMM model [TL18, TL19, TBG+19] from 2D images.
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Figure 2.4: An overview of traditional linear 3D Morphable Model Fitting.

Object-space differentiable renderers optimize based on projecting the mesh to the target image and

sampling image intensities or features for the visible vertices. Image-space renderers, however, di-

rectly render the reconstruction as an image, minimize its distance with the target image. The latter is

more favorable as it supports high-resolution texture UV maps and feature extraction directly from the

reconstruction image. To the best of our knowledge, we are the first to exploit image-based differen-

tiable renderers for 3DMM fitting by an optimization-based approach. Unlike object-based renderer

used in the previous fitting approaches [BV99, RV05, BSBW17, BAP+17, BRV+18], image-based

renderer facilitates deep features as shown in Chapter 3.

Many of the renderers in the previous studies, omit specular components for simplicity, thus, they are

unable to optimize based on the specularity of a target image. On the other hand, Fig. 2.3 illustrates

renderings of a full BRDF differentiable renderer according to the Blinn-Phong Reflectance Model

which is implemented as a part of this thesis.
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2.3 3D Face Reconstruction from a Single Image

Estimation of the 3D facial geometry and appearance from single images is an interesting problem

with many challenges and applications. The original study of Blanz and Vetter [BV99] has shown

twenty years ago that it is possible to reconstruct 3D face by solving a non-linear optimization problem

that is constrained by linear statistical models of facial texture and shape. Despite very promising

results and advancements since then, there are still open challenges waiting to be fulfilled such as

ambiguities such as camera-shape parameters and illumination-texture; robustness to occlusion, low-

resolution, extreme pose, illumination, and expression; the disentanglement of expression and identity

of 3D mesh and texture; missing correlation between shape, texture, and expression, etc.

The ambiguities can be addressed by limiting the capacities of models by regularization terms, which,

in fact, means to keep the reconstruction closer to the mean face. This may or may not be a problem

depending on the strength of the model. Booth et al. [BAP+17, BRV+18] addressed the ambiguities

between illumination and texture by bypassing the texture model with a SIFT feature model which

is robust to illumination. Kyle et al. [GCM+18] proposed to use deep identity features to improve

robustness to occlusion, illumination, pose, and expression. Learning-based approaches are often

more robust and generalized but they cannot iteratively refine the reconstruction. These are just a

small subset of achievements in the literature and the challenges that are waiting to be explored more

deeply.

Essentially, 3D face reconstruction can be formulated as optimization of model parameters or learning

a regression network. We can summarize the mainstream methodology for both optimization-based

and learning-based 3D face reconstruction approaches by the following: (1) a 3D face is synthesized

by given latent parameters of 3D shape and texture models, (2) then it is rendered with the camera

and illumination parameters by a differentiable renderer, (3) the reconstruction error of the target

image is computed by the preferred metrics, and (4) the regression network or parameter fitting is

updated based on the derivatives of the error. Finally, after some iterations, the latent parameters

or the regression network can generate the 3D reconstruction of the/a target image. In the previous

section, we have covered models and image formation, and the following sections will cover the

reconstruction error and optimization/learning pipelines.
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2.3.1 Energy Functions

In order to supervise the optimization or training, we can define one or more distance metricsL(P, I0) :

(•,Rw×h×3) → R between the target image (I0 ∈ R
w×h×3) and the rendering of the model (R(P) ∈

R
w×h×3). The synthesized imageR(P) is either depends on 3DMM parameters (P = [ps,e,pt,pc,pl]

1) in optimization-based approaches or depends on regression network parameters (P = Θ) in

regression-based approaches. A good metric should be differentiable, robust to environmental factors,

and sensitive to prominent facial features. Below we list common distance metrics in the literature:

Photometric distance

One of the most primitive and widely used metrics is photometric distance. It is mostly useful to

reconstruct appearance as its receptive field is only 1 pixel and it heavily relies on the assumption that

shape and camera parameters are more or less converged.

While it is relatively simple, it can optimize texture to some extent, lighting parameters such as

ambient colors, direction, distance, and color of a light source. The photometric distance,which is

also called pixel loss, is defined by pixel level ℓ1 or ℓ2 loss functions as respectively:

Lpix1
(P, I0) =

∑

(w,h,3)

||I0 −R(P)||1
w × h× 3

(2.7)

Lpix2
(P, I0) =

∑

(w,h,3)

||I0 −R(P)||22
w × h× 3

(2.8)

The main advantage of these functions is their simplicity, e.g. they can be applied at high reso-

lutions very efficiently. Especially, ℓ1 loss is good at capturing fine, local patterns. In order to

solve the locality problem of these functions, recently there have been some soft rasterization ap-

proaches [LLCL19, ZWC+20] proposed to increase the field of view of this metric. Nevertheless,

it is still too sensitive to misalignments and illumination and fails to factorize global facial features

effectively.

1pc and pl denotes camera and illumination parameters respectively
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Landmarks

The early 3DMM fitting studies had two essential supervision: photometric distance (which is dense

and local) and landmarks distance (which is sparse and global). In a way, these two losses are com-

plementary as the former provides bottom-up and the latter provides top-down information. The

landmarks distance metric detects the landmark locations of the input image and aligns the rendered

geometry onto it by updating the shape, expression, and camera parameters. That is, camera param-

eters are optimized to align with the pose of image I and geometry parameters are optimized for the

rough shape estimation.

Let us say we can estimate landmarks of the target image (I0) by a landmark detection network such

that M(I) : Rw×h×3 → R
68×2. The landmarks of a 3D face can be acquired by a predefined set

of vertices in the mesh (Slan ∈ R
68×3) that corresponds to standardized landmarks (e.g. iBUG-68

landmarks), thus their projection (slan ∈ R
68×2) can be used in the metric. The alignment error is

achieved by point-to-point euclidean distances between the detected landmark locations of the input

image and the projection of the landmark vertices as the following:

Llan(P, I0) =
68
∑

j

||M(I0)j − slanj ||
2
2 (2.9)

Hand-crafted Features

For robust reconstruction, a recent approach [BAP+17] proposed to use handcrafted features, such

as SIFT [Low99] or HOG [DT05] and fit based on these features. Let us denote feature extraction

function byH, the proposed energy function would be as follows:

LSIFT(P, I0) = ||H(I0)−H(R(P))||2 (2.10)

Despite the equation above, the original method [BAP+17] did not need to render the reconstruction

in the image-space as it is based on a texture model built by SIFT features. Thus it bypassed the

ambiguity between the true albedo and illumination. The main drawback of the original method is

that the facial texture is not reconstructed, however, this can be resolved by extracting such features
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differentiably on the image-space rendered reconstructions (i.e.H(R(P))), as we explain in the next

section.

Deep Identity Features

With the availability of large scale datasets, CNNs have shown incredible performance on many face

recognition benchmarks. Their strong identity features are robust to many variations including pose,

expression, illumination, age, etc. A recent study [GCM+18] has shown that they are also effective

at face reconstruction by learning the correlation between identity features and 3DMM parameters.

This can be generalized by the following cosine distance between the target image and the rendering

of the reconstruction:

Lid(P, I0) = 1−
Fn(I0).Fn(R(P))

||Fn(I0)||2||Fn(R(P))||2
(2.11)

where a pretrained face recognition network with n layers denoted by Fn(I) : Rw×h×3 → R
512. This

way, one can take advantage of an off-the-shelf face recognition network in order to optimize the

reconstruction based on the identity-related features of a target face image.

Regularization terms

Linear and non-linear face models provide statistical prior in addition to the above-mentioned energy

functions. This prior keep the reconstruction within the manifold of the training set used to build

the model. Especially, it encourages avoiding overfitting to particular pose and disentanglement of

texture-illumination and expression-shape ambiguities. Adjusting the weight of this term in the total

energy function is not trivial. Higher weight leads to getting close to the mean face, lower weight

might result in exaggerated facial patterns. Further discussions on this dilemma can be found in

[LMAR14, PS16]. We also refer the reader to the other solutions proposed to address this issue in the

literature [PS12, RSOK17, TZB+18]. For linear 3DMM, regularization can be achieved by minimiz-

ing latent parameters (e.g. ps) with respect to the associated variance of the principal components, as
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follows:

Lreg(p) = ||p||
2
A = pTAp (2.12)

where A stands for the orthogonal space to the statistical model of the texture.

2.3.2 Optimization-based Approaches

For many years optimization-based 3DMM fitting and its variants were the methods of choice for

3D face reconstruction [BV99, ZTG+18, EST+20]. Ever since the original work [BV99], there have

been many studies improving the generalization and the precision of 3D face reconstruction by adding

other sources of information such as edges [RV05, BSBW17, HYK+17], specular highlights [RV05],

and so on. [TZS+19] follows a standard linear 3DMM fitting strategy followed by a number of steps

for texture completion and refinement. Furthermore, with appropriate statistical texture models on im-

age features such as Scale Invariant Feature Transform (SIFT) and Histogram Of Gradients (HOG),

3DMM-based methodologies can achieve great performance in 3D shape estimation on images cap-

tured under unconstrained conditions [BAP+17] or videos [BRV+18].

Optimization-based, or in other name analysis-by-synthesis approaches can reconstruct 3D facial

geometry and texture by fitting a 3DMM on a given target image I0. This is often achieved by

solving a non-linear energy-based cost optimization problem that recovers a set of parameters P =

[ps,e,pt,pc,pl]. The optimization can be formulated as:

min
P
E(P, I0) =

∑

i

λiLi(P, I0) + Reg(P) (2.13)

where i can be any of the metrics defined above or a novel energy function. λi denotes the bal-

ancing factor to control the contribution of different metrics to the total energy. Finally, Reg is the

regularization term to keep texture and shape parameters in a realistic range of PCA.

The analysis-by-synthesis approach iteratively updates 3DMM parameters based on the derivatives

of Eq. 2.13. The optimization can be done by any gradient-based solvers such as the Gradient De-
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scent [BV99], Gauss-Newton [BAP+17, PB16], Levenberg-Marquardt [RV05], or Iteratively Reweighted

Least Squares (IRLS) [HW77]. Another optimization approach [SEMV17] introduces stochastic sam-

pling method based on Bayesian inference. This method searches for the posterior distribution of the

model parameters rather than solving for an optimal solution and it is based on proposing a set of

parameters and verifying them with the model (i.e. Data-Driven Markov Chain Monte Carlo). In

contrast to the gradient-based methods, it does not need gradients, thus less sensitive to local minima.

Moreover, since it is not gradient-based, it makes use of facial features [Low99] without the need for

differentiable image formation.

2.3.3 Regression-based Approaches

Recent advances in deep learning popularized regression-based 3D face reconstruction approaches.

Similar to other deep learning tasks, the goal is to regress 3DMM parameters (or 3D face directly)

by a deep neural network. Deep networks are very powerful to learn sophisticated tasks when proper

supervision and data are provided. However, providing such is not trivial, because accurate estimation

of 3D shape and texture can be done under controlled environments which has some domain gap with

‘in-the-wild’ conditions. Below we discuss and refer to some techniques used in the literature.

Supervised Learning

Neural networks can easily learn a well-defined task when trained with a well-annotated dataset. 3D

face reconstruction task is no exception. However, the 3D face reconstruction task aims for face

images taken in arbitrary conditions, thus the regression network should be robust to environmental

changes such as lighting, occlusion, perspective, and even camera parameters.

The simplest solution is to collect a large scale annotated 3D face dataset to train a regression CNN.

However, acquiring such a dataset under unconstrained settings is challenging. [OLSL16] manually

annotated expression blendshapes of video clips by professional animators. [LKA+17] proposed

to train based on images captured in a controlled environment. These two studies demonstrate the

difficulty of direct supervision as the former is very costly and the latter contains a domain gap with
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in-the-wild images. Some other datasets are semi-automatically annotated by landmarks [STZP13b,

ZLL+16]. The early CNNs [ZLL+16, YYS+17a] trained by these datasets have shown promising

results.

Moreover, it is safe to assume the facial shape and texture of an individual are consistent across videos

and multiple images. 3D Menpo dataset [ZCR+17] takes this advantage to fine-tune 3D landmark

annotations by aggregation of an individual in all frames of a video. Similarly, [THMM17] relies on

the same assumption by first fitting 3DMM individually for multiple images of the same person and

then pool across the parameters to train a deep neural network.

Self-supervised Learning

Another approach is to utilize random in-the-wild face images to train a network by reconstruction

consistency. Typically, the 3D reconstruction is rendered by a differentiable renderer and the differ-

ence between the input image and the rendered image is penalized during the training. [TZK+17]

trains by 2D landmark coordinates and pixel intensities as supervision, while [RSOK17] learns fine-

details in texture in a similar fashion. [GCM+18] trains a CNN by matching deep identity features

between the training image and the rendered reconstruction. These self-supervised approaches allow

to exploit large-scale face datasets without annotation, however, energy functions should be carefully

designed for robust and precise reconstruction.

Learning from Synthetic data

Without a doubt, the ground truth provided by synthetic data has absolute accuracy, yet the data itself

has a domain gap with real face images. There have been many approaches for synthetic training such

as masking [RSK16, RSOK17], self-supervised bootstrapping [KZT+18], pretraining the network

with synthetic data and fine-tuning with ready data [GCM+18], or training image-to-image domain

transfer networks [SRK17].
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2.4 Conclusion

This chapter covered the basics of 3D face modeling, reconstruction, and synthesis in the conventional

methods and the recent studies to prepare for the upcoming chapters. The main components necessary

for these tasks are gathered under three main sections: ‘3D Face Modeling’, ‘2D & 3D Face Synthe-

sis’, and ‘3D Face Reconstruction from a Single Image’. Each of these sections gives a sneak peek

of a well-established problem domain with a large literature in the context of recent advances of deep

learning. Nevertheless, the isolation and the formulation of these problems as presented here, help us

to contemplate how each module can be improved or replaced by its more advanced alternative in the

following chapters. The remainder of the thesis particularly focuses on incorporating deep generative

and discriminative learning into 3D face modeling, reconstruction, and synthesis.
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In this chapter, we propose an approach that harnesses the power of Generative Adversarial Networks

(GANs) and DCNNs in order to reconstruct the facial texture and shape from single images. That is,

we utilize GANs to train a very powerful generator of facial texture in UV space. Then, we revisit the

original 3D Morphable Models (3DMMs) fitting approaches making use of non-linear optimization

to find the optimal latent parameters that best reconstruct the test image but under a new perspective.

We optimize the parameters with the supervision of pretrained deep identity features through our

end-to-end differentiable framework. We demonstrate excellent results in photorealistic and identity

preserving 3D face reconstructions and achieve for the first time, to the best of our knowledge, facial

texture reconstruction with high-frequency details.

3.1 Introduction

Estimation of the 3D facial surface and other intrinsic components of the face from single images

(e.g. albedo, etc.) is a very important problem at the intersection of computer vision and machine

learning with countless applications (e.g. face recognition, face editing, virtual reality). It is now

twenty years from the seminal work of Blanz and Vetter [BV99] which showed that it is possible

to reconstruct shape and albedo by solving a non-linear optimization problem that is constrained by

linear statistical models of facial texture and shape. This statistical model of texture and shape is

called a 3D Morphable Model (3DMM). Arguably the most popular publicly available 3DMM is the

Basel model built from 200 people [PKA+09]. Recently, large scale statistical models of face and

head shape have been made publicly available [BRZ+16, DPSD17].

For many years 3DMMs and its variants were the methods of choice for 3D face reconstruction

[RV05, ZLL+16, JZD+18]. Furthermore, with appropriate statistical texture models on image fea-
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Figure 3.1: The proposed deep fitting approach can reconstruct high quality texture and geometry

from a single image with precise identity recovery. The reconstructions in the figure and the rest of

the chapter are represented by a vector of size 700 floating points and rendered without any special

effects. We would like to highlight that the depicted texture is reconstructed by our model and none

of the features taken directly from the image.

tures such as Scale Invariant Feature Transform (SIFT) and Histogram Of Gradients (HOG), 3DMM-

based methodologies can still achieve state-of-the-art performance in 3D shape estimation on images

captured under unconstrained conditions [BAP+17]. Nevertheless, those methods [BAP+17] can re-

construct only the shape and not the facial texture. Another line of research in [YSN+18, SWH+17]

decouples texture and shape reconstruction. A standard linear 3DMM fitting strategy [TZS+19] is

used for face reconstruction followed by a number of steps for texture completion and refinement. In

these papers [SWH+17, YSN+18], the texture looks excellent when rendered under professional ren-

derers (e.g. Arnold), nevertheless when the texture is overlaid on the images the quality significantly

drops 1.

In the past two years, a lot of work has been conducted on how to harness Deep Convolutional

Neural Networks (DCNNs) for 3D shape and texture reconstruction. The first such methods either

trained regression DCNNs from image to the parameters of a 3DMM [THMM17] or used a 3DMM

to synthesize images [RSK16, GZC+19] and formulate an image-to-image translation problem using

DCNNs to estimate the depth2 [SRK17]. The more recent unsupervised DCNN-based methods are

trained to regress 3DMM parameters from identity features by making use of differentiable image

formation architectures [CBK+17] and differentiable renderers [GCM+18, TZK+17, RSOK17].

The most recent methods such as [TZG+18, TL18, GZC+16] use both the 3DMM model, as well as

additional network structures (called correctives) in order to extend the shape and texture representa-

1Please see the supplementary materials for a comparison with [SWH+17, YSN+18].
2The depth was afterwards refined by fitting a 3DMM and then changing the normals by using image features.
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tion. Even though the paper [TZG+18] shows that the reconstructed facial texture has indeed more

details than a texture estimated from a 3DMM [THMM17, TZK+17], it is still unable to capture high-

frequency details in texture and subsequently many identity characteristics (please see the Fig. 5.5).

Furthermore, because the method permits the reconstructions to be outside the 3DMM space, it is

susceptible to outliers (e.g. glasses etc.) which are baked in shape and texture. Although rendering

networks (i.e. trained by VAE [LSSS18]) generates outstanding quality textures, each network is ca-

pable of storing up to few individuals whom should be placed in a controlled environment to collect

∼20 millions of images.

In this chapter, we still propose to build upon the success of DCNNs but take a radically differ-

ent approach for 3D shape and texture reconstruction from a single in-the-wild image. That is,

instead of formulating regression methodologies or auto-encoder structures that make use of self-

supervision [TZG+18, GCM+18, TL18], we revisit the optimization-based 3DMM fitting approach

by the supervision of deep identity features and by using Generative Adversarial Networks (GANs)

as our statistical parametric representation of the facial texture.

In particular, the novelties that this chapter brings are:

• We show for the first time, to the best of our knowledge, that a large-scale high-resolution

statistical reconstruction of the complete facial surface on an unwrapped UV space can be

successfully used for reconstruction of arbitrary facial textures even captured in unconstrained

recording conditions3.

• We formulate a novel 3DMM fitting strategy which is based on GANs and a differentiable

renderer.

• We devise a novel cost function which combines various content losses on deep identity features

from a face recognition network.

• We demonstrate excellent facial shape and texture reconstructions in arbitrary recording condi-

3In the very recent works, it was shown that it is feasible to reconstruct the non-visible parts a UV space for facial

texture completion[DCX+18] and that GANs can be used to generate novel high-resolution faces[SSK19b]. Nevertheless,

our work is the first one that demonstrates that a GAN can be used as powerful statistical texture prior and reconstruct the

complete texture of arbitrary facial images.
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tions that are shown to be both photorealistic and identity preserving in qualitative and quanti-

tative experiments.

3.2 History of 3DMM Fitting

Our methodology naturally extends and generalizes the ideas of texture and shape 3DMM using

modern methods for representing texture using GANs, as well as defines loss functions using differ-

entiable renderers and very powerful publicly available face recognition networks [DGXZ19]. Before

we define our cost function, we will briefly outline the history of 3DMM representation and fitting.

3.2.1 3DMM representation

The first step is to establish dense correspondences between the training 3D facial meshes and a

chosen template with fixed topology in terms of vertices and triangulation.

Texture

Traditionally 3DMMs use a UV map for representing texture. UV maps help us to assign 3D texture

data into 2D planes with universal per-pixel alignment for all textures. A commonly used UV map

is built by cylindrical unwrapping the mean shape into a 2D flat space formulation, which we use

to create an RGB image IUV . Each vertex in the 3D space has a texture coordinate tcoord in the UV

image plane in which the texture information is stored. A universal function exists, where for each

vertex we can sample the texture information from the UV space as T = P(IUV , tcoord).

In order to define a statistical texture representation, all the training texture UV maps are vector-

ized and Principal Component Analysis (PCA) is applied. Under this model any test texture T0 is

approximated as a linear combination of the mean texture mt and a set of bases Ut as follows:

T(pt) ≈mt +Utpt (3.1)
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where pt is the texture parameters for the text sample T0. In the early 3DMM studies, the statistical

model of the texture was built with few faces captured in strictly controlled conditions and was used

to reconstruct the test albedo of the face. Since, such texture models can hardly represent faces

captured in uncontrolled recording conditions (in-the-wild). Recently it was proposed to use statistical

models of hand-crafted features such as SIFT or HoG [BAP+17] directly from in-the-wild faces. The

interested reader is referred to [BV03, RBV02] for more details on texture models used in 3DMM

fitting algorithms.

The recent 3D face fitting methods [TZG+18, TL18, GZC+16] still make use of similar statistical

models for the texture. Hence, they can naturally represent only the low-frequency components of the

facial texture (please see Fig. 5.5).

Shape

The method of choice for building statistical models of facial or head 3D shapes is still PCA [WEG87].

Assuming that the 3D shapes in correspondence comprise of N vertexes, i.e. s =
[

xT

1 , . . . ,x
T

N

]T

=

[x1, y1, z1, . . . , xN , yN , zN ]
T

. In order to represent both variations in terms of identity and expression,

generally two linear models are used. The first is learned from facial scans displaying the neutral

expression (i.e. representing identity variations) and the second is learned from displacement vectors

(i.e. representing expression variations). Then a test facial shape S(ps,e) can be written as

S(ps,e) ≈ms,e +Us,eps,e (3.2)

where ms,e in the mean shape vector, Us,e ∈ R
3N×ns,e is Us,e = [Us,Ue] where the Us are the bases

that correspond to identity variations, and Ue the bases that correspond to expression. Finally, ps,e

are the ns,e shape parameters which can be split accordingly to the identity and expression bases: ps,e

= [ps, pe].
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3.2.2 Fitting

3D face and texture reconstruction by fitting a 3DMM is performed by solving a non-linear energy

based cost optimization problem that recovers a set of parameters p = [ps,e,pt,pc,pl] where pc are

the parameters related to a camera model and pl are the parameters related to an illumination model.

The optimization can be formulated as:

min
p
E(p) = ||I0(p)−W(p)||22 + Reg({ps,e,pt}) (3.3)

where I0 is the test image to be fitted and W is a vector produced by a physical image formation

process (i.e. rendering) controlled by p. Finally, Reg is the regularization term that is mainly related

to texture and shape parameters.

Various methods have been proposed for numerical optimization of the above cost functions [HYK+17,

BSBW17]. A notable recent approach is [BAP+17] which uses handcrafted features (i.e. H) for tex-

ture representation simplified the cost function as:

min
pr
E(pr)= ||H(I0(pr))−H(W(pr))||2A+Reg(ps,e) (3.4)

where ||a||2A = aTAa, A is the orthogonal space to the statistical model of the texture and pr is the

set of reduced parameters pr = {ps,e,pc}. The optimization problem in Eq. 3.4 is solved by Gauss-

Newton method. The main drawback of this method is that the facial texture in not reconstructed.

In this chapter, we generalize the 3DMM fittings and introduce the following novelties:

• We use a GAN on high-resolution UV maps as our statistical representation of the facial texture.

That way we can reconstruct textures with high-frequency details.

• Instead of other cost functions used in the literature such as low-level ℓ1 or ℓ2 loss (e.g. RGB

values [PB16], edges [RV05]) or hand-crafted features (e.g. SIFT [BAP+17]), we propose a

novel cost function that is based on feature loss from the various layers of publicly available

face recognition embedding network [DGXZ19]. Unlike others, deep identity features are very

powerful at preserving identity characteristics of the input image.
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Figure 3.2: Detailed overview of the proposed approach. A 3D face reconstruction is rendered by a

differentiable renderer (shown in purple). Cost functions are mainly formulated by means of identity

features on a pretrained face recognition network (shown in gray) and they are optimized by flowing

the error all the way back to the latent parameters (ps, pe, pt, c, i, shown in green) with gradient descent

optimization. End-to-end differentiable architecture enables us to use computationally cheap and

reliable first order derivatives for optimization thus making it possible to employ deep networks as a

generator (i.e. statistical model) or as a cost function.

• We replace physical image formation stage with a differentiable renderer to make use of first

order derivatives (i.e. gradient descent). Unlike its alternatives, gradient descent provides com-

putationally cheaper and more reliable derivatives through such deep architectures (i.e. above-

mentioned texture GAN and identity DCNN).

3.3 Approach

We propose an optimization-based 3D face reconstruction approach from a single image that employs

a high fidelity texture generation network as statistical prior as illustrated in Fig. 5.1. To this end, the

reconstruction mesh is formed by 3D morphable shape model; textured by the generator network’s

output UV map; and projected into 2D image by a differentiable renderer. The distance between the

rendered image and the input image is minimized in terms of a number of cost functions by updating

the latent parameters of 3DMM and the texture network with gradient descent. We mainly formulate

these functions based on rich features of face recognition network [DGXZ19, SKP15, PVZ15] for
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smoother convergence and landmark detection network [DZCZ18] for alignment and rough shape

estimation.

The following sections introduce firstly our novel texture model that employs a generator network

trained by progressive growing GAN framework. After describing the procedure for image formation

with differentiable renderer, we formulate our cost functions and the procedure for fitting our shape

and texture models onto a test image.

3.3.1 GAN Texture Model

Although conventional PCA is powerful enough to build a decent shape and texture model, it is often

unable to capture high frequency details and ends up having blurry textures due to its Gaussian nature.

This becomes more apparent in texture modelling which is a key component in 3D reconstruction to

preserve identity as well as photo-realism.

GANs are shown to be very effective at capturing such details. However, they suffer from preserving

3D coherency [Goo16] of the target distribution when the training images are semi-aligned. We

found that a GAN trained with UV representation of real textures with per pixel alignment avoids this

problem and is able to generate realistic and coherent UVs from 99.9% of its latent space while at the

same time generalizing well to unseen data.

In order to take advantage of this perfect harmony, we train a progressive growing GAN [KALL18]

to model distribution of UV representations of 10,000 high resolution textures and use the trained

generator network

G(pt) : R
512 → R

H×W×C (3.5)

as texture model that replaces 3DMM texture model in Eq. 3.1.

While fitting with linear models, i.e. 3DMM, is as simple as linear transformation, fitting with a gen-

erator network can be formulated as an optimization that minimizes per-pixel Manhattan distance

between target texture in UV space Iuv and the network output G(pt) with respect to the latent pa-

rameter pt, i.e. minpt
|G(pt)− Iuv|.
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3.3.2 Differentiable Renderer

Following [GCM+18], we employ a differentiable renderer to project 3D reconstruction into a 2D

image plane based on deferred shading model with given camera and illumination parameters. Since

color and normal attributes at each vertex are interpolated at the corresponding pixels with barycentric

coordinates, gradients can be easily backpropagated through the renderer to the latent parameters.

A 3D textured mesh at the center of Cartesian origin [0, 0, 0] is projected onto 2D image plane by

a pinhole camera model with the camera standing at [xc, yc, zc], directed towards [x′
c, y

′
c, z

′
c], with

world’s up direction [x̂c, ŷc, ẑc], and with the focal length fc. The illumination is modelled by phong

shading given 1) direct light source at 3D coordinates [xl, yl, zl] with color values [rl, gl, bl], and 2)

color of ambient lighting [ra, ga, ba].

Finally, we denote the rendered image given camera ( pc = [xc, yc, zc, x
′
c, y

′
c, z

′
c, x̂c, ŷc, ẑc, fc] ), geom-

etry (ps,e), texture (pt), and lighting parameters (pl = [xl, yl, zl, rl, gl, bl, ra, ga, ba]) by the following:

IR = R(S(ps,pe),P(G(pt)),pc,pl) (3.6)

where we construct shape mesh by 3DMM as given in Eq. 3.2 and texture by GAN generator network

as in Eq. 3.5. Since our differentiable renderer supports only color vectors, we sample from our

generated UV map to get vectorized color representation as explained in Sec. 3.2.1.

Additionally, we render a secondary image with random expression, pose and illumination in order to

generalize identity related parameters well with those variations. We sample expression parameters

from a normal distribution as p̂e ∼ N (µ = 0, σ = 0.5) and sample camera and illumination parame-

ters from the Gaussian distribution of 300W-3D dataset as p̂c ∼ N (µ̂c, σ̂c) and p̂l ∼ N (µ̂l, σ̂l). This

rendered image of the same identity as IR (i.e. with same ps and pt parameters) is expressed by the

following:

ÎR = R(S(ps, p̂e),P(G(pt)), p̂c, p̂l) (3.7)



3.3. Approach 65

3.3.3 Cost Functions

Given an input image I0, we optimize all of the aforementioned parameters simultaneously with

gradient descent updates. In each iteration, we simply calculate the forthcoming cost terms for the

current state of the 3D reconstruction, and take the derivative of the weighted error with respect to the

parameters using backpropagation.

Identity Loss

With the availability of large scale datasets, CNNs have shown incredible performance on many face

recognition benchmarks. Their strong identity features are robust to many variations including pose,

expression, illumination, age etc. These features are shown to be quite effective at many other tasks

including novel identity synthesizing (as in Chapter 5), face normalization [CBK+17] and 3D face

reconstruction [GCM+18]. In our approach, we take advantage of an off-the-shelf state-of-the-art face

recognition network [DGXZ19]4 in order to capture identity related features of an input face image

and optimize the latent parameters accordingly. More specifically, given a pretrained face recognition

network Fn(I) : R
H×W×C → R

512 consisting of n convolutional filters, we calculate the cosine

distance between the identity features (i.e. embeddings) of the real target image and our rendered

images as following:

Lid = 1−
Fn(I0).Fn(IR)

||Fn(I0)||2||Fn(IR)||2
(3.8)

We formulate an additional identity loss on the rendered image ÎR that is rendered with random pose,

expression and lighting. This loss ensures that our reconstruction resembles the target identity under

different conditions. We formulate it by replacing IR by ÎR in Eq. 3.8 and it is denoted as L̂id.

Content Loss

Face recognition networks are trained to remove all kinds of attributes (e.g. expression, illumination,

age, pose) other than abstract identity information throughout the convolutional layers. Despite their

4We empirically deduced that other face recognition networks work almost equally well and this choice is orthogonal

to the proposed approach.
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Figure 3.3: Example fits of our approach for the images from various datasets. Please note that our

fitting approach is robust to occlusion (e.g. glasses), low resolution and black-white in the photos

and generalizes well with ethnicity, gender and age. The reconstructed textures are very well at

capturing high frequency details of the identities; likewise, the reconstructed geometries from 3DMM

are surprisingly good at identity preservation thanks to the identity features used, e.g. crooked nose at

bottom-left, dull eyes at bottom-right and chin dimple at top-left

strength, the activations in the very last layer discard some of the mid-level features that are useful for

3D reconstruction, e.g. variations that depend on age. Therefore we found it effective to accompany

identity loss by leveraging intermediate representations in the face recognition network that are still

robust to pixel-level deformations and not too abstract to miss some details. To this end, normalized

euclidean distance of intermediate activations, namely content loss, is minimized between input and

rendered image with the following loss term:

Lcon =
n

∑

j

||F j(I0)−F j(IR)||2
HFj ×WFj × CFj

(3.9)

Pixel Loss

While identity and content loss terms optimize albedo of the visible texture, lighting conditions are

optimized based on pixel value difference directly. While this cost function is relatively primitive, it

is sufficient to optimize lighting parameters such as ambient colors, direction, distance and color of a

light source. We found that optimizing illumination parameters jointly with others helped to improve



3.3. Approach 67

albedo of the recovered texture. Furthermore, pixel loss support identity and content loss with fine-

grained texture as it supports highest available resolution while images needs to be downscaled to

112× 112 before identity and content loss. The pixel loss is defined by pixel level ℓ1 loss function as:

Lpix = ||I
0 − IR||1 (3.10)

Landmark Loss

The face recognition network F is pre-trained by the images that are aligned by similarity trans-

formation to a fixed landmark template. To be compatible with the network, we align the input

and rendered images under the same settings. However, this process disregards the aspect ratio

and scale of the reconstruction. Therefore, we employ a deep face alignment network [DZCZ18]

M(I) : RH×W×C → R
68×2 to detect landmark locations of the input image and align the rendered

geometry onto it by updating the shape, expression and camera parameters. That is, camera param-

eters are optimized to align with the pose of image I and geometry parameters are optimized for the

rough shape estimation. As a natural consequence, this alignment drastically improves the effective-

ness of the pixel and content loss, which are sensitive to misalignment between the two images.

The alignment error is achieved by point-to-point euclidean distances between detected landmark

locations of the input image and 2D projection of the 3D reconstruction landmark locations that is

available as meta-data of the shape model. Since landmark locations of the reconstruction heavily

depend on camera parameters, this loss is great a source of information the alignment of the recon-

struction onto input image and is formulated as following:

Llan =
68
∑

j

||M(I0)j −M(IR)j||2 (3.11)

3.3.4 Model Fitting

We first roughly align our reconstruction to the input image by optimizing shape, expression and cam-

era parameters by: minpr E(pr) = λlanLlan+λregReg({ps,e}). We then simultaneously optimize all of
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our parameters with gradient descent and backpropagation so as to minimize weighted combination

of above loss terms in the following:

min
p
E(p) = λidLid+ λ̂idL̂id+ λconLcon +λpixLpix

+λlanLlan + λregReg({ps,e,pl})

(3.12)

where we weight each of our loss terms with λ parameters. In order to prevent our shape and expres-

sion models and lighting parameters from exaggeration to arbitrarily bias our loss terms, we regularize

those parameters by Reg({ps,e,pl}).

3.4 Drawbacks and Improvements on GANFit

3.4.1 Fitting with Multiple Images (i.e. Video):

Although the proposed approach can fit a 3D reconstruction from a single image, one can take ad-

vantage of more images effectively when available, e.g. from a video recording. This often helps

to improve reconstruction quality under challenging conditions, e.g. outdoor, low resolution. While

state-of-the-art methods follow naive approaches by averaging either the reconstruction [THMM17]

or features-to-be-regressed [GCM+18] before making a reconstruction, we utilize the power of iter-

ative optimization by averaging identity reconstruction parameters (ps,pt) after every iteration. For

an image set I = {I0, I1, . . . , Ii, . . . , Ini}, we reformulate our parameters as p = [ps,p
i
e,pt,p

i
c,p

i
l] in

which we average shape and texture parameters by the following:

ps =
n

∑

i

pi
s,pt =

n
∑

i

pi
t (3.13)

3.4.2 Regressing parameters by Encoder

One weakness of the proposed GANFit approach is its sensitivity to the initialization of the gener-

ated texture as shown in Fig. 3.4. Due to the non-linear generator network and first order derivatives,
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(a) I0 (b) GANFit+ (c) (d) (e)

(f) (g) (h) (i)

Figure 3.4: The fitting results of the proposed approach for the input image (a) initialized by Fast-

GANFit (b) or randomly resulting reconstructions given random initial textures (c-i)

optimization is not guaranteed to find the global minima and sometimes result in sub-optimal recon-

structions. In order to initialize GANFit optimization parameters closer to global/good minima, we

propose to train an encoder network to by the same image formation and loss functions that regress

latent parameters (i.e. ps, pt, pe, pc, pl) from the input image.

In order to train this network N , we modify GANFit optimization by simply replacing trainable latent

parameters p by the activations of the encoder network (pN = N(I0)) as shown in Fig. 3.5. The

architecture of the regression network particularly benefit from different levels of identity features

(i.e. content features) of a pretrained face recognition network [DGXZ19] by passing and concate-

nating same-resolution activations in the regressor network. Moreover, we flatten and concatenate

normalized landmark locations by a pretrained landmark detection network [DZCZ18] before the fi-

nal fully connected layers. This design leverage the information of the state of the art facial features

and, unlike its alternatives [GCM+18], it allows the regressor network to benefit all levels of features

(i.e. [GCM+18] restrict the features from face recognition network to its final layer which is fully

abstract and ignore state-relevant features, e.g. age, facial hair etc.). We call this regression network

FastGANFit in the rest of the chapter.

The activations of FastGANFit (pN = N(I0)) is connected with GANFit’s image formation and loss
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Figure 3.5: Overview of the approach with regression network. The network is end-to-end connected

with the differentiable renderer and the lost functions of GANFit. It benefits from the activations of

all layers of a pretrained face recognition network and detection of a hourglass landmark detector.

The network is trained similar to GANFit optimization: 1) alignment 2) full objective. The only

difference is that now the regression network is being optimized (i.e. trained) instead of the trainable

latent parameters of GANFit.

functions in an end-to-end manner. The network is then pre-trained for camera, shape and expression

parameters by optimizing only minprN E(prN) = λlanLlan + λregReg({ps,e}. After having a good

alignment of the reconstructions of a given training data, we train the regressor network again with

our full objective function as in the following:

min
pN
E(pN) = λidLid+ λ̂idL̂id+ λconLcon +λpixLpix

+λlanLlan + λregReg({ps,e,pl})

(3.14)

The resulting network can either regress 3D reconstruction parameters directly (called FastGANFit)

or initialize GANFit’s latent parameters p by the regressed parameters N(I0) before running GANFit

optimization as explained in Section 5.3. We call this initialization trick GANFit+ in the rest of the

chapter. This combination of optimization- and regression-based 3D reconstruction leverage best of

both worlds: stability of inference and high-fidelity of iterative optimization. Furthermore, one can

also enjoy flexibility of trade-off between speed and quality depending on the application.
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3.5 Experiments

This section demonstrates the excellent performance of the proposed approach for 3D face recon-

struction and shape recovery. We verify this by qualitative results in Figures 3.1, 3.3, qualitative

comparisons with the state-of-the-art in Sec. 3.5.2 and quantitative shape reconstruction experiment

on a database with ground truth in Sec. 3.5.3. In our experiments, we evaluate the proposed approach

under three different settings: 1) GANFit, i.e. Fitting with random initialization, 2) Fast-GANFit,

i.e. Regressing the parameters by the regressor network, 3) GANFit++, i.e. Fitting after initializing

with Fast-GANFit.

3.5.1 Implementation Details

For all of our experiments, a given face image is aligned to our fixed template using 68 landmark

locations detected by an hourglass 2D landmark detection [DZCZ18]. For the identity features, we

employ ArcFace [DGXZ19] network’s pretrained models. For the generator network G, we train a

progressive growing GAN [KALL18] with around 10,000 UV maps from [BRZ+16] at the resolution

of 512× 512. We use the Large Scale Face Model [BRZ+16] for 3DMM shape model with ns = 158

and the expression model learned from 4DFAB database [CKPZ18] with ne = 29. During fitting

process, we optimize parameters using Adam Solver [KB15] with 0.01 learning rate. And we set

our balancing factors as the following: λid : 2.0, λ̂id : 2.0, λcon : 50.0, λpix : 1.0, λlan : 0.001, λreg :

{0.05, 0.01}. The Fitting converges in around 30 seconds on an Nvidia GTX 1080 TI GPU for a

single image.

3.5.2 Qualitative Results

Comparison on MOFA test set

Fig. 5.5 compares our results with the most recent face reconstruction studies [TZK+17, TZG+18,

GCM+18, THMM17, TL18] on a subset of MoFA test-set. The first four rows after input images
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Input Images

Ours

w/ Expression

MoFA

[TZK+17]

Tewari et al.

[TZG+18]

Ours

w/o Expression

Genova

[GCM+18]

A.T. Tran et al.

[THMM17]

MoFA

[TZK+17]

Ours

Geometry

Tewari et al.

[TZG+18]

L. Tran et al.

[TL18]

Figure 3.6: Comparison of our qualitative results with other state-of-the-art methods in MoFA-Test

dataset. Rows 2-4 show comparison of textured geometry with original expression, rows 5-8 show

comparison of textured geometry with neutral expression and rows 9-11 compare only shapes.
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show a comparison of our shape and texture reconstructions to [GCM+18, THMM17, TZG+18] and

the last three rows show our reconstructed geometries without texture compared to [TZG+18, TL18].

All in all, our method outshines all others with its high fidelity photorealistic texture reconstructions.

Both of our texture and shape reconstructions manifest strong identity characteristics of the corre-

sponding input images from the thickness and shape of the eyebrows to wrinkles around the mouth

and forehead.

Rows 2 and 5 show results of our method with and without expression fitting (i.e. pe) visualized. It

is visible that our method even captured that eyelids are closed in the geometry (i.e. first column) and

that the expression is well disentangled from shape compared to MoFA [TZK+17].

Comparison on high-quality texture generation

In order to support our claim to generate high-quality textures, in Fig. 3.8 we provide comparative

results with [SWH+17] which renders 3D reconstruction using commercial renderer tweaks. Our

method provides excellent textures even without any improvements by renderers (which is orthogonal

our method). This is more visible when the reconstruction is overlaid on the input images as in

Fig. 3.7.

One general drawback of our texture model is that it sometimes contains highlights and shadow

patterns, i.e. around the nose. We believe that these flaws are inherited from the training data that is

collected in a controlled environment with multiple point light sources. The intensities of the shadows

and the highlights are affected by the intensity of the daylight at the time of collection, thus, these

artifacts may not be always visible.

Results under challenging conditions

Fig. 3.9 illustrates results of GANFit under more challenging conditions such as strong illuminations,

self-occlusions and facial hair. Please note that our method succesfully reconstruct these challenging

face images in 3D thanks to strong face recognition features. Particularly, Fig. 3.9(d) shows that the

direction and the intensity of the illumination in the scene are successfully estimated by our lighting
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Input Image   Shu et al. Yamaguchi et al.         Ours

Figure 3.7: Qualitative comparison with [YSN+18, SYH+17] by overlaying the reconstructions on

the input images. Our method can generate high fidelity texture with accurate shape, camera and

illumination fitting.

model which consists of one RGB point light source and RGB ambient lighting. This result indicates

that our combined loss function can effectively optimize the position of the point light source and its

colour intensities.

Fig. 3.10 shows 3D reconstruction results given paintings from BAM dataset [WFJ+17].

3.5.3 Quantitative Experiments

3D shape recovery on MICC dataset

We evaluate the shape reconstruction performance of our method on MICC Florence 3D Faces dataset

(MICC) [BDBM11] in Table 3.1. The dataset provides 3D scans of 53 subjects as well as their

short video footages under three difficulty settings: ‘cooperative’, ‘indoor’ and ‘outdoor’. Unlike

[GCM+18, THMM17] which processes all the frames in a video, we uniformly sample only 5 frames

from each video regardless of their zoom level. And, we run our method with multi-image support

for these 5 frames for each video separately as shown in Eq. 3.13. Each test mesh is cropped at a
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Input Images Saito et al. Ours

Figure 3.8: Qualitative comparison with [SWH+17] by means of texture maps, whole and partial face

renderings. Please note that while our method does not require any particular renderer for special

effects, e.g. lighting, [SWH+17] produce these renderings with a commercial renderer called Arnold.



76 Chapter 3. Generative Adversarial Network Regression and Fitting for 3D Face Reconstruction

(a) I0 (b) IR (c) IRalb. (d) IR/IRalb. (e) S

Figure 3.9: Results under more challenging conditions, i.e. strong illuminations, self-occlusions and

facial hair. (a) Input image. (b) Estimated fitting overlayyed including illumination estimation. (c)

Overlayyed fitting without illumination. (d) Normalized pixel-wise intensity ratio of (b) to (c). (e)

Estimated shape mesh
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Figure 3.10: Our results on BAM dataset[WFJ+17] compared to [GCM+18]. Our method is robust to

many image deformations and even capable of recovering identities from paintings thanks to strong

identity features.
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Cooperative Indoor Outdoor

Method Mean Std. Mean Std. Mean Std.

Tran et al. [THMM17] 1.93 0.27 2.02 0.25 1.86 0.23

Booth et al. [BAP+17] 1.82 0.29 1.85 0.22 1.63 0.16

Genova et al. [GCM+18] 1.50 0.13 1.50 0.11 1.48 0.11

GANFit (Ours) 0.95 0.107 0.94 0.106 0.94 0.106

Fast-GANFit (Ours) 0.94 0.24 0.94 0.173 0.93 0.095

GANFit++ (Ours) 0.93 0.091 0.92 0.101 0.92 0.099

Table 3.1: Accuracy results for the meshes on the MICC Dataset using point-to-plane distance. The

table reports the mean error (Mean), the standard deviation (Std.).

radius of 95mm around the tip of the nose according to [THMM17] in order to evaluate the shape

recovery of the inner facial mesh. We perform dense alignment between each predicted mesh and its

corresponding ground truth mesh, by implementing an iterative closest point (ICP) method [BM92].

As evaluation metric, we follow [GCM+18] to measure the error by average symetric point-to-plane

distance.

Table 3.1 reports the normalized point-to-plain errors in millimeters. It is evident that we have im-

proved the absolute error compared to the other two state-of-the-art methods by 36%. Our results are

shown to be consistent across all different settings with minimal standard deviation from the mean

error.

Experiments on LFW

In order to evaluate identity preservation capacity of the proposed method, we run two face recogni-

tion experiments on Labelled Faces in the Wild (LFW) dataset [HMLL12]. Following [GCM+18], we

feed real LFW images and rendered images of their 3D reconstruction by our method to a pretrained

face recognition network, namely VGG-Face[PVZ15]. We then compute the activations at the em-

bedding layer and measure cosine similarity between 1) real and rendered images and 2) renderings

of same/different pairs.

In Fig. 3.11 and 3.12, we have quantitatively showed that our method is better at identity preservation

and photorealism (i.e. as the pretrained network is trained by real images) than other state-of-the-art

deep 3D face reconstruction approaches [GCM+18, THMM17].
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0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Rendering-to-photo cosine similarity on LFW

Genova et al.

Tran et al.

GANFit

FastGANFit

GANFit+

Figure 3.11: Cosine similarity distributions of rendered and real images LFW based on activations at

the embedding layer of VGG-Face network[PVZ15]. Our method achieves more than 0.5 similarity

on average which [GCM+18] has 0.35 average similarity and [THMM17] 0.16 average similarity.

Camera and lighting parameters are fixed for all renderings.

3.5.4 Ablation Study

Fig. 3.13 shows an ablation study on our method where the full model reconstructs the input face

better than its variants, something that suggests that each of our components significantly contributes

towards a good reconstruction. Fig. 3.13(c) indicates albedo is well disentangled from illumination

and our model capture the light direction accurately.

While Fig. 3.13(d-f) shows each of the identity terms contributes to preserve identity, Fig. 3.13(h)

demonstrates the significance identity features altogether. Still, overall reconstruction utilizes pixel

intensities to capture better albedo and illumination as shown in Fig. 3.13(g). Finally, Fig. 3.13(i)

shows the superiority of our textures over PCA-based ones.
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0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Cosine similarity of same/different pairs of LFW

Genova et al. same

Genova et al. different

GANFit same

GANFit different

FastGANFit same

FastGANFit different

GANFit+ same

GANFit+ different

Figure 3.12: Our method successfully preserve identity so that distribution of cosine similarity of

same/different pairs is separable by thresholding. Camera and lighting parameters are fixed for all

renderings.

3.6 Conclusion

In this chapter, we revisit optimization-based 3D face reconstruction under a new perspective, that

is, we utilize the power of recent machine learning techniques such as GANs and face recognition

network as statistical texture model and as energy function respectively.

To the best of our knowledge, this is the first time that GANs are used for model fitting and they have

shown excellent results for high quality texture reconstruction. The proposed approach shows identity

preserving high fidelity 3D reconstructions in qualitative and quantitative experiments.

The following chapters focus on improving non-linear 3D face modeling in other domains such as

shape, normals and expression, as well as 2D novel face synthesization.
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(a) I0 (b) IR (c) IR albedo

(d) IR \ Lid (e) IR \ L̂id (f) IR \ Lcon

(g) IR \ Lpix (h)IR\{Lid,L̂id,Lcon} (i) IR with T(pt)

Figure 3.13: Contributions of the components or loss terms of the proposed approach with an leave-

one-out ablation study.
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Generating realistic 3D faces is of high importance for computer graphics and computer vision ap-

plications. Generally, research on 3D face generation revolves around linear statistical models of the

facial surface. Nevertheless, these models cannot represent faithfully either the facial texture or the

normals of the face, which are very crucial for photo-realistic face synthesis. Chapter 3 demonstrated

that Generative Adversarial Networks (GANs) can be used for modeling and generating high-quality

textures of faces. Nevertheless, the generation process either omits the geometry and normals, or

independent processes are used to produce 3D shape information. In this chapter, we present the first

methodology that generates high-quality texture, shape, and normals jointly, which can be used for

photo-realistic synthesis. To do so, we propose a novel GAN that can generate data from different

modalities while exploiting their correlations. Furthermore, we demonstrate how we can condition

the generation on the expression and create faces with various facial expressions.

4.1 Introduction

Generating 3D faces with high-quality texture, shape, and normals is of paramount importance in

computer graphics, movie post-production, computer games, etc. Other applications of such ap-

proaches include generating synthetic training data for face recognition (covered in Chapter 5) and

modeling the face manifold for 3D face reconstruction (covered in Chapter 3). Currently, 3D face

generation in computer games and movies is performed by expensive capturing systems or by pro-

fessional technical artists. The current state-of-the-art methods generate faces, which can be suitable

for applications such as caricature avatar creation in mobile devices [HSW+17] but do not generate

high-quality shape and normals that can be used for photo-realistic face synthesis. In this chapter,

we propose the first methodology for high-quality face generation that can be used for photo-realistic

face synthesis (i.e. joint generation of texture, shape, and normals) by capitalizing on the recent de-

velopments on Generative Adversarial Networks (GANs).

The early face models, such as [BV99], represent 3D face by disentangled PCA models of geometry,

expression [CWZ+14], and colored texture, called 3D morphable models (3DMM). 3DMMs and its
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Figure 4.1: We propose a novel GAN that can synthesize high-quality texture, shape, and normals

jointly for realistic and coherent 3D faces of novel identities. The separation of branch networks

allows the specialization of the characteristic of each one of the modalities while the trunk network

maintains the local correspondences among them. Moreover, we demonstrate how we can condi-

tion the generation on the expression and create faces with various facial expressions. We annotate

the training dataset automatically by an expression recognition network to couple those expression

encodings to the texture, shape, and normals UV maps.

variants were the most popular method for modeling shape and texture separately. However, the

linear nature of PCA is often unable to capture high-frequency signals properly, thus the quality of

generation and reconstruction by PCA is sub-optimal.

GANs is a recently introduced family of techniques that train samplers of high-dimensional distribu-

tions [GPM+14]. It has been demonstrated that when a GAN is trained on facial images, it can gener-

ate images that have realistic characteristics. In particular, the recently introduced GANs [KALL18,

KLA19, BDS19] can generate photo-realistic high-resolution faces. Nevertheless, because they are

trained on partially-aligned 2D images, they cannot properly model the manifold of faces and thus (a)

inevitably create many unrealistic instances and (b) it is not clear how they can be used to generate

photo-realistic 3D faces.

Recently, GANs have been applied for generating facial texture for various applications. In partic-

ular, [SRK17] and our method in Chapter 5 utilize style transfer GANs to generate photorealistic
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images of 3DMM-sampled novel identities. [SSK19b] directly generates high-quality 3D facial tex-

tures by GANs and our method presented in Chapter 3 replaces 3D Morphable Models (3DMMs) with

GAN models for 3D texture reconstruction while the shape is still maintained by statistical models.

[LMG+20] propose to generate 4K diffuse and specular albedo and normals from a texture map by

an image-to-image GAN. On the other hand, [MPN+19] model 3D shape by GANs in a parametric

UV map and [RBSB18] utilize mesh convolutions with variational autoencoders to model shape in its

original structure. Although one can model 3D faces with such shape and texture GAN approaches,

these studies omit the correlation between shape, normals, and texture which is very important for

photorealism in identity space. The significance of such correlation is most visible with inconsistent

facial attributes such as age, gender, and ethnicity (i.e. old-aged texture on a baby-face geometry).

In order to address these gaps, we propose a novel multi-branch GAN architecture that preserves the

correlation between different 3D modalities (such as texture, shape, normals, and expression). After

converting all modalities into UV space and concatenate over channels, we train a GAN that generates

all modalities in a meaningful local and global correspondence. In order to prevent incompatibility

issues due to the intensity distribution of different modalities, we propose a trunk-branch architecture

that can synthesize photorealistic 3D faces with coupled texture and geometry. Further, we condition

this GAN by expression labels to generate faces in any desired expression.

From a computer graphics point of view, a photorealistic face rendering requires a number of ele-

ments to be tailored, i.e. shape, normals and albedo maps, some of which should or can be specific to

a particular identity. However, the cost of hand-crafting novel identities limits their usage on large-

scale applications. The proposed approach tackles this down with reasonable photorealism with a

massively generalized identity space. Although the results in this chapter are limited to aforemen-

tioned modalities by the dataset at hand, the proposed method allows adding more identity-specific

modalities (i.e. cavity, gloss, scatter) once such a dataset becomes available.

The contributions of this chapter can be summarized as follows:

• We propose to model and synthesize coherent 3D faces by jointly training a novel Trunk-branch

based GAN (TBGAN) architecture for shape, texture, and normals modalities. TBGAN is
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designed to maintain correlation while tolerating domain-specific differences of these three

modalities and can be easily extended to other modalities and domains.

• In the domain of identity-generic face modeling, we believe this is the first study that utilizes

normals as an additional source of information.

• We propose the first methodology for face generation that correlates expression and identity ge-

ometries (i.e. modeling personalized expression) and also the first attempt to model expression

in texture and normals space.

4.2 Related Work

4.2.1 3D face modeling

There is an underlying assumption that human faces lie on a manifold with respect to the appearance

and geometry. As a result, one can model the geometry and appearance of the human face analytically

based upon the identity and expression space of all individuals. Two of the first attempts in the history

of face modeling were [ASW93], which proposes part-based 3D face reconstruction from frontal and

profile images, and [PB81], which represents expression action units by a set of muscle fibers.

Twenty years ago methods that generated 3D faces revolved around parametric generative mod-

els that are driven by a small number of anthropometric statistics (e.g. sparse face measurements

in a population) which act as constraints [DMS98]. The seminal work of 3D morphable models

(3DMMs) [BV99] demonstrated for the first time that is possible to learn a linear statistical model

from a population of 3D faces [PS09, BSBW14]. 3DMMs are often constructed by using a Principal

Component Analysis (PCA) based on a dataset of registered 3D scans of hundreds [PKA+09] or thou-

sands [BRP+18] subjects. Similarly, facial expressions are also modeled by applying PCA [YMW+11,

LBB+17, BBC11, AKV08], or are manually defined using linear blendshapes [LWP10, TZN+15,

BWP13]. 3DMMs, despite their advantages, are bounded by the capacity of linear space that under-

represents the high-frequency information and often result in overly-smoothed geometry and texture

models. [CCZ+19] and [THM+18] attempt to address this issue by using local displacement maps.



4.2. Related Work 87

Furthermore, the 3DMM line of research assumes that texture and shape are uncorrelated, hence they

can only be produced by separate models (i.e. separate PCA models for texture and shape). Early

attempts in correlated shape and texture have been made in Active Appearance Models (AAMs) by

computing joint PCA models of sparse shape and texture [CET98]. Nevertheless, due to the inherent

limitations of PCA to model high-frequency texture, it is rarely used to correlate shape and texture

for 3D face generation.

Recent progress in generative models [KW14, GPM+14] is being utilized in 3D face modeling to

tackle this issue. [MPN+19] trained a GAN that models face geometry based on UV representations

for neutral faces, and likewise, [RBSB18] modeled identity and expression geometry by variational

autoencoders with mesh convolutions. In Chapter 3, we presented a GAN-based texture modeling for

3D face reconstruction while modeling geometry by PCA and [SSK19b] trained a GAN to synthesize

facial textures. To the best of our knowledge, these methodologies totally omit the correlation between

geometry and texture and moreover, they ignore identity-specific expression modeling by decoupling

them into separate models. In order to address this issue, we propose a trunk-branch GAN that is

trained jointly for texture, shape, normals, and expression in order to leverage non-linear generative

networks for capturing the correlation between these modalities.

4.2.2 Photorealistic face synthesis

Although most of the aforementioned 3D face models can synthesize 2D face images, there are also

some dedicated 2D face generation studies. [MPK09] combines non-parametric local and parametric

global models to generate various set of face images. Recent family of GAN approaches [RMC16,

KALL18, KLA19, BDS19] offers the state-of-the-art high quality random face generation without

constraints.

Some other GAN-based studies allow to condition synthetic faces by rendered 3DMM images (i.e. Chap-

ter 5), by landmarks [BJC18] or by another face image [BCW+18] (i.e. by disentangling identity and

certain facial attributes). Similarly, facial expression is also conditionally synthesized by an audio in-

put [JCZ19], by action unit codes [PAM+18], by predefined 3D geometry [ZLGS03] or by expression
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of an another face image [LDW+14].

In this work, we jointly synthesize the aforementioned modalities for coherent photorealistic face syn-

thesis by leveraging high-frequency generation by GANs. Unlike many of its 2D and 3D alternatives,

the resulting generator models provide absolute control over disentangled identity, pose, expression

and illumination spaces. Unlike many other GAN works that are struggling due to misalignments

among the training data, our entire latent space correspond to realistic 3D faces as the data represen-

tation is naturally aligned on UV space.

4.2.3 Boosting face recognition by synthetic training data

There have been also some works to synthesize face images to be used as synthetic training data for

face recognition methods either by directly using GAN-generated images [TMH18] or by controlling

pose-space with a conditional-GAN [TYL19, HWY+18, SLY+18]. [MTH+16] propose many aug-

mentation techniques, such as rotation, expression, and shape, based on 3DMMs. Other GAN-based

approaches that capitalize 3D facial priors include [ZXJ+17], which rotates faces by fitting 3DMM

and preserves photorealism by translation GANs and [YYS+17a], which frontalize face images by a

GAN and 3DMM regression network. [DCX+18] complete missing parts of UV texture representa-

tions of 2D images after 3DMM fitting by a translation GAN. Our method in Chapter 5 first synthe-

sizes face images of novel identities by sampling from 3DMM and then removes the photorealistic

domain gap by an image-to-image translation GAN.

All of these studies show the significance of photorealistic and identity-generic face synthesization for

the next generation of facial recognition algorithms. Although this study focuses more on the graph-

ical aspect of face synthesization, we show that synthetic images can also improve face recognition

performance.
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Figure 4.2: UV extraction process. In (a) we present a raw mesh, in (b) the registered mesh using

the Large Scale Face Model (LSFM) template [BRZ+16], in (c) the unwrapped 3D mesh in the 2D

UV space, and (d) the interpolated 2D UV map. Interpolation is carried out using the barycentric

coordinates of each pixel in the registered 3D mesh.

4.3 Approach

4.3.1 UV Maps for Shape, Texture and Normals

In order to feed the shape, the texture, and the normals of the facial meshes into a deep network

we need to reparameterize them into an image-like tensor format to apply 2D-convolutions 1. We

begin by describing all the raw 3D facial scans with the same topology and number of vertices (dense

correspondence). This is achieved by morphing non-rigidly a template mesh to each one of the raw

scans. We employ a standard non-rigid iterative closest point algorithm as described in [ARV07,

DSVG11] and we deform our chosen template so that it captures correctly the facial surface of the

raw scans. As a template mesh, we choose the mean face of the LSFM model proposed in [BRZ+16],

which consists approximately of 54K vertices that are sufficient enough to depict non-linear, high

facial details.

After reparameterizing all the meshes into the LSFM [BRZ+16] topology, we cylindrically unwrap

the mean face of the LSFM [BRZ+16] to create a UV representation for that specific mesh topology.

In the literature, a UV map is commonly utilized for storing only the RGB texture values. Apart from

storing the texture values of the 3D meshes, we utilize the UV space to store the 3D coordinates of

each vertex (x, y, z) and the normal orientation (nx, ny, nz). Before storing the 3D coordinates into

the UV space, all meshes are aligned in the 3D spaces by performing General Procrustes Analysis

1Another line of research is mesh convolutional networks [CBZ+19, LBBM18, RBSB18] which cannot preserve high-

frequency details of the texture and normals at the current state-of-the-art.
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(GPA) [Gow75] and are normalized to be in the scale of [1,−1]. Moreover, we store each 3D coor-

dinate and normals in the UV space given the respective UV pixel coordinate. Finally, we perform

a barycentric interpolation based on the barycentric coordinates of each pixel on the registered mesh

to fill out the missing areas in order to produce a dense illustration of the UV map. In Fig. 4.2, we

illustrate a raw 3D scan, the registered 3D scan on the LSFM [BRZ+16] template, the sparse UV map

of 3D coordinates and finally the interpolated one.

4.3.2 Trunk-Branch GAN to Generate Coupled Texture, Shape and Normals

In order to train a model that handles multiple modalities, we propose a novel trunk-branch GAN

architecture to generate entangled modalities of the 3D face such as texture, shape, and normals as

UV maps. For this task, we exploit the MeIn3D dataset [BRZ+16] which consists of approximately

10,000 neutral 3D facial scans with wide diversity in age, gender, and ethnicity.

Given a generator network GL with a total of L convolutional upsampling layers and gaussian noise

z ∼ N (0, I) as input, the activation at the end of layer d (i.e. Gd(z)) is split into three branch

networks GL−d
T , GL−d

N , GL−d
S each of which consists of L − d upsampling convolutional layers that

generate texture, normals and shape UV maps respectively. The discriminator DL starts with the

branch networksDL−d
T ,DL−d

N ,DL−d
S whose activations are concatenated before fed into trunk network

Dd. The output of DL is regression of real/fake score.

Although the proposed approach is compatible with most of the GAN architectures and loss functions,

in our experiments, we base TBGAN on progressive growing GAN architecture [KALL18] train it by

WGAN-GP loss [GAA+17] as following:

LGL = Ez∼N (0,I)

[

−DL
(

GL(z)
)]

(4.1)

LDL = Ex∼pdata, z∼N (0,I)

[

DL
(

GL(z)
)

−DL(x) + λ ∗GP (x,GL(z))
]

(4.2)

where gradient penalty calculated by GP (x, x̂) =
(

‖∇DL (αx̂+ (1− α)x)
)

‖2 − 1)2 and α denotes

uniform random numbers between 0 and 1. λ is a balancing factor which is typically λ = 10. An

overview of this trunk-branch architecture is illustrated in Fig. 4.1
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4.3.3 Expression Augmentation by Conditional GAN

Further, we modify our GAN in order to generate 3D faces with expression by conditioning it with

expression annotations (pe). Similar to the MeIn3D dataset, we have captured approximately 35, 000

facial scans of around 5, 000 distinct identities during a special exhibition in the Science Museum,

London. All subjects were recorded in various guided expressions with a 3dMD face capturing appa-

ratus. All of the subjects were asked to provide meta-data regarding their age, gender, and ethnicity.

The database consists of 46% male, 54% female, 85% White, 7% Asian, 4% Mixed Heritage, 3%

Black, and 1% other.

In order to avoid the cost and potential inconsistency of manual annotation, we render those scans

and automatically annotate them by an expression recognition network. The resulting expression en-

codings ((∗,pe) ∼ p data ) are used as label vector during the training of our trunk-branch conditional

GAN. This training scheme is illustrated in Fig. 4.1. pe is basically a vector of 7 for universal expres-

sions (neutral, happy, angry etc.), randomly drawn from our dataset. During the training, Eq. 4.1 and

4.2 are updated to condition expression encodings by AC-GAN [OOS17] as following:

LGL += E(∗,pe)∼pdata, z∼N (0,I)

[

∑

e

pe log(D
L
e (G

L(z,pe)))

]

(4.3)

LDL += E(x,pe)∼pdata, z∼N (0,I)

[

∑

e

pe log(D
L
e (x)) + pe log(D

L
e (G

L(z,pe)))

]

(4.4)

which performs softmax cross entropy between expression prediction of the discriminator (DL
e (x))

and the random expression vector input (pe) for real (x) and generated samples (GL(z,pe)).

Unlike previous expression models that omit the effect of the expression on textures, the resulting

generator is capable of generating coupled texture, shape, and normals map of a face with controlled

expression. Similarly, our generator respects the identity-expression correlation thanks to correlated

supervision provided by the training data. This is in contrast to the traditional statistical expression

models which decouples expression and identity models into two separate entities.
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4.3.4 Photorealistic Rendering with Generated UV maps

For the renderings to appear photorealistic, we use the generated identity-specific mesh, texture, and

normals, in combination with the generic reflectance properties, and employ a commercial rendering

application: Marmoset Toolbag [Mar19].

In order to extract the 3D representation from the UV domain we employ the inverse procedure ex-

plained in section 4.3.1 based on the UV pixel coordinates of each vertex of the 3D mesh. Fig. 4.3

shows the rendering results, under a single light source, when using the generated geometry (Fig. 4.3(a))

and the generated texture (Fig. 4.3(b)). Here the specular reflection is calculated on the per-face nor-

mals of the mesh and exhibits steep changes between on the face’s edges. By interpolating the gener-

ated normals on each face (Fig. 4.3(c)), we are able to smooth the specular highlights and correct any

high-frequency noise on the geometry of the mesh. However, these results do not correctly model the

human skin and resemble a metallic surface. In reality, the human skin is rough and as a body tissue,

it both reflects and absorbs light, thus exhibiting specular reflection, diffuse reflection, and subsurface

scattering.

Although we can add such modalities as additional branches with the availability of such data, we find

that rendering can be still improved by adding some identity-generic maps. Using our training data,

we create maps that define certain reflectance properties per-pixel, which will match the features of

the average generated identity, as shown in bottom-left of Fig. 4.1. Scattering (c) defines the intensity

of subsurface scattering of the skin. Translucency (d) defines the amount of light, that travels inside

the skin and gets emitted in different directions. Specular albedo (e) gives the intensity of the specular

highlights, which differ between hair-covered areas, the eyes, and the teeth. Roughness (f) describes

the scattering of specular highlights and controls the glossiness of the skin. A detail normal map (g)

is also tilled and added on the generated normal maps, to mimic the skin pores and a detail weight

map (h) controls the appearance of the detail normals, so that they do not appear on the eyes, lips, and

hair. The final result (Fig. 4.3(d)) properly models the skin surface and reflection, by adding plausible

high-frequency specularity and subsurface scattering, both weighted by the area of the face where

they appear.
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(a) shape (b) Shp+tex (c) Shp+tex+nor (d) Final

Figure 4.3: Zoom-in on rendering results with (a) only the shape, (b) adding the albedo texture, (c)

adding the generated normals, and (d) using identity-generic detail normal, specular albedo, rough-

ness, scatter and translucency maps.

4.4 Results

In this section, we give qualitative and quantitative results of our method for generating 3D faces

with novel identities and various expressions. In our experiments, there are total L = 8 up- and

down-sampling layers where d = 6 of them in the trunk and 2 layers in each branch. These choices

are empirically validated to ensure sufficient correlation among modalities without incompatibility

artifacts. Running time is a few milliseconds to generate UV images from a latent code on a high-

end GPU. Transforming from UV image to mesh is just sampling with UV coordinates and can be

considered free of cost. Renderings in this chapter take a few seconds due to high resolution but this

cost depends on the application. The memory needed for the generator network is 1.25GB compared

to the 6GB PCA model of the same resolution and 95% of the total variance.

In the following sections, we first visualize generated UV maps and their contributions to the final

renderings on several generated faces. Next, we show the generalization ability of the identity and ex-

pression generators on some facial characteristics. We also demonstrate its well-generalization latent

space by interpolating between different identities. Additionally, we perform full-head completion to

the interpolated faces. Finally, we perform face recognition experiments by using the generated face

images as additional training data.



94 Chapter 4. Synthesizing Coupled 3D Face Modalities by Trunk-Branch GAN

4.4.1 Qualitative Results

Combining coupled modalities:

Fig. 4.4 presents the generated shape, normals, and texture maps by the proposed GAN and their

additive contributions to the final renderings. As can be seen from local and global correspondences,

the generated UV maps are highly correlated and coherent. Attributes like age, gender, race, etc. can

be easily grasped from all of the UV maps and rendered images. Please also note that some of the

minor artifacts of the generated geometry in Fig. 4.4(d) are compensated by the normals in Fig. 4.4(e).

Diversity:

Our model is well-generalized with different age, gender, ethnicity groups and many facial attributes.

Although Fig. 4.5 shows diversity in some of those categories, the reader is encouraged to see identity

variation throughout the chapter and the supplementary video.

Expression:

We also show that our expression generator is capable of synthesizing quite a diverse set of expres-

sions. Moreover, the expressions can be controlled by the input label as can be seen in Fig. 4.6. The

reader is encouraged to see more expression generations in the supplementary video.

Interpolation between identities:

As shown in the supplementary video and in Fig. 4.7, our model can easily interpolate between any

generation in a visually continuous set of identities which is another indication that the model is free

from mode collapse. Interpolation is done by randomly generating two identities and generates faces

by evenly spaced samples in latent space between the two.
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(a) Shape (b) Normals (c) Texture (d) Shape (e) Shp+Nor (f) All

Figure 4.4: Generated UV representations and their corresponding additive renderings. Please note

the strong correlation between UV maps, high fidelity and photorealistic renderings. The figure is

best viewed in zoom.
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(a) Age (b) Ethnicity (c) Gender (d) Weight (e) Roundness

Figure 4.5: Variation of generated 3D faces by our model. Each block shows diversity in a different

aspect. Readers are encouraged to zoom in on a digital version.

Full head completion:

We also extend our facial 3D meshes to full head representations by employing the framework pro-

posed in [PWP+19]. We achieve this by regressing from a latent space that represents only the 3D

face to the PCA latent space of the Universal Head Model (UHM) [PWP+19, PVOS+20]. We begin

by building a PCA model of the inner face based on the 10, 000 neutral scans of the MeIn3D dataset.

Similarly, we exploit the extended full head meshes of the same identities utilized by UHM model

and project them to the UHM subspace to acquire the latent shape parameters of the entire head topol-

ogy. Finally, we learn a regression matrix by solving a linear least-square optimization problem as

proposed in [PWP+19], which maps the latent space of the face shape to the full head representa-

tion. Fig. 4.7 demonstrates the extended head representations of our approach in conjunction with the
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(a) Happy (b) Sadness (c) Anger (d) Fear (e) Disgust (f) Surprise

Figure 4.6: First and forth rows shows generations of six universal expressions. The other rows

show texture and normals maps are used to generate the corresponding 3D faces. Please note how

expressions are represented and correlated in the texture and normals space.

synthesized crop faces.

Comparison to decoupled modalities and PCA:

Results in Fig. 4.9 reveal a set of advantages of such unified 3D face modeling over separate GAN and

statistical models. Clearly, the figure shows that the correlation among texture, shape, and normals is

an important component for realistic face synthesis. Also, generations by PCA models are missing
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Figure 4.7: The figure shows the interpolation between pair of identities. Smooth transition indicates

generalization of our GAN model.

Figure 4.8: Complete full head representations in association with the facial topology corresponding

in Fig.4.7. Even in the full head topology our generation methodology ensures a smooth transition

during interpolation.

photorealism and details significantly.

4.4.2 Pose-invariant Face Recognition

In this section, we present an experiment that demonstrates that the proposed methodology can gen-

erate faces of different and diverse identities. That is, we use the generated faces to train one of the

most recent state-of-the-art face recognition method, ArcFace [DGXZ19], and show that the proposed

shape and texture generation model can boost the performance of pose-invariant face recognition.

Training Data: We randomly synthesize 10K new identities from the proposed model and render 50

images per identity with a random camera and illumination parameters from the Gaussian distribution

of the 300W-LP dataset [ZLL+16, GBK+18]. For clarity, we call this dataset ‘Gen’ in the rest of
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      (a)                   (b)                  (c)                             (d)  
Figure 4.9: Comparison with seperate GAN models and PCA model. (a) Generation by our model.

(b) Same texture with random shape and normals. (c) Same texture and shape with random normals

(i.e. beard). (d) Generation by a PCA model constructed by the same training data and the same

identity-generic rendering tools as explained in Sec. 3.4.

the text. Fig. 4.10 illustrates some examples of ‘Gen’ dataset which show larger pose variations

than the real-world collected data. We augment ‘Gen’ with an in-the-wild training data, CASIA

dataset [YLLL14], which consists of 10,575 identities with 494,414 images.

Test Data: For evaluation, we employ Celebrities in Frontal Profile (CFP) [SCC+16] and Age

Database (AgeDB) [MPS+17]. CFP [SCC+16] consists of 500 subjects, each with 10 frontal and

4 profile images. The evaluation protocol includes frontal-frontal (FF) and frontal-profile (FP) face

verification. In this chapter, we focus on the most challenging subset, CFP-FP, to investigate the per-

formance of pose-invariant face recognition. There are 3,500 same-person pairs and 3,500 different-

person pairs in CFP-FP for the verification test. AgeDB [MPS+17, DZZ17] contains 12, 240 images

of 440 distinct subjects. The minimum and maximum ages are 3 and 101, respectively. The average

age range for each subject is 49 years. There are four groups of test data with different year gaps (5

years, 10 years, 20 years and 30 years, respectively) [DZZ17]. In this chapter, we only use the most

challenging subset, AgeDB-30, to report the performance. There are 3,000 positive pairs and 3,000

negative pairs in AgeDB-30 for the verification test.
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Figure 4.10: Examples of generated data (‘Gen’) by the proposed method.

Data Preprocessing: We follow the baseline [DGXZ19] to generate the normalized face crops (112×

112) by utilizing five facial points.

Training and testing Details: For the embedding networks, we employ the widely used ResNet50 ar-

chitecture [HZRS16]. After the last convolutional layer, we also use the BN-Dropout-FC-BN [DGXZ19]

structure to get the final 512-D embedding feature. For the hyper-parameter setting and loss func-

tions, we follow [DGXZ19, GBK17, DZZ17]. The overlapping identities between the CASIA data

set and the test set are removed for strict evaluations, and we only use a single crop for all testing.

Result Analysis: In Table 4.1, we show the contribution of the generated data on pose-invariant

face recognition. We take UV-GAN [DCX+18] as the baseline method, which attaches the com-

pleted UV texture map onto the fitted mesh and generates instances of arbitrary poses to increase

pose variation during training and minimize pose discrepancy during testing. As we can see from

Table 4.1, generated data significantly boost the verification performance on CFP-FP from 95.56% to

97.12%, decreasing the verification error by 51.2% compared to the result of UV-GAN [DCX+18].

On AgeDB-30, combining CASIA and generated data achieves similar performance compared to

using single CASIA because we only include intra-variance from pose instead of age.

In Figure 4.11, we show the angle distributions of all positive pairs and negative pairs from CFP-FP.

By incorporating generation data, the overlap indistinguishable area between the positive histogram

and the negative histogram is obviously decreased, which confirms that ArcFace can learn pose-
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Figure 4.11: Angle distributions of CFP-FP positive (red) and negative (blue) pairs in the 512-D

feature space. Red area indicates positive pairs while blue indicates negative pairs.

invariant feature embedding from the generated data. In Table 4.2, we select some verification pairs

from CFP-FP and calculate the cosine distance (angle) between these pairs predicted by different

models trained from the CASIA and combined data. Intuitively, the angles between these challenging

pairs are significantly reduced when generated data are used for the model training.

4.5 Conclusion

In this chapter, we presented the first 3D face model for joint texture, shape, and normal generation

based on Generative Adversarial Networks (GANs). The proposed GAN model implements a new

architecture for exploiting the correlation between different modalities and can synthesize different

facial expressions in accordance with the embeddings of an expression recognition network. We

demonstrate that randomly synthesized images of our unified generator show strong relations between

texture, shape, and normals and that rendering with normals provides excellent shading and overall

Table 4.1: Verification performance (%) of different models on CFP-FP and AgeDB-30.

Methods CFP-FP AgeDB-30

UVGAN [DCX+18] 94.05 94.18

Ours (CASIA) 95.56 95.15

Ours (CASIA+Gen) 97.12 95.18
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Training Data

CASIA 84.06◦ 82.39◦ 84.72◦ 88.06◦ 84.37◦

CASIA+Gen 57.60◦ 63.12◦ 66.10◦ 59.72◦ 60.25◦

Table 4.2: The angles between face pairs from CFP-FP predicted by different models trained from

the CASIA and combined data. The generated data can obviously enhance the pose-invariant feature

embedding.

visual quality. Finally, in order to demonstrate the generalization of our model, we have used a set of

generated images to train a deep face recognition network.

Imposing 3D information into face generation can be in two ways, either we can synthesize 3D

components as we presented in this chapter, or we can first render a 3D face into an image and

formulate the problem as an image-to-image translation problem. In the next chapter, we tackle the

problem of face synthesization with novel identities in this way.



Chapter 5

Generating Photorealistic Face Images from

3D Morphable Model

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

5.2 Related Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

5.3 Adversarial Identity Generation . . . . . . . . . . . . . . . . . . . . . . . . . . 110

5.3.1 Unsupervised Domain Adaptation . . . . . . . . . . . . . . . . . . . . . . 110

5.3.2 Adversarial Pair Matching . . . . . . . . . . . . . . . . . . . . . . . . . . 111

5.3.3 Identity Preservation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

5.4 Implementation Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

5.5 Results and Discussions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

5.5.1 Qualitative Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

5.5.2 The Added Realism and Identity Preservation . . . . . . . . . . . . . . . . 118

5.5.3 Face Recognition with GANFaces dataset . . . . . . . . . . . . . . . . . . 119

5.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

In this chapter, we propose a novel end-to-end semi-supervised adversarial framework to generate

photorealistic face images of new identities with a wide range of expressions, poses, and illumina-
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tions conditioned by synthetic images sampled from a 3D morphable model. Similar to the previous

chapter, the proposed approach exploits 3D face modeling for photorealistic face synthesis. However,

the method in this chapter, translate 3D faces into 2D image-space to simplify the problem.

Previous adversarial style-transfer methods either supervise their networks with a large volume of

paired data or train highly under-constrained two-way generative networks in an unsupervised fash-

ion. We propose a semi-supervised adversarial learning framework to constrain the two-way networks

by a small number of paired real and synthetic images, along with a large volume of unpaired data. A

set-based loss is also proposed to preserve identity coherence of generated images. Qualitative results

show that generated face images of new identities contain pose, lighting and expression diversity.

They are also highly constrained by the synthetic input images while adding photorealism and retain-

ing identity information. We combine face images generated by the proposed method with a real data

set to train face recognition algorithms and evaluate the model quantitatively on two challenging data

sets: LFW and IJB-A.

5.1 Introduction

Deep learning has shown a great improvement in performance of several computer vision tasks [RHGS15,

HGDG17, Gec16, GAM+18, DLHT16, DFI+15, YYS+17b] including face recognition [PVZ15,

SKP15, XZT+15, LWY+17, XLZ+16] in the recent years. This was mainly thanks to the avail-

ability of large-scale datasets. Yet the performance is often limited by the volume and the variations

of training examples. Larger and wider datasets improve the generalization and overall performance

of the model [SKP15, BCRC17].

The process of collecting and annotating training examples for every specific computer vision task is

laborious and non-trivial. To overcome this challenge, additional synthetic training examples along

with limited real training examples can be utilised to train the model. Some of the recent works

such as 3D face reconstruction [RSK16], gaze estimation [ZSFB15, WBM+16], human pose, shape

and motion estimation [VRM+17] etc. use additional synthetic images generated from 3D mod-

els to train deep networks. One can generate synthetic face images using a 3D morphable model
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Figure 5.1: Our approach aims to synthesize photorealistic images conditioned by a given synthetic

image by 3DMM. It regularizes cycle consistency [ZPIE17] by introducing an additional adversarial

game between the two generator networks in an unsupervised fashion. Thus the under-constrained

cycle loss is supervised to have correct matching between the two domains by the help of a limited

number of paired data. We also encourage the generator to preserve face identity by a set-based

supervision through a pretrained classification network.

(3DMM) [BV99] by manipulating identity, expression, illumination, and pose parameters. However,

the resulting images are not photorealistic enough to be suitable for in-the-wild face recognition tasks.

It is because the information of real face scans is compressed by the 3DMM and the graphical engine

that models illumination and surface is not perfectly accurate. Thus, the main challenge of using syn-

thetic data obtained from 3DMM model is the discrepancy in the nature and quality of synthetic and

real images which poses the problem of domain adaptation [PGLC15]. Recently, adversarial training

methods [SPT+17, SWL16, CGM+18] have become popular to mitigate such challenges.

Generative Adversarial Network (GAN), introduced by Goodfellow et al. [Goo16], and its vari-

ants [RMC16, KALL18, BSM17, DBP+19] are quite successful in generating realistic images. How-

ever, in practice, GANs are likely to stuck in mode collapse for large scale image generation. They

are also unable to produce images that are 3D coherent and globally consistent [Goo16]. To over-

come these drawbacks, we propose a semi-supervised adversarial learning framework to synthesize

photorealistic face images of new identities exhibiting extensive data variation supplied by a 3DMM.

We address these shortcomings by exciting a generator network with synthetic images sampled from

3DMM and transforming them into photorealistic domain using adversarial training as a bridge. Un-

like most of the existing works that excite their generators with a noise vector [RMC16, BSM17],

we feed our generator network by synthetic face images. Such a strong constraint naturally helps in

avoiding the mode collapse problem, one of the main challenges faced by the current GAN methods.

Fig. 5.1 shows a general overview of the proposed method. We discuss the proposed method in more
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details in Sec. 5.3.

In this chapter, we address the challenge of generating photorealistic face images from 3DMM ren-

dered faces of different identities with arbitrary poses, expressions, and illuminations. We formulate

this problem as a domain adaptation problem i.e. aligning the 3DMM rendered face domain into re-

alistic face domain. One of the previous works closest to ours [IZZE17] addresses the style transfer

problem between a pair of domains with classical conditional GAN. The major bottleneck of this

method is that it requires a large number of paired examples from both domains which are hard to

collect. CycleGAN [ZPIE17], another recent method and closest to our work, proposes a two-way

GAN framework for unsupervised image-to-image translation. However, the cycle consistency loss

proposed in their method is satisfied as long as the transitivity of the two mapping networks is main-

tained. Thus, the resulting mapping is not guaranteed to produce the intended transformation. To

overcome the drawbacks of these methods [IZZE17, ZPIE17], we propose to use a small amount of

paired data to train an inverse mapping network as a matching aware discriminator. In the proposed

method, the inverse mapping network plays the role of both the generator and the discriminator. To

the best of our knowledge, this is the first attempt for adversarial semi-supervised style translation for

an application with such limited paired data.

Adding realism to the synthetic face images and preserving their identity information is a challenging

problem. Although synthetic input images, 3DMM rendered faces, contain distinct face identities, the

distinction between them vanishes as a result of the inherent non-linear transformations induced by the

discriminator to encourage realism. To tackle such a problem, prior works either employ a separate

pre-trained network [YYS+17a] or embed Identity labels (id) [TYL17] into the discriminator. Unlike

existing works, which are focused on generating new images of existing identities, we are interested

in generating multiple images of new identities. Therefore, such techniques are not directly applicable

to our problem. To address this challenge, we propose to use set-based center [WZLQ16] and pushing

loss functions [GBK17] on top of a pre-trained face embedding network. This will keep track of the

changing average of embeddings of generated images belonging to the same identity (i.e. centroids).

In this way identity preservation becomes adaptive to the changing feature space during the training

of the generator network unlike softmax layer that converges very quickly at the beginning of the

training before meaningful images are generated.



5.2. Related Works 107

Our contributions can be summarized as follows:

• We propose a novel end-to-end adversarial training framework to generate photorealistic face

images of new identities constrained by synthetic 3DMM images with identity, pose, illumina-

tion and expression diversity. The resulting synthetic face images are visually plausible and can

be used to boost face recognition as additional training data or any other graphical purposes.

• We propose a novel semi-supervised adversarial style transfer approach that trains an inverse

mapping network as a discriminator with paired synthetic-real images.

• We employ a novel set-based loss function to preserve consistency among unknown identities

during GAN training.

5.2 Related Works

In this Section we discuss the prior art that are closely related to the proposed method.

Domain Adaptation. As stated in the introduction, our problem of generating photorealistic face

images from 3DMM rendered faces can be seen as a domain adaptation problem. A straightforward

adaptation approach is to align the distributions at the feature level by simply adding a loss to mea-

sure the mismatch either through second-order moments [SS15] or with adversarial losses [THDS15,

THSD17, GUA+16].

Recently, pixel level domain adaptation became popular due to practical breakthroughs on Kullback-

Leibler divergence [GPM+14, Goo16, RMC16], namely GANs which optimize a generative and dis-

criminative network through a mini-max game. It has been applied to a wide range of problems

including fashion clothing [LPG17], person specific avatar creation [WTP17], text-to-image synthe-

sis [ZXL+17], face frontalization [YYS+17a], and retinal image synthesis [CGM+18].

Pixel domain adaptation can be done in a supervised manner simply by conditioning the discriminator

network [IZZE17] or directly the output of the generator [CK17] with the expected output when there
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is enough paired data from both domains. Please note collecting a large number of paired training

examples is expensive, and often requires expert knowledge. [RAY+16] proposes a text-to-image

synthesis GAN with a matching aware discriminator. They optimize their discriminator for image-

text matching beside requiring realism with the information provided by additional mismatched text-

image pairs.

For the cases where paired data is not available, many approaches adapt unsupervised learning such

as imposing pixel-level consistency between input and output of the generator network [BSD+17,

SPT+17], an encoder architecture that is shared by both domains[BTS+16] and adaptive instance

normalization [HB19]. An interesting approach is to have two way translation between domains with

two distinct generator and discriminator networks. They constrain the two mappings to be inverses of

each other with either ResNet [ZPIE17] or encoder-decoder network [LBK17] as the generator.

Synthetic Training Data Generation. The usage of synthetic data as additional training data is

shown to be helpful even if they are graphically rendered images in many applications such as 3D

face reconstruction [RSK16], gaze estimation [ZSFB15, WBM+16], human pose, shape and motion

estimation [VRM+17]. Despite the availability of almost infinite number of synthetic images, those

approaches are limited due to the domain difference from that of in-the-wild images.

Many existing works utilize adversarial domain adaptation to translate images into photorealistic

domain so that they are more useful as training data. [ZZY17] generates many unlabeled samples

to improve person re-identification in a semi-supervised fashion. RenderGAN [SWL16] proposes a

sophisticated approach to refine graphically rendered synthetic images of tagged bees to be used as

training data for a bee tag decoding application. WaterGAN [LSEJ18] synthesizes realistic underwater

images by modeling camera parameters and environment effects explicitly to be used as training data

for a color correction task. Some studies deform existing images by a 3D model to augment diverse

datasets [MTH+16] without adversarial learning.

One of the recent works, simGAN [SPT+17], generates realistic synthetic data to improve eye gaze

and hand pose estimation. It optimizes the pixel level correspondence between input and output of

the generator network to preserve the content of the synthetic image. This is in fact a limited solution
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since the pixel-consistency loss encourages the generated images to be similar to synthetic input

images and it partially contradicts adversarial realism loss. Instead, we employ an inverse translation

network similar to cycleGAN [ZPIE17] with an additional pair-wise supervision to preserve the initial

condition without hurting realism. This network also behaves as a discriminator to a straight mapping

network trained with real paired data to avoid possible biased translation.

Identity Preservation. To preserve the identity/category of the synthesized images, some of the

recent works such as [CDH+16, TYL17] keep categorical/identity information in discriminator net-

work as an additional task. Some of the others propose to employ a separate classification network

which is usually pre-trained [LTT17, YYS+17a]. In both these cases, the categories/identities are

known beforehand and are fixed in number. Thus it is trivial to include such supervision in a GAN

framework by training the classifier with real data. However such setup is not feasible in our case as

images of new identities to-be-generated are not available to pre-train a classification network.

To address the limitation of existing methods of retaining identity/category information of synthesized

images, we employ a combination of different set-based supervision approaches for unknown identi-

ties to be distinct in the pre-trained embedding space. We keep track of moving averages of same-id

features by the momentum-like centroid update rule of center loss [WZLQ16] and penalize distant

same-id samples and close different-id samples by a simplified variant of the magnet loss[RPDB16]

without its sophisticated sampling process and with only a single cluster per identity (see Section

5.3.3 for further discussions).

Recent Related Works. Very recently, Generative Adversarial Networks have shown great suc-

cess in generating high resolution 2D face images [KALL18, KLA19, KLA+20] from a semantically

meaningful latent space. Tewari et al. [TEB+20] disentangles these latent spaces in terms of 3DMM

parameters to control face generation by identity, expression, pose, lighting etc. Their method trains

a multi-layer perceptron in a self-supervised fashion to estimate StyleGAN [KLA19] latent param-

eters in correspondence to a given 3DMM sample. So, the translation happens in the latent space.

In contrast, our method performs domain translation in the image-space which can focus on local

changes (i.e. photorealism) and keep the global information more accurate (i.e. identity, pose). An-
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other difference is that their method heavily relies on a good quality pretrained GAN network such as

StyleGAN [KLA19], whereas we train the generator GAN within our approach.

5.3 Adversarial Identity Generation

In this Section, we describe in details the proposed method. Fig. 5.1 shows a schematic diagram

of our method. Specifically, the synthetic image set x ∈ S is formed by a graphical engine for the

randomly sampled of 3DMM with its identity, pose and lighting parameters α. The generated images

they are translated into a more photorealistic domain G(x) through the network, G, and mapped back

to its synthetic domain (G′(G(x))) through the network, G′, to retain x. The adversarial synthetic

and real domain translation of G and G′ networks are supervised by the discriminator networks DR

and DS , with an additional adversarial game between G and G′ as a generator and a discriminator

respectively. During training, the identities generated by 3DMM are preserved with a set-based loss

on a pre-trained embedding network C. In the following sub-sections, we further describe these

components i.e. domain adaptation, real-synthetic pair discriminator, and identity preservation.

5.3.1 Unsupervised Domain Adaptation

Given a 3D morphable model (3DMM) [BV99], we synthesize face images of new identities sam-

pled from its Principal Components Analysis (PCA) coefficients’ space with random variation of

expression, lighting and pose. Similar to [ZPIE17], a synthetic input image (x ∈ S) is mapped to a

photorealistic domain by a residual network (G : S → R̂) and mapped back to the synthetic domain

by a 3DMM fitting network (G′ : R̂ → Ŝ) to complete the forward cycle only1. To preserve cycle

consistency, the resulting image G′(G(x)) is encouraged to be the same as input x by a pixel level L1

loss:

Lcyc = Ex∈S‖G
′(G(x))− x‖1 (5.1)

1We empirically found that removing the backward cycle-loss improves performance when the task is to map from

artificial images to real as also shown in Tab.4 of [ZPIE17]
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In order to encourage the resulting images G(x) and G′(G(x)) to have a similar distribution as real

and synthetic domains respectively, those refiner networks are supervised by discriminator networks

DR and DS with images of the respective domains. The discriminator networks are formed as auto-

encoders as in the boundary equilibrium GAN (BEGAN) architecture [BSM17] in which the generator

and discriminator networks are trained by the following adversarial training formulation:

LG = Ex∈S‖G(x)−DR(G(x))‖1 (5.2)

LG′ = Ex∈S‖G
′(G(x))−DS(G

′(G(x)))‖1 (5.3)

LDR
= Ex∈S,y∈R‖y −DR(y)‖1 − kDR

t LG (5.4)

LDS
= Ex∈S‖x−DS(x)‖1 − kDS

t LG′ (5.5)

where for each training step t and the generator network (G for kDR

t , G′ for kDS

t ) we update the

balancing term with kD
t = kD

t−1 + 0.001(0.5LD − LG). As suggested by [BSM17], this term helps to

maintain a balance between the interests of the generator and discriminator and stabilize the training.

5.3.2 Adversarial Pair Matching

The cycle consistency loss ensures the bijective transitivity of functions G and G′ which means gen-

erated image G(x) ∈ R̂ should be transformed back to x ∈ Ŝ. Convolutional networks are highly

under-constrained and they are free to make any unintended changes as long as the cycle consistency

is satisfied. Therefore, without an additional supervision, it is not guaranteed to achieve the correct

mapping that preserves shape, texture, expression, pose and lighting attributes of the face image from

domains S to R̂ and R̂ to Ŝ. This problem is often addressed by introducing pixel-level penaliza-

tion between input and output of the networks [ZPIE17, SPT+17] which is sub-optimal for domain

adaptation as it encourages to stay in the same domain.

To overcome this issue, we propose an additional pair-wise adversarial loss that assigns the G′ network

an additional role as a pair-wise discriminator to supervise the G network. Given a set of paired
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(a) DC-GAN[RMC16] (b) BEGAN [BSM17] (c) Ours (d) GAN-CLS [RAY+16]

Figure 5.2: Comparison of our pair matching method to the related work. (a) In the traditional GAN

approach, the discriminator module aligns the distribution of real and synthetic images by means of

a classification network. (b) BEGAN[BSM17] and many others showed that the alignment of recon-

struction error distributions offers a more stable training. (c) We propose to utilize this autoencoder

approach to align the distribution of pairs to encourage generated images to be transformed to the

realistic domain with a game between real and synthetic pairs. (d) An alternative to our method is

to introduce wrongly labeled images to the discriminator to teach pair-wise matching as proposed by

[RAY+16] for text to images synthesis.

synthetic and real images (PS ,PR), the discriminator loss is computed by BEGAN as follows:

LDP
= Es∈PS ,r∈PR

‖s−G′(r)‖1 − kDP

t Lcyc (5.6)

While the G′ network is itself a generator network (G′ : R̂ → Ŝ) with a separate discriminator

(DS), we use it as a third pair-matching discriminator to supervise G by means of a distribution of

paired correspondence of real and synthetic images. Thus while cycle-loss optimizes for the biject

correspondences, we expect the resulting pairs of (x ∈ S,G(x) ∈ R̂) to have the similar correlation

distribution as paired training data (s ∈ PS , r ∈ PR). Fig 5.2 shows its relation to the previous related

art and comparison to an alternative which is a matching aware discriminator with paired inputs for

text to image synthesis, as suggested by [RAY+16]. Please note that how BEGAN autoencoder
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Figure 5.3: Quality of 9 images of 3 identities (per row) during the training. Red plot shows the

proposed identity preservation loss (x axis) over the iterations (y axis). Note the changes of fine-

details on the faces which is the main motivation of set-based identity preservation.

architecture is utilized to align the distribution of pairs of synthetic and real images with synthetic

and generated images.

Alternatively, one could pretrain the G′ network as a 3DMM fitting network as in [THMM17, SYH+17,

TZK+17, CBK+17] . However, we trained it from scratch to balance the adversarial zero-sum game

between the generator (G) and the pair-wise discriminator (G′). Otherwise the gradient would vanish

as there would be no success in fooling the discriminator. Moreover, those networks provide only fit-

ted 3DMM parameters which then would need to be rendered into 3DMM images by a differentiable

tensor operation.

5.3.3 Identity Preservation

Although identity information is provided by the 3DMM in shape and texture parameters, it may

be lost to some extent by virtue of a non-linear transformation. Some studies [YYS+17a, TYL17]

address this issue by employing identity labels of known subjects as additional supervision either

with a pre-trained classification network or within the discriminator network. However, we intend

to generate images of new identities sampled from the 3DMM parameter space and their photoreal-

istic images simply do not exist yet. Furthermore, training a new softmax layer and the rest of the

framework simultaneously becomes a chicken-egg problem and results in failed training.

In order to preserve identity in the changing image space, we propose to adapt a set-based approach

over a pre-trained face embedding network. We import the idea of pulling same-id samples as well as

pushing close samples from different identities in the embedding space such that same-id images are
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gathered and distinct from other identities regardless of the quality of the images during the training.

At the embedding layer of a pre-trained network C, the generator network (G) is supervised by a

combination of the center [WZLQ16] and pushing loss [GBK17] (which is also a simplified version

of the Magnet loss [RPDB16] formulation) defined for a given mini-batch (M) as:

LC = Ex∈S,ix∈N+

M
∑

x

− log
exp( 1

2σ2‖C(G(x))− cix‖
2
2 − η)

∑

j 6=ix
exp( 1

2σ2‖C(G(x))− cj‖22)
(5.7)

where ix stands for the identity label of x provided by 3DMM sampling and cj stands for the mean

embedding of identity j. The margin term, η, is set to 1 and the variance is computed by σ =
∑M

x ‖C(G(x))−cix‖
2
2

M−1
.

While the quality of images is improved during the training, i.e. better photo-realism, their projection

on the embedding space is shifting. In order to adapt to those changes, we update identity centroids

(cj) with a momentum of β = 0.95 when new images of id j become available. Following [WZLQ16],

for a given x, the moving average of an identity centroid is calculated by ct+1
j = ctj − βδ(ix =

j)(ctj − C(G(x))) where δ(condition) = 1, if the condition is satisfied and δ(condition) = 0 if not.

Centroids (cj) are initialized with zero and after few iterations, they converge to embedding centers

and then continue updating to adapt to the changes caused by the simultaneous training of G. Fig. 5.3

shows the quality of 9 images of 3 identities over training iterations. Please note the difference of the

images after convergence with the images at the beginning of the training, produced by the Softmax

layer which fails to supervise the forthcoming images in later iterations.

Full Objective

Overall, the framework is optimized by the following updates simultaneously:

θG = argmin
θG

LG + λcycLcyc + λCLC (5.8)

θG′ = argmin
θG′

LG′ + λcycLcyc + λDP
LDP

(5.9)

θDR
, θDS

= argmin
θDR

,θDS

LDR
+ LDS

(5.10)
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where λ parameters balance the contribution of different modules. The selection of those parameters

is discussed in the next section.

5.4 Implementation Details

Network Architecture: For the generator networks (G and G′), we use a shallow ResNet architec-

ture as in [JAF16] which supplies smooth transition without changing the global structure because

of its limited capacity, having only 3 residual blocks. In order to benefit from 3DMM images fully,

we also add skip connections to the network G. We also add dropout layers after each block in

the forward pass with a 0.9 keep rate to introduce some noise that could be caused by uncontrolled

environmental changes.

We construct the discriminator networks (DR and DS) as autoencoders trained by boundary equi-

librium adversarial learning with Wasserstein distance as proposed by [BSM17]. The classification

network C, is a shallow FaceNet architecture [SKP15], more specifically we use NN4 network with

an input size of 96× 96 where we randomly crop, rotate and flip generated images G(x) which are of

size 108× 108.

Data: Our framework needs a large amount of real and synthetic face images. For real face im-

ages, we use CASIA-Web Face Dataset [YLLL14] that consists of ∼500K face images of ∼10K

individuals.

The proposed method trains the G′ network as a discriminator (DP ) with a small number of paired real

and synthetic images. For that, we use a combination of 300W-3D [STZP13b, STZP13a, BAP+17]

and AFLW2000-3D datasets as our paired training set [ZLL+16] which consist of 5K real images

with their corresponding 3DMM parameter annotations. We render synthetic images by those param-

eters and pair them with the matching real images. This dataset is relatively small, compared to the

ones used by fully supervised transformation GANs (i.e. Amazon Handbag dataset used by [IZZE17]

contains 137K bag images).
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We randomly sample face images of new identities as our synthetic data set using Large Scale Face

Model (LSFM) [BRZ+16] for shape, Basel Face Model [PKA+09] for texture and Face Warehouse

model [CWZ+14] for expression. While the shape and texture parameters of new identities are sam-

pled from the Gaussian distribution of the original model, expression, lighting and pose parameters

are sampled with the same Gaussian distribution as that of synthetic samples of 300-3D [STZP13b,

STZP13a, BAP+17] and AFLW2000-3D [ZLL+16]. All images are aligned by MTCNN [ZZLQ16]

and centre cropped to the size of 108× 108 pixels.

Training Details: We train all the components of our framework together from scratch except for

the classification network C which is pre-trained by using a subset of Oxford VGG Face Dataset [PVZ15].

The whole framework takes about 70 hours to converge on a Nvidia GTX 1080TI GPU in 248K iter-

ations with a batch size of 16. We start with a learning rate of 8 × 10−5 with ADAM solver [KB15]

and halve it after 128Kth, 192Kth, 224Kth, 240Kth, 244Kth, 246Kth and 247Kth iterations.

As shown in Eqn. 5.8, 5.9, λ is a balancing factor which controls the contribution of each opti-

mization. We set λcyc = 0.5, λDP
= 0.5, λC = 0.001 to achieve a balance between realism,

cycle-consistency, identity preservation and the supervision by the paired data. We also add iden-

tity loss (Lid = ‖x − G(x)‖) as suggested by [ZPIE17] to regularize the training with a balancing

term λid = 0.1. During the training, we keep track of moving averages of the network parameters to

generate images.

5.5 Results and Discussions

In this section, we show the qualitative and quantitative results obtained with the proposed framework.

We also discuss and show the contribution of each module (i.e. Lcyc, DP , C) with an ablation study

in the supplementary materials. For the experiments, we generate 500,000 and 5,000,000 images of

10,000 different identities with variations on expression, lighting and poses. We name this synthetic

dataset GANFaces2 (i.e. GANFaces-500K, GANFaces-5M).

2The dataset, training code, pre-trained models and face recognition experiments can be viewed

at https://github.com/barisgecer/facegan



5.5. Results and Discussions 117

Figure 5.4: Random samples from GANFaces dataset. Each row belongs to the same identity. Notice

the variation in pose, expression and lighting.

5.5.1 Qualitative Evaluation

Please see Fig. 5.4 for random samples from the dataset. Fig. 5.5 compares our results (left half of

the Fig. 5.4) with the 3DMM inputs, the results with simGAN [BSD+17] and cycleGAN [ZPIE17]

settings, and our setup with the addition of the reconstruction loss of the paired data within the G

network. We observe good correspondence when we compare first 4 columns of Fig.5.4 to Fig. 5.5(a)

in terms of identity, pose, expression and lighting. Compared to ours (Fig. 5.4), [BSD+17] suffers

from the loss of identity-specific facial features (Fig. 5.5(b)) while [ZPIE17] generates images visually

less pleasant (Fig. 5.5(c)). An additional reconstruction loss used in our framework to train the G

network with the paired data produces the results in Fig. 5.5(d). We achieved less clear images by

this step probably because of the severity of the influence of the direct reconstruction loss on the

adversarial balance. The superiority of the proposed framework is also confirmed by the quantitative

experiments shown in Table. 5.1.

One of the main goals of this work is to generate face images guided by the attributes of synthetic

input images i.e. shape, expression, lighting, and poses. We can see from Fig. 5.6 that our model

is capable of generating photorealistic images preserving the attributes conditioned by the synthetic
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(a) 3DMM inputs (b) simGAN [[BSD+17] (c) CycleGAN [[ZPIE17] (d) Reconstruction Err.

Figure 5.5: Comparison to (a) input 3DMM images, (b) results with simGAN settings [BSD+17],(c)

results with cycleGAN settings [ZPIE17] and (d) results with additional reconstruction loss. Figures

correspond to left half of the Fig. 5.4 and each row belongs to the same identity.

input images. In the figure, top row shows the variations of pose and expression on input synthetic

faces and the left column shows the input synthetic faces of different identities. The rest are the

images generated by our model, conditioned on the corresponding attributes from the top row and the

left column. We can clearly see that the conditioning attributes are preserved on the images generated

by our model. We can also observe that fine-grained attributes such as shapes of chin, nose and eyes

are also retained in the images generated by our model. In the case of extreme poses, the quality

of the image generated by our model becomes less sharp as the CASIA-WebFace dataset, which we

used to learn the parameters of discriminator network DR, lacks a sufficient number of examples with

extreme poses.

5.5.2 The Added Realism and Identity Preservation

In order to show that synthetic images are effectively transformed to the realistic domain with preserv-

ing identities, we perform a face verification experiments on GANFaces dataset. We took pre-trained

face-recognition CNN network, namely FaceNet NN4 architecture [SKP15] trained on CASIA-WebFace [YLLL14

to compute the features of the face images. The verification performance of the network on LFW is

95.6% accuracy and 95.5% 1-EER which shows that the model is well optimized for in-the-wild face

verification. We created 1000 similar (belonging to same identity) and 1000 dis-similar (belonging to

different identities) face image pairs from GANFaces. Similarly, we also generated the same number

of similar and dis-similar face image pairs from the VGG face dataset [PVZ15] and the synthetic

3DMM rendered faces dataset. Fig. 5.7 shows the histograms of euclidean distances between sim-
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Figure 5.6: Images generated by the proposed approach conditioned by identity variation in the ver-

tical axis, normalized and mouth open expression in left and right blocks and pose variation in the

horizontal axis. Images in this figure are not included in the training

ilar and dis-similar images measured in the embedding space for the three datasets. The addition

of realism and preservation of identities of the GANFaces can be seen from the comparison of its

distribution to the 3DMM synthetic dataset distribution. As the images become more realistic, they

become better separable in the pre-trained embedding space. We also observe that the separation of

positive and negative pairs of GANFaces is better than that of VGG faces pairs. The probable reason

for VGG not achieving a better separation than GANFaces is noisy face labels as indicated in the

original study [PVZ15].

5.5.3 Face Recognition with GANFaces dataset

We augmented GANFaces with real face dataset i.e. VGG Faces [PVZ15] and trained the VGG19 [SZ15]

network and tested its performance on two challenging datasets: LFW [HRBL07] and IJB-A [KKT+15].

We restrict ourselves from limited access to full access of real face dataset and train deep network

on different combination of real and GANFaces. Following [MTH+16], we use a pre-trained VG-

GNet by [SZ15] with 19 layers trained on the ImageNet dataset [RDS+15] and took these param-

eters as initial parameters. We train the network with different portions of the Oxford VGG Face
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Figure 5.7: Distances of 1000 positive and 1000 negative pairs from three different datasets (GAN-

Faces, 3DMM synthetic images, Oxford VGG) embedded on a NN4 network that is trained with

CASIA Face dataset

dataset [PVZ15], augmented with the GANFaces dataset. We remove the last layer of the deep VG-

GNet and add two soft-max layers to the previous layer, one for each of the datasets. The learning

rate is set to 0.1 for the soft-max layers and 0.01 to the pre-trained layers with the ADAM optimizer.

Also we halve the gradient coming from the GANFaces soft-max. We decrease the learning rate ex-

ponentially and train for 80,000 iterations where all of our models converge well without overfitting.

For a given input size of 108×108, we randomly crop and flip 96×96 patches and the overall training

takes around 9 hours on a GTX 1080TI GPU.

We train 6 models with 20%, 50% and 100% of the VGG Face dataset with and without the augmen-

tation of GANFaces-500K. As seen in Fig. 5.8, we evaluate the models on LFW and IJB-A datasets

and the benchmark scores are improved with the addition of this dataset even though the image res-

olution is low. The contribution of GANFaces-500K increases inversely proportional to the number

of images included from the VGG dataset, which indicates more synthetic images might improve the

Method Real Synth Test time Synth Image size Acc. (%) 100% - EER

FaceNet [SKP15] 200M - No 220×220 98.87 -

VGG Face [PVZ15] 2.6M - No 224×224 98.95 99.13

Masi et al. [MTH+16] 495K 2.4M Yes 224×224 98.06 98.00

Yin et al. [YYS+17a] 495K 495K Yes 100×100 96.42 -

VGG + Recons. Err. 1.8M 500K No 96×96 94.7 94.8

VGG + simGAN [SPT+17] 1.8M 500K No 96×96 94.7 94.8

VGG + cycleGAN [ZPIE17] 1.8M 500K No 96×96 94.5 94.7

VGG(100%) 1.8M - No 96×96 94.8 94.6

VGG(100%) + GANFaces-500K 1.8M 500K No 96×96 94.9 95.1

VGG(100%) + GANFaces-5M 1.8M 5M No 96×96 95.2 95.1

Table 5.1: Comparison with state-of-the-art studies on LFW performances
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Figure 5.8: Face recognition benchmark experiments. (Left) Number of images used from the two

datasets in the experiments. The total number of images in the VGG data set is 1.8M since some

images were removed from the URL (Middle) Performance on the LFW dataset with (solid) and

without (dashed) the GANFaces-500K dataset. (Right) True Positive Rates on the IJB-A verification

task with (solid) and without (dashed) the GANFaces-500K dataset.

results even further.

We compare our best model trained by full VGG dataset and GANFaces to the other state of the art

methods in Table 5.1. Despite the lower resolution, GANFaces was able to improve our baseline to

the numbers comparable to the state-of-the-art. Note that generative methods, such as [MTH+16,

YYS+17a], do generation (i.e. pose augmentation and normalization) in the test time whereas we

use only given test images. Together with the benefit of low resolution, this makes our models more

efficient at test time.

5.6 Conclusions

This chapter proposes a novel end-to-end semi-supervised adversarial training framework to gener-

ate photorealistic faces of new identities with wide ranges of poses, expressions, and illuminations

from 3DMM rendered faces. Our extensive qualitative and quantitative experiments show that the

generated images are realistic and identity preserving.

We generated a synthetic dataset of face images closer to a photorealistic domain and combined it

with a real face image dataset to train a face recognition CNN and improved the performance in

recognition and verification tasks. In the future, we plan to generate millions of high resolution

images of thousands of new identities to boost the state-of-the-art face recognition.
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The proposed framework helps to avoid some of the common GAN problems such as mode collapse

and 3D coherency. It shows how the data generated by 3DMM or any other explicit model can be

utilized to improve and control the behaviour of GANs.
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So far, we presented works that put emphasis on facial identity. In this chapter, we change the direc-

tion of the thesis slightly to focus on expression synthesis/reconstruction rather than identity. For that,

we fix the identity by using personalized models where each model cover one identity with various

expressions.

Recently, there has been a few deep learning-based approaches proposed for personalized appearance

modeling [LSSS18, WSS+19, NHSW20]. Particularly, Lombardi et al. [LSSS18] proposes an ap-

proach to model 3D facial appearance of a person by deep generative networks, called Codec Avatars.

123
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The Codec Avatars are built by collecting a large amount of data collected in a multi-camera capture

setup, while subjects are performing a predefined set of 122 facial expressions. The setup consists

of 40 synchronous cameras capturing 5120 × 3840 images at 30 frames per second, lying around a

hemisphere and pointing towards the subject. A secondary dataset is collected with a similar set of

expressions performed by the subjects while they wear a commercially available Virtual Reality (VR)

headsets with 3 cameras (i.e. Head-Mounted Cameras (HMCs)) installed which are pointing to the

eyes and the mouth. Although these two sequences of expressions are not in temporal correspon-

dence, [LSSS18] proposes a novel approach to exploit the correlation which, eventually, leads to live

animation of Codec Avatars by VR headsets. A potential application of this system is a dual-way 3D

photorealistic telepresence in a VR platform.

In this chapter, we propose a few approaches to improve expression animation performance of Codec

Avatars. First, we augment training images of expression encoders in 3D. Then, we exploit the

whole dataset of multiple subjects to generalize personalized models. The proposed approaches are

evaluated under challenging settings and show promising performance.

6.1 Introduction

The recent developments of Virtual Reality (VR) technologies has enabled countless new applications.

Just like the audio-calls and telegram has been lifted to 2D video-calls in the last decade, human

interactions can be lifted into 3D virtual telepresence. The recent studies [LSSS18, WSS+19] on

Photorealistic Telepresence in Virtual Reality (VR) environment has shown promising result as a

candidate for authentic 3D telecommunication media of the next era.

The aforementioned studies has proposed novel approaches for creating authentic 3D avatars from

a multi-camera capture system, namely, Codec Avatars, which can be animated by headset mounted

cameras (HMC) that are commercially available on VR headsets. More specifically, two variational

autoencoders (VAE) are trained on HMC images and multi-camera capture scans(called Mugsy) as

person-specific models of a single subject. Then, the correspondence between the two latent spaces

is acquired by self-supervised domain adaptation techniques and the encoder of HMC VAE and the
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decoder of Mugsy VAE is connected end-to-end along with domain transfer layers. Eventually, the

Codec Avatar of a subject can be animated by transferring the precise expression from HMC inputs

of a VR headset worn by the same subject. Since, this kind of VR headset allows both receiving and

transmitting virtual 3D faces, this approaches enables dual-way 3D telecommunication in VR.

Although the current pipeline of [LSSS18, WSS+19] can acquire precise correspondence between

HMC and Mugsy VAE spaces, it still contains strong reliance on the training data from HMC and is

sensitive to slight changes in perspective, lighting, background and day-to-day facial attribute changes

(e.g. make-up, facial hair etc.). This is mainly due to HMC data collection process which has been

performed under the same environment conditions in one session. For example, a slight perspective

changes can cause large changes in 2D and the encoder fails to embed the expression precisely which

was never seen during training. While each subject’s data contain fixed background, lighting, pose

etc., there is a variation among different subjects on these conditions. Therefore, there is still a room

for improvement in robustness to those variations by exploiting the variation other subjects’ data.

In this chapter, we investigate various augmentation techniques to robustify the current animation

pipeline of Codec Avatars by HMC input given the correspondence between the two provided by

[WSS+19], namely Rosetta. First, we attempt to enrich training process of expression encoders by

augmenting HMC images in 3D. We basically exploit the geometry and camera parameters optimized

by [WSS+19] and make slight random changes to the camera parameters to simulate arbitrarily worn

headset conditions. Such 3D augmentation is particularly more helpful for HMC images than 2D

augmentation as the cameras are placed very close to the face. Secondly, we leverage the data of mul-

tiple subjects to further generalize person-specific models. Basically, we train a common expression

encoder network from HMC images of multiple subjects to a common latent presentation by a self-

supervised reconstruction loss. The reconstruction loss is calculated based on person-specific Mugsy

models of each identity after transferring the common expression representation to person-specific

latent representation.
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Figure 6.1: Once the correspondence is established by [WSS+19], one can re-train the HMC encoder

with different augmentation techniques such as brightness, gamma, 2D translation, rotation, distortion

and cropping.

6.2 Methodologies

With the availability of correspondence between HMC and Mugsy latent spaces, one can further im-

prove expression reconstruction from HMC to Codec Avatars. Since many attributes of the HMC

images are subject to change (such as facial hair, background, camera perspectives), HMC encoder

network can be trained to robust to that kind of changes. In the following sections, we first briefly ex-

plain Rosetta and the baseline encoder training. And secondly, we explain 3D augmentation of HMC

images by Rosetta geometry parameters in order to make HMC encoder less sensitive to perspective

changes. Finally, we further robustify HMC encoder by leveraging multiple identity data in a single

HMC encoder.

6.2.1 Baseline

Previously, [WSS+19] proposed an approach to solve the correspondence between HMC images

(IHMC) and mesh and texture from Mugsy captures (M ∈ R
7306×3,T ∈ R

w×h) by exploiting do-

main adaptation techniques such as CycleGAN. After training a VAE on Mugsy data, this method ex-

ploits cycle consistency between HMC images style-transfered to look like Mugsy images and Codec

Avatars rendered in HMC camera parameters by simultaneously fine-tuning camera parameters and

training an HMC encoder network (z ∈ R
256 ← E(IHMC)). During the test time, the HMC encoder
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network infer codec parameters (z) which was then used to render Codec Avatar by the geometry and

texture obtained from the Mugsy-VAE Decoder (M′ ∈ R
7306×3,T′ ∈ R

w×h ← D(z,v)). For more

technical details about this approach we refer the reader to the original publications.

Unfortunately, the encoder network overfits to the HMC data used during this training and becomes

sensitive to changes in perspective, lighting, background and day-to-day facial attributes (i.e. make-up

or facial hair). However once the correspondence is established, one can re-train the HMC encoder

(E) with different augmentation techniques as illustrated in Fig. 6.1. For this, we augment HMC

images in 2D by common jittering techniques such as brightness, gamma, 2D translation, rotation,

distortion and cropping augmentation, denoted as I′ ← A2D(I). And then we train a baseline HMC

encoder by the following loss function.

M′,T′ = D(E(A2D(I
HMC)),v) (6.1)

Lbaseline = ||M−M′||2 + λ||T−T′|| (6.2)

Golden Plane Correction : Another baseline approach to solve the perspective-overfitting problem

is by homography correction. Assuming that camera placement of each headset might be different,

this approach aims to calibrate them by rectifying HMC images to a mutual perspective, called Golden

plane. This rectification process is a standard calibration process among different hardware setups and

we do not get into details for brevity.

6.2.2 3D Data Augmentation

Head-mounted cameras are subject to significant perspective changes from capture to capture due to

its close distance to face. This often causes overfitting to a certain perspective of training set and fail-

ure on unseen perspectives. In an ideal scenario, one should perform non-rigid registration of training

and testing captures in 3D, but unfortunately, this would require geometry and camera parameters

available during the test time which is not the case. Similarly, 2D alignment by the detected keypoints
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Figure 6.2: In order to 3D augment a given HMC image, we first project 3D mesh on the image with

known geometry and camera parameters. After filling triangles with HMC image with the projected

2D vertex coordinates, we render the mesh with a small changes to rotation and translation of the

camera parameters. We repeat this procedure randomly during the training.

also fails when the perspective difference is large. While 2D augmentation partially helps to address

this issue, in this section, we explore augmenting the training set by rotating and translating HMC

images in 3D by the geometry and camera parameters of Rosetta [WSS+19].

In order to 3D augment a given HMC image and its corresponding Rosetta parameters, we first project

3D mesh on the image with geometry and camera parameters by Rosetta. In order to reconstruct

texture of 3D mesh for the visible areas, we fill the triangles with the projected 2D vertex coordinates

on the HMC image. And then, we render the mesh with barycentric interpolation regarding the

vertices and by applying target camera parameters.

This process is similar to UV textured mesh rendering, but this time using HMC images instead of UV

texture maps with projected vertex coordinates rather than UV texture coordinates. Since this method

is implemented as a PyTorch layer and does not fully unwrap UV map, it is quite efficient as well.

Thus we can repeat this augmentation randomly during the training to simulate unseen perspectives

of headset cameras with a reasonable range of movement. This approach is illustrated in Fig. 6.2 and

denoted as I′ ← A3D(I). Finally, a new encoder network is trained by the following:

M′,T′ = D(E(A3D(I
HMC)),v) (6.3)

L3D = ||M−M′||2 + λ||T−T′|| (6.4)
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Figure 6.3: Training architecture of the Generic HMC Encoder by the data of multiple subjects.

The key insight is to encode all HMC images into a common expression space and then reconstruct

them in the corresponding personalized Codec spaces. Aggregation of all subjects provides better

generalization to the enviromental conditions that appear in all capture sessions.

6.2.3 Generic Encoders

All previous approaches handles pipeline for each identity separately. However, each identity contains

one or two capture sessions in our dataset and therefore person-specific HMC encoders gets special-

ized for the environment conditions of that particular session(s). Consequently, the resulting encoder

becomes very sensitive any changes of the input images during test time such as different lighting,

facial hair or make-up, pose/perspective, background etc. In order to generalize and robustify expres-

sion encoder network to all the conditions appear in the dataset, we propose the architecture in Fig.6.3

to train with person-specific models of multiple identities.

The idea here is to exploit the fact that the complete expression spectrum is mostly overlap for each

identity. The Codec’s parametric spaces (zi), however, are totally different for each identity as the

VAEs in Rosetta are trained separately. Therefore, we propose to employ a deep common encoder

network accompanied by shallow transformation networks for each identity. So that all HMC images
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are encoded into a common expression space and then transformed into personalized Codec spaces.

Since we can now use the original Codec Decoders by Rosetta, common expression network and the

latent transformation networks can be supervised by Codec reconstruction losses in Eq.6.1.

More specifically, we train a Generic HMC Encoder network (EG) for multiple identities simul-

taneously. For n number of identities, we have combined HMC images of all identities such as

{IHMC
i |i ∈ 1, 2, . . . , n} and encode them by EG network to a common Generic Codec Space (zG).

For each identity i, a separate person-specific multi-layer perceptron network (zi ← Ti(zG)) trans-

forms the common latent parameters (zG) to person-specific Codec parameters (zi). And then the

corresponding pre-trained Codec decoder generates predicted geometry and texture by:

M′
i,T

′
i ← Di(zi,v) (6.5)

Finally, Generic HMC Encoder network (EG) and all person-specific transformation networks (Ti) are

trained by the cumulative loss for all identities:

Lid =
n

∑

i

(||Mi −M′
i||2 + λ||Ti −T′

i||) (6.6)

6.3 Experiments

In order to evaluate the effectiveness of the proposed approaches, we have collected three new ses-

sions of HMC captures for two subjects. Compared to the training set captures, subjects are placed

in a different environment with different clothing and background and changed their facial styles,

i.e. facial hair. The first capture (Subj.A, Cond.1) contains mainly perspective changes, the second

one (Subj.A, Cond.2) includes especially extreme lighting conditions on mouth and some leakage to

the eyes as well. The subject in the third capture (Subj.B) has a significantly different facial hair.

Moreover, all of these captures are performed with a different background and clothing. Below we

examine the performance of our approaches under these challenging unseen conditions.

In the experiments, we train 6 models under 6 different settings as listed below:
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Table 6.1: Mean Absolute Errors of different settings for different parts of the face. The compari-

son is done on UV Texture and mesh geometry compared to Ground truth provided by [WSS+19]

correspondence. Best accuracy of each line is typed in bold.

MAE Baseline Golden 3D Aug. 3D Aug.+ Golden Multi-ID 3D Aug.+ Multi-ID

S
b
j.

A
,
C

o
n
d
.
1

Face Texture 4.544 3.975 3.377 3.380 3.468 3.743

Eye Texture 8.549 5.489 4.318 4.418 4.314 5.107

Mouth Texture 5.248 4.681 3.842 3.845 4.062 4.171

Face Geometry 4.908 4.287 3.123 3.261 3.274 3.449

Eye Geometry 0.676 0.486 0.376 0.384 0.414 0.446

Mouth Geometry 1.741 1.664 1.063 1.164 1.129 1.095

Avg. Improvement - 12.59% 31.03% 29.59% 28.49% 23.68%

S
b
j.

A
,
C

o
n
d
.
2

Face Texture 6.16 6.108 5.568 5.472 5.532 5.766

Eye Texture 7.705 7.481 5.525 5.525 5.030 5.802

Mouth Texture 7.14 6.995 6.705 6.320 6.401 6.59

Face Geometry 6.848 6.716 7.176 6.474 5.903 6.099

Eye Geometry 0.636 0.517 0.606 0.524 0.529 0.583

Mouth Geometry 2.993 2.859 3.349 2.956 2.586 2.459

Avg. Improvement - 1.39% 2.41% 8.32% 12.00% 8.67%

S
b
j.

B
,
C

o
n
d
.
1

Face Texture 3.026 - 2.497 - 2.497 2.724

Eye Texture 6.219 - 6.005 - 6.385 5.634

Mouth Texture 4.72 - 3.333 - 3.304 3.692

Face Geometry 5.376 - 3.955 - 3.819 4.853

Eye Geometry 0.479 - 0.505 - 0.487 0.619

Mouth Geometry 2.068 - 1.234 - 1.207 1.43

Avg. Improvement - - 21.96% - 23.22% 9.85%

Overall Average - 6.99% 18.46% 18.95% 21.24% 14.07%
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• Baseline

• Golden-plane correction

• 3D-Augmentation

• 3D-Augmentation & Golden-plane

• Multiple Identities

• 3D-Augmentation & Multiple Identities

Please note that, all the settings includes standard 2D Augmentation. The only difference is that in

some settings, number of iterations are adjusted to the point where the models are converged. After

training the models, we test them on the three test captures where the ground truth is provided by

Rosetta.

As quantitative evaluation, we demonstrate Mean Absolute Errors (MAE) for texture and geometry

of the full face. In order measure regional performance of the models, we additionally measure the

errors for eyes and mouth regions. The detailed results and the improvements of the models are shown

in Table 6.1. The results show that, compared to the baseline, Golden-plane rectification improves by

12.6%, 3D Augmentation improves by 36.0% on geometry.

Although quantitative results gives a very good idea of the performances, qualitative observations are

key to measure precise expression reconstruction as the ultimate goal of this project is to give real-like

feeling of appearance and motion to Codec Avatars. Nevertheless, comparing only with ground truth

by Rosetta might be misleading as we have observed that its reconstructions are slightly bit off from

the actual expression in some instances. Figures 6.4, 6.5 and 6.6 demonstrate the qualitative results

for our three test captures.

In both quantitative and qualitative results, we see a slight improvement by Golden-plane rectifier.

Yet that improvement is surpassed by 3D augmentation with a significant margin. 3D Augmentation

seems to be very successful for Subject A, Cond. 1 (in Fig.6.4 and Table6.1 top block) where the

most difference to the training set is about perspective. That is reasonable as we would expect 3D

Augmentation could only help for this aspect of the problem. For other test scenarios where there is

also a huge illumination and facial hair changes, 3D Augmentation naturally fails.
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HMC Imgs Baseline Golden-plane 3D Aug. 3D + Golden Multi-ID 3D + Multi-ID Ground Truth

Figure 6.4: Qualitative results of the test capture of subject A in condition 1. Each row shows results

of a different expression reconstruction of HMC images by the Codec Avatars. The experiment setting

of each column is displayed at the top.
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HMC Imgs Baseline Golden-plane 3D Aug. 3D + Golden Multi-ID 3D + Multi-ID Ground Truth

Figure 6.5: Qualitative results of the test capture of subject A in condition 2. Each row shows results

of a different expression reconstruction of HMC images by the Codec Avatars. The experiment setting

of each column is displayed at the top.

Identity Augmentation (Multi-Id) approach perform the best considering the all the three test cases.

Since complete training set consist off variation of lighting, facial-hair/make-up, perspective, back-

ground etc., the resulting generic encoder becomes invariant to those variations in order to able to

reconstruct each and every identity precisely. Nevertheless, 3D + Multi-Id performs slightly better

than Multi-Id in Fig.6.5, even seems to be better than ground truth. When we look at HMC images

rather than ground truth, we see ground truth is not so accurate after all. For example tongue is not

placed towards left in Fig.6.5 3th row and the teeth is supposed to be visible in Fig.6.5 2nd row. In

Fig. 6.6, 3D + Multi-Id results show less sleepy eyes than Multi-Id. The reason why 3D Augmen-

tation is still improving qualitatively might be because that they training is limited with 20 identities

due to memory restriction.

6.4 Conclusion

In this chapter, we presented a few approaches to make Codec Avatar animation by VR headset robust

to different variation such as pose, lighting, facial hair, make-up, clothing, background etc.
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HMC Images Baseline 3D Augmentation Multi-ID 3D Aug. + Multi-ID Ground Truth

Figure 6.6: Qualitative results of the test capture of subject B in condition 1. Each row shows results

of a different expression reconstruction of HMC images by the Codec Avatars. The experiment setting

of each column is displayed at the top.
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First, we proposed a method to augment head-mounted camera images by first modeling them in 3D

and apply random camera perturbations during training. So that, the trained model becomes less sen-

sitive to different perspectives. Secondly, we proposed a generic expression encoder architecture and

a novel approach to train it with multiple identities simultaneously. That way, we aimed to robustify

personalized Codec Avatars by generalizing encoder network to all kinds of variations appears in the

dataset of multiple subjects.

Results indicated that, 3D Augmentation offers a better solution for perspective invariance than

Golden-plane correction by both quantitative and qualitative performance results. Moreover, since

Golden-plane rectification special calibration for each hardware, it is also less convenient compared

to 3D Augmentation approach which is generic. Generic Encoders trained with multiple identities

also improves over the baselines with a significant margin thanks to the variation in multiple capture

sessions. Moreover, we also concluded that employing 3D Augmentation and Generic Encoders to-

gether improves the performance of each of them, resulting in a satisfactory expression reconstruction

in our benchmarks.
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Conclusion

7.1 Summary of Thesis Achievements

This thesis has explored important milestones for 3D face modeling and reconstruction to meet deep

learning – by (1) revisiting optimization-based 3D face reconstruction with GAN-based non-linear

texture model, (2) and deep identity features as energy function, (3) non-linear modeling of 3D face

shape, texture, normals, and expression jointly for photorealistic face synthesis, (4) reboust expression

and identity reconstruction.

Firstly, linear texture models are replaced by a GAN-based model trained on high-resolution UV

maps as our statistical representation of the facial texture in Chapter 3. Chapter 3 also propose to

use deep face recognition features for 3D face reconstruction from a single image in an end-to-end

reconstruction pipeline.

Secondly, Chapters 4 and 5 presents two approaches for photorealistic face synthesis by 3DMMs.

The former proposes to train a joint GAN as a 3D face model for shape, texture, normals, and expres-

sion and the latter proposes to sample from 3DMM and image-transfer to the realistic domain by an

image-to-image GAN.

Finally, Chapter 6 studies a few approaches to robustify Codec Avatars expression reconstruction

from head-mounted camera inputs. The proposed approaches are based on augmenting training data

137
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in 3D perspective and training for multiple identities together to improve generalization.

Many of the presented studies are published in peer-reviewed top conferences/journals, contain strong

technical novelty and provide qualitative, and quantitative experiments in comparison with recent

state-of-the-art approaches.

This thesis has presented a series of works that show deep generative and discriminative learn-

ing can improve the existing 3D facial modeling approaches. Particularly, it has shown significant

steps towards building high-resolution and high-fidelity appearance and shape models by the recently

emerged Generative Adversarial Networks. Moreover, it has also shown the strength and effectiveness

of deep features for reconstruction. Therefore we can say that it accomplished an important milestone

in the renovation of the existing linear models and low-level features for 3D face reconstruction and

synthesis. In general, the thesis brought well-studied deep learning and 3D face modeling literature

together to show the potentials of incorporating them.

7.2 Limitations & Future Work

7.2.1 Higher Resolution and Full-head Completion

We have extended FastGANFit approach (Chapter 3) to enhance the reconstructed texture [LMG+20]

and complete the rest of the head [PVOS+20] with other co-authors.

The data used to construct GANFit texture models contains baked illumination that appeared during

data collection. But since the lighting throughout the collection process was the same, this illumina-

tion is consistent across the dataset. Therefore, [LMG+20] proposed to remove this baked illumina-

tion by simulating the lighting that appeared during the collection. This clean diffuse albedo is then

enhanced by a super-resolution network and transferred into specular albedo, diffuse and specular

normals with the help of additional light stage data.

The second study [PVOS+20] also utilizes an additional head model by cross-correlating with the

face model in order to complete 3D full-heads. Also, it improves the reconstruction of eyes, ears, and
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(a) Input image

(b) Reconstruction

(c) Zoomed view

Figure 7.1: 3D face reconstruction from a single in-the-wild image to high-resolution BRDF ren-

derable full-head reconstruction. Initial reconstruction is done by [GPKZ19, GPKZ20] as shown in

Chapter 3. Then the reconstruction is enhanced by [LMG+20] to higher resolution BRDF renderable

texture and normals maps. Finally, its full-head is completed by [PVOS+20].

surroundings of the eyes by training part-specific models. As can be seen in Figure 7.1, the resulting

reconstructions are very promising to bridge the uncanny valley.

7.2.2 Semi-personalized 3D Face Models

Now that, we have shown photorealistic 3D reconstruction from a single image and touched Codec

Avatars which can generate realistically animatable personalized models, it is time to set the fu-

ture directions. Monocular 3D reconstruction approaches are generic enough for any identity given

a single image, yet the resulting reconstruction often looks like without soul. On the other hand,

person-specific models are extremely successful to model motion and high range of expressions, but

it requires collecting tens of thousands of images of target individuals in a light stage. One potential
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future direction might be combining the best of both worlds by developing a semi-personalized model

that effectively fine-tunes generic 3D face models by guided image collection of a target subject.

The main focus of such an approach would be to improve motion-realism of 3D avatars during an

animation, driven either by camera input, speech, or text. In all cases, photorealistic and precise

expression modeling is key. This means expression needs to be accurately received and well-reflected

on shape, texture, and normals. Previously we attempted to generate expressive 3D faces by driving

them with expression encoding from a CNN trained for expression recognition. Such a model can

be personalized by the person-specific data collected by a smartphone camera with guidance on the

screen to perform a particular set of expressions. Such an application would be very exciting to put

into practice in modern smartphones.
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