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Abstract

This thesis investigates the modelling and animation of virtual humans for real-time sign

language visualisation. Sign languages are fully developed natural languages used by Deaf

communities all over the world. These languages are communicated in a visual-gestural

modality by the use of manual and non-manual gestures and are completely different from

spoken languages. Manual gestures include the use of hand shapes, hand movements, hand

locations and orientations of the palm in space. Non-manual gestures include the use of

facial expressions, eye-gazes, head and upper body movements. Both manual and non-

manual gestures must be performed for sign languages to be correctly understood and

interpreted. To effectively visualise sign languages, a virtual human system must have

models of adequate quality and be able to perform both manual and non-manual gesture

animations in real-time. Our goal was to develop a methodology and establish an open

framework by using various standards and open technologies to model and animate virtual

humans of adequate quality to effectively visualise sign languages. This open framework is

to be used in a Machine Translation system that translates from a verbal language such as

English to any sign language. Standards and technologies we employed include H-Anim,

MakeHuman, Blender, Python and SignWriting. We found it necessary to adapt and

extend H-Anim to effectively visualise sign languages. The adaptations and extensions

we made to H-Anim include imposing joint rotational limits, developing flexible hands

and the addition of facial bones based on the MPEG-4 Facial Definition Parameters facial

feature points for facial animation. By using these standards and technologies, we found

that we could circumvent a few difficult problems, such as: modelling high quality virtual

humans; adapting and extending H-Anim; creating a sign language animation action vo-

cabulary; blending between animations in an action vocabulary; sharing animation action

data between our virtual humans; and effectively visualising South African Sign Language.
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Chapter 1

Introduction

1.1 Background

The South African Sign Language (SASL) Project at the University of the Western Cape

is concerned with the translation of English to SASL and vice versa [74]. The primary

goal of this project is to develop technologies that will allow the breaking down of the

communication barrier between Deaf and hearing communities. This is being done by

developing technologies that will allow for the creation of English and SASL Machine

Translation (MT) and educational tools. The South African constitution recognises SASL

as the official language of the Deaf [27]. Although this is the case, the Deaf community

still have poor socio-economic opportunities and poor access to public and information

services. This is mainly because the Deaf community is a minority group and because of

the many misconceptions the hearing have about the Deaf and sign languages [27] [43].

Some of these misconceptions are: that there is only a single sign language; that

sign languages are merely the visual-gestural representation of spoken languages; that

linguistic studies of spoken languages can be applied to sign languagse; and that one can

easily write sign language sentences using spoken words [43] [84]. These misconceptions

lead to the idea that deaf persons can easily read and understand the written form of

spoken languages [43] [84]. This is not the case, as was discovered by Holt [42]. Holt

found that on average, hearing students at age 15 reached a reading level grade equivalent

of 10, whereas Deaf and hard of hearing students at age 17 reached a reading level grade

equivalent of 4.5 [42].

There are numerous sign languages throughout the world, each with its own vocab-

ulary. These include American Sign Language (ASL) in Northern America, British Sign

Language (BSL) in Great Britain, Japanese Sign Language (JSL) in Japan and SASL in

1



CHAPTER 1. INTRODUCTION 2

South Africa [37]. Sign languages are communicated in the visual-gestural modality, by

the use of manual and non-manual gestures, having a grammar completely different from

spoken languages. Manual gestures include the use of hand shapes, hand movements,

hand locations and orientations of the palm in space. Non-manual gestures include the

use of facial expressions, eye-gazes, head movements and upper body movements. Both

manual and non-manual gestures must be performed for sign languages to be correctly

understood and interpreted [27]. Apart from the different sign languages, SASL in South

Africa possesses a high degree of lexical diversity which means that it varies across regions.

Despite this lexical diversity, SASL has the same underlying grammar over all regions [27].

1.2 Motivation

To facilitate the communication between the Deaf and hearing persons, highly skilled

interpreters have traditionally been used [27]. These interpreters tend to be very costly

and it is a great effort to become a good interpreter that can translate between a spoken

language and a sign language correctly and efficiently [27]. The use of an interpreter is

not always appropriate and they need to be notified in advance when their services are

to be required [27]. Another important fact to consider is that there will simply never be

enough good trained interpreters that can assist the millions of deaf people [27] [37] [43].

An MT system that can translate between a spoken language, such as English, and

a sign language, such as SASL, will solve the above problem of insufficient interpreters

in South Africa. To visualise a sign language, an MT system must employ three dimen-

sional (3D) computer generated virtual humans (VHs). Such a system can be used in

many different application domains, such as Deaf telephony as well as English and sign

language education. This will make it easier for the Deaf to access the various public and

information services [24] [39] [43] [83] [95] [102] [107] [108].

The modelling and animation of VHs is very challenging and it requires a significant

amount of time and money to develop a VH system that delivers adequate results. A work-

shop on “Accelerating Progress in Perceptive Animated Interfaces and Virtual Humans”

organised by Ron Cole and his colleagues during April in 2004, highlighted both technical

and social challenges with regard to progressing VH research [23]. It was noted in the

workshop that “multimillion dollar systems did not result in community resources” and

that “the expertise and infrastructure required to develop effective and scalable virtual

human systems resides in just a few laboratories” [23].
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1.3 Research Problem

To effectively visualise sign languages, a VH system must have models of adequate quality

and be able to perform both manual and non-manual gesture animations in real-time. Ron

Cole also notes the following in their workshop [23]:

The development of interfaces that incorporate virtual humans requires col-

laboration among researchers in many areas – psychologists, linguists, speech

scientists, engineers and computer scientists with multidisciplinary expertise

in human communication, interface design, speech and language technologies,

dialogue modeling and management, computer vision and computer animation.

While individual researchers, research labs and existing research communities

represent knowledge and skills in each of these areas, no research community

exists today that strives to focus the necessary multidisciplinary resources on

research and development of perceptive animated interfaces incorporating vir-

tual humans.

Considering what was noted in the workshop by Cole [23] and the challenge to model

and animate virtual humans (VHs), we formulate our research question as follows: How

do we model and animate VHs of adequate quality to effectively visualise sign languages?

We hypothesise that the research question, with some challenges highlighted by Cole [23],

can be overcome by developing a methodology and open framework that employs various

standards and open technologies.

1.4 Research Goals

Thus our goal was to develop a methodology with an open framework by using various

standards and open technologies to model and animate VHs of adequate quality to effec-

tively visualise sign language. As stated above, this open framework is to be used in a MT

system that translates from a verbal language such as English to SASL. The standards

and technologies we used include MPEG-4 [1], H-Anim [3], MakeHuman [57], Blender [16],

Python [70] and SignWriting Mark-up Language [87]. We found it necessary to adapt and

extend H-Anim to effectively visualise sign language. The adaptation and extensions we

made to H-Anim are in fact also the purpose behind an open framework which is to aid

in “Accelerating Progress in Perceptive Animated Interfaces and Virtual Humans” [23].

We wish to make it clear to the reader that this research does not constitute linguistic

research or the correct grammatical visualisation of SASL.
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1.5 Thesis Outline

The following is a brief outline of this thesis.

Chapter 2 In this chapter we review literature and discuss concepts and techniques

related to 3D VH modelling and animation and we highlight their respective advantages

and disadvantages. We also discuss MPEG-4 Facial Definition Parameters (FDPs) facial

feature points and H-Anim which are standards for modelling and animating VHs. Our

use, adaptation and extension of H-Anim is also motivated. Later in the chapter we

review related work and discuss their methodologies and the models they developed. We

organised related work based on body, hand and facial modelling and animation.

Chapter 3 In this chapter a focused literature review on sign language visualisation is

presented. We first discuss the use of sign language transcription systems. Our use of

SignWriting Mark-up Language and its more compact form Sign Bank Mark-up Language

in our open framework is motivated. Later we discuss sign language visualisation systems

that use video and VHs with their advantages and disadvantages.

Chapter 4 In this chapter we discuss our developed methodology and the technologies

we used to establish an open framework to model and animate VHs and to effectively

visualise sign language. We discuss the adaptation and extension of H-Anim to develop a

generic skeleton by imposing joint rotational limits, developing flexible hands and addition

of facial bones based on MPEG-4 FDP facial feature points for facial animation.

Chapter 5 This chapter details all the experiments with results and discussions to

evaluate our methodology and open framework. We begin the chapter by discussing the

design of our experiments after which we perform experiments on body, hand and facial

animation.

Chapter 6 This is the final chapter of this thesis in which we provide concluding re-

marks and the main contributions of our research. Advantages and disadvantages to our

methodology and framework is provided as well as some recommendations for future work.
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1.6 Summary

This chapter gave some background on the Deaf, sign languages and the SASL project.

We provided motivation for the SASL project and how it is to address the poor socio-

economic opportunities and poor access to public and information services by the Deaf.

This is to be done with an MT system that employs VHs and can translate between

English and SASL. The modelling and animation of VHs however, is very challenging and

it requires a significant amount of time and money to develop a VH system that delivers

adequate results. The goal of this thesis was to develop a methodology and establish an

open framework by using various standards and open technologies to model and animate

VHs of adequate quality to effectively visualise South African Sign Language.



Chapter 2

Virtual Human Modelling and

Animation

The previous chapter highlighted the research problem and goals of this thesis. In this

chapter we first discuss concepts and techniques related to 3D virtual human (VH) mod-

elling and animation with their respective advantages and disadvantages. These include:

model representation; model creation and acquisition; and model parameterisation and

deformation. We then discuss VH modelling and animation standards such as MPEG-4

Facial Definition Parameters (FDPs) and H-Anim. Our use, adaptation and extension of

the H-Anim standard is then motivated. A survey of related work follows that is divided

into face, body and hand modelling and animation. We discuss the methodologies that

related work adopted, models they developed and present results they obtained. We then

end the chapter with a summary of our discussions.

2.1 Model Representation

There are two model representation schemes to represent and visualise VHs, or any object

model, in 3D computer graphics [41]. The first is the boundary representation scheme in

which models are represented by surfaces which include: polygons; subdivision surfaces;

and curves and surface patches. The second is the space-partitioning or volume represen-

tation scheme in which 3D space is partitioned in a set of finite primitive volumes that

include: metaballs; volume elements (voxels); and constructive solid geometry (CSG) [41].

The sections that follow discuss the above mentioned model representation schemes with

their advantages and disadvantages to advocate our use of a polygon representation for

VHs.

6
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2.1.1 Boundary Representations

2.1.1.1 Polygons

The use of polygons far outweigh the use of other model representation techniques in

3D graphics and are used in many real-time applications such as games, simulations and

virtual reality [11] [41]. Polygons, along with points1 and lines,2 are considered to be

geometric primitives in 3D graphics as can be seen in Figure 2.1.

A polygon is defined as a set of lines that is fully connected to form a closed loop,3

where a set of connected polygons are called a polygon mesh [105]. Polygons can be

named by the number of edges they have, of which triangles (3 edges) and quadrilaterals

(4 edges) are the most commonly used for polygon meshes and to model complex 3D

objects [105]. Apart from being named, polygons can be classified as regular, irregular,

convex, concave or crossed. These classifications can be valid or invalid, and determines

whether polygons will be correctly displayed by a graphics library, for example such as

OpenGL [105], which do not draw concave and crossed polygons properly.

A major disadvantage of polygons is that it takes a large number of polygons to

approximate a curved surface and thus computationally expensive to model and display

organic looking objects. This disadvantage is addressed by hardware acceleration to

process large numbers of polygons (polygon faces) and subdivision surfaces.

point

vertex (x,y,z) in R

line polygon

3

Figure 2.1: Geometric primitives: point, line and polygon.

2.1.1.2 Subdivision Surfaces

Subdivision surfaces are polygonal surfaces that are recursively refined to produce a

smooth surface by using a subdivision scheme. Subdivision schemes work by subdividing

1A point, also known as a vertex, has no dimension and is represented by a set of co-ordinates in
2-space (R2) or 3-space (R3).

2A line is represented by a segment that connects two points.

3Lines of a polygon are known as edges and the area or closed loop known as a polygon face.
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the original polygon mesh edges and adding new vertices at locations to approximate a

curved surface. The most well known subdivision schemes include those of Catmull-Clark,

Doo-Sabin and Loop [21] [29] [55].

Level 1 Level 2 Level 3

Original low resolution polygo Refined high resolution  polygon meshn mesh

Figure 2.2: A cube at 3 different levels of subdivision using Catmull-Clark subdivison.

Sudivision surfaces are usually represented by a high resolution mesh with the original

low resolution mesh used to control the high resolution polygon mesh (see Figure 2.2). In

Figure 2.2 a cube is subdivided up to level 3, using the Catmull-Clark subdivision scheme.

Advantages of using subdivision surfaces include simplification of the modelling process

to create smooth surfaces and one can easily refine the entire surface globally or at local

regions. Since subdivision surfaces are merely refined polygonal surfaces, as a surface is

subdivided or refined, there is a reduction in display times [82].

Surface patch Tube Torus

Control points

Figure 2.3: Examples of nonuniform rational B-splines (NURBs) surfaces.

2.1.1.3 Curves and Surface Patches

A significant amount of research has been performed to develop mathematically precise

curved lines and surfaces [41]. Curved surfaces, also known as surface patches, are defined

by two sets of orthogonal parametric functions of two variables [41]. These parametric

functions have a set of control points that are also used to manipulate the surfaces they

define. Parametric functions used to create curved surfaces include spline functions such
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as Bézier splines, B-splines, beta-splines (β-splines) and rational splines which include

nonuniform rational B-splines (NURBs) [41]. When using curved surfaces, a designer

would normally create surface patches and align the borders of those patches to build a

3D model such as a face [14]. Examples of simple NURBs surfaces, which allows for exact

representations of circles and ellipses to model complex shapes, can be seen in Figure 2.3.

Obvious advantages of using surface patches are that they are mathematically well

defined and are able to represent smooth organic looking surfaces that are easy to ma-

nipulate through control points [41]. Disadvantages of surface patches include: slow

performance, as they are complex mathematical representations; the lack of hardware

acceleration to address their complexity; it is difficult to perform local refinement of a

single surface patch to model very fine details; and undesired surface wrinkling and lines

or cracks where surfaces align during animation [14].

2.1.2 Volume Representations

Positive metaballs Negative metaball

Figure 2.4: The two positive metaballs on the left seem to bond as molecules and their
surfaces are smoothly blended together. A negative and invisible metaball on the right
creates a dent in a positive metaball.

2.1.2.1 Metaballs

Metaballs, also known as “implicit” surfaces, are attributed to J. F. Blinn [18]. This model

representation was developed by Blinn to display molecular models and to automatically

simulate how molecules interact with each other [18]. Metaballs are defined by density

functions in space, that can affect each other either positively or negatively [18]. A polygon

surface for the density function is displayed, where the function equals a selected threshold.

This threshold, along with the height and standard deviation of density functions, affects

the polygon surfaces when combining metaballs. The height and standard deviation are
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used to affect the stiffness or “blobbiness” of a metaball and whether it makes a positive

contribution, such as a bump, or negative contribution, such as a dent [18]. Examples of

metaballs can be seen in Figure 2.4.

Advantages of metaballs are: that they are mathematically well defined; they auto-

matically affect each other based on their proximity to each other in space; and they

appear soft, continuous and suitable to design VHs [88] [98]. Disadvantages of metaballs

include slow display times and that they require tessellation into polygon meshes to enable

texturing and improve visual realism [98].

2.1.2.2 Volume Elements

A model representation that is primarily used to visualise biomedical data sets is volume

elements (voxels). In the use of voxels, space is partitioned into non-overlapping volumes,

with each volume known as a voxel. This sampling of space is stored as an octree, where

the depth of the octree relates to the resolution of the sampled space [41]. The deeper

the octree, the better the resolution of the sampled space and quality of voxel models.

Advantages of voxels include the use of simple data structures that aid in optimisation of

data sets and a single value can be stored for voxels in a sub-region of space where the

data is homogeneous [41]. A major disadvantage of voxels is slow display times even with

the use of a modern graphics processing unit (GPU) [28].

2.1.2.3 Constructive Solid Geometry

Constructive solid geometry (CSG) is a model representation technique primarily used

to model solid objects and have not found much application in VH modelling [11]. In

CSG, primitive volumes, such as cubes, spheres and cones which can overlap and occupy

any region of space unlike voxels, are used. Set operations such as union, intersection and

difference are applied to these primitive volumes to build more complex objects. Complex

objects are then represented as a binary tree of operations on objects [41]. Extensions to

CSG such as volumetric-CSG have also been developed to visualise medical data sets [32].

Advantages of CSG include ease of computation of properties such as mass and volume and

it is used for procedural modelling as discussed in Section 2.2.3 [41]. Disadvantages of CSG

include its inability to represent curves exactly where objects intersect and slow display

times [11] [40]. These disadvantages have been overcome by compact representations of

curves where models intersect and CSG triangulation algorithms developed on a modern

day GPU to display CSG models in real-time [40].
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2.2 Model Creation and Acquisition

Techniques to create and acquire VH models or parts of VHs are discussed in the sec-

tions that follow. The discussion begins with manual labour intensive techniques, such

as, interactive modelling and parametric modelling and later proceeds to nearly fully au-

tomated techniques, such as procedural modelling, photogrammetry and 3D scanning.

These techniques are discussed with their advantages and disadvantages to advocate our

use of MakeHuman [57], a parametric VH modelling tool that we discuss in Section 4.1.1.

2.2.1 Interactive Modelling

Interactive modelling is a manual labour intensive technique in which a designer uses a

generic interactive modelling package such as Maya [8], Blender [16] or Truespace [20], to

name but a few. In this thesis, Blender is employed to perform some interactive modelling.

This is discussed in Section 4.1.2. During interactive modelling, any primitives, such as

points, lines, polygons, curves, NURBs or metaballs, are used to model 3D objects [88].

These primitives can be duplicated, translated and some extruded to created higher order

primitives, such as cubes, spheres, cones, arms, legs, heads or any other objects. These

higher order primitives can then be used to build complete VH models. Designers have

come up with clever techniques, such as using background images or profiles of objects

they wish to model and use these as blueprints. The advantage of interactive modelling is

that one has absolute control over every single point of a model in the modelling process.

Generic interactive modelling tools have matured over the years and include features such

as mesh mirroring, 3D sculpting and path based extrusion among many others to simplify

modelling [8] [16] [20]. The disadvantages of interactive modelling are that it requires a

fair amount of time to learn how to use a generic modelling package and artistic skills to

create models of adequate quality.

2.2.2 Parametric Modelling

Parametric modelling of VHs can be regarded as a higher level specific modelling technique

compared to interactive modelling. A template model of a VH can be developed with a

generic interactive modelling package or acquired through 3D scanning (see Section 2.2.5).

The template model can be divided into parts and parameterised with attributes such as

width, length, size and others that range from a minimum to maximum value [77]. A

database of minimum and maximum “morph” targets (see Section 2.3.2) can be modelled
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using the template model which are then tied to these attributes [15]. Another approach

is to use a database of scanned models with different proportions, which are used to

build a target vector space that is tied to these attributes [77]. Upon manipulating these

attributes, parts of the template model are transformed to the modelled “morph” targets

or targets in a vector space [15] [77].

Two of the most popular parametric modelling tools to model VHs is the open source

tool MakeHuman [57] and the proprietary tool Poser [80]. The advantages of parametric

modelling are that: it is much simpler; less time consuming; and requires no artistic

skills for end users as opposed to modelling with a generic interactive modelling package.

Disadvantages of parametric modelling are that it takes years to develop a high quality

template model with its targets database and one is bound by the number of attributes

and targets that can be used which in turn limits freedom of expression.

2.2.3 Procedural Modelling

Procedural modelling is a semi-automatic modelling process in which a programmer writes

procedures with a modelling language to model objects [62]. This type of modelling is

usually applied to texture generation or GPU shader programs but was found to be of

some use for VH modelling, although with unsatisfactory results [62]. Results are usually

dependent on how well a model is paramaterised, the primitives used and the operators

or functions available in a procedural modelling language.

As mentioned before, CSG is used in procedural modelling because complex objects

can be represented as a tree of operations applied to primitive volumes. Many modern

generic interactive modelling packages provide interfaces to programming languages such

as Python, VBscript or Jscript as modelling languages [16] [20]. Some packages have their

own embedded scripting languages, such as Maya with its Maya Embedded Language

(MEL) [8].

Advantages that procedural modelling has over other techniques are: well defined pa-

rameterised and structured models as scripts; well developed scripts can be easily reused;

one only needs to understand a script’s input parameters; and resultant models can be

dynamically regenerated with different characteristics dependent on a script’s input pa-

rameters [62]. Disadvantages of procedural modelling is that one does not have instant

visual feedback as with interactive or parametric modelling tools, which results in much

trial and error to obtain desired results. Also, programming in general is difficult and

operators or functions used in procedural modelling are of a low level and requires under-

standing of programming concepts during script development.
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2.2.4 Photogrammetry

Photogrammetry is the process of estimating camera parameters and making measure-

ments from images to model objects [68]. Multiple cameras, with different views of the

object to be modelled, are set up and calibrated to capture images simultaneously [68].

Once images have been captured, camera parameters and target feature points, can be

manually estimated or automatically extracted from captured images [68]. A model fit-

ting process can then be used with these feature points to deform a generic model with

corresponding source feature points [68] [69] [71] [97]. Some researchers have used only a

single camera image but use additional means such as a ruler to aid in estimating camera

parameters and locating feature points [6].

The best advantage of photogrammetry is that it enables one to model person specific

models [6] [68] [69]. The more feature points used, the more accurate the fitting process

and the generic model resembles a real person. Captured images can also be used as

textures for added realism [68] [71]. Photogrammetry is considered a better alternative

to 3D scanning since one can use inexpensive cameras [68] [69] [71]. The downside of

photogrammetry is its inability to completely model certain features such as the eyes,

teeth, tongue and ears. It is also not possible to model accurate human bodies in cases

where there is occlusion of certain parts of the body [69].

2.2.5 3D Scanning

The use of a 3D laser scanner, to perform 3D scanning, is the most advanced method

to automatically and accurately acquire real world surface data of objects. A 3D laser

scanner collects thousands of data points of an object at a specified sampling rate and

grid size by projecting a laser beam onto an object’s surface. 3D Scanning technology

was previously slow but it is now possible to scan a complete human body surface in a

matter of seconds [25]. Information such as colour and weight can also be obtained while

scanning [25]. The use of 3D scanning was applied to build an anthropometric database

such as the Civilian American and European Surface Anthropometry Resource Project

(CAESAR) [73]. A large database such as CAESAR along with feature points would be

difficult if not impossible to create using other modelling techniques [73].

Disadvantages of 3D scanning include: expensive equipment; scanned data is complex

and requires a significant amount of post-processing; it is not possible to create separate

models for the hair, eyes teeth and tongue as with photogrammetry; and occlusion can

also be a problem as with photogrammetry [6] [10] [53] [97] [99].
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2.3 Model Parameterisation and Deformation

A VH model that was created or acquired in some way or another with the techniques

discussed above is not of much use if it cannot be animated. To enable a model to be

animated, it must first be parameterised with a deformation technique. There are several

deformation techniques that enable one to apply a geometric transformation such as a

translation, rotation or scaling to a model’s data. These deformation techniques range

from computationally inexpensive techniques which yield results of less quality or realism

to computationally expensive techniques that have realistic results. Also, some techniques

are more intuitive or simpler to use than others. In the sections that follow, we present

some of the more popular model parameterisation and deformation techniques. Keeping

our goal in mind, to model and animate VHs for real-time sign language visualisation,

we omit the two most advanced and computationally expensive deformation techniques.

These are muscle and physical based parameterisation and deformation. The reader

is referred to Albrecht [6] and Ng-Thow-Hing [64] on these computationally expensive

techniques.

2.3.1 Direct Parameterisation

Direct parameterisation is the first technique to be used to parameterise models for ani-

mation [66]. In this technique a model is parameterised by selecting certain points used

to define the model either directly or by a density function on the surface that influence

a region of points [66] [67] [103]. The model is then directly deformed or animated by

applying transformations to the parameterised points. The advantage of direct parame-

terisation is that it is straightforward to use for facial animation and is computationally

efficient [66] [67] [103]. The disadvantage of direct parameterisation is its difficulty to be

applied to articulated figure models; it is time consuming to apply and is usually a trial

and error process to obtain pleasing results [66] [103].

2.3.2 Morphing

Instead of selecting certain points directly or by applying a density function to parame-

terise parts of a model, a model can be completely parameterised as a whole and stored

as a source “morph” or parameterisation [52] [68]. The same model can be taken and

transformed to take on another form or appearance that can also be stored separately as

a target “morph” or parameterisation. Morphing is then the process of transforming the
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source parameterisation into the target parameterisation through interpolation [52] [68].

Each point from the source “morph” is interpolated to its associated point in the target

“morph”. Morphing has been applied to both facial and body animation and has proven

to yield extraordinary results during animation [52] [68].

Advantages of morphing include: direct control over each and every point; by taking

the model as whole, it is possible to model certain details, such as wrinkles for facial ani-

mation, which is difficult in direct parameterisation; one can perform optimisations, such

as storing only indexes of transformed data points and their relative transformations as

a target “morph”; and computational efficiency is directly proportional to the complex-

ity of a model [97] [68] [52]. Disadvantages of morphing include the difficulty to create

“morph” targets and a significant amount of time since direct user interaction is required;

morphing targets have space requirements which are dependent on the complexity of the

model in use; and source and target models must have the same topology. Lee et al. [52]

have shown that one can adapt models with different topologies from different sources to

a generic model, which is then used for morphing.

2.3.3 Free Form Deformation

Free form deformation (FFD) is a solid model deformation technique invented by Thomas

Sederberg and Scott Parry [75]. This deformation technique can be regarded as a volume

represented by a parallelepiped grid of control points (lattice) with the model that is to

be deformed embedded within this volume [75]. The embedded model points are then

parameterised by the control points on the lattice by a triple tensor product Bernstein

polynomial [75]. As control points on the lattice are transformed by a geometric operation,

so too are points of the embedded model. FFDs have been extended by some researchers

to allow for arbitrary shapes and an arbitrary number of control points. Some of these

extensions include: rational free form deformation (RFFD) that has been used for facial

deformation [45]; Dirichlet free form deformation (DFFD) for hand deformation [44];

and surface oriented free form deformation (SFFD) [79] for body and hand deformation.

These extensions of FFDs have proven to be both computationally efficient and produce

good visual results, comparable to that of skeletal subspace deformation (SSD), which is

discussed in the next section [79].
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2.3.4 Skeletal Subspace Deformation

Skeletal subspace deformation (SSD) is currently the most popular technique to parame-

terise and deform articulated figures in real-time and is used especially in sign language

visualisation systems [12] [24] [36] [51] [95] [106] [108]. As the name implies, SSD enables

one to build an underlying skeleton with joints for an articulated figure, such as that

of a VH. The skeleton is built as a tree of bones where a root bone contains the global

co-ordinate frame for the entire skeleton (skeleton space). Each bone in the tree has its

own local co-ordinate frame (bone space) which is affected by that of their parent and

ancestors. A bone can be scaled and have degrees of freedom (DOFs) to perform rotations

and translations.

Parameterisation of the data points of the skin model (surface geometry) of a VH is

attached to the skeleton by assigning a weight to each point as to how much a bone should

affect a point when the bone undergoes a geometric transformation. This parameterisation

process is popularly known as “skinning” or “rigging” and can be performed through an

interactive manual process known as vertex weight painting [26] or with an automatic

skinning algorithm [13]. Initial implementations of SSD only allowed a single weight to be

assigned to a vertex which resulted in very unrealistic deformation and displeasing results.

This was overcome with linear blend skinning (LBS) which assigns multiple weights to

points such that the weights sum to 1. These weight values are linearly blended depending

on a point’s distance from a bone [44] [13].

Baran and Popović implemented an automatic skinning algorithm which made some

improvements to LBS. Their algorithm assigns bone weights to points based on a heat

equilibrium over the surface geometry of an articulated figure [13]. In this thesis we

employ the automatic skinning algorithm developed by Baran and Popović which was

implemented in Blender [13] [16]. The algorithm by Baran and Popović was developed

with three requirements in mind [13]:

• Generality: A skeleton can be used on different VH figures.

• Quality: Animation of skinned characters must be of high quality.

• Performance: The algorithm must be fast and perform skinning in under a minute.

These requirements are satisfied by the fact that their algorithm takes an articulated

figure’s surface geometry into account and also performs automatic skeleton fitting and

simplification before assigning weights. The current implementation in Blender performs

no skeleton fitting and simplification but does consider the surface geometry. In Chapter
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4 we show how we take advantage of the current implementation. The reader is referred

to [13] for an in depth discussion of the algorithm by Baran and Popović.

Advantages of SSD are that: it is simple to implement and exists in many interactive

modelling packages; it can be used as a general deformation technique especially when

using vertex weight painting to parameterise a VH model; it is simple and intuitive to

use since one only rotates bones to pose or deform an articulated figure; and most im-

portantly, it is computationally efficient [8] [13] [16] [20] [54]. SSD however serves only

as an approximation to a real skeleton and has limitations such as the “collapsing elbow”

and “candy wrapper” effects when performing bone rotations [54]. These limitations have

been addressed by some researchers by extending LBS. These extensions take into consid-

eration the underlying shape of joints [47] and developing a pose space that determines

the desired deformation for a pose when rotating bones [54].

2.4 Standardisation

The different possible ways to parameterise and deform VHs for animation lead to diffi-

culties for different research groups to share, reuse and transfer resources between them.

These difficulties were highlighted in a report by Susan Duncan, Javier Mollevan, Eric

Petajan and Jianxia Xue in the workshop organised by Cole [23]. The report pointed out

the need to use a standard encoding scheme to encode animation databases. There are

two standards used to parameterise and deform VHs that can serve as animation data

encoding schemes. These are MPEG-4 Face Body Animation Parameters (FBAP) [1] and

H-Anim [3].

2.4.1 MPEG-4 Facial Definition Parameters

The MPEG-4 FBAP specification for face and body animation is a closed ISO/IEC stan-

dard and formally specified in ISO/IEC 14496-2:2004 Information technology – Coding

of audio-visual objects – Part 2: Visual [1]. The standard document defines a face body

animation (FBA) object as a collection of nodes in a scene graph. The FBA object has

a node to define a skeleton with a body definition parameter (BDP) set and a node to

define a face with a facial definition parameter (FDP) set. The BDP set that defines a

skeleton is controlled by a stream of body animation parameters (BAPs) to perform body

animation. The FDP set defines facial feature points used to parameterise faces and is

controlled by facial animation parameters (FAPs) to perform facial animations.
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Figure 2.5: MPEG-4 Facial Definition Parameter set facial feature points [1].

In this thesis, we are interested in using the MPEG-4 FDP set facial feature points to

extend the H-Anim standard which is based on the MPEG-4 BDP skeleton definition [3].

We therefore omit our discussion on the MPEG-4 BDP set and refer the reader to the

specification document for more information on MPEG-4 BDP [1].

The MPEG-4 FDP set facial feature points can be seen in Figure 2.5 and defines

two sets of feature points. The one set, red dots in Figure 2.5, is affected by FAPs and

the other set, blue dots in Figure 2.5, defines standard face locations. FAPs represent

displacements of the face that are based on “minimal facial actions and are closely related

to muscle actions” [1]. Another popular encoding scheme that is also based on facial

muscle actions is the facial action coding system FACS [30]. FACS, which we omit and
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refer the reader to [30], has a very important disadvantage compared to MPEG-4 FAP.

This disadvantage is the inability of FACS to encode detailed lip movements, whereas

MPEG-4 FAP have detailed facial feature points to allow complex mouth shapes, such

as visemes [1] [23] [30]. MPEG-4 also has disadvantages which are related to its direct

parameterisation as discussed in Section 2.3.1.

2.4.2 H-Anim

H-Anim is an open standard and used for modelling Virtual Reality Markup Language

(VRML) [2] and X3D [4] VHs to address the increasing need to represent humans in

virtual environments [3]. The design goals of H-Anim are to ensure:

• Compatibility: Compliant browsers must implement the features of an H-Anim

figure.

• Flexibility: The standard must make no assumptions on the types of applications

it will be used for.

• Simplicity: The standard can be used in its simplest form and extended if the need

arise.

LoA 2

LoA 3

Figure 2.6: Upper body H-Anim LoA 2 and LoA 3 examples modelled from source data
found in [3].
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H-Anim specifies a VH skeleton in terms of hierarchal joint and segment nodes at four

different levels of articulation (LoAs) that range from 0 to 3. These LoAs start with LoA

0 as the lowest that has only a single root joint and ends with LoA 3 that has a near

realistic spine. In this thesis, we endeavour to adapt and extend the LoA 2, which include

hand joints unlike LoA 1, and has a simpler spine than that of LoA 3. Figure 2.6 depicts

H-Anim skeletons for LoA 2 and LoA 3 of the upper body that we modelled as bones in

Blender from example data in the H-Anim [3] specification. As can be seen in Figure 2.6,

the H-Anim skeletons are approximations to a real skeleton with a single bone for the

skull and single bones to represent the carpals in the hands.

Although not required, the H-Anim specification suggests that body segments be built

in place. The skin model of H-Anim VHs can be modelled as separate geometric segments,

which closely follow the joint hierarchy that is computationally efficient but results in

poor quality. It can also be modelled as a seamless skin geometry for improved results

but requires more data and thus more processing [3] [9].

The H-Anim standard is very flexible but does have a few limitations that forces us

to adapt and extend it. The standard does not specify joint centre locations or joint

rotational limits. Elliot et al. [31] found that the hand bones in H-Anim did not provide

enough flexibility for hand shapes found in sign languages. Another limitation is the fact

that H-Anim only provides a simple set of bones for facial animation and it is suggested

by the specification that the MPEG-4 FAP set be used for facial animation [3].

2.5 Virtual Human Models for Animation

In 3D computer graphics there is always the trade-off between visual quality or realism

and display speed [11]. This trade-off is very apparent for VH modelling as it has ad-

vanced from modelling simple single layered models to complex multi layered models.

Single layered models have only an outward skin surface model [68] [72]. Multi layered

models strive towards realism and can include skin, muscles and a skeleton [6] [64]. Some

researchers have gone to great lengths to model anatomically detailed VHs such as that of

The Visible Human Project [93]. We are only interested in models of the upper body that

have been developed for animation as our goal is to model and animate VHs of adequate

quality with the necessary features to animate sign language gestures. In the sections

that follow, we review methodologies employed and VH models developed for animation.

Researchers aimed their efforts to create separate modules for facial animation, body

animation and hand animation which dictates the structure of our review [44].
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(a) (b) (c)

(d) (e) (f)

Figure 2.7: (a) Parke’s facial model [66]. (b) Waters’s facial model [100]. (c) Lee’s facial
model [53] . (d) Greta facial model by Pasquariello and Pelachaud [67]. (e) The facial
model used by Barker [14]. (f) Pighin’s facial model [68].

2.5.1 Face and Head Feature Models

Frederick Parke [66], one of the forerunners in facial modelling and animation, developed

facial models as early as 1972. Parke used a polygonal representation for the skin and

made a very important observation with regard to using polygonal models. He observed

that a polygonal model of the face must be specially developed and optimised to allow

for natural movement of the polygons to acquire natural looking results. The approach

he took was to assume that the face is symmetric and painted a polygonal mask on one

half of the face of an assistant. Photos of the assistant with different facial expressions

was then captured from two views. Photogrammetry was then applied in the sense that

measurements were taken from the photographs to develop a polygonal model with the

best topology to represent a face. The resultant polygonal model had only 124 polygons

and 202 vertices which was visually improved by applying a smooth shading algorithm.

Parke further improved his model by interactively creating nostrils, models for the eyes,

teeth and inside of the mouth [66]. To perform animation, Parke used morphing by storing

the face topology and phases (morphs) of the face in files. The model developed by Parke

can be seen in Figure 2.7 (a).
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Waters [100] developed a polygonal facial model and a muscle parameterisation and

deformation process to perform facial animation. His model was developed by also using

a photogrammetry technique similar to that of Parke [66] [100]. To avoid unwanted

artefacts, such as polygon intersection and “facet popping”, Waters increased the polygon

count at curving regions and triangulated his model. His initial model had no eyelids,

eyes and teeth. These were modelled interactively by adding curves near the eye socket

regions for eyelids, creating swept revolutions to model eyeballs and using sets of Bézier

curves to model teeth [100]. It is not clear what mechanism was used to perform jaw

rotation. The model developed by Waters can be seen in Figure 2.7 (b) with a surprised

expression.

Lee et al. [53] proposed a methodology to model facial models for individuals by

scanning their heads to acquire model and texture data. After scanning, their algorithm

automatically fits a generic face model, which is parameterised with facial muscles, to the

scanned data [53]. Animation of the face is then performed through a three layer physics

based muscle process. Several improvements to facial animation is proposed by Lee et al.

[53], such as algorithms to estimate the structure of the skull and to prevent the skin from

penetrating the skull. They interactively developed models for the eyes as spheres, the

eyelids as polygons and the teeth as NURBs. They also modelled the hair, neck and bust

as polygonal models by extending the facial model to the boundaries of the scanned data.

A very important feature, which is not discussed by Lee et al. [53], is the mechanism to

perform jaw rotation to open the mouth. The model developed by Lee et al. can be seen

in Figure 2.7 (c) with different facial expressions.

Pasquariello and Pelachaud developed Greta, a proprietary facial animation system

that complies with the MPEG-4 specification [67]. Greta’s facial model was manually

modelled and is based on a polygonal surface that includes models for the eyes and teeth.

During model development, particular attention was given to the mouth, sides of the

mouth (nasolabial furrow), eye and forehead regions. Greta’s model was parameterised

with the MPEG-4 FDP facial feature point set by a function that assign weights of decreas-

ing influence from a feature point. Locations that are affected by FAPs was subdivided

to improve results during animation. Algorithms to produce auxiliary deformations such

as bulges and wrinkles when manipulating FAPs were also implemented. One thing that

is not clear is the mechanism they use to open the mouth. The final Greta model has a

total of 15000 triangles and can be seen in Figure 2.7 (c) with a fearful expression.

Barker acquired a facial model that was modelled with NURBs surface patches [14].

His main goal was to develop a muscle parameterisation and deformation process for facial
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animation based on that by Waters [100]. Animation in Barker’s system is limited to the

face area and there are no models for the teeth and tongue [14]. Also, Barker’s system can

not perform jaw and head rotations. Barker’s facial system has many of the advantages

and disadvantage related to NURBs as discussed in Section 2.1.1.3. A result of Barker’s

system can be seen in Figure 2.7 (e) with a fearful expression.

Pighin et al. modelled human faces by using a photogrammetry technique from a head

model developed with an interactive modelling package [68]. They captured multiple

images of a face from different views that were manually marked with an initial set

of 13 feature points. These marked images were then used in an initial model fitting

process by scattered data interpolation to deform a generic head model into an estimate

of the captured head [68]. After initial fitting, they perform shape refinement by using

an additional 99 feature points to deform the head model to closely match a captured

face. Their deformed model is then textured with the captured images which are blended

together on the surface of their model for added realism. Pighin’s system has no separate

models for the eyes, teeth, ears and hair. These features are individually textured in a

separate process onto their model. To perform animation, they modelled and textured

head models of a person with different facial expressions which are then used in a morphing

process. The model data along with facial textures are morphed, which yielded highly

realistic results as can be seen in Figure 2.7 (f).

(a) (b) (c)

Figure 2.8: (a) Badler’s Jack figure model [66]. (b) The model developed by Kalra et al.
[44]. (c) The optimised model by Seo et al. [76].
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2.5.2 Articulated Figures

2.5.2.1 Bodies

In 1993 Badler et al. published a book on simulating humans [11]. The book is an

accumulation of research they performed at the University of Pennsylvania to develop

their VH system called Jack. Their primary goal was to model and animate VHs to be

used by engineers whom design products for humans with improved ergonomics [11]. They

developed what seemed to be a simple polygonal model that can interact with objects

in a virtual environment. Despite the simple appearance, much time was invested into

modelling VHs of realistic proportions and their skeletons with joint rotational limits by

using an anthropometry database [11]. Their skin model had a total of 183 polygons which

was attached to a skeleton with 69 segments (bones), 68 joints and 136 DOFs. Badler et

al. also paid special attention to modelling the shoulder as it is one of the most complex

parts to model and animate [11]. Jack became a proprietary system which now makes use

of several anthropometric databases, including that of CAESAR [78]. The original Jack

model can be seen in Figure 2.8 (a).

In 1998, Kalra et al. developed the only system with modules that could perform

animation of the body, hands and face [44]. We limit our discussion to the model of their

body without their face and hand models, since these are modelled as separate entities.

The body is also discussed more in depth than the face or hands. An interactive modelling

package named BodyBuilder was used to model the body on 3 layers for male and female

figures [44]. The first layer of the body includes a skeleton with 32 joints and 74 DOFs

along with a 6 DOF joint to position the skeleton. The second layer, which defines the

volume of the body such as muscle and tissue, is modelled with metaballs and ellipsoids

that are attached to the skeleton. The third layer, which represents the skin, is modelled

using spline surfaces by performing ray surface intersection tests on the second layer.

Since their body was modelled separately from the face and hands, they had difficulty

to connect all the models together [44]. Kalra et al. found it necessary to convert their

model to a triangle polygon mesh to take advantage of hardware acceleration and simplify

the integration between the head, hands and body. A male figure developed by Kalra et

al. with 14000 vertices and 13500 textured triangles is shown in Figure 2.8 (b).

Seo et al. [76] used a generic model with skin and skeleton from one of their previous

projects to develop a methodology to quickly model VHs that are ready for animation.

They employ the H-Anim LoA 2 to define the skeleton, which is attached to the skin

model with LBS. Their choice for H-Anim LoA 2 is to allow them to use MPEG-4 BDPs
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during animation. Seo et al. further implemented volume deformation of: the breasts by

using a NURBs curve and directly controlling the curve control points; the belly (stomach)

by using a Bézier curve and directly controlling the curve control points; and the bottom

(buttocks) by using FFD [76]. To optimise their model for animation, Seo et al. employed

an intelligent mesh decimation technique to reduce the number of vertices and polygons

(faces) in their model. The mesh decimation leaves more vertices and faces at regions of

high curvature such as the joints [76]. In Figure 2.8 (c) the optimised model with 4726

vertices and 8578 faces used for animation by MPEG-4 BDPs is shown.

Moccozet et al. [61] obtained scanned body data which was then pre-processed by

triangulation and hole filling. After pre-processing a scanned model, H-Anim body feature

points was used to automatically establish a correspondence with a generic model and

its underlying skeleton [61]. Once a correspondence was established, the generic model

was automatically fitted within the pre-processed model. The fitting starts with a coarse

fitting process and is then refined with a fine fitting process, which was developed by Seo

and Thalmann [77]. It should be noted that the skeleton of the generic model was of a

low LoA that helped the fitting process [77]. An overview of the methodology developed

by Moccozet et al. is depicted in Figure 2.9.

Figure 2.9: Overiew of the methodology developed by Moccozet et al. [61].

Wang and Ressler [99] developed a toolkit to convert CAESAR body models into

seamless H-Anim compliant VHs. Only body models in the standing posture were used

which was first pre-processed. The CAESAR bodies were simplified from 200000 vertices

and 300000 polygon faces to have only 50000 polygon faces before being hole filled. Land-

marks on the CAESAR bodies were then used to estimate joint centre locations for an
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H-Anim skeleton. Wang and Ressler found that the CAESAR models were still too com-

plex after pre-processing [99]. They therefore found it necessary to use a semi-automatic

process to segment the bodies into parts. After body segmentation, a skinning algorithm

similar to LBS was applied [99]. An overview of their methodology is depicted in Figure

2.10 (a) with an example of a skinned CEASAR body in Figure 2.10 (b).

(a) (b)

Figure 2.10: (a) Overiew of the methodology developed by Wang and Ressler. (b) Example
of a skinned CEASAR body [99].

2.5.2.2 Hands

Most of the earlier work on hand modelling and animation focused primarily on interact-

ing with objects in virtual environments. Thalman et al. designed a simple skeleton of

the hand and employed the concept of Joint-dependent Local Deformation (JDL) oper-

ators to map surfaces onto a skeleton [56]. They also developed algorithms for collision

detection, algorithms to simulate joint rounding and muscle inflammation. Although

computationally expensive, visual quality of animations while grasping objects was ac-

ceptable. Thalman et al. was amongst the first to separate the geometric surfaces from

the underlying skeleton thus resulting in two layers. This enabled them to employ a

myriad of surface modelling techniques to further enhance visual quality [56].

Wan et al. also developed a virtual hand for object grasping [98]. They developed a
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(a) (b) (c)

(d) (e) (f)

Figure 2.11: Hand models developed by different researchers: (a) Wan et al. [98]. (b)
Albrecht et al. [6]. (c) Rhee et al. [71]. (d) Rijpkema [72]. (e) McDonald et. al [60]. (f)
Van Zijl and Raitt [96].

3 layer model of the hand that includes skin, muscles and a skeleton. The geometry of

the skin layer was modelled by using metaballs [98]. Metaballs are excellent for modelling

organic surfaces but computationally expensive as discussed in Section 2.1.2.1. They

therefore found it necessary to convert the metaball representation to a polygonal surface

to realise an interactive application. Upon conversion to a polygonal surface, they found

it necessary to apply texture mapping to improve the visual result of their hand model.

Their muscle layer is based on Dirichlet Free-Form Deformation and used to deform the

skin. The skeleton layer, instead of the muscle layer, serves as the primary animation

control interface. The hand model developed by Wan et al. can be see in Figure 2.11 (a).

Albrecht et al. [6] developed a physics-based anatomical model of the hand from

scanned data. Their model is also based on 3 layers with skin, muscle and a skeleton also

like that of Wan et al. [98]. All layers have a geometric model to improve realism with the

muscle model including pseudo muscles for deformation. The pseudo muscles are used to

rotate bones by specifying muscle contraction values. Although Albrecht et al. achieve

real time frame rates with high end hardware, their approach has two drawbacks. These

are that their approach is computationally expensive and also it is not straightforward

to specify muscle contraction values to achieve desired movements [6]. The hand model

developed by Albrecht et al. can be seen in Figure 2.11 (b).

Rhee et al. [71] developed a technique to model human hands from surface anatomy.

Their approach uses photogrammetry to automatically construct “person-specific” hand

models from a single hand image presenting the palmar surface. Upon capturing a hand
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image, a predefined generic hand model is deformed by employing scattered data interpo-

lation and radial basis functions. Crease information of the palm and fingers is extracted

and used to estimate joint centre locations. After modelling and skinning, where curve

segment matching is also performed, the hand image is used as a texture to improve re-

alism. Although their technique produces results that are visually appealing, they avoid

animation and skin deformation [71]. The hand model developed by Rhee et al. can be

seen in Figure 2.11 (c).

One of the first works to address the use of virtual hands for sign language visualisation

is that of Steinback [83] that is applied to finger spelling. Steinback’s hand model is based

on the one developed by Rijpkema [72]. The model is highly simplified with only a single

layer modelled as separate geometric segments that results in a highly unrealistic looking

hand. The hand model developed by Rijpkema can be seen in Figure 2.11 (d)

McDonald et. al [60] aimed to developed an improved hand model for sign language

visualisation but used the same modelling technique of separate geometric segments. Al-

though McDonald’s hand model has no embedded skeleton, it has realistic joint rota-

tional limits and rotation correlation between finger segments. Van Zijl and Raitt [96]

also modelled their hand as separate geometric segments but their goal was to develop

a collision avoidance strategy for finger-spelling that is based on deterministic finite au-

tomaton (DFA). The hand model by McDonald et al. can be seen in Figure 2.11 (e) and

that of Van Zijl and Raitt in Figure 2.11 (f).

2.6 Summary

The modelling of virtual humans is a very complex and time consuming process. There

is a myriad of techniques to represent, model and parameterise VHs for animation. Two

standards to parameterise and animate VHs are MPEG-4 FDPs and H-Anim. VH mod-

els developed thus far do not have all the necessary features to effectively visualise sign

language. Due to the complexity of modelling and animating VHs, researchers found it

necessary to develop separate modules to model and animate the face, body and hands

which was then difficult to integrate. Earlier methodologies to model VHs adopted simple

single layer models and was manually parameterised for animation. Later methodologies

adopted complex multi layer models that are automatically or semi-automatically param-

eterised for animation.
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Sign Language Visualisation

In the previous chapter, our discussion was geared towards the modelling and animation

of VHs. This was done as the majority of sign language visualisation (SLV) systems or

frameworks do not discuss the methodologies and techniques they employ to model VHs.

Also, some SLV systems use proprietary VHs systems or VH systems that are of poor

visual quality that lack the necessary model features to effectively visualise sign language.

In this chapter a focused literature review on SLV is provided. We first discuss sign

language notation systems (SLNS) as they are part of many SLV systems and used as input

to animate and control VHs. The use of Sign Writing Markup Language (SWML) as part

of our open framework to visualise sign language is hereby motivated. Later we discuss

SLV systems that use video with their advantages and disadvantages as well as discuss

systems that use VHs with their advantages and disadvantages. We also give a brief

overview of some SLV systems, along with the technologies, VH models and animation

control inputs they employ. The chapter ends with a summary of our discussions.

3.1 Sign Language Notation Systems

A sign language notation system (SLNS) is a writing system to record sign languages for

research or educational purposes [33] [81] [84]. There is no standard SLNS and there is

much debate on their usefulness in an English to sign language translation system [43]. It

was stated by Huenerfauth [43] that, “any symbolic representation of an ASL performance

will omit some amount of detail, and choosing what details are acceptable to omit when

developing an artificial encoding scheme for a natural language is a challenging and error-

prone task”. While this is a valid statement by Huenerfauth, the development of SLNSs

led to the gathering of information on sign languages and a better understanding of the

29
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Gloss:

English:

Gloss:

English: John did not buy a book

What did John buy ?

Figure 3.1: Glosses of American Sign Language and their English translation [5].

these languages and the Deaf [5] [33] [81] [84]. Also, with respect to SASL, Van Zijl [94]

found that “there is almost no published information available”. A SLNS would aid in

gathering and publishing such information. The next sections discuss the most commonly

used SLNS used in SLV with their advantages and disadvantages.

3.1.1 Gloss Notation

Gloss notation is employed not only in the transcription of sign languages but also to

translate between different languages and hence the English glossing of sign languages [5].

A gloss, in the transcription of sign language, is written in all upper case characters and

approximates an English word to a sign language gesture. Since gloss notation is used

to transcribe sign languages on the word level, a significant amount of detail is left out,

which leads to ambiguity [81].

Gloss notation has been further extended by different researchers. Some of these

extensions include features, such as the marking and duration of non-manual gestures,

as can be seen in Figure 3.1, by a line above the gloss [5]. Extensions by different

researchers lead to non-standardised features which are still not enough for unambiguous

interpretation. Because of non-standardisation and ambiguity, there are some difficulties

in sharing knowledge with regard to sign languages [81]. In essence, gloss notation allows

for easy transcription and basic translation but is not suitable for systems that aim to

provide accurate SLV.
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BT
Tx

�

tab dez sig

Figure 3.2: ASL transcription of “don’t know” in Stokoe notation.

3.1.2 Stokoe Notation

In 1960, Dr. William C. Stokoe jr, published a paper on sign language structure and was

one of the first to show that sign languages have linguistic features that showed them to

be natural languages [84]. Through careful analysis, Stokoe showed that American Sign

Language (ASL) contains both gestures and finger spelled English that are structurally

different. Moreover, Stokoe introduced the concept of cherology which is equivalent to

the phonology of spoken languages. Stokoe used the concept of cherology to develop a

transcription system to aide in the study of sign languages or any gestural communication

which was subsequently named Stokoe notation [84].

A Stokoe transcription of a sign language gesture is written from left to right and

consists of three parts or cheremes (which are also referred to as phonemes) namely the

tabula (tab), designator (dez) and signation (sig) as can be seen in Figure 3.2. As can be

seen in Figure 3.2, these phonemes are written with the use of roman characters and iconic

symbols designed by Stokoe himself. The tab phoneme relates to the positon relative to

the body where a gesture is performed, such as parts of the face or trunk of the body.

The dez phoneme relates to the configuration of one or both hands, such as their shape

and orientation of the palm. The sig phoneme relates to the change of the tab or dez

phonemes that results from signing [84].

To use Stokoe notation as input to SLV systems, some researchers have developed

variants such as ASCII-Stokoe [58] to encode phomemes as ASCII characters. Since Stokoe

notation is based on the concept of phonemes, it has a few advantages over the use of gloss

notation when used as input to a SLV system. Some of these advantages include: clearly

defined hand positions, hand shapes and palm orientations; transcriptions of successive or

repetitive motions; and transcriptions of simultaneous motions. These advantages allow

for the re-use of animation data when encoding phonemes as animations and leads to
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smaller memory requirements as opposed to encoding animations as gloss [39] [49].

Stokoe notation also have disadvantages similar to that of gloss, such as that it leaves

out a significant amount of detail with regard to non-manual gestures. Another limitation

of Stokoe notation includes the fact that it has only a total of 19 hand shapes and 13

hand locations, which is much less than the actual number of hand shapes and locations

found in sign languages today [84] [91] .

3.1.3 Hamburg Notation System (HamNoSys)

The Hamburg Notation System (HamNoSys) [92] was created at the University of Ham-

burg and is primarily used for research. HamNoSys, which is based on Stokoe, is also a

phonetic SLNS with several successive versions and improvements [92]. It makes use of a

much larger “alphabet” than Stokoe notation with more than 200 iconic symbols in Ham-

NoSys 3 [90]. Several changes and modifications are made in HamNoSys 4 [91] with more

symbols to transcribe non-manual gestures. The improvements to transcribe non-manual

gestures in HamNoSys 4 includes symbols for the transcription of: shoulder movements;

body movements; head movements; eye gaze; facial expressions; and mouthing [31] [91].

HamNoSys can be applied to the transcription of any sign language as it does not use

a national diversified finger spelling [92]. An example transcription of the German Sign

Language (DGS) gesture for “going to” can be seen in Figure 3.3. A complete description

of the transcription in Figure 3.3 can be found in [48].

Figure 3.3: DGS transcription of “going to” in HamNoSys [48].

Although HamNoSys makes several improvements to Stokoe notation, it is still not

without limitations. HamNoSys did not have a simple to use machine readable represen-

tation and its syntax was described as unwieldy by Kennaway [49]. It is also ambiguous

in the sense that: it lacks default locations of the hands; it makes use of concepts such as

“close to”, “chest level”, “fast” and “slow” with no exact values; and it does not specify

duration of movements [49]. Moreover, the use of HamNoSys is limited to experts as it is

difficult to use and possible to develop different transcriptions of the same gesture [49].



CHAPTER 3. SIGN LANGUAGE VISUALISATION 33

Facial expression

Hand shape and orientation

Movement

Contact

Figure 3.4: SASL transcription of “hello” in SignWriting.

3.1.4 SignWriting

SignWriting was invented by Valerie Sutton in 1974 and derived from her notation sys-

tem to record body and dance movements [86]. Sutton developed SignWriting with the

intention to record sign languages for research purposes [86]. Over the years, SignWriting

evolved with the aid of many Deaf people and has proven to be easy to use and able

to represent any sign language [86]. This led to SignWriting being widely accepted by

different groups and it making its way into education [33] [86]. SignWriting can be used to

transcribe sign language on different levels of detail and includes symbols for hand shape

and orientation, movements, facial expressions, shoulder movements, contacts, space and

punctuation [86]. The symbols are used in a pictograph called a sign box which is very

different from the previously discussed SLNS. An example for the SASL transcription of

“hello” using SignWriting can be seen in Figure 3.4. Features such as hand and contact

locations are indicated by their arrangement in a transcription.

In this thesis, our goal was to employ Sign Writing Markup Language (SWML) [87],

which is the Extensible Markup Language (XML) form of SignWriting. SWML was

developed for the storage, processing and interchange of SignWriting texts [87]. Due to

the popularity of SignWriting, Sign Bank Markup Language (SBML) [86], which is a

variant of SWML, has been used as a medium to store SignWriting databases such as

SignPuddle [87]. SBML has a document type definition (DTD) that produces a more

compact XML representation than the DTD for SWML. Both SWML and SBML are

attractive to use in a SLV system when one considers the popularity of SignWriting. This

will aid in gathering and publishing information on SASL. SignWriting however does have

limitations in that it includes: less hand shapes than HamNoSys; if suffers from ambiguity

problems similar to that of HamNoSys such as motion duration; and it requires some study

to be used effectively as one can also produce different transcriptions of the same sign

language gesture [87]. Despite these limitations, Papadogiorgaki et al. [65] were highly

successful in using SWML in a SLV system.
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3.2 Sign Language Visualisation Systems

We define sign language visualistion (SLV), also known as sign language synthesis by

Grieve-Smith [39], as a process that uses any visual medium, such as captured images,

3D rendered images or video to display dynamic sign language performances from a tran-

scription. This transcription can be based on an SLNS or any formal description that can

be used by a computer program to infer a sign language performance. The nature of the

SLV problem is such that one is required to build a database or lexicon of sign language

gestures [39]. SLV systems can be classified by the type of visual medium or internal

data representation they use to represent such a database or lexicon. In the sections that

follow, we first discuss video SLV after which we discuss VH SLV that uses animation

data.

3.2.1 Video Sign Language Visualisation

Video SLV systems can easily capture videos of real people performing sign language,

which is then stored as dictionaries. Visualisation is then performed by merely looking up

and displaying video entries in a dictionary. Video based approaches have two primary

advantages over VH SLV systems. The first advantage is the ease of capturing and

acquiring a large lexicon of sign language gestures. The second advantage is being able

to capture natural and realistic performances that incorporates both manual and non-

manual gestures. There are however three very important problems that make the use of

video based systems undesirable. The first problem is that the storage requirement for

video of sufficient quality is high in that it requires large amounts of disk space [39] [83].

The second problem is that the transmission of video requires large amounts of bandwidth

to make quality sign language material remotely available [63]. The third problem is the

automatic joining and blending of videos to create natural new sign language output

sequences which is extremely difficult [83]. A solution to the third problem of joining

video segments was investigated by Krapez and Solina [50].

3.2.1.1 Investigating the Joining of Videos

Krapez and Solina developed a system to visualise Slovene Sign Language (SSL) by using

gesture video segments [50]. The gesture video segments they captured, have a sign

performer first assume a neutral pose, perform a gesture, and then assume the neutral

pose afterwards. Their aim was to build a translation system that uses text as input

from which a named sequence of sign language gestures were constructed. This named
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sequence was then used to look up gesture video segments of sign language words. Once

the sequence of videos have been looked up, they are automatically joined and blended

together. To improve blending results between video segments, they introduced a function

that uses four criteria to locate parts in video segments that are very similar. These

criteria include [50]: palms start position; palms outside the start position; palms over

the chest; palms close to each other. Their system could successfully join videos with

satisfactory results although they needed to store palm locations for each frame of every

video separately, which in turn increased the data storage requirement [50].

3.2.2 Virtual Human Sign Language Visualisation

Virtual Human (VH) Sign Language Visualisation (SLV) can be seen as the opposite of

video SLV in the sense that it is more complex to create or capture animation data but

in turn solves all three problems associated with video SLV systems mentioned in the

previous section [39] [43]. VH SLV have several other advantages over video based SLV

which include: VHs can be interchanged or have their appearances altered whereas video

must keep with a single signer; visualisations can be viewed from different viewpoints; and

the possibility to visualise advanced sign language features, such as classifiers that require

dynamic locations in space [34] [39] [43] [65]. The creation and capture of animation data

is discussed in Section 3.2.2.1 as it pertains to the problem of creating or capturing an

animation dictionary or lexicon. Animation data is usually created with keyframing or

captured with motion capture equipment. Both of these techniques have advantages and

disadvantages. Other important disadvantage of VH SLV is the difficulty to model and

animate VHs of adequate quality as discussed in Chapter 2, as well as to animate VHs on

a higher level through an SLNS or formal description. In Section 3.2.2.2 we give a brief

overview of VH SLV systems and discuss aspects such as the technologies, VH models

and input for animation control they employ.

3.2.2.1 Creating Animation Dictionaries

Keyframing

Keyframing is the process of posing a VH by hand and storing DOF parameters, such as

joint transformations (rotation angle, translation, scaling), morph targets or any type of

animation control parameters as key values (poses) at specified frames [85]. Animation is

then achieved by interpolating between key values over time. The skeleton of a VH can be

posed by either forward kinematics (FK) or inverse kinematics (IK). Forward kinematics
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is the process of specifying joint rotation angles in a forward manner beginning at an

ancestor, joint moving all the way down to descendant joints [41]. Inverse kinematics

is the process of placing an “end effector” (child or descendant joint) at an arbitrary

location in space and automatically calculating joint rotation angles of ancestor joints to

satisfy the “end effector’s” location [41]. The advantages of keyframing are: less storage

requirements to that of motion capture as keyframes can be optimised; it is inexpensive

to create animation data; and some interactive modelling packages provide automatic

keyframing features to aid in the process [8] [16] [20]. Disadvantages of keyframing are: it

can become complex and time consuming as it is dependent on the number of animation

parameters that must be controlled; modelling packages that can be used for keyframing

have a learning curve and therefore require user training; and modelling packages do not

provide dictionary look-up facilities that can aid in the creation of complex motions by

combining stored keyframe data [8] [16] [20].

Motion Capture

Motion capture on the other hand is the automatic capturing or recording of animation

control parameters from a live human performance by using specialised equipment. Earlier

motion capture equipment consisted of a wearable suit or gloves with potentiometers to

measure body and hand movements [85]. Later motion capture equipment employ optical

markers attached to a performer and use specialised cameras to record face and body

movements [85]. An obvious advantage of motion capture is the capture of realistic and

lifelike human performances. Disadvantages associated with motion capture includes:

expensive equipment; it is time consuming and difficult to set up and calibrate motion

capture equipment; and captured motion data must be pre-processed else it is too difficult

to use and edit [43] [48] [85].

3.2.2.2 Overview of Systems

SignSynth

SignSynth is an online SLV system developed by Angus Grieve-Smith at the University

of New Mexico [39]. The system makes use of the older Web3D technology, VRML [2]

for 3D visualisation. It employs ASCII-Stokoe as input to control a simple VH that

is capable of manual and non-manual gesture animations. The ASCII-Stokoe is parsed

with a Perl script which then provides input to a keyframe animation generation module.

The animation generation module in turn builds a VRML file containing the VH with
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animation data that is subsequently published on the internet [39]. The VH developed

by Grieve-Smith can be seen in Figure 3.5 (a).

ViSiCAST and eSIGN

ViSiCast, with eSign being its successor, were European Union funded projects developed

at the University of East Anglia to translate from English to BSL and other European

sign languages [31] [48] [108]. A custom 3D rendering application was developed for

ViSiCAST and a web plugin for eSIGN [108]. The VH used in ViSiCAST, namely Visia,

was developed by Televirtual Ltd. Visia has a custom skeleton and can perform body

and hand animations but is unable to perform facial animation. Guido on the other

hand, also developed by Televirtual and used in eSIGN, is more advanced than Visia

and can perform facial animation by using morphs [31]. There is not much information

on the internal development of both Visia and Guido as both ViSiCAST and eSign are

closed source projects. To control the VHs, a formal and proprietary XML representation

of HamNoSys, namely SiGML, that uses keyframe animation, was developed as input

to both VisiCAST and eSign [31] [49]. The animation generation module that takes

SiGML as input also considers a VH’s skin geometry, skeleton and surface feature points

to visualise sign language from SiGML [31] [49]. The VH Visia from VisiCAST can be

seen in Figure 3.5 (b) and Guido from eSIGN in Figure 3.5 (c).

Thetos

Thetos is a translation system that was developed at the Silesian University of Tech-

nology to translate from written or spoken Polish to Polish Sign Language [35]. Their

system is implemented with OpenGL as a custom 3D rendering application to visualise

sign language [105]. A simple VH with 15 DOFs in each hand that can only perform

manual gestures (see Figure 3.5 (d)) was developed. To control and animate their VH, a

formal “gestographic notation” that is used by the Polish Deaf community and to encode

keyframe animations was employed [35].

The SYNENNOESE project

Karpouzis et al. [46] implemented a virtual signer tool for the SYNNENOESE project

which is used to help in the education of Greek Sign Language (GSL). Their tool uses

VRML [2] for 3D visualisation and H-Anim as a skeletal representation for their VH. There

is not much detail on their VH and it is only capable of performing manual gestures. An
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interpreter tool is used to convert GSL HamNoSys transcriptions into a keyframe based

scripting language called Scripting Technology for Embodied Persona (STEP), which is

subsequently used to control and animate their VH [46]. The VH used in the SYNEN-

NOESE project can be seen in Figure 3.5 (e).

VSigns

VSigns was developed by Papadogiorgaki et al. [65] at the Informatics and Telemat-

ics Institute in Greece. They employed an MPEG-4 BAP player developed by École

Polytechnique Fédérale Lausanne (EPFL) for hand and body animation and an MPEG-4

FAP player developed by EPFL and the University of Geneva for facial animation.The two

MPEG-4 animation players were adapted and integrated with the head model attached

to the body. Teeth were also later added to improve the appearance of the VH [65]. Their

system makes use of SWML as keyframe based input that is interpreted and converted

to MPEG-4 FBAP. The MPEG-4 FBAP in turn is generated as a VRML animation with

an H-Anim compliant VH (see Figure 3.5 (f)) to visualise sign language [65].

Auslan Tuition System

The Auslan Tuition System was developed at the School of Computer Science and Software

Engineering at the University of Western Australia as a teaching tool for Australian Sign

Language (Auslan) [104] [106] . A custom 3D rendering application was developed using

OpenGL for visualisation [105]. An earlier version of the system used a cartoon like VH

skin and a skeleton with 39 joints that could only perform manual gesture animations.

The skin was subsequently replaced with a VH skin modelled in Poser [80], which can

be seen in Figure 3.5 (g). Their system was later extended with non-manual gestures

by using facial morphs for facial animation on their new model [104]. A custom XML

representation that stores keyframe animation data was developed for input to the system

to visualise Auslan [104] [106].

SASL-MT

The South African Sign Language Machine Translation (SASL-MT) project that is to

translate from English to SASL is being developed at the University of Stellenbosch [94].

The facial animation system by Barker [14], discussed in Section 2.5.1, was developed for

the SASL-MT project and employs VRML for 3D visualisation. Also, a generic pluggable

VH system that use H-Anim compliant VHs was developed by Fourie [34]. Fourie’s
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system was to be integrated with the facial animation system by Barker for a complete

VH system. Fourie used Java 3D to implement the VH system and designed both an

animation controller and SignSTEP as input to control and animate VHs. SignSTEP is

based on STEP which is employed by Karpouzis et al. [46]. An H-Anim VH used in the

system developed by Fourie can be seen in Figure 3.5 (h).

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 3.5: Virtual humans used by different sign language visualisation projects: (a)
SignSynth [38]. (b) VisiCAST [108]. (c) eSIGN [108]. (d) Thetos [35]. (e) SYNENNOESE
[46]. (f) VSigns [65]. (g) Auslan Tuition System [104]. (h) SASL-MT [34].

3.3 Summary

Sign language notation systems are used to record sign languages for research and educa-

tional purposes. All of the SLNS have limitations and need to be adapted to be used in

an SLV system. The most attractive SLV is that of SignWriting as it is easy to use with

a large user community. VH SLV systems have a significant number of advantages over

SLV that uses video. Also, the majority of VH SLV uses keyframe animation data which

is difficult to create but easier to manage and use.



Chapter 4

Methodology and Implementation

In Chapter 2, we established the need for an inexpensive methodology to simplify the

modelling of quality VHs with the necessary features that can perform face, body and

hand animation. The need for such a methodology was supported by Chapter 3 as SLV

researchers do not concentrate on the challenges of modelling VHs. Their efforts are

mainly focussed on employing standards and developing animation control for SLV. In

this chapter, we present our experimental research approach and the methodology we

developed to model and animate VHs of adequate quality with the necessary features that

can perform face, body and hand animation. Our methodology is unique in the sense that

we employ standards and open technologies to conceive a simple yet effective methodology

and framework to model and animate VHs. We employ the H-Anim standard, that we

adapt and extend with a slight variation of MPEG- 4 FDP facial feature points, to build

a generic skeleton. This generic skeleton is then enhanced further by developing flexible

hands and imposing joint rotational limits to ensure physically plausible poses. We also

discuss animation controllers that we implemented in Blender. At the end of the chapter

we provide a summary of our methodology.

4.1 Open Technologies

To conceive a methodology and open framework to model and animate VHs for SLV, we

initially had to investigate various standards and open technologies in order to find ones

that satisfy our requirements. Our requirements for standards and technologies are that

these must be: open (open source) with active development and large user communities;

flexible and extensible; allow us to model VHs with all the necessary features; easy to

use; provide programmable interfaces and deliver good results in terms of visual quality

40
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and real-time performance. The MPEG-FDP and H-Anim standards we discussed in

Section 2.4.1 and Section 2.4.2 respectively have been widely adopted and satisfy some

of our requirements despite their limitations. In the sections that follow, we discuss the

open technologies we employ that we believe satisfy all our requirements in addition to

adapting and extending the standards mentioned above.

4.1.1 MakeHuman

MakeHuman is an open source project developed by the MakeHuman Team [57] to address

the need to easily model quality and realistic looking VHs. We decided to make use of

MakeHuman as it is a completely free and open source parametric polygonal VH modeller

(see Section 2.2.2) used by professionals to design VHs [57]. By employing MakeHuman,

we free ourselves from the burden of modelling quality VHs from scratch or acquiring VH

models of poor quality. One of the goals of MakeHuman is to develop an anatomically

correct VH model that has only “the necessary number of vertices and is optimised for

animation” [15].

MakeHuman has been in development for over a period of roughly 8 years with several

improvements to both the user interface and the base (template) polygonal models being

used. The earliest version of MakeHuman was developed as a Python script in Blender

by Manuel Bastioni and had a polygonal model of the skin with approximately 7000

vertices [16] [15] [70]. Due to the complexity of the MakeHuman project and its slow

performance as a Python script in Blender, later versions were developed as standalone

C++ applications.

The version of MakeHuman we employ in this thesis, version 0.9.0, is a C++ applica-

tion. The polygonal skin model in version 0.9.0, known as the K-Mesh by Kaushik Pal,

was developed from anatomical references and includes separate polygonal models for the

eyes, eyelashes, teeth and tongue [15]. The K-Mesh was designed to be sexually neutral

and can be transformed to male or female figures. It has the following model geometry

details [15]:

• Number of vertices: 10936

• Total number of faces: 10857

• Number of triangular faces: 470

• Number of square faces: 10387
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The MakeHuman interface of version 0.9.0 along with the K-Mesh can be seen in

Figure 4.1. MakeHuman 0.9.0 has a simple to use interface with a large database of

modelling targets. It is also capable of posing VHs and exporting models in Wavefront

object file format. At the time of writing, a new version of MakeHuman namely version

0.9.1 was released. MakeHuman version 0.9.1 has several improvements with a completely

redesigned interface with the following features: Tetra-parametric GUI; Natural Pose

System; improved polygonal mesh for subdivision; COLLADA1 and Wavefront object

export [57]. We refer the reader to the MakeHuman website for more details on these

features [57].

Figure 4.1: The MakeHuman interface of version 0.9.0 with the K-Mesh.

4.1.2 Blender

Blender is a free and open source generic interactive 3D modelling package that is being

developed by the Blender Foundation [16]. Development of Blender began as a closed

and internally used project by NeoGeo and Not a Number (NaN) in the late 1990s. It

was subsequently released under the GNU General Public Licence after NaN declared

bankruptcy in 2002 [17]. Blender is today one of the most active open source 3D projects

with a large international user community. The large user community can be attributed to

fact that Blender can be used for modelling, shading, animation, rendering, compositing

and real-time interactive applications [16].

Blender, which is currently at version 2.48, is an advanced keyframe animation system

and has a vast range of tools and features that include: vertex shape keys (morphing),

1COLLADA is an interchange file format for 3D applications.
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Bézier, B-spline and quaternion curves for interpolation. The set of features implemented

in Blender which are very attractive and allows it to satisfy our requirements are: its

multi-window user interface; the skeleton (armature) system with scale, rotation and

translation constraints; forward and inverse kinematics; Catmull-Clark subdivision sur-

faces; implementation of the automatic skinning algorithm by Baran and Popović (see

Section 2.3.4); an embedded Python interpreter with an application programming inter-

face (API); a state of the art internal game engine with its own Python API and a visual

game logic editor [16]. With its advanced features and APIs, Blender can be looked at as

an interface to 3D programming [16]. The sections that follow discuss aspects related to

Blender’s skeleton and animation system as well as Python and Blender’s Game engine

that we use in Section 4.5.

Bone

Root

Tip

IK enabled bone with contraints
FK bone with constraints

Bone options
panel

Bone contraints
panel

Action keyframe editor

Local coordinate frame

Global coordinate frame

Figure 4.2: An example of a hand skeleton and Blender window configuration.

4.1.2.1 Blender’s Skeleton and Animation System

Blender’s skeleton system is much like the tree of bones described in Section 2.3.4. A

skeleton in Blender has a root bone with the global or object co-ordinate frame for the

entire skeleton (skeleton space) and a local co-ordinate frame for each bone (bone space).

Each bone has a root and a tip, with the co-ordinate frame situated at the root where
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rotation or articulation occurs. The root of a bone can thus be considered as a joint. A

bone’s co-ordinate system rotates with it and has the X- and Z-axes perpendicular to each

other and to the vector from the root to the tip that represents the Y-axis (see Figure 4.2).

As mentioned before, Blender is an advanced keyframe animation system with features

such as constraints for its skeleton system, forward kinematics (FK), inverse kinematics

(IK) and has several interfaces to aid in VH modelling and animation. An example of

a hand skeleton and Blender window configuration that showcases the above mentioned

features can be seen in Figure 4.2.

Python editor

Sensors Controllers Actuators

Game engine logic

properties

Figure 4.3: An example window configuration of Blender’s Python editor and game engine
logic.

4.1.2.2 Python and Blender’s Game engine

Python is a dynamic object-oriented interpreted programming language that is being de-

veloped open source by the Python Software Foundation [70]. The Python language spec-

ification is very powerful yet simple and makes the language easy to learn [70]. Python has

an extremely large library which is developed as modules that can be easily distributed.
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It has modules for: internet data handling; operating services; data compression and

archiving; networking; and structured markup processing such as XML to name but a

few [70]. Also, what makes Python really attractive, is that it allows for extension and

integration with other languages and tools [70]. As mentioned before, Python has been

integrated into Blender and the Blender game engine [16].

The Blender game engine is a high performance game engine that exists within Blender

and has advanced features such as: skeletal animation; replay of keyframe animations;

game physics; and most importantly game logic which includes properties, sensors, con-

trollers (AND, OR and Python controllers) and actuators for advanced animation control.

All this can be edited in Blender’s interface [16]. By integrating the game engine within

Blender and also using Python, development time of complex projects can be significantly

reduced. An example of a Blender window configuration that showcase Blender’s Python

editor and the game engine’s game logic can be seen in Figure 4.3.

4.2 Modelling Process

The modelling process is the part in our methodology in which we employ MakeHuman

and Blender as part of our framework to model VHs before parameterising and animating

them. We first discuss the modelling we performed in MakeHuman after which we discuss

the modelling we performed in Blender.

4.2.1 MakeHuman

In Section 4.1.1 we elaborated on MakeHuman and the base model’s attributes except

for the default pose the model assumes. The model assumes the “crucifixion” pose (see

Figure 4.1), meaning it has its arms stretched out to the sides instead of hanging down

as proposed by the H-Anim standard [3]. The “crucifixion” pose was proven through

experience to be the best default pose to use when modelling and parameterising a VH

model [15]. We therefore left the model in the “crucifixion” pose. Experimentation

showed that we needed to open the mouth for correct parameterisation of the mouth

and jaw region. Also, it was simpler to adapt and embed an H-Anim LoA 2 skeleton in

the “crucifixion” pose with the jaw open (see Section 4.4). MakeHuman has hundreds of

targets so we initially modelled only a single VH. Targets we changed for a more masculine

appearance, without affecting the model’s segment lengths are listed in Table 4.1.
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MakeHuman target Value

head baby 0.20
jaw open 0.20

neck muscular 0.30
dorsi muscular 0.50

pectoral muscular 0.20
pectoral forward 0.50

trapezious muscular 0.30
r shoulder move sideways out 0.40
r shoulder move sideways in 0.50
l shoulder move sideways out 0.40
l shoulder move sideways in 0.50

r upper arm fat 0.50
l upper arm fat 0.50
r lower arm fat 0.30
l lower arm fat 0.30

abdomen muscular 1.00

Table 4.1: MakeHuman targets changed to give a more masculine appearance.

4.2.2 Blender

After modelling in MakeHuman, we exported the model as a Wavefront object file that

was subsequently imported into Blender. The model’s scale was clamped to 30 units

and was imported as separate objects by separating them by material.2 By clamping the

model’s scale to 30 units, it is imported at a reasonable viewable size. Also, importing

the model as separate objects by material results in polygonal models for the skin, eye

balls, pupils with eyelashes, lips, teeth and tongue. While importing the model into

Blender, we experienced some errors due to minor incorrectly defined material groups

by MakeHuman’s Wavefront object file exporter. Thus, some models had some of their

vertices assigned to other models such as skin vertices assigned to the teeth model for

example. All of the models were thus closely inspected and these minor importation

errors were manually corrected. The models for the pupils and eyelashes were separated

and the eyelashes were combined with the skin and lips. We found that the original eye

models were too complex as these consisted of separate eyeball, iris and pupil models. We

therefore replaced the original eye models with separate half spheres. The half spheres

were given material colours to resemble eyes and translated to the locations of the previous

2A material consists of a set of properties that affects the shading of a model.
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eye balls. Instead of developing separate models for the clothes, we applied a different

material to the torso and upper legs of the model. The eyebrows were also created as a

different material on the face of the skin. The resulting polygonal model of the combined

skin, lips and eyelashes, as well as separate models for the eyes, teeth and tongue can be

seen in Figure 4.4. Table 4.2 displays the geometric details of all the models.

Figure 4.4: The resulting polygonal model with the skin, lips and eyes lashes combined
and the separate eyes, teeth and tongue models.

Model Vertices Edges Faces

Skin, eyelashes and lips 9247 18585 9302
Each eye model 129 256 128

Teeth 1215 2291 1140
Tongue 152 294 143

Table 4.2: Geometric details of the resulting models.
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4.3 Adapting and Extending H-Anim

In Section 2.4.2 we discussed H-Anim and its limitations where we also motivated its

adaptation and extension. In this section, we address those limitations by adapting and

extending H-Anim to meet our requirements for a seamless generic parameterisation of

a VH that can perform face, hand and body deformation. We wish to point out to the

reader that we only take the structure and the naming interface used by the H-Anim

standard and do not develop an H-Anim compliant application. Compliance to the H-

Anim standard can easily be achieved by developing Python scripts in Blender. The

H-Anim LoA 2 skeleton that we modelled in Blender (see Section 2.4.2), from the sample

source found in [3], was used for adaptation and extension as this LoA 2 was successfully

used by Seo et al. [76]. Our adaptation and extension process started with the body, then

the hands and finally the face. We mirrored the bones of the skeleton while it was being

developed to simplify the process.

4.3.1 The Body

The H-Anim LoA 2 skeleton was manually fitted inside the model from Section 4.2. From

here on forth, we will use the naming convention followed by the H-Anim standard (name

of joints) for Blender bones that can also represent segments [3]. All bones were given

limits for their rotational DOFs to ensure physical plausible poses during animation [34].

Fitting of the skeleton started with the HumanoidRoot (root bone) and sacroiliac (pelvis

bone) in the pelvis region of the model. The HumanoidRoot and sacrolliac both have 0

degrees (◦) of rotational DOF.

The spine with 3 lumbar vertebrae bones (vl5, vl3, vl1), 3 thoracic vertebrae bones

(vt10, vt6, vt1), 2 cervical vertebrae bones (vc4, vc2) as well as the skullbase bone was

built vertically, aligned upwards, extending from the sacroiliac into the head of the model.

The segment for the thoracic vertebra bone, vt6, was also designed to represent the

breastbone (sternum). All the vertebrae including the skullbase bone were given limits of

20◦ for all their DOFs [101].

The sternoclavicular bones were placed perpendicular under the collar bone location,

parallel to the vertebrae, but pointing in the opposite direction. The sternoclavicular

bones were given limits of 0◦ for their DOFs. The acromioclavicular bones being per-

pendicular to the sternoclavicular bones, extends from the tips of the sternoclavicular

bones up to the shoulder bones. Acromioclavicular bones articulate at the sternoclavic-

ular bones and are responsible for the shoulder girdle (scapula and clavicle) movement.
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These bones were given limits of rotational DOFs according to the values in Table 4.3

which was found by McClure et al. [59].

Axis Limit range

X-axis -5 – 50
Y-axis -13 – 30
Z-axis -13 – 24

Table 4.3: Limits of rotational DOFs in degrees (◦) for the acromioclavicular adopted
from McClure et al. [59].

The shoulder bones extend up to the elbow bones which in turn extend up to the wrist

bones. Since the skeleton was mirrored and with swapped3 rotational limits for mirrored

bones, we only show rotational limits for the right side of the skeleton. Table 4.4 displays

values for the shooulder, elbow and wrist we adopted from Boon [19]. The shoulder is

a very complex joint that articulates with the acromioclavicular and has varying degrees

of freedom for its axes of rotation depending on whether it is abducted or in the neutral

position. A problem we experienced was that the neutral position for abduction of the

shoulders was to have the arms hang down the sides of the body as in the H-Anim

specification [3] [19]. To compensate for this, we first rotated the arms down by 90◦

to the sides and applied rotational limits from there onwards. Also, maximum values

of rotational limits from Boon [19] were used for joint movements where lesser values

prohibited certain movements. The technique employed by Boon [19] to measure joint

rotational limits, is similar to that used by Cave and Roberts [22]. We used the approach

by Cave and Roberts [22] for experimentation in Section 5.2 of Chapter 5.

Bone (joint) Limit X-axis Limit Y-axis Limit Z-axis

shoulder -90 – 80 (neutral abduction = 170) -53 – 158 -45 – 135
elbow 0 -71 – 84 0 – 146
wrist -73 – 71 0 -33 – 19

Table 4.4: Limits of rotational DOFs in degrees (◦) for the shoulder, elbow and wrist
adopted from Boon [19].

3The axes to which the rotational limits are applied are swapped (e.g X becomes -X).
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4.3.2 The Hands

The human hands are complex articulated structures that we use to physically interact

with the world around us and critical for sign language performances. Even though the

hands of the H-Anim LoA 2 skeleton is simpler than that of a real skeleton, they are still

powerful due to the flexibility of the H-Anim standard. In this section we address the

limitations of the H-Anim hands as found by Elliot et al. [31].

Joint centre locations of the hands were manually estimated with the placement of the

carpometacarpal joints (pinky0, ring0, middle0, index0, thumb1) closer to the wrist joint

than that of the LoA 2 example [3] [6] [7]. Table 4.5 displays the limits of rotational DOFs

for the joints in the right hand that we adopted from Albrecht [6] except for thumb1. The

range of movement of the carpometacarpal joints cannot be easily measured and it is

noted by Albrecht [6] that only the carpometacarpal joints namely thumb1, ring0 and

pinky0 are rotational. Through experimentation, the carpometacarpal joint of the thumb

namely thumb1, showed that it required greater rotational DOF (see Section 5.3).

Bone (joint) Limit X-axis Limit Y-axis Limit Z-axis

thumb1 -180 – 20 -180 – 0 -90 –120
thumb2 -85 – 30 0 -5 – 5
thumb3 -90 - 60 0 0
middle0 0 0 0
index0
ring0 0 0 -5 – 5

pinky0 0 0 -5 – 5
middle1 -100 – 25 -7 – 10 -15– 15

ring1 -115 – 25 -5 – 25 -15 – 15
pinky1 -115 – 25 -5 – 18 -25 – 15
pinky2 -110 – 5 0 0
ring2

middle2
index2
pinky3 -90 – 15 0 0
ring3

middle3
index3

Table 4.5: Limits of rotational DOFs in degrees (◦) for bones in the hand adopted from
Albrecht [6] except for thumb1.
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4.3.3 The Face

In Section 2.4.2 it was found that the H-Anim standard only has a simple set of facial

bones to perform facial animation. Also, the H-Anim specification suggested using the

MPEG-4 FAP set for facial animation. In this section, we extend the structure of the

H-Anim LoA 2 skeleton by adding facial bones to our skeleton and model based on the

MPEG-4 FDP facial feature points (see Section 2.4.1).

Bones were added manually by “snapping” them to vertex locations closest to MPEG-

4 FDP facial feature points on the face of the skin model. The temporomandibular, which

is part of H-Anim, was manually fitted in the centre of the jaw area of the model with

an open mouth pose. Initial experimentation of parameterisation of the model indicated

the need for extra bones on the face to avoid undesired deformations (see Section 5.4).

Some extra bones, including bones located at MPEG-4 FDP facial feature points which

are not affected by MPEG-4 FAP, we refer to as structural bones. Additional bones

at the eye (l eyelid inner up1 and l eyelid inner up2) and eyebrow (l brow mid in and

l brow mid out) areas were used as single MPEG-4 FDP feature points. The bones added

for the face follow a different but more informative naming convention than that proposed

by the H-Anim specification [3]. Also, a special child-parent relationship was established

between the bones on the face, the temporomandibular bone and the skullbase bone to

ensure the facial bones moved with the rest of the skeleton. A further addition was a

separate skeleton for the tongue which was added as a child to the skullbase bone after

parameterisation of the tongue. Bones for the tongue’s skeleton were placed uniformly

within the centre of the tongue starting from the base of the tongue to the tip and were

named tongue1, tongue2, tongue3 and tongue4 (see Section 4.4.4). Table 4.6 displays the

newly added facial bones that are children of the temporomandibular bone which in turn

is a child of the skullbase bone. Table 4.7 displays the newly added facial bones that

are direct children of skullbase. Table 4.8 displays the extra bones that we refer to as

structural bones which are children of the skullbase bone.

Face area MPEG-4 FDP Bone (joint) (parent: temporomandibular)

Jaw 2.1 chin bottom
2.11 l chin corner
2.12 r chin corner
2.13 l jaw corner
2.14 r jaw corner

continued on next page
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continued from previous page
Face area MPEG-4 FDP Bone (joint) (parent: temporomandibular)

Inner lip 2.3 lip mid inner low
2.4 l lip inner corner
2.5 r lip inner corner
2.8 l lip mid inner low
2.9 r lip mid inner low

Outer lip 8.2 lip mid outer low
8.7 l lip mid outer low
8.8 r lip mid outer low

Cheeks 5.1 l cheek center
5.2 r cheek center

Table 4.6: Facial bones that are children of the temporomandibular bone.

Face area MPEG-4 FDP Bone (joint) (parent: skullbase)

Eye region 3.1 l eyelid inner up1 and l eyelid inner up2
3.2 r eyelid inner up1 and r eyelid inner up2
3.3 l eyelid inner low
3.4 r eyelid inner low
3.5 l eyeball joint
3.6 r eyeball joint
3.7 l eye outer corner
3.8 r eye inner corner
3.9 l eyelid outer low
3.10 r eyelid outer low
3.11 l eye inner corner
3.12 r eye outer corner

Eyebrow 4.1 l brow inner corner
4.2 r brow inner corner
4.3 l brow mid in and l brow mid out
4.4 r brow mid in and r brow mid out
4.5 l brow outer corner
4.6 r brow outer corner

Cheeks 5.3 l cheek bone
5.4 r cheek bone

Inner lip 2.2 lip mid inner up
2.6 l lip mid inner up
2.7 r lip mid inner up

continued on next page
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continued from previous page
Face area MPEG-4 FDP Bone (joint) (parent: skullbase)

Outer lip 8.1 lip mid outer up
8.3 l lip outer corner
8.4 r lip outer corner
8.5 l lip mid outer up
8.6 r lip mid outer up

Nose 9.1 l nostril
9.2 r nostril
9.3 nose tip
9.4 r nose bottom edge
9.5 l nose bottom edge
9.6 r nose upper edge
9.7 l nose upper edge
9.12 nose bump
9.13 l nose lower edge
9.14 r nose lower edge
9.15 nose edge middle

Ears 10.1 l ear top
10.2 r ear top
10.3 l ear back
10.4 r ear back
10.5 l earlobe bottom
10.6 r earlobe bottom
10.7 l ear lower contact
10.8 r ear lower contact
10.9 l cheek upper
10.10 r cheek upper

Forehead 11.1 forehead middle
11.2 r forehead
11.3 l forehead

Table 4.7: Facial bones that are children of the skulbase bone.

Face area Bone (joint) (parent: skullbase)

Upper Cheek and r side skull
side of head l side skull

r cheek upper
l cheek upper

Table 4.8: Extra structural bones that are children of the skullbase bone.
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4.4 Parameterisation Process

After modelling and manually fitting our developed generic skeleton within the models,

the last step before animation was to parameterise the models with the generic skeleton.

Parameterisation of our models follows a semi-automatic sequential process to ensure

models are completely and correctly parameterised. It is performed in the following

order: skin, teeth, eyes and finally the tongue. There are a few conditions that a model

must satisfy before parameterisation, to ensure correct deformations. These conditions

we present with the associated part of a model that must be parameterised in the sections

that follow.

4.4.1 The Skin

Parameterisation of the skin requires that the model be in the “crucifixon” pose with

the jaw opened. Also, the skeleton for the tongue must be kept separate as discussed

in Section 4.3.3 to avoid parameterisation of the jaw area with the tongue’s bones. The

entire skin model, which includes the eyelashes and the lips, as discussed in Section 4.2.2,

is automatically parameterised.

Front view Side view

Top view

Figure 4.5: The skin manually fitted with the generic skeleton for automatic skinning.

We employ the automatic skinning algorithm developed by Baran and Popić, as dis-

cussed in Section 2.3.4, which was designed for articulated figures such as VHs. Since

the current implementation of Baran and Popvić’s algorithm in Blender does not perform
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automatic skeleton fitting and simplification, it allows us to parameterise the face at the

same time which is not an articulated figure. Figure 4.5 shows the model, along with the

full generic skeleton, with different views for automatic parameterisation (skinning).

4.4.2 The Teeth

Parameterisation of the teeth also requires that the model of the jaw be open. It would not

be possible to obtain a correct parameterisation if the jaw was closed, since the surfaces

of the top and bottom teeth would intersect. The model for the teeth was thus manually

parameterised by weight painting as it needs to be divided into the top set of teeth that

remains stationary with the head (skullbase bone) and the bottom set of teeth that moves

with the jaw (temporomandibular bone). Figure 4.6 (a) shows the parameterisation of

the top teeth (red surfaces) with the skullbase bone and (b) the parameterisation of the

bottom teeth (red surfaces) with the temporomandibular bone.

(a) (b)

temporomandibular

skullbase

Figure 4.6: The teeth manually skinned with the skullbase and temporomandibular bones.

4.4.3 The Eyes

The eyes, which were separately modelled as half spheres, requires no special condition

for parameterisation. These are also manually parameterised by weight painting the left

eye model to l eyeball joint and the right eye model to r eyeball joint.
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4.4.4 The Tongue

The tongue was given its own skeleton, as discussed in Section 4.3.3, which is first used to

automatically parameterise the tongue model with Baran and Popović’s algorithm. After

parameterising the tongue with its own skeleton, it is attached as a child to the skullbase

bone of the generic skeleton to finalise the parameterisation process. The model and

skeleton for the tongue can be seen in Figure 4.7 after parameterisation and attachment

to the skullbase bone.

side view front view top view

skullbase

tongue
skeleton

parent\child relationship

Figure 4.7: The tongue model and skeleton after parameterisation and attachment to the
skullbase bone.

4.5 Implementing Animation Control

Animation control is the final feature required to realise a complete and open framework

for the modelling and animation of VHs to visualise sign language. In Section 3.1 we

discussed SLNS and motivated our use of SignWriting but most specifically its XML

representations, which are SWML and SBML. Later, in Section 3.2.2.2, we provided an

overview of different SLV systems and highlighted the different technologies, models and

animation control input that they employ. In the sections that follow, we discuss how we

designed and implemented animation control in the Blender game engine to visualise sign

language, both interactively and procedurally. The Blender game engine is very flexible,

as discussed in Section 4.1.2, with an integrated Python interpreter, APIs and a visual

game logic editor. All the animation controllers we designed use game logic, such as
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sensors, Python controllers, actuators and properties. The reader is referred to Appendix

A for documentation on the GameLogic module which also contains a list of sensors and

a list of actuators. From here on forth, we will refer to the game logic sensors, controllers

and actuators by their names as in Appendix A.

properties SCA_KeyboardSensor BL_ActionActuatorPython
controller

controls

uses

uses

attached

Animation 

attached

Action Keyframe Animations

Figure 4.8: General design of interactive animation controllers displaying finger spelling
animation.

4.5.1 Interactive Control

Three separate interactive animation controllers for the body, hand and face were de-

signed to initially evaluate the Blender game engine and its Python APIs. All three

animation controllers have the same design and each one has a Python controller at-

tached to a SCA KeyboardSensor and a BL ActionActuator. A general design for all

three animation controllers is depicted in Figure 4.8, which displays finger spelling ani-

mation. The SCA KeyboardSensor waits for keyboard input, which is processed by the

Python controller, that in turn activates the BL ActionActuator to set and play an ac-

tion keyframe animation. The BL ActionActuator was specifically designed to be used

for Blender’s skeletal system that uses quaternions to perform rotations stored in action

keyframe poses. Blending or transition between keyframe poses and different actions
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therefore use quaternion interpolation. An advantage of using quaternions is that the

problem of “gimbal lock”, which is often encountered when using rotation matrices, is

avoided [34].

The animation controllers for body and face animation are state based controllers that

use state properties and loads different action keyframe animations sequentially until

the last state and then back to the first state. The animation controller for the hand

loads hand finger spelling action keyframe animations which depends on the letter of the

keyboard being pressed. A “blendin” property is used by all three animation controllers

to set the number of frames used to interpolate between animations.

Animation Action Keyframe Animations

XML.SAX.ParserSBMLHandler

KX_NetworkMessageActuator

BL_ActionActuator

KX_NetworkMessageSensor

KX_KeyboardSensor Python controller

properties

controls
uses

uses

uses

uses

SBML_XML_File
parses

Animation Action list

uses

creates

Figure 4.9: Design of the procedural animation controller displaying full virtual human
animation.

4.5.2 Procedural Control

A procedural Python animation controller was designed to take SignWriting, in the form

of an SBML file as input and to build an animation action list based on the contents of

the file. The high level design of the procedural animation controller within a Blender

window configuration is depicted in Figure 4.9. The procedural animation controller has

nearly the same design as the interactive controller except that it is also connected to

a KX NetworkMessageSensor and a KX NetworkMessageActuator as well as capable of

parsing an SBML file with an extensible markup language (XML) parser.
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We used the Python Simple API for XML (SAX) to create a parser and a SBMLHan-

dler for parsing SBML files instead of a Document Object Model (DOM) parser [34]. The

SAX parser is an event based parser which requires less memory than a DOM parser to cre-

ate an animation queue or action list [34]. The KX KeyboardSensor is used for starting the

animation after which a KX NetworkMessageSensor and KX NetworkMessageActuator is

used to establish a sequential animation loop to automatically activate the Python con-

troller. The Python controller checks after each activation by the KX NetworkMessage-

Sensor if an action animation in the action list has finished being played by the BL Action-

Actuator. The KX NetworkMessageActuator sends a message to the KX NetworkMessage-

Sensor, regardless of whether an animation was finished, to reactivate the animation con-

troller. Once an action animation has finished, the next action animation in the animation

action list is loaded until the last animation after which it restarts from the beginning of

the animation action list.

4.6 Methodology and Framework Overview

In Section 2.5 we reviewed the methodologies employed and VH models developed for

animation. It was noted that researchers aimed their efforts to create separate modules

for facial animation, body animation and hand animation which was then later difficult

to integrate [44]. Also, methodologies developed by Moccozet et al. [61] and that of

Wang and Ressler [99] are automatic or semi-automatic processes that employ scanned

body data which required pre-processing and was still difficult to use for animation.

Another important fact is that their methodologies employed skeletons which can only

perform body (articulated figure) animation hence their discussion in Section 2.5.2.1. In

this section we presented an overview of our methodology and framework to model and

animate VHs with the necessary features that are of adequate quality to visualise sign

language.

An overview of our methodology and open framework can be seen in Figure 4.10.

Our methodology begins with modelling in MakeHuman, as discussed in Section 4.2.1.

We then separate the skin, tongue and teeth models and also replace the eye models in

Blender as discussed in Section 4.2.2 while correcting minor importation errors. After

modelling, we follow the parameterisation process as discussed in Section 4.4 by using

the H-Anim LoA 2 adapted and extended generic skeleton we developed in Section 4.3.

Once we have our parameterised model, we can create action keyframe animations for our

model and use these in the Blender game engine with Python and SBML for interactive
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or procedural control as discussed in Section 4.5.

MakeHuman

Modelling process Parameterisaiton process Animation

Blender

Blender Game engine & Python

SBMLAdapted H-Anim LoA 2
skeleton

MPEG-4 FDP facial feature 
points

Face

Hands

Body

Eyes
Tongue
Teeth

Skin

Figure 4.10: Overview of our developed methodology and framework.

4.7 Summary

In this chapter we discussed our methodology and open framework to model and animate

VHs with the necessary features and which are of adequate quality to visualise sign lan-

guages. We elaborated on the open technologies we employed and how we used these to

adapt and extend the H-Anim LoA 2 skeleton with joint rotational limits and facial bones

to perform body, face and hand animation. The facial bones we added are in accordance

with MPEG-4 facial feature points with minor variations. Finally, we discussed how we

designed and developed interactive and procedural animation control that make use of

SBML to realise a complete framework for sign language visualisation.



Chapter 5

Experiments, Results and

Discussions

The previous chapter presented our research approach which resulted in a methodology

and open framework to model and animate VHs for sign language visualisation. To remain

true to our goals and answer our research question, in this chapter we experiment with

our methodology and open framework to evaluate its efficiency and the quality of the

models and animations it delivers. We begin by discussing the environment in which we

perform experiments such as the hardware and software settings we use. Next we discuss

the modelling of complete VHs with different appearances and proportions that we use

in this chapter to perform experiments on body and face posing and animation. Also, we

modelled three VHs that have hands of extreme minimum and maximum segment lengths

to perform experiments on hand posing and animation. The purpose of multiple models

of different appearances and proportions is to evaluate how easily we can share animation

resources between different models with the assumption that it is possible with a generic

skeleton.

5.1 Experimental Design

As mentioned in Section 2.5, in 3D computer graphics there is always the trade-off be-

tween visual quality and display speed. This trade-off is determined by the techniques

for model representation and deformation, as well as the hardware employed [44]. We

performed experiments on a MacBook Pro with a 2.16 GHz Intel Core 2 Duo processor,

1GB RAM and ATI Mobillity Radeon X 1600 graphics card. The MacBook Pro satisfies

our requirement to develop a methodology and open framework on standard hardware

61
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that can be shared easily.

The requirement for real-time sign language visualisation is an animation frame rate

of between 15 and 25 fps [48]. In Blender’s game engine, one can either enable all frames

to render or clamp the maximum frame rate to 60 frames per second (fps). For all

experiments performed, we enabled rendering of all frames to measure the maximum frame

rates achieved during all animations. Experiments were separated into body, hand and

face posing and animation, which we discuss later in the chapter. The sections that follow

discuss the models we developed for the experiments. Moreover, we employed Catmull-

Clark subdivision surfaces during hand and face animation experiments, discussed below,

to further improve visual realism.

5.1.1 Modelling Multiple Virtual Humans

In the previous chapter we modelled a single VH while developing our methodology and

framework. To fully evaluate our methodology and framework, we modelled three more

VHs of different appearances and proportions. The same approach for modelling and

parameterisation with our generic skeleton was followed, as discussed in the overview of

our methodology, in Section 4.6. Minor importation errors into Blender, as discussed in

Section 4.2.2, resulted in all four VH models having minor different geometric details,

except for the eyes, that are displayed in Table 5.1.

VH Model Vertices Edges Faces

Man Skin, eyelashes and lips 9247 18585 9302
Teeth 1215 2291 1140

Tongue 152 294 143

BigMan Skin, eyelashes and lips 9217 18526 9275
Teeth 1205 2275 1132

Tongue 158 299 143

Woman Skin, eyelashes and lips 9331 18714 9350
Teeth 1215 2291 1140

Tongue 152 294 143

Boy Skin, eyelashes and lips 9273 18606 9300
Teeth 1215 2291 1140

Tongue 158 299 143

Table 5.1: Geometric details of the resulting models.

The first model we developed during our methodology we will from here on forth refer
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to as Man, the second model as BigMan, the third model as Woman and the fourth

model as Boy. Figure 5.1 depicts the four VHs we modelled and used in experimenting

with posing and animation of the face and body.

Man BigMan Woman Boy

Figure 5.1: The four models we developed with our methodology and framework.

5.1.2 Extreme Modelling of the Hands

To fully evaluate if we can share animation resources between articulated figures, we

modelled three virtual humans with different hand segment lengths, also following our

methodology in Section 4.6. The hands were then separated from the bodies. The first

model has unmodified hand parameters, the second model has hand parameters maximally

set for short hands and the third model has hand parameters maximally set for long hands.

For future reference, we will refer to the first model as Norm Hands, the second model as

Short Hands and the third model as Long Hands.
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5.2 Body Posing and Animation

Body posing and animation was the first experimentation we performed. For posing, we

desired to know if we obtained quality parameterisations or skinning of the body during

animation. Also, we wanted to evaluate if the joint rotational limits we employ for our

generic skeleton ease the posing of VHs and if these prevent us from posing a character in

non physically plausible poses. All models delivered quality parameterisations of which

we will only provide results for Man in in this section. Certain bones were enabled as IK

bones and was thus used to perform interactive posing of a VH. The bones we enabled

as IK bones includes: r shoulder, r elbow, r wrist, l shoulder, l elbow, l wrist, vt1 and

skullbase. The sections that follow provide posing results by body parts similar to the

approach for measuring and recording joint function by Cave and Roberts [22].

5.2.1 The Spine

Cave and Roberts [22] state that the neutral position for the spine cannot be defined and

it can perform: forward bending; extension; left and right lateral bending; and rotation

with the pelvis fixed. Figure 5.2 displays results for posing the spine.

Lateral bending Rotation

Forward bending Extension

Figure 5.2: Posing of the spine.
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5.2.2 The Neck

The neck has a neutral position and can perform: left and right rotation; extension;

flexion; left and right lateral bending [22]. Figure 5.3 displays results for posing the neck.

Neutral Extension Flexion

Rotation Lateral bending

Figure 5.3: Posing of the neck.

5.2.3 The Shoulder

Cave and Roberts define the neutral position of the shoulder such that the arm hangs

to the side and the elbow is flexed by 90◦ to have the forearm pointing forward [22].

The shoulder is capable of poses that include: extension; flexion; abduction; external and

internal rotation in abduction; external and internal rotation in neutral; and elevation.

Figure 5.4 displays posing results for the right shoulder by using the joint rotational limits

from Boon [19].

Experimentation showed that the shoulder required greater rotational DOFs than that

initially adopted from Boon. This is mainly due to the complexity of the shoulder joint

as discussed in Section 4.3.1 and Blender’s skeletal system having a rotational local co-

ordinate system for its bones that swaps the roles of its axes. For example, a rotation

of 90◦ about the Y-axis such as an internal or external rotation in abduction swaps the

roles of the X- and Z-axes. Thus if the Z-axis had greater rotational freedom than the

X-axis, once the roles are swapped, rotation that was initially intended to be about the

Z-axis will be limited. To overcome this limitation and allow predictable posing, we used

maximum values of rotational limits where lesser values prohibited certain movements, as

mentioned in Section 4.3.1. Using maximum values do have a downside, as it allows for

some physically implausible poses.
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Neutral Flexion Extension

Elevation

Internal rotation
in neutral

External rotation  in neutral

Abduction
External rotation
in abduction

Internal rotation 
in abduction

Figure 5.4: Posing of the shoulder.

5.2.4 The Elbow

The elbow’s neutral position is with the forearm extended down the side of the body and

is capable of poses that include: flexion; hyperextension; supination; and pronation [22].

Figure 5.5 displays results for the elbow except for hyperextension which is not allowed

by the joint rotational limits from Boon [19]. The only problem we experienced with the

elbow is that it suffers from the limitations of SSD (see Section 2.3.4).
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Neutral Flexion Supination Pronation

Figure 5.5: Posing of the elbow.

5.2.5 The Wrist

The wrist’s neutral position is with the hand in line with the forearm and the palm facing

down [22]. Figure 5.6 displays results for the wrist which is capable of poses that include:

dorsiflexion (extension); palmar flexion; ulnar deviation; and radial deviation [22].

Ulnar deviationRadial deviation

Neutral Dorsiflexion Palmar flexion

Figure 5.6: Posing of the wrist.
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5.2.6 Animation

The ability to easily create, reuse and share animation data was the focus with regard

to experimentation on animation. As mentioned in Section 4.1.2, Blender has features

that enables one to easily create keyframe animations which is vitally important for SLV

(see Section 3.2.2.1). All four VH models we modelled in Section 5.1.1 have more or

less the same number of vertices, edges and faces. Also, all four models had quality

parameterisations that can be animated with the implemented animation controllers that

make use of the same keyframe animations that were created with Man. Figure 5.7

displays results of animations of all four VH models sharing the same animation data

which were rendered at between 120 – 230 fps that satisfies real-time requirements.

Man BigMan Woman Boy

Figure 5.7: Sharing animation data created with Man between all four VH models.

5.3 Hand Posing and Animation

The hands are articulately more complex than the body parts we experimented with

in the previous section and require special attention, as was given by related work in

Section 2.11. The hand models we modelled in Section 5.1.2 were used to evaluate if we

obtained quality parameterisations and if the joint rotational limits prevented the posing

of physically implausible poses. Also, with regard to animation, we desired to know if

it was possible to easily share animation resources between these complex articulated

figures.

A keyframe animation database that represents the SASL finger spelled alphabet was

created with Norm Hands. The finger spelling for the acronym SASL using Norm Hands

can be seen in Figure 5.8. While creating the finger spelled alphabet, we experienced a

similar problem as with the shoulder due to the complexity of the carpometacarpal joint
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(thumb1). The thumb1 joint showed that it required greater rotational DOF than that

used by Albrecht [6], which we increased to allow complete anteposition and opposition

of the thumb to a finger. However by increasing the rotational limits, we allow unrealistic

radial and palmar abductions. The finger spelling alphabet animation database was used

with an interactive animation controller to interactively change between hand shapes and

create finger spelling animations. The sharing of the animations between Norm Hands,

Short Hands and Long Hands is displayed in Figure 5.9, which shows the SASL finger

spelled letters ‘S’ and ‘V’. Due to segment length in the different hand models, one may

not always obtain the desired result when sharing animation data.

Figure 5.8: Finger spelling of “SASL”.

Norm HandsShort Hands Long Hands

Figure 5.9: Hand shape posing and sharing animation data.



CHAPTER 5. EXPERIMENTS, RESULTS AND DISCUSSIONS 70

To improve visual results, we employed Blender’s multi-resolution mesh features. We

only took the right hand of Norm Hands and performed Catmull-Clark subdivision. In

Table 5.2 we display the model data on 3 levels of subdivision and the frame rates achieved.

Figure 5.10 shows that there is a significant increase in quality and slight differences in

the palm area between the 3 levels of subdivision.

Level Vertices Edges Faces frame rate in fps
1 1388 2806 1419 330
2 5613 11205 593 269
3 22411 44782 22372 94

Table 5.2: Catmull-Clark subdivision hand models geometric details and frame rates.

Level 1 Level 2 Level 3

Figure 5.10: Catmull-Clark subdivision hand models at 3 different levels of subdivision.

5.4 Face Posing and Animation

Experimentation that focussed on facial posing and animation was also performed with

the same reasoning as for the hands in the previous section. The facial bones we added

in Section 4.3.3 were given no limitations to allow a designer complete freedom to design

facial expressions. Facial expressions from the Thibologa Sign Language Institution book-

let [89] was used to design facial expressions with the Man model. The results for the

kind, smile, surprise and thoughtful facial expressions can be seen in Figure 5.11 where

we share animation data between the four models. The same frame rates were achieved

as for body animation since we used the same full body VH models.
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Kind Smile Surprise Thoughtful

Figure 5.11: Facial animation data created with Man and shared between the other
models.

To improve visual results for facial expressions, a similar approach to that taken with

the hands was employed, using Blender’s multi-resolution mesh features. Catmull-Clark

subdivision was performed on the whole skin model and not just the hands. Since we

do not apply subdivision to the eyes, teeth and tongue models, we provide the geometric

properties of the skin, eyes, teeth and tongue models combined as given by Blender in

Table 5.3 for 3 levels of subdivision as well as the achieved frame rates. Figure 5.12
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displays facial posing and animation results for the BigMan VH model on 3 levels of

subdivision. There is little visual difference between level 2 and level 3 of the subdivided

BigMan VH and although the frame rate of level 3 was below the 15 fps requirement for

real-time visualisation, it is still acceptable.

Level Vertices Faces frame rate in fps
1 10838 10806 170
2 38639 38190 45
3 149009 148167 11

Table 5.3: Geometric details of Catmull-Clark subdivision of the skin at 3 levels combined
with the eyes, teeth and tongue as well as the achieved frame rates.

Level 1 Level 2 Level 3

Figure 5.12: Catmull-Clark subdivision of the skin at 3 levels combined with the eyes,
teeth and tongue.

5.5 Summary

This chapter presented experiments that we performed to evaluate our methodology and

framework. Four VH models were created and used for evaluation throughout the chapter.

We also modelled three pairs of hands which are complex articulated figures to evaluate the

quality of the parameterisations and the ability to share animation data with consistent

results. Catmull-Clark subdivision was performed on the hand models to further improve

quality achieving acceptable frame rates. The same experimentation was performed with

faces as with the modelled hands to evaluate the quality of the parameterisations of our

models and the sharing of facial animation data between models.
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Conclusions

In this thesis we had two goals. The first was to model and animate VHs of adequate

quality to effectively visualise sign languages. The second was to accelerate progress in

perceptive interfaces for virtual humans by developing a methodology and open frame-

work that can result in community resources. Our goals have been achieved as we have

demonstrated in the previous chapter that our methodology and open framework deliver

excellent results. In this chapter we conclude by discussing our contributions to VH mod-

elling and animation, as well as SLV. We also discuss the advantages and disadvantages of

our methodology and framework and provide some recommendations for future research.

6.1 Contributions

The research question we posed in Chapter 1 has been successfully answered as we have

shown in the previous chapter. Our contributions to virtual human modelling and anima-

tion is a methodology and open framework to model and animate VHs with the necessary

features that are of adequate quality to perform sign language visualisation. Overall, our

methodology and framework includes:

• Open technologies with their associated interfaces that simplify the modelling and

animation of seamless high quality VHs.

• A generic skeleton based on an H-Anim LoA 2 skeleton with joint rotational limits

and flexible hands for body and hand animation.

• Additional facial bones to our generic skeleton that are based on MPEG-4 FDP

facial feature points for facial animation.
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• A semi-automatic model parameterisation process to parameterise skin, eyes, teeth

and tongue models with our generic skeleton.

• Interactive and procedural animation controllers for virtual human animation and

visualising sign language from SBML in real-time.

6.2 Advantages

Our methodology and open framework has the following advantages compared to ap-

proaches we reviewed in Chapters 2 and 3 that include:

• A straightforward approach to modelling and animating VHs of high quality with

the necessary features that can perform body, hand and facial animation for sign

language visualisation in real-time.

• We employ open technologies with large user communities that are actively devel-

oped that enable us to easily share resources which can be body, hand or facial

animations.

• The interfaces provided by Blender enable us to easily create the above men-

tioned animation resources and we therefore avoid the difficulties experienced by

researchers in Chapter 3.

6.3 Disadvantages

As no methodology or framework is perfect, we provide a list of disadvantages to our

methodology and framework that include:

• The open technologies we employ require some user training to model and animate

VHs.

• Our methodology requires some user interaction and is not completely automatic

as the teeth and eye models require manual parameterisation.

• The procedural animation controller we implemented is only capable of performing

sign language visualisation from a complete keyframe animation that represents a

whole sign language gesture.
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6.4 Recommendations

We are satisfied with our results and believe that we have contributed greatly to the fields

of VH modelling and animation, as well as sign language visualisation. There are two

sets of recommendations that we make that relate to VH modelling and animation and

to that of sign language visualisation.

6.4.1 Virtual Human Modelling and Animation

At the time of writing, we employed an older version of MakeHuman as the latest version

does not yet have the jaw open target that we require during modelling before param-

eterisation of VH models. The latest version is near completion and includes several

improvements and new features that can be used in future work. Also, the latest version

includes a Python API which makes automatic modelling, exportation and importation of

models into Blender possible. Another improvement that can be made is automatic skele-

ton fitting and parameterisation that takes into consideration the facial bones. Clothes

can also be created or modelled within Blender to create fully clothed VHs.

6.4.2 Sign Language Visualisation

Further improvements can be made to the procedural animation controller, as we can only

perform sign language visualisation from a complete keyframe animation that represents

a whole sign language gesture. A procedural animation controller can be developed that

uses more BL ActionActuators in Blender to separate body, hand and facial animation

control. By doing so, phoneme based SLV will be possible. Also, SWML instead of SBML

can be used although SBML is much more compact than SWML.

6.5 Summary

This research has significantly advanced the field of perceptive interfaces for virtual hu-

mans. Previous work is divided between those who concentrated on developing separate

systems for hand, body and facial animation and then attempted to integrate them and

those who focussed on maximising realism at the expense of real-time performance. This

research shows that it is possible to assemble state of the art 3D visualisation systems

that seamlessly integrate hand, body and facial animation and that this can be done in
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real-time. While these systems have a wide range of applications, they are particularly

well suited for the real-time visualisation of signed languages.



Appendix A

Blender Game Engine Logic

A.1 Module GameLogic

This is the documentation for the GameLogic Module which was taken from and available

at http://www.blender.org/ documentation/pydoc gameengine/PyDoc-Gameengine-2.34/

GameLogic-module.html. There are only three importable modules in the game engine:

• GameLogic

• GameKeys

• Rasterizer

All the other modules are accessible through the methods in GameLogic.

Examples:

# To get a controller:

import GameLogic

co = GameLogic.getCurrentController()

# To get the game object associated with this controller:

obj = co.getOwner()

# To get a sensor linked to this controller.

# ‘‘sensorname" is the name of the sensor as defined in the Blender

interface.

# +------------------------------+ +-------------+
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# + Sensor ‘‘sensorname" +--+ Python +

# +------------------------------+ +-------------+

sens = co.getSensor(‘‘sensorname")

# To get a list of all sensors:

sensors = co.getSensors()

A.2 Sensors

• KX NetworkMessageSensor

• KX RaySensor

• KX MouseFocusSensor

• KX NearSensor

• KX RadarSensor

• KX TouchSensor

• SCA KeyboardSensor

• SCA MouseSensor

• SCA PropertySensor

• SCA RandomSensor

A.3 Python Controller

To get an actuator attached to the controller:

+--------+ +---------------------------------------+

+ Python +--+ Actuator ‘‘actuatorname" +

+--------+ +---------------------------------------+

actuator = co.getActuator(‘‘actuatorname")

GameLogic.addActiveActuator(actuator, True)
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A.4 Actuators

• BL ActionActuator

• KX CameraActuator

• KX CDActuator

• KX ConstraintActuator

• KX GameActuator

• KX IpoActuator

• KX NetworkMessageActuator

• KX ObjectActuator

• KX SCA AddObjectActuator

• KX SCA EndObjectActuator

• KX SCA ReplaceMeshActuator

• KX SceneActuator

• KX SoundActuator

• KX TrackToActuator

• KX VisibilityActuator

• SCA PropertyActuator

• SCA RandomActuator
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