9,511 research outputs found

    Actor monitors for adaptive behaviour

    Get PDF
    This paper describes a structured approach to encoding monitors in an actor language. Within a configuration of actors, each of which publishes a history, a monitor is an independent actor that triggers an action based on patterns occurring in the actor histories. The paper defines a model of monitors using features of an actor language called ESL including time, static types and higher-order functions. An implementation of monitors is evaluated in the context of a simple case study based on competitive bidding

    Actor monitors for adaptive behaviour

    Get PDF
    This paper describes a structured approach to encoding monitors in an actor language. Within a configuration of actors, each of which publishes a history, a monitor is an independent actor that triggers an action based on patterns occurring in the actor histories. The paper defines a model of monitors using features of an actor language called ESL including time, static types and higher-order functions. An implementation of monitors is evaluated in the context of a simple case study based on competitive bidding

    On Synchronous and Asynchronous Monitor Instrumentation for Actor-based systems

    Full text link
    We study the impact of synchronous and asynchronous monitoring instrumentation on runtime overheads in the context of a runtime verification framework for actor-based systems. We show that, in such a context, asynchronous monitoring incurs substantially lower overhead costs. We also show how, for certain properties that require synchronous monitoring, a hybrid approach can be used that ensures timely violation detections for the important events while, at the same time, incurring lower overhead costs that are closer to those of an asynchronous instrumentation.Comment: In Proceedings FOCLASA 2014, arXiv:1502.0315

    A Homogeneous Actor-Based Monitor Language for Adaptive Behaviour

    Get PDF
    This paper describes a structured approach to encoding monitors in an actor language. Within a configuration of actors, each of which publishes a history, a monitor is an independent actor that triggers an action based on patterns occurring in the histories. We define a monitor language based on linear temporal logic and show how it can be homogeneously embedded within an actor language. The approach is demonstrated through a number of examples and evaluated in terms of a real-world actor-based simulation

    Modelling and analyzing adaptive self-assembling strategies with Maude

    Get PDF
    Building adaptive systems with predictable emergent behavior is a challenging task and it is becoming a critical need. The research community has accepted the challenge by introducing approaches of various nature: from software architectures, to programming paradigms, to analysis techniques. We recently proposed a conceptual framework for adaptation centered around the role of control data. In this paper we show that it can be naturally realized in a reflective logical language like Maude by using the Reflective Russian Dolls model. Moreover, we exploit this model to specify, validate and analyse a prominent example of adaptive system: robot swarms equipped with self-assembly strategies. The analysis exploits the statistical model checker PVeStA

    A Case Study on Formal Verification of Self-Adaptive Behaviors in a Decentralized System

    Full text link
    Self-adaptation is a promising approach to manage the complexity of modern software systems. A self-adaptive system is able to adapt autonomously to internal dynamics and changing conditions in the environment to achieve particular quality goals. Our particular interest is in decentralized self-adaptive systems, in which central control of adaptation is not an option. One important challenge in self-adaptive systems, in particular those with decentralized control of adaptation, is to provide guarantees about the intended runtime qualities. In this paper, we present a case study in which we use model checking to verify behavioral properties of a decentralized self-adaptive system. Concretely, we contribute with a formalized architecture model of a decentralized traffic monitoring system and prove a number of self-adaptation properties for flexibility and robustness. To model the main processes in the system we use timed automata, and for the specification of the required properties we use timed computation tree logic. We use the Uppaal tool to specify the system and verify the flexibility and robustness properties.Comment: In Proceedings FOCLASA 2012, arXiv:1208.432
    corecore