
Spanoudakis, G. & LoPresti, S. (2009). Web Service Trust: Towards A Dynamic Assessment

Framework. Paper presented at the International Conference on Availability, Reliability and Security,

2009. ARES '09, 16 - 19 Mar 2009, Fukuoka Institute of Technology, Fukuoka, Japan.

City Research Online

Original citation: Spanoudakis, G. & LoPresti, S. (2009). Web Service Trust: Towards A Dynamic

Assessment Framework. Paper presented at the International Conference on Availability, Reliability

and Security, 2009. ARES '09, 16 - 19 Mar 2009, Fukuoka Institute of Technology, Fukuoka, Japan.

Permanent City Research Online URL: http://openaccess.city.ac.uk/2749/

Copyright & reuse

City University London has developed City Research Online so that its users may access the

research outputs of City University London's staff. Copyright © and Moral Rights for this paper are

retained by the individual author(s) and/ or other copyright holders. All material in City Research

Online is checked for eligibility for copyright before being made available in the live archive. URLs

from City Research Online may be freely distributed and linked to from other web pages.

Versions of research

The version in City Research Online may differ from the final published version. Users are advised to

check the Permanent City Research Online URL above for the status of the paper.

Enquiries

If you have any enquiries about any aspect of City Research Online, or if you wish to make contact

with the author(s) of this paper, please email the team at publications@city.ac.uk.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by City Research Online

https://core.ac.uk/display/17188889?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk

Web Service Trust:
Towards A Dynamic Assessment Framework

George Spanoudakis
Department of Computing

City University London
London, UK

e-mail: G.Spanoudakis@soi.city.ac.uk

Stephane LoPresti
School of Engineering and Design

Brunnel University
London, UK

e-mail: Stephane.Lo-Presti@brunel.ac.uk

Abstract— Trust in software services is a key prerequisite
for the success and wide adoption of Services-Oriented
Computing (SOC) in an open Internet world. However,
trust is poorly assessed by existing methods and
technologies, especially in dynamically composed and
deployed SOC systems. In this paper, we discuss current
methods for assessing trust in Service-Oriented Computing
and identify gaps of current platforms, in particular with
regards to runtime trust assessment. To address these gaps,
we propose a model of runtime trust assessment of software
services and introduce a framework for realizing the model.
A key characteristic of our approach is the support that it
offers for customizable assessment of trust based on
evidence collected during the operation of software services
and its ability to combine this evidence with subjective
assessments coming from service clients.

Keywords: trust, runtime assessment, web services

I. INTRODUCTION
To become pervasive and open up to a wide range of

applications and the general public, Service-Oriented
Computing (SOC) needs to foster dynamic and
trustworthy service interactions. The current state of the
art in SOC systems provides complex and flexible means
for static and dynamic service discovery and composition,
and tailoring services to the consumer. However, current
SOC technology provides less adequate support for
assessing the trustworthiness of services, especially in
situations where the latter need be dynamically linked and
deployed by SOC systems.

As SOC aims to create business and commercial
communities through the use of distributed services,
service trust comes naturally into the equation as a
prerequisite of the wider acceptance of the SOC paradigm
and its development to its full potential. This is because
service clients need to be able to trust the services that
they want to use remotely and ascertain dynamically that
the services they already use remain trustworthy. Also,
without building trust assessment within SOC systems,
services of newcomers won’t have an opportunity to get
deployed in the presence of service providers with well-
established brands. Furthermore, it should be appreciated
that services cannot be delivered cost-effectively without
trust. This because the lack of explicit social or context
relationships in the establishment of service agreements
and the absence of trust may necessitate complex and

costly legal agreements, which would not be easy to
achieve in dynamic service deployment contexts.

Despite the recognition of the importance and
necessity of trust in human interactions and exchanges
and, as a consequence, the recent increase of the volume
of the literature on this topic (e.g. [5], [9], [11], [14],
[17]), the role of trust in SOC has not been fully realised
yet and trust is currently assessed poorly for the purposes
of the new paradigm. This is because, most of the existing
work addresses service trust through methods and
techniques for securing service interactions, including
standards for representing security credentials such as
WS-Trust [2]. There have also been platforms for
reasoning about trust and security properties in particular
service deployment architectures (e.g. grid [1], [23]).
However, existing work fails to address some important
aspects of service trust, notably the need to assess trust in
dynamically composed and deployed services, ground it
not only on subjective opinions but also on dynamically
acquired information about the behaviour and quality of
services in diverse deployment contexts, and the ability to
evaluate the accuracy and risk of trust assessments [20].

To address these shortcomings, in this paper we
propose a model of dynamic trust assessment of web
services and an architecture for realising this model. The
proposed trust assessment model combines objective
information acquired during the deployment of services in
different contexts at runtime with subjective
recommendations from service clients and uses this
information to provide trust assessments for different
service provision promises expressed within service level
agreements (SLAs). The realisation of this approach is
based on a platform that incorporates runtime service
monitoring as a key element and offers trust assessment
services to service clients and providers.

The rest of the paper is structured as follows. In
Section 2, we present a scenario that forms the basis for
explaining our approach. In Section 3, we present the
basic conceptual model of trust assessment and the
architecture of the platform that realises the model. In
Section 4, we discuss the generation of trust assessment in
more detail. In Section 5, we give an account of related
work and, finally, in Section 6 we provide some
concluding remarks and present directions for future
work.

gspanoudakis
Text Box
Appeared in the Proceedings of the Fourth International Conference on Availability, Reliability and Security (ARES '09)

II. A SCENARIO OF TRUST ASSESSM
BASED SYSTEMS

To indicate the requirements fo
assessment and demonstrate the basic
approach in the rest of the paper, we wil
a service based e-healthcare system that
the EU-IST Framework 6 project SE
system that underpins our scenario is sh
In this system, patients are equipped
Monitoring Equipment (HME) which
medical conditions and notifies a H
Service (HTS) of health signals that sh
by a doctor. When HTS receives a
HME, it searches through a registry
doctors that it maintains, and if it finds a
deal with the reported symptoms, it con
a request to handle the case. To recei
HTS, doctors are equipped with PDAs
web service that enables the processing o

A doctor can decline or accept a requ
the latter case, (s)he subsequently exam
makes a medical recommendation for th
This recommendation may be of differe
the provision of a medical prescription, a
for admission to hospital, or a recomm
further action. The doctors collaboratin
offer their services under differen
Agreements (SLAs). A doctor may, f
agreed to offer recommendation serv
specific working hours or only for patie
suffer from particular medical conditions

Figure 1. A Dynamic Web Services e-Hea

In cases where a doctor responds
prescription, HTS contacts a pharma
dispatch the set of prescribed medicines
achieve this, HTS calls pharmacies w
medical prescription orders through
service and physically deliver the prescr
the patients. HTS maintains a list of p
covering different locations. Pharma
available under different SLAs. Som
example, may promise to deliver order
certain postcodes within a maximum tim
orders only if the cost of the service is
HTS. Other pharmacies, however, may
whose cost is to be covered by the me
the patient.

1 SERENITY focuses on runtime support for secu

– see http://www.serenity-project.org

MENT IN SERVICE

or dynamic trust
c elements of our
ll use a scenario of
t has been used in
ERENITY 1 . The
hown in Figure 1.
d with a Health
h monitors their
Health Treatment
ould be examined
notification from
of collaborating

a doctor who could
ntacts him/her with
ive requests from
running a specific
of HTS requests.
uest from HTS. In

mines the data and
he patient to HTS.
ent types including
a recommendation
mendation for no

ng with HTS may
nt Service Level
for instance, have
vices only within
ents which do not
s.

althcare Scenario

s with a medical
acy to order and
s to the patient. To
which can accept
a pharmacy web
ribed medicines to
pharmacy services
acy services are
me of them, for
red medications to
me limit or accept
 to be covered by
also accept orders
dical insurance of

urity and dependability

Trust is fundamental to the
pharmacy services in our scena
different factors and assessed
case of doctor services, for exa
by the real availability of docto
that their contract/SLA determ
which are important for the
specific doctor services, up-to
services with respect to the
necessary for the continuation
services.

In the case of pharmacy ser
service availability and/or th
service to deliver correctly or
the promised time. Furthermo
since initially the HTS will not
interactions with a particular p
its delivery efficiency, it woul
an assessment of this factor b
particular service with other sy

Current SOC technologies
of the above scenario, but are
assessment issues related to it
trust assessment models either
of service performance against
when they take such evidence
is typically limited to intera
needing the trust assessment
rather than taking into account
service interactions different
deployment.

III. OUR A

A. Trust assessment model
Our approach to the trust a

is based on the conceptual mod

Figure 2. Conceptual mod

According to this model, tru
by some TrustAuthority. This
from the provider of a particu
The role of the trust authority
service registry in cases where
in assessing the trustworthines
or some other party.

The basic outcome of the tr
trustcard. A trustcard is gener

EvideEvidence
Digest

derivedFrom

Recom

TrustCard generates *

1 co
Context validIn

1
* relatesTo

SLATerm gu

Operational
Evidence

Digest

Reputation

Uncertainty
1 hasUncertainty

TrustCriisBasedOn *

1 contains

refersTo 1

Underpins *

e deployment of doctor and
ario and may be affected by
d in different ways. In the
ample, trust may be affected
ors within the service hours

mines. For any such factors
trust that HTS casts upon

o-date assessments of these
e relevant factors will be
n of the deployment of the

rvices, trust may depend on
he ability of a pharmacy
rdered prescriptions within

ore, it should be noted that
t have a sufficient history of
pharmacy service to assess
d beneficial for it to obtain

based on interactions of the
ystems.

enable the implementation
e unable to tackle the trust
. More specifically, current
r neglect runtime evidence
t designated trust criteria or,
 into account, the evidence

actions between the client
t and the specific service
t a broader picture of actual
t clients and contexts of

APPROACH

assessment of web services
del shown in Figure 2.

del of a trust assessment

ust assessment is performed
s authority is independent
ular service and its clients.
y may be undertaken by a
e the registry has an interest
s of the services that it lists

rust assessment activity is a
rated by the trust authority

Service

nceElement

Operational
Evidence
Element

mmendation

oncerns

uarantees *

ServiceClient
UsedBy *

1 collectedFrom

* derivedFrom
derivedFrom *

TrustAuthority

iteria

collectedFrom 1

isGeneratedBy 1

(as shown by the association
TrustCard−isGeneratedBy→TrustAuthority2 in Figure 2)
to represent an assessment of trust that the authority has in
a particular term of the SLA under which a service is
offered at a given instance of time and in a particular
context. Hence, a trustcard always refers to an SLA term
(see the association Trustcard−relatesTo→SLATerm in
Figure 2), expressing some Quality-of-Service (QoS)
factor (e.g. availability of service as a whole, performance
of particular service operations) or behavioural service
property. The association of trustcards with particular
SLA terms reflects the need for providing fine grain trust
assessments with respect to specific properties. Thus, in
our approach, trust cannot refer to service providers in
general without reference to a particular service that they
provide. This is because providers may be trusted for
some of the services they provide but not other. A bank,
for example, may be trusted for its basic retail banking
services but not its investment services.

To substantiate the trust assessment that it represents,
a trustcard includes evidence digest (ED) elements (see
the association TrustCard−Contains→EvidenceDigest in
Figure 2). An evidence digest element is derived from
processing several different trust related evidence
elements for a service, as expressed by the association
EvidenceDigest −derivedFrom→EvidenceElement in
Figure 2. An evidence element (EE) is a signed and
verified package of data which has been collected either
during the operation of the service or from a particular
service client and is relevant to a trust assessment. An
evidence element related to the availability of a service
operation is, for example, the response time for a
particular call of the service operation.

Evidence elements can be of two different types,
namely Operational Evidence Elements (OEE) and
Recommendations. The elements of the former type (i.e.,
operational evidence elements) are collected during the
operation of a service at runtime and, therefore, provide
objective operational evidence about the service.
Recommendations, on the other hand, are provided by
service clients and, thus, constitute subjective evidence.

Both recommendations and operational evidence
elements are related to a particular context of service
deployment and are valid only within this context, as
expressed by the association EvidenceElement
−validIn→Context in Figure 2. The response time
recorded for a particular service invocation may have, for
example, as context the service level agreement under
which the service made the particular response, the client
to which the response was made and its characteristics
(e.g., its location, whether it’s a business or private client),
the time when the response was made (peek vs. off-peak
service hours), and the location of the service itself (if the
service is mobile).

An evidence digest element presents an aggregated
account of a set individual evidence elements which
underpin a trust assessment. The average prescription
delivery time of a pharmacy service in the scenario of

2 In the paper, we use the term ClassA−associationEndName→ClassB

to refer to an association between ClassA and ClassB in the conceptual
trust model that has an association end called associationEndName
attached to ClassB.

Section 2, for example, would be an evidence digest for
the individual delivery times collected for the particular
service. Similarly the total number of cases where a
request for a service to a particular doctor has been
declined would be an evidence digest for all the individual
cases spotted with respect to this trust criterion. Evidence
digests which are derived from recommendation elements
following some reputation algorithm (e.g., simple
summation, average, Bayesian [9]) constitute a Reputation
in our trust model.

Like evidence elements, evidence digests are also
relative to a context that enables their interpretation (see
association EvidenceDigest−relatesTo→Context in Figure
2). The context of a digest element in a trustcard refers to
characteristics of the deployment of the service including
characteristics of the operational environment of the
service (e.g. type of used infrastructure, network
conditions, applicable security mechanisms and policies),
the periods of service deployment, the types of service
clients etc.

Trustcards are given to service clients by the trust
authority upon request. When they receive a trustcard,
service clients may perform their own trust judgment by
considering the information in the trustcard with regards
to the specific context in which it was requested and other
trust requirements (e.g., their acceptable level of risk,
interests, and preferences). It should also be noted that
trustcards are associated with an uncertainty measure.
This measure reflects the uncertainty which may exist in a
trust assessment if there are conflicting and/or limited
evidence elements for the trust assessment criteria.
Finally, trustcards get the status of trust certificates when
the trust authority which has produced them assumes also
legal responsibility for them.

B. Trust assessment platform
The realisation of trust assessments and provision of

trustcards at runtime is supported by a platform whose
general architecture is shown in Figure 3. This platform
acts as a server that can provide trustcards to service
clients requesting them for the services that they use, and
trust assessment services to service providers wishing to
subscribe to the platform in order to get their services
assessed and thereby expand their client base. Trust
assessment services may also be requested by third parties
for specific services if these parties wish to act as brokers
for the services. This role can be typically assumed by
service registries that are willing to provide information
for and access to services, only if the latter agree to
become the subject of a continuous trust assessment
during their deployment3. Service clients can enquire the
platform for trustcards that cover specific trust assessment
criteria and service providers can subscribe to the
platform to initiate assessments of their services.

As shown in Figure 3. the trust assessment platform
incorporates six components, namely a
TrustAssessmentManager, an EventBus, Monitors,
EventCaptorGenerators, EventCaptors, and

3 Currently, we assume that the trust assessment platform operates

separately from a service registry. This, however, needs not to be the
case and the trust assessment platform can be incorporated within a
broader service registry infrastructure.

TrustCriteriaGenerators (the components of the platform
appear in grey boxes in Figure 3).

The TrustAssessmentManager provides the interface
for accessing the platform. This interface (i.e., the
TrustAssessmentInterface in Figure 3) offers operations
for: (i) requesting trustcards for particular properties of
particular services, (ii) requesting the initialisation of trust
assessments of services based on specific properties, and
(iii) providing information for activating the emission of
events from services to the platform. The trust assessment
manager has also responsibility for maintaining evidence
elements and evidence digests that underpin the dynamic
creation of trustcards, and managing trust assessment
subscriptions by notifying all subscribers of updates in the
trustcards that they have subscribed for.

The trust assessment manager is built on the top of
monitors. Monitors collect the evidence elements required
for trust assessment, and aggregate them into evidence
digests. The evidence elements collected by monitors
correspond to web-service events captured at runtime (e.g.
service invocations and responses) and invocations of
specific operations of the platform by service clients to
provide subjective information about web-services.

In the current prototype of the platform, the monitors
are implemented as web-services based on the monitoring
framework described in [12][13]. This framework uses
monitoring rules and assumptions which determine what
information should be collected from different services,
what conditions this information should satisfy to be
usable, and how it could be combined to generate
evidence digests that can substantiate assessments with
respect to specific trust criteria (see Section 4 for more
details). Monitors provide a MonitoringInterface (see
Figure 3) that is used by the TrustAssessmentManager to
provide the rules that need to be monitored in order to
obtain the evidence elements and digests required for trust
assessments.

Figure 3. Architecture of the trust assessment platform

The TrustCriteriaGenerator is the component of the
platform that generates the monitoring rules and
assumptions which are used for carrying runtime trust
assessments. The generation of these rules and
assumptions is driven by the guaranteed terms in the SLA
of a service that needs to be assessed by the trust

assessment platform. These terms are provided to the
TrustCriteriaGenerator by the TrustAssessmentManager
through the CriteriaGeneratorInterface of the former
component. The design of the platform allows the
incorporation of different types of trust criteria generators
in order to support the generation of trust assessment
specifications from different languages for specifying
SLAs. An example of generating monitoring rules from
service guarantee terms expressed in WS-Agreement (as
described in [12]) is given in Section 4.

The trust assessment platform also incorporates
different types of event captors. Event captors operate
remotely from the platform and have responsibility for
intercepting messages which are exchanged between web
services and their clients, generating events to represent
these messages and sending the events to the platform for
analysis. Event captors are service proxies which are
generated automatically by the platform based on the
WSDL specification of a service and the criteria set for its
trust assessment.

The generation of event captors is the responsibility of
the EventCaptorGenerators in the platform. By virtue of
their automatic generation, event captors are expected to
execute correctly in all circumstances and be able to
collect the required evidence elements from a service at
runtime, following their installation in the operational
environment of the service.

The notification of events from event captors to the
monitors takes place through the EventBus. This
component operates as a publish/subscribe notifier that
forwards events to the monitors according to subscriptions
of the latter for specific types of events of particular
services. These subscriptions are generated by the
TrustAssessmentManager using the SubscriptionInterface
of the EventBus.

Although, a detailed account of the way in which our
platform is secured is beyond the scope of this paper, we
should note that basic security issue is addressed by the
use of a public key infrastructure (PKI). This means that
the links between the platform and the event captors use
secure channels (typically SSL/TLS tunnels), which
provide communication confidentiality. Also all the data
which are exchanged within the platform are integrity-
protected, using typically a keyed-Hash Message
Authentication Code (HMAC), and possibly bound to
particular software configurations if Proof-Carrying Code
(PCC) or Trusted Computing are used. In that case,
cryptographic keys can be hardware-protected in the
Trusted Platform Module and secure channels are
reinforced via mutual attestation of software
configurations on both sides of the communication (a
detailed account of the use of Trusted Computing for this
purpose is given in [10]).

In connection with basic security, we should also note
that the design of the trust assessment platform assumes
that services and service clients are identified by their
public keys with the use of Certification Authorities
(CAs) that are accepted as valid by the trust authority that
operates the platform, so that information can be
encrypted to them and only read by the intended recipient.
Reciprocally, the various actors ensure mutual
authentication by encrypting trustcard requests or

… Monitor
n

EventBus

Monitor1

TrustAssessment
Manager

ServiceClient
Servicem

Service1 EventCaptorm

Event
Captor

Generato
r

Trust
Criteria

Generator

C2 C2 provides interface X/C1 uses X C1
X

Subscription
Interface

TrustAssessment
Interface

Monitoring
Interface

event notification

event notification
Criteria
Generation
Interface

Captor
Generation
Interface

Service1 interface

Key:

Servicem
interface

gespan
Highlight

gespan
Highlight

gespan
Highlight

gespan
Highlight

gespan
Highlight

gespan
Highlight

evidence element exchange with the public key of the
platform.

IV. GENERATION OF TRUSTCARDS
In the following, we discuss how to specify and

operationalise trust assessments using the trust assessment
platform. Initially, we first provide an overview of the
specification of trust assessment criteria and then we give
an example of deriving these criteria from an SLA and
using them to generate trustcards.

A. Specification of trust assessment criteria
The criteria for the generation of trustcards are

specified in an Event Calculus based language which is
supported by the monitor of the trust assessment
framework, called EC-Assertion. A detailed account of
this language is beyond the scope of this paper and may
be found in [12][13]. In the following, however, we give a
brief overview of it to enable the reader understand the
example of trust assessment that we present later.

EC-Assertion is a first-order temporal logic language
based on Event Calculus [18] which supports the
specification of monitoring conditions in terms of events
and fluents.

An event in EC-Assertion is an occurrence that takes
place at a specific instance of time (e.g., invocation of a
system operation, receipt or dispatch of a message) and
may have an effect. The occurrence of an event in EC-
Assertion is represented by the predicate
Happens(e,t,ℜ(lb,ub)). This predicate denotes that an
instantaneous event e occurs at some time t within the
time range ℜ(lb,ub) (i.e., lb ≤ t ≤ ub). Events represent
invocations of system operations, responses from such
operations, or exchanges of messages between different
system components and are expressed as terms of the
following form: e(_id, _sender, _receiver, _status, _sig,
_source). In this term: (i) _id is a unique identifier of the
event, (ii) _sender is the identifier of the agent (system
component or external actor) that sends the message
represented by the event, (iii) _receiver is the identifier of
the system component that receives the message
represented by the event, (iii) _status represents whether
the event is a request (REQ) or a response to a request
(RES), (iv) _sig is the signature of the dispatched message
or the operation invocation/response represented by the
event, comprising the operation name and its
arguments/result, and (v) _source is the identifier of the
component where the event was captured.

Fluents in EC-Assertion are conditions which may
change over time (e.g. a fluent may indicate that a system
has received a message) and are initiated and/or
terminated by events. Fluents are represented by relations
between objects of the form rel(O1, …, On) where rel is
the name of a relation which associates the n objects O1,
…, and On. The initiation or termination of a fluent f due
to the occurrence of an event e at time t is denoted in EC-
Assertion by the predicates Initiates(e,f,t) and
Terminates(e,f,t), respectively. An EC-Assertion formula
may also use the predicates Initially(f) and HoldsAt(f,t) to
denote that a fluent f holds at the start of the execution of
a system and at time t, respectively. A formula in EC-
Assertion is specified in terms of the above predicates and
has the general form body ⇒ head. Formulas can be of
two different types: monitoring rules or assumptions.

Monitoring rules are formulas which are checked against
runtime events to establish if they are satisfied and their
meaning is that if the body evaluates to True, the head
must also evaluate to True. Assumptions, on the other
hand, are formulas which are used to generate
information. If the body of an assumption evaluates to
True at runtime, its head is assumed to be True by
deduction.

EC-Assertion is used to express operational
specifications of trust assessment criteria in the trust
assessment platform. These specifications are generated
from SLAs by the trust criteria generators of the platform.
An example of this generation is given in the following
section but prior to this it is important to provide some
justification of the choice of EC-Assertion as the language
for the specification of trust assessment criteria in our
approach.

This choice has been motivated by the fact that EC-
Assertion advocates a generic but simple modeling
ontology based on events and fluents, and supports an
explicit representation of the time of occurrence of these
events and fluents and the specification of explicit
constraints regarding this time. Due to these
characteristics, EC-Assertion enables the specification of
a wide spectrum of behavioural and QoS properties for
software services. These properties may be atomic or
aggregate, i.e., they may refer to specific interactions
between a service and its environment (e.g. the response
time of a service for specific operation invocation calls) or
sets of such interactions (e.g. the average response time of
all the invocations of a particular service operation).
Finally, due to its foundation upon Event Calculus, EC-
Assertion has a formal and well understood semantics
which is important for the specification of formal and
precise trust assessment properties.

B. Example
Our example of trust assessment criteria is based on

the e-healthcare system we introduced in Section 2 and
focuses on the assessment of trust for pharmacy services.
Enquiries for trustcards for such services may be raised by
HTS in different circumstances, including for example
cases where the pharmacy service which is currently used
for a specific area is not responding and a runtime search
for a replacement has identified services that HTS has not
used before and, therefore, has no trust in. A trustcard
may also be requested in cases where HTS wants to
reassure itself about the trustworthiness of a pharmacy
service that it has used before at runtime. HTS can request
a trustcard when the need for it arises (pull mode) and/or
subscribe to the trust platform for regular trustcard
updates for a given service (push mode). Trustcards can
be requested for specific service properties that have been
specified in the SLA published by the service.

In our example, suppose that the SLA of the pharmacy
service includes a term indicating that for patient
addresses which are within a given set of postcodes the
delivery time is guaranteed to be at most 60 minutes after
the acceptance of an order. Suppose also that the
pharmacy service offers the following operations:
(i) An operation confirm_order(patient_address,

orderRefNum) which a client can call in the service to
confirm an order following an earlier quotation for a
requested prescription by the pharmacy service. This

operation takes as input the reference number of the
order that is confirmed (orderRefNum) and the
delivery address of the patient.

(ii) An operation delivered(orderRefNum) which is called
by the agents who deliver prescriptions to patients to
confirm that the prescription related to OrderRefNum
has been delivered to the patient.

Given the above operations, the SLA guarantee term
about the maximum prescription delivery time can be
specified as shown in Figure 4. This specification is based
on the extended schema for WS-Agreement that has been
introduced in [12]. In WS-Agreement, the specification of
an SLA guarantee term consists of a qualifying condition
specifying a precondition that should be satisfied for the
enforcement of a service guarantee term, and a service
level objective that specifies the conditions that must be
met in order to satisfy the service guarantee term. In the
extended schema for WS-Agreement introduced in [12],
both qualifying conditions and service level objectives are
specified in EC-Assertion.

The EC-Assertion formula shown in Figure 4 4
specifies a service level objective expressing the
maximum prescription delivery time that is promised by
the pharmacy service. The formula states that following a
call to the pharmacy service _sID to confirm an order
request by a service client _cID (see the event e(_eID1,
_sID, _cID, RES, confirm_order(_address,
_orderRefNum), _sID) in the formula), the deliverer of the
prescription (_dID) will also call the pharmacy service to
confirm the delivery of the order within 3600000
milliseconds (see the event e(_eID2, _dID, _sID, REQ,
delivered(_orderRefNum), _sID) in the formula).

A request for a trustcard can then refer to exactly this
item in the SLA of the pharmacy service. Upon receiving
the request, the trust assessment platform checks whether
it can provide a trustcard matching the request and, if it
can, it generates the trustcard for the particular property of
the service and sends it to the requester. The availability
of appropriate trustcards depends on: (a) whether the trust
assessment authority has initialised a trust assessment
activity for the SLA of the particular service before it
receives the request for the trustcard, and (b) if by the
time that it receives the request it has a sufficient number
of evidence elements to generate a trustcard.

The trust assessment platform can generate
automatically the trust assessment criteria for the SLA
guarantee term shown in Figure 4 in order to capture the
primitive evidence elements and produce the evidence
digests required for the trust assessment of the particular
SLA term of the pharmacy service. For SLAs expressed in
the extended form of WS-Agreement, as in Figure 4. , the
generation of trust assessment criteria is based on the
following transformation pattern:
(GTA1): <C> ∧ ∧ <H> ∧

HoldsAt(Satisfied(<GT>,<S>,_SGT), t) ⇒
Initiates(<H>, Satisfied(<GT>,<S>,_SGT+1)
max(tVar(⇒<H>))+1)

4 The figure shows the formula in a high level non XML syntax of EC-

Assertion. Underscored names in the formula denote non time
variables and all the non explicitly qualified variables are assumed to
be universally qualified.

<guaranteeTerm name=”DeliveryTime”>
<variables> <variable name=_address />…
<variable name=_orderRefNum />
</variables>
<qualifyingCondition id=C1> … </qualifyingCondition>
<serviceLevelObjective> <guaranteeFormula>
<formula id=R1> … </formula>
</guaranteeFormula> </serviceLevelObjective>
</guaranteeTerm>

Figure 4. An example of a pharmacy service SLA

(GTA2) <C> ∧ ∧ ¬<H> ∧
HoldsAt(Violated(<GT>,<S>,_VGT), t) ⇒
Initiates(, Violated(<GT>,<S>,_VGT+1),
max(tVar(⇒ <H>))+1)

In this pattern,
 <S> is a placeholder for the identifier of the relevant

service and <GT> is a placeholder for the identifier
of the service guarantee term

 and <H> are placeholders for the body and the
head of the EC-Assertion formula B ⇒ H that defines
the service level objective of the term

 <C> is placeholder for the context of the service
guarantee term (i.e., the conjunction of the qualifying
conditions under which the service guarantee term
must be satisfied in WS-Agreement).

 max(tVar(⇒ <H>)) is the time variable in the
formula B ⇒ H that can take the maximum possible
value (i.e., the time variable of the event that is
expected to occur after all other events in the formula)
The application of the above transformation pattern

generates two assumption formulas GTA1 and GTA2 for
each service guarantee term GT. The first formula (GTA1)
maintains a satisfaction counter of the guarantee term and
increases its value in cases where when the context
conditions of the term (i.e., <C>) are satisfied, the EC
formula that defines the term (i.e., the EC-Assertion
formula ⇒ <H>) is also satisfied The second
formula (GTA2) maintains a counter of cases where even
though the context conditions of the service guarantee
term are satisfied, the EC-Assertion formula that defines
the term is violated (i.e., <C> ∧ ∧ ¬<H> is True).
The two counters used in such cases are represented by
the fluents Satisfied(<GT>,<S>,_SGT) and
Violated(<GT>,<S>,_VGT), respectively.

Based on the above pattern the following two
assumptions will be generated for the formula R1 in
Figure 4. :
R1A1: ∀ t1,t2:Time
Happens(e(_eID1, _sID, _cID, REQ,
confirm_order(_address,_orderRefNum), _sID),
t1,R(t1,t1)) ∧
HoldsAt(fastPostcode(_address.postcode),t1) ∧
Happens(e(_eID2, _dID, _sID, REQ,
delivered(_orderRefNum), _sID), t2,R(t1,
t1+3600000)) ∧

∀ t1,t2:Time
Happens(e(_eID1, _sID, _cID, REQ, confirm_order(_address,
_orderRefNum), _sID), t1,R(t1,t1)) ∧
HoldsAt(fastPostcode(_address.postcode),t1) ⇒
Happens(e(_eID2, _dID, _sID, REQ, delivered(_orderRefNum),
_sID), t2,R(t1, t1+3600000))

∀ t:Time
HoldsAt(fastPostcode(_address
.postcode),t)

gespan
Highlight

gespan
Highlight

HoldsAt(Satisfied(R1,_sID,_SR1), _t2) ⇒
Initiates(e(_eID2, _dID, _sID, REQ,
delivered(_orderRefNum), _sID),
Satisfied(R1,_sID,oc:self:add(_SR1,1)),t2+1)

R1A2: ∀ t1,t2:Time
Happens(e(_eID1, _sID, _cID, REQ,
confirm_order(_address, _orderRefNum), _sID),
t1, R(t1,t1)) ∧
HoldsAt(fastPostcode(_address.postcode),t1) ∧
¬ Happens(e(_eID2, _dID, _sID, REQ,
delivered(_orderRefNum), _sID), t2,
R(t1, t1+3600000)) ∧
HoldsAt(Violated(_sID,_VR1) _t2) ⇒
Initiates(e(_eID1, _sID, _cID, REQ,
confirm_order(_address,_orderRefNum),_sID),
Violated(R1, _sID, oc:self:add(_VR1,1)),t2+1)

The above formulas are generated by instantiating the
transformation pattern using the following substitution of
terms in the service guarantee formula R1 for the
placeholders of the pattern:
 <C>: HoldsAt(fastPostcode(_address.postcode),

t)

 : Happens(e(_eID1, _sID, _cID, REQ,
confirm_order(_address, _orderRefNum),
_sID), t1,R(t1,t1)) ∧
HoldsAt(fastPostcode(_address.postcode),
t1)

 <H>: Happens(e(_eID2, _dID, _sID, REQ,
delivered(_orderRefNum), _sID), t2,R(t1,
t1+3600000))

 <GT>: R1

 <S>: _sID

Following the generation of the above assumptions,
the trust assessment platform assigns them to the monitor.
When it receives them the monitor starts checking the
confirm_order and delivered events and uses the formulas
R1A2 and R1A2 to deduce the values of the satisfaction and
violation counters for R1. The formulas R1A2 and R1A2
also determine the evidence elements and digests that
need to be maintained for the trust assessment of the
particular SLA term. In particular, at any given time point
t,
 the evidence elements include the instances of R1A2

and R1A2 that have been generated by the monitor
following unification with runtime events up to time t
in order to update the values of the guarantee term
satisfaction and violation counters, and

 the evidence digests are the values of the counters
_SR1 and _VR1 at t.
This information is maintained by the platform and

used to generate a trustcard when requested. The
generated trustcards are associated with an uncertainty
measure about the trustworthiness of a service with
respect to the particular service guarantee term expressed
by the card. This measure is calculated as the number of
the violations of the service guarantee term over the total
number of the cases of its assessment (i.e., the ratio
_VR1/(_VR1 + _SR1) in our example).

It should be noted that the generation of a trustcard
may depend on additional criteria that the trust authority
may have for the particular case. In our example, these
criteria may include the minimum number of evidence
elements (i.e., instances of R1A2 and R1A2) that the
authority must have before generating a trustcard. More

complex criteria may also be used by the trust authority.
Such a criterion could be to have evidence elements from
interactions of the service with at least K different clients
before issuing a trustcard.

V. RELATED WORK
Trust is a complex concept studied from multiple

perspectives [22] including the prominent perspectives of
system security and the socio-economic modelling of
trust. In the following we provide an overview of work in
these two areas, noting that the gap between them is still
significant.

In the security domain, different strands of research
have addressed issues of authentication, authorisation,
confidentiality and availability of SOCs and have
generated standards such as WS-Trust and WS-Policy for
representing security credentials and policies regarding
these credentials [4]. Trust reasoning and management
platforms are also being developed in this context for Grid
applications [1][23]. Trust management proposed more
complex credential policies and standard algorithms for
checking policy compliance, such as in KeyNote [3] and
SULTAN [8], but these solutions suffer from the lack of
efficiency and expressiveness in practice. Trusted
Computing [11] is a recent security paradigm that
proposes to semi-formally implement a chain of trust
providing the ability to represent reliably and
communicate securely software configuration states along
execution chains (e.g., BIOS, boot loader, virtualisation
kernel, OS kernel). This is based on hashes of application
binaries and configuration files, called measurements,
which are signed using hardware-protected cryptographic
keys. These measurements do not provide any information
about properties of the application and may lack
information about its operational environment. A
fundamental issue in the security domain is the fact that
trust is only considered as the trust that a security user, or
security service consumer, has in a remote security
provider following a chain of cryptographic tools.

On the other hand, work in the socio-economic area of
trust has proposed a plethora of models and systems
which tackle the concept of trust from a wider
perspective. Trust factors, such as credibility, ease of use
or risk, have been elicited in e-commerce [5] offering
design and (web) interface elements and models of trust
that can be used as starting points for HCI developers.
Design methodologies of pervasive systems have been
augmented with trust requirements [10] such as audit trail
(or accountability), harm, reliability and accuracy. Other
work has focused on topics such as website credibility [7]
and reputation [9], [17]. McKnight and Chervany [14]
give a wide account of research on trust in the domains of
management, sociology, economics, politics, science and
psychology.

Most modern approaches to trust consider static
information and fixed scenarios. The runtime assessment
of trust includes the dynamic verification of whether trust
rules are consistent with the behaviour of a system
(multiagent systems [16], open and distributed systems
[15]) and the monitoring of trust specifications (e.g.
adaptive systems trust monitoring [19]). There is also
some work on monitoring the dynamic operation of
partners in virtual organizations (VOs) in order to identify

their failure to meet obligations established during the
formation of VOs [6].

The approach that we take in this paper differs from
the above work in two respects: it takes a comprehensive
view over trust assessment and uses runtime data to
generate and update trustcards expressing trust in specific
terms of SLAs between service providers and consumers.
Security credentials and policies can be modelled in our
framework [21] but the service client is not limited to
these and can use other properties such as reliability and
efficiency. Subjective information can also be integrated
into the approach via the use of service client
recommendations. Furthermore, our approach addresses
dynamic service use scenarios and captures the composite
nature of trust in the concept of trustcards. Finally, the
process of property assessment is automatic and can
derive trustcards on the fly, while service clients are
updated when changes occur.

VI. CONCLUSION AND FUTURE WORK
In this paper, we have discussed the issue of assessing

trust in SOC systems based on runtime information and
highlighted the limitations of existing approaches in this
respect. To address these limitations, we have proposed a
model for dynamic assessment of web service trust and a
platform that realises the model. The assessment of trust
in this model is based on trustcards. Trustcards provide
assessments of the trustworthiness of web services with
respect to different criteria. These assessments are based
on information collected by monitoring web services in
different operational contexts and subjective assessments
of trust provided by different service clients and situated
in specific operational contexts. Trustcards enable service
clients to make better informed and dynamic decisions
about the services they deploy and adapt dynamically to
changes that may affect the trustworthiness of services.

The platform that we have proposed to realise the
model is based on a service monitoring framework
developed at City University [12][13] and extends it with
capabilities that enable the dynamic generation, provision
and maintenance of trustcards. More specifically, the
underlying monitoring framework provides the
implementation of the monitors in the platform and has
been extended by components as discussed in Section III.

The proposed platform has been partially implemented
and some of its components, notably the ones supporting
the automatic generation of event captors, are still under
development. Current work looks also at extensions of the
platform to make it usable by coalitions of users wanting
to form trust assessment collectively rather than
centralised trust authorities as we have assumed here. We
are also investigating ways of assessing the fit of existing
trustcards to trust assessment requests coming from
contexts that are not identical to the context of the
generation of the trustcards.

ACKNOWLEDGMENT
The work reported in this paper has been has been

funded by the European Commission Information Society
Technologies Programme as part of the projects
SERENITY (contract FP6-27587) and SLA@SOI
(contract FP7-216556).

REFERENCES
[1] M. Ahsant, et al., “Dynamic Trust Federation in Grids”,

Proc. of 4th Int. Conf. on Trust Management, 2006
[2] S. Anderson, et al., “Web Service Trust Language”,

specs.xmlsoap.org/ws/2005/02/trust/WS-Trust.pdf, 2005
[3] M. Blaze, et al., “KeyNote: Trust Management for Public-

Key Infrastructures”, Proc. of the 1998 Security Protocols
International Workshop, LNCS, Vol. 1550, 1998

[4] M. Coetzee and J. Eloff, “Autonomous trust for web
services”, Internet Research: Electronic Networking
Applications and Policy, Vol. 15, No. 5. 2005, pp. 498-507

[5] L. Corritore, et al., “On-line trust: concepts, evolving
themes, a model”, Int. J. of Human-Computer Studies,
58(6): 737-758, 2003

[6] T. Dimitrakos, “Towards a Trust and Contract
Management Framework for Dynamic Virtual
Organisations”, Proc. of eChallenges 2004. 2004

[7] B.J. Fogg, et al., “What Makes Web Sites Credible: A
Report on a Large Quantitative Study”, Proc. of CHI 2001,
2001

[8] T. Grandison and M. Sloman, “Trust Management Tools
for Internet Applications”, Proc. of the 1st International
Conference on Trust Management, LNCS 2692, 2003

[9] A. Jøsang. “Trust and Reputation Systems”, In
Foundations of Security Analysis and Design IV, FOSAD
2006/2007 Tutorial Lectures. Springer LNCS 4677, 2007.

[10] S. Lo Presti, M. Butler, M. Leuschel and C. Booth,
“Holistic Trust Design of E-Services”, In Trust in E-
Services: Technologies, Practices and Challenges, 113-
139, IDEA Group, 2007

[11] S. Lo Presti, “Trusted Computing”, In Hacking Exposed
Linux, 3rd edition. McGraw-Hill Osborne, 2008

[12] K. Mahbub and G. Spanoudakis, “Monitoring WS
Agreements: An Event Calculus Based Approach”, Test
and Analysis of Service Oriented Systems, (eds) L. Baresi,
E. diNitto, Springer, 2007, pp. 265-305

[13] K. Androutsopoulos, C. Ballas, C. Kloukinas, K. Mahbub
and G. Spanoudakis, “V1 of dynamic validation
prototype”. Deliverable A4.D3.1, SERENITY, 2006

[14] D.H. McKnight and N.L. Chervany, “The Meanings of
Trust”, Technical Report MISRC Working Paper Series
96-04, University of Minnesota, 1996.

[15] N. Osman and D. Robertson, “Dynamic Verification of
Trust in Distributed Open Systems”, Proc. of IJCAI 2007,
2007

[16] D. Osman, et al. “Run-Time Model Checking of
Interaction and Deontic Models for Multi-Agent Systems”,
Proc. of AAMAS 2006

[17] P. Resnick et al. “Reputation systems”, Communications
of the ACM, 43(12):45-48, 2000

[18] M. P. Shanahan, “The Event Calculus Explained”, in
Artificial Intelligence Today, Lecture Notes in Artificial
Intelligence 1600: 409-430, Springer, 1999

[19] H. Shrobe and J. Doyle, “Active trust management for
autonomous adaptive survivable systems”, In Self-
Adaptive Software, LNCS 1936, 2001

[20] G. Spanoudakis, “Dynamic Trust Assessment of Software
Services”, Proc. of 2nd International Workshop on Service
Oriented Software Engineering (IW-SOSE '07), 2007

[21] G. Spanoudakis, C. Kloukinas, and K. Androutsopoulos,
“Towards security monitoring patterns”, Proc. of the 2007
ACM Symposium on Applied Computing, 2007

[22] S. Staab, et al. “The Pudding of Trust”, IEEE Intelligent
Systems 19, 5 (Sep. 2004), 74-88

[23] Trusted Web Services, http://www.trustedwebservices.org/

