
University of South Wales

2059405

Bound by

Abbey
Bookbinding Co.

116 Cathays Terrace, Cardiff CF2UHY
South Wales, U.K. Tel: (029) 20395882

An investigation into the use, application
and evaluation of intelligent agents

Mike Reddy

PhD Overview Report

May 1999

An investigation into the use, application
and evaluation of intelligent agents

Mike Reddy

A submission presented in partial fulfillment of the requirements
of the University of Glamorgan/Prifysgol Morgannwg

for the degree of Doctor of Philosophy

May 1999

To my unborn, Stealth Baby
The Star Child of Sun and Moon.

And to my Victoria, who I call "Vie",
For loving me through thin and thick!

Abstract

This overview report comprises two projects linked by the theme of the application of

intelligent agents. The first project covers the development of RAPIDO, a rapid

prototyping toolkit for the development and evaluation of agent applications. The papers

and technical reports included for this project look at the implementation and application

of the RAPIDO toolkit to a specific test case for evaluation purposes. The second project

considers the use of an agent-based simulation of the Internet, called WebAgent, to explore

agent-based solutions to improving network performance. The publications present the

experimental methodology of WebAgent, and the results of evaluating Expl, an adaptive

agent for intelligent control of dynamic caching strategies for web servers and clients.

The knowledge gained during the course of these two projects has been published in

refereed papers included within the accompanying portfolio. The production of Multi-

Agent Systems (MAS), particularly Distributed Artificial Intelligence (DAI) applications,

is dependent upon the underlying paradigm. The generic approach to the specification of

agent applications, and the object-oriented rapid prototyping technique, have allowed

different implementations of a specific problem domain to be evaluated in order to

determine the best architecture. The application of agent-based simulation to the field of

web document caching has both introduced a new tool for performing evaluations of such

techniques and has helped towards the proposal of a new approach, based upon intelligent,

adaptive agents. The future of such directions promises to offer far greater application of

these ideas to the regulation and management of networks in general.

Table of Contents

Abstract... .. i

Declaration and Certificate of Research .. iv

Acknowledgements.. v

1.0 Introduction^^

1.1 Agents and Agency: A brief history... 1

1.2 Contents of the Portfolio.. .. .6

1.3 Author's role in the work8

2.0 RAP1DO ...

2.1 Introduction.....10

2.2 Rationale for RAPIDO ... 1 1

2.3 Work done on RAPIDO.. 12

2.4 Description of the RAPIDO papers.. 17

2.5 Conclusions and Future Work.. 24

3.1 Introduction...26

3.2 Rationale for WebAgent....30

3.3 Work done on WebAgent...32

3.4 Description of the WebAgent papers ... 40

3.5 Conclusions and Future Work... .. .44

4.0 Commentary..."».............."......«"«.....«»..«....................»..51

4.1 Link between the two projects.. 51

4.2 Contribution to Knowledge .. 52

4.3 Future Work. ... 53

5.0 References..........................«"........."»."".«"""»""""""""""""'"""""""""«"""««""«""««""55

Appendix - Portfolio of Papers ...61

- n -

Table of Figures

Figure 2.3.1 - The architecture of RAPIDO...13

Figure 2.3.2 - RAPIDO top-level interface (Creating AMNESIA)..15

Figure 2.3.3 - RAPIDO agent interface (Creating the test agent) ...15

Figure 2.3.4 - RAPIDO skill interface (Creating and defining visible skills)........................... 16

Figure 2.3.5 - RAPIDO rule interface (Setting rules for memory_impaired)......................... 16

Figure 3.3.1 - Structure of the WebAgent Testbed..36

- in -

Declaration

This is to certify that neither this overview report, nor any part of it has been presented or

is being currently submitted for any degree other than the degree of Doctor of Philosophy

at the University of Glamorgan.

Candidate

Certificate of Research

This is to certify that except where specific reference is made, the work presented in this

overview report is the result of the investigation undertaken by the candidate.

Candidate

Director of Studies

- iv-

Acknowledgements

I would like to take this opportunity to thank my Director of Studies, Professor Bryan

Jones of Glamorgan University, and my Second Supervisor, Dr. Graham Fletcher, of

Aberdeen University. Throughout the project, they have guided the work with great skill

and patience. For the latter especially, I am grateful.

I must also extend thanks to Mr. Greg O'Hare of University College Dublin, my original

Project Supervisor while I was studying at UMIST in Manchester for his incredible support

when illness prevented the completion of my studies. Without his direction and focus the

work on RAPIDO would never have been. I hope that he will share my relief that the ten

years that this particular albatross has been round my neck are finally over.

I would also like to acknowledge Professor Peter Hodson and the School of Computing

Staff, particularly Dr. Jim Moon, who have supported the rekindling of my research. I hope

that this document will repay their faith in me over the years.

Last, but not least, I would like to recognise the love and support of my wife, Victoria

Jones, whose never-ending pot of enthusiasm inspired me, even at Sam in the morning!

- V -

1.0 Introduction
This is the overview report for a PhD by Portfolio in the application of intelligent agents and

agent technology. The accompanying portfolio covers two projects: one in the development of

a toolkit for building agent applications, the other on the use of agent-based simulations of

the Internet. As the main theme of the research is that of agents and agency, these terms are

defined in Section 1.1. A list of the documents that make up the portfolio is presented in

Section 1.2, followed by Section 1.3, a statement of the author's contribution to the work.

1.1 Agents and Agency: A brief history
As the two projects described in this report span ten years of rapid growth and development

in the field of agent research, a historical perspective is useful. Since the 1970s, the field has

evolved through three chronological periods: Distributed Artificial Intelligence; Multi-Agent

Systems; and, more controversially, Agent Technology. These are now described to give a

context to the two research projects, which will be described later.

1.1.1 Distributed Artificial Intelligence
The concept of agency is rooted in Distributed Artificial Intelligence (DAI), which branched

away from main stream AI, due (in part) to inspiration from the fields of distributed,

concurrent and real-time systems. This marked a distinct trend towards decentralisation,

which was prevalent in Computer Science [O'Hare (1987)]. DAI proposed the use of

logically distinct, possibly concurrent Knowledge-Based Systems (KBS), or Agents, which

communicated with each other in a collaborative manner, in order to produce solutions to

complex problems [Hern (1987)]. However, the independent production of separate

components could have imposed arbitrary and artificial boundaries upon the expertise stored.

Furthermore, the heterogeneous nature of some domains prevented the co-operative solution

of complex problems that required knowledge from a broad spectrum of sources.

DAI researchers identified three areas of major importance: global coherence, knowledge

representation and communications [Hern (1987)]. These three areas were closely inter­

related, in that the coherence of a system was dependent upon the information being shared,

while the representation of knowledge was shaped by the method used for transportation

between agents. Another feature of these problems was that they existed on at least two levels

- the underlying philosophy at the higher level and the lower level implementation.

In fact, DAI researchers were often accused of 're-inventing the wheel' in their attempts to

overcome some of these obstacles. The minimisation of communications [Davis & Smith

(1983)] and completeness of messages to improve efficiency [Durfee et al (1987)] mirror the

protocol of Loose Coupling and High Cohesion which were given priority in Software

Engineering [Pressman (1982)].

Furthermore, early DAI paradigms paralleled the development of communications in real-time

systems quite strongly: The HEARSAY speech recognition system [Reddy et al (1973);

Lesser et al (1975)] was the first implementation of a distributed problem-solving paradigm,

based upon the Blackboard Model [Englemore & Morgan (1988)]. A direct analogy can be

drawn with the use of a common memory store for linking multiple processes [Young

(1982)]. An attempt to simplify interaction between nodes was made in the BEINGS system

[Lenat (1975)], by advocating a common structure divided into dedicated parts. The Actor

model [Hewitt (1977)] allowed point-to-point communication and a restricted acquaintance

list of potential links to prevent overloading [Martin (1981)]. Both these approaches are

similar to the implementation of concurrent procedures (or processes) being structured into

hierarchies of sub-processes [Young (1982)], and the Monitor concept of modular

construction and enforced interfacing [Hansen (1973); Hoare (1974)].

More recently, DAI paradigms have emphasised meta-data transmission, rather than the use

of global variables - ranging from plan sharing [Rosenscheim (1986)], to complex message

passing mechanisms [Cohen & Perrault (1979); Alien & Perrault (1980); Appelt (1985)] -

This passing of messages for control and synchronisation is also true for the Rendezvous

mechanism found in CSP [Hoare (1978)], DP [Hansen (1978)] and ADA [Ichbiah (1980)],

which allows for synchronous and asynchronous communications based upon 'guarded

commands' [Dijkstra(1975)].

Lesser and Corkill (1981) have proposed the Functionally Accurate / Co-operating model

(FA/C) to enable total independence by allowing partial hypotheses and uncertain data to be

passed between agents. An especially impressive feature of FA/C was the ability to recover

from partial failure of planned activities. Competition was examined in the Contract Net

Approach [Smith (1978)], where communication of bids and tenders enabled dynamic task

decomposition. This was the first paradigm to be proposed, which embraced the concepts of

competition and tendering. Finally, the ACC system (Architecture for Control and

Communications) [Yang et al (1985)] allowed for self-reconfiguration of agents by providing

a central 'meta' database of agent expertise. This allowed for dynamic optimisation using a

question and answer mechanism to reduce processor and communication overheads.

Two broad classes of DAI systems have been identified : Task sharing and Result sharing

[Smith & Davis (1981)]. Common to all these systems was the assumption that co-operation

is justified because distributed problem solvers have only one function to perform, unlike

other distributed systems which are multi-functional; they are therefore said to operate under

the 'Benevolent Expert' metaphor. This assumption, that experts should always co-operate,

has been challenged by [Genesereth et al (1984); Rosenscheim & Genesereth (1984)]. They

have offered the 'Competing Experts' metaphor as a counter-proposal, but the practicality of

this approach has not been extensively tested. Steeb et al (1981) have provided an overview of

different organisational structures for DAI where there is some global problem to solve and,

therefore, some centralised control. The reader is recommended Bond & Gasser (1988) and

O'Hare & Jennings (1996) for a fuller consideration of the origins of DAI.

1.1.2 Multi Agent Systems
Multi-Agent Systems (MAS) were inspired by research into complex social structures,

including such work as Speech Acts [Searle (1969)]. Durfee et al (1987) described the MAS

architecture as "a loosely coupled network of problem solvers that work together to solve

problems that are beyond their individual capabilities." Most examples consisted of simple

agents acting autonomously and, in most cases, communicating and co-operating, rather than

competing. However, there was no clear definition of what an agent is: "In the Al literature

there is not always a clear distinction between an agent and a process"[Pebody (1993)].

3

The use of the term 'agent' had become common within many academic publications and

publicity material for commercial programs (especially Internet search applications). Clearly,

there is a continuum of agency along a number of orthogonal axes: In fact, the literature has

become infected with 'adjectivitis' in an attempt to distinguish more clearly between different

uses of the term; prefixes such as 'intelligent', 'cognitive', 'autonomous', 'situated',

'deliberative', 'reactive', 'software', 'mobile', etc., are not exhaustive.

At present, research has split into a number of key areas: Agent theories and architectures

(This includes interface protocols and social models of interaction); Agent languages and

toolkits (This work is principally aimed at aiding the development and evaluation of MAS);

and Agent Applications (This covers the practical application of agent-based techniques).

Much theoretical work at present is focussed upon models of belief, desires and intentions

(BDI) to enable cognitive agents to make plans [Wooldridge & Jennings (1994)]. However,

the alternative of 'situated' agents, which behave reactively within the context of their

environment, are often accused of 'jumping upon the agent bandwagon'. Demazeau and

Miiller (1991) have distinguished between deliberative and reactive agents: the former

requiring a complex architecture that involves symbolic representation and planning to choose

the correct behaviour; the latter can be simpler in structure, using perception to determine

which (potentially pre-programmed) action to perform, without a formal model of the

environment. An alternative, more generous view of reactive agents, which does not rule out

some cognitive ability, was given by Fisher & Wooldridge (1993): "a reactive system is one

which cannot adequately be described in terms of 'initial' and 'final' states."

Although reactive strategies have been applied almost exclusively to simulation and robotics,

they have also been proposed as a technique for problem solving [Ferber (1989); Connah

(1991)]. However, reactive multi-agent systems lack some of the theoretical underpinning of

deliberative agent architectures. While recent research has looked at the emergent properties

of reactive systems, there are no guidelines for design and development of applications. It is

commonly believed that reactive systems must form collectives to perform effectively:

4

".. .reactive agents need companionship. They cannot work isolated and they usually

achieve their tasks in groups. Reactive agents are situated: they do not take past

events into account, and cannot foresee the future" [Ferber (1996)].

Reactive agents that exhibit learning capabilities, or evolve (such as artificial life systems), can

clearly "take past events into account," if only implicitly. Furthermore, the Subsumption

architecture, is an example of a reactive strategy in which the agent (a mobile robot) is

isolated', but still situated in the environment it is navigating [Brooks & Connell (1986)].

Ferber was, therefore, only correct in that reactive systems do not cogitate on the past; they

are not afforded the luxury of 'contemplating their navels', as their environments require

instant responses rather than provably optimal ones. For more recent coverage of MAS

research the reader is referred to Singh et al (1994). Jennings (1994) describes some real

world applications of MAS techniques.

1.1.3 Agent Technology
Agent technology covers the recent migration of agent-based techniques from experimental

testbeds to specific 'real world' problems of varying complexity. This development has

exhibited itself in two ways: Agent-Based Simulation Environments (ABSE), which enable

models of social or co-operative behaviour to be explored within realistic virtual

environments; and Intelligent Agents (IA), which attempt to implement intelligent solutions to

problems that require some degree of autonomy, but often forego the co-operation or

communication issues involved with MAS architectures, by interacting with the environment

rather than through it.

The potential for using lAs and ABSEs for problem solving is great, but relatively

unexplored. Most existing systems have been designed to study aspects of agent behaviour,

or whether agents are viable for solving particular problems. However, these investigations

have not looked at how they can be used as general evaluation tools in themselves to solve

'real world' problems. Yet, ABSEs allow robust, yet flexible, representations of complex

environments to be developed from relatively simple components by implementing individual

behaviour in detail and the environment. In general:

"Such simulations are based on the construction of a microworld where particular

hypotheses can be explored, and experiments can be repeated and controlled in a

similar way that real experiments are done in a real laboratory... This can be done by

experimenting about the minimal conditions given at the microlevel which are

necessary to observe phenomena at the macrolevel" [Ferber (1996)].

This approach embraces the concept of 'weak' agency [Moon (1997)] - originally

expounded as "A weaker notion of agency", the lesser alternative, by implication, to the

notion of 'strong' agency advocated in[Wooldrige & Jennings (1994)] - in that it

emphasises the use of agent-based techniques as a general problem solving tool. Opinion is

split as to whether the strong V weak agent debate is a fundamental issue in current

research:

"... 'Weak' agency may not be the long term goal of the advocates of MAS, but it

may solve some immediate problems. Success in this area may well support future

research, rather than undermining the ideals" [Moon (1997)].

For this report, the discussion of agency is pragmatic, and leans in favour of the more

pragmatic, 'weak' agent perspective. The author defines an agent as being an autonomous

system, which performs a useful task in a non-deterministic fashion, either in a complex way,

or in a complex setting. This precludes simple objects or processes from being included as

agents, as their behaviour is completely pre-determined. This being so, it does not prohibit

simplicity in the implementation of an agent where this reflects reality or practicality. Moon

(1997) points out that we should ".. .use intelligent components to model the parts of the

system where a discrete solution is hard to provide and use mathematical or functional

models where they are more apt."

1.2 Contents of the Portfolio
The following papers and technical reports are included in the Appendices:

[1] Reddy, M. & O'Hare, G.M.P. (1991), "The blackboard model: a survey of its

application" in 'Artificial Intelligence Review,' Vol. 5, No. 3, pp!69-186.

[2] Reddy, M. & O'Hare, G.M.P. (1990), "CoCo-POP A Development Testbed for

prototyping Distributed Knowledge-Based Systems," Technical Report AI-90-3

(August 1990), Department of Computation, UMIST University, Manchester.

6

[3] Reddy, M. (1990), "A Proposal for an ACTOR-Based Extension to CoCo-POP -

CAST," Technical Report AI-90-4 (October 1990), Department of Computation,

UMIST University, Manchester.

[4] Reddy, M. (1990), "CAST - Progress for the Implementation of Actor

Communications," Technical Report AI-91-1 (January 1991), Department of

Computation, UMIST University, Manchester.

[5] Reddy, M. (1990), "CoCo-POP Generic System Capture," Technical Report AI-

91-2 (March 1991), Department of Computation, UMIST University, Manchester.

[6] Reddy, M.& O'Hare, G.M.P. (1990), "GARP: A Rapid Prototyping Tool for

Distributed Knowledge-Based System," Technical Report AI-92-2 (July 1992),

Department of Computation, UMIST University, Manchester.

[7] O'Hare, G.M.P., Reddy, M. & Jones, A. (1992), "AMNESIA - Implementing a

Distributed Knowledge-Based System using RAPIDO," in 'Proceedings of Expert

Systems '92,12th Annual Conference of the British Computer Society specialist

Group on Expert Systems,' (Cambridge, December 1992), Cambridge University

Press.

[8] Reddy, M. & Moon, J.N.J. (1995), "Development and Evaluation of Multi-Agent

and Agent-Based Simulation Environments," 'DIMAS '95, Proceedings of the 1 st

International Workshop on Decentralized Intelligent Multi Agent Systems,' (Krakow,

November 1995), pp393-401.

[9] Reddy, M. & Fletcher, G.P. (1997), "Intelligent Control of Dynamic Caching

Strategies for Web Servers and Clients," in 'WebNet '97, Proceedings of the 2nd

World Conference of the WWW, Internet, & Intranet,' (Canada, November 1997),

pp440-446.

[10] Reddy, M. & Fletcher, G.P. (1998), "An Adaptive Mechanism for Web Browser

Cache Management," IEEE Internet Computing, Vol. 2, No. 1, (January-February

1998),pp78-81.

[11] Reddy, M. & Fletcher, G.P. (1998), "Intelligent adaptive web caching using

document life histories: A comparison with existing management techniques," in

'Proceedings of the 3rd International Workshop on WWW Caching,' June 15-17th,

1998, Manchester, UK.

[12] Reddy, M. & Fletcher, G.P. (1998), "Expl: a comparison between a simple

adaptive caching agent using document life histories and existing cache techniques,"

in 'Computer Networks and ISDN Systems,' Vol. 30, Nos. 22-23, (November 1998),

pp2149-2153.

1.3 Author's role in the work
For papers [1], [2] & [6], the author produced all the preparatory work, literature surveys and

initial drafts. O'Hare's role was primarily for final preparation of the publications, involving

proof reading, and suggestions for improvements. Papers [3], [4] & [5] were produced solely

by the author.

For paper [7], much of the preparatory work was shared between the author and Jones.

Literature surveys and initial drafts were produced by the author. However, Sections 3,5 &

6.1 and Appendix 1, were adapted by the author from Jones' MSc dissertation report.

O'Hare's role was primarily for preparation of the final publication, and to present the work

at conference, due to an extended period of illness for the author.

Paper [8] was jointly authored by the author and Moon. The majority of the work was

prepared by the author. However, Section 4, and parts of Section 5 were written by Moon.

Papers [9], [10], [11] & [12] were jointly authored by the author and Fletcher. Initial

development of the simulation, and initial analysis of results, were shared between the author

and Fletcher. The literature survey, proposal of the technique and experimental design were

prepared by the author. All drafts of the publications were produced by the author, with

Fletcher proofreading, and making suggestions for improvements.

This overview document now considers the two projects in detail: Section 2.0 presents

RAPJDO, a toolkit for developing MAS applications by rapid prototyping; WebAgent, the

second project described in Section 3.0, is a simulation testbed for performing experiments in

improving Internet network performance. Both projects are set into the context of their

8

specific problems, before a rationale for the work is presented. This is followed by a

description of the work achieved, and further described by reference to the documents in the

portfolio. Each section is then concluded, with an evaluation of the work done and

recommendations for further work. Finally, Section 4.0 describes how the two projects are

related, and outlines the contribution to knowledge and future directions of research.

2.0 RAPIDO
This chapter describes a toolkit for prototyping MAS applications, developed at UMIST

under a SERC studentship between 1989 and 1992, and some closely related work performed

at Glamorgan University in 1995. Section 2.1 provides an introduction to the specific

problem area of developing and evaluating MAS applications. Section 2.2 describes the

rationale for RAPIDO, and outlines the project objectives. The work done during the project

is detailed in Section 2.3 and further described by reference to the portfolio papers, in Section

2.4. Finally, Section 2.5 discusses the conclusions and directions for future work.

2.1 Introduction
In the late 1980s, the advantages of a Distributed Artificial Intelligence (DAI) approach to

Knowledge Based Systems (KBS) were becoming recognised, and a plethora of DAI

paradigms had been proposed. However, none of these models were capable of supporting

problem solving in all areas; each being suited to particular domain types. A truly generic

model of multi-agent architectures, combining all the separate paradigms into one universal

representation was considered unfeasible at the time, because each paradigm displayed unique

features. Nevertheless, they did show similarities in the requirements of their agents.

The design of intelligent agents has been identified as an important research direction within

multi-agent systems (MAS) and identifying appropriate architectures is fundamental. Agent

applications should allow many different co-existing components with complex interactions.

These involve asynchronous parallelism, which requires process synchronisation and

protection of internal resources; a problem common in real-time, concurrent and distributed

systems. The construction of DAI systems would be facilitated by adopting a prototyping

approach for evaluating the most suitable paradigm for a particular domain. Therefore, the

design of MAS must be supported by providing tools and methodologies for developing

computational implementations of agents and their communications.

The following section examines the motivation for RAPIDO, in light of previous work, and

identify the research questions, which were subsequently raised. Finally, the objectives for the

project are described.
10

2.2 Rationale for RAPIDO
It was clear that tools were needed to aid both the acquisition and design of MAS prototypes,

and help in the evaluation of different implementations of these systems under a number of

DAI paradigms. It had been identified that a generic approach might allow more objective

evaluation of implementation strategies in order to determine which paradigm to adopt, how to

build it and how to partition the domain knowledge. A secondary concern was the question of

how to implement real-time execution of and communication between agents. It was felt that

the link between the parallel development of DAI and concurrent, distributed and real-time

systems warranted further examination.

The main focus for developing RAPIDO was, therefore, to explore the effectiveness of using

a pragmatic, generic model of agents as black boxes, linked by simple communication

protocols, regardless of the underlying paradigm. Whereas many tools support a single

paradigm and/or implementation method, the aim of the RAPIDO toolkit was to explore a

variety of paradigms and to study performance under a number of different architectures.

It was intended that the use of a layered architecture would allow different paradigms to be

constructed in library form, with the intent that these libraries would only be accessible

through generic tools to hide low-level details behind layers of abstraction, so that agent

architectures could be created generically.

Comparison of the performance of different agent architectures may only be possible when

experiments are controlled and repeatable [Hanks et al (1993)]. It was hoped that some

degree of evaluation of the performance of different paradigms for a particular domain might

be possible. In order to evaluate RAPIDO's ability to do this, a MAS application based upon

a real-world case study, would need to be implemented under a number of paradigms. While

this would not necessarily prove that the specific domain was best suited to a particular

paradigm, it would provide a proof of the concept that the toolkit might be used in such an

investigation. Therefore, the following objectives were identified:

* A survey of existing DAI paradigms and applications, with an emphasis upon the

underlying communication requirements;

11

t Examination of techniques in concurrent, real-time and distributed systems for the

partitioning and communication between distinct processes;

< Design of a set of communication primitives supporting these techniques in a form

accessible to an agent-oriented development tool;

»> Implementation and comparison of several DAI paradigms using these low-level

communications primitives;

< Design of some development tools to support construction of MAS applications via rapid

prototyping techniques;

»t* Evaluation of the final toolkit by the development of a real application from a non-trivial

case study.

2.3 Work done with RAPIDO
In this section, the implementation of RAPIDO is discussed. This architecture has several

layers of abstraction and an acquisition/representation language for the development of MAS

prototypes; see Fig. 2.3.1. The first and lowest layer of abstraction is the CoCo-POP

Testbed. CoCo-POP was implemented in Pop-11, using the low-level threaded process

primitives to build up an extensive set of facilities for implementing concurrent applications.

This provides Pop-11 with a library of objects capable of running in parallel, and a scheduler

for overseeing their execution. Communication primitives allow for a range of protocols

inspired by real-time systems research (including semaphores, monitors, remote procedure

calls (RPCs) and ADA-style rendezvous process synchronisation).

Pop-11 process control primitives were used to implement co-operative multi-tasking and

internal parallelism; module tasks can be interrupted by higher priority jobs before resuming.

The scheduler can be configured to run in a round robin or priority-based manner, with

priorities set by the agents themselves or by a scheduling agent; the default is for basic

modules to perform this task, to allow for trace/debugging. Differing agent process

requirements can be compensated for by scheduling slower agents with a greater priority.

12

GENERIC
AGENT
BASE

V

A

Agents Compiled
into Paradigm
Specific

I:::::: 1::!::::::::::: :::::::::::::;:::::;:::::J

FACTOR SYSTEM^-. : ^. : d

ACTOR INFERENCEP\:; :^ili

A
,*£S*irttS*»ifc**i***ij

Co-Co POP System
actually schedules the
Agents within the
underlying Paradigms

SYSTEM DESIGNER

Figure 2.3.1 - The architecture of RAPIDO

CoCo-Pop is able to execute heterogeneous agent architectures, but the agents themselves

must handle translation of messages internally. Higher-level communication protocols, such

as KQML, were not implemented at this level because they were paradigm specific.

Therefore, the agent modules must contain their own translator/interpreters or use

intermediary agents to act as go-betweens.

13

The second layer of abstraction consists of libraries of extended CoCo-POP modules or

agent shells, rather like expert system shells but with added communication facilities. These

libraries are object-oriented in approach as they consist of classes of modules with inherited

generic slots that can be extended by the user. The use of a set of paradigm libraries allows

us to avoid adopting a potentially inappropriate technique until evaluation of different

approaches has enabled us to make an informed decision.

Two such libraries exist: Black Board Builder (BBB) and CoCo-POP Actor Simulation

Testbed (CAST), which implement blackboard and actor based systems respectively. These

were chosen because of their widely differing approaches to internal representation of

knowledge, communications and methodologies: "Objects [Actors] have to know what to

remember. Blackboards have to know what to forget." [INSIGHT (1986)].

The final layer of abstraction is the RAPIDO prototyping tool, which uses a generic

acquisition/design interface to make the underlying architecture less explicit. This tool was

created to integrate between the separate layers, and implements a generic lifecycle for

developing agent systems. RAPIDO can, therefore, be used to build DAI systems quickly

from "off-the-peg" components; a process which also serves to shield the developer from

the physical details of implementation. CoCo-POP assists this manner of incremental

development by providing a set of pre-defined building blocks that represent generic agents.

The RAPIDO development lifecycle consists of several distinct stages: Define the names,

internal and external skills of agents; lists of acquainted agents and which of their available

skills may be called upon; and the rule set for each skill. For undefined skills, with the

feedback required from the User agent, the appropriate interface would then be developed

manually. See Figs. 2.3.2-2.3.5 for details of the RAPIDO interface.

14

-4W RAPIDO File Handling

File: amnesia_rapido.
RAPIDO Compiling

File: amnesia_casL

ACTORjf BLACKBOARDjf CANCEL
Only existing files for LOAD

RAPIDO Edit System

Agent: Choose Agent (V)

Expert System to diagnose the
causes of amnesia reported by
patients . Written by Annette
Jones . Checked by Mike Reddy .

cmdtool (CONSOLE -/bin/csh

Figure 2.3.2 - RAPIDO top-level interface (Creating AMNESIA)

RAPIDO Prototype

(FILE)(: 'VIE: W:^(EDIT)(COMPILE)i QUIT

RAPIDO Name Agent

ACCEPT

Enter valid Pop1 1 identifie

RAPIDO Edit Agent

Skill: Choose Skill

CREATE

RENAME") (HagtEit

(Set AcquaintanelP)

yses the result of
chometric tests and
eludes whether the
ient has any cognitive
airement , and in which
as the damage occurs
. speech, memory, etc.).

(Set Visible Skills)

cmdtool (CONSOLE) -/bin/csh
sKILL(EDIT SVSTEM)(QUIT)

Edit Agent status here

Figure 2.3.3 - RAPIDO agent interface (Creating the test agent)

15

RAPIDO Prototype

(FiiE)('-vi£w.^(lDrT)(COM PILE) (QUIT)

Analyses the result of
psychometric tests and
concludes whether the (P Set Acquaintances
patient has any cognitive
Impairement , and in whi

(Set Visible Skills J

[nnL.f aces deviation I | inlellect_impaired| [poor_con-:entrationj

[variable performance [| apathetic

I speech_disorder____I

Figure 2.3.4 - RAPIDO skill interface (Creating and defining visible skills)

RAPIDO Edit Agent

Skill: memory_impaired

Analyses the result of
psychometric tests and
concludes whether the
patient has any cognitive
impairement , and in which
areas the damage occurs
(e.g. speech, memory, etc.).

RAPIDO Edit Skill

Skill: memory_impaired Owner: test

IF ((wms_verbalindex -
wms_visualindex) >= 20)
OR ((wms.visualindex -
wms_verbalinciex) >= 20)

,-LW RAPIDO Edit Skill

Skill: memory_Jrnpaired Owner: test

IF ((verbaLtq -
performance_iq) >= 15)
OR ((performance iq -
verbaljq) >= 15)

WITH CONFIDENCE ." true

(ADD RULE)(COPY RULE)(CLEAR RULE)(REMOVE RULE)

EDIT AGENT 1(EDIT SYSTEM il QUIT

Edit Skill status here

WITH CONFIDENCE r true

(ADD RULE)(COPV RULE) (CLEAR RULE)(REMOVE RULE J

EDIT AGENT)(EDIT SVSTEM 1 QUIT

Edit Skill status here

Figure 2.3.5 - RAPIDO rule interface (Setting rules for memoryjmpaired)
16

2.4 Description of the RAPIDO papers
The first publication in this section details the initial literature survey that inspired the

RAPIDO project. The following technical reports describe the chronological development of

RAPIDO in more detail. The penultimate publication describes the application of RAPIDO to

a case study. Finally, the last paper evaluates the facilities provided within RAPIDO in terms

of other related simulation testbeds and toolkits.

2.4.1 Paper 1: "The blackboard model: a survey of its application"
Abstract: The need for co-operation and communication between knowledge-based systems

(KBSs) has prompted research into the field of distributed artificial intelligence (DAI). A

number of paradigms have been proposed - including the blackboard model.

A de facto blackboard model is described which contains three components: the blackboard

data structure, knowledge sources and a means for control. To enable comparison between

existing applications, a set of attributes has been distilled from the model. Identification of

three distinct groupings of current systems has led to the proposal of taxonomy of

blackboard systems. This consists of three generations of development: dedicated systems,

generic shells and tool-based architectures. In light of this, an evaluation of the blackboard

model is made, with respect to its significance to the field of DAI research.

Conclusions of the paper

A survey of blackboard system implementations has revealed a generation-based

taxonomy of development; these generations being approximately chronological and

categorising the underlying philosophy of design. This model may also be valid in the more

general framework of all DAI systems, but this has yet to be verified. Investigation of DAI

applications is to continue in an attempt to evaluate whether the three-generation model can be

usefully extended into a general taxonomy of DAI systems. The high communications

content of DAI has also prompted an examination of Software Engineering techniques for

modular design, high cohesiveness and loose coupling.

17

Commentary

Although this paper was published in early 1991, the final draft was submitted in December

1989, and so is placed in this section first, to better reflect the chronology of development.

Due to the maturity of the blackboard model and the large number of implementations, it was

decided to perform a survey of existing documented applications of the blackboard model as

part of the research into DAI paradigms. A taxonomy showing the evolutionary development

of DAI applications of the Blackboard model was identified. Several citations and requests

for reprints of the paper were made to the author; see accompanying correspondence. The

results formed the basis for initial development of the CoCo-POP architecture.

2.4.2 Paper 2: "CoCo-POP A Development Testbed for prototyping Distributed
Knowledge-Based Systems
Abstract: The advantage of a multi-agent approach to knowledge-based systems research are

well documented. However, there are problems in developing Distributed Knowledge-Based

Systems (DKBSs): which paradigm to adopt, and how the system should be implemented.

Building a prototype application would enable the assessment of the most suitable module for

a particular domain. An environment for the speedy construction of multi-agent systems from

pre-defined components would facilitate this process.

CoCo-POP, a testbed for building prototype multi-agent systems is described which provides

a store of low-level primitives, a construction interface and libraries of user configurable

components for developing 'off the peg' prototypes. An example blackboard system is then

described to demonstrate how an application may be achieved more easily using CoCo-POP.

It is proposed that such a tool-based approach to the development of multi-agent systems is

vital for the evolution of 'real world' applications. It also serves to emphasise the need for

cross-fertilisation from the neighbouring fields of concurrent and distributed systems.

Conclusions of the paper

The communications requirements of DAI paradigms were investigated and compared with

similar techniques from concurrent and real-time systems. Comonalities were identified,

which suggested that recent developments in real-time systems might be used within a DAI
18

tool. The architecture of CoCo-POP, a testbed for implementing parallel and distributed

agents was the defined. A set of data definitions and procedures was implemented in Pop-11,

which enabled pseudo-concurrency of a module data type, and remote procedure calls and

message passing via a mail system were supported to provide basic communication protocols.

Test programs such as the Producer Consumer Problem were used to check that non-

determinism was possible.

Commentary

This technical report was the result of the first 18 months of practical work at UMIST, and

shows that, although much of the coverage was low level, there was (from its earliest

conception) recognition of the need for abstraction and support for the design of DAI

systems. The blackboard model was also implemented under CoCo-POP, as a library called

Generic Blackboard Shell (GBS). This development ran in parallel with that of CoCo-POP,

and was not documented in detail at the time. The name of this library was later changed to

Black Board Builder (BBB), as GBS was discovered to be already be in use.

2.4.3 Paper 3: "A Proposal for an ACTOR-Based Extension to CoCo-POP - CAST"
Synopsis: This report will outline the methods of representing and implementing ACTORS

within the CoCo-POP Testbed. Firstly, the script definition language used for Actor systems

will be described. This is followed by a discussion of how this language may be used to

create actors. Actor structure is then defined in terms of CoCo-POP modules; the

components required will be described. Finally, the control mechanism within and between

actor modules is declared.

Conclusions of the paper

The Actor model was analysed in terms of its control and communications requirements. The

case for using Actors was made and an Actor library was proposed as an extension to CoCo-

POP. Finally, a timetable for development of CAST was described.

Commentary

This use of the implementation of actors within CoCo-POP was a deliberate tactic for driving

its development. By picking an architecture that was diametrically opposed to that of

19

blackboard systems, an attempt was made to ensure that the structure was generic, yet useful,

and flexible enough to represent different DAI paradigms.

2.4.4 Paper 4: "CAST - Progress for the Implementation of Actor Communications"
Abstract: Actor communications are often complex and difficult to represent well when

standard request-reply format is not applicable. This report discusses the problem of widow

requests and orphan replies within the actor syntax implemented in CAST. A summary of the

widows and orphans follows, with an account of how the problem is to be solved using an

extension to the existing CoCo-POP actor module shell.

Conclusions of the paper

This paper described the problems with simple actor-based message passing, when

transactions were interrupted, or not completed. When a transaction is redirected or deferred,

it introduces novel problems for the implementation of actors. In particular, the problem of

widows and orphans were discussed. A proposal is made for using tags for identifying return

addresses. Finally, EBNF and pseudo-code for the proposed solution were outlined.

Commentary

The issue of implementing DAI applications is related strongly to communications, which can

benefit from cross-fertilisation with the fields of Computer Science to avoid re-inventing the

wheel. In order to realise this model of Actor communications required an extension to the

features offered by CoCo-POP. This shows the wisdom of using different paradigms to drive

the evolution of CoCo-POP.

2.4.5 Paper 5: "CoCo-POP Generic System Capture"
Abstract: CoCo-POP is now at the stage where two paradigms, for blackboards and actors,

have been implemented in library form; these are called B3 (i.e. BBB) and CAST

respectively. Discussion must now turn to the manner in which users may create distributed

problem solvers (DPS) using these constructs.

This discussion document will outline the method by which the structure of an application is

taken from the user and transformed into a CoCo-POP system. A model of a possible user

dialog is described, with reference to the information needed to define an application at the

20

system and agent levels. Treatment is graphical, with some supporting text to explain the

procedures.

Conclusions of the paper

This paper outlines the initial development of a generic model of DAI systems, which

consists of a generic model of inter-agent dependencies is based upon a representation of

agents, skills, requirements and acquaintances.

Commentary

The proposed model was focussed heavily upon the communication requirements, inspired

by modular decomposition common in Software Engineering. From a historical perspective,

this model shares many features with early object-oriented techniques. However, there was

still the need for a design interface that could represent agent applications without being tied

to a specific paradigm.

2.4.6 Paper 6: "GARP: A Rapid Prototyping Tool for Distributed Knowledge-Based
System"
Abstract: This paper will outline a Distributed Artificial Intelligence (DAI) toolkit which

enables the rapid prototyping of Distributed Knowledge-Based Systems (DKBSs) for a

variety of paradigms - currently blackboard and actor-based systems - This approach is

based upon capturing the requirements of the developer by the use of a generic model of

agents. This specification is then transformed into paradigm-specific applications for

demonstrating first-stage prototypes.

The toolkit is modular in structure, with tools built from low-level primitives in increasing

orders of abstraction. Facilities exist for viewing and animating the features of these

paradigm-specific prototypes. Further work will aim to increase the robustness of these tools,

and provide further facilities for evaluation purposes. Other areas for improvement include

the generic handling of interface requirements, and evaluation tools for determining the most

appropriate paradigm for particular domains.

Conclusions of the paper

The need for development tools for DAI systems is identified, especially for prototyping. A

generic model of DAI is proposed, which is based upon control and communication
21

requirements of agents. The ability for this model to be compiled under a number of DAI

paradigms is described in detail. Implementation of these paradigm libraries, and the

underlying execution environment are then outlined. Finally, the pros and cons of this

approach are described briefly.

Commentary

This paper is the first in the portfolio to recognise the term 'multi-agent', which was

becoming more representative of research directions in DAI. Note: GARP was an acronym

used as a working title for the toolkit. Later on, it was felt that there was not sufficient

theoretical underpinning to make any claim for the theoretical usefulness of the model, which

was pragmatic in nature. Therefore, in later work, the system was renamed Rapid Agent

Prototyping DOmain (RAPIDO), due (in part) to the need to emphasise the rapid prototyping

aspect, rather than the generic agent model.

2.4.7 Paper 7: "AMNESIA - Implementing a Distributed Knowledge-Based System
using RAPIDO"
Synopsis: This paper describes the design, implementation and testing of a Distributed

Knowledge Based System (DKBS) called AMNESIA. AMNESIA seeks to diagnose

memory related disorder illnesses. The system was developed using RAPIDO (Rapid, Agent

Prototyping DOmain) a rapid agent prototyping environment. The development of

AMNESIA was useful in two senses: Firstly, it served as a case study in the design and

implementation of a multi-agent system. Secondly, it acted as a medium for the testing and

driving of RAPIDO. RAPIDO is a state-or-the-art tool whose usefulness and usability needs

to be assessed, and this application provided a perfect opportunity.

Conclusions of the paper

The need for toolkits to support the Knowledge Engineering lifecycle for DAI applications

was described. The RAPIDO toolkit was applied to the problem domain of cognitive

misfunction, and a DAI system, AMNESIA, was developed. The case study went some way

to justifying the generic agent model, and the tool-based approach to design. However, the

need for further tools for monitoring and evaluating agent performance were identified.

22

Commentary

One of the issues raised by this paper was the need for further evaluation metrics and tools

for comparing the performance of different paradigms. However, the paper's emphasis upon

the case study was a deliberate attempt to claim that real MAS applications could be

constructed with RAPIDO; that it could be applied to complex, real world problems. It was

important that this should be held up to scrutiny, as many papers described the efficacy of

various toolkits and testbeds, but only used simple 'toy' examples to validate their existence.

2.4.8 Paper 8: "Development and Evaluation of Multi-Agent and Agent-Based
Simulation Environments"
Abstract: Testbeds are available for experimenting upon multi-agent systems (MAS).

However, there is no agreed design methodology or set of metrics for evaluating agent

architectures. Determining the most appropriate paradigm, or the best distribution of

knowledge in heterogeneous agent systems, is not a trivial task. This is made more difficult

when performance measurements do not consider the underlying implementation. Available

toolkits may also force developers to adopt inappropriate knowledge representation and

implementation techniques.

This paper proposes a tentative set of metrics for evaluating MAS development tools and

agent-based simulation environments (ABSE). These metrics are applied to two different

MAS testbeds: RAPIDO, an agent development toolkit, written in C and POPLOG; and

MARINES, an object-oriented ABSE developed using C++.

The application of the proposed metrics for evaluating MAS toolkits is then discussed. The

results show the strengths and weaknesses of toolkits and ABSEs for developing MAS

applications. Finally, suggestions are made for future use of simulation environments in the

development of MAS applications.

Conclusions of the paper

The case was made for MAS development toolkits and simulation testbeds for evaluation.

Metrics for evaluating the facilities of such systems were proposed. These metrics were then

applied to two MAS platforms: RAPIDO and MARINES, and their pros and cons were then
23

described. Finally, the case is made for examining the effect of low-level implementation on

agent performance, especially for safety critical systems.

Commentary

The DIMAS paper marks the distinct change of emphasis in the author's research from

symbolic to 'emergent' representations. However, the paper raised the question: Were these

proposed metrics useful for initial analysis of a problem domain to aid development of a

agent-based simulation, as well as evaluating applications for taxonomic purposes? The

development of these evaluation metrics were instrumental in the later development of the

Web Agent testbed, described in Section 3.

2.5 Conclusions and Future Work
It is clear that a generic model of DAI would be useful for developing DAI applications. An

attempt has been made to provide such a model as far as pragmatically possible by treating

agents as the basic components of all DAI paradigms. RAPIDO was developed to support

exploration of implementation options for co-operative, communicating MAS applications.

This tool-based approach is necessary for the development of future 'real world'

applications, as it provides support for the developer without reference to the method of

implementation. It also allows for cross-fertilisation from other areas of computer science,

such as concurrent and real-time systems, by providing a model of DAI communications.

Many toolkits for developing multi-agent system applications or agent-based simulations

require the acceptance of a particular agent architecture. SEVI_AGENT, a similar toolkit

developed several years after RAPIDO, was an object-oriented toolkit for creating simulation

environments for multi-agent systems [Sloman & Poli (1995)]. Agents could consist of a

combination of rule-based or neural architectures, allowing both deliberate and reactive

strategies. Parallelism was simulated using a round-robin scheduler using a double pass. The

first pass was used for sensing the environment, receiving communications from other agents,

and planning activities. The second was used for passing messages to other agents,

performing physical actions and resolving conflicts.

24

This technique was used to overcome difficulties introduced by the order of scheduling

agents under simulated parallelism. Simulated time was discrete only, rather than real-tune to

compensate for agents of radically different structures, which might be disadvantaged in

simulation (e.g. neural networks would perform slower within SEM_AGENT than if they

were implemented within an optimal framework). SIM_AGENT aimed for flexibility rather

than optimum performance, or realism of simulations, being essentially a testbed for

evaluating different heterogeneous architectures.

It is interesting to note that, while the parallel development shows some remarkable

similarities, there are some features of RAPIDO which are superior to this later work; the

representation of time and concurrency for example. Although dated by today's standards,

having only the rudiments of Belief, Desires, Intentions (BDI), RAPIDO has features that are

still relevant to present research into Agent-Based Simulation Environments (ABSE).

RAPIDO is a generic toolkit, flexible enough to allow rapid prototyping but with enough

structure to support incremental development. It can be used for exploring different

architectures as well as developing real-time multi-tasking MAS applications. Although

performance metrics are limited, it is also possible to evaluate (empirically at least) the effect

of implementing an application under a particular set of DAI paradigms. (An evaluation of

RAPIDO, in terms of its 'agency' is made by Reddy & Moon (1995) [p397] in Appendix 1)

One future improvement will be to devise performance criteria for prototype evaluation under

a number of different paradigms. Future incarnations of RAPIDO will need to incorporate a

browser agent to enable the developer to supervise the evaluation of application performance

in a more quantitative manner.

25

3.0 WebAgent
This section describes both the WebAgent simulation of the Internet, and Expl, a simple

adaptive agent for cache management. This research was performed at Glamorgan University

between 1996 and 1998. Although the main emphasis of this report is upon agents, in Section

3.1, we discuss the caching problem domain in detail to set a context for the later work.

Section 3.2 provides a rationale for the development of WebAgent and Expl, and outlines the

project objectives. Details of the development of WebAgent and the work done with Expl are

explained in Section 3.3, and further described by reference to the portfolio papers in Section

3.4. Finally, Section 3.5 evaluates the performance of WebAgent as an experimental testbed,

and Expl as a caching agent, before examining future research ideas.

3.1 Introduction
The Internet is a complex distributed environment, but techniques for network control (i.e.

online and off-line monitoring and management of the network resources) are required to

exploit new technologies. Caching benefits the users (faster access), network providers (less

bandwidth) and content providers (reduced server load), but there are contradictions: users are

selfish, wanting the most up-to-date documents. Service providers want to use stored (and

possibly stale) documents to provide economies of scale. Meanwhile, content providers want

accurate information on document usage, as their revenue may be based upon hit rates.

Caches have evolved through two generations, and are beginning a third: Proxy servers,

focussing upon end users, and requiring manual configuration; Semi-transparent or

hierarchical caches, aimed at supporting network providers, but requiring configuration by the

system operators; and Fully transparent network caches, which do not require manual

configuration by the end user or the network provider [INFOLffiRIA (1998)]. These

systems involve pre-fetching and/or modelling of popular documents, with delayed or

intelligent validation techniques.

Caching is completely distributed, with latency being quite high for restricted bandwidth areas

(such as some commercial ISPs). Centralised cache hierarchies are considered to be

26

infeasible for large networks. Distributed hierarchies are autonomous, and are used almost

exclusively on the Internet, but introduce further communication latencies. Cache maintenance

is, therefore, a distributed, time-varying problem. However, the problem is unique, in that the

distribution of document requests are, in the long term, most likely to be self-similar, rather

than tending towards a lognormal curve. In fact, document popularity conforms to a Zipf

distribution [Zipf (1949)]. Furthermore, document requests arriving at a server adhere to a

Pareto distribution when the network approaches saturation, rather than the expected Poisson

distribution [Cunha et al (1995)]. Certainly, in the short term at least, user preferences may

introduce a significant dependence upon the documents. This might account for the normally

low hit percentage for web caches (rarely above 50%). However, it is possible to make short

term approximations of likely future behaviour for off-peak periods or less popular servers.

Crovella & Bestavros (1995) have identified that self-similarity is not always present during

off-peak hours. They attribute self-similarity to user behaviour and network architectures

under saturation or near-saturation conditions.

It is commonly believed that smaller files should be cached over larger ones. This represents

both the fact that more clients are satisfied when more files are stored, and that smaller files

are more popular in accordance with Zipf s Law [Cunha et al (1995)]. An alternative strategy

is to store larger files to give a large byte hit rate, but this does not satisfy the majority of

clients, and is potentially inefficient 1 .

Web document requests and transmission times are stochastic and non-stationary; in that

they are not completely random and not completely ordered: It is likely that a document will

be requested by a lot of independent sources during the same time period but this behaviour

can change quickly2. It will never be possible to have optimal caching without complete

1 To prevent this, many caches use thresholds to determine the maximum size for cached documents.

2 An example of this was relayed to me by the proxy server SysOp from Lancaster University, who noticed

that the latest version of Netscape was suddenly being requested frequently, using excessive bandwidth, but

27

knowledge of the network. However, communication overheads may prohibit even a modicum

of information about neighbours. Neither is it appropriate for direct communication between

'peered' caches, as is advocated by reciprocal caching strategies. The only legitimate means

available for propagating information between caches are web documents requests. Therefore,

it is impossible to know the status of the complete cache hierarchy.

Effectively, caches only have information about the local state and the past state of the original

server, which will never be timely, as it is obtained by document requests propagating up the

cache hierarchy. Static caching techniques make no consideration of current state of the

network or actual use of documents. Adaptive caches can adapt to time and spatially varying

traffic conditions, but can be prone to oscillation, causing fluctuations in performance.

Inconsistencies can arise when change in document usage is catastrophic; documents

suddenly become popular, while other files are suddenly no longer of interest.

In order to assess the validity of various caching techniques, there are a number of different

performance metrics: byte hit rate, document hit rate, and byte throughput are commonly

proposed in the literature. However, these are rather arbitrary measures of cache performance,

and none of them reflect 'fair practice', where end-users get a quality of service that does not

impinge upon others, and/or guarantees better service for a higher premium. Neither do these

approaches to cache management consider the network overhead (and to a lesser extent the

overhead for retrieval from secondary storage). Most are focussed upon memory, bandwidth

and computation costs. We have a conflict of interest between what are good metrics for the

end-users and service providers.

On the one hand, the requirement is for the shortest delay, for which the cost function is

based upon the delay in receiving up to date documents, irrespective of resources required to

achieve that aim. For this case, the metric is time waiting for documents (including time

not being cached, due to its size exceeding the threshold. This threshold was manually increased for a short

time, to allow requests to be served from the cache, rather than requiring a link to the server [Bennett (1998)].

28

waiting for acknowledgements that cached documents are not stale). Users require low cost,

high quality, timely service, that is fault tolerant and reliable.

On the other hand, the providers seek to minimise traffic and infrastructure costs from a

global perspective, for which the measure of success is not quality of service for users but

cost effectiveness. In this case, these desires are constrained by the physical characteristics of

the network, as well as the constraints of the network service providers, who are attempting to

provide the best possible service for the least capital outlay to maximise profits.

These requests are contradictory, and at two extremes of the following axes: Storage costs V

Communications costs; Storage capacity V Network Bandwidths; Download times, V

Document freshness, etc. Simply put, the problem of caching is time varying and stochastic,

has to meet several objectives and must work within several orthogonal constraints. The

distributed nature of the problem means that it has significant 'hidden' states, making it a

classic reinforcement learning problem [Kaelbling et al (1996)]. However, network delays are

remarkably difficult to analyse, and simple means of measuring performance are less useful

than considering the empirical distribution, given the wide variance in the magnitude of

network delays [Di Caro & Dorigo (1998)].

It has been suggested that frequency of use should be the sole arbiter of cache management.

That way, the byte space in a limited cache is being used to the best possible extent. If this

involves caching large (but popular) files, even when this means that less files are stored, it

also clears bandwidth, so that requests which cannot be served from the cache have extra

capacity, which otherwise would have been used retrieving the larger documents. This

contradicts the popular technique of setting a threshold on document sizes and neatly avoids

the difficulty in deciding the threshold level3 .

3 Thresholds often require manual setting and there is no clear guideline for what the threshold should be. The

level is often determined arbitrarily by the SysOp for the cache server.

29

However, it is notoriously difficult to obtain information about document usage. Robustness

to wrong estimates is needed because the Internet traffic is self-similar, and almost impossible

to predict in the long term [Almeida & de Oliveira (1996); Arlitt & Williamson (1996)].

Although, if web traffic is self-similar, this means that the problem might be less complex

than it appears. Provided that a strategy adapts quickly, and does not have too strong a

historical perspective, it can still be used to predict behaviour.

Caches should match the changing nature of the Internet, by attempting to fulfil the agreed

metrics for good performance, rather than being limited to pre-defmed strategies. Neither

should they improve performance for the few at the expense of the many; fairness is often

absent in the existing environment, with the heaviest users getting the most bandwidth, at the

expense of the lighter users. However, any constrained cache management technique - such

as the commonly used thresholds [Williams (1996)] - is in some way deterministic and will,

therefore, be less than optimal under all conditions [Singh et al (1994)]. Probabilistic

approaches are more appropriate for incomplete information problems, such as predicting

document usage. They can make use of previously learned, reliable information, so long as

they are flexible enough, without being too retrospective.

In the following section, we examine the motivation for the Web Agent Testbed, and the Expl

adaptive caching agent, in light of previous work, then identify the research questions, which

were subsequently raised. Finally, the objectives for the project are described.

3.2 Rationale for WebAgent
Internet traffic problems, such as cache maintenance, cannot afford the luxury of 'high cost'

solutions provided by deliberative or planning agents, due to time constraints. However, these

issues could be addressed effectively by reactive agents. So, it is likely that simple, adaptive

agent techniques might also be used in this new and growing field. It has been recognised

that probabilistic or statistical approaches might provide the basis for an effective strategy for

cache management. The aim of developing Expl was, therefore, to investigate the validity of

using exponential smoothing to predict document usage.

30

Experimental evaluation of such a novel approach is necessary, because theoretical models are

inadequate for understanding real Internet traffic. However, the traditional approach, which is

to use trace-based simulation, may not be appropriate, as it relies heavily upon server logs.

These logs represent the access patterns of many users and, therefore, only allow general

evaluation of cache performance. Client logs would allow individual performance metrics,

such as perceived retrieval time, but access to a statistically large enough sample is unlikely,

and might be prone to geographical and temporal peculiarities.

Any Internet simulation should allow us to evaluate both end user, as well as global

performance. This can only be done by the simulation of client requests rather than merely

using trace-based simulations, which do not represent individual user access patterns. Clearly,

this is most appropriate when evaluating client browser caching strategies, which would be

poorly represented by a trace-based technique. Furthermore, there is a need for quantifiable,

configurable experiments, showing realistic document dynamics (including document

modification, as well as document requests). A 'real-time' simulation would also have the

benefit of repeatability, allowing different caching techniques to be measured and compared

accurately.

Therefore, the aim of developing WebAgent was to facilitate the testing of adaptive agents for

cache management to reduce network traffic, while monitoring their timeliness. The use of an

agent-based approach would allow a continuous, but repeatable simulation of the Internet,

which would be impossible with finer grained, traditional network simulations (i.e.

packet/node based simulators) or trace based approaches. Therefore, the following objectives

were identified:

J Examination of network performance of web servers, clients and caches, both directly

from local server logs and generally available public data;

* Design of an agent-based simulation testbed, based upon the server statistics, to represent

the internet;

31

* A survey of existing caching algorithms, with an emphasis on adaptive techniques or

agent-based approaches;

i Implementation of several existing cache algorithms to provide a comparison with the

agent based approach.

J Development of an agent-based technique for cache management and evaluation of the

proposed intelligent adaptive caching agent.

3.3 Work done with WebAgent
Expl is a simple adaptive agent, which implements a novel approach for predicting document

usage in communication networks. The model is adaptive, and is based upon document life

histories computed over time. For each document an estimated mean time between requests

provides an empirical measure of the request frequency, and, therefore, the value of caching a

document. The basic strategy follows four guidelines: (i) models should be updated at regular

intervals, and in parallel with data traffic, with little or no additional computational cost; (ii)

models should be relative, to simplify comparison between cached documents; (iii) models of

document usage should be reinforced from historical, as well as current behaviour; (iv)

models should not follow all changes in document usage, but depend upon short term

estimates only. This is the recency V frequency debate, which has previously been heavily

weighted to the former approach, because there has always been a difficulty with accurately

determining the latter.

The technique used within Expl was exponential smoothing, which makes use of local

stochastic data, using past transactions to build up an incremental model of document usage,

in order to direct future behaviour. The sampled mean provides a measure of the request

frequency, rather than merely the recency, as is true for the popular Least Recently Used

32

(LRU) technique. This is the key benefit of Expl over LRU, as it prevents oscillations in the

prediction of document usage 4 .

In order to validate this approach, a realistic simulation of the Internet was required to enable

comparisons between static and adaptive caching algorithms. The design of a meaningful

testbed to compare competing algorithms was no easy task; cache hierarchies are governed by

many factors, which may interact in non-linear and unpredictable ways. An agent-based

approach was chosen to minimise the number of interacting components to allow the caching

components to be evaluated in isolation without sacrificing realism. Therefore, a limited set of

criteria were modifiable in the experiment: cache size; network performance; request rates.

The WebAgent simulator was developed to closely mirror the essential features of web

document transactions on a generic communication network, consisting of several document

providers and consumers operating under the same conditions. The simulation focused on a

conceptual network, built upon spatial and temporal traffic distribution patterns, rather than

network characteristics and low-level communications protocols. The removal of simulating

the physical attributes of a network allowed initial development of WebAgent to be

implemented in PROLOG5 .

4 Further details are available in Section 3.4. However, Expl balances the recency and frequency

measurements of a document using a weighting, a. With a = 0.1, the previous 22 transactions make up the

90th percentile. This is to ensure that the algorithm is not too retrospective, nor too reactive.

5 PROLOG is not a typical implementation language for network simulation, but did allow for rapid

development, and provided extensive list handling primitives. Clearly, a language such as C++ would have

been quicker for simulator runs, but much longer in the initial development stage before useful results could

be obtained. However, PROLOG was computationally efficient, given that we were modelling conceptual

rather than physical networks, allowing for ease of modification for particular experiments without sacrificing

the validity and scalability of the results.

33

Document transmissions were represented as complete transactions, rather than at the level of

individual packets, with transmission delays and breakdowns being simulated by an

accumulated transmission cost, based upon an aggregation of performance across gateway

nodes. There was no attempt to represent a real transport layer, with network errors and

congestion control, as each additional layer of complexity would have a considerable impact

upon simulator performance. Furthermore, interactions within underlying layers would not

have contributed to the evaluation and comparison of each caching algorithm.

Finally, the simulator model needed to represent a typical internet infrastructure, with no

guaranteed quality of service, rather than a connection-oriented network, that makes bespoke,

semi-permanent connections to maintain a minimum level of service. The Internet adopts a

hierarchical Autonomous System approach [Moy (1998)]. Web Agent extends this metaphor

to represent sub-networks as single 'super nodes' connected to each other through gateway

or routing nodes. These super nodes consist of local users and suppliers of information

(effectively an Intranet), who may also make external requests and supply external demands

from outside the logical topology of the local network.

Super nodes can then be considered to both supply and demand services from the Internet;

the exact balance between supply and demand depending upon the organisation. For example,

an ISP (Internet Service Provider) will have thousands of users making requests for web

documents, but may also have to offer caching to both reduce access time for popular

documents and to reduce the bandwidth requirements and corresponding capital outlay. ISPs

may also provide extra services (e.g. AOL, CompuServe) for commercial reasons, as well as

to encourage this concept of internal features for recruitment purposes. These extra features

might also, ironically, increase hardware expenditure by increasing the external traffic into the

node.

WebAgent was, therefore, implemented as a set of distributed super nodes: non-mobile

agents communicating only implicitly via document transactions. (See Fig. 3.3.1.) As the aim

34

of the simulation was to evaluate performance for a number of caching algorithms, the Server

Agent was implemented to represent document sources, while Client Agents represented

several 'sinks' (i.e. client browsers, or proxy servers), operating different caching algorithms.

Each Client Agent requested the same documents, chosen by the Request Agent, and

encountered the same network performance, set by the Network Load Agent. Differences in

efficiency were, therefore, based entirely upon whether the Agents had retained the document

in their caches, thus saving download time and bandwidth.

An upper limit of simultaneous transfers, or fixed bandwidth, was not enforced within

WebAgent, as this would have required packet level simulation. This was compensated for by

the assumption that peak loads would have much larger download times. This factor for peak

times makes the WebAgent simulator unique, in that web traffic was generated using a

pseudo-random process, rather than relying upon trace data. It is a discrete event simulator

using a pseudo-random generator (to allow repetition of specific conditions) to generate the

event list. This allows the requirements and constraints upon the simulation environment to be

modified in ways that could not be done using a trace-based snapshot, provided by server

logs alone. The statistical generation of cache request data was based upon analysis of

network performance for several large proxy servers as well as the http and ftp logs for a

local server at the University of Glamorgan. Given that the domain for the experiment was

web document caching, rather than network routing, it was deemed acceptable to avoid using a

fine-grained representation. This is not unusual, as most other simulators are based upon

trace-based data generation, which can only be large-grained; considering document hit rates,

with only a meagre attempt at modelling byte transfer or actual network performance6 .

6 Often, researchers make use of caches with 'infinite' storage, for the sake of convenience, which prejudices

the need for realism in simulation. This is because their work is looking at correctly predicting which files to

cache, irrespective of whether these algorithms could actually be implemented or work in practice.

35

Request

Generator

Time/Day

Information
Delay

Information

Update

Generator

Client

Agent(s)
^—^

File

Transfers

Document

Transactions

Simulation

Settings

Figure 3.3.1 - Structure of the WebAgent Testbed

36

WebAgent retains many of the basic components of a real routing system: servers, gateways,

users and providers, modelled as 'super-nodes', with differing capacities and bandwidth

requirements. This conforms to the idea that network nodes can be represented simply, using

only three parameters: capacity, latency (loaded and unloaded) and loading [Perkins &

Machin (1997)]. The model is simple, but captures key features, such as the operational

characteristics of network and user behaviour, while allowing us to represent different

scenarios in a reproducible way. The limited resources for transmission were reflected in the

generated rate of document requests and the download time for documents, based upon trace

logs for the University web server. Generating download times is made more difficult

because a distribution curve is 'heavy tailed' (a feature of self-similarity), For the sake of

simplicity, given that all cache approaches were to experience the same network performance,

a lognormal distribution algorithm was used to produce randomly variable download times

(i.e. network performance varied around some mean, with a maximum value set to the

bandwidth of a typical internet connection).

For simplicity, document download time was determined by a fixed cost (latency and load)

and document size. It was assumed that each packet travels the same route and experienced

the same delay in transmission. The simulation of time was implemented using discrete time

units, conforming to the number of seconds between transactions at high peak periods for a

web server. The actual traffic analysis approximated to 2-3 seconds between transactions at

peak times for the Glamorgan University web server. Clearly, at off peak times, the gap

between transactions could be significantly higher. On average, there was about ten seconds

between transactions. This defined the maximum and minimum number of potential

transactions the server would receive, over 14,000 requests per day. This might be considered

a light loading, compared with more popular servers, but does not take into account internal

access from the campus intranet, which was excluded from the analysis. The emphasis on

external traffic was due to the need to stretch the efficiency of the cache; the inclusion of

internal traffic would have skewed the focus of the data unfairly towards fewer documents,

making caching decisions much more straight-forward.

37

Parallel requests between different simulated clients and servers, were batched up together.

However the network performance for each request was calculated separately. Random spatial

factors were introduced into the pre-determined value for maximum bandwidth, as well as

temporal ones (e.g. time of day, day of week). The simulator would often generate bursty

performance, due to the accurate representation of the changing interest in documents, based

upon time of day and of trend and fad influences. The corresponding bit rate was then used

for the whole document, and (it was hoped) would represent a wide class of possible patterns

that could arise in most network traffic situations. Smaller time steps, of less than a second

might have increased realism, but at the expense of slowing the simulation without improving

the results. It is more important to capture the minimum time period between critical events.

The actual rate of use of documents was stored for each individual file and was modified over

time to simulate changing interest in documents. Document download times were also

represented as a number of time steps, allowing the clients to know when a transaction was

completed, by checking the global clock. Therefore, a simple model of network performance

in the context of web document transactions, clients, servers and caches has been proposed.

This abstract approach both simplifies what can be a complex architecture, and eliminates the

need to represent hosts, gateways, clients and network traffic as distinct entities.

LRU and Expl were compared under a number of varying conditions, based upon real traffic

examples, but generated randomly from web server statistics. The performance metric used

was the perceived retrieval rate (the throughput to the client) which was determined by the

number of bytes transferred (or, ideally, retrieved from the cache) divided by the total amount

of time for document retrieval. Clearly, if most documents were not downloaded, the total time

of transfer would be reduced significantly. Document or byte hit rates might have provided

similar results, but these are qualitative metrics and can be misleading.

Under light loads, when there was space for documents to be cached, there was little or no

difference between the two techniques; it was expected that during off-peak periods, LRU

38

might perform very slightly better than Expl, due to the need for Expl to maintain document

life histories. However, the difference in overheads were negligible, as network costs were the

most significant factor, being several orders of magnitude higher than the extra computation

and storage retrieval costs7 . Significant differences between the two techniques were only

apparent when the decision was made of which files to keep or remove from the cache. Once

the cache became 'saturated', the adaptive approach soon out-performed LRU.

Actually, the algorithm tested was less than optimal, because it only used the life history

information, calculated from the previous transactions, rather than including the current

recency information as well. While this allowed a one-time calculation of document life

histories to simplify the prioritisation of cache entries in order of importance, it could allow a

recently popular document to be stuck in the cache indefinitely, if it was no longer requested.

An experiment was designed to exacerbate the situation in WebAgent: Document usage

underwent a periodic, catastrophic change in document usage. The recently most popular files

suddenly becoming the least frequently requested. Although Expl showed a reduction in

perceived retrieval rate, LRU had a corresponding (but larger) fall. Hence, the adaptive

technique still out-performed the more traditional approach, but this is not necessarily

conclusive. It is possible in chaotic conditions that both techniques might converge in

performance; any slight advantages of the adaptive approach being cancelled out with the

extra overhead involved.

A more optimal approach would involve a hybridisation of recency and frequency, which

could be determined by the same exponential smoothing technique - the time since the last

request would be recalculated with the pre-determined mean time to next request giving a

7 By comparison, Squid, one of the most popular cache programs, will attempt to clear stale documents by

randomly picking a subset of all the cached documents, and deleting the oldest, rather than keeping a complete

list of all the cached documents, as this would cause unacceptable 'lag'. Under heavy loading, this is barely

able to keep up with the pace of web transactions.

39

weighting that would gradually increase the likelihood of the file being discarded. Only when

a new request for the document came in would the history be modified to prevent false

creeping up of the usage information every time the cache was reordered. However, this

would also increase the computation required to determine which files to remove.

This section has dealt specifically with the structure of WebAgent, as it is only mentioned in

passing in many of the papers included in the portfolio. In the following section, more details

are given of the exponential smoothing technique utilised by Expl, and the results of using

WebAgent to perform experimental evaluation of Expl in comparison with LRU.

3.4 Description of the WebAgent papers
The following papers describe the chronological development of Expl. The first paper

describes Expl from its initial conception as an algorithmic technique, to its implementation

within the WebAgent Testbed. An empirical evaluation of its performance is made in the

second paper. Finally, the last two papers describe the mathematical underpinning to Expl,

and attempt to explain its performance improvements over LRU.

3.4.1 Paper 9: "Intelligent Control of Dynamic Caching Strategies for Web Servers
and Clients"
Abstract: Web pages are cached to reduce network load; various strategies have been

adopted which are centred around hierarchies of proxy servers. However, this approach

introduces coherence problems. If possible, documents should be kept 'coherent' to prevent

delivery of out of date, or 'stale' pages. We suggest that current proxy server and client

caching techniques are inadequate for future exponential growth of the Internet, as they do

not attempt to address the dynamics of document selection and modification. We propose an

intelligent dynamic caching technique to model document life histories. This work addresses

the coherence problem with particular emphasis on strategies suitable for client browser cache

management.

Conclusions of the paper

In this paper, various techniques for management of client and server based web caches were

examined, and the case made for an intelligent agent that models the usefulness of web

objects by evaluation of document life histories. This agent, while still less than optimal,

40

shows an improvement in the handling of web objects over existing techniques, such as LRU.

The Web Agent simulation has reproduced results that suggest that the frequency of requests

for a document, rather than file size, is more relevant to the management of web caches, and

that even rough estimates of document request rates can significantly improve performance.

Furthermore, the dynamic nature of the proposed approach, provides ever-improving

performance, by adapting itself to frequently variable network use and performance. Although

these techniques have been aimed primarily at client caches, the authors believe that they are

appropriate and scalable to proxy servers.

Commentary

The main emphasis for this paper was to outline the mathematical underpinning of the

proposed cache management algorithm implemented in Expl, and to propose the concept of

document life histories. Experimental results were presented, but no quantitative assessment

was made of how or why this technique performed better than the traditional approach. Little

mention is made of the structure of WebAgent, except in the final conclusions, as the

audience were primarily internet, rather than agent researchers.

3.4.2 Paper 10: "An Adaptive Mechanism for Web Browser Cache Management"
Abstract: Current proxy server and client caching techniques do not incorporate the

dynamics of document selection and modification. The adaptive model that is proposed in

this article uses document life histories to optimise cache performance.

Conclusions of the paper

Modelling Web object usefulness based on estimates of document request rates shows 5-

10% improvement in performance over existing cache management techniques such as LRU.

Furthermore, this model is dynamic and should improve performance continuously as it

adapts to variable network use and performance. Although this technique has been aimed

primarily at web browsers, we believe it may also be appropriate for proxy servers.

We used the WebAgent simulator to obtain our results. WebAgent provides an environment

for simulating file requests (modelling trends in user interest in documents), download delays

(seasonal and catastrophic changes in network performance), and document modifications.

41

Several improvements are planned for the WebAgent simulator that will increase its accuracy.

These include better usage modelling and more accurate simulations of network performance.

Future work with the WebAgent simulator includes the evaluation of pre-fetching algorithms,

which can use "off-peak" times to maintain cache coherence for frequently used documents.

We also plan to develop the simulated results into real client and server-based proxy caching

agents, which can analyse geographical trends in user access to documents and improve

performance to distributed mirror sites.

Commentary

This treatment was empirical, but the use of an agent-based approach allowed for in-depth

analysis by allowing the network behaviour to be monitored and modified. Originally, the

paper was submitted to the journal for a special issue on 'internet' agents, but was accepted

for a subsequent general issue. Therefore, the structure was modified to emphasise the new

caching technique and its explanation, with less mention being made of the WebAgent

Testbed. Publication led to several requests by the editors to peer review other adaptive

caching papers for the journal.

3.4.3 Paper 11: "Intelligent adaptive web caching using document life histories: A
comparison with existing management techniques"
Commentary: These are the slides used to present the work to the conference. An extended

version of the presented paper, which was modified in light of comments by several of the

delegates, is provided in the Section 3.4.4. The author received praise from some quarters,

especially for making the underlying strategies of existing caching algorithms accessible, as

they are often steeped in mathematical expressions. However, the author also received

pointers for material that had been overlooked. Due to the nature of the conference, some

description of the simulation itself would have been desirable, as the technique was a novel

one, but discussion was limited. However, a number of commercial representatives were

interested in reproducing the reported findings, with the hope of future inclusion in their

products; see accompanying correspondence.

42

3.4.4 Paper 12: "Expl: a comparison between a simple adaptive caching agent using
document life histories and existing techniques"
Abstract: Hierarchical storage of web pages in proxy server and client browser caches

introduce coherence problems, which require cache management techniques which are both

accurate and computationally efficient. We suggest that current approaches, such as the most

common Least Recently Used (LRU) technique, are inadequate for future network loads, as

they do not incorporate the dynamics of document selection and modification. We propose

the use of an intelligent, adaptive cache management technique to overcome the coherence

problem by using document life histories to optimise cache performance. This work

addresses the use of damped exponential smoothing to model accurately the frequency of file

requests and modifications, in order to predict the future value of cached files. Finally, we

make a mathematical analysis of LRU in comparison with our technique, showing how and

why the use of document life histories is a more effective cache management technique

without imposing major computational overheads.

Conclusions of the paper

In this paper, the case has been made for intelligent modelling of the usefulness of web

objects by evaluation of document life histories. We propose such a system, which shows an

improvement in the handling of web objects over existing techniques, such as LRU. Estimates

of document request rates, can significantly improve cache performance. Furthermore, the

dynamic nature of our approach, should provide ever-improving performance, and a system

which can adapt itself to variable network performance. Finally, we have examined the

mathematical underpinnings of both LRU and Expl, and determined that while the former is

computationally inexpensive, it is not the optimal solution for intelligent, adaptive cache

management.

Future work will include an investigation into the dynamic calculation of a to optimise cache

performance. It is also possible that exponential smoothing might be applied to predicting file

modification times to estimate document 'shelf life'. Further improvements have been

identified for the WebAgent simulator, which will serve to improve the accuracy of the

43

simulation. Finally, an intelligent dynamic caching agent should be created for an existing

web browser, to evaluate performance of an actual user on a real network.

Commentary

This paper is an extended version of the paper, entitled "Intelligent web caching using

document life histories: A comparison with existing cache management techniques,"

presented to the 3rd International Caching Workshop (Manchester, June 1998). Some

correspondence was generated from this publication, including a request for access to

Web Agent to test the algorithm proposed in a recent PhD thesis; see accompanying

correspondence.

3.5 Conclusions and Future Work
In WebAgent, the continual on-line, real-time construction of the document life histories is

the emergent result of implicit learning within Expl. Agent communication with the local user

environment and with other caches, is matching the distributed nature of the problem

implicitly. Therefore, the validity of the caching strategy is a function of the information

achieved through repeated document transactions.

With Expl, data mining and cache management is occurring concurrently in a non-static

environment. Information 'mined' at each cache is more complete and prioritised in a

justifiable way. The exponential smoothing technique is more robust than LRU for incorrect

estimates created by sudden changes in document usage; effectively making use of

cumulative reinforcement. It is difficult to have an adaptive strategy that does not oscillate.

LRU adopts a "memoryless strategy", which is adaptive but oversensitive to change. Expl

manages to achieve the former, without falling foul of the latter.

The technique estimates smoothed averages in an asynchronous way, but builds and uses

more information than its competitors. The frequency of updates is based solely upon actual

transactions, which is better than regular update requests or validity checks that have an

arbitrary period, and may increase traffic unnecessarily. The knowledge gathered can be

44

exploited for a variety of different purposes: sorting intelligent histories for browsers, making

informed choices for acceptable staleness, and determining the cache threshold level.

There is a common misconception in the literature, that software agents must be deliberative,

while reactive agents may only be mobile robots; features that are commonly assumed to be

pre-requisites for systems to be considered 'real' agents. The term 'agent' is justified in the

context of Expl, because it behaves 'reactively' in choosing from a pre-defined set of

responses, even though the agency within the cache is not mobile. Furthermore, the behaviour

is also partially 'deliberative', because Expl maintains an internal representation of its

environment, based upon probabilities derived by observation of local traffic statistics.

Technically, therefore, Expl should be classified as a 'hybrid' architecture.

3.5.1 Evaluation of Expl
Is Expl an agent? Foner (1993) identifies the following as being required for a system to be

considered a 'true' agent: Autonomy; Personalisability; Discourse; Risk & Trust; Domain;

Graceful degradation; Co-operation; Anthropomorphism; and Expectations. Although his

view of agency is primarily aimed at interface agents, hence the need for discourse and

anthropomorphism, the other factors are also applicable for sole agents, as well as multi-agent

systems, and for reactive as well as deliberative agents.

Expl clearly has the capacity for autonomy8 . It is personalisable in that it will adapt to the

documents which are being requested, by using rudimentary reinforcement learning; for

caches situated in a web browser, this is more extreme, in that the cache represents the

individual user preferences. Expl does not, at present, exhibit much discourse with the user.

However, this is a possibility for the future as there are situations where, for the end user at

least, a dialogue could exist between the user and the cache: to prioritise performance against

8 Expl maintains a measure of document usage, even if the document is not cached, has been forced from the

cache, or is never cached due to its size. The threshold could be set dynamically, allowing for temporary

increases, if that would improve cache performance; e.g. the Netscape scenario described by Bennett (1998).

45

staleness, for example, or to prompt a client that a document is likely to have changed, etc.

The dialogue for a proxy server cache could be to set acceptable staleness, or for determining

the level of dynamic pre-fetching, etc. Clearly, this should be explored in future work.

The risk & trust in an agent is determined upon what task has been delegated to the agent. In

the case of a risk assessment of Expl, this is fairly straightforward; caching is not a critical

activity, and people do not give it a second thought. However, the delivery of stale documents

without a corresponding warning, could undermine trust in a proxy server. Expl makes an

estimate of the mean time to the next document change, which gives at least some information

to determine how likely such a change could be. An alternative would be to serve the cached

document, then inform the user about the newer version, if one is available once the validation

had been received.

The possibility of preserving life histories while a cache is off-line, might be a useful thing in

itself, as it can take weeks to 'build' a cache back up. With a record of the most popular

documents, Expl could set about using free bandwidth to reinstate the most important files.

While this might involve the transfer of a document that will not be subsequently requested

by a client, it would reduce downloads overall, by choosing download times that

corresponded to light network loads for the original server (e.g. while the USA is asleep).

The domain of Expl is merely that of caching, which is a partially visible problem, in that

only web transactions can provide information, there being no other communication that

would not needlessly increase bandwidth. Peering a cache with its neighbours, allows the

possibility for collaboration between multiple copies of Expl. It could be envisaged that an

Expl agent could swap document life histories with peers, although it is not clear what

advantage this might have for cache performance. This has yet to be explored. Otherwise, the

problem is conceptually simple, without the need for the agent to make accurate assessment

of other complex entities.

46

This approach also allows for graceful degradation, because the worst performance for Expl

is equivalent to LRU, the currently most popular cache management technique. Features of

Expl might actually improve upon LRU, which is adaptive but unintelligent and unable to

provide useful information to users. Co-operation between internet users and providers is

implicit as network considerations are uppermost in the use of a cache; saving network

resources, at the expense of hardware and storage costs. Co-operation between cache and

client can be more explicit, when a dialogue is possible. Again, the current state of Expl

means that this possibility is yet to be explored. However, a similar commercial system,

DynaCache, has shown that dynamic recognition of intelligent caches can lead to active

collaborative actions [INFOLIBRIA (1998)].

The expectation of Expl is, for end users, less delays in document retrieval, and for proxy

servers the reduction in bandwidth and the effective use of storage media. In this respect,

there is clearly a useful task to perform in the background. However, there is the possibility

for more informed decisions to be made by the user, which could potentially alter their use of

the Internet as a resource9 .

Letizia is a tool for aiding web browser navigation that, although primarily a search engine,

"tracks the user's browsing behaviour... and tries to anticipate what items may be of interest

to the user" [Lieberman (1995)]. Letizia uses simple heuristics and past behaviour to

approximate user interest, and then can present recommendations for further study. While

this task is different to that of caching, there are a number of similarities. While the scale is

larger, and the emphasis is upon document requests rather than contents, Letizia and Expl are

still attempting to model document usage based upon previous transactions. In both cases, the

value of a document attenuates over time.

9 The use of a video recorder has revolutionised TV usage, much more than Satellite or Cable. Time

independence and convenience is much more useful than freedom of choice.

47

This raises the question of how to implement the Expl algorithm inside a real cache

management system. It is suggested that files might be ordered by the frequency of access, so

that the value of the historical usage can be included in the assessment of which file to

remove. The first time a file is cached, it is worth giving a certain amount of time before

removing it, as if it is immediately discarded, this could cause inefficiencies as a popular

document might be removed in error. Furthermore, it is a common problem in caching to

identify documents that are used only once, but haunt the cache until they 'time out.' This

can often be a crucial factor in cache maintenance. Finally, once-only documents should not

be put in the disk cache [Kurcewicz (1998)]. If they are the oldest in memory, they should be

discarded. Therefore, new entries could be placed initially at the head of the queue. Once-only

files, having a history of zero, would be more likely to be discarded over time, but initially

would be evaluated as frequently used documents. However, existing entries, instead of being

brought to the head of the list (as effectively happens with LRU), could be swapped with the

nearest neighbour. This would lead to the order of the cache implicitly reflecting the

frequency of use of the entries.

It might be possible to predict the current performance of the network between the cache and

the source, by evaluating the response time for validation packets, and building a model of

typical and best network/server performance in the day for daily updates, in the week for

weekly updates, etc. However, the chaotic nature of the internet might make such predictions

misleading10. Nevertheless, performance improvements might be possible, utilising document

life histories to determine whether a file should be stored in memory or on disk, or whether to

check a file for validity, given the mean time between document modifications.

It might also be possible to use a 'global' request rate for a cache, to allow prediction of

current server load. In times of saturation, it might be possible to forego validation requests

10 At this level it is difficult to know whether a delay is due to a heavily loaded path, a broken gateway node,

or just the load on the server at the time of the request being sent and received.

48

and just serve up the cached version of a document. Similarly, if the validation request took

more than a certain period of time the cached version could be used, with a warning; an

equivalent of this occurs in browsers when the host server is unobtainable.

3.5.2 Evaluation of WebAgent
Reddy & Moon (1995) define several criteria for evaluating ABSEs [ibid pp395-6]:

Appropriateness and timeliness of solutions; handling unplanned events and incomplete

knowledge; independent representation of sensors and effectors; effective modelling of time

within the simulation; and, graceful performance under concurrency.

Appropriateness and Timeliness of Solutions - The purpose of WebAgent is to simulate

typical transactions between information producers and consumers on the Internet. This

allows researchers to compare various caching strategies, under repeatable, controllable

experimental conditions. Therefore, appropriateness and timeliness are evaluated by direct

comparison between different caching algorithms.

Handling Unplanned Events and Incomplete Knowledge - Since WebAgent is

simulating Internet transactions that are hard to predict, and prone to radical changes, the

system agents (the Request Generator and Client Agents, the Update Generator and erver

Agents, and the Network Agent) must actually generate unplanned (and unplannable?) events.

Furthermore, Cache agents within WebAgent must work with incomplete knowledge, as real

world caches only have access to limited information.

Independent Representation of Sensors and Effectors - Cache Agents must only

communicate via reasonable means, given the limitations of their real world counterparts,

which only 'sense' the world via document requests from clients, and the responses from

servers. Therefore, a secondary function of the system agents is to shield details of the

simulation from the various caching systems.

Effective Modelling of Time within the Simulation - The representation of time in

WebAgent is discrete, rather than continuous. However, given the domain is based upon

discrete events (such as document requests arriving at a server), this is adequate provided that

the time increments are sufficiently small.

49

Graceful Performance under Concurrency - WebAgent does not explicitly use

concurrency for its system agents, as it needs to allow for comparison between different

caching strategies. Cache agents are effectively run in parallel, though this is merely simulated

pseudo-concurrency, so that they all appear to execute on a 'level playing field'.

Further development of WebAgent will address fixed bandwidth data acknowledgement and

retransmission errors to allow future simulations to consider quality of service issues. The

possibility of implementing packet level transmission, and standard network routing

techniques, such as IP masking, will allow low-level experimentation into more general

network performance techniques, such as document migration.

50

4.0 Commentary

4.1 Link between the two projects
RAPIDO is a toolkit for deliberative agents, and stands as a finished piece of work in its own

right which, though dated by today's standards, still has many features that are currently

being developed within the field of MAS architectures and toolkits. Web Agent, on the other

hand, is an agent-based simulation testbed for evaluating different cache management

techniques. It represents work-in-progress, with a number of unanswered questions, and

promising future directions of research. Both projects are linked by the consideration of low

level communications and the implications for building agent applications. The first is a real

implementation of parallel-distributed processes passing messages. The second is a

conceptual representation of such a schema, for the purposes of evaluating performance.

The WebAgent simulator, re-creates the environment of a network of users and service

providers. This work makes use of agents to help problem solving, rather than considering

the construction of agent systems. Furthermore, it provides a methodology for evaluating the

results of cache activity, and making comparisons with between different cache management

techniques. Finally, the Expl caching agent clearly demonstrates rudimentary learning of

stimulus/reaction patterns, based upon past behaviour, which allows instant, pre-determined,

but adaptable decisions.

In that respect, the issue of agency becomes implicit and secondary to that of seeking

solutions to novel and traditionally difficult to solve problems. The need for an agent-based

approach to this simulation, was that of expediency; it is time-consuming, and unnecessary to

simulate packets, nodes and bandwidth to evaluate caching strategies. However, both the

conceptual network model and the implementation of WebAgent, were inspired and driven by

experience gained from developing and using RAPIDO. The construction of the two projects,

therefore, show the development across the gamut of agent types: from deliberative to reactive,

symbolic to situated, experimental testbed to real world application.

51

The next section discusses the original contribution that has been made by investigating

intelligent agents and agent technologies.

4.2 Contribution to Knowledge
While the two projects have broken new ground in different ways, the principle contributions

to the agents field are inter-related, and have been threefold:

1) Cross-pollination from related disciplines has much to offer by preventing 're-invention

of the wheel.'

RAPIDO and WebAgent have both benefltted from the fields of Distributed, Concurrent and

Real-Time Systems, and Mathematics, repectively. Furthermore, the development of Expl has

also provided evidence that simple agents can be effective tools for improving performance of

a distributed network, thus showing that Agent Technologies can return the favour by being

of use in other fields.

2) Abstraction in the representation of agents as communicating processes has provided

both a generic life-cycle model for the acquisition and design of MAS applications, and

evidence that agents can simulate complex real-world problems in an elegant manner.

The generic approach to the specification of agent applications, in RAPIDO, and object-

oriented rapid prototyping without recourse to low-level programming, allow a greater degree

of freedom of choice over the implementation paradigm. Further investigation into the

development of WebAgent has introduced a new agent-based methodology for investigating

performance of internet traffic, without recourse to trace-based, or packet-level simulations.

3) Use of Agent-Based Simulation Environments (ABSEs) provides an effective tool for

evaluating complex problems. Comparison of the performance of different agent

architectures may only be possible when experiments are controlled and repeatable

[Hanks etal(1993)].

The ability of RAPIDO to evaluate the relative performance of each paradigm for a specific

domain has been tested by the experience of rapid prototyping a working MAS application,

AMNESIA. These techniques are of use to anyone hoping to construct optimised MAS, for

specific problem areas. The potential for using ABSEs has been proven to be effective, with

the discovery that an adaptive agent can outperform existing cache management techniques.

52

WebAgent shows significant improvement over previous techniques used to assess the

performance of new caching algorithms by being flexible, adjustable and repeatable.

The knowledge gained during these projects has been disseminated by the author in a number

of ways. The papers included as part of the accompanying portfolio have allowed peer review.

These publications, in addition to this overview, reflect the improvement in understanding that

subsequent discussion within the academic community and feedback from colleagues have

produced, showing the development of ideas from their earliest origins, through exploration

and experimentation, to the final analysis and dissemination.

RAPIDO has attempted to fill a gap in the development of DAI and MAS applications,

requiring the author to have an in-depth knowledge of real-time, concurrent and distributed

systems techniques for inter-process communications, control and synchronisation, and to

apply this to the low-level implementation of CoCo-POP and RAPIDO. The technical

insights gained from this research were invaluable in shaping the development of the network

simulation within WebAgent, and inspiring the development of the Expl technique for cache

management. However, it is the author's belief that this will also serve to inspire the future

investigation of Agent Technologies.

4.3 Future Work
The advent of the Internet presents problems that may only be addressed by agent-based

techniques. It is generally recognised that optimising network performance is a time varying,

distributed, resource constrained problem; further complicated for the Internet by competing,

incompatible user requirements. Reactive agents hold much promise in this new and growing

field, as they are adaptive and better placed to provide timely solutions in constrained

circumstances. An important aim is to develop Expl into a caching agent application for an

existing browser (such as Netscape) to explore:

1) prediction of document popularity to allow intelligent sorting of browser bookmarks

and/or histories, or dynamic pre-fetching for frequently used documents;

53

2) prediction of likely document changes to allow cached documents to be served with a

'health warning' depending upon the level of acceptable staleness;

Ultimately, this will culminate in the construction of an intelligent dynamic agent for a widely

used proxy cache (such as SQUID), to evaluate:

1) server-based analysis of geographical trends in user access to popular documents, to

improve pre-emptive distribution of documents to mirror servers - document migration -

and subsequent maintenance of propagating correct versions after modification;

2) prediction of network performance to allow pre-fetching algorithms to make use of 'off

peak' times to maintain cache coherency.

A number of future improvements have been identified for the WebAgent simulation;

including extending the simulation to include multiple, geographically distributed servers,

with more realistic weightings for network performance, and standard network routing

techniques, such as IP masking. This will allow further exploration of the application of

simple adaptive agents to the regulation and management of networks to consider quality of

service issues. The application of WebAgent, a simulation of the Internet has proven the

effectiveness of using agent-based tools for performing evaluation experiments. However, it

is hoped that this will contribute to the development of MAST (Multi-Agent Simulation

Testbed), a simulation testbed for other situated agents, such as mobile robots.

Historically, ABSEs have been used only for investigating the validity of applying agents to a

problem, rather than as tools in their own right to solve real world problems. Currently,

research into the application of agents to this important area have been based upon planning

and BDI architectures [Howe (1994); Georgeff & Rao (1998)]. One such area is safety-

critical systems [Storey (1996)]. It is the author's belief that there is a case for examining the

application of 'weak agents' and agent-based simulation to safety-critical systems. This

requires further investigation into a generic model of agents, based upon communication

requirements and object-oriented design techniques. It is hoped that this model may lead to

the proposal of a new lifecycle for the development of Agent Technologies.

54

5.0 References
Almeida, V. & de Oliveira, A. (1996), "On the fractal nature of WWW and its

applications to cache modelling," Technical Report TR-96-004, Computer Science

Department, Boston University, 111 Cummington Street, Boston, MA 02215.

Alien, J.F. & Perrault, C.R. (1980), "Analyzing intention in utterances," in 'Artificial

Intelligence,' Vol. 15, No. 3, pp!43-178.

Arlitt, M.F. & Williamson, C.L. (1996), "Web server workload characterisation: The

search for invariants," ACM SIGMETRICS Conference, 1996.

Appelt, D.E. (1985), "Planning English Sentences," Cambridge University Press, New

York.

Bennett, S. (1998), Lancaster University, Personal communication.

Bond, A.H. & Gasser, L. (1988), (eds), "Readings in Distributed Artificial

Intelligence," Morgan Kaufmann.

Brooks, R. & Connell, J.H. (1986), "Asynchronous distributed control system for a

mobile robot," SPIE 727.

Cohen, P.R.& Perrault, C.R. (1979), "Elements of a plan-based theory of Speech Acts,"

in 'Cognitive Science,' Vol. 3, No. 3, pp!77-212.

Connah, D. (1991), "Why we need a new approach to the design of agents," AISBQ 76.

Crovella, M.E. & Bestavros, A. (1995), "Explaining world wide web traffic self-

similarity," Technical Report TR-95-015, Computer Science Department, Boston University,

111 Cummington Street, Boston, MA 02215.

Cunha, C.R., Bestavros, A. & Crovella, M.E. (1995), "Characteristics of WWW client-

based traces," Technical Report BU-CS-95-010, Computer Science Department, University

of Boston, 111 Cummington Street, Boston, MA 02215.

Davis, R & Smith, R.G. (1983), "Negotiation as a Metaphor for Distributed Problem

Solving," Artificial Intelligence 20, P63-109.

Demazeau, Y. & Muller, J-P. (1991), "From reactive to intentional agents," in Demazeau,

Y. & Muller, J-P. (eds), 'Decentralized Artificial Intelligence 2,' Elsevier, pp3-14.

Di Caro, G. & Dorigo M. (1998), "AntNet: Distributed Stigmergetic Control for

55

Communications Networks," in 'Journal of Artificial Intelligence Research

(JAIR),'Vol. 9, pp317-365.

Dijkstra, E.W. (1975), "Guarded Commands, Non-Determinism and Formal Derivation of

Programs," in 'Communications of the ACM,' 18, 8, Aug 1975, pp453-457.

Durfee, E., Lesser, V.R. & Corkill, D.D. (1987), "Co-operation through Communication

in a Distributed Problem Solving Network" in Huhns, M.N. (ed), 'Distributed Artificial

Intelligence' Pitman pp29-58,1987.

Englemore R.S. & Morgan A.J. (1988), "Blackboard Systems," Addison-Wesley,

London.

Ferber, J. (1989), "Eco problem solving: How to solve a problem by interactions," in

'Procs of the 9th International Workshop on Distributed Artificial Intelligence,' Seattle.

Ferber, J. (1996), "Reactive distributed artificial intelligence: Principles and applications,"

in [O'Hare & Jennings (1996)], p287-314.

Fisher M. & Wooldridge M.J. (1993), "Specifying and verifying distributed intelligent

systems," in Filgueiras, M. and Damas, L. (eds.), 'Progress in Artificial Intelligence -

Proceedings of the 6th Portuguese Conference on AI,' Portugal, October 1993, (LNAI

Volume 727), Springer-Verlag.

Foner, L.N. (1993), "What's an agent, anyway? A sociological case study," Agents Memo

93-01, Agents Group, MIT Media Lab, 20 Ames Street, Cambridge, MA 02139.

Genesereth M.R., Ginsberg, M.L. & Rosenschein, J.L. (1984), "Co-operation without

Communication," Report HPP-84-36 September 1984, Stanford Heuristic Programming

Project, Stanford University.

Georgeff, M. & Rao, A. (1998), "Rational Software Agents: From Theory to Practice," in

[Jennings & Wooldridge (1998)], pp!39-160.

Hanks, S., Pollack, M. & Cohen, P.R. (1993), "Benchmarks, Test beds Controlled

Experimentation and the Design of Agent architectures," in 'AI Magazine,' Vol. 14, No. 4,

Winter, pp 17-42.

Hansen, P. Brinch (1973), "Operating System Principles," Prentice Hall, New Jersey.

56

Hansen, P. Brinch (1978), "Distributed Processes : A Concurrent Concept," in

'Communications of the ACM', 212,11 pp934-941.

Hern, L.E.C. (1987), "On Distributed Artificial Intelligence," in The Knowledge

Engineering Review,' Vol. 3, No. 1, Mar. 1988, pp. 21-57.

Hewitt M. (1977), "Viewing Control Structures as Patterns of Passing Messages," in

'Artificial Intelligence', Vol. 8, No.3, pp323-364.

Hewitt, C. & Liebermann, H. (1984), "Design issues in parallel architectures for

Artificial Intelligence," Proceedings of the 28th IEEE Computer Society International

Conference, San Francisco, CA. pp418-423.

Hoare, C.A.R. (1974), "Monitors : An Operating System Structuring Concept," in

'Communications of the ACM' 17,10 pp549-557.

Hoare, C.A.R. (1978), "Communicating Sequential Processes," in 'Communications of

the ACM,' 21,8, pp666-677.

Howe A.E. (1994), "Improving the Reliability of Artificial Intelligence Planning Systems

by Analyzing their Failure Recovery," Computer Science Department, Colorado State

University, Fort Collins, CO 80523.

Howe A.E., Hart, D.M. & Cohen P.R. (1990), "Addressing Real-Time Constraints in the

Design of Autonomous Agents," in The Journal of Real-Time Systems,' Vol. 1, pp81-97.

Huhns, M.N. & Singh, M.P. (1998), (eds.), "Readings in Agents," Morgan Kaufmann.

Ichbiah, J.D. (1980), "Reference Manual for the ADA Programming Language," United

States Dept. of Defence.

INFOLIBRIA (1998), "DynaCache Distributed network caching technology," InfoLibria

White Paper, in 'Proceedings of the 3rd International Workshop on WWW Caching,' June

15-17th, Manchester, UK.

INSIGHT (1986), "The INSIGHT Blackboard Experiment Information Pack," Systems

Designers Ltd.

Jennings, N.R. (1994), "Co-operation in Industrial Multi-Agent Systems," World

Scientific Publishing, London

57

Jennings, N.R. & Wooldridge, MJ. (1998), (eds.), "Agent Technology : Foundations,

Applications, and Markets," Springer Verlag.

Kaelhling, L.P., Littman, M.L. & Moore, A.W. (1996), "Reinforcement learning: A

survey," in 'Journal of Artificial Intelligence Research,' Vol. 4, pp237-285.

Kurcewicz, M., Sylwestrzak, W. & Wierzbicki, A. (1998), "A Filtering Algorithm for

Proxy Caches," 'Proceedings of the 3rd International Workshop on WWW Caching,' June

15-17th, Manchester, UK.

Lenat D.B. (1975), "BEINGS : Knowledge as Interacting Experts," in 'Proceedings of the

1975 International Joint Conference on A.I.,' pp 126-133.

Lesser V.R., Fennell, R.D., Erman, L.D. & Reddy, D.R. (1975), "Organisation of the

HEARSAY II Speech Understanding system," in 'IEEE Transactions on Acoustics, Speech

and Signal Processing,' Vol.ASSP-23 No.l, Feb., ppll-24.

Lesser V.R. & Corkill D.D. (1981), "Functionally Accurate / Co-operative Systems" in

'IEEE Transactions on Systems, Man and Cybernetics,' Vol. SMC-11 No.l pp81-96.

Lieberman, H. (1995), "Letizia: an agent that assists web browsing," in 'Procs of the

International Joint Conference on Artificial Intelligence (IJCAI '95),' Montreal, pp924-929.

Martin J. (1981), "Computer Networks and Distributed Processing," Savant, Carnforth.

Moon, J. (1997), "An investigation into the use of Multi-Agent Systems in marine

simulator instructor stations," PhD Thesis, May 1997, School of Computing, University of

Glamorgan, Trefforest, Pontypridd, Mid Glamorgan, CF37 1DL, Wales, UK.

Moy, J.T. (1998), "OSPF Anatomy of an Internet Routing Protocol," Addison-Wesley.

Muller, J.P., Wooldridge, MJ. & Jennings, N.R. (1997), (eds), "Intelligent Agents III:

Agent Theories, Architectures, and Languages : Ecai'96 Workshop," Procs of ATAL,

Budapest, Hungary, Springer Verlag.

O'Hare, G.M.P. (1987), "New Directions in Distributed Artificial Intelligence," 2nd

International Expert Systems Conference, London, Learned Information (Europe) Ltd.

O'Hare, G.M.P. & Jennings, N.R. (1996), (eds) "Foundations of Distributed Artificial

Intelligence," Sixth-Generation Computer Technology Series, Wiley.

58

Pebody, M. (1993), "How do you choose your agents? How do you distribute your

processes?," in Steels L. (ed) 'The biology and technology of autonomous agents' Springer-

Verlag pp345-376.

Perkins, K.A. & Machin, C.H.C. (1997), "Entity scheduling for distributed systems,"

Loughborough University,

<http://www-staff.lboro.ac.uk/~cokapl/EntityScheduling/EntityScheduling.html>

Pressman R.S. (1982), "Software Engineering: A Practitioner's Approach,"

McGraw-Hill

Reddy D.R., Erman, L.D., Fennell, R.D. & Neely, R.B. (1973), "The HEARSAY

Speech Understanding System : An Example of the Recognition Process," in 'Procs of the

3rd Int. Joint Conference on A.I.,' pp!85-193.

Rosenscheim J.S. & Genesereth M.R. (1984), "Communication and Co-operation,"

Report HPP-84-5, Stanford Heuristic Programming Project, Stanford University.

Rosenscheim, J.S., Ginsburg, M. & Genesereth, M.R. (1986), "Cooperation without

communication," in 'Proceedings of 1986 Conference of the American Association for

Artificial Intelligence,' pp51-57.

Searle, J.R. (1969), "Speech Acts: an essay in the philosophy of language," Cambridge

University Press.

Singh, S.P., Jaakkola, T. & Jordan, M. (1994), "Learning without state estimation in

partially observable Markovian decision processes," in 'Proceedings of the Eleventh

Machine Learning Conference,' Morgan Kaufmann, pp284-292.

Sloman, A. & Poll, R. (1996), "SIM_AGENT: A toolkit for exploring agent designs," in

'Proceedings of IJCAF95 Workshop on Agents, Theories, Architectures

and Languages (ATAL'95),' Springer-Verlag, Lecture Notes in Computer Science,

Smith R.G. (1978), "A Framework for Problem solving in a Distributed Processing

Environment," Report HPP-78-28 December 1978, Stanford Heuristic Programming Project,

Stanford University.

Smith R.G. & Davis R. (1981), "Frameworks for Co-operative Problem Solving," in

'IEEE Trans. on Systems, Man and Cybernetics,' Vol. SMC-11 No.l January 1981.

59

Steeb, R., Cammarata, S., Hayes-Roth, F.A., Thorndyke, P.W. & Wesson, R.B.

(1981), "Architectures for distributed intelligence for air fleet control," Technical Report R-

2728-ARPA, Rand Corporation, Santa Monica.

Storey, N. (1996), "Safety-Critical Computer Systems," Addison-Wesley.

Williams, S.. Abrams, M., Standridge, C.R., Abdulla, G. & Fox, E.A. (1996),

"Removal policies in network caches for WWW documents," Proceedings of the ACM

SigComm Conference, August 1996, Stanford.

Wooldridge, M. & Jennings, N.R. (1994), (eds.), "Agent Theories, Architectures and

Languages: a survey," Proceedings of the 1994 Workshop on Agent Theories, Architectures

and Languages, EC AT 94, Amsterdam, August, ppl-32.

Yang, J.D., Huhns, M.N. & Stephens, L.M. (1985), "An Architecture for Control and

Communications in Distributed Artificial Intelligent Systems," in 'IEEE Trans. on Systems,

Man and Cybernetics,' Vol.SMC-15, No.3 May, pp316-326.

Young, SJ. (1982), "Real-Time Languages," Ellis Horewood, Chichester.

Zipf, G.K. (1949), "Human behaviour and the principle of least-effort," Addison Wesley,

Cambridge.

60

An investigation into the use, application
and evaluation of intelligent agents

Mike Reddy

Appendix: PhD Portfolio

May 1999

Collected Bibliography for Papers in the Portfolio
Abrams, M. (1995), "Caching Proxies: Limitations and Potentials," in 'Proceedings of the
Fourth World Wide Web Conference,' Elsevier, December, ppl 19-133.
Agha, G. (1986), "ACTORS: A model of concurrent computation in distributed systems,"
MIT Press.
Alien, J.F. & Perrault, C.R. (1980), "Analyzing intention in utterances," in 'Artificial
Intelligence,' Vol. 15, No. 3, pp!43-178.
Avouris, N. (1994) (ed), "Distributed Artificial Intelligence: Theory and praxis," Kluwer
Academic Press.
Appelt, D.E. (1985), "Planning English Sentences," Cambridge University Press.
Barrett, R., Ramsay, A. & A. Sloman (1986), "POP-11: A practical language for
artificial intelligence," Ellis Horewood
Berg-Cross, (1989), "Acquiring and managing knowledge using a conceptual structures
approach: Introduction and framework" in 'IEEE Trans. Sys, Cyb Man,' Vol. 19, No. 3,
May/June, pp513-527
Bisiani, R., Alleva, A., Forin, A., Lerner, R. & Bauer, M. (1987), "The architecture of
the AGORA environment," in Huhns, M.N. (ed) 'distributed Artificial Intelligence,' Pitman,
pp99-118.
Bolot, J-C. & Hoschka, P. (1996), "Performance Engineering of the World Wide Web:
Application to Dimensioning and Cache Design," in 'Computer Networks and ISDN
Systems,' Vol. 28, No. 7-11, ppl397-1405.
Bond, A.H. & Gasser, L. (1988), (eds), "Readings in Distributed Artificial Intelligence,"
Morgan Kaufmann.
Bowman, C.M. (1995), "The HARVEST Information Discovery and Access System," in
'Computer Networks and ISDN Systems,' Vol. 28, No. 1-2, ppl 19-25.
Buchanan, B.G. (1983), "Constructing an Expert System," in [Hayes-Roth, Waterman &
Lenat (1983)]
Cammarata, S., McArthur, D. & Steeb, R., (1983), "Strategies of cooperation in
distributed problem solving," in 'Proceedings of the 1983 International Joint Conference on
Artificial Intelligence," pp767-770.
Cohen, P.R. & Perrault, C.R. (1979), "Elements of a plan-based theory of Speech Acts,"
in 'Cognitive Science,' Vol. 3, No. 3, pp 177-212.
Cohen, P.R. (1989), "Trial by fire: Understanding the design requirements for agents in
complex environments," in 'AI Magezine,' Vol. 10, No. 3, pp32-48.
Corkhill, D.D., (1986), "GBB: A Generic Blackboard Development System," in
'Proceedings of the 5th National Conference on AI (AAAI86), pp!008-14.
Craig, I.D. (1986), The ARIADNE-1 Blackboard System," in 'The Computer Journal,'
Vol. 29, No. 3, pp235-40.
Cunha, C., Bestavros, A. & Crovella, M.E. (1995), "Characteristics of WWW client
based traces," Technical Report BU-CS-95-010, Computer Science Department, University
of Boston, 111 Cummington Street, Boston, MA 02215.
Decker, K.S. (1987), "Distributed problem-solving techniques: A survey," in 'IEEE
Transactions on Systems, Man and Cybernetics," SMC-17, pp729-740.
Deen, S.M. (1991) (ed), "Cooperating Knowledge-Based Systems," Springer Verlag.
Dijkstra, E.W. (1975), "Guarded Commands, Non-Determinism and Formal Derivation of
Programs," in 'Communications of the ACM,' 18, 8, Aug 1975, pp453-457.
Dingle, A. & Parti, T. (1996), "Web Cache Coherence," in 'Computer Networks and
ISDN Systems,' Vol. 28, No. 7-11, pp907-20.
Doran, J. (1990), "The MCS multi-agent testbed: developments and experiments,' in
Deen, S.M. (1991) (ed), 'Cooperating Knowledge-Based Systems 1990,' 3-5 October,
University of Keele, UK, Springer Verlag.
Durfee, E.H., Lesser, V.R. & Corkill, D. (1988), "Coherent Cooperation among
Communicating Problem Solvers," reprinted in Bond, A.H. & Gasser, L. (1988) (eds)
'Readings in Distributed Artificial Intelligence,' Morgan Kaufmann.
Englemore R.S. & Morgan A.J. (1988), "Blackboard Systems," Addison-Wesley.
Englemore, R.S. & Nil, H.P. (1977), A Knowledge-Based System for the Interpretation of

Protein X-Ray Crystallographic Data," Report HPP-77-2, Stanford Heuristic Programming
Project, Stanford University.
Erman, L.D. (1981), The Design and Example Use of HEARSAY HI," in 'Proceedings of
the 7th International Joint Conference on AI,' pp409-15.
Erman, L.D., Lark, J.S. & Hayes-Roth, F. (1988), "ABE: An environment for
engineering intelligent systems," in 'IEEE Transactions on Software Engineering,' Special
issue on AI.
Ernst, G. & Newell, A. (1969), GPS: A Case Study in Generality and Problem Solving,"
Academic Press, New York.
Ferber, J. (1992), "Using reactive MASs in simulation and problem solving," in [Avouris
(1994)].
Fergusson, LA. (1994), "Integrated Control and Co-ordinated Behaviour: A Case for Agent
Models," in [Wooldridge & Jennings (1994)], pp 186-99.
Feigenbaum, E.A. (1977), "The Art of Artificial Intelligence: Themes and Case Studies of
Knowledge Engineering," in 'Proceedings of the 5th International Joint Conference on AI.'
Feldmeier, D. (1988), "Improving Gateway Performance with a Routing Table Cache," in
'Proceedings of the Conference on Computer Communications (Infocom 88),' EEEE
Computer Society Press, March, pp298-307.
Feyter, A.R. (1990), "RTEX: An Industrial Real-Time Expert System Shell," in
'Proceedings of Avignon '90,' Vol. 1, EC2, France.
Filby, I. (1991) (ed), "Proceedings of the SGES Knowlege-Based Systems Methodologies
Workshop," London, 3-4th December, SGES Workshop Publishers.
Foster, C.C. (1982), "Real-time Programming - neglected topics," Addison-Wesley.
Galliers, J. (1988), "A STrategic Framework fr Multi-Agent Cooperative Dialogue," in
'Proceedings of the 1988 European Conference on AI (ECAI '88),' Pitman.
Gardner Jr., E.S. (1985), "Exponential Smoothing: The State of the Art," in 'The Journal
of Forecasting, 'Vol.4, No. 4, pp. 1-28.
Gasser, L., Braganza, C. & Herman, N. (1987), "MACE: A flexible testbed for
distributed AI research," in [Huhns (1987)] ppl 19-152.
Gasser, L. (1989), "Implementing Distributed AI Systems using MACE," in [Bond &
Gasser (1988)].
Gevins, A.S. (1983), Overview of the Human Brain and Distributed Computing Networks,"
in 'Proceedings of the IEEE International Conference on Computer Design: VLSI in
Computers.'
Genesereth M.R., Ginsberg, M.L. & Rosenschein, J.S. (1984), "Co-operation without
Communication," Report HPP-84-36 September 1984, Stanford Heuristic Programming
Project, Stanford University.
Genesereth M.R. & Nilsson N. (1986), "Logical Foundations of Artificial Intelligence,"
Morgan Kaufmann.
Classman, S. (1994), "A Caching Relay for the World Wide Web," in 'Computer
Networks and ISDN Systems,' Vol. 27, No. 2, ppl 65-73.
Green, P. (1987), "AF: A framework for real time distributed cooperative problem solving,"
in Huhns, M.N. (ed) 'distributed Artificial Intelligence,' Pitman, ppl 53- 176.
Hall, L.E., Macauley, L. & O'Hare, G.M.P. (1992), "User Role in Problem Solving with
Distributed Artificial Intelligent Systems," in Castelfranchi, C. & Werner. E. (1992) (eds),
'Proceedings of MAAMAW '92, the 4th European Workshop on Modelling Autonomous
Agents in an Artificial World,' Elsevier.
Hanks, S. (1993), "Benchmarks, testbeds, controlled experimentation and the design of
agent architectures," in 'AI Magezine,' Vol. 14, No. 4, pp 17-42.
Hansen, P. Brinch (1978), "Distributed Processes : A Concurrent Concept," in
'Communications of the ACM', 212,1 1 pp934-941.
Hanson, A.R. & Riseman, E.M. (1978), "VISIONS: A Computer System for interpreting
Scenes," in Hanson, A.R. & Riseman, E.M.. (1978) (eds), 'Computer Vision Systems,'

.
Hayes-Roth, B. (1979), "Modelling Planning as an incremental, opportunistic process," in
'Proceedings of the 6th International Joint Conference on AI,' pp375-83.
Hayes-Roth, B. (1983), "The Blackboard Architecture: A General Framework for Problem
Solving?" HPP-83-30, Computer Science Department, Stanford University.

Haves-Roth, B. (1984), "BB1: An Architecture for Blackboard Systems that Control,
Explain and Learn about their own behaviour," HPP-84-16, Heuristic Programming Project,
Stanford University.
Hayes-Roth, B. & Hewitt, M. (1985), Learning Control Heuristics in BB1," HPP-85-2,
Stanford Heuristic Programming Project, Stanford University.
Hayes-Roth, F., Waterman, D.A. & Lenat, D.B. (1983), "Building Expert Systems,"
Addison Wesley.
Hayes-Roth, F.A., Erman, L.D., Fouse, S., Lark, J.S. & Davidson, J. (1988), "ABE: A
Cooperative Operating System and Development Language" in Richer, M. (ed)'AI Tools
and Techniques'. Also in [ref Bond & Gasser].
Hewitt M. (1977), "Viewing Control Structures as Patterns of Passing Messages," in
'Artificial Intelligence', Vol. 8, No.3, pp323-364.
Hewitt, C. & Liebermann, H. (1984), "Design issues in parallel architectures for
Artificial Intelligence," in 'Proceedings of the 28th IEEE Computer Society International
Conference,' San Francisco, CA. pp418-423.
Holtman, K. & Kaphan, S. (1995), "Problems with the Expires Header," Unpublished
web page, http://www.amazon.com/expires-report.html.
Hoare, C.A.R. (1974), "Monitors : An Operating System Structuring Concept," in
'Communications of the ACM' 17,10 pp549-557.
Hoare, C.A.R. (1978), "Communicating Sequential Processes," in 'Communications of
the ACM,' 21, 8, pp666-677.
Howe, A.E. (1990), "Addressing real-time constraints in the design of autonomous
agents," in 'The Journal of Real-Time Systems,' No. 2, pp81-97.
Huhns, M.N. (1987), "Distributed Artificial Intelligence," Morgan Kaufmann.
Inder, R. (1989), "State of the ART: A review of the Automated Reasoning Tool," in
Vadera, S. (1989), (ed) 'Expert System Applications,' Sigma Press, Wilmslow.
INSIGHT (1986), "The INSIGHT Blackboard Experiment Information Pack," Systems
Designers Ltd.
Intellicorp (1986), "KEE software development system user's manual," Intellicorp Inc.
Jones, J. (1986), "A Blackboard Shell in PROLOG," Report 277, Department of AI,
University of Edinburgh.
Jones, A. (1991), The Diagnosis of memory Disorder Related Illnesses using a Multi-Agent
Approach," MSc Dissertation, Department of Computation, UMIST.
Kannan, R. & Dodrill, W.H. (1990), "DAIS, A Distributed AI Programming Shell," in
'IEEE Expert,' Decenber.
Kinney, J.J. (1997), "Probability: An introduction with statistical applications," Wiley
Press, Chichester, pp 198-99.
Laurent, J-P., Ayel, J., Thorne, F., & Ziebelin, D. (1986), "Comparative evaluation of
three expert system development tools: KEE, Knowledge Craft, ART" in 'The Knowledge
Engineering Review,' December, pp 18-29.
Leao, L.V. & Talukdar, S.N. (1989), "COPS: A System for Constructing Multiple
Blackboards," in [Bond & Gasser (1988)].
Lekkas, G. & Liedekerke, M. (1992), "Prototyping MAS: A Case Study," m [Avouns
(1994)].
Lenat D.B. (1975), "BEINGS: Knowledge as Interacting Experts," in 'Proceedings of the
4th International Joint Conference on At.'
Lesser, V.R., Fennell, R.D., Erman, L.D. & Reddy, D.R. (1975), "Organisation of the
Hearsay II Speech Understanging System," in 'IEEE Transactions on Acoustics, Speech and
Signal Processing,' Vol. ASSP-23, No. 1, February, ppl 1-24.
Lesser, V.R. & Corkill, D.D. (1981), Functionally Accurate/Co-operative Systems, in
'IEEE Transactions on Systems, Man and Cybernetics," Vol. SMC-11, No. 1 pp81-96.
Lezak, M.D. (1976), "Neuropsychological Assessment," Oxford University Press.
Liskov, B. & Scheifer, R. (1983), "Guardians and Actions: Linguistic support for robust,
distributed programs," in 'ACM Transactions on Programming Languages and Systems,

Vol. 5, No. 3, pp381-404. .
Martin, J. (1981), "Computer Networks and Distributed Processing, Savant, Carnforth.
Markatos, E.P. (1996), "Main Memory Caching of Web Documents, m Computer
Networks and ISDN Systems,' Vol. 28, No. 7-11, pp893-905.

Moon, J.N.J. & Tudhope, D.S. (1995), "A Multi-Agent Realm for Investigating
Navigators Educational Simulators - Introducing the Marines Testbed," in 'Proceedings of
SCSC '95,' July, Ottawa, Ontario, pp949-954.
Moon, J.N.J. & Tudhope, D.S. (1995), "MARINES A Multi-Agent Testbed for marine
simulation, in Marine Technology and Transportation: The Procedings of MARTRANS
'95,' August, Plymouth, UK, pp777-84.
Muller, J.P (1994), "A pragmatic approach to modelling autonomous interacting systems,"
in [Wooldridge & Jennings (1994)], pp226-240.
Newell, A. (1973), "Speech Understanging Systems: Final Report of a Study Group "
North Holland.
Newell, A. (1982), "The Knowledge Level," in 'Artificial Intelligence,' Vol 18 No 1
pp87-127. ' '
Nii, H.P. (1980), "An Introduction to Knowledge Engineering, Blackboard Model and
AGE," HPP-80-29, Heuristic Planning Project, Department of Computer Science and
Medicine, Stanford.
Nii, H.P. (1982), "Signal-to-Symbol transformation: HASP-SIAP Case Study " in
'Artificial Intelligence,' No. 3, pp23-35.
O'Hare, G.M.P. (1987), "New Directions in Distributed Artificial Intelligence," in
'Proceedings of the 2nd International Expert Systems Conference,' London, 30th September
- 2nd October, Learned Information Ltd., Oxford.
O'Hare, G.M.P., Reddy, M. & Jones, A. (1992), "AMNESIA - Implementing a
Distributed Knowledge-Based System using RAPIDO," in 'Proceedings of Expert Systems
'92, 12th Annual Conference of die British Computer Society specialist Group on Expert
Systems,' (Cambridge, December 1992), Cambridge University Press.
O'Hare, G.M.P. & Wooldridge, M J. (1992), "A Software Engineering perspective on
Multi-Aent System Design: Experience in the Development of MADE," in [Avouris (1994)].
OUP (1991), "Mini-Dictionary for Nurses," Oxford University Press.
Operating Systems Review (1981), 'Proceedings of the Eighth Symposium on Operating
Systems Principles, Operating Systems Review,' 15,5, pp. 64-75, December.
Parnas, D.L. (1972), "On the criteria to be used in decomposing systems into modules," in
'Communications of the ACM,' Vol. 5 No. 12, December.
Pitkow, J.E. & Recker, M.M. (1994), "A Simple Yet Robust Caching Algorithm Based on
Dynamic Access Patterns," in 'Proceedings of the Second World-Wide Web Conference,'
Elsevier, Amsterdam.
Pollack, M. & Ruguette, M. (1990), "Introducing TILEWORLD: Experimentally
evaluating agent architectures," in 'Proceedings of the 8th Natinal Conference on AI,' Menlo
Park, CA.
Pressman, R.S. (1982), "Software Engineering: A Practitioner's Approach," McGraw-
Hill.
Price, CJ. (1990), "Knowledge Engineering Toolkits," Ellis Horewood.
Rashid, R.F. & Robertson, G.G. (1981), "Accent: A communication oriented network
operating system kernel," in 'Proceedings of the Eighth Symposium on Operating Systems
Principles, Operating Systems Review,' 15,5, pp. 64-75, December.
Reddy, D.R., Erman, L.D., Fennell, R.D. & Neely, R.B. (1973), "The HEARSAY
Speech Understanding System: An Example of the Recognition Process," in 'Proceedings
of the 3rd International Joint Conference on AI,' pp 185-193.
Reddy, M. (1988), "MICRO-CATCH - A simple blackboard knowledge-based system in
PASCAL and PROLOG," MSc Dissertation, December 1988, Supervisor: G.M.P. O'Hare,
Computation Department, UMIST, Manchester, UK.
Reddy, M. (1995), "RAPIDO: A rapid prototyping toolkit for developing multi-agent
systems," CS-95-7, School of Computing, University of Glamorgan, Wales, UK.
Reddy, M. & O'Hare, G.M.P. (1990), "COCO-POP A Development Testbed for
prototyping Distributed Knowledge-Based Systems," Technical Report AI-90-3
(August 1990), Department of Computation, UMIST University, Manchester.
Reddy, M. & O'Hare, G.M.P. (1991), "The blackboard model: a survey of its
application" in 'Artificial Intelligence Review,' Vol. 5, No. 3, pp 169-186.
Reddy, M. & Fletcher, G.P. (1997), "Intelligent Control of Dynamic Caching Strategies
for Web Servers and Clients," in 'Proceedings of WebNet '97,' AACE Press,

Charlottesville, 1997, pp.440-446.
Reddy, M. & Fletcher, G.P. (1998), "Intelligent Control of Dynamic Caching Strategies
for Web Servers and Clients," in 'IEEE Internet Computing,' IEEE Computer Society Press,
pp 78-81.
Reynolds, D. (1988), "MUSE: A Toolkit for Embedded, Real-Time AI," in [Englemore &
Morgan (1988)]. e
Roda, C. (1990), "ARCHON: A Cooperation Framework for Industrial Process Control "
in [Deen (1991)].
Rodden, D. (1988), "Cooperation and Communication within an active IPSE," in
'Proceedings of the International Workshop on Knowledge-Based Systems in Software
Engineering," Information Systems Research Group, Department of Computation, UMIST.
Rosenscheim J.S. & Genesereth M.R. (1984), "Communication and Co-operation,"
Report HPP-84-5, Stanford University Heuristic Programming Project.
Rosenschein, J.S., Ginsburg, M. & Genesereth, M.R. (1986), "Cooperation without
communication," in 'Proceedings of 1986 Conference of the American Association for
Artificial Intelligence,' pp51-57.
Ross, P. (1985), "User Modelling in Comand-Driven Systems," Research Report 264,
Department of AI, University of Edinburgh.
Sellis, T. (1988), "Intelligent Caching and Indexing Techniques for Relational Database
Systems," in 'Information Systems,' Vol. 13, No. 2, pp!75-85.
Silberschatz, A. (1994), Operating System Concepts, Addison Wesley, pp. 138-141.
Sloman, A. (1995), "Playing God: A Toolkit for building agents," Research Seminar,
Computer Science Department, University of Birmingham, UK.
Smith, N. (1994), "What Can Archives Offer the World Wide Web?" in 'Proceedings of
the First International World Wide Web Conference,' Elsevier, Amsterdam.
Smith R.G. (1978), "A Framework for Problem solving in a Distributed Processing
Environment," Report HPP-78-28 December 1978, Stanford Heuristic Programming Project,
Stanford University.
Smith R.G. & Davis R. (1981), "Frameworks for Co-operative Problem Solving," in
'IEEE Trans. on Systems, Man and Cybernetics,' Vol. SMC-11 No.l January 1981.
Sommaruga, L. (1989), "An Environment for Experimentation with Interactive
Cooperating Knowledge-Based Systems," in 'Proceedings of ther British Computer Society
Expert Systems Conference 1989,' BCS.
Systems Designers (1987), "POPLOG user guide," Systems Designers Ltd.
Waterman, D.A. & Hayes-Roth, F. (1978), (eds) "Pattern Directed Inference Systems,"
Academic Press.
Werner, E. (1990), "What can agents do together: A semantics of cooperative ability," in
'Proceedings of the ninth European Conference on Artificial Intelligence (ECAI-90),'
Stockholm, Sweden, pp694-701.
Wirth, N. (1971), "Program Development by step-wise refinement," in 'Communications
of the ACM,'Vol. 14, No. 4.
Wittig, T. (1989), "ARCHON - Cooperation of Heterogeneous On-Line Systems," in
'Wissensbasiert Systeme - Proceedings of the 3rd International Congress,' Springer Verlag.
Wittig, T., Roda, C. et al (1990), "ARCHON: A Cooperation Framework for Industrial
Process Control," in Deen, S.M. (1991) (ed), 'Cooperating Knowledge-Based Systems
1990,' 3-5 October, University of Keele, UK, Springer Verlag.
Wood, R.A. (1985), "Memory Loss: Clinical Algorithms," in 'British Medical Journal,'

Vol. 288,pp 1143-7. . A M1M _
Wooldridge, M.J. (1990), "The Architecture of Co-operating Intelligent Agents, PhD
Transfer Report. Department ofComputation, UMIST.
Wooldridge, MJ. (1990), "Towards a formal theory of intelligent social agency: Parts I, U
and Iff' Research Report, Department ofComputation, UMIST, Manchester, UK.
Wooldridge MJ. & Jennings, N. (1994), (eds) "Proceedings of the ECAI '94 workshop
on Agent Theories, Architectures and Languages," August, Amsterdam, Netherlands.
Wooldridge MJ. & O'Hare G.M.P. (1991), "Deliberate Social Agents, in Proceedings
of the 10th UK Planning Workshop,'Cambridge, April. .
Wooldridge, MJ., O'Hare, G.M.P. & Elks, R. (1991), "FELINE - A Case Study in he
Design and Implementation of a Co-operating Expert System,' in Proceedings of the llth

International Workshop on Expert Systems and their Applications,' Avignon '91.
Yang, J.D., Huhns, M.N. & Stephens, L.M. (1985), "An Architecture for Control and
Communication in Distributed Artificial Intelligent Systems," in 'IEEE Transactions on
Systems, Man and Cybernetics,' Vol. SMC-15, No. 3, May, pp316-26.
Young, S.J. (1982), "Real-Time Languages," Ellis Horewood, Chichester.

Paper 1
Reddy, M. & O'Hare, G.M.P. (1991), "The blackboard model: a survey of its application"

in 'Artificial Intelligence Review,' Vol. 5, No. 3, pp!69-186.
(Not included in this binding)

Paper 2
Reddy, M. & O'Hare, G.M.P. (1990), "COCO-POP A Development Testbed for

prototyping Distributed Knowledge-Based Systems," Technical Report AI-90-3
(August 1990), Department of Computation, UMIST University, Manchester.

COCO-POP*
A Development Testbed

for prototyping Distributed
Knowledge-Based Systems

Mike Reddyt Greg O'Hare

Report AI-90-3
August 1990

Abstract

The advantages of a multi-agent approach to knowledge-based systems

research, aie well documented. However, there are problems in develop­

ing Distributed Knowledge-Based Systems (DKBSs): which paradigm to

adopt, and how the system should be implemented.

Building a prototype application would enable the. assessment of the

most suitable model for a particular domain. An environment for the

speedy construction of multi-agent systems from pie-defined components

would facilitate this process.
COCO-POP, atestbed" for building prototype multi-agent systems is

described which provides a store, of low-level primitives, a construction

interface and libraries of user configurable components for developing 'off

the peg' prototypes. An example blackboard system is then described

to demonstrate how an application may be achieved more easily using

COCO-POP.
It is proposed that such a tool-based approach to the development

of multi-agent systems is vital for the evolution of 'real world' applica­

tions. It also serves to emphasise the need for cross-fertilization from the

neighbouring fields of concurrent systems and distributed programming.

'Concurrent COntrol of POP
'Supported by a SERC studentship

1 Introduction

The material advantages of Distributed Artificial Intelligence (DAI) are well
documented and include the scope for modular development and the potential
exploitation of multi-processors [Myref]. However the key benefit must be the
incremental solution of complex problems by groups of distinct agents (or knowl­
edge sources). A range of paradigms have been proposed [Ref Bond and Gasser],
which involve either cooperative or competitive strategies, but most rely upon
communications between agents; [Ref Gensereth] is a notable exception.

This reliance upon message passing may require a greater degree of traf­
fic than operating systems or other distributed applications. Different models
adopt varying strategies for regulating communications : blackboard systems,
for example, use a central database, whereas contract nets negotiate communca-
tion channels.

The choice of paradigm for a particular domain application is dependent
on many qualitative factors; discussion of which is beyond the scope of this
paper. However, there is a clear need for toolkits which support the evaluation
of various paradigms without the necessity for low-level programming skills [Ref
ABE etc]

The principle concern in building a distributed knowledge-based system
(DKBS) is the communications requirement of the adopted paradigm. Although
these appear to vary widely, the communications protocols for all distributed
systems involve a number of common considerations:

 physical source/destination of messages

 message processing priorities within agents

 synchronization requirements of the system

 pattern of communications between agents [Ref Dist Comp book]

The developer should be shielded from the low-level consequences of these
factors where desirable to speed up the prototyping process. Furthermore, it
should be possible to construct 'off the peg' applications from pre-defined com­
ponents supporting a range of paradigms in as simple a manner as possible. A
toolkit style interface for applications building would aid this process. Therefore
a testbed which supplies these facilities must satisfy the following four require­

ments:

1. A mechanism for governing a community of agents providing primitives
for communications and concurrent execution

2. A high-level command set built upon these primitives to abstract the
developer away from low-level considerations unless required.

3. A library of pre-defined DAI constructs for the implementation of existing
paradigms or hybrid applications

4. A toolkit for supporting the speedy construction of DKBS prototypes

The rest of this paper will propose a system which attempts to fulfill these
requirements. Section 2 will outline the design of COCO-POP and the structure
of its constituent parts while Section 3 details their implementation. An appli­
cation of the blackboard model, the Generic Blackboard Shell (GBS), is then
described in Section 4 with emphasis on how this was achieved using COCO-
POP's language primitives. Finally, in Section 5, a summary of work to date
and an outline of future twprk are discussed.

2 Architecture of COCO-POP

The main objective in the design of COCO-POP is to shield the developer
from low-level considerations by an abstraction into high-level constructs. This
approach has lead to the identification of a hierarchy of development stages:

1. Constructs for concurrent modules and operators for their manipulation
and execution

2. Control structures for a number of different scheduling mechanisms

3. Libraries of high-level constructs based upon these primitives to support
various DKBS models

4. Configuration tools to facilitate the construction and configuration of ap­
plications

The structure of COCO-POP (shown in fig. 2.0) has therefore been designed
to contain four main components :

 A language for representing modules and associated operations

 A scheduler for governing their storage and execution

 A library of pre-defined constructs for use by developers

 A construction toolkit controlled by the user interface.

The design considerations for each of these components is discussed in the foil-
wing sections.

2.1 Modules and Monitors

The key component of COCO-POP is the 'module'; a primitive for the mod­

ularization of code. The module has been identified as the primary building

block for concurrent systems [Ref Young] as it offers facilities for :

 aggregating data and related operations into logical units

 governing the interaction between separate concurrent processes

 supporting incremental development of systems

Hoare's 'monitor* concept [Refs Hoare, Brinch Hansen], is a special class

of module which is a generalisation from the monolithic monitor of operating

systems. [Ref Young]. Monitors are used for encapsulating 'critical' operations

and devices (such as buffers, shared memory and device handlers) and restricting

access to them via mutual exclusion.
Therefore a definition language was necessary to represent the 'module' con­

struct so that separate processes could be created and executed independently.

A further extension of this language was required to include a monitor class of

modules in COCO-POP. These would be represented in a decentralised man­

ner so that each service or object would have a unique monitor to synchronize

operations.
Section 2.1.1 will describe the structure of modules in COCO-POP, while

section 2.1.2 describes the operations that may be performed by them.

2.1.1 Modules in COCO-POP

A COCO-POP module comprises four main components:

Module Name - A unique identifier used for addressing the module during

communications

Module Class - An identifier used to distinguish between the two types of

construct: 'module' and 'monitor'. Modules are expected to execute some

function and be freely accessible to others. Monitors are required to serve

requests from other modules under mutual exclusion.

Process Definition - The principle component of a module which describes

local objects and operations available. Furthermore it defines the function

that the module is to perform. For a monitor this function is merely the

set of commands required for initialization. A module will also contain

additional commands defining its main purpose during execution.

Interface Specification - This defines the restrictions on inward and outward

links between modules and is therefore comprised of two parts: 'public'

and 'employed 1 lists of operations. These describe respectively those pro­
cedures which may be accessed by other modules and those which may be
remotely executed within other modules.

A module definition therefore has the logical format similar to that shown
in fig. 2.1.1; see appendix A for a full definition.

During execution, modules are expected to undergo different states of,exe­
cution:

 Running - currently active and executing

 Ready - scheduled for execution

 Sleeping - waiting for some event

 Woken - scheduled to process event

 Sending - passing a message to an agent

 Receiving - processing a message

<module> := "C" <module_name> <modtile_class>
<inter-face_spec> <process_del> "3"

<module_class> := "module"1"monitor"

<inter±ace_spec> := <employ_list> <public_list>

<employ_list> := "[" -["C" <procedure_name> { <procedure_na=ie>
"FROM" <module_name> "]" > "3"

<public_list> := " C" -C <procedure_name> > "]"

Figure 2.1.1 - Logical Module Definition

2.1.2 Module Operations

The functions that may be performed on a module fall into two categories:
execution and communication. The execution of modules is controlled with the
following primitives:
haltO ceases execution and reschedules the current module
sleepQ freezes a module until woken or a specific event occurs
vakeQ unfreezes a module and reschedules it for execution
dieQ permanently removes a module from activity within the system

Liskov has proposed that communications between modules may be of three
types [Ref Liskov from Dist Comp]:

1. A no wait send, where the sending module continues execution once the
message has been sent successfully

2. A synchronised send, which blocks the sending module until the message
has been processed and acknowledged by the receiving module ' ' '

3. A remote invocation send which blocks the sending module until the
results of the requested operation are returned.

COCO-POP provides for the first and third class of communications with the
command send_to(<messag'e>, <module_name>). If the message describes a
remote invocation, or Remote Procedure Call (RPC), the operation is performed
and the outcome reported to the sending module. Otherwise the message is
simply appended to the message queue of the receiving module.

Reception of messages is guaranteed even for 'no wait' sends as the sending
module will repeat the message until successfully transmitted. Although there
are other methods for handling messages which do not resort to blocking on
'no wait' sends [Ref Rashid and Robertson from Dist Comp], they are less
appropriate for DKBSs where correct reception of messages has a higher priority.

Messages are retrieved using the receive_f rojn(<module_name>) command.
This returns the first message in the message queue received from the named
module. If the queue contains no suitable message, execution of the receiving
module is blocked until one is received.

Therefore a synchronised receive has been assumed. The provision for
a synchronised send and a no wait receive has been made with the signal
handler monitor whose implementation is described in section 3. This monitor
defines three further communications operators:
signal(<signal_name>, <message>) - which blocks execution until the signal

is received by another module.
uait(<signal_list>) - which suspends execution until a signal from the list

has occuied, then receives the associated message.
is_signal(<signal_list>) - which evaluates as true if any of the signals in

the list have occured.

2.2 Scheduling in COCO-POP
In any model of concurrency there are two possible methods for sharing proces­
sor time : synchronous and asynchronous. COCO-POP has adopted the latter
approach, where task switching only occurs when a job has been completed or
interaction with other modules is required. This is due to the interdependent
nature of DKBS tasks, so it would be undesirable to artificially suspend execu­
tion at unpredictable stages of task completion. The choice of an asynchronous
approach is further supported as it ensures the efficient use of processing time.

Three scheduling strategies have been identified, which complement this
model:

1. Round Robin - where tasks are scheduled in order of reception

2. Event-Driven - in which tasks are executed as before but processes reacting
to special events are executed in preference to normally scheduled modules

3. Priority-Based - when tasks are executed in a predetermined order of
priority

In a priority-based system modules that are scheduled with a higher priority
during the execution of another module do not interrupt its processing. However
they will be given precedence when the current task is suspended or completed.

Scheduling may only be affected by modules performing the functions de­
scribed in section 2.1.2. These mark the acceptable points where the scheduler
may safely switch between tasks.

2.3 Library of agent constructs

These libraries are planned to store routines and constructs for the various DAI
paradigms which are accessed by a system configuration tool (next section).

An example of a pre-defined monitor - the signalhandler - (others such as
Buffers etc.) built from low level primitives will be shown in Section 3. Section
4 will outline a library of constructs for a blackboard system.

2.4 COCO-POP Configuration

A toolkit approach which allows the developer to use 'shell 1 agents by supplying
specific details (such as the knowledge base, scheduling and inference mecha­
nisms, window positioning etc.). At present the system is set to create generic
DAI applications, such as a blackboard system. It is envisaged that a more 'ex­
pert' user would be able to use constructs indescriminately to produce hybrid
systems.

3 Implementation of COCO-POP

To meet the requirements for a concurrent system tailored to developing DKBS
applications (outlined in the previous section) certain necessary features have
been recognized: facilities for concurrency (even if only low-level); access to
languages capable of supporting AI applications; and graphics capabilities for

interface design.
Although languages, such as C and Modula-2, offered some of the facilities

required, only the POPLOG environment [Ref] provided access to AI languages;

POPLOG programs may be developed in a mixture of LISP, PROLOG and
POP-11.

POP-11 provides low-level process switching [ref POP book] which can be
used as the foundation of a concurrent environment, while POPLOG offers
graphics facilities via the POPLOG Window Manager [Ref] running under Sun-
view. COCO-POP was therefore developed in POP-11 running on a Sun series
3 Workstation.

In the following sections the implementation of a monitor for signal handling
is described. This is used to demonstrate how COCO-POP primitives may be
built up into more abstract functions; detailed in section 2.1.2.

3.1 Modules Records

Modules are stored as 'records' (see fig. 3.la) which have the following compo­
nents:

Name - A unique identifier for the module

Status - The current state of execution

Process - The process shell for the module

Window - An address for the interface window

Messages - A queue of messages received by the module ;

The process shell of a COCO-POP module is based upon POP-11 process record
datatype (similar to those found in Modula [Ref Young] - see fig. 3.1b) sup­
ported by a range of pre-defined POP-11 functions. This construct allows POP-
11 to switch between separate POP-11 procedures while storing their current
status (i.e. values of local variables, the last command executed and the local
stack).

In addition each module has an associated interface window created for it.
This shows the current state if execution of the module and any other user
information that the module may be required to display.

Module records are stored by COCO-POP in module record queues accord­
ing to their status of execution (see section 2.2). A pointer variable contains
the address of the first module in a queue. The rest of the queue is built up as
a linked list of module records using three further fields of the module record^

Priority - A weighting factor for ordering the queue

Previous - The name of the proceeding module

Next - The name of the following module

As modules change their state of execution they are stored by the scheduler
in one of three queues:

Runnable - containing modules that are ready to execute in order of priority

Waiting - storing modules that are awaiting some event, such as the reception
of a message

Monitors - comprising modules that must restrict access via mutual exclusion

A special pointer, Current, contains the address of the currently active module.
See section 3.2 for further details.

3.2 Module Operations

COCO-POP modules are created by the procedure

create_modnle(<name>, <class>, <priority>, <employ_list>,
<public_list>, <initial_argtiiaents>,
<procedure_dei>, <window_de±>);

where <priority> is an integer weighting to govern priority-based scheduling;
<initial_arguments> is an optional list of paramenters passed to the process of
the module; <procedure_def > is the POP-11 procedure that defines the module
process; and <windos_dei> is a set of parameters defining an interface window
for the module.

The command creates a module, forges links with other modules and initial­
izes its process and places it in the relevant queue for its class; modules would
be stored in the 'Runnable' list , monitors in the list of 'Monitors'.

The signal handler would therefore be created with the command

create_module("signal_handler", "monitor", 0, Q,
[signal wait is_signal], D, signal_h.aa.dler_proc,
['Signal Handler' 116 72 960 100]);

where signal_handler_procis a POP-11 procedure which defines the enclosed
datatypes and operations which may be performed. Once initialized the signal
handler module record would be stored in the list of monitors.

When a module sends a message/it does so by switching to the process of the
receiving module. The message is then trapped by the retum_remote_call
routine which executes whenever a module process is resumed. This routine
determines whether the message is mail or a valid RFC. If the message defines an
RPC, the requested operation is performed and results returned to the sending
module.

If the receiving module is a monitor that is currently engaged, the sending
module will not receive a reply to its call. When the module is next scheduled

for execution it will recognize that no results have been returned and repeat its
request to the monitor. This will continue until the monitor is free to respond.

During the processing of an RFC, the receiving module may make nested
EPCs to other modules, including the original sending module. However these
calls must unravel in the order that they were performed. Otherwise the outcome
of a call might be received by the wrong module and other modules would be
permanently blocked waiting to receive the hijacked results.

Messages, other than RPCs, are stored in the message queue in order of
reception. When the message queue is updated, modules that have been waiting
for messages, i.e. sleeping, are rescheduled for execution. With event-driven
scheduling, modules receiving messages are rescheduled in preference to other
modules so that they can process messages immediately (see section 3.3).

Signals are sent via RPC messages to a server, called the Signal Handler.
If modules are waiting for the signal, it is forwarded to them and the signaling
module continues to execute. If no module is waiting, the signal is stored within
the signal handler and the signaling module suspends itself until it receives an
acknowledgement message.

Modules waiting for signals are treated similarly. If a signal has occured,
the waiting module receives the message and the signaling module is released.
Otherwise the wait request is stored and the waiting module is suspended until
the signal occurs.

3.3 Scheduling in COCO-POP

During the execution of modules, their status and position in the system is
constantly being altered by the scheduling operations. The status of a module
determines where it is stored:

Current - if a module is 'Running'

Runnable - modules that are 'Ready' or 'Woken'

Waiting - modules that are 'Sleeping'

Monitors - monitors that are 'Ready'

Modules or monitors may be "Sending" or 'Receiving' in any position because
chains of nested RPCs may develop at any "time.

Modules that are ready to execute are stored in order of priority in the
'Runnable' list so the first module in the list is the next to execute. Therefore the
ordering of 'Runnable' is controlled by the scheduling mechanism in operation.

10

References for this technical report (in citation order)
[Myref] Reddy, M. (1988) "MICRO-CATCH - A simple blackboard knowledge-based
system in PASCAL and PROLOG," MSc Dissertation, December 1988, Supervisor: G.M.P.
O'Hare, Computation Department, UMIST, Manchester, UK.
[ref Bond and Gasser] Bond, A.H. & Gasser, L. (1988), (eds), "Readings in Distributed
Artificial Intelligence," Morgan Kaufmann.
[ref Genesereth] Genesereth M.R., Ginsberg, M.L. & Rosenschein, J.S. (1984), "Co­
operation without Communication," Report HPP-84-36 September 1984, Stanford Heuristic
Programming Project, Stanford University.
[ref ABE etc] Hayes-Roth, F.A., Erman, L.D., Fouse, S., Lark, J.S. & Davidson, J.(1988),
"ABE: A Cooperative Operating System and Development Language" in Richer, M. (ed)
'AI Tools and Techniques'. Also in [ref Bond & Gasser].
[Ref Dist Comp book] 'Proceedings of the Eighth Symposium on Operating Systems
Principles, Operating Systems Review,' 15, 5, pp. 64-75, December, 1981.
[Ref Young] Young, S.J. (1982), "Real-Time Languages," Ellis Horewood, Chichester.
[Refs Hoare, Brinch Hansen]

Hoare, C.A.R. (1974), "Monitors : An Operating System Structuring Concept," in
'Communications of the ACM' 17,10 pp549-557.

Hansen, P. Brinch (1978), "Distributed Processes : A Concurrent Concept," in
'Communications of the ACM', 212,11 pp934-941.
[Ref Young] ibid
[Ref Liskov from Dist Comp] Liskov, B. & Scheifer, R. (1983), "Guardians and Actions:
Linguistic support for robust, distributed programs," in 'ACM Transactions on
Programming Languages and Systems,' Vol. 5, No. 3, pp381-404.
[Ref Rashid and Robertson from Dist Comp] Rashid, R.F. & Robertson, G.G. (1981),
"Accent: A communication oriented network operating system kernel," in 'Proceedings of
the Eighth Symposium on Operating Systems Principles, Operating Systems Review,' 15,5,
pp. 64-75, December.
[Ref] Barrett, R., Ramsay, A. & A. Sloman (1986), "POP-11: A practical language for
artificial intelligence," Ellis Horewood
[Ref POP Book] See above [Ref]
[Ref] ibid
[Ref Young] ibid

Paper 3

Reddy, M. (1990), "A Proposal for an ACTOR-Based Extension to
COCO-POP - CAST," Technical Report AI-90-4 (October 1990),

Department of Computation, UMIST University, Manchester.

A Proposal for an ACTOR-Based Extension to
COCO-POP - CAST*

tMike Reddy

Report AI-90-4
October 1990

* Coco-pop Actor Shell Testbed
'Supported by a SERC studentship

1 Introduction

The development of multi-agent systems has been hampered by the questions
of which paradigm to use, and how this model should be implemented. A
testbed capable of prototyping multi-agent systems quickly would facilitate the
process of evaluation; it has been suggested that this approach is necessary
for the viability of future 'real world* applications. Furthermore, this research
emphasises the need for cross-fertilization from other areas of computer science;
such as concurrent systems and distributed programming.

COCO-POP, a testbed for building prototype multi-agent systems [Myref],
has been constructed in an attempt to meet these requirements. Its structure
consists of four components:

 A scheduling mechanism for governing process execution

 A core of primitive functions for process execution and interaction

 A library of system components for prototyping DAI applications

 A construction interface to aid application assembly

DAI paradigms may be successfully implemented in COCO-POP as libraries
of user configurable components; the first library (GBS 1) contains elements
for building blackboard systems. However, the process involved in developing
COCO-POP is iterative, in that changes are driven by th^peculiar requirements
of each DAI model. Therefore, in order to extend the scope of COCO-POP,
further paradigms must be represented for the system to become increasingly
generic.

This report describes the results of a literature survey into the ACTOR
model of controlling distributed knowledge-based systems (DKBS). In the next
section, Hewitt's actor model [Ref Hewitt 1977] is discussed. The construction,
requirements and limitations of actors are described. Following this, an outline
for implementing actors is proposed. The assumptions and constraints involved
in this proposal are then declared. Finally, a rough schedule is given for the
construction of an actor library in COCO-POP.

2 Actor Theory

2.1 The Actor Model
The Actor Model, proposed by Hewitt [Ref Hewitt 1977], was developed to
model the parallelism within distributed problem solving. Control of separate
processes (or 'actors') was to be achieved by simple message passing, with ex­

plicit communication of knowledge between actors.

1 Generic Blackboard Shell

In Hewitt's original proposal, actors were denned as objects combining both
procedure and data, hiding their internal representation so that only the external
effects (or behaviour) could be viewed by other actors. Actors consisted of
two components: a 'script' which denned the behaviour of an actor, and the
'acquaintance list' which defined the neighbours an actor could communicate
with.

Computation was expressed as a series of events which denned the'causal
flow of control between actors. Ordered events, which depended upon some
precondition to be calculated, would be executed serially, otherwise events could
be treated in parallel. The use of events allowed the concurrency within a
problem solving task to be explicitly represented. Completion of tasks was
guaranteed by the assumption that they would terminate with 'primitive' actors;
i.e. actors that require no communication to satisfy requests.

The script language used for denning actor behaviour allowed for the dy­
namic creation of primitive actors to perform calculations in parallel; iteration
and recursion also require spontaneous creation of actors. It is beyond the scope
of this report to give a detailed description of the script language used to define
actor behaviour. The following section treats the communications requirements
of Actors.

2.2 Actor Communications

Communication between actors was via asynchronous, point-to-point message
passing. The effect of a message depended upon the scripted behaviour of the
receiving actor; similar to speech acts [Ref Wooldridge]. This might cause one
of the following effects:

 Calling a remote procedure

 Accessing data

 Modifying data

 Returning a value

 Synchronisation

Messages consisted of a package of data and an envelope which denned
the nature of the contents. Envelopes were of three different types: Requests,
Replies and Complaints. Requests were produced by actors when they began a
dialogue (such as for a procedure call) and request messages would also include
an address to return any results to. Replies were messages sent in response
to some request. Complaints were messages which occured if a message was
received which did not match the expected pattern, or when its function could

not be fulfilled.

Construction of these messages was implicit so the passing of a message could
use a syntax similar to regular procedure calls. However it was also possible to
state the explicit structure of particular messages. This enabled actors to verify
the structure of incoming messages and to redirect them to other actors.

On a single processor, concurrent messages would have to be handled using
interrupts. In some cases, there might be a need for strict ordering of tasks; such
as for flight booking where reservations and cancellations should be processed
without interruption. A 'one-at-a-time1 actor has been proposed [Ref], which
acts as a guard surrounding the protected actor. This intercepts messages and
then forwards them serially to the actor concerned.

The next section describes the proposal that an actor library should be
implemented in COCO-POP. Following this some consideration is made of the
potential difficulties that may arise during implementation and the assumptions
that have been made to avoid them.

3 CAST - A Proposal

3.1 Justification for CAST

As mentioned in section 1, further libraries of DAI components are required to
drive the development of COCO-POP. GSB, a collection of blackboard system
components has already been completed. It is now proposed that a library
for representing actors (Coco^pop Actor Shell Testbed (CAST)) should be .
developed.

Actors provide a sharp contrast with blackboard systems. Where as the
blackboard model is highly centralised, with a globally shared database, the
actor paradigm has a fully decentralized control structure. Furthermore, black­
board agents act globally with the blackboard as a focus. Actor systems are
autonomous as each may only work in a local context. There is a strong des-
tinction between the methods of cooperation :

Objects [Agents] have to know what to remember.
Blackboards have to know what to forget. [Ref INSIGHT] '

Therefore the requirements of implementing CAST will be substantially different
to those for GBS, driving the development of COCO-POP itself. In fact, the
aims of the actor model (modelling the concurrent nature of problem solving
without regard to implementation) closely matches the objectives of COCO-
POP! However a number of caveats and assumptions are requred for CAST to
be developed. These are described in the next section.

3.2 Actors in COCO-POP
There is a potential for actor systems to require the dynamic creation of a
large number of primitive actors. This would lead to a large number of very

small grain processes, and consequently an increase in the traffic of messages
between them. There is a limit to the number of separate processes that may
be controlled by COCO-POP3 .

However the creation of a primitive actor is both syntactically and semanti-
cally equivalent to executing a procedure call [Hewitt 1977] as

...actors which communicate and cooperate with each other in a'
goal-oriented fashion can be implemented as a single actor. [Ref]

Therefore it would be legitamate to increase the grain size of actors with cohesive
collections of procedures representing primitive actions. Although there might
be an increase in the redundancy of operations there would be a corresponding
payoff with a reduction' o'f coupling between separate processes which would
reduce the prohibitive communication and management overheads of a very fine
grained system.

Actors themselves are to be represented as modules with initial parameters
for scripts and acquaintance lists. Different actor types will be implemented
using a range of pop-11 procedures; 'one-at-a-time' actors, for instance, will be
represented by COCO-POP monitors, which have the required restrictions upon
access.

Primitive actors must be represented by local procedures. Implied message
passing by addressing an external _actor using a procedure call syntax should
be achieved" using intelligent -communications primitives in conjunction with
acquaintance lists.3

An interpretation language for reading actor scripts will be necessary to
abstract the developer of actor systems from the primitives used for communi­
cation. This would be similar to the inference engine found in GBS agents and

based upon pattern-matching.
Communications would again be abstracted away from the user by this script

interpretation mechanism, with the contents of messages being built automati­

cally unless specified by the developer.

3.3 Rough Schedule for Implementation

The following stages have been identified:

1. A script interpretation mechanism and a generic actor definition for the
CAST library including procedures for communication and representing

primitive actors

2. An extension to the COCO-POP scheduling mechanism for handling ac­

tors to improve the concurrent execution of modules

3 14 with interface windows and an upper limit of approximately 900 with respect to storage.

Although window space can be recycled, garbage disposal is unable at present to free space

from defunct modules so the limit still exists.
3This may need some explaining!

3. An'extension of COCO-POP to provide a toolkit for producing actor sys­
tems from CAST and also to incorporate GBS into one development in­
terface

4. An improved graphical representation of this toolkit and also the execution
of modules in general

An tentative deadline for the completion of CAST has been set to the end
of January/February4 . As the first two items are required to demonstrate a
working actor system, it is suggested that they are given priority over the others.
Having said this, it is understood that the fourth stage could (and should) be
at least partially completed in parallel. Therefore the following schedule is
suggested5 :

October & November : Actor Module Components
November ft December : Improvement of graphical interface
December £ January : CAST and COCO-POP Development toolkit
February : Optional Overflow time

* A discussion we had over the summer suggested that this would be a reasonable date.

s This is very approximate and needs discussing

References for this technical report (in citation order)
[Myrefl Reddy, M. & O'Hare, G.M.P. (1990), "COCO-POP A Development Testbed for
prototyping Distributed Knowledge-Based Systems," Technical Report AI-90-3
(August 1990), Department of Computation, UMIST University, Manchester.
[Ref Hewitt 1977] Hewitt M. (1977), "Viewing Control Structures as Patterns of Passing
Messages," in 'Artificial Intelligence', Vol. 8, No.3, pp323-364.
[Ref Hewitt 1977] ibid
[Ref Wooldridge] Wooldridge, M.J. (1990), "Towards a formal theory of intelligent social
agency: Parts I, n and HI" Research Report, Department of Computation, UMIST,
Manchester, UK.
[Ref] Hewitt, C. & Liebermann, H. (1984), "Design issues in parallel architectures for
Artificial Intelligence," in 'Proceedings of the 28th IEEE Computer Society International
Conference,' San Francisco, CA. pp418-423.
[Ref INSIGHT] INSIGHT (1986), "The INSIGHT Blackboard Experiment Information
Pack," Systems Designers Ltd.
[Hewitt 1977] ibid
[Ref] See [Hewitt 1977]

Paper 4
Reddy, M. (1990), "CAST - Progress for the Implementation of Actor Communications,"

Technical Report AI-91-1 (January 1991),
Department of Computation, UMIST University, Manchester.

CAST - Progress for the Implementation
of Actor Communications

Mike Reddy

Report AI-91-1
January 1991

Actor communications are often complex and
difficult to represent when the standard request-
reply format is not applicable. This report discusses
the problem of widow requests and orphan
replies within' the actor syntax implemented in
CAST 1 . A summary of the widows and orphans
follows, with an account of how the problem is to
be solved using an extension to the existing
COCO-POP* actor module shell.

^OCO-POP Actor Shell Testbed - currently under development at UMIST

^ncurrent COntrol of POPLOG - currently under development at UMIST

Current Syntax and Implementation

Reference is made to Report AI-90-4 which explains the structure of
CAST. In the current version of CAST3, requests and replies may only be
represented in matching pairs. Therefore when an actor sends a request, it
must then receive back a corresponding reply. Similarly when a request is
received by an actor, it must return a reply to the requesting actor.

Actor 1 Request 1,

I__Reply 1

Actor 2 .Request 2.

Reply 2__

Actor 3

Fia 1 - Request-Reply Pairs in CAST 4.0

Concurrent handling of multiple requests has been implemented using
POPLOG processes and a stacking mechanism. Thus an actor responding
to two requests will process the most recent request (i.e. last in first out).

Request 1

.Request 3.

.Request 2.

Actor 4 Actor 3

I__Reply 1.

.Reply 3.

.Reply 2.

Fig. 2 - Concurrent Request Handling

However, this is insufficient to deal with the other reasons for passing
messages, defined in Hewitt's Actor model [Hewitt 1977]: invoking a co­
routine, synchronisation and value passing.

3Version 4.0 running under POPLOG 13.91 •

The current mechanism forces communications to be synchronous; in that
all requests must be answered by subsequent replies. The problem is now
described using the concepts of widow and orphan messages.

Widows occur when an actor sends a request to another actor for which
the reply will be redirected to another actor. The receiving actor is
determined by the originator of the request using an envelope command so
that the reply address can be explicitly stated.

[request [add 1 2] [reply_to Actor 1]] —> Actor 2

The diagram below represents two potential problems caused by
redirection of requests. Firstly, Request 2 is a widow because it does not
receive a reply from Actor 3. Secondly, the final reply does not match
with the original request sent-by Actor 1 since it is coming from an
unexpected source.

Actor 1 .Request 1.

Actor 2

?pnlv o

Request
— (Reply to

21)~*
Actor 3

Fia. 3 - Widow Request

The current system of stacking, creates a unique tag for each request when
it is sent. This tag is also placed on a stack for ensuring that replies are
received in the correct order. With the above example, the tag for
Request 1 will not match the tag created for Reply 2. Furthermore, this
tag would remain on the stack of Actor 2 indefinately, as no reply will be
received.

In the following example, an orphan, Reply 2, is produced by Actor 3
responding to the widow Request 2. For this case, Actor 4 has no
knowledge of this reply and is also expecting a reply from Actor 5.
Therefore, the difficulty arises in determining the order in which repli
should be processed.

es

Actor 1 .Request 1

Request 3.

Actor 5

Request 2
(Reply to 4)-

.Reply 3.

.Reply 1.

.Reply 2.
Actor 3

Fig. 4 - An Orphan Reply

Under rne present system,-it would not be possible to pick up the orphan
reply, as Actor 4 would not have the corresponding tag in its stack of
outstanding requests. As there is no means of determining which of the
two messages would arrive first, lifting this restriction could result the
replies in the wrong order.

Proposals for Handling Widows and Orphans in CAST

Work is currently under way to extend the taggin mechanism, so that
widows and orphans can be treated; this extension allows for tags to be
communicated between actors. For the case of requests where the result is
to sent to a different actor, the actor which is to receive the reply is polled
to create an appropriate tag, which is then used by the author of the request
when the request message is constructed.

A similar mechanism is used when actors re-direct requests. In the
example below, the tag created by Actor 1 is passed on to Actor 3, rather
than Actor 2 creating a new one. This not only reduced redundancy, but

 also allows the result of a request to be received, no matter which actor, or
actors, were part of its solution.

Actor 1

=> a1

Request i
—— (Tag a1) '

t

—— %

Actor 2 Request 2
.(Reply to 1)

(Tag a1)

Reply 2
(Tag a1)'

Actor 3

Figure 5 • Passing of an existing tag bv a widow

Primitives for this extended mechanism have been constructed. The next
stage is to incorporate them into a script-level system. This entails'the
building of a script-handler to apply primitives in a formal way, dependent
upon a script-like code which defines each actor's behaviour. It is
anticipated mat this handler system will be implemented in PROLOG4.

'The version of PROLOG envisaged is that supplied as part of the POPLOG environment

for CAST Actor Scripts

actor:= actor_name | actor_definition
actor_definition: =

"[" actor_name "<=>" command "]" *
actor_name:= identifier
command:= send | receive | operation

send:= "[" message "->" (actor | receive) "]'
"[" (actor j receive) "<-" message "]'

messages "[" { expression } "]"

receives "[" "»>" pattern (command | simple_expression) *]'
patterns "[" { unbound_yariable | expression } "]"

operations internal_operation | external_operation
internal_operations '"[" prefix_operator argument "]"
external_operations "[" actor argument "]"
arguments { expression }
prefix_operators identifier

expressions simple_expression | operation
simple_expressions bound variable | constant

bound_variab!es ("!" | "!!") identifier
unbound_variables ("?" | "??") identifier

constants identifier I number

1 Not to be implemented initially.

Code for CAST Actor Scripts
Create Actor
Create Acquaintance List
Execute Command

Create Acquaintance List
For each Command in Actor Script do

If (Command is a Send command) or
(Command is an External Operation)

Then
Add Actor to Acquaintance List
If Actor is an Actor Definition Then

Create Actor
Endif

Endif
Endfor

Execute Command
Case

Command is a Send command
If Message is a Request then

Send Request
Return Result

Else Message is a Reply
Send Reply to Actor

Endif
Command is a Receive Command

Perform Receive
Command is an Operation

If Operation is External then
Create Message from Argument
Send Request
Return Result

Else Operation is Internal
Perform Operation
Return Result

Endif
Command is an Expression

Evaluate Expression
Endcase

Send Request
Send Request to Actor
Perform Receive

If Message is a Reply then
Return Valid Result

Else Message is a Complaint
Return Invalid Result

Endif

Perform Receive
Receive Message
If Message is a Request then

Execute Request Script
If Result is valid then

Send Reply to Reply Address
Else Result is invalid

Send Complaint to Reply Address
Endif

Else Message is a Reply then
Execute Reply Script

Endif

Evaluate Expression
If Expression is a Simple Expression
;;; Calculate Simple Expression
Else Expression is a Command

Execute Command
Endif

References for this technical report (in citation order)
[Hewitt 1977] Hewitt M. (1977), "Viewing Control Structures as Patterns of Passing
Messages," in 'Artificial Intelligence', Vol. 8, No.3, pp323-364.

Paper 5

Reddy, M. (1990), "COCO-POP Generic System Capture," Technical Report AI-91-2
(March 1991), Department of Computation, UMIST University, Manchester.

COCO-POP Generic System Capture

Mike Reddy

Report AI-91-2
March 1991

COCO-POP 1 is now at the stage where two
paradigms, for blackboards and actors, have been
implemented in library form; these are called B^
(i.e. BBB!2) and CAST respectively. Discussion
must now turn to the manner in which users may
create distributed problem solvers (DPSs) using
these constructs.. .
This discussion document will outline the method
by which the structure of an application is taken
from the user and transformed into a COCO-POP
system.
A model of a possible user dialog is described,
with reference to the information needed to define
an application at the system and agent levels.
Treatment is graphical with some supporting text
to explain the procedures.

'Concurrent COntrol of POPLOG - currently under development atUMIST

s is a name change because GBS has already-been used apparently.

Define the number and names of the agents

User flgent Multiplier

Slow fldder Fast fldder Subtracter

Define acquaintance links between agents - shadow lines indicate that
agents may return replies. This is in a 'speak when you are spoken to'
arrangement, which allows temporary links between agents when a
respor e is necessary.

Determine the expertise of agents - i.e. the 'skills'

User flgent
can do:

none

Sloiu fldder
can do:
(n + m)

Multiplier
can do:
(n * m)

Fast fldder
can do:
(n + m)

Subtracter
can do:
(n - m)

Define the 'interests' of agents - what sub-tasks will be required by
agents

User flgent
can do:
none

requires:
(n * m)
(n + m)

Slow fldder
can do:
(n + m)

requires:
none

Multiplier
can do:
(n * m)

requires:
(n + m)
(n - m)

Fast fldder
can do:
(n + m)

requires:
none

Subtracter
can do:
(n - m)

requires:
none

Define potential 'dependency' links between agents using
acquaintance and skill information

User flgent
can do:

none
requires:

(n * m)
(n + m)

.(n * m).

Multiplier
can do:
(n * m)

requires:
(n + m)
(n - m)

Slouj fldder
can do:
(n + m)

requires:
none

Fast fldder
can do:
(n + m)

requires:
none

Subtracter
can do:
(n - m)

requires:
none

Determine the hierarchy of inter-agent communicatons, and
^potentially) the best paradigm for the system.

Resonably straight-forward for Actor systems

User flgent

(n+m)

Slouj fldder

(n*m)

(n+m) Multiplier

(n+m)
X
(n-m)

Fast fldder Subtracter

Special treatment of communications via blackboard levels must be
examined closely - see supporting material

User flgent

Fast fldder

Subtracter

User - Multiplier

User - Slouj Hdder

User - Fast fldder

Multiplier-Fast fldder

Multiplier-Subtracter

Blackboard Leuels

SIouj fldder

Multiplier

Paper 6
Reddy, M. & O'Hare, G.M.P. (1990), "GARP: A Rapid Prototyping Tool for Distributed

Knowledge-Based System," Technical Report AI-92-2 (July 1992),
Department of Computation, UMIST University, Manchester.

Errata
P4-5 - Section headed "4 Overview of GARP" should read "3 Overview of GARP" and
subsections 4.1,4.2 and 4.3 should be 3.1, 3.2 and 3.3 respectively.
P6 - Section headed "5 Garp Compilation" should read "4 GARP Compilation" and sub­
sections 5.1, 5.2 and 5.3 should be 4.1,4.2 and 4.3 respectively.
P7-8 - Section headed "6 Paradigm Specific Libraries" should read "5 Paradigm Specific
Libraries" and sub-sections 6.1, 6.1.1, 6.2 and 6.2.1 should be 5.1, 5.1.1, 5.2 and 5.2.1
respectively.
P10 - Section headed "7 Implementation of GARP Applications" should read "6
Implementation of GARP Applications" and sub-sections 7.1, 7.2 should be 6.1 and 6.2
respectively.
PI 1 - Section headed "8 CoCo-POP Execution of GARP Programs" should read "7
CoCo-POP Execution of GARP Programs" and sub-sections 8.1, 8.2 and 9.3 should be 7.1,
7.2 and 7.3 respectively. Section headed "10 General Conclusions and whinges" should
read "9 General Conclusions and whinges"

GARP: A Rapid Prototyping Tool for
Distributed Knowledge-Based Systems

Mike Reddy & G.M.P. O'Hare

Report AI-92-2
My 1992

This paper will outline a Distributed Artificial Intelligence (DAI)
toolkit which enables the rapid prototyping of "Distributed
Knowledge-Based Systems (DKBSs) for a variety of paradigms -
currently blackboard" and actor-based systems - This approach' i's
based upon capturing the requirements of the developer by the use of
a generic model of agents. This specification is then transformed into
paradigm-specific applications for demonstrating first-stage
prototypes.
The toolkit is modular in'structure, with tools built from low-level
primitives in increasing orders of abstraction. Facilities exist for
viewing and animating the features of these paradigm-specific
prototypes. Further work will aim to increase the robustness of these
tools, and provide further facilities for evaluation purposes. Other
areas for improvement include the generic handling of interface
requirements, and evaluation tools for determining the most
appropriate paradigm for particular domains.

1 Introduction
It is clear that there has been a trend towards a tool-based approach in the development of
software; this trend is most notable within the development:of blackboard svstems fReddv &
O'Hare, 1991]. Knowledge Engineering (KE) toolkits (such as ART [Refl].'KEE [RefZ] "and
Knowledge Craft [Ref3])~ and Similar initiatives in Software Engineering, share the common
feature of supporting the developer by-shielding the low-level implementation details behind a
layer of abstraction. A traditional view of development might involve an iterative combination of
three stages:

1) Code a prototype with a certain amount of expertise
2) Consult an expert to modify or add new knowledge
3) Use machine learning to extend the KB 'ad infinitum" [Ref4]

This approach is not without its limitations: Initial prototypes may have to be completely scrapped.
after analysis by human experts: reliance upon human experts may cause 'bottle-necks' in the
acquisition of knowledge; and machine learning may not be suitable, or even desirable, for ihe
particular domain. The process also requires the presence of a Knowledge Engineer to acquire and
interpret 'expertise', and then to perform the programming required to transform this knowledge
into an explicit form for the final application. However, the construction and maintenance of large
Knowledge-Based Systems (KBSs) is complicated by the increasing amount of explicit data
required by more generic applications.
The use of Distributed Artificial Intelligence (DAI) techniques goes some way to alleviating the
complexity of development, by distributing knowledge amongst a group of cooperating agents. A
number of paradisms have been proposed, which either fall under the 'competing experts"
metaphor [Genesereth, 1984 ; Rosenscheim & Genesereth, 1984] or the 'benevolent experts'
metaphor, where agents cooperate to solve problems.
The latter mav communicate by 'task sharing' or 'result sharing" depending upon their
communication protocols [Smith & Davis, 1981], while the strategies used to coordinate problem
solving have been classified into three distinct groups [Wooldridge & O'Hare. 1991]: Blackboards

(summarised in (Engelmore & Morgan. 1988]). Negotiation, (such as the Contract Net Approach
[Smith. 1978]), and Planning [Durfee. 1988].
Although Distributed Knowledge-Based Systems (DKBSs) often require less rules and are easier to
maintain, the requirement for even a modicum of programming expertise mav dramatically affect
the final application:

'The problem [is] that KBSs are often 'programmed' from a low level and do not
provide the rich concepts needed for adequate knowledge and control.'"
[Berg-Cross, 1989]

An inappropriate representation schema might be forced upon the the developer, due to the
influence of the implementation language during development. A further problem arises from the
frequent necessity to 'bury' control knowledge, or general 'rules of thumb', by representing control
structures implicitly within the programming of an application.
It is clear that some link between the 'application' layer and the 'programming' layer, must be
found which shields the user from low-level considerations to prevent implementation detail from
dictating the structure of a KBS. However, it must also be suitable for representing low-level
algorithms, mid-level heuristics and high-level concepts. This link must therefore e'xist on the
application layer where a user may define the requirements of a system, and its specific domain
knowledge without reference to the underlying architecture.
Recent research has therefore been directed towards the development of hvbrid svstems and
testbeds to support the construction'of Distributed Knowledge-Based Systems (DKBSs). These
range from simple generic shells and DAI architectures (such as ABE [Erman et al. 1988].
AGORA [Bisiani, 1987], ARCHON [Wlttig, 1989 ; Wittig, 1990], DAIS [Kannan & DodrilL
1990], RTEX fJFeyter, 1990]) to tool-based architectures (including AF [Green, 1987]. BBl
(Hayes-Roth, 1984], CooperA [Sommarusa et al, 1989], MACE [Gasser et al. 1987], MADE
[Wooldridge, 1990?], MCS Poran et al, 1991]).

Firstly, this paper "will discuss the need for a generic model of DAI paradigms, with reference to
their communicational and organisational requirements. In the nest section, an essentially
pragmatic model of agents is proposed. GARP (Generic Agent Rapid Prototyper). - a toolkit which
uses this generic model of agents to aid the development of applications - is then described. Then
an explanation is given of how GARP is used to acquire requirement specifications; a detailed
description of the structure of these specifications is included. This is followed by an outline of
their compilation into paradigm-specific applications, and how the low-level primitives necessary
to achieve communication and control are actually implemented for blackboard and actor-based
applications. Finally, the merits and failings of GARP are discussed, with reference to future
enhancements and improvements, as well as to the lessons learned in its development.

2 The Need for a Generic Model of DAI

Multi-agent architectures have a number of common features, independent of the underlying
paradigm:

1) Applications consist of a group of agents; each having its own 'skills and
knowledge'
2) The group is assigned "tasks" to perform, which require decomposition into sub-
tasks, to be distributed to the agents.
3) Each agent is likely to have access to 'limited" knowledge and resources with
which to solve tasks.
4) There mav be more than one agent which is "appropriate" for tasks, requiring
some form of control. [Cammerata. 1983]

Although all sub-tasks must be assigned to an agent, or agents, for the parent task to be completed.
problems may arise when tasks arelnter-dependent or where conflict arises over a particular task.
Solutions to this 'task coordination problem must be 'globally coherent' and performed at a local
level to be trulv distributed/Therefore, agent communications are probably the most important
aspect of DKBS's, as they offer the means by. which agents cooperate and coordinate themselves.

The scope of communications within existing paradigms, ranges from those which exhibit no
communications to those where agents engage in high level dialogues [Werner 1990]:

No Communication [Genesereth 1986] - Extensive knowledge of agent beliefs is required.
which leads to large overheads in speculation. This approach would only be adequate for
non-dynamic applications without the need for sophisticated cooperation.

Primitive Communication [Dykstra 1968, Hoare 1978] - Simple signals or semaphores are
used to coordinate and synchronise agents. The limited nature of this vocabulary makes
cooperation between agents impossible.

Plan and Information Passing [Rosenscheim 1986] - Agents mutually decide upon a plan.
possibly coordinated by a central planning agent. This approach is computationally
expensive and offers no guarantees as no universally acceptable plan may be developed.

Message Passing [Hewitt 1977] - Control is represented by the pattern of communications
between groups of actors. Sophisticated cooperation is unlikely because the syntax and
semantics of these structures are extremely simplistic.

High-Level Communication [Cohen & Perrault 1979, Alien & Perrault 1980, Appelt 1985]
- Speech acts and agent modeling are used to coordinate agent beliefs and intentions.
However there is no formal model of how these techniques may be used to coordinate
agent behaviour.

"Any model of DAI, which claims to be generic, must be capable of representing the diversity of
communication protocols available, while modelling the common structures that all paradigms
share. It should be noted that approaches, such as agent modelling, dynamically alter their
organisational structure during over time. However, even these paradigms should be successfully
represented.

Cammerata has proposed that cooperative strategies occur in two classes: 'organisational policies'
and 'information-distribution policies' [Cammerata 1983]. Organisational policies govern task
decomposition and sub-task assignment. However they also define communication paths for a
network of agents, directing and constraining agent behaviour, which might have a significant
effect upon the performance of the system. Information distribution policies govern when and how
communications occur subject to imposed constraints from the organisational policy.

Coordination and Control
1) Do agents assign their own roles from information received, or have them externally

imposed?
2) How are roles assigned to agents? - e.g. what strategy is used to determine which agent is

consulted about a task.
3) Do agents have the ability to negotiate when others try to change their roles or assign new

tasks to them?
Communications may vary on a number of dimensions:

a) broadcast V selective - what criteria are used, if any, to determine which agents
communicate.

b) Unsolicited V solicited - does an agent wait for a request before sending information, or
does it control when information is sent.

c) Acknowledged V unacknowledged - Is reception confirmed
d) Sinsle transmission V repeated transmission - can messages be repeated and how often

(a.k.a. 'murmuring')
Further questions to answer are:

1) What does the message contain
2) When is the message'sent and when received
3) How often is the message sent and what is its duration (i.e. effect upon the system)
4) What medium is used to deliver the message
5) What criteria were used to determine the above decisions

4 Overview of GARP
The model is used to provide a framework for highly abstracted elicitation of system
requirements.; this is compiled into modules capable of executing concurrently on top of CoCo-
POP [Reddy, 1989], an extension of the POPLOG environment [Ref4]. GASP consists of a
WTMP-based intelligent editor to represent, handle and store requirement specifications which
represent systems as a set of generic agents", and a compiler to convert specifications into
paradigm-specific constructs ancfproduce 'ready to run' code for blackboard and actor prototypes.

4.1 Specifying the GARP Model
System level
Agent editing: Creation. Naming and Deletion
System Description
A blank agent is added to the group, for which a unique name is assigned. It includes a set of
undefined stubs for agent and system knowledge.
Agent level
Creation, Naming and Deletion of Skills
Defining Visible Skills
Defining Acquaintances
Agent Description
Still at a very generic level, the neighbours of an agent which it is allowed to communicate with.
must be declared. Acquaintance links are ' one-and~a-half directional in that acquaintances may
only 'speak when they are spoken to'; i.e. a reply may be made without the original agent having to
be included in the replying agent's acquaintance list. This method of defining~acqualntances does
not resolve the means of handling task allocation where there are two or more"agents able to satisfy
the query. These links are determined at compilation time (see later).
Skill level
Rule creation, modification and deletion.
Defining the knowledge and rules that agents have: including what goals may be proven and the
conditions required to prove them. These could be used to determine a likely set of acquaintances
for an agent, subject to pruning.
Syntax and semantic checking
Agent level: At this stage, semantic checks can be performed for name clashes. It should be
possible to allow 'stub' agents at this level to reserve places for late additions or modifications.
Should an agent's name be changed, or the agent deleted, the other agents which are dependent
upon it, are "modified. Currently~no checking or notification is performed if deleting an agent
adversely affects others-
Acquaintance level: It is not possible to create an agent at this level, but this facility is to be
added. This will allow a more modeless method of agent specification.
Skill level: The GARP system does not adequately handle 'orphans'; skills that have no expertise
within any of the agents specified.

4.2 Structure of Application Specifications
At this stase. a seneric specification of each agent is produced, in the form of a readable text file.
This includes descriptive information for documentation purposes, as well as definitions of skills.
rules and acquaintance information.

The model consists of a number of distinct agents with: a list of Visible Skills, which are those
available to other agents: a list of Acquaintances, which define those agents that may be consulted.
and what skills they" may offer, and Expertise, includes the knowledge and rules for a portion of the
domain.
It has been assumed that aaents may only communicate with those others with whom i; is
acquainted (similar to Hewitt's Actor Model [Hewitt, 1977]) or in response to a legitimate

Concuneni Concrol of POPLOG
2 No discussion will be made in this paper of the best way to split a domain into a series of distinct agents with

cohesive knowledge. It's too hard!

request. Therefore acquaintance relationships are not symmetric, in that for two agents to share
each other's resources fully, they must each have the other as an acquaintance.

The definition of dependency and communication links between agenis are then implicitly defined
by the set of acquaintances mat may be approached to satisfy a query, and the conditions required
to satisfy a skill within the agent's own knowledge-base.

4.3 Knowledge Representation (KR) within GARP
Expertise is captured from the developer in the form of production rules. Although this is less
abstract than other representation methods, there is a balance between the lower level support for
the developer and the power and flexibility of specific knowledge being stored as rules. Production
rules are well-known, and are more readable than other more structured representations.
At this stage it is useful to describe the syntax with which expertise is stored in GARP and its
structure when transformed into representation methods suitable to actor and blackboard systems.
This is mentioned now because, up to this point, discussion has not even approached a means of
implementation, as we have been dealing with specifications rather than implementations.
rule:= "IF" condition_expression "THEN" action_expression
condition_expression:= ["NOT"] expression

{ ("AND" I "OR") ["NOT"] expression }
action_expression:= skill_item [":='! expression]

expressions constant I bound_variable I skill_item I operation I"(" operation ")"

bound_variable:= "~" variable_identifier
skill_item:= skill_name I "[" skill_name { (expression 1 unbound_variable) } "]"

operations condition_expression I variable_name ":=" expression I
expression infix_operator expression

unbound_variable:= "?" variable_name
constant, variable_name, skill_name, infix_operator:= identifier
Firstly, skill items consist of either an atom (a simple identifier, with no accompanying argument
or attributes) such as "sea' which may have a value (e.g. 'Atlantic', 'calm", or 32). or a list
structure for complex items. An example of this would be [sea north], where north is an identifying
attribute, which also has an accompanying value; such as [sea north] := 'stormy'. Although
complex items could be seen to be similar to arrays, they have the additional functionality, if
required, of deducing some relationship or triggering some action (e.g. [add 5 6] where 'add' is the
skill name and '5~ and "6" are parameters). This interpretation is controlled by the way skill items
are used within rules.
Therefore GARP rules can contain fairly complex instructions of traditional boolean, or arithmetic.
conditions and actions. It is the structure of the action section which determines the interpretation
of a skill item's functionality and structure:
1) Simple boolean rule with no arguments

IF cold AND wet THEN flu.
The skill item 'flu" will therefore have a value 'true' or 'false' (or in a confidence-based
implementation, some certainty value), depending upon the result of satisfying the condition
section.
2) Complex item rule with boolean result

IF~yield < 50 THEN [poor ?yield].
where a call is made with the yield given, which is used as an argument in the condition section.
The skill 'poor would here be seen to be some form of boolean operation.
3) Rules with complex results or actions

IF (yield : = [stock -sea] 10) AND (-yield < 50)
THEN [expected_catch ?sea] := 'poor.

Another example of this would be where the action section did some calculation:
IF (~number_l > 0) AND (~number_2 > 0) THEN [add_pos_numbers ?number_l
?number_2] := [add ~number_l -number_2].

where the calculation would only be performed if the condition is satisfied. If either of the numbers
were negative the result would be false. If either were undefined the result would be unproven.
In all these cases, skill items used within conditions have not definition of how they are to be
deduced, or where. This is defined be the visible skills and acquaintance information of an agent.

5 GARP Compilation
This section will discuss the conseqitenses of converting a generic model with no consideration of
how a problem is to be solved, into a specific paradigm. This section mist address the questions
raised in 2. The consequences of raising these points will have to be discussiied: namely those
dealing with the conceptual sinictitre of CAST and BBB, and the implementation of these libraries
in terms ofCoCo-POP.
5.1 Transforming the GARP Mode!
Compilation does not produce stand-alone code in one step. Rather an ARM is transformed into a
paradigm-specific design specification, which will make use of various libraries of pre-defined
constructs; these will be described later.

Therefore, the compilation process is simply a means of transforming generic dependency links.
and knowledge captured, into a format suitable for a particular paradigm. For example, the
previously described set of three agents might be converted into different formats depending upon
the final paradigm:

USER

DIRGNQSE

Final
Diagnoses

Symptoms

Clinical
Data

In a blackboard framework, the implicit communication and dependency links might be resolved
into a new model, where all message passing occurs via a globally accessible, data structure (the
blackboard), with dependency links being represented by unique areas of the blackboard. Access to
these areas by knowledge sources would then constitute communications between dependent
asents..

TEST

5.2 GARP Blackboard Compilation
The important components of an ARM used to define a blackboard specification are the:
 Visible Skills - used in the compilation of the production rules into Condition / Action frames.
Conditions of a rule are mapped to unique areas of the blackboard, if visible to other agents, or
intemallv represented if not available. Therefore, the distinction between visible and invisible skills
are that the former will be posted on the blackboard, while the latter are internally derived when
necessary. . .
 Acquaintances - the dependency of asents for only accessing information relevant to its own
skills is determined by which levels it has access to, and which skill items are to be posted there. In
conjunction with the visible skills of an agent's acquaintances, unique areas of the blackboard may
be created to correspond with the dependency links of the more generic ARM specification.

5.3 GARP Actor Transformation
This transformation is more straight-forward to describe than that for the blackboard models, even
thou°h the components of an ARM are similarly employed in the transformation into an actor-

based framework. The contrast with blackboard oriented applications is that the actors themselves
call their acquaintances for specific information, which is returned immediately (in the same vein
as a procedure call would). A further difference with blackboard systems is the need to interrupt
the activities of an actor when a new request is received. This is a requirement of actor systems.
which is recognised when the case of mutual dependency is considered:

USER

Clinical
^ Request

Clinical TEST
Requesting

Rgent

t \
Diagnosis

Diagnosis Request
Reply \

Symptom | Request
Request Symptom
/ Reply

Diagnose

i
Reply

Replying
Hgent

The USER agent must be able to satisfy the query for clinical data made by TEST which was
prompted by its request for a diagnosis sent to DIAGNOSE.
Information from and ARM is employed in a similar manner to that of blackboard creation: visible
skills and acquaintance lists are used to modify the expertise when it is transformed into actor
scripts, so that conditions required of another agent are addressed correctly. Visible skills are
represented in scripts as message patterns which when matched with incoming requests will cause
the accompanying conditions to be evaluated and the result of the request to be calculated: the
syntax of GARP actor scripts will be described in section *** Therefore, links between actors are
'hard-wired' into the relevant script of an actor at run-time.
NOTE Explain how this is done.
The example for the structure of an actor system is therefore similar to that of the original GARP
model. However, an order of events is imposed because the user must make a request .which then
triggers further requests, and so on, until the goal is satisfied.
NOTE a real example should be used here.
There is a fundamental difference between the interpretation of this model and that of GARP.
Whereas here there is some ordering implied in the sequence of requests there is no temporal
information implied in that of the GARP model. This is important because it would be easy to
confuse the meaning of a GARP specification, which merely expresses the 'needs and offerings" of
agents, with the implicit control path represented by and actor system. Hewirt went to some trouble
in his paper to create a formal language for specifying actor systems, and their event-based inter-
dependencies [Hewirt. 1977?]. GARP does not need this temporal constraint as it is a pragmatic
and generic method of defining agent relationships without reference to how this is esecxited.

6 Paradigm-Specific Libraries
This section will provide a discussion of the conceptual structure and organisation of BBB and
CAST libraries.

Although'the libraries for actor and blackboard systems (CAST and BBB respectively) contain
constructs for radically different paradigms, they are fairly similar in their requirements. Agents
are mapped onto modules which include abstracted communication procedures. These operations
have been built upon low-level primitives, so that modules may communicate in a number of ways
(including mail, remote procedure calls and signals]^
The important point to make is that the apparent diversification of agent requirements, when
GARP converts its seneric model into paradigm-specific applications, is only conceptual. As the
upper levels are stripped away, it becomes apparent that both implementations are converging
again to a common source

These libraries, and others that may be developed, make use of the same primitives, and yet
support a range of contrasting communication protocols. Although their development is in the form
of fairly low-level programming, this is invisible to the top-level developer, and even the GARP
compiler which merely produces stubs containing the relevant knowledge base for each agent. It is
at this level when design becomes implementation, with the first real "consideration of low-level
construction. As has been shown, GARP succeeds in preventing 'the tail wagging the dog' by
effectively shielding users from any programming at all.

6.1 BBB (Blackboard Builder)

6.1.1 KR for GARP Blackboard Systems
Whereas the transformation of agent communication links into a blackboard framework shows n
strong contrast with the original GARP specification, that of the knowledge base is much simpler.
The only changes of any significance are: a change from infi.\ to prefix notation, and the
substitution of skill items for commands to look up or~write entries on the blackboard, or to verify
them internally.

Blackboard rules therefore come in the form of:
[CONDITION conditionjsegment ACTION action_segment]

Some examples of knowledge represented in this wav are:
[CONDITION

[AND [LOOKUP cold ON domain LEVEL] [VERIFY wet]
ACTION [CREATE flu ON domain LEVEL]]
and
[CONDITION [LOOKUP damp ON domain LEVEL]
ACTION [RETURN wet]]

The commands 'LOOKUP, 'VERIFY', and 'CREATE' and 'RETURN* are the first level of an
abstract hierarchy of communication which will eventually be reduced to Pop-11 code. Section 4
will describe how these rule operations are implemented by the inference engine which processes
blackboard rules within agents. CREATE and LOOKUP are concerned with accessing the
blackboard itself, while VERIFY and RETURN are operations which handle internally derived
conditions; these correspond to invisible skill items (i.e. ones that are not to be made public by
placing on the blackboard).

6.2 CAST (Coco-pop Actor System Testbed)

6.2.1 KR in GARP Actor Systems
The representation of knowledge in actor scripts is significantly different to that cf GARP
production rules. This is due to~the rich procedural nature defined by Hewirt. Where even the
blackboard representation is still fairly abstracted, scripts are far more concrete. Therefore, it can
be said that the actor scripts produced by GARP have a greater similarity to the underlying
implementation, than the blackboard Condition / Action frames would, the script language adopted
by CAST is a subset of Hewitt's own syntax (described in [Hewitt, 1977?]):
actor:= actor_name I actor_definition
actor_definition3 :=

"[" actor_name "<=>" command "]"
actor_name:= identifier
command:=send I receive I conditional I operation

senct= simple_send 1 send_envelope

simple_send:= "[" message "->" (actor I receive) "]" I

3 Not mplemented at present, due to the need for large grained, cohesive agents. These are treated as primitive agents
in Hewitl's terminology, so that systems are less dynamic, with less spontaneous creation of aciore at run-time, this
decision also lends itself to ensuring that conflict does not arise. It could also be argued as a weakness ia CAST as
there is no mechanism for dynamicaiiy updating acquaintance lists as ye'

"[" (actor I receive) "<-" message "]"
messages "[" { expression } "]"

send_envelope:= "[" envelope "->" actor "]" I
"[" actor "<--" envelope "]"

envelopes "[" "request" message "[" "replv_to" actor "]]" I
T "reply" message "]" I "
"[" "complain" message "]" 4

receive := simple_receive 1 receive_envelope
simple_receive:= "[" "=>" pattern (command I simple_expression) "]"
pattern:= "[" {unbound_variable I expression } "]"

receive_envelope:= "[" "=>" envelope_pattem body "]"
envelope_pattern:= "[" "request" pattern "[" "replyjto" unbound_variable "]]" I

"[""reply "pattern"] "I ^
"[" "complain" pattern "]"

operations intemal_operation 1 extemal_operation
internal_operation:= "[" prefix_operator argument "]" I

"[" expression infix_operation expression "]"
external_operation:= "[" actor argument "]"
arguments { expression >
prefix_operator, infix_operator= identifier

conditionals rule I case
rule:= "[" "rules" expression { clause} ["[" "else" body "]"] "]"
case:= "[" "cases" { "[" clause T } ["[" "else" body "]"] "]"

clauses "[" "=>" clause_expression body "]"
clause_expression:= expression I "[" infix_operator expression "]"
expressions simple_expression I operation
simple_expression:= bound variable I constant

bound_variable:= ("~" I n~~") identifier
unbound_variable:= ("?" I "??") identifier
constant= identifier I number
Hewitt's script language [Hewirt. 1977?] is not described here. Rather, the discussion with detail
how a production rulels convened into an actor script. The special cases for simple and complex
items, with or without parameters and values, which was described in the previous section is also
relevant here. When the action section of a rule includes some assignment or calculation, the
structure of the accompanying script is different:

[=> [flu] [AND [[coldl -> USER] [[wet] -> USER]]

This is the case where the result will be a simple boolean value. Note that the return of the result is
implicit in the '=>* operation.

[=> [add_pos_numbers ?number_l ?number_2]
[rules [-true]

[=> [= [AND [> [~number_l] 0] [> [~number_2] 0]]
[add [~number_l] [~number_2] 0]]

[else Kalse]]]]]
For this example if the condition is satisfied then the addition is performed. Otherwise false is
returned. ,
the communication of agents is performed by the two abstracted operations '=> and '-> which
map onto lower level procedures (described in the next section). These operations cause the

Not implemented in this version of GARP

creation of stylised messages which act as requests or replies between agents in the manner of
object-oriented systems. The reception of messages, and the response of the receiving actor, are
governed by its script.
These messages come in the form of:

[REQUEST request_messase [REPLYJTO tarsetjaame]
[REQUESTJD requested]]

and
[REPLY reply_message [REPLYJD reply_id]]

As can be seen, various slots in actor messages are reserved for system information, such as the
originator of a message and a unique identification number for control purposes. These are
normally not visible to actors, being for the purpose of organising and synchronising requests.
Actor systems handling of agent communications are context dependent. Actors can send requests
and replies and receive requests and replies; the expected format being implicitly defined by the
actor script. An example of this is the .script samples above where '=>' evokes a/receive_request'
command, while at the end of the script the value derived is returned to the calling actor with an
invisible 'send_reply' operation. These operations will be discussed in more details rn section 5.2

7 implementation of GARP Applications
The prototypes produced by GARP at this stage consist of stub programs which access a paradigm-
specific library of modules - BBB' is the library for blackboard systems, which supports~the
creation of large-grain actors which may communicate with each other, via stylised messages.
In short, both these libraries consist of CoCo-POP modules, which have been fitted with inference
engines capable of parang the rule-bases supplied by GARP. The structure of these modules will
be described in the next section. Essentially their purpose is to take abstract communications
required by either actor or blackboard agents and implement them.

7.1 Implementation of BBB
The conceptual structure of a GARP blackboard system consists of knowledge sources which
contain expertise in the form of Condition / Action "frames, and a global data structure organised
into three levels: AGENT, QUERY and DOMAIN. The AGENT level contains information
regarding the skills and acquaintances of each knowledge source; this information is used to
control the problem solving process. When goals are posted to the blackboard, they are stored on
the QUERY level. When this happens the blackboard monitor contacts those acquaintances of the
posting agent, which may be able to satisfy the goal. When facts are derived, they are written to the
DOMAIN level, where the blackboard monitor will then inform agents which are acquainted with
the source of the fact and can make use of the new fact.
This method of partitioning was chosen to prevent the blackboard becoming needlessly
complicated. A major feature of the GARP implementation of blackboard systems is the
'intelligent' set of blackboard operations, which Implement the necessary information sharing of
agents. Therefore agents do not have to actively search the blackboard for useful information:
rather thev are informed by the blackboard when new information is added, or existing data is
modified.
Within knowledge sources, the inference mechanism handles the abstract operations, such as
LOOKUP, CREATE, etc, by mapping them onto a series of procedures 'imported' from the
blackboard monitor These are 'read_entry', * write_entry*, and *read_air. Additional operations
for removins entries from the blackboard are also available: ' delete_enrry? and" delete_all".
The blackboard itself consists of a database of entries which may only be accessed by these
procedures from outside. Therefore the blackboard monitor acts as a form of abstract data type.
When these routines are executed, the blackboard monitor sends messages to relevant agents in the
form of mail.

7.2 Implementation of CAST
Unlike the BBB librarv, all communications for actor systems is. conceptually, a series of
structured mail messases. However CAST must implement these as remote procedure calls so that
requests mav interrupt previous ones, and to allow nested requests to be made (as discussed in

section 2.2). However, this is invisible to developers, as the lowest level seen is that of the actor
scripts which maintain the concept of communication via mail.
Rather than communicating with a protected data store, with a view to modifying its contents (as
for blackboard systems) CAST actors send messages which are interpreted and acted upon by the
receiver. Therefore, each actor has its own set of communication procedures which send or receive
structured messages, and perform any necessary pre-processing: 'send_request', 'send_reply\
receive_request' and 'receive_reply'. Messages are sent surrounded by envelopes which contain
system information, and are normally invisible to the actor script. The above communications
command all make use of two lower-level procedures (* send_envelope' and 'receive_envelope~)
which are also available to developers. However GARP-produced actor systems do not make use
of envelope commands, as these are not required for the transformation of ARMs into actor
scripts.

8 CoCo-POP Execution of GARP Programs
8.1 Module Creation
The paradigm libraries described above consist of code which supports different conceptual models
of DAI systems, providing inference engines for the different representation methods (e.g. actor
scripts) and a means of transforming their communication requirements into message passing
between modules. CoCo-POP itself consists of module primitives, which allow for the creation and
execution of user-defined modules.

8.2 Agent Scheduling
These modules are executed concurrently by the CoCo-POP scheduler, while the modules
themselves govern safe 'exit' points for volunteering to suspend while others execute.
9.3 Communication
The module concept is central to CoCo-POP with each consisting of a set of communication
protocols to operate. Each module consists of: pre-specified code (which for GARP is the library
constructs defined in BBB and CAST); communications procedures at various levels of
abstraction; and an interface definition (which determines which procedures may be imported or
exported to other modules). This final component is used to govern remote procedure calls (RPCs).
the most primitive of the communication primitives. All other protocols available to developers are
built up from this.
Mail messages are performed by the 'send_to' RPC which places the message in a mail buffer of
the receiving module; this also has the side effect of scheduling the receiver for execution.
depending upon the priority of the message. This message is then accessed by internal procedures
Omessage_waiting" and 'receive_from').
Further protocols are built up from a combination of RPCs and Mail primitives. For example,
CoCo-POP implements signal handling via a system module, called the 'signaljiandler", which
allows for synchronised message passing between modules. The procedures 'signal", 'wait'.
'is_signal' and 'is_waiting* operate on a database of signal messages. This is a similar concept To
the implementation of the blackboard monitor in BBB. When using these primitives, a module
queries the signal_handler knowledge base by RPC to see if a signal has occured. or another
module is waiting for its signal. Otherwise the module puts makes a new entry of its requirements.
then puts itself to~sleep until the signal_handler informs it of any relevant events via mail.

10 General conclusions and whinges
At present this section merely notes the points to be raised.

• One conclusion of the paper is that there are few people working on formal theories of
distributed problem solvins svstems. Many problems of DAI are shared with traditional distributed
systems.
 " Expectation-driven communications is an area of theory at present (Rare!) which would
prevent repetition and message redundancy! [Decker 1987]
 Although the approach to modelling DAI systems is simplistic (making no allowance for
a°ent modelling or dvnamic mapping of domain knowledge) this pragmatic nature does make itself
useful for the speedv definition of systems. It is therefore not a strict formal definition of DAI
components, but aims to provide a functional means of specifying domains.

 Although in this case the agents are homogeneous. GARP does not restrict heterogeneous
agents from being defined. Nor does the present model prevent agents to be organised into
hierarchies in future versions.
 At present, the level of checking for correct complete dependence information is woefully
low, but as the system is refined, this "wfll expand to make assumptions about the dynamic links'
between agents more accessible to the developer.
 As mentioned previously expertise is captured from the user in the form of simple
production rules. While this is less abstract than other areas of system specification, the reduction
in support for the developer may be overcome in future versions of GARP and do not prove
restrictive. This approach does "however allow fairly complex knowledge to be represented
adequately.
 It should be noted that this restricts the flexibility for dynamically changing agent
dependencies, when compared with the blackboard meta-rule system, which is ultimately
configurable.
 At present there is no handling for unproven conditions in actor scripts (which are
represented in Hewitt' s original work by 'COMPLAIN1 messages) but this will be added in future
improvements.
 Note that this is a feature of Hewitt's original syntax, but it is also possible to make these
contexts explicit by using the '=>' and *«>' operations which allowed the script to access the
whole message rather than create it in a stylised manner.

References for this technical report (in citation order)
[Reddy & O'Hare 1991] Reddy, M. & O'Hare, G.M.P. (1991), "The blackboard model: a
survey of its application" in 'Artificial Intelligence Review,' Vol. 5, No. 3, pp!69-186.
[Refl] Inder, R. (1989), "State of the ART: A review of the Automated Reasoning Tool," in
Vadera, S. (1989), (ed) 'Expert System Applications,' Sigma Press, Wilmslow. Also
available as AIAI-TR-41.
[Ref2] Intellicorp (1986), "KEE software development system user's manual," Intellicorp
Inc., Mt. View, CA,
[Ref3] Laurent, J-P., Ayel, J., Thorne, F., & Ziebelin, D. (1986), "Comparative evaluation of
three expert system development tools: KEE, Knowledge Craft, ART" in The Knowledge
Engineering Review,' December, pp 18-29.
[Ref4] Hayes-Roth, F., Waterman, D.A. & Lenat, D.B. (1983), "Building Expert Systems,"
Addison Wesley.
[Genesereth 1984] Genesereth M.R., Ginsberg, M.L. & Rosenschein, J.L. (1984), "Co­
operation without Communication," Report HPP-84-36 September 1984, Stanford Heuristic
Programming Project, Stanford University.
[Rosenscheim & Genesereth 1984] Rosenscheim J.S. & Genesereth M.R. (1984),
"Communication and Co-operation," Report HPP-84-5, Stanford Heuristic Programming
Project, Stanford University.
[Smith & Davies 1981] Smith R.G. & Davis R. (1981), "Frameworks for Co-operative
Problem Solving," in 'IEEE Trans. on Systems, Man and Cybernetics,' Vol. SMC-11 No.l
January 1981.
[Wooldridge & O'Hare 1991] Wooldridge M.J. & O'Hare G.M.P. (1991), "Deliberate
Social Agents," in 'Proceedings of the 10th UK Planning Workshop,' Cambridge, April.
[Englemore & Morgan 1988] Englemore R.S. & Morgan AJ. (1988), "Blackboard
Systems," Addison-Wesley, London.
[Smith 1978] Smith R.G. (1978), "A Framework for Problem solving in a Distributed
Processing Environment," Report HPP-78-28 December 1978, Stanford Heuristic
Programming Project, Stanford University.
[Durfee 1988] Durfee, E.H., Lesser, V.R. & Corkill, D. (1988), "Coherent Cooperation
among Communicating Problem Solvers," reprinted in Bond, A.H. & Gasser, L. (1988)
(eds) 'Readings in Distributed Artificial Intelligence,' Morgan Kaufmann.
[Berg-Cross 1989] Berg-Cross, (1989), "Acquiring and managing knowledge using a
conceptual structures approach: Introduction and framework" in 'IEEE Trans. Sys, Cyb
Man,' Vol. 19, No. 3, May/June, pp513-527
[Erman et al 1988] Erman, L.D., Lark, J.S. & Hayes-Roth, F. (1988), "ABE: An
environment for engineering intelligent systems," in 'IEEE Transactions on Software
Engineering,' Special issue on AI. Also in Technical Report TTR-ISE-87-106, Teknowledge
Inc., November, 1987.
[Bisiani 1987] Bisiani, R., Alleva, A., Forin, A., Lerner, R. & Bauer, M. (1987), "The
architecture of the AGORA environment," in Huhns, M.N. (ed) 'distributed Artificial
Intelligence,' Pitman, pp99-l 18.
[Wittig 1989] Wittig, T. (1989), "ARCHON - Cooperation of Heterogeneous On-Line
Systems," in 'Wissensbasiert Systeme - Proceedings of the 3rd International Congress,'
Springer Verlag.
[Wittig 1990] Wittig, T., Roda, C. et al (1990), "ARCHON: A Cooperation Framework for
Industrial Process Control," in Deen, S.M. (1991) (ed), 'Cooperating Knowledge-Based
Systems 1990,' 3-5 October, University of Keele, UK, Springer Verlag.
[Kannan & Dodrill 1990] Kannan, R. & Dodrill, W.H. (1990), "DAIS, A Distributed AI
Programming Shell," in 'IEEE Expert,' Decenber.
[Feyter 1990] Feyter, A.R. (1990), "RTEX: An Industrial Real-Time Expert System Shell,"
in 'Proceedings of Avignon '90,' Vol. 1, EC2, France.
[Green 1987] Green, P., (1987), "AF: A framework for real time distributed cooperative
problem solving," in Huhns, M.N. (ed) 'distributed Artificial Intelligence,' Pitman, pp!53-

[Hayes-Roth 1984] Hewitt, C. & Liebermann, H. (1984), "Design issues in parallel

architectures for Artificial Intelligence," Proceedings of the 28th IEEE Computer Society
International Conference, San Francisco, CA. pp418-423.
[Sommaruga et al 1989] Sornmaruga, L. et al (1989), "An Environment for
Experimentation with Interactive Cooperating Knowledge-Based Systems," in 'Proceedings
of ther British Computer Society Expert Systems Conference 1989,' BCS.
[Gasser et al 1987] Gasser, L., Braganza, C. & Herman, N., (1987), "MACE: A flexible
testbed for distributed Al research," in Huhns, M.N. (ed) 'distributed Artificial Intelligence,'
Pitman, ppl 19-152.
[Wooldridge 1990] Wooldridge, M.J. (1990), "Towards a formal theory of intelligent
social agency: Parts I, II and IE" Research Report, Department of Computation, UMIST,
Manchester, UK.
[Doran et al 1991] Doran, J. et al (1990), "The MCS multi-agent testbed: developments
and experiments," in Deen, S.M. (1991) (ed), 'Cooperating Knowledge-Based Systems
1990,' 3-5 October, University of Keele, UK, Springer Verlag.
[Cammerata 1983] Cammarata, S., Me Arthur, D. & Steeb, R., (1983), "Strategies of
cooperation in distributed problem solving," in 'Proceedings of the 1983 International Joint
Conference on Artificial Intelligence," pp767-770.
[Werner 1990] Werner, E. (1990), "What can agents do together: A semantics of
cooperative ability," in 'Proceedings of the ninth European Conference on Artificial
Intelligence (ECAI-90),' Stockholm, Sweden, pp694-701.
[Genesereth 1986] Genesereth M.R. & Nilsson N., (1986), "Logical Foundations of
Artificial Intelligence," Morgan Kaufmann.
[Dykstra 1968] Dijkstra, E.W. (1975), "Guarded Commands, Non-Determinism and
Formal Derivation of Programs," in 'Communications of the ACM,' 18, 8, Aug 1975,
pp453-457.
[Hoare 1978] Hoare, C.A.R. (1978), "Communicating Sequential Processes," in
'Communications of the ACM,' 21, 8, pp666-677.
[Rosenscheim 1986] Rosenschein, J.S., Ginsburg, M. & Genesereth, M.R. (1986),
"Cooperation without communication," in 'Proceedings of 1986 Conference of the
American Association for Artificial Intelligence,' pp51-57.
[Hewitt 1977] Hewitt M. (1977), "Viewing Control Structures as Patterns of Passing
Messages," in 'Artificial Intelligence', Vol. 8, No.3, pp323-364.
[Cohen & Perrault 1979] Cohen, P.R.& Perrault, C.R. (1979), "Elements of a plan-based
theory of Speech Acts," in 'Cognitive Science,' Vol. 3, No. 3, pp!77-212.
[Alien & Perrault 1980] Alien, J.F. & Perrault, C.R. (1980), "Analyzing intention in
utterances," in 'Artificial Intelligence,' Vol. 15, No. 3, pp!43-178.
[Appelt 1985] Appelt, D.E. (1985), "Planning English Sentences," Cambridge University
Press, New York.
[Cammerata 1983] ibid.
[Reddy 1989] First draft of [Reddy & O'Hare (1990)] in Reddy, M. & O'Hare, G.M.P.
(1990), "COCO-POP A Development Testbed for prototyping Distributed Knowledge-
Based Systems," Technical Report AI-90-3 (August 1990), Department of Computation,
UMIST University, Manchester.
[Ref4] Systems Designers (1987), "POPLOG user guide," Systems Designers Ltd.
[Hewitt 1977] ibid
[Decker 1987] Decker, K.S. (1987), "Distributed problem-solving techniques: A survey,"
in 'IEEE Transactions on Systems, Man and Cybernetics," SMC-17, pp729-740.

Paper 7
O'Hare, G.M.P., Reddy, M. & Jones, A. (1992), "AMNESIA - Implementing a

Distributed Knowledge-Based System using RAPIDO," in 'Proceedings of Expert Systems
'92, 12* Annual Conference of the British Computer Society specialist Group on Expert

Systems,' (Cambridge, December 1992), Cambridge University Press.
(Not included in this binding)

Paper 8
Reddy, M. & Moon, J.N.J. (1995), "Development and Evaluation of Multi-Agent and

Agent-Based Simulation Environments," 'DIMAS '95, Proceedings of the 1 st International
Workshop on Decentralized Intelligent Multi Agent Systems,'

(Krakow, November 1995), pp393-401.
(Not included in this binding)

Paper 9
Reddy, M. & Fetcher, G.P. (1997), "Intelligent Control of Dynamic Caching Strategies

for Web Servers and Clients," in 'WebNet '97, Proceedings of the 2nd
World Conference of the WWW, Internet, & Intranet,' (Canada, November 1997).

(Not included in this binding)

Paper 10
Reddy, M. & Fetcher, G.P. (1998), "An Adaptive Mechanism for

Web Browser Cache Management," IEEE Internet Computing,
Vol. 2, No. 1, pp78-81, (January-February 1998).

(Not included in this binding)

Paper 11
Reddy, M. & Fetcher, G.P. (1998), "Intelligent adaptive web caching using document life

histories: A comparison with existing management techniques," in 'Proceedings of the 3rd
International Workshop on WWW Caching,'

June 15-17*, 1998, Manchester, UK.
(Not included in this binding)

Paper 12
Reddy, M. & Fetcher, G.P. (1998), "Expl: a comparison between a simple
adaptive caching agent using document life histories and existing techniques,"

in 'Computer Networks and ISDN Systems,' Vol. 30,
Nos. 22-23, pp2149-2153, (November 1998).

(Not included in this binding)

