432 research outputs found

    Detection of retinal blood vessels from ophthalmoscope images using morphological approach

    Get PDF
    Accurate segmentation of retinal blood vessels is an essential task for diagnosis of various pathological disorders. In this paper, a novel method has been introduced for segmenting retinal blood vessels which involves pre-processing, segmentation and post-processing. The pre-processing stage enhanced the image using contrast limited adaptive histogram equalization and 2D Gabor wavelet. The enhanced image is segmented using geodesic operators and a final segmentation output is obtained by applying a post-processing stage that involves hole filling and removal of isolated pixels. The performance of the proposed method is evaluated on the publicly available Digital retinal images for vessel extraction (DRIVE) and High-resolution fundus (HRF) databases using five different measurements and experimental analysis shows that the proposed method reach an average accuracy of 0.9541 on DRIVE database and 0.9568, 0.9478 and 0.9613 on HRF database with healthy, diabetic retinopathy (DR) and glaucomatous images respectively

    Retinal Vessels Segmentation Techniques and Algorithms: A Survey

    Get PDF
    Retinal vessels identification and localization aim to separate the different retinal vasculature structure tissues, either wide or narrow ones, from the fundus image background and other retinal anatomical structures such as optic disc, macula, and abnormal lesions. Retinal vessels identification studies are attracting more and more attention in recent years due to non-invasive fundus imaging and the crucial information contained in vasculature structure which is helpful for the detection and diagnosis of a variety of retinal pathologies included but not limited to: Diabetic Retinopathy (DR), glaucoma, hypertension, and Age-related Macular Degeneration (AMD). With the development of almost two decades, the innovative approaches applying computer-aided techniques for segmenting retinal vessels are becoming more and more crucial and coming closer to routine clinical applications. The purpose of this paper is to provide a comprehensive overview for retinal vessels segmentation techniques. Firstly, a brief introduction to retinal fundus photography and imaging modalities of retinal images is given. Then, the preprocessing operations and the state of the art methods of retinal vessels identification are introduced. Moreover, the evaluation and validation of the results of retinal vessels segmentation are discussed. Finally, an objective assessment is presented and future developments and trends are addressed for retinal vessels identification techniques.https://doi.org/10.3390/app802015

    A Rule Based Segmentation Approaches to Extract Retinal Blood Vessels in Fundus Image

    Get PDF
    The physiological structures of the retinal blood vessel are one of the key features that visible in the retinal images and contain the information associate with the anatomical abnormalities. It is accepted all over the world to judge the cardiovascular and retinal disease. To avoid the risk of visual impairment, appropriate vessel segmentation is mandatory. Here has proposed a segmentation algorithm that efficiently extracts the blood vessels from the retinal fundus image. The proposed segmentation algorithm is performed Lab and Principle Component (PC) based gray level conversion, Contrast Limited Adaptive Histogram Equalization (CLAHE), morphological operations, Local Property-Based Pixel Correction (LPBPC). For appropriate detection proposed vessels correction algorithm LPBPC that check the feature of the vessels and remove the wrong vessel detection. To measure the appropriateness of the proposed algorithm, the experimental results are compared with the corresponding ground truth images. The experimental results have shown that the proposed blood vessel algorithm is more accurate than the existing algorithms

    Human treelike tubular structure segmentation: A comprehensive review and future perspectives

    Get PDF
    Various structures in human physiology follow a treelike morphology, which often expresses complexity at very fine scales. Examples of such structures are intrathoracic airways, retinal blood vessels, and hepatic blood vessels. Large collections of 2D and 3D images have been made available by medical imaging modalities such as magnetic resonance imaging (MRI), computed tomography (CT), Optical coherence tomography (OCT) and ultrasound in which the spatial arrangement can be observed. Segmentation of these structures in medical imaging is of great importance since the analysis of the structure provides insights into disease diagnosis, treatment planning, and prognosis. Manually labelling extensive data by radiologists is often time-consuming and error-prone. As a result, automated or semi-automated computational models have become a popular research field of medical imaging in the past two decades, and many have been developed to date. In this survey, we aim to provide a comprehensive review of currently publicly available datasets, segmentation algorithms, and evaluation metrics. In addition, current challenges and future research directions are discussed

    Retinal Blood Vessel Extraction from Fundus Images Using Enhancement Filtering and Clustering

    Get PDF
    Screening of vision troubling eye diseases by segmenting fundus images eases the danger of loss of sight of people. Computer assisted analysis can play an important role in the forthcoming health care system universally. Therefore, this paper presents a clustering based method for extraction of retinal vasculature from ophthalmoscope images. The method starts with image enhancement by contrast limited adaptive histogram equalization (CLAHE) from which feature extraction is accomplished using Gabor filter followed by enhancement of extracted features with Hessian based enhancement filters. It then extracts the vessels using K-mean clustering technique. Finally, the method ends with the application of a morphological cleaning operation to get the ultimate vessel segmented image. The performance of the proposed method is evaluated by taking two different publicly available Digital retinal images for vessel extraction (DRIVE) and Child heart and health study in England (CHASE_DB1) databases using nine different performance matrices. It gives average accuracies of 0.952 and 0.951 for DRIVE and CHASE_DB1 databases, respectively.    

    Automated retinal analysis

    Get PDF
    Diabetes is a chronic disease affecting over 2% of the population in the UK [1]. Long-term complications of diabetes can affect many different systems of the body including the retina of the eye. In the retina, diabetes can lead to a disease called diabetic retinopathy, one of the leading causes of blindness in the working population of industrialised countries. The risk of visual loss from diabetic retinopathy can be reduced if treatment is given at the onset of sight-threatening retinopathy. To detect early indicators of the disease, the UK National Screening Committee have recommended that diabetic patients should receive annual screening by digital colour fundal photography [2]. Manually grading retinal images is a subjective and costly process requiring highly skilled staff. This thesis describes an automated diagnostic system based oil image processing and neural network techniques, which analyses digital fundus images so that early signs of sight threatening retinopathy can be identified. Within retinal analysis this research has concentrated on the development of four algorithms: optic nerve head segmentation, lesion segmentation, image quality assessment and vessel width measurements. This research amalgamated these four algorithms with two existing techniques to form an integrated diagnostic system. The diagnostic system when used as a 'pre-filtering' tool successfully reduced the number of images requiring human grading by 74.3%: this was achieved by identifying and excluding images without sight threatening maculopathy from manual screening

    A Multi-Anatomical Retinal Structure Segmentation System For Automatic Eye Screening Using Morphological Adaptive Fuzzy Thresholding

    Get PDF
    Eye exam can be as efficacious as physical one in determining health concerns. Retina screening can be the very first clue to detecting a variety of hidden health issues including pre-diabetes and diabetes. Through the process of clinical diagnosis and prognosis; ophthalmologists rely heavily on the binary segmented version of retina fundus image; where the accuracy of segmented vessels, optic disc and abnormal lesions extremely affects the diagnosis accuracy which in turn affect the subsequent clinical treatment steps. This thesis proposes an automated retinal fundus image segmentation system composed of three segmentation subsystems follow same core segmentation algorithm. Despite of broad difference in features and characteristics; retinal vessels, optic disc and exudate lesions are extracted by each subsystem without the need for texture analysis or synthesis. For sake of compact diagnosis and complete clinical insight, our proposed system can detect these anatomical structures in one session with high accuracy even in pathological retina images. The proposed system uses a robust hybrid segmentation algorithm combines adaptive fuzzy thresholding and mathematical morphology. The proposed system is validated using four benchmark datasets: DRIVE and STARE (vessels), DRISHTI-GS (optic disc), and DIARETDB1 (exudates lesions). Competitive segmentation performance is achieved, outperforming a variety of up-to-date systems and demonstrating the capacity to deal with other heterogenous anatomical structures

    Determination of bifurcation angles of the retinal vascular tree through multiple orientation estimation based on regularized morphological openings

    Get PDF
    This paper describes a new approach to compute bifurcation angles in retinal images. This approach is based on the estimation of multiple orientations at each pixel of a gray retinal image. The main orientations are provided by directional openings whose outputs are regularized in order to extend the orientation information to the whole image. The detection of vessel bifurcations is based on the coexistence of two or more than two different main orientations at the same pixel. Once the bifurcations and crossovers has been identified, bifurcation angles are calculated. The proposed procedure of computing bifurcation angles by means of orientation estimation at all pixels of the gray level image is much more stable than those methods which are based on the skeleton of the vascular tree, since a slight variation of a pixel of the skeleton can produce a significant change in the angle valueThis work was supported by Ministerio de Economía y Competitividad of Spain,Project ACRIMA (TIN2013-46751-R)
    • …
    corecore