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A B S T R A C T

Various structures in human physiology follow a treelike morphology, which often expresses complexity at
very fine scales. Examples of such structures are intrathoracic airways, retinal blood vessels, and hepatic blood
vessels. Large collections of 2D and 3D images have been made available by medical imaging modalities such
as magnetic resonance imaging (MRI), computed tomography (CT), Optical coherence tomography (OCT) and
ultrasound in which the spatial arrangement can be observed. Segmentation of these structures in medical
imaging is of great importance since the analysis of the structure provides insights into disease diagnosis,
treatment planning, and prognosis. Manually labelling extensive data by radiologists is often time-consuming
and error-prone. As a result, automated or semi-automated computational models have become a popular
research field of medical imaging in the past two decades, and many have been developed to date. In this
survey, we aim to provide a comprehensive review of currently publicly available datasets, segmentation
algorithms, and evaluation metrics. In addition, current challenges and future research directions are discussed.
1. Introduction

Anatomical structures with tree-shaped topologies are very com-
monly found in the human body. For example, in our transport system,
blood vessels branch into networks to provide material exchange be-
tween tissues and cells while airway branches allow the exchange of
gases in and out of the body. In our nervous system, tens of billions
of neurons form hundreds of trillions of connections with one another
(Fig. 1). The analysis of such topology structure can reveal pathological
onditions of the corresponding organs.

Human airways or respiratory tract start from the nasal cavity
here the air is breathed in. Inhaled air then travels down through the
harynx and larynx from where it enters the trachea. The trachea is a
ylindrical tube about 2.5 centimetres in diameter and 12.5 centimetres
n length. It bifurcates to form two main bronchi (left and right),
hich then continue to branch up to 17 generations beyond which
lveoli begin to develop and eventually terminate at alveolar sacs.
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Structural alterations of the airways often correlate with a range of
chronic lung diseases, including asthma, chronic obstructive pulmonary
disease (COPD), cystic fibrosis (CF), and coronavirus disease (COVID-
19). Computerized tomography (CT) for the human body has been
available in clinics for about 50 years. CT was not particularly suited for
thorax imaging until the end of the 20th century when the resolution
and speed of the scanner had been significantly improved. However,
one CT examination contains a large number of CT images, usually
up to hundreds [1]. Manually annotating these data is time-consuming
and error-prone. Therefore, developing automated or semi-automated
systems is necessary and this has led to swift progress in the research
area of medical imaging.

Blood vessels are also tubular structures commonly found in our
body anatomy, and are of great clinical importance as a diagnostic
and prognostic factor. For example, the morphological shape of retinal
blood vessels, which is imaged using fundus photography, can help
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Fig. 1. Examples of treelike structures in human body [10–12].

diagnose hypertension, diabetes, and atherosclerosis [2,3]. Many algo-
rithms have been proposed for the segmentation of the blood vessels
as well. We aim to provide a comprehensive review of the algorithm
for human treelike structure segmentation, particularly for airways in
this article. Pu et al. [4] has done a review on airway segmentation
10 years ago; Therefore, we will mainly focus on newly developed
methods afterwards. In addition, we found the segmentation algorithms
for human blood vessels are very similar and will include a few of them
here for comparison and discussion. A detailed systematic review on
blood vessel segmentation has already been done by [5–9] However,
none of them focused on the big picture of summarizing algorithms for
segmenting all treelike structures in human anatomy. In this review,
we would like to first briefly introduce different modalities used for
imaging treelike structures. Then we move on to the segmentation,
summarizing representative conventional and ML/DL algorithms for
delineating treelike anatomical regions in the past two decades. A list
of open datasets and model implementations is compiled for future
research work. Finally, we discuss the trend of development and current
limitations.

1.1. Searching criteria

The literature search was conducted mainly by Z.T. and later re-
viewed by Y.N. and H.L. The inclusion of an article was based on
agreement by at least two of the three authors. We used the following
keywords for a systematic searching on Scopus: ‘‘airway’’ OR ‘‘vessel’’
AND ‘‘segmentation’’ AND ‘‘deep learning’’ OR ‘‘network’’ and 2603
results were found; We further limited the results to journal articles
written in English that are already published and were left with 1190
papers for the title and abstract screening. 897 papers were excluded
as they are either duplicated or have completely irrelevant topics with
the keywords only being mentioned few times. During the writing of
this review, a small fraction of papers that have relevant contents but
were missed by our search on Scopus or excluded by an error during
screening were added back, which in total gave us 72 of them for this
study (see Figs. 2, 4–6, 8–10 and 12–17). .

2. Imaging treelike structures in human

2.1. CT

X-rays used in medical imaging are usually called soft X-rays be-
cause of their low energy level. X-rays are generated inside the X-ray
tube as shown in Fig. 3 which is a vacuum tube that utilizes high
voltage to accelerate electrons released from a hot cathode. One type of
X-ray, known as the characteristic X-ray, is generated when an electron
in the metal atom is kicked out by the high-energy incoming electrons
leaving a hole later filled by electrons from a higher energy state. The
other type of X-ray, known as the Bremsstrahlung X-ray, is generated
when the high-energy incoming electron passes through the atom and
emits an X-ray when it loses kinetic energy. The generated X-ray is then
directed to traverse the patients from various angles and is recorded
by electronic detectors. Beer–Lambert law governs X-ray attenuation,
which is influenced by a variety of factors such as beam energy,
tissue type, sample thickness, and others. The higher the attenuation
of the beam, the lighter the tissue appears on the reconstructed CT
images; The lower the attenuation, the darker the tissue appears on
the reconstructed CT images.
2

2.2. MRI

Instead of using ionizing radiation, strong external magnetic field
is generated surrounding the patient lying in an MRI machine. The
stronger the magnetic field, the faster the protons (nuclei of the hy-
drogen atom) precess. The precessing frequency lies in the range of
radio frequency (RF) electromagnetic wave. The MRI machine sends
RF pulses that have the same frequency of the processing and excite
the proton to a higher energy state. When the RF pulse is switched
off, the protons gradually relax themselves and release excess energy
in the form of RF waves which can be detected. This signal is referred
to as the free-induction decay (FID) response signal which is measured
by a conductive field coil placed around the object being imaged. By
evaluating the relaxation rate (longitudinal T1 and transverse T2) of
protons in different tissues, we can obtain 3-D images of deep tissues
with high resolution. A schematic diagram is shown below [13]

2.3. Fundus photography

Fundus retinal images allow non-invasive capture of the major
anatomical structures of the retina, including the deep microvascular
system. Depending on the instrument and the associated acquisition
protocol, the main fundus imaging techniques are colour fundus pho-
tography (CFP) and scanning laser ophthalmoscope (SLO). The CFP
utilizes a low-power microscope with a camera attachment to image the
retina. The optical principle is similar to the indirect ophthalmoscope
to provide a magnified view of the inner surface of the eye (see Fig. 7).
The SLO uses laser scanning to provide high-contrast images of blood
vessels and uses wide-field instruments.

2.4. OCT

OCT creates cross-sectional images by performing a series of low
time-coherence interferometry (LCI) depth-scans which measures abso-
lute distances. The low time-coherence light source travels through the
beam splitter, one being directed to the sample the other being directed
to the reference mirror. OCT bathes the sample in electromagnetic
waves and uses principles of interference to determine from what depth
a photon was reflected inside a sample. Each layer in the sample has
sharp change of refractive index which manifest themselves as intensity
peaks in the interference pattern. The interference only occurs when the
distances to the sample and reference are matched within coherence
length of the light. A schematic diagram is shown below created with
BioRender [16]. OCT is mainly used in ophthalmic and intravascular
imaging. It can identify most retinal pathologies such as retinal holes
and detachments, and opaques in arteries around the heart. Diseases
such as diabetic retinopathy, diabetic edema and glaucoma can also
be diagnosed. A more detailed description of OCT angiography can be
found here [17].

3. Segmentation algorithms

In this section, an exhaustive review of segmentation methods for
human treelike tubular structures is presented following the taxonomy
as shown in Fig. 11. The segmentation methods and algorithms can
be categorized into three classes: conventional, machine learning (ML)
based, and deep learning (DL) based. Although DL-based methods
are a subset of ML-based methods that specifically utilizes artificial
neural networks (ANNs) such as convolutional neural networks (CNNs),
this review presents DL-based methods as a separate category for
focused discussion. In addition, preprocessing and postprocessing tech-
niques and loss functions adopted by DL-based approaches are also
summarized in this section.
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Fig. 2. PRISMA flow chart.
3.1. Conventional segmentation

3.1.1. Basic image processing operations
For most biomedical images, different substances have different

pixel intensity values (e.g., 0 for water and −1000 for air in CT
scans). Therefore, the tubular structure can be roughly segmented by
certain basic image processing operations, for instance, the intensity
thresholding (to provide candidate regions) [19,20], morphology op-
rations (to remove noise or leakages) [21–23], filtering (to remove

noises or enhance tubular structures) [24], or a combination of these
operations [25,26].

Adaptive thresholding (AT): Adaptive thresholding refers to methods
that use a dynamic threshold strategy for threshold-based segmen-
tation. For instance, Jiang et al. [19] proposed an adaptive local
thresholding method based on multi-threshold probing. The airway
prediction was obtained by combining the probed thresholding and
non-maximum suppression post-processing. Pu et al. [20] relaxed the
airway segmentation into the geometrical domain by analysing the
principal curvature and lung anatomical structures. A progressively
adaptive threshold-based modelling strategy was adopted to address the
wide intensity range of airway walls. Though the dynamic threshold
promotes robustness to some extent, it still faces the challenge of
false-positive predictions, especially for those abnormal scans.

Mathematical morphology and cross-curvature evaluation (MM-
CCE): Zana & Klein [21] segmented vessel-like patterns using a hybrid
3

framework of morphological filtering and cross-curvature analysis. The
vessels in the monochrome retinal image can be identified by mathe-
matical morphology methods because they are natively straight, and
connected, and their curvature changes gradually along the crest line.
Cross-curvature analysis is applied to evaluate which features have
linearly consistent curvature.

Knowledge-guided mathematical morphology (MM): Passat et al.
[22] proposed a preliminary approach to enhance brain vessel segmen-
tation in Magnetic Resonance Angiography (MRA) images by incorpo-
rating high-level anatomical knowledge into the segmentation process.
The first stage integrates anatomical knowledge of vessels such as
density, size, and orientation into a cerebral vascular atlas extracted by
a skeletonization-based algorithm, utilizing a topology-preserving non-
rigid registration method. This atlas then guides MM using adaptive sets
of grey-level hit-or-miss operators in the second stage. The parameters
of these morphology operators are adapted to the vascular structures
using anatomical knowledge modelled by the cerebral vascular atlas.
A similar strategy was employed in [23] to segment coronary arteries
from 3D X-ray data sequences. However, it combines a region-growing
algorithm in addition to the grey-level hit-or-miss transform.

Multi-scale line detection (MSLD): Nguyen et al. [24] suggested a
multi-scale line detection (MSLD) based approach. Their approach en-
hances pixels representing the lines of varying directions by filtering the
raw image using a rotating predefined kernel. Multiple line detectors
with various lengths are applied to obtain multi-scale measurement
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Fig. 3. The X-ray beam is generated inside the X-ray tube which rotates around the
patient lying in the centre of a CT scanner. The beam is directed to traverse the patients
from various angles and is recorded by electronic detectors. Complex reconstruction
algorithms help generate the image of the body’s internal structure.

Fig. 4. Lung CT scans from EXACT’09 dataset [11]; from left to right is axial, coronal
and sagittal plane respectively.

values. The final segmentation of the retinal image is gained by linearly
combining multi-scale line detectors, which retain the information at
varying scales and eliminates the inadequacies of single filtering. The
main advantage of the approach is the fast segmentation speed due to
its simplicity and scalability.

Thresholding and mathematical morphology (T-MM): Aykac et al.
[25] identified the candidate airways on 2D slices by intensity thresh-
olding and morphology. After noise reduction, the grey reconstruction
(via morphological closing operation) was conducted to extract airways
by identifying the grey-scale minima. The intensity thresholding then
removed most of the non-airway candidates to obtain the final airway
structure.

Coarse-to-fine AT and MM (CTF AT-MM): Câmara Neto et al. [26]
presented an unsupervised statistical coarse-to-fine method for detect-
ing blood vessels in fundus pictures. After background harmonization
and noise reduction, an adaptive local thresholding approach is em-
ployed to coarsely estimate the vessel tree. The threshold is computed
based on the spatial dependence between pixels using the cumulative
distribution function and the normalized grey-level co-occurrence ma-
trix to evaluate the regional influence, especially in the centre and
border. The coarse segmentation is refined by a morphological recon-
struction using a binary curvature map as a marker to eliminate pixel
4

i

mislabelling. The suggested method effectively solved major image
distortion by minimizing mislabelling of central vascular reflex areas
and false-positive identification of abnormal patterns.

3.1.2. Template matching
A basic template matching method involves creating an image patch

(template) that is suited to a certain aspect of the search image that we
want to detect. Given the intensities of pixels in the search image 𝐼𝑠
and template image 𝐼𝑡, the template matching is normally defined by
calculating the sum of absolute differences (SAD) between 𝐼𝑠 and 𝐼𝑡.

(𝑥, 𝑦) =
𝑇𝑟𝑜𝑤𝑠
∑

𝑖=0

𝑇𝑐𝑜𝑙𝑠
∑

𝑗=0
|𝐼𝑠(𝑥 + 𝑖, 𝑦 + 𝑗) − 𝐼𝑡(𝑖, 𝑗)|, (1)

where 𝑇𝑟𝑜𝑤𝑠 and 𝑇𝑐𝑜𝑙𝑠 denote the rows and the columns of the template
image, respectively. The segmentation performance of tubular struc-
tures heavily relies on the continual detection of identified candidates,
while some pseudo-tracheal regions may occur in noisy cases, leading
to leakage when dealing with small branches. To alleviate these issues,
researchers designed novel filters or preset templates for image con-
volution to acquire the response image. Then the tubular structures
can be located by analysing textual or shape features through template
matching methods. Among different template matching approaches,
one way is to use a preset circular mask to match the section of tubular
structures [27–29], and another solution is to match a 3D model with
multiple constraints [30,31].

Matched filtering (MF): MF is a classic template matching method
that employs predefined convolution kernels to convolute images to
acquire intense responses or features of tubular structures. Based on
the assumption that the cross-section of tubular structures can be
regarded as a Gaussian function, one common solution is to match
different Gaussian-shaped filters for segmentation. The binary segmen-
tation can then be obtained by thresholding the response image. For
instance, Hoover et al. [27] proposed an adaptive thresholding method
by probing an area of the matched filter response image, decreasing
the threshold iteratively. However, MF approaches will obtain intense
responses to both tubular structures and edges, leading to false-positive
predictions.

Matched filtering with the first-order derivative of Gaussian (MF-
FDOG): To alleviate the redundant response of MF approaches, Zhang
et al. [28] extended conventional MF approaches by integrating the
first-order derivative of the Gaussian (FDOG). By checking the re-
sponse intensity to the MF and FDOG, the non-vessel structures can
be distinguished. This approach considerably reduced the false positive
predictions of the original MF and discovered more small vessels.

B-COSFIRE: Based on the combination of shifted filter responses, Az-
zopardi et al. [29] suggested a non-linear filter named B-COSFIRE
for detecting elongated patterns in images. The weighted geometric
mean (of a group of different Gaussian filters) that provides orientation
selectivity is calculated with the B-COSFIRE filter. Meanwhile, the
rotation invariance is achieved by applying simple-shifting operations.
However, these non-linear filters need to be manually adjusted to
achieve optimal results on different datasets.

The 3D cylindrical model matching (3D CMM): Krissian et al. [30]
resented an adaptive approach for detecting three-dimensional (3D)
ubular structures based on the eigenvalues and eigenvectors of the
essian matrix. The method begins with an analytical examination of

hose features across a variety of models, demonstrating that a response
unction based on both eigenvectors and gradient is the most robust.
he method then employs a cylindrical vessel model with a circular
aussian cross-section to guide the tubular structure detection on the

eature map. Because the intensity profile of the cross-section affects
ize estimation based on multi-scale analysis, a more accurate model
ith a bar-like convolved cross-section is proposed, along with an
mproved radius estimation algorithm based on this new model. Worz
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Fig. 5. When strong external magnetic field is applied, the hydrogen nuclei precess along the direction of the field. Then a radio-frequency pulse with frequency equal to the
Larmor frequency is applied perpendicular to the field. The RF pulse makes the magnetic moment of the hydrogen nuclei tilt. When the RF pulse stops, the nuclei realign themselves
to the external magnetic field.
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Fig. 6. Time-of-flight(TOF) magnetic resonance angiography(MRA) of cerebral
vessels [14]; from left to right is the axial, coronal and sagittal plane respectively.

Rohr [31] developed a new 3D cylindrical parametric intensity model
or vessel segmentation which is directly fitted to image intensities
sing an incremental (segment-wise) Kalman filter. This mathematical
odel represents a cylindrical structure of a variable radius and directly
epicts the image intensities of vessels and neighbouring tissues and a
arameter that characterizes image blurring. Compared to previously
resented Gaussian-shaped models, the new model more accurately
escribes a smoothed Gaussian cylinder, a more realistic representation
hat produces improved outcomes.

.1.3. Region growing (RG)
The region growing or tracking methods segment the tubular struc-

ures by setting specific region growing rules [32–38] (e.g., most ap-
roaches predefine a 3D cylinder as a template to match the tubular
tructures), which can also be adaptive. Starting with an initial seed
given manually or automatically), the orientation and position of the
ubular structure can be calculated by image-derived features such as
ntensities and gradients. However, due to the inhomogeneous intensity
nd noise in images, these approaches are prone to segmentation leak-
ges and cannot segment small tubular structures effectively. Therefore,
revious methods usually use region growing/tracking algorithms to
btain the main bronchi, then combine them with other image pro-
essing techniques, such as morphology-based methods, to segment the
mall trachea for further fine segmentation [39–42].

daptive RG: To prevent airway leakages, Kiraly et al. [32] carried
ut a preset explosion parameter to detect leakages. Specifically, the
hreshold of the region growing algorithm is dynamically changed by
ssessing the current growth conditions (decreasing threshold while ex-
losion occurs and vice versa). In addition, they also combined adaptive
5

G with morphology-based segmentation to accurately segment airway
rees.

nergy-constrained RG: Fetita et al. [33] proposed an
energy-constrained region-growing algorithm for 3D airway segmenta-
tion. The RG is controlled by the local energy minimization exploiting
the bronchial structure in terms of intensity and 3D topology. To
acquire more accurate predictions of small bronchus, they also devel-
oped a mathematical morphology operator based on selective marking
and depth-constrained connection costs. The experimental results in-
dicated that their approach was robust to a large spectrum of airway
pathologies, including severe stenosis.

Multi-seeded fuzzy connectivity (MSFC): Tschirren et al. [34] em-
loyed a 3D cylindrical ROI (region of interest) with multi-seeded
uzzy connectivity (MSFC) to overcome image noise and gradients.
he ROI for segmenting the airway adapts to its geometrical dimen-
ions, orientation, size, and position. The MSFC grows two regions
foreground and background) simultaneously in a competitive manner,
ased on the similarity between input voxels and the seed voxel as fuzzy
embership values. Although the prediction from MSFC is robust with

ewer airway leakages, it has high computational costs, especially for
arge 3D volumes.

eometrical RG: Different from the conventional region-growing ap-
roaches that perform growth through pixel/voxel intensity, the geo-
etrical region growing utilizes geometrical features as a constraint

or region growing. These geometrical features are usually used to
pproximate the width, size, and orientation of tubular structures. For
nstance, Martinez-Perez et al. [35] calculated two geometrical features

(gradient magnitude and maximum principal curvature of the Hessian
matrix) based on the first and second derivatives of the intensity value.
The growth is then confined to low gradient magnitude regions in the
first stage, along with spatial information about the 8-neighbouring
pixels. Fabijańska [36] proposed a two-pass region growing algorithm
to segment 3D airway structures, one (classic region growing) for rough
airway extraction and another (based on morphological gradient) for
refining segmentation. Besides, Cetin et al. [37] utilized a second-order
tensor derived from directional intensity measurements for extracting
coronaries from computed tomography angiography (CTA) volumes.
The anisotropic second-order tensor fit inside a vessel drives the seg-
mentation evolution starting from a seed point. As a result, the second-
order tensor effectively copes with complex structures like bifurcations.
Cetin & Unal [38] utilized a similar method with higher-order tensors.

CTF RG: Due to the limitation of region-growing approaches, re-

searchers proposed a multi-stage strategy to segment peripheral
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Fig. 7. Light is projected through a set of filters and lenses, resulting in a focused doughnut-shaped form into the eye. Assuming the illumination and the object are aligned and
focused, the image of the retinal exits the cornea through the central dark region of the doughnut.
Fig. 8. Examples of fundus images from STARE dataset [15] captured by a TopCon
TRV-50 fundus camera at 35 field of view. Each slide was digitized to produce a
605 × 700 pixel image, 24 bits per pixel (standard RGB).

branches. The semantic predictions obtained by region growing are
usually regarded as rough segmentation, followed by refinement al-
gorithms. For instance, Bartz et al. [39] combined 3D region growing
with 2D wave propagation and template matching to segment small
branches of airway tree structures. The 2D wave propagation is pre-
sented to address the partial volume and low-resolution effects, while
the 2D template matching is used to segment the small lumen further.
This approach is further investigated in [40]. Graham et al. [41] first
applied region growing for conservative segmentation of trachea and
main branches, then they scanned and located all the airway cross-
sections by applying an elliptic decision function on three 2D planes
(transverse, coronal and sagittal planes). After that, they built a graph
to connect all these airway segment candidates.

3.1.4. Level set segmentation
The level set (LS) is a method based on partial differential equations

(PDE), via moving curves and surfaces with curvature-based velocities.
Given a moving speed 𝑣, and time 𝑡, the level-set function 𝛷 satisfies
𝜕𝛷
𝜕𝑡

= 𝑣|∇𝜙|, (2)

where | ⋅ | represents the Euclidean distance. In image world, given the
pixel (𝑖, 𝑗), the motion equation can be presented as
𝛷(𝑖, 𝑗, 𝑡 + 𝛥𝑡) −𝛷(𝑖, 𝑗, 𝑡)

𝛥𝑡
+ 𝑚𝑎𝑥[𝐹 , 0]∇+𝑥(𝑖, 𝑗)

+ 𝑚𝑖𝑛[𝐹 , 0]∇−𝑥(𝑖, 𝑗) = 0,
(3)

where 𝐹 indicates the force normal to the surface, and

∇+𝑥(𝑖, 𝑗) =𝑚𝑎𝑥[0, 𝛥−𝑥𝛷(𝑖, 𝑗)]2+

𝑚𝑖𝑛[0, 𝛥+𝑥𝛷(𝑖, 𝑗)]2, 𝐹 > 0
(4)

∇−𝑥(𝑖, 𝑗) =𝑚𝑎𝑥[0, 𝛥+𝑥𝛷(𝑖, 𝑗)]2+
−𝑥 2 (5)
6

𝑚𝑖𝑛[0, 𝛥 𝛷(𝑖, 𝑗)] , 𝐹 < 0
It is of note that 𝛥+𝑥𝛷 and 𝛥−𝑥𝛷 are the left and right-side finite
difference for the given pixel. Specifically, level-set segmentation ap-
proaches are widely used in medical images with intensity inhomogene-
ity. By incorporating image-guided restrictions and prior clinical knowl-
edge, level-set segmentation approaches are well-suited for segmenting
tubular structures with complex architecture and size variability. The
level set segmentation can be classified into edge-based [43,44] and
region-based [45].

Edge-based LS: Edge-based level set approaches are mainly driven
by intensity or gradient-derived external forces. For instance, Law
et al. [43] determined the brain vessel border orientation using
gradient-flux symmetry along the vessel centrelines and gradient-flux
asymmetry along vessel borders, which was then utilized to fit an
active contour model by minimizing the weighted local variance. Lorigo
et al. [44] introduced a curve evolution-based vessel segmentation
approach that models the vessel walls as manifolds that evolve iter-
atively to minimize an energy criterion based on image intensity and
local smoothness. However, the E-LS becomes unstable and is prone to
leakage when the initialized curve is out of the boundary of interest.

Region-based LS: The Region-based model was introduced to address
some of the difficulties associated with edge-based deformable models,
such as the leakage problem that typically occurs when coping with
noise or non-uniform intensity distributions. The deformable surface
was first thought to be moving under the image foreground and back-
ground regions in the region-based model. Both regions are considered
statistically homogeneous, and the main distinctions in this type of al-
gorithm pertain to how the statistics of the two regions are defined. De-
spite the benefits of adaptive topology, region-based deformable models
have a higher computation complexity than edge-based deformable
models. Klepaczko et al. [45] presented a method for validating ves-
sel segmentation algorithms using a customed Magnetic Resonance
Angiography (MRA) simulation framework. A reference model of a
cerebral artery tree was created for this purpose using realistic Time-of-
Flight (TOF) MRA data. Blood flow was simulated using this specified
geometry, and a series of TOF pictures were created using various
acquisition protocol parameters and signal-to-noise ratios. A level-set
algorithm was then used to reconstruct the synthetic artery tree, which
was next compared to the reference model. This validation procedure
is especially beneficial for detecting minor vascular structures (see
Table 1).

3.2. Machine learning based segmentation

Most conventional methods reviewed above have numerous tuning
parameters, which are hard to estimate manually. Machine learning

(ML) algorithms are trained with specific features, usually based on
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Fig. 9. The low-coherence interferometer splits light into two paths. One path uses a reference mirror to reflect the light at a known path length. The other path leads to the
sample to be imaged. The presence or absence of light reflected from a depth corresponding to the path length set by the reference mirror determines the presence or absence of
detected interference.
i

Fig. 10. OCT images from PREVENT [18] captured using the commercial RTVue-XR
vanti OCT system (OptoVue, Fremont, CA). Consequent B-scans, each one consisting
f 304 × 304 A-scans, were generated in 3 × 3 mm field of view centred at the fovea.

ata statistics, to automatically obtain an optimal set of parameters for
model or a classifier. There are two types of ML methods depending

n their training process: unsupervised and supervised. Unsupervised
earning is ideal for scenarios when gold standard (GS) labels are not
vailable or exploratory data analysis is needed. On the other hand,
upervised learning requires GS datasets to train the learning model or
lassifier.

However, since ML approaches typically rely on manually extracted
ow-level features and criteria, they have a limited ability to learn
eatures automatically, and segmentation accuracy is relatively low
ompared to deep learning approaches.

.2.1. Unsupervised
Unsupervised ML algorithms are trained without a gold standard

r ground truth. These methods discover a model or a classifier ca-
able of describing a hidden grouping rule of input features without
rior knowledge or supervision. The lack of GS can limit unsuper-
ised segmentation performance, which is often inferior to supervised
pproaches.

MM: In the Gaussian mixture model (GMM), the image voxels are
ivided into backgrounds and tubular structures. Each class is charac-
erized by a stochastic modelling process using a mixture of Gaussian or
aussian-like distributions. Then the parameters of the mixture model
𝜋, 𝜇, 𝛴) are estimated by maximizing the log-likelihood.

(𝜋, 𝜇, 𝛴;𝑋) =
𝑀
∑

𝑚=1
𝑙𝑛(

𝐾
∑

𝑘=1
𝜋𝑘𝐍(𝑥𝑚|𝜇𝑘, 𝛴𝑘)). (6)

An unsupervised statistical modelling strategy using two-level GMM for
egmenting the 3D cerebrovascular system from MRA data is presented
7

n [46]. Each voxel class is characterized by a low-level intensity
histogram across the space and a high-level statistical dependence
between adjacent voxels. The background’s low-level process is rep-
resented by two Gaussian distributions and one Rayleigh distribution,
whereas the blood vessels are modelled by one Gaussian distribution.
The parameters of the suggested GMM are automatically estimated
utilizing an Expectation–Maximization (EM) algorithm [47] before the
Maximum Likelihood Estimation (MLE) classification. Spatial contex-
tual information has been incorporated through the 3D Markov random
field (MRF) [48], which serves as a prior distribution of the true label of
the class of interest to avoid misclassification caused by noise and signal
loss, which frequently occurs for classifiers using the pixel intensity
solely.

GMM and RG (GMM-RG): Oliveira et al. [49] also presented a method
for segmenting nodules and vessels based on a GMM integrating the
RG. The histogram combines three Gaussian models representing the
nodules, liver parenchyma, and vasculature. The Levenberg–Marquardt
(LM) optimizer is used to discover the parameter values that provide
the best fit. The RG strategy allocates voxels with intensity lower than
the lower threshold to nodules and is used as seeds in a process that
aggregates neighbouring voxels with intensity lower than the upper
threshold. The hepatic and portal veins are then identified using liver
anatomical knowledge and a vein-tracking algorithm.

Feature-based GMM: Roychowdhury et al. [50] used a feature-based
GMM to segment blood vessels accurately on pathological retinal im-
ages containing bright lesions, red lesions, and brightness/contrast
variation while remaining computationally efficient. The GMM clas-
sifier is deployed to classify pixels as a vessel or non-vessel using a
set of eight features collected from pixel neighbourhoods and first and
second-order gradient images, which reduces the reliance on training
data and improves the robustness. The number of pixels applied classi-
fication significantly decreases by removing major vessels overlapped
by the high-pass filtered image and the morphologically (Top-hat)
reconstructed image.

Clustering: Clustering is the process of discovering natural groupings
in the feature space automatically. A cluster is frequently a dense area
in the feature space where domain objects (e.g., image voxels) are
closer to this cluster than others. Given the number of clusters 𝐾, the
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Fig. 11. Taxonomy of segmentation methods.
bjective function of 𝑁 pixels within an image is presented as:

=
𝐾
∑

𝑗=1

𝑁
∑

𝑖=1
|𝑥𝑗𝑖 − 𝑐𝑗 |

2
, (7)

where 𝑐𝑗 is the centroid for cluster 𝑗. A centre vector represents each
cluster in centroid-based clustering, which is unnecessarily a dataset
member. The standard optimization objective is to locate cluster centres
and assign objects with the minimized squared distance to the cluster
centre.

SWFCM: Kande et al. [51] presented a four-step unsupervised fuzzy-
based vascular segmentation method to minimize erroneous vessel
8

detection. First, matched filtering is applied to enhance blood vessels.
The responses are then segmented using spatially weighted fuzzy c-
means clustering (SWFCM) based thresholding, which preserves the
spatial structure of the vascular tree. To speed up the procedure, the
grey-level histogram of the image is used to determine the parameters
of the FCM algorithm instead of the entire image data.

K-means clustering (KMC): Goceri et al. [52] proposed an unsu-
pervised and adaptive clustering approach for segmenting portal and
hepatic veins from liver magnetic resonance images. K-means clustering
is employed at the initial stage to adaptively identify tissue regions and
build a marker image. The results are processed iteratively with a linear
contrast stretching technique in the next stage, using both edge and

region-based information to generate a mask. The markers and mask
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Table 1
Conventional segmentation methods.

Author Year Region Modality Method Validation dataset
(number of cases)

Metrics Method class

Jiang et al. [19] 2003 RV CFP AT DRIVE (40)

STARE (20)

Acc: 0.9212

AUROC: 0.9114

Acc: 0.9337

AUROC: 0.8906

Basic image
processing
operations

Pu et al. [20] 2011 LA CT AT CT scans (75) GC: 8.2±1.2
Zana & Klein [21] 2001 RV CTA MM-CCE DRIVE (40) Visual
Passat et al. [22] 2006 BV MRA Knowledge-guided MM PC MRA scans (30) Se: 0.77

Pre: 0.99
Bouraoui et al. [23] 2010 CV CTA Knowledge-guided MM CTA scans (60) Visual
Nguyen et al. [24] 2013 RV CFP MSLD DRIVE (40)

STARE (20)
Acc: 0.9407

Acc: 0.9324
Aykac et al. [25] 2003 LA CT T-MM CT scans (8) Se: 0.73

GC: 7–10
Câmara Neto et al. [26] 2017 RV CFP CTF AT-MM DRIVE (40)

STARE (20)

Se: 0.7942

Sp: 0.9631

Se: 0.7695

Sp: 0.9537

Hoover et al. [27] 2000 RV CFP MF STARE (20) Se: 0.75 Template
matchingZhang et al. [28] 2010 RV CFP MF-FDOG DRIVE (40)

STARE (20)

Acc: .9382

Se: 0.7120

FPR: 0.0276

Acc: 0.9484

Se: 0.7177

FPR: 0.0247
Azzopardi et al. [29] 2015 RV CFP B-COSFIRE DRIVE (40)

STARE (20)

CHASE-DB1 (28)

Se: 0.7655

Sp: 0.9704

Acc: 0.9442

AUROC: 0.9614

Se: 0.7716

Sp: 0.9701

Acc: 0.9497

AUROC: 0.9563

Se: 0.7585

Sp: 0.9587

Acc: 0.9387

AUROC: 0.9487
Krissian et al. [30] 2000 BV X-ray

MRA
3D CMM X-ray scans (10)

MRA scans (n/a)
Visual

Visual
Worz & Rohr [31] 2007 TA MRA

CTA
3D CMM MRA scans (n/a)

CTA (n/a)
Visual

Visual
Kiraly et al. [32] 2002 LA CT Adaptive RG CT scans (10) GC: 12

BC: 182

Region
growing

Fetita et al. [33] 2004 LA CT Energy-constrained RG CT scans (30) Se: 0.91

GC: 6–7
Tschirren et al. [34] 2005 LA CT MSFC LD CT scans (22) NBC: 27.0±4.4
Martinez-Perez et al. [35] 2007 RV CFP Geometrical RG DRIVE (40)

STARE (20)

Acc: 0.9344

Se: 0.7246

FPR: 0.0345

Acc: 0.9410

Se: 0.7506

FPR: 0.0431

(continued on next page)
9
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f

Table 1 (continued).
Author Year Region Modality Method Validation dataset

(number of cases)
Metrics Method class

Fabijańska [36] 2009 LA CT Geometrical RG CT scans (10) GC: 9
Cetin et al. [37] 2013 CV CTA Geometrical RG ROTTERDAM (32) DSC: 0.964
Cetin & Unal [38] 2015 BV

CV
MRA
CTA

Geometrical RG MRA scans (50)
CTA (24)

DSC: 0.9286±0.03453

DSC: 0.973
Bartz et al. [39] 2003 LA CT CTF RG CT scans (22) Se: 0.85

Pre: 0.90
Mayer et al. [40] 2004 LA CT CTF RG CT scans (22) Se: 0.86
Graham et al. [41] 2010 LA CT CTF RG CT scans (23) BC: 253±84
Mendonca et al. [42] 2006 RV CFP CTF RG DRIVE (40)

STARE (20)

Acc: 0.9463±0.0065

Se: 0.7344

FPR: 0.7246

Acc: 0.9479±0.0123

Se: 0.7123

FPR: 0.0270
Law et al. [43] 2010 BV MRA Edge-based LS MRA scans (4) Visual Level set

segmentationLorigo et al. [44] 2001 BV MRA Edge-based LS MRA scans (n/a) Visual
Klepaczko et al. [45] 2016 BV MRA Region-based LS MRA scans (n/a) Visual

The regions include the retinal vessel (RV), lung airways (LA), lung vessel (LV), brain vessel (BV), coronary vessel (CV), and thoracic aorta (TA). All unnamed datasets are private
and may have specific modalities such as phase-contrast (PC), low-dose (LD), standard-dose (SD), or time-of-flight (TOF). All metrics are shown as mean ± standard deviation or
mean only.
Fig. 12. Basic image processing operations: thresholding, morphology operations, and
iltering.

Fig. 13. Template matching.
10
Fig. 14. Region growing.

Fig. 15. Level set segmentation.

Fig. 16. Machine learning based segmentation.
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images are then used to refine vascular areas using binary morpho-
logical image reconstruction [53]. The suggested methodology outper-
formed previous thresholding-based methods because it automatically
and adaptively calculates thresholds and weights.

Swarm optimization: Swarm optimization (SO) is a bio-inspired al-
gorithm that uses a population of candidate solutions to search for an
optimal solution in the solution space iteratively. It differs from other
optimization techniques in that it simply requires the objective function
and is unaffected by the gradient or any derivative of the objective.

Ant colony optimization (ACO): Because MF alone may not be suf-
icient to retrieve the capillaries, Ant colony optimization (ACO) seg-
entation results are incorporated in [54]. After basic preprocessing,

he image is processed by the MF and the ant algorithm in parallel.
n ant algorithms, several artificial ants build solutions and exchange
nformation on the quality to find approximate solutions to the given
ptimization problem, using a communication mechanism similar to
hat used by actual ants [55]. The result is then merged with the MF
esponse using a simple OR gate, followed by a length filtering to
cquire the entire vasculature. However, this method mistook patho-
ogical areas for vessels, and the segmented vessels are slightly thicker
han manual labelling.

rtificial bee colony (ABC): In [56], another swarm-based optimiza-
ion algorithm is utilized to develop an unsupervised retinal blood
essel segmentation approach. After enhancing the brightness, an ar-
ificial bee colony (ABC) stochastic optimization on the fuzzy c-means
FCM) compactness fitness function is used to determine cluster centres
epresenting vessels and backgrounds. However, vessels with small
iameters are usually distorted. They cannot be correctly categorized at
his first level of segmentation since they are always confused with sur-
ounding pixels, especially in pathological images. Hence, the second
ptimization step is employed to update the acquired cluster centres
sing the generalized pattern search (GPS) method [57] to maximize
he total thinness ratio of vessel segments. This method is proven to be
obust to noise, exudates, haemorrhages, and variations in the pigment
pithelium after deploying on DRIVE and STARE datasets. Su et al. [58]
roposed CCABC which has faster convergence and can obtain higher
uality solutions.

hale optimization algorithm (WOA): Hassan & Hassanien [59]
urther explored a novel swarm optimization method for extracting the
asculature from retinal fundus images. A hybrid model of multi-level
hresholding is used in conjunction with the whale optimization algo-
ithm (WOA) to segment the enhanced image. The WOA [60] is utilized
s an optimizer to determine thresholds that maximize between-class
ariance. On the DRIVE test dataset, the proposed method achieves
tate-of-the-art sensitivity and the results are visually identical to the
round truth.

CET-HHO: In [61], a novel unsupervised vessel segmentation ap-
roach is proposed based on optimized multi-level thresholding. The
ain processing stage is divided into two configurations after image

moothing. The new optimized top-hat, homomorphic filtering, and
edian filter were the first to segment thick vessels. The Minimum
ross-Entropy Thresholding-Harris Hawks Optimization (MCET-HHO)
ethod [62], a state-of-the-art multi-level image segmentation algo-

ithm, is applied in the second configuration to segment thin vessels.
inally, an OR logic combines the thick and thin vessel masks. The
uggested method outperforms most state-of-the-art methods described
n terms of specificity and accuracy, while the remaining computational
osts are small. Another multilevel thresholding method named Salp
warm Algorithm (SSA) is optimized by Zhang et al. [63] and has
11

otential to be implemented in vessel segmentation.
.2.2. Supervised
In contrast, supervised learning algorithms infer a classification

ule from manually annotated training pairings. The introduction of
rior knowledge in the training process makes these methods usually
utperform the unsupervised ones. However, that means the training
ime and computational cost are also increased.

NN: The K-nearest neighbour (KNN) method is a classical supervised
classification algorithm. The idea of the K-nearest neighbour method is
straightforward and intuitive: if most of the K most similar (i.e., most
neighbouring) samples in the feature space belong to a class, then the
sample also belongs to that class.

KNN and primitive-based method (KNN-PBM): Staal et al. [64] in-
troduced a ridge-based retinal vessel segmentation methodology using
a KNN classifier, taking advantage of the intrinsic feature that vessels
are elongated structures rather than pixel representation. The primitive-
based method (PBM) is developed to extract intrinsic features (image
primitives) by grouping ridge pixels into sets that approximate straight-
line elements. Each line element provides a local coordinate frame
within each set, from which local characteristics are retrieved for each
pixel. A sequential forward selection method is utilized to choose 27
features from convex sets and individual pixels, and then a KNN classi-
fier is used for segmentation. This approach achieves high accuracy on
the STARE dataset, but it is training data dependent, sensitive to false
edges, and relatively slow due to extensive feature sets.

KNN and RG (KNN-RG): Lo et al. [65] employed KNN to classify the
airway and non-airway voxels. The voxel-wise initial feature vector
was constructed using the Hessian matrix and Gaussian kernel from
the training data. The final airway tree segmentation is achieved using
a 3D region growing method with a decision function that combines
the probability map from the KNN classifier with the vessel orientation
similarity evaluated by Hessian matrix analysis, which reveals how
similar the orientation of a possible airway is to an adjacent vessel.
By combining the KNN classifier with the vascular axial orientation
constraint, the leakage is effectively limited, and the false positive rate
of the segmentation results is significantly reduced. However, some fine
tracheas are lost, reducing the total number of branches segmented.

SVM: A Support Vector Machine (SVM) is a class of generalized linear
classifiers that performs binary classification of data in a supervised
learning manner, where the decision boundary is the maximum-margin
hyperplane solved for the learned samples. For a soft-margin SVM, the
objective function 𝐽 is minimized to find the hyperplane.

𝐽 = 𝜆‖𝐰‖2 + [1
𝑛

𝑛
∑

𝑖=1
𝑚𝑎𝑥(0, 1 − 𝑦𝑖(𝐰𝑇 𝐱𝑖 − 𝑏))], (8)

where 𝑦𝑖 is the 𝑖th target, 𝐰𝑇 𝐱𝑖 − 𝑏 is the 𝑖th prediction. SVM with
Line detectors (SVM-LD): The application of line detectors as a feature
vector for SVM to segment retinal vessels is proposed by Ricci &
Perfetti [66]. The line strength response from three orthogonal line
detectors is thresholded to create a simple 3D feature vector for quick
supervised classification using a support vector machine (SVM). In
comparison to a convolution with a 2D kernel, the suggested line
detector has a lower computing cost and is less sensitive to noise
due to averaging. Also, because no hypothesis is based on the cross-
section profile, this detector achieves reliable detection in the presence
of vessels of various sizes. However, this approach is high dependent
on the training dataset.

SVM and graph-cut (SVM-GC): Meng et al. [67] utilized the SVM to
provide an accurate supervised extraction strategy for the complicated
airway tree. First, Hessian analysis and adaptive multi-scale cavity
enhancement filter (CEF) enhance the areas with tube-like and cavity-
like structures. SVM is then used to classify voxel candidates and
remove false positives using 32D feature vectors based on local pixel
intensity and structures. Finally, the candidate voxel map is refined
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using the graph-cut method to create the integrated airway tree. The
introduction of the SVM classifier improves the accuracy, but it is
highly dependent on the training data and is computationally expen-
sive. The experimental results also showed that the lung tracheal tree
segmented by this method was prone to branch breakage, particularly
in the case of small tracheal branches. Zhai et al. [68] proposed a graph-
cuts objective function combined with a Hessian based filter to segment
lung vessels. They validated the method on 20 CT scans in VESSEL12
challenge and achieved a competitive performance.

SVM with multi-scale filter (SVM-MSF): Lee et al. [69] proposed a
hybrid method integrating multi-scale filtering and an SVM classifier
to segment the airway tree on 3D chest CT scans automatically. First,
a modified 2D Hough transform [70] was used to detect a starting
seed point in the trachea. Then, a multi-scale tubular structure-based
filter is employed to identify the initial candidate airway regions,
including a grey-scale morphological operation and a tubular structure
detection [71,72]. An SVM classifier is then utilized to search for weak-
contrast narrow airways and unconnected regions missed by the two
enhancement filters. The fuzzy connectedness technique extracts 28-
dimensional feature vectors to discover additional candidate airways
while simultaneously suppressing FPR. However, the method also has
shortcomings, including a high probability of false positives and the
potential for leakage.

Trainable GMM: Soares et al. [73] proposed a supervised learning
approach for segmenting the blood vessels in retinal images using 2D
Gabor wavelet. To account for vessels of various widths, the feature
vector comprises the pixel’s intensity and 2D Gabor wavelet responses
collected at multiple scales. The wavelet helps detect and analyse
localized characteristics and singularities [74], such as edges and blood
vessels in this case. Moreover, because the Gabor wavelet can tune
to specific frequencies, noise filtering, and vessel augmentation can
be performed in one step. Then, a GMM and a Bayesian classifier
with class-conditional probability density functions (likelihoods) are
employed for fast classification. Probability distributions are computed
using a training set of labelled pixels from manual segmentations.
However, the training takes hours and is prone to overfit.

Ensemble modules: Based on an ensemble system of bagged and
boosted decision trees, Fraz et al. [75] proposed an accurate vessel
segmentation approach for colour fundus photography. The Ensemble
classification [76] is the technique of strategically generating and
combining multiple classifiers. The decision trees are used as the clas-
sification model in this approach, and the outcomes of these weak
learners are pooled using bootstrap aggregation (bagging) and boost-
ing algorithms. The 9D feature vector comprised the inverted pixel
intensity, gradient orientation maps, top-hat transform responses, line
detector responses, and Gabor filter responses, which achieve high
robustness. However, because of the boosting strategy with 200 deci-
sion trees, this method has a significant computational complexity (see
Table 2).

3.3. Deep learning based segmentation

Deep learning (DL) approaches automatically extract features to
explore raw data without using handmade features. They can auto-
matically learn multiple-level patterns and are not constrained by a
specific application. Therefore, they have a superior generalization and
recognition capabilities. DL models are composed of layers organized
in a hierarchical structure called artificial neural networks (ANN) and
interpret input data into meaningful output. The network’s parameters,
such as kernel coefficients and fully-connected (FC) layer weights, are
learned in the training process to represent the input data compre-
hensively. In this review, all DL models applied for treelike tubular
structure segmentation are trained under supervision.
12

v

Fig. 17. Deep learning based segmentation.

3.3.1. Classical CNNs
Convolutional neural networks (CNNs) are a class of DL models

that use convolution operations in at least one of their layers. The
convolutional layers are inspired by the receptive field structure found
in the animal’s primary visual cortex. Hence, they are specifically
designed to perform image processing tasks such as classification or
pixel-wise segmentation.

Classical CNNs are typically comprised of multiple convolutional
and pooling layers, followed by a set of fully connected layers. The
convolutional layer extracts features from inputs by convolution oper-
ation, in which a convolution kernel slides throughout the input map,
multiplying elementwise with a specified region called the receptive
field. Then, the activation function maps inputs non-linearly to increase
the visual representation ability of convolutional layers. The pooling
layers are usually employed after to reduce feature position dependency
and thus improve CNNs’ robustness. Besides, down-sampling along with
pooling can reduce computational costs. Fully connected layers are the
last block that produces a specialized semantic output, for example,
foreground or background, from the feature map.

Charbonnier et al. [77] presented a 2D CNN-based leakage detec-
tion approach that treats the removal of segmentation leakages as an
independent classification method to improve the quality of tracheal
segmentation on thoracic CT. Three 2D image patches were taken from
each airway candidate, corresponding to the top, middle, and bottom
layers. The airway candidate is then classified by passing three patches
through three parallel stacks of convolutional and max-pooling layers
separately and combining FC layers of three stacks in a final soft-
max layer. However, this method does not thoroughly analyse the 3D
continuity of airway candidates and treelike structure. Similarly, Yun
et al. [78] presented a voxel-by-voxel airway segmentation approach
or chest CT utilizing a 2.5D CNN (a pseudo-3D CNN) which takes
hree adjacent slices in each orthogonal direction (axial, sagittal, and
oronal) at each voxel.

Net: UNet is a CNN designed for medical image segmentation [79],
hich has a symmetric encoder–decoder architecture with skips con-
ections between the encoding (down-sampling) and decoding (up-
ampling) pathways. UNet can process the entire image in one forward
ass through its down-sampling/up-sampling architecture, resulting in
direct and faster segmentation than typical pixel-wise CNNs. Besides,
sing skip connections, UNets improve the accuracy of prediction by
ombining a low-level feature map that provides local information
nd a high-level feature map that represents global information. Based
n the UNet architecture, Meyer et al. [80] proposed a retinal vessel
egmentation method from Scanning Laser Ophthalmoscopy (SLO) CFP
mages. The 3D UNet [81] based method for airway segmentation is
resented in [82].

Jin et al. [83] introduced a method capable of high-quality airways
egmentation from incompletely labelled training datasets based on

shallow 3D UNet. This approach reduces the previous deeper 3D
Net to only two pooling layers to preserve small airways at distal

ites and potentially benefit the learning of 3D structure variations.
domain-specific sampling scheme is applied to strategically select

nnotations from a highly-specific and moderately-sensitive conser-

ative segmentation method [84]. In addition, fuzzy-connectedness
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Table 2
Machine learning based segmentation methods.

Author Year Region Modality Method Validation Dataset
(number of cases)

Metrics Method class

Hassouna et al. [46] 2006 BV MRA GMM TOF MRA scans (n/a) Visual Unsupervised
Oliveira et al. [49] 2011 LV CT GMM-RG LD CT scans (15) Visual
Roychowdhury et al. [50] 2014 RV CFP Feature-based GMM DRIVE (40)

STARE (20)

CHASE-DB1 (28)

Acc: 0.9519±0.005

Se: 0.7249±0.0481

Sp: 0.983±0.0071

AUROC: 0.962

Acc: 0.9515±0.013

Se: 0.7719±0.071

Sp: 0.9726±0.012

AUROC: 0.9688

Acc: 0.9530±0.005

Se: 0.7201±0.0385

Sp: 0.9824±0.004

AUROC: 0.9532
Kande et al. [51] 2010 RV CFP SWFCM DRIVE (40)

STARE (20)

Acc: 0.8911

AUROC: 0.9518

Acc: 0.8976

AUROC: 0.9298
Goceri et al. [52] 2017 LV MRI KMC MRI scans (14) Acc: 0.896
Cinsdikici & Aydın [54] 2009 RV CFP ACO DRIVE (40) Acc: 0.9293

AUROC: 0.9407
Hassanien et al. [56] 2015 RV CFP ABC DRIVE (40) Acc: 0.9388

Se: 0.721

Sp: 0.971

Hassan & Hassanien [59] 2018 RV CFP WOA DRIVE (40) Acc: 0.9793

Se: 0.8981

Sp: 0.9883

AUROC: 0.9820
Ramos-Soto et al. [61] 2021 RV CFP MCET-HHO DRIVE (40)

STARE (20)

Acc: 0.9667

Se: 0.7578

Sp: 0.9860

Acc: 0.9836

Se: 0.7474

Sp: 0.9580

Staal et al. [64] 2004 RV CFP KNN-PBM DRIVE (40)

STARE (20)

Acc: 0.9441

AUROC: 0.9520

Acc: 0.8958

AUROC: 0.9614

Supervised

Lo et al. [65] 2010 LA CT KNN-RG EXACT’09 (20) FTR: 0.0011

BD: 0.598

TL: 1184 mm

TLD: 0.540
Ricci & Perfetti [66] 2007 RV CFP SVM-LD DRIVE (40)

STARE (20)

Acc: 0.9595

AUROC: 0.9633

Acc: 0.9646

AUROC: 0.9680
Meng et al. [67] 2017 LA CT SVM-GC SD CT scans (50) Se: 0.783

FPR: 0.10

BD: 122.2

TL: 63.14

TLD: 0.804
Zhai et al. [68] 2016 LV CT SVM-GC VESSEL12 (20) Se: 0.7331

Sp: 0.7917

(continued on next page)
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Table 2 (continued).
Author Year Region Modality Method Validation Dataset

(number of cases)
Metrics Method class

Lee et al. [69] 2018 LA CT SVM-MSF EXACT’09 (20) FPR: 0.073±0.0466

TLD: 0.569±0.11
Soares et al. [73] 2006 RV CFP Trainable GMM DRIVE (40)

STARE (19)

Acc: 0.9480

AUROC: 0.9671

Acc: 0.9466

AUROC: 0.9614
Fraz et al. [75] 2012 RV CFP Ensemble modules DRIVE (40)

STARE (20)

CHASE-DB1 (28)

Acc: 0.9534

Se: 0.7548

Sp: 0.9763

Pre: 0.7956

AUROC: 0.9768

Acc: 0.9480

Se: 0.7406

Sp: 0.9807

Pre: 0.8532

AUROC: 0.9747

Acc: 0.9469

Se: 0.7224

Sp: 0.9711

Pre: 0.7415

AUROC: 0.9712

The regions include the retinal vessel (RV), lung airways (LA), brain vessel (BV), coronary vessel (CV), and thoracic aorta (TA). All unnamed datasets are private and may have
specific modalities such as phase-contrast (PC), low-dose (LD), standard-dose (SD), or time-of-flight (TOF). All metrics are shown as mean ± standard deviation or mean only.
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RG and skeletonization-guided leakage removal are implemented to
address local discontinuities in the output. Similarly, Garcia-Uceda
et al. [85] proposed an optimized and efficient approach for segmenting
the airways based on a simple and low-memory 3D UNet architecture.
This approach employs unpadded convolutions in the first three reso-
lution levels of the UNet, which provides a 30% reduction in memory
footprint. Compared to the previous UNet-based airway segmenta-
tion algorithms, the proposed method can process larger 3D image
patches, usually covering the entire lung, in a single run, resulting in
an improved outcome and a faster converging of the training.

ResNet: The residual neural network (ResNet) is a CNN that utilizes
shortcuts that skip one or more layers. Adding skip connections solves
the problem of gradient disappearance and avoids the increasing train-
ing error resulting from stocking more layers for higher discriminatory
ability. Based on a multi-pathway ResNet, a robust 3D hepatic vessel
segmentation method is proposed by Kitrungrotsakul et al. [86]. The
proposed network structure consists of three parallel DenseNets [87],
i.e., extensions of ResNet, for extracting data in the sagittal, coronal,
and transverse planes, which are concatenated in the FC layer to predict
the class of central voxels. In addition, a multi-scale method [88]
transforms raw images into vessel probability maps as network inputs
to enhance robustness.

Generative adversarial network (GAN): Generative adversarial net-
works (GANs) [89] frame the segmentation task as a supervised learn-
ing problem with two components: a generator (), which learns the
mapping from a random input 𝑧 with density𝑝𝑧 to 𝑥𝑔 = (𝑧), and a
iscriminator (), which either takes the ground truth 𝑥𝑡 with density
𝑡 or the generated data 𝑥𝑔 , and outputs the probability (𝑥) of 𝑥 to
e true. These two components are trained adversarially to drive the
enerator to generate more accurate segmentation labels that can fool
he discriminator. In [90], a retinal vessel segmentation method is de-
eloped based on the GAN. The proposed GAN takes advantage of UNet,
ombining high-resolution local features with up-sampled high-level
eatures. Besides, the dilated convolutions employed by GAN effectively
xpand the receptive field to capture large-scale morphological vessel
14

roperties without raising the number of computations required. v
.3.2. Advanced architectures
In addition the basic CNN models, a variety of new DL architectures

re developed by applying or integrating one or more advanced mod-
les including holistically-nested edge detector (HED) [91], graph neu-
al network (GNN) [92,93], mean-field network (MFN) [93], recurrent
onvolutional layer (RCL) [94], WingsNet [95], attention mechanism
AM) [96–99], atrous convolution (AC) [100], back-propagation neural
etwork (BPNN) [101], multi-scale feature aggregation (MFA) [98,
02], Inception [103], and multi-kernel pooling (MKP) [104]. Since the
entioned architectural improvements are also present in other types

f methods, in this subsection we only detail the methods based solely
n advanced modules first.

SSRN: Lin et al. [91] proposed a deeply supervised retinal vessel
egmentation network, DSSRN, based on the holistically-nested edge
etector (HED), incorporating the conditional random fields (CRFs).
he proposed network begins with the HED architecture, a five-block
ingle-stream network with multiple convolutional and ReLU layers in
ach block. The final predictions are formed by combining multi-scale
ide outputs from each hidden layer, eliminating the edge or boundary
etection ambiguity. CRF provides global smoothness regularization
nto the system for robustness.

Net and GNN (UNet-GNN): Garcia-Uceda Juarez et al. [92] proposed
n airway tree segmentation approach for chest CTs that combines a
D UNet with graph neural network (GNN) based modules [105]. This
ethod substitutes a GNN-based module for the two deepest convolu-

ional layers in the baseline UNet. The introduction of graph convo-
utions provides nodes with corresponding feature vectors containing
nformation about graph neighbourhood connectivity. The connectivity
f nodes is described by the adjacency matrix with learnable GNN filter
eights.

Net with RCL (UNet-RCL): In [94], Wang et al. incorporated 3D
lice-by-slice convolutional layers called recurrent convolutional layers
RCLs) in a 3D UNet architecture for airway segmentation. Different
rom the conventional layer-by-layer CNN, the in-layer recurrent con-

olutions make the message-passing between neurons more efficient
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in the same layer, which helps in capturing the spatial information of
elongated structures.

WingsNet: Zheng et al. [95] argued that the poor performance of
CNN on segmenting distal small airways is attributed to the gradient
erosion and dilation of the neighbourhood voxels, which is caused by
the imbalance between foreground and background regions. Therefore,
they proposed WingsNet with group supervision to boost the training
of shallow layers. Moreover, they designed a new loss called General
Union Loss to address the imbalance between large and small airways.

UNet with AM (UNet-AM): In [96], Qin et al. presented a 3D-UNet
based airway segmentation method with AMs that is highly sensitive
to bronchioles in the periphery. The method initially employs a feature
recalibration module based on [106,107] to make the greatest use
of learned features. Moreover, inspired by [108,109], an attention
distillation module is introduced to promote specific structure and
distribution pattern learning of airways to improve the ability to distin-
guish small bronchioles. The proposed method retrieved significantly
more branches while maintaining comparable overall segmentation
accuracy. A similar method is applied in [97] for both airway and
artery-vein segmentation on non-contrast computed tomography (CT).

UNet with HRMF Fan et al. [110] proposed an unsupervised UNet with
hidden Markov random field to segment brain vessels in TOF MRA. The
method first uses a HMRF module to classify each TOF-MRA image into
three classes, background, brain tissue and blood vessels. Then the 3-
D UNet takes in the output from HMRF module and segments brain
vessels.

TACNet: Cheng et al. [100] presented the Tiny Atrous Convolutional
Network (TACNet) to account for multi-scale changes in the airway.
The principal convolution operation employed in the TACNet is the
atrous convolution (AC), which enlarges the receptive field and cap-
tures multi-scale context information. In a conventional UNet, the
feature map is downsampled numerous times, leading tiny bronchi to
vanish from the feature map or become undetectable. The ACs maintain
the original resolution between layers, ensuring that the feature map
does not reduce in size while increasing the receptive field.

Back-propagation neural network (BPNN): A back-propagation neu-
ral network (BPNN) for retinal vascular segmentation is proposed
in [101] to increase the accuracy of retinal vessel segmentation. Four
different green channel enhancement results are utilized to create
4D feature vectors: adaptive histogram equalization, morphological
processing, Gaussian matched filtering, and Hessian matrix filtering.
The feature vectors are fed into a typical three-layer BP neural network
to segment blood vessels.

MFA-Net: In [102], a 3D multi-scale feature aggregation network
(MFA-Net) is presented against the scale difference of various structures
in airway tree segmentation. The MFA blocks apply parallel 3D atrous
convolutions of different rates to capture multi-scale context infor-
mation, which improves the sensitivity of MFA-Net to small bronchi
segmentation to solve local discontinuities.

3.3.3. Task-based/hybrid approaches
According to the morphological characteristics of human treelike

tubular structures, the segmentation task of DL networks can be con-
verted into voxel connectivity analysis [111], graph refinement [93], or
bifurcation point detection (BPD) to support conventional RG [112].

Multi-task segmentation were implemented through cascaded or hy-
brid modules, including separate segmentation of vertical and horizon-
tal tubular structures [113] or thick and thin tubular structures [114],
and coarse segmentation followed by refinement [99].

Another strategy is to combine DL-based segmentation tasks with
other tasks to improve performance using additional information, such
as centreline tracking (CLT) [115,116].
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In addition, adversarial learning was also attempted, i.e., to con-
strain the segmentation network with discriminators. [90,98,103,104].

AirwayNet: Qin et al. [111] present the AirwayNet for accurate airway
segmentation that focuses on the voxel connectivity of airways. After
modelling the voxel 3D connectivity using a 26-connected neighbour
analysis, the binary segmentation task is converted into 26 tasks to
determine whether the voxel is connected to its neighbours along
a specific orientation. Therefore, the AirwayNet learns relationships
between neighbouring airway voxels to distinguish the airway tree
from the background. In addition, the coordinates of voxels and their
distance from lung borders are fed into the AirwayNet as supplementary
semantic information to take full advantage of context knowledge. The
final airway tree is generated from the predicted connectivity map
using fuzzy connectedness rules [83].

DeepVesselNet: Tetteh et al. [111] present the DeepVesselNet based
on FCN architecture for accurate 3-D angiographic feature extrac-
tion. First, they designed a 2-D orthogonal cross-hair filters to relieve
computational burden. Second, a class balancing cross-entropy loss
function is introduced to reduce the high false-positive rate. Finally,
they generated a synthetic dataset and used this for transfer learning.

Bifurcation point detection and RG (BPD-RG): Wang et al. [112]
proposed an automatic airway tree labelling system using ResNets
to detect bifurcation points. A hybrid of three different ResNets is
constructed with cascaded residual blocks that enable the learning of
large-scale spatial information. The three ResNets are trained to predict
four critical bifurcation points of airway trees independently, and their
predictions are fused to reduce the variance. The complete airway tree
is then reconstructed using an adaptive RG approach, guided by the
detected bifurcation points.

MFN and GNN (MFN-GNN): Selvan et al. [93] extracted airway trees
from CT scans by first constructing a graph-based representation of the
image data and then posing the tree extraction task as a graph refine-
ment task using mean-field network (MFN) and GNN. In the first model,
refinement is framed as an approximate Bayesian inference problem
solved by mean-field approximation (MFA) [117,118] to approximate
the posterior density over various subgraphs. The optimal subgraph
is represented by parameterized nodes and pair-wise probabilities.
Performing the MFA updating iterations as layers in a feed-forward
network enables parameter learning. The second GNN model [119] is
designed as an edge connection predictor that learns edge embeddings
from an over-complete graph to produce an edge probability map.

2D+3D NN: Zhao et al. [113] presented a 2-stage airway segmen-
tation method based on a 2D+3D neural network (NN) and linear
programming (LP) based tracking algorithm. The 2D and 3D NNs were
developed to segment horizontal airways and tube-like vertical airways
separately due to significant appearance differences. The 3D NN struc-
ture resembles the 3D UNet structure, and the 2D NN is a standard
fully convolutional network (FCN) [120]. The first stage targets the
trachea and main bronchus, whereas the second stage targets the distal
bronchus. The outputs from the two stages are then connected using
an LP-based object tracking algorithm, which simultaneously filters out
false positives.

Hybrid UNet: A hybrid UNet-based approach for retinal vessel segmen-
tation is proposed in [114], consisting of a multi-task segmentation
network and a fusion network. Since the signal-to-noise ratio and
contrast of thin vessels are lower than those of thick vessels, the seg-
mentation network is built to segment thick and thin vessels separately
from fundus images. The encoder extracts features corresponding to
both thick and thin vessels and passes them to the two independent
decoders. Afterwards, a fusion network is designed to fuse these two
segmentation results to acquire the final blood vessel tree.

UNet with CE (UNet-CE): Meng et al. [115] developed an airway

segmentation method that incorporates the 3D UNet into an adaptive
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volume of interest (VOI) based tracking scheme. The parent VOI is
first assigned based on the coarsely segmented airway tree using the
RG algorithm. The 3D extension of the UNet proposed in [79] is
employed to segment the airway region inside each VOI. Meanwhile,
the centreline of the bronchi is retrieved by applying the gradient
vector flow (GVF) magnitude and the tubular-likeness function based
on the GVF. After detecting the branching point from the centreline,
child VOI/VOIs can be assigned adaptively depending on the size and
the travelling orientation of the bronchi.

CAG-Net: Li et al. [99] presented a novel Cascaded Attention Guided
etwork (CAG-Net) for accurate retinal vascular segmentation. The
AG-Net consists of prediction and refinement modules, using Atten-
ion UNet++ (AUNet++) as the basic architecture. Because the simple
× 1 convolutional layer in [121] cannot fully fuse the decoder’s multi-

cale information, attention-guided convolutional blocks (AC blocks)
re employed instead to fuse the multi-scale features adaptively. In
he prediction module, the AUNet++ generates an initial segmentation
ap that is then concatenated with the original image to create a new

olume as the input of the refinement module. The final segment is
ormed by concatenating the outputs of the two modules in an FC layer.

Net with CE and LR (UNet-CE-LR): Nadeem et al. [116] inte-
rated another tracking algorithm called freeze-and-grow (FG) with 3D
Net for airway segmentation. The FG algorithm is a traditional CT

ntensity-based segmentation approach that begins with conservative
egmentation parameters and then iteratively captures finer details
y freezing leakage-roots and relaxing parameters. In each iteration,
he centreline and possible leakages are identified for propagation. A
odified 3D UNet was applied to derive probability maps of the airway

s inputs from the FG algorithm. Finally, a multi-task 3D UNet that
lassifies each pixel as airway, leak, or background is employed to
emove distal leakages.

D-CNN: Zhang et al. [122] employed a semi-supervised mixture prob-
bility model to fit the cerebrovascular intensity distribution from the
parse manual annotations and generate massive labelled pixels. They
lso proposed a dilated dense(DD) CNN which consists of DD blocks
hat use both high-level and low-level feature maps. The DD-CNN is
rained on the previously generated labels.

AN and dense UNet (GAN-DUNet): In [103], a dense UNet employ-
ng the Inception module is combined with GAN for accurate retinal
essel segmentation. First, the skip connections in a standard UNet are
ubstituted with dense blocks to enable full fusing of features from
hallow to deep layers, hence improving accuracy without increasing
he network’s depth or width. The Inception module is then utilized to
eplace conventional convolutional layers to expand the receptive field
nd extract multi-scale vessel features from different-sized convolution
ernels. Finally, a GAN is adopted in the training, where the dense UNet
s considered as the generator and the loss value is backpropagated by
multilayer neural network as the discriminator.

-GAN: Park et al. [104] presented a novel conditional GAN called
-GAN to perform precise retinal vessel segmentation by balancing

osses of stacked deep FCNs. Based on a conditional GAN [123], the
-GAN comprises a newly developed M-generator for more robust

egmentation and a deeper M-discriminator for more efficient GAN
odel training. The M-generator consists of two stacked deep FCNs
ith short-term skip connections and long-term residual connections,
s well as a multi-kernel pooling (MKP) block between two FCNs that
upports scale-invariance of vessel segmentation of various sizes. In
ddition, the Lanczos resampling method [124] is used to smooth out
he segmented vessel branching and eliminate false.

EGAN: Zhou et al. [98] proposed a symmetric equilibrium GAN
SEGAN) with multi-scale features refine blocks (MSFRBs) and AMs
o improve retinal vessel segmentation. SEGAN creates a symmetric
16
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adversarial architecture that eliminates the imbalance in generator-
discriminator capabilities to drive the generator to produce more re-
alistic and detailed images. Second, MSFRB is designed to optimize
feature merging while retaining high-resolution and high-semantic in-
formation. In addition, AMs make the network focus on distinguishing
features rather than irrelevant information. These improvements allow
the proposed network to excel in extracting detailed information by
maximizing the multi-scale feature representation.

3.3.4. Training strategy based
The training strategy of a model determines how effectively and

efficiently it learns, and therefore also has a significant impact on
its segmentation performance. Hence, some segmentation methods for
treelike tubular structures focus on training strategies including transfer
learning (TL) [125] and cascaded training [126].

FCN with TL (FCN-TL): In [125], a supervised retinal vessel segmen-
tation method is proposed based on a pre-trained FCN [127]. The new
training dataset was utilized to fine-tune the pre-trained FCN. Because
the semantic segmentation result of retinal vessels is wider than the
ground truth, and noises are added in slice merging and overlapping,
additional unsupervised post-processing strategies using local Otsu’s
method are applied. This paper proves the utility of transfer learning
when using deep learning techniques in medical imaging.

OFF-eNET: Nazir et al. [126] trained a three-stage Optimally Fused
Fully end-to-end Network (OFF-eNET) in a cascade fashion for 3D
cerebral vessel segmentation. The first stage employs up-skip connec-
tions to improve information flow between the encoder and decoder
and dilated convolution to preserve the spatial resolution feature map
designed for thin vessels. In the second stage, residual mapping with the
inception module is utilized for faster converging and learning richer
representations. The cascaded training strategy is applied in the third
stage to progressively achieve concrete segmentation results over three
sub-stages (basic, complete, and enhanced) by utilizing transferred
knowledge. During the cascaded training, the knowledge learned by the
basic sub-stage is transferred to the complete sub-stage for initiation,
and the enhanced sub-stage is fine-tuned based on the well-trained
complete stage.

3.3.5. Loss functions
The commonly used loss functions are based on cross-entropy or

Dice Similarity Coefficient (DSC). Since the treelike structures oc-
cupy only a small portion of the images due to their sparsity, the
background pixels are usually dominant. Therefore, the global class-
balancing weight is applied to the binary cross-entropy (BCE) loss
function [82,83,115] as follows:

𝑤𝐵𝐶𝐸 = −𝑤
∑

𝑥=𝑁𝑓

log 𝑝(𝑥)

− (1 −𝑤)
∑

𝑥=𝑁𝑏

log (1 − 𝑝(𝑥)),
(9)

where 𝑝 is the pixel-wise foreground probability. 𝑁𝑓 and 𝑁𝑏 are the
number of foreground pixels and the number of background pixels,
respectively. The weight 𝑤 is usually equal to 𝑁𝑏

𝑁 where 𝑁 is the total
number of pixels 𝑥.

As for the Dice loss function, a tolerance term 𝜖 is commonly intro-
duced [82,92] to avoid dividing by zero in case there is no foreground
pixel as defined below:

𝐷𝑖𝑐𝑒 = −
2
∑

𝑥=𝑁 log 𝑝(𝑥)𝑔(𝑥)
∑

𝑥=𝑁 log 𝑝(𝑥) +
∑

𝑥=𝑁 log 𝑔(𝑥) + 𝜖
, (10)

here 𝑔 is the foreground ground-truth.
Furthermore, [96,97] combined the Dice loss with the Focal loss

128] which reduces the contribution of easy examples in training and
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more focuses on the hard example, defined by:

𝐷𝑖𝑐𝑒𝐹𝑜𝑐𝑎𝑙 = −
2
∑

𝑥=𝑁 log 𝑝(𝑥)𝑔(𝑥)
∑

𝑥=𝑁 log 𝑝(𝑥) +
∑

𝑥=𝑁 log 𝑔(𝑥) + 𝜖

− 1
𝑁

∑

𝑥=𝑁
(1 − 𝑝𝑔(𝑥))

2 log 𝑝𝑔(𝑥),
(11)

where 𝑝𝑔(𝑥) = 𝑝(𝑥) if 𝑔(𝑥) = 1. Otherwise, 𝑝𝑔(𝑥) = 1 − 𝑝(𝑥).
Wang et al. [94] proposed a novel loss function called radial dis-

tance loss that focuses on spatial consistency.

𝑅𝐷𝐿 = −1
2

1
∑

𝑘=0
𝑘

2
∑𝑁

𝑖 𝑝𝑖,𝑘𝑑𝑖,𝑘
∑𝑁

𝑖 𝑝2𝑖,𝑘 +
∑𝑁

𝑖 𝑑2𝑖,𝑘
(12)

where 𝑝𝑖 denotes the 𝑖th voxel predicted binary result, 𝑑𝑖 denotes the
radial distance map which is defined as:

 = − 1
𝑚𝑎𝑥( )

 + 1 (13)

where  denotes the Euclidean distance map from the ground truth
centreline

In addition to the least square loss [129] that is utilized as GAN loss
and standard binary cross-entropy (BCE) loss, the generator in [104]
adopts a newly designed false-negative (FN) loss function, defined as

𝐹𝑁 = 1
𝑁𝑓

∑

𝑥=𝑁𝑓

(1 − 𝑝𝐹𝑁 (𝑥))2, (14)

where

𝑝𝐹𝑁 (𝑥) =

{

1, if 𝑝(𝑥) ≥ 0.5
𝑝(𝑥), otherwise.

(15)

The inclusion of the FN loss function has been shown to reduce the FNR
(see Table 3, [130]).

3.4. Preprocessing

Preprocessing techniques are commonly employed as the first steps
of segmentation methods, which involve intensity normalization, noise
reduction, and contrast enhancement. Different combinations of these
techniques must be used according to variable imaging modalities,
conditions, and targets.

The intensity normalization can reduce the variance of the image
data caused by different imaging conditions and improve the compu-
tational efficiency using uniform intensity scales. Many segmentation
methods preprocessed the images to a standard intensity scale using
uniformity transformations. For deep learning methods, rescaling in-
tensities also promotes a faster convergence in the optimization stage.
Besides, spacing resampling is often adopted to standardize the 3D
image data.

After data normalization, outliers and noise can be eliminated
using the intensity histogram or histogram-based function such as
LogSig [54]. Filter-based techniques such as anisotropic diffusion [131]
are also applied by some methods to reduce the noise. As for the image
with nonuniform lighting conditions, filters calculating the local mean
can be used for brightness correction [56].

Many techniques are available for tubular structure enhancement
and are usually followed by data re-normalization. Nonlinear intensity
transformations such as squaring intensity value [50] and gamma
enhancement [54] can directly improve the contrast. Mathematical
morphology operations, including Top-hot transform, can extract small
tubular structures using structuring elements that fit the largest diam-
eter [50]. Using a filter like the unsharp mask filter can significantly
reduce the noise and enhance the walls of tubular structures [67]. For
Coloured Fundus Photography (CFP) images, the green channel shows
the highest contrast between vessel and background [21]. Hence, most
methods only adopt and convert the green channel into greyscale. How-
ever, matching histograms of the green channel and the red channel can
further enhance this contrast [51].
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Furthermore, most deep learning methods adopt typical data aug-
mentation techniques in order to manually enlarge the training dataset
to improve its robustness, including rotation, mirroring, scaling, crop-
ping, rigid transformations, and elastic deformations.

3.5. Postprocessing

A postprocessing step may be applied after the segmentation to
rejoin disconnected segments or to remove small, segmented regions
usually corresponding to noise or abnormalities in the image.

The connected component analysis (CCA) [132] is a common post-
processing technique to isolate individual components of the segmen-
tation output using connected neighbourhood and label propagation.
In order to filter unwanted and disconnected small segments under a
threshold, some methods define a specific number of pixels [51,54,85,
100] and some use a thinness ratio [56]. Besides, some methods have
developed new algorithms to refine the output using information from
neighbour pixels [86]. Moreover, the morphological reconstruction is
also adopted in the postprocessing to refine the output [26].

For the CNN-based method, the border effects due to zero-paddings
make the output less reliable towards the boundaries [85]. Hence,
a quadratic polynomial decrease towards the borders or a Gaussian-
distributed weight map can be applied to the probability map, ac-
companied by an overlapping slide-window sampling strategy. The
final segmentation can be obtained by placing together all patches and
averaging the overlapped regions.

3.6. Open-source implementations

To promote the usage of the state-of-the-art (SOTA) models and
help future researchers generate comparable segmentation results, we
recommend some open-source implementations of aforementioned al-
gorithms here.

• MONAI: Project MONAI was originally started by NVIDIA and
King’s College London. It is a freely available, PyTorch-based deep
learning framework for healthcare imaging with comprehensive
tutorials. The framework provides the user with SOTA, end-to-end
training workflows and many other features such as interactive
data labelling. More information can be found here: https://
monai.io/index.html

• Alleviating Class-wise Gradient Imbalance for Pulmonary Air-
way Segmentation [https://github.com/haozheng-sjtu/3d-airway
-segmentation] [95]

• Automatic airway segmentation from computed tomography us-
ing robust and efficient 3-D convolutional neural networks [https:
//github.com/antonioguj/bronchinet] [85]

• Lung-Vessel-Segmentation-Using-Graph-cuts [https://github.com
/Zhiwei-Zhai/Lung-Vessel-Segmentation-Using-Graph-cuts] [68]

4. Dataset

To compare the performance of different segmentation models on
the same scale, several datasets were made public and summarized in
the table below.

4.1. Airways

Currently, there is a very limited number of public datasets for
airway segmentation which hinders the development in this area of
research. To our best, we summarized four commonly seen datasets in
Table 4. EXACT’09 [11] dataset consists of 40 volumetric chest CT scans
obtained using different acquisition protocols. The dataset has large
intra-variation because it ranges from clinical dose to ultra-low dose
scans, from healthy volunteers to patients with severe lung disease,

and from full inspiration to full expiration. LIDC-IDRI dataset [133]
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Table 3
Deep learning based segmentation methods.

Author Year Region Modality Method Validation Dataset
(number of cases)

Metrics Method class

Charbonnier et al. [77] 2016 LA CT CNN EXACT’09 (20) FPR: 0.0101

TLD: 0.518

Classical
CNNs

Yun et al. [78] 2018 LA CT CNN EXACT’09 (20) FPR: 0.0456±0.0373

BC: 163.4±79.4

BD: 0.657±0.131

TL: 129.3±66.0

TLD: 0.601±0.119
Meyer et al. [80] 2017 RV SLO CFP Unet IOSTAR (10)

RC-SLO (40)

Acc: 0.9695

Se: 0.8038

Sp: 0.9801

AUROC: 0.9771

Acc: 0.9623

Se: 0.8090

Sp: 0.9794

AUROC: 0.9807
Garcia-Uceda Juarez et al. [82] 2018 LA CT UNet CT scans (6) DSC: 0.8
Jin et al. [83] 2017 LA CT UNet EXACT’09 (20) Comparative

Garcia-Uceda et al. [85] 2021 LA CT UNet CF-CT (24)
DLCST (32)
EXACT’09 (20)

DSC: 0.876

DSC: 0.916

FPR: 0.0274

TLD: 0.703
Kitrungrotsakul et al. [86] 2019 LV MRI ResNet IRCAD (20) Se: 0.929

Pre: 0.866

DSC: 0.903

VOE: 0.172
Lin et al. [91] 2019 RV CFP DSSRN DRIVE (40)

STARE (20)

CHASE-DB1 (28)

Acc: 0.9536

Se: 0.7632

Acc: 0.9603

Se: 0.7423

Acc: 0.9587

Se: 0.7815

Advanced
architectures

Garcia-Uceda Juarez et al. [92] 2019 LA CT UNet-GNN LD CT scans (12) DSC: 0.89
Wang et al. [94] 2019 LA CT UNet-RCL SD CT scans (38) Se: 0.865±0.010

DSC: 0.887±0.012

CO: 0.766±0.060
Zheng et al. [95] 2020 LA CT WingsNet EXACT’09 and

LIDC-IDRI (20+70)
Pre: 0.914±0.045

BD: 0.887±0.079

TLD: 0.925±0.033
Qin et al. [96] 2020 LA CT UNet-AM EXACT’09 and

LIDC-IDRI (20+70)
Se: 0.936±0.050

FPR: 0.035±0.014

DSC: 0.925±0.020

BD: 0.962±0.058

TLD: 0.907±0.069
Qin et al. [97] 2021 LA

LV

CT

CT

UNet-AM EXACT’09 and
LIDC-IDRI (20+70)

CARVE14 (55)

Se: 0.936

FPR: 0.035

DSC: 0.925

BD: 0.962

TLD: 0.907

Acc: 0.972

Se: 0.971

FPR: 0.015

DSC: 0.972

(continued on next page)
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Table 3 (continued).
Author Year Region Modality Method Validation Dataset

(number of cases)
Metrics Method class

Fan et al. [110] 2020 BV TOF-MRA UNet-HMRF TOF-MRA (100) Acc: 0.9983

Se: 0.7620

Sp: 0.9993

Pre: 0.8405

DSC: 0.7941
Cheng et al. [100] 2021 LA CT TACNet CT scans (100)

EXACT’09 (20)

FPR: 0.0144

DSC: 0.9032

BC: 215.7

BD: 0.8663

TL: 394.9 cm

LV: 8207.9 mm3

FPR: 0.1429

BC: 213.7

BD: 0.849

TL: 186.9 cm

TLD: 0.845

LC: 160.3

LV: 4396.7 mm3

Tang et al. [101] 2021 RV CFP BPNN DRIVE (40)

STARE (20)

Acc: 0.9477

Se: 0.7338

Sp: 0.9730

Acc: 0.9498

Se: 0.7518

Sp: 0.9734

Zhou et al. [102] 2021 LA CT MFA-Net CT scans (150) Se: 0.7931

DSC: 0.8618
Qin et al. [111] 2019 LA CT AirwayNet CT scans (10) Se: 0.847±0,049

FPR: 0.011±0.008

DSC: 0.902±0.028

Task-
based/Hybrid

Tetteh et al. [130] 2020 BV MRA DeepVesselNet TOF-MRA (40) Se: 0.8693

Pre: 8644

DSC: 0.8668
Wang et al. [112] 2020 LA CT BPD-RG LUNA16 (345) Acc: 0.9785

DSC: 0.875
Selvan et al. * [93] 2020 LA CT MFN-GNN LD CT scans (32) FPR: 0.078±0.046

DSC: 0.848±0.033

TLD: 0.819±0.073
Zhao et al. [113] 2019 LA CT 2D+3D NN CT scans (22) DSC: 0.94
Yang et al. [114] 2021 RV CFP Hybrid UNet DRIVE (40)

STARE (20)

CHASE-DB1 (28)

Acc: 0.956

Se: 0.813

Sp: 0.976

DSC: 0.819

Acc: 0.963

Se: 0.976

Sp: .982

DSC: 0.8155

Acc: 0.9632

Se: 0.817

Sp: 0.9776

DSC: 0.7997
Meng et al. [115] 2017 LA CT UNet-CE SD CT scans (50) Se: 0.796

FPR: 0.001

DSC: 0.866

(continued on next page)
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Table 3 (continued).
Author Year Region Modality Method Validation Dataset

(number of cases)
Metrics Method class

Li et al. * [99] 2020 RV CFP CAG-Net DRIVE (40)

STARE (20)

CHASE-DB1 (28)

Acc: 0.9700

Se: 0.8397

Sp: 0.9827

DSC: 0.8298

AUROC: 0.9867

Acc: 0.9791

Se: 0.8217

Sp: 0.9901

DSC: 0.8254

AUROC: 0.9894

Acc: 0.9768

Se: 0.8520

Sp: 0.9853

DSC: 0.8227

AUROC: 0.9880
Nadeem et al. [116] 2021 LA CT UNet-CE-LR SD CT scans (120)

LD CT scans (40)
BD: 0.952

BD: 0.987
Zhang et al. [122] 2019 BV TOF-MRA DD-CNN MIDAS21 Acc: 0.9756

Se: 0.9622

DSC: 0.9747
Zhao et al. [90] 2020 RV CFP GAN DRIVE (40)

STARE (20)

Acc: 0.9563

Se: 0.8390

Sp: 0.9736

DSC: 0.8299

AUROC: 0.9812

Acc: 0.9684

Se: 0.8390

Sp: 0.9736

DSC: 0.8465

AUROC: 0.9853
Park et al. * [104] 2020 RV CFP M-GAN DRIVE (40)

STARE (20)

CHASE-DB1 (28)

HRF (45)

Acc: 0.9706

Se: 0.8346

Sp: 0.9836

Pre: 0.8302

DSC: 0.8324

IoU: 0.7129

MCC: 0.8163

AUROC: 0.9868

Acc: 0.9876

Se: 0.8324

Sp: 0.9938

Pre: 0.8417

DSC: 0.8370

IoU: 0.7198

MCC: 0.8306

AUROC: 0.9873

Acc: 0.9736

DSC: 0.8110

MCC: 0.7979

AUROC: 0.9859

Acc: 0.9761

DSC: 0.7972

MCC: 0.7845

AUROC: 0.9852

(continued on next page)
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Table 3 (continued).
Author Year Region Modality Method Validation Dataset

(number of cases)
Metrics Method class

Guo et al. * [103] 2020 RV CFP GAN-DUNet DRIVE (40) Acc: 0.9542

Se: 0.8283

Sp: 0.9726

DSC: 0.8215

AUROC: 0.9772

AUPR: 0.9058

Task-
based/Hybrid

Zhou et al. * [98] 2021 RV CFP SEGAN DRIVE (40)

STARE (20)

CHASE-DB1 (28)

HRF (45)

Acc: 0.9563

Se: 0.8294

Sp: 0.9812

Pre: 0.8397

DSC: 0.8345

G: 0.9021

AUROC: 0.9830

Acc: 0.9671

Se: 0.8812

Sp: 0.9781

Pre: 0.7952

DSC: 0.8359

G: 0.9283

AUROC: 0.9863

Acc: 0.9630

Se: 0.8435

Sp: 0.9783

Pre: 0.8013

DSC: 0.8218

G: 0.9083

AUROC: 0.9872

Acc: 0.9559

Se: 0.8310

Sp: 0.9730

Pre: 0.8115

DSC: 0.8211

G: 0.8992

AUROC: 0.9693
Jiang et al. [125] 2018 RV CFP FCN-TL DRIVE (40)

STARE (20)

CHASE-DB1 (28)

HRF (45)

Acc: 0.9593±0.0073

Se: 0.7121±0.0548

Sp: 0.9832±0.0069

AUROC: 0.9580

Acc: 0.9653±0.0107

Se: 0.7820±0.1085

Sp: 0.9798±0.0117

AUROC: 0.9857

Acc: 0.9591±0.0065

Se: 0.7217±0.0821

Sp: 0.9770±0.0037

AUROC: 0.9580

Acc: 0.9662±0.0052

Se: 0.7686±0.0378

Sp: 0.9826±0.0057

AUROC: 0.9770

Training
strategy
based

(continued on next page)
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Table 3 (continued).
Author Year Region Modality Method Validation Dataset

(number of cases)
Metrics Method class

Nazir et al. [126] 2020 BV CTA OFF-eNET CTA scans (70) Pre: 0.8956±0.0020

DSC: 0.9075±0.0030

HD: 5.01±1.05 mm

AVD: 0.8986±0.0010

The regions include the retinal vessel (RV), lung airways (LA), brain vessel (BV), coronary vessel (CV), and thoracic aorta (TA). All unnamed datasets are private and may have
specific modalities such as phase-contrast (PC), low-dose (LD), standard-dose (SD), or time-of-flight (TOF). All metrics are shown as mean ± standard deviation or mean only.
*Methods that also use advanced architectures.
Table 4
Airway dataset.

Name Imaging modality Number of scans Image dimension (h*w) Year published Publicly available Link

DLCST CT 32 512*512 2009 No Publication
COPDGene CT 400 512*512 2010 No Website Publication
EXACT’09 CT 40 512*512 2012 Yes Website Publication
LIDC-IDRI CT 1018 512*512 2015 Yes Website Publication
CF-CT CT 24 512*512 2017 No Publication
KOLD CT 65 512*512 2019 No Publication
Subset of LUNA16 CT 345 512*512 2020 No Publication
Table 5
Retinal blood vessel dataset.

Name Imaging modality Number of scans Image dimension (h*w) Year published Publicly available Link

STARE CFO 20 605*700 2000 Yes Website Publication
DRIVE CFO 40 565*584 2004 Yes Website Publication
ARIA CFO 143 768*576 2006 Yes Website Publication
DIARETDB1 CFO 89 1500*1152 2007 Yes Website Publication
REVIEW CFO 16 N/A 2008 Yes Website Publication
CHASE-DB1 CFO 28 999*960 2009 Yes Website Publication
ROC CFO 100 1389*1383 2010 Yes Website Publication
VICAVR CFO 58 768*584 2010 Yes Website
HRF CFO 45 3504*2336 2013 Yes Website Publication
Messidor CFO 1748 1440*960 2014 Yes Website Publication
RC-SLO SLO CFO 40 360*320 2015 Yes Website Publication
IOSTAR SLO CFO 30 1024*1024 2016 No Publication
PREVENT OCTA 11 91*91 2020 Yes Website Publication
Table 6
Others.

Name Anatomy Imaging
modality

Number
of scans

Image
dimension (h*w)

Year published Publicly
available

Link

IRCAD liver CT 20 512*512 2009 Yes Website
VASCUSYNTH liver Algorithm synthesized 10 101*101 2010 Yes Website Publication
OSMSC Coronary and lung MRA and CT 93 N/A 2013 Yes Website Publication
ROTTERDAM Coronary CTA 32 N/A 2009 No Publication
CASDQEF Coronary CTA 48 N/A 2013 No Publication
VESSEL12 Lung CT 20 512*512 2012 Yes Website Publication
MSD Liver CT 443 512*512 2021 Yes Website Publication
MIDAS21 Brain TOF-MRA 109 448*448 2005 Yes Website Publication
was created by seven academic centres and eight medical imaging
companies, containing 1018 lung cancer screening thoracic low-dose
CT scans. It is worth noting that the original dataset does not contain
airway annotations. Qin et al. [134] annotated the airway of 40 CT
scans from LIDC-IDRI and can be download from here COPDGene study
contains 400 CT scans taken from subjects who had a minimum of 10
pack-year smoking history. Volunteers suffered from a range of COPD.
Detailed inclusion and exclusion criteria and acquisition protocols can
be found in the publication. KOLD dataset contains 477 volumetric
lung CT scans from patients with chronic obstructive pulmonary dis-
ease (COPD), asthma, or other unclassified obstructive lung diseases.
Detailed inclusion criteria can be found in [135,136].
22
4.2. Blood vessels

4.2.1. Retinal blood vessels
Fundus imaging refers to the projection of 3-D retinal tissues onto a

2-D imaging plane through reflected light, which encompasses a wide
range of modalities. Detailed review on retinal imaging and fundus
photography has been carefully done by [137,138] To stimulate the
development of more and more sophisticated methods of fundus image
analysis, many publicly available datasets with expert annotation for
vessel segmentation have been established which greatly stimulates the
community of research. Table 5 summarizes brief information of these
datasets.

https://doi.org/10.1097/JTO.0b013e3181a0d98f
http://www.copdgene.org/imaging#Diagnosis
https://www.tandfonline.com/doi/full/10.3109/15412550903499522
http://image.diku.dk/exact/
https://ieeexplore.ieee.org/document/6249784
https://geronsushi.github.io/lung.html
https://aapm.onlinelibrary.wiley.com/doi/abs/10.1118/1.3528204
https://doi.org/10.1007/s00330-017-4819-7
https://www.e-trd.org/journal/view.php?doi=10.4046/trd.2014.76.4.169
https://doi.org/10.1007/s11517-020-02184-y
https://cecas.clemson.edu/~ahoover/stare/probing/index.html
https://ieeexplore.ieee.org/document/845178
https://drive.grand-challenge.org/
https://ieeexplore.ieee.org/document/1282003
https://www.researchgate.net/post/How_can_I_find_the_ARIA_Automatic_Retinal_Image_Analysis_Dataset
https://doi.org/10.1016/j.jfranklin.2008.04.009
https://www.it.lut.fi/project/imageret/diaretdb1/
http://www.bmva.org/bmvc/2007/papers/paper-60.html
http://reviewdb.lincoln.ac.uk/
https://ieeexplore.ieee.org/document/4649647
https://blogs.kingston.ac.uk/retinal/chasedb1/
https://iovs.arvojournals.org/article.aspx?articleid=2126623
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https://ieeexplore.ieee.org/document/5282586
http://www.varpa.es/research/ophtalmology.html#vicavr
https://www5.cs.fau.de/research/data/fundus-
https://digital-library.theiet.org/content/journals/10.1049/iet-ipr.2012.0455
https://www.adcis.net/en/third-party/messidor2/
https://www.ias-iss.org/ojs/IAS/article/view/1155/959
http://www.retinacheck.org/datasets
https://ieeexplore.ieee.org/document/7530915
https://link.springer.com/chapter/10.1007/978-3-319-20801-5_35
https://datashare.ed.ac.uk/handle/10283/3528
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7718823/
https://www.ircad.fr/research/data-sets/liver-segmentation-3d-ircadb-01/
https://vascusynth.cs.sfu.ca/Data.html
https://www.sciencedirect.com/science/article/pii/S0895611110000534#sec14
https://www.vascularmodel.com/dataset.html
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4023857/
https://www.sciencedirect.com/science/article/pii/S1361841509000474
https://pubmed.ncbi.nlm.nih.gov/23837963/
https://vessel12.grand-challenge.org/
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Table 7
Evaluation metrics.

Metric Definition

Accuracy (Acc) 𝑇𝑃+𝑇𝑁
𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁

Sensitivity (Se) 𝑇𝑃
𝑇𝑃+𝐹𝑁

Specificity (Sp) 𝑇𝑁
𝑇𝑁+𝐹𝑃

Precision (Pre) 𝑇𝑃
𝑇𝑃+𝐹𝑃

False positive rate (FPR) 𝐹𝑃
𝑇𝑃+𝐹𝑃

True negative rate (TNR) 𝑇𝑁
𝑇𝑁+𝐹𝑁

Dice similarity coefficient (DSC) 2𝑇𝑃
𝑇𝑁+𝐹𝑁+2𝑇𝑃

Jaccard index (IoU) 𝑇𝑃
𝑇𝑁+𝐹𝑁+𝑇𝑃

Volumetric overlap error (VOE) 1 − 𝑇𝑃
𝑇𝑁+𝐹𝑁+𝑇𝑃

Geometric mean (G)
√

𝑆𝑒 × 𝑆𝑝

Matthews correlation coefficient (MCC) (𝑇𝑃 ⋅𝑇𝑁)−(𝐹𝑃 ⋅𝑇𝑁)
√

(𝑇𝑃+𝐹𝑃 )(𝑇𝑃+𝐹𝑁)(𝑇𝑁+𝐹𝑃 )(𝑇𝑁+𝐹𝑁)

Generation count (GC) Number of correctly detected generations

Branch count (BC) Number of correctly detected
branches excluding the trachea

Branches detected (BD) Percentage of correctly detected branches

Named Branch Count (NBC) Number of correctly detected
named branches

Tree length (TL) Length of correctly detected
branches excluding the trachea

Tree length detected (TLD) Percentage of correctly detected tree length

Leakage count (LC) Number of disconnected leakage

Leakage volume (LV) Volume of leakage

Centreline overlap (CO) Percentage of centreline overlap

4.2.2. Others
Blood vessels have vital roles in many other anatomical regions as

well. The segmentation of hepatic vessels, brain vessels and coronary
vessels is often seen in the area of research and has great implications in
many clinical fields such as oncology and surgery. Table 6 summarizes
commonly used datasets.

5. Evaluation metrics

Since the metric is an essential basis for model evaluation and
selection, it is meaningful and necessary to investigate the appropriate
metric. In general, pixels are classified as foreground pixels (positive)
or background pixels (negative). On this basis, there are four basic pixel
measures compared with GS segmentation, namely TP (true positive),
FP (false positive), FN (false negative), and TN (true negative). Some
general metrics to evaluate the performance of segmentation networks
are presented in Table 7.

In addition, the Hausdorff distance (HD), across the result and
the GT, measures the maximum distance between two label bound-
aries. The absolute volumetric difference (AVD) represents the percent-
age ratio of the absolute difference between the GT volume and the
segmented volume, to the GT volume.

The receiver operating characteristic (ROC) curve is a graph that il-
lustrates the trade-off between the Pre and FPR of the model at different
thresholds. The closer the curve is to the upper left corner, the better
the performance of the system. The most common performance metric
extracted from the ROC curve is the area under the curve (AUROC),
which is used to compare different models at the same threshold, with
an AUROC of 1 for an optimal system. Similarly, the precision–recall
(PR) curve demonstrates the trade-off between the Pre and Se, where
the area under the curve (AUPR) is also considered a performance
metric.
23
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Fig. 18. Number of publications and years in terms of segmentation methods.

. Discussion

.1. Research trends

The segmentation of human treelike tubular structures has been
heavily researched area in recent years. As shown in Fig. 18, the

number of publications shows an overall upward trend from 2000 to
2021. However, the recent development of interest in this research
area is mainly attributed to the emergence of DL algorithms. According
to the publication of CNNs and the UNet that specifically for medical
image segmentation [79], the number of DL-based methods for human
treelike tubular structure segmentation started to increase remarkably
in 2017 and became dominant in the last 3 years. In contrast, the
number of new conventional methods has been decreasing since the
first decade and became zero in 2018. Although new ML-based methods
have been proposed since 2004, they have hardly dominated due to
the need to extract features manually and the higher computational
cost than conventional methods. Therefore, they were rapidly replaced
by DL-based methods after ANNs were proposed and high-performance
GPUs became available.

According to the trend analysis, the utilization of the DL algorithm
for human treelike tubular structure segmentation is the main research
direction recently and in the future. Compared with the conventional
method and ML-based method, the DL-based method has the following
advantages. First, conventional and unsupervised ML-based methods
may suffer from performance shortcomings because they do not ben-
efit from the manually labelled ground truth. Moreover, traditional
methods require special templates or rules designed for segmentation
targets, and ML algorithms need to extract meaningful features from
images, both requiring deep domain expertise. DL algorithms, on the
other hand, can directly extract suitable internal representations of
images for automatic learning. Meanwhile, manual feature selection is
application-specific and thus lacks the ability to generalize and learn
new features. DL algorithms, on the contrary, can automatically learn
features at various levels without application-specific restrictions, and
hence have higher generalizability and robustness.

6.2. Segmentation methods

From the perspective of the method classification, 40.26% (31) of
the 77 papers reviewed combined DL algorithms, conventional meth-
ods accounted for 35.06%, while ML-based methods had the lowest
percentage. A more detailed breakdown of the percentage of method
categories is shown in Fig. 19. For the conventional methods, the RG

ethod was the most widely used, probably due to its efficiency in 3D
ree segmentation. Supervised and unsupervised ML algorithms were

qually studied for human treelike tubular structure segmentation.
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As for DL-based segmentation methods, task-based/hybrid algo-
ithms were the most dominant, followed by architecture-based im-
rovements. These methods had made targeted modifications to the
egmentation task or model architecture for tree-like tubular struc-
ures. For example, some methods performed multi-task segmentation
f thick and thin tubular structures or introduced GNN for tree-like
onnectivity. Classical CNNs were not popular because they are more
eneric and therefore did not achieve optimal segmentation perfor-
ance on tree-like structures. Practically, for most task-based/hybrid

egmentation, advanced architecture was a must. Therefore, a large
ortion of task-based methods also developed novel DL models at the
ame time, such as combining GNN in order to transform segmentation
nto graph refinement [93]. In addition, the percentage of DL-based

methods based on training strategies was only 2.60%. It is also worth
noting that all DL-based methods currently applied to human treelike
tubular structure segmentation were supervised learning, in contrast to
ML-based methods.

6.3. Evaluation metrics and quantitative analysis

Se is the most common metric to evaluate the human treelike
tubular structure segmentation, which is adopted by nearly half of the
reviewed papers, as shown in Fig. 20. By comparing with Acc, the
econd frequently used metric, Se can help the model avoid classifying
ll candidates as foreground or background. DSC is also a common
hoice that reflects the similarity of segmentation results and GT. In
ddition, Sp and FPR are often used to reflect the segmentation leakage,
hile AUROC depicts the trade-off between Se and FPR. As for airway
24

egmentation, TLD and BD are the most commonly applied metrics. w
Quantitative analysis of segmentation performance for all reviewed
ethods is limited as they were evaluated on different datasets with

arious modalities and protocols. Therefore, the quantitative analysis
as conducted representatively on two public datasets adopted by most
ethods, DRIVE and EXACT’09, for blood vessel segmentation and

irway segmentation, respectively.

.3.1. Blood vessel segmentation
27 of the 77 reviewed papers validated their performance for seg-

enting blood vessels on the DRIVE dataset. We quantitatively com-
ared means of the four most used metrics (Acc, Se, AUROC, and
p), but excluded a method using Visual evaluation [21], as shown in
ig. 21. It is worth noting that not every method used all four metrics,
o our mean comparisons were only based on methods that used a
articular metric.

Overall, DL-based methods have the best segmentation perfor-
ance, followed by ML-based methods, and finally Conventional meth-

ds. For the Conventional method, basic image processing operations
re most sensitive to vascular structure, but template matching has
igher segmentation accuracy and specificity with fewer false positives
ccording to AUROC. RG has moderate segmentation accuracy, but the
ensitivity is not satisfactory. Similarly, unsupervised ML-based meth-
ds are more sensitive than supervised methods but slightly inferior
n other segmentation metrics. On the other hand, task-based/hybrid
L-based methods achieve the best results on all metrics. DL-based
ethods based solely on advanced architecture or training strategies

re lower in segmentation sensitivity even than Conventional methods,

hich is an obvious problem. Specifically, as shown in Fig. 21(c),
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all task-based/hybrid DL-based methods can achieve good segmenta-
tion performance. However, among all unsupervised ML-based meth-
ods, Hassan & Hassanien’s WOA method performs exceptionally well,
reaching the state-of-the-art.

6.3.2. Airway segmentation
For airway segmentation, a total of 10 papers were evaluated in

EXACT’09. After excluding one paper using duplicate methods [97] and
ne paper doing comparative analysis [83], the remaining 8 methods
nly covered part of the subcategories of ML-based and DL-based
egmentation algorithms, as shown in Fig. 22. We used mean values of
he three most commonly applied metrics for quantitative comparison
TLD, BD, and FPR). Similarly, not every method used all three metrics.

Overall, the segmentation performance of DL-based methods is sig-
ificantly higher than that of ML-based methods. Supervised ML-based
ethods are limited by the difficulty of finding suitable features and

ules to maximize airway detection rate while minimizing segmentation
eakage. Clearly, the method of Charbonnier et al. [77] has the lowest
etection rate but the least leakage, while the method of Yun et al. [78]
as a higher detection rate but also increased FPR. On the other hand,
he advent of CNN enabled more suitable CT image features to be
xtracted, thus achieving a better balance between detection rate and
PR. We can see that by improving the classic CNN architecture, the
etection rate of tracheal segmentation is further improved by more
han 14% while maintaining a low FPR.

.4. Open challenges

Conventional segmentation methods suffer from incomplete predic-
ion and leakage (shown in Fig. 23). EXACT’09 challenge has summa-
ized performance of them on airway segmentation. On average, no
25

raditional method achieves over 74% in TLR. Despite the recent sprout
f deep learning based methods, the problem of missing thin terminal
ronchioles in the final prediction still persists as shown in Figs. 24
nd 25. Commonly used cost functions such as Binary cross entropy
oss and Dice loss failed to address this problem. Results with high
ice coefficient can still have many disconnected peripheral branches
hich can be reflected by the low tree length detected ratio and branch
etected ratio (often less than 70%). This problem is more predominant
n the 3D cases than the 2D cases. In addition, model performance on
athological cases should be addressed in the future. morphological
hanges in structure can pose a further challenge to the robustness of
he model.

Another problem is the lack of metrics to quantify the morpho-
ogical shape of the airway which often contains useful information
or lung-related disease diagnosis and prognosis. [141–144] measure
he airway thickness and show a strong correlation between it and
educed air flow of the lung. Apart from the airway wall thickness,
ery few studies focused on other morphological parameters such as
ranching patterns. This is partly because there is no mathematical way
o quantify the spatial patterns of the human airway. [140] proposed

new metric named Airway Fractal Dimension(AFD) to help predict
espiratory morbidity and mortality in COPD. AFD is calculated using
he Minkowski–Bougliand box-counting dimension which essentially
easures the self-similarity of a graph. In the case of airway structures,

he more branch it has the more detailed it is considered, A formal
athematical definition of the box-counting dimension is shown below:

= lim
𝜖→∞

log𝑁(𝜖)
− log 𝜖

where 𝐷 is the fractal dimension, 𝑁(𝜖) is the number of boxes required
to cover the complete fractal structure at a given scale 𝜖. They analysed
8,135 participants enrolled in the COPDGene cohort and found a strong
correlation (𝑝 < 0.001) between AFD and forced expiratory volume.
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Fig. 21. Quantitative segmentation metrics comparison of methods evaluated on DRIVE dataset.
They also did a multivariate analysis and confirmed that AFD can
be used in addition to airway thickness to give better prognosis. An
intuitive visual representation is also provided by them as shown in
Fig. 26. A review on computing the fractal dimension in medical
maging has been done by Konatar I. et al. [145]

There has not been any release of new datasets with airway annota-
tion in the community for years. Only 90 CT scans (20 from EXACT’09
and 70 from LIDC-IDRI) are widely publicly available, and they come
from patients with a wide range of physical conditions.

Most proposed models cannot extend to more complex clinical
26

settings because the algorithms would fail to predict airway regions
when encountering pathological cases such as fibrosis and COVID-
19. Moreover, the variations between CT scans acquired by different
protocols also pose a challenge to the generalization of the model.

To summarize, there are still some open challenges for accurate
and robust human treelike tubular structure segmentation, which are
as follows:

• DL-based approaches through unsupervised or semi-supervised
learning is a topic that has not been thoroughly investigated
yet. Unsupervised training can overcome the current dilemma of

lacking properly annotated datasets by domain experts.
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Fig. 22. Quantitative segmentation metrics comparison of methods evaluated on
EXACT’09 dataset.

Fig. 23. Visual Illustration of leakage at terminal bronchioles from CASE14 from
EXACT’09;.

Fig. 24. Visual Illustration of discontinuity at terminal bronchioles from CASE2 from
EXACT’09; On the left is the ground truth and on the right is the prediction.

• In terms of training strategies, the DL algorithm may have great
room for improvement. For instance, applying hard sampling
mining to improve the segmentation performance in pathological
cases.

• There is a lack of a standard set of evaluation metrics and a
systematic evaluation process for human tree tubular structure
segmentation methods. The inconsistent metrics and the fact
that most of the datasets are not publicly available make the
performance comparison between algorithms very difficult. As
27
Fig. 25. Visual Illustration of discontinuity of retinal blood vessels in DRIVE dataset
from [139]; From left to right is the real image, the ground truth and the segmentation
esult from U-Net trained by Dice loss.

mentioned above, using sole metrics such as accuracy, IoU and
Dice cannot fully access the model on a spatial scale. Therefore,
an open evaluation scheme across datasets is urgently needed.

• Binary cross entropy loss and Dice loss are not able to capture
the discontinuity in peripheral bronchioles. New loss functions,
such as clDice [139], that emphasize connectivity should also be
incorporated in training the model.

• For conventional image processing methods, their results are fully
explainable. However, deep neural networks are normally con-
sidered as ‘black boxes’, whereas their interpret ability for tubu-
lar structure segmentation remains to be explored. Researchers
should focus more on explainable AI solutions [146]. This could
be achieved by sensitivity analysis [147], gradient-based meth-
ods [148], and data harmonization strategies for multi-centre
studies[149].

. Conclusion

This review summarizes the algorithms, datasets, and evaluation
etrics for human treelike structure segmentation methods in the liter-

ture. We present a systematic classification of the different algorithms,
upported by tables reporting the anatomical regions of interest, the
atasets used, and performance metrics, which can help researchers
o better understand the available options and methods. Based on the
nalysis of the literature, deep learning based segmentation methods
ave become dominant with their advantages of capturing hidden
nformation in complex structures. In this regard, this review pro-
oses feasible research directions based on deep-learning algorithms,
valuation metrics, and loss functions to accelerate the development
nd improvement of human treelike tubular structure segmentation
ethods.
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