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Abstract 

The physiological structures of the retinal blood vessel are one of the key features that visible in the retinal 

images and contain the information associate with the anatomical abnormalities. It is accepted all over the world 

to judge the cardiovascular and retinal disease. To avoid the risk of visual impairment, appropriate vessel 

segmentation is mandatory. Here has proposed a segmentation algorithm that efficiently extracts the blood 

vessels from the retinal fundus image. The proposed segmentation algorithm is performed Lab and Principle 

Component (PC) based gray level conversion, Contrast Limited Adaptive Histogram Equalization (CLAHE), 

morphological operations, Local Property-Based Pixel Correction (LPBPC). For appropriate detection proposed 

vessels correction algorithm LPBPC that check the feature of the vessels and remove the wrong vessel detection. 

To measure the appropriateness of the proposed algorithm, the experimental results are compared with the 

corresponding ground truth images. The experimental results have shown that the proposed blood vessel 

algorithm is more accurate than the existing algorithms. 

Keywords: Blood vessels; Segmentation; Retinopathy; CLAHE; Optical disk detection. 

1. Introduction  

Only using the retina can be the deep-rooted vessels of blood in the eye not being investigated. The main 

anatomical features that can be seen in the illustration of the retinal fundus are the retinal blood vessels. The 

structure and design reflect the effect of (cardiovascular diseases) CVDs such as cataracts, DR and high blood 

pressure, etc.  

------------------------------------------------------------------------ 

* Corresponding author.  

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by American Scientific Research Journal for Engineering, Technology, and Sciences...

https://core.ac.uk/display/322504087?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


American Scientific Research Journal for Engineering, Technology, and Sciences (ASRJETS) (2020) Volume 66, No  1, pp 202-224 

203 
 

The destruction of the vision is the causes of cataract, glaucoma, and uncorrected refractive error, macular 

degeneration associated with age, diabetic retinopathy, trachoma, corneal blindness, and others. Uncorrected 

refractive error, cataract, and glaucoma are the main cause of blindness among the listed medical- conditions. 

Visualization impairment due to cataract is one of the most common reasons throughout the industrialized 

countries. Cataract is the most common reason for visual impairment, which account for over half of visual 

impairment [1]. Effective cataract diagnosis and treatment can prevent severe effects, including blindness. 

Cataract is a dark, cloudy region, which structures the eye lens. Cataract starts as eye proteins combine, which 

prevents the lens from transmitting clear image to the retina. A study indicates that the number of blind people 

in Europe will be about 0.075 billion by 2020 [2, 3]. The types of cataract are divided into three main categories 

based on the position of the retina, i.e. nuclear sclerotic, cortical, and posterior subscapular. The nuclear 

sclerotic is situated in the center of the lens and the lens yield a boring image. At the corner of the lens is 

cortical cataract, which is found in the elderly.  

 

(a)                                                                   (b) 

 

(c)                                                                         (d) 

Figure 1: (a) Where large, small vessels and the optical disk are visible. There is very less blood vessel's data 

available in the mild cataract image of the eye affected in (b), While in the moderate cataract image only large 

blood vessels and optical discs are available in (c), and in the extreme cataract image, almost nothing can be 

seen in (d). 
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Posterior subscapular cataracts are the severely damaging form of cataract which is situated behind the lens [4]. 

The majority of people aged over 40 are affected by the cataracts and this proportion is rapidly increasing over 

the age factor. The World Health Organization (WHO) is concerned about these increasing rates of cataract 

identification and diagnosis. Early diagnosis and remedy reduce the distortion and visual deterioration of 

cataract patients. Retinal disease can only be identified through the segmentation of the retinal vessel; however, 

retinal experts are required for vessel detection and segmentation. Cataracts are usually divided into four groups 

based on the severity, i.e. normal, moderate, mild and extreme conditions [5]. 

The frequency is based on the optic disk and the small or large blood vessels. The structure of the groups of 

cataracts is shown in the figure 1 where healthy patients without cataracts are shown clearly in figure 1(a) where 

large and small vessels and the optical disk are visible. There is very less blood vessel's data available in the 

mild cataract image of the eye affected in Figure 1 (b), while in the moderate cataract picture only large blood 

vessels and optical discs are available in Figure 1 (c) and in the extreme cataract image, almost nothing can be 

seen in Figure 1 (d). These classes of cataracts are classified as shown in Figure 1 respectively from 0 to 3. 

Detection and diagnosis of cataracts depend heavily on the specifics of the blood vessel and optical disk. The 

manual segmentation and identification of blood vessels is a very tedious process. Most vessel segmentation 

features include size, width, branch angle, and tortuosity that are extremely difficult for early detection and 

retinal disease to explore manually [6]. Also, manual segmentation takes a great deal of cost and time as it is 

requires a segmentation system retinal eye specialist [7]. Therefore, automated extraction and segmentation of 

the vessels by using appropriate principles are very important for early cataract detection. In this paper, I have 

proposed an automated retinal blood vessel segmentation using the modified coyefilter coupled with background 

estimation and LPBPC approach. The contribution to segment the retinal blood vessels are as follows: 

1. The proposed algorithm is the integration of the anisotropic diffusion process with the Coye filter to 

primarily segment the retinal blood vessels. The anisotropic diffusion process blurs the image while 

preserving the edge contrast. However PCA based gray level conversion contains all directional 

components. 

2. Here, background estimation is performed using the primary segmented blood vessels, which remove 

the blood vessels and only represent the appropriate background. The estimated background helps to 

segment appropriate retinal blood vessels.  

3. The low contrast vessels cannot segment without the help of local information. Here has been proposed 

an algorithm called LPBPC, which classifies whether a small group of pixels is blood vessels or not. 

This process is done based on the local contrast information. 

4. Also, line features and area to perimeter ratio has been used to check the verification of blood vessels. 

2. Related works  

Throughout the various fields of medical diagnosis, it is important to segment and examine blood vessels 

through imaging. Many researchers have made effective extraction and analysis algorithms. In this page, several 

essential contributions are summarized in the area of ophthalmology. Blood vessel segmentation can be 

achieved by two methods: pixel-based and pattern-based. In pixel methods, each pixel is processed to indicate 
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whether the vessel or background pixel is tracking correctly or not. Pixel methods use Thresholding, 

morphological operation and kernel recognition for filters and patterns detection. Patterns-based recognition 

approaches use algorithms for classifying the image of the blood vessels. Soares and his colleagues have 

suggested the two-dimensional (2D) Gabor wavelet transformation [8] based on supervised classification. In 

Ricci and his colleagues used line operators and Vector Support Machine (SVM) to segments of the blood 

vessels [9]. The Marin and his colleagues neural network was equipped using invariant-based features and gray-

based 7D at the moment [10]. A clustering method for blood vessel segmentation based on Fuzzy C-means was 

proposed by Tolias and his colleagues [11]. Niemeijer and his colleagues proposed a K-Nearest Neighbor 

(KNN) based classification for retinal blood vessel segmentation [12]. Salem and his colleagues used a novel 

algorithm for blood vessel segmentation (RACAL), which is a partly supervised algorithm. Kernels are filtered 

for the identification of pixels of a retinal image [13]. Edge filters used the most common kernels to locate the 

edges in the images. Robert, Sobel, Prewitt, and Canny are the most popular kernels for edge detection. In 

addition, different forms of kernels can be modified to define the edges for a request. A corresponding filtering 

method for segmenting the blood vessel was suggested by Chaudhuri and his colleagues [14]. It used 12 

templates that rotate the current template with the effect of 15 degrees. Al-Rawi and his colleagues [15] 

suggested a better balanced filtration system based upon Chaudhuri and his colleagues Cinsdikici and his 

colleagues suggested an algorithm where is used ant colony optimization matched filtering [16]. The Matched 

Filter-First Order Derivative of Gauussian (MF-FDOG) was proposed by Zhang and his colleagues [17]. A new 

fitting filter kernel for blood vessel segmentation in the retinal fundus image has been proposed for Odstrcilik 

and his colleagues [18]. It is used the Thresholding method to segment the bold vessel of the fundus image. 

Global, local, or adaptive thresholds may be used. Adaptive thresholds for segmentation are mostly used and 

give better performance. Hoover and his colleagues proposed a partial threshold assessment for the 

corresponding filter response for blood vessel segmentation [19]. Jiang and his colleagues suggested a multi-

threshold testing adaptive criterion [20]. The automatic tracing algorithm for optical disc and exudate detection 

with fixed and variable thresholds has been proposed by Reza and his colleagues [21]. They have also discussed 

the use of RGB (red-blue-green) color components of fundus images for a four-sided blood vessel detection [22] 

algorithm. Morphological operator use mathematical operations to segment the object of interest. For image 

processing, there are many morphological operators. Dilation, erosion, closing, and opening [23] are the most 

common morphological operations. Such operators are primarily used for binary images. Nevertheless, 

grayscale images can also be used. For the segmentation of a visual image vasculature, Zana and his colleagues 

[24] employed a morphology-based approach with a cross curvature assessment. Heneghan and his colleagues 

[25] mixed the morphological operations of the primary and secondary vessels with the second-order derivative 

operator. Yang and his colleagues deployed both a fuzzy and morphological operator clustering algorithm [26]. 

In order to highlight the blood vessels, Mehrotra and his colleagues employed the morphologic surgeon and later 

the Kohonen Clustering Network applied it to the blood vessels [27]. Forward Discrete Cosine Transformation 

(FDCT) has been used in the improvement of image contrast followed by morphological procedures for blood 

vessel extraction [28]. Miri and his colleagues The morphology operator Bharkad used top hat with three 

different structural elements [29]. Using Gabor, Frangi and Gaussian filters, Yavuz and his colleagues [30] have 

increased the image of the retina, accompanied by the use of the transforming top hat and clustering method for 

blood vessel segments. The retinal vasculature can be segmented using the method of tracking or tracing. In 
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order to map the vasculature, most tracking algorithms need a seed point; the seed point depends on the 

performance of the algorithm. The Gaussian function was used for Gao and his colleagues [31]. With these, the 

blood vessels are segmented. In a three-stage recursive method, Liu and his colleagues used an adaptive tracking 

algorithm [32]. Delibasis and his colleagues suggested the geometric model tracking algorithm and the 

automated search for bifurcation of the vessel without the input of the user [33]. Vlachos and his colleagues 

have used a process that begins with a small group of brightness-based pixels and stops when the inter-sectorial 

profile is invalid [34]. The detector for the segmentation of retinal blood vessels has been proposed by Sheng 

and his colleagues [35]. MSST uses super pixel graph geometric structures, texture, and space data. For 

segmentation of the vasculature, deformable versions are also used. Espona and his colleagues used an active 

contour with the topological properties of the blood vessel [36]. A contour model using two pairs of active 

contour models for the segmenting of the blood vessels was proposed by Al-Diri and his colleagues [37]. In this 

way, it is used to define approximate central lines of the vessel by the generalized morphological order operator. 

Parallel implementation based on multi-scale functionality extraction and the region growing algorithm [38] has 

been proposed by Palomera-Pérez and others. At first, adaptive histogram equalization and transformation of the 

Gabor wavelet are used for blood vessel enhancement. Upon preprocessing, the degree and area methods of 

growth are implemented separately and the final outcome is achieved. The Markov Random field graph 

technique was used by Salazar and his colleagues for the segmentation of blood vessels and the optical disk 

rather than by active contour [39]. Zhao and his colleagues suggested a Lebesgue measure of α-neighborhood 

for endless regularization of perimeters of the area with an infinite active contour [40]. In this method, regional 

information can also be utilized to combine intensity information with a local phase map. Gao and his 

colleagues proposed a completely convolutional U-shape neural network for automated segmentation technique 

to remove retinal vessels. For retinal fundus images, the authors used a Gaussian matched filter [41]. Li and his 

colleagues [42] constructed a vascular segmentation approach with multi-scaled convolutional neural networks 

for retinal fundus images. They also used the method of mark processing to improve segmentation precision. 

Dasgupta and his colleagues proposed the segmentation function of the retinal vessel to include the 

convolutional neural network and a hierarchical prediction as a multi-label inference task [43]. Wang and his 

colleagues [44] proposed cascade classification framework use computationally efficient Mahalanobis distance 

classifiers. Matched filter based modified Chebyshev type 1 function is used for retinal blood vessel detection in 

[45], also this process contains image preprocessing and post processing phase. The author in [46] proposed 

Gaussian match filter based preprocessing coupled with U-shaped fully convolutional neural network. This 

algorithm has separated the blood vessels from an inadequate contrast region. The study of literature shows that 

pattern and morphology-based techniques are primarily used for blood vessel segmentation. Techniques that use 

patterns take longer for the blood vessel classification. Morphology-based approaches are easier to calculate, but 

other filters require high precise segmentation of the blood vessels. Such filters depend on the morphological 

operation. Therefore, a hybrid segmentation approach has been attempted. 

3. Methodology 

The proposed algorithm consists of six phases: image collection, image preprocessing and enhancement, blood 

vessel extraction, true/false pixel correction, optical disk detection and remove false pixel around optical disk. 

The block diagram of the proposed algorithm is presented in figure 2.  The descriptions of the proposed 



American Scientific Research Journal for Engineering, Technology, and Sciences (ASRJETS) (2020) Volume 66, No  1, pp 202-224 

207 
 

algorithm are detailed as follows: 

3.1. Input Image Collection 

The fundus retinopathy image is taken from the standard STARE and DRIVE database. The DRIVE data set has 

been taken from a Netherlands screening diabetic retinopathy program. The retinopathy images were taken 

between the ages of 25 and 90 from 400 diabetic subjects [47]. The STARE dataset also includes a number of 

retinal images captured by Topcon TRV 50 Fundus with a 700/605-pixel space resolution and a 24-bit gray 

scale resolution [48]. The sample of the DRIVE and STARE datasets image are shown in figure 3. The 

collections of retinal images are preprocessing using an effective filtering methodology before segment the 

blood vessel.  

 

Figure 2: Block diagram of the proposed blood vessel segmentation algorithm. 

 

(a)                                                             (b) 

Figure 3: Sample images of the (a) DRIVE and (b) STARE datasets. 

3.2. Image preprocessing and segmentation  

The retinal fundus image processing are the combinations of Coye filter coupled with anisotropic diffusion 

based image smoothing and background estimation approach. The fundamental steps of the proposed algorithm 

are gray scale conversion, CLAHE based contrast enhancement, background exclusion, binarization, and small 
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component removal. In the beginning of the retinal fundus image, Lab color transform is done on the RGB 

image. Where „L‟ is the representation of brightness from black (0) to white (100), „a‟ represent the color space 

from (-) green to red (+) and „b‟ from blue (-) to yellow (+). The Lab color space is closely matched with the 

human visual perception of lightness. The principal component analysis helps to visualize the multiple inter-

correlated data. It is extract the important information from a multivariate data and express this information as a 

new data variable. The PCA is used to identify the direction of intensity variation in an image. The retinal 

fundus image contains unwanted artifacts that reduce the segmentation performance dramatically. The removal 

of unwanted artifacts is essential to improve the suitability of any blood vessel algorithm. The Gaussian 

smoothing is widely used to remove the pepper and salt image, however this process reduce the contrast 

intensity between blood vessel and background. To avoid the reduction of the contrast intensity, in this 

algorithm use anisotropic diffusion based image smoothing approach. Which improve the contrast to noise ratio 

while preserve the edge intensity of the blood vessels [49]. In [49] smoothing has been formulated in terms of 

the diffusive process. The process is iterative and the mathematical formulation can be described as 

      , , , , , ,w x y t div c x y t w x y t
t


 

      

  (1) 

The strength of the diffusion is controlled using c(x,y,t). The variable x and y represent the spatial coordinates 

and t represents the order of the process. The image intensity Igray(x,y,t) is represented by the function w(x,y,t). 

The diffusion function c(x,y,t) is directly depends on the gradient of Igray(x,y,t). The c(x,y,t) is a monotonically 

decreasing function, which diffuse within the region and does not affect region boundaries of higher gradient. 

The diffusion function can be expressed as   

    , , , ,c x y t f I x y t                          (2) 

Then, the anisotropic diffusion based smooth image is enhanced by using CLAHE algorithm. The CLAHE is 

used to limit the appearance of artifact and noise in an image. Contrast can be limited by limiting the slop of the 

CDF function. The CLAHE enhanced image is represented by the function IHE image. Now, averaging the gray 

scale image is to make the blur image Iblur. Subtract the blur image Iblur from the CLAHE enhanced image IHE to 

remove the background and get the segmented image Iseg. Now, calculate the threshold Th from Iseg image as 

describe in [50]. This threshold Th is used to convert the Iseg image into binary image, which is the blood vessel 

segmented image Ibin. The Ibin contains both true and false blood vessels. This process does not fully remove the 

background, so here the background is estimated as follows: calculate the width hw of the blood vessel in the 

horizontal direction from image Ibin, get two pixel P2 around the blood vessel edge. Now set a matrix with 

dimension hw+4 using the P2 pixels. This matrix is used to replace the corresponding intensity on the IHE image. 

Repeat the Same process in the vertical direction and get the estimated background Iabg. This estimated 

background is used to remove the background. Image preprocessing is used to remove the unwanted artifacts 

from the collected retinopathy fundus retinal images. The preprocessing and segmentation approaches of the 

proposed algorithm are described as: 

Algorithm 1:  
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1. Input retinal fundus image „I‟. 

2. Convert the input RGB into L*a*b image. 

3. Calculate the principal component analysis (PCA) of the input image. 

4. Create a grayscale images Igray based on the L*a*b image and the PCA data. 

5. Smooth image by applying the anisotropic diffusion process. 

6. Grayscale image is enhanced by applying the CLAHE operation. i.e.  (I )HE grayI CLAHE  

7. Create a 9x9 averaging mask. 

8. Create blur image Iblur of the grayscale image using the averaging mask. 

9. Exclude background by subtraction the image Iblur from IHE to get the segmented output Iseg. 

10. Calculate threshold Th using an iterative selection method. 

11. Convert the Iseg image into binary image Ibin using the calculated threshold Th. 

12. To get the segmented blood vessel Isbv, remove all small connected objects from Ibin. 

13. Now using this blood vessel create an approximate background Iabg. 

- Find the horizontal width hw of the blood vessel in every position where the blood vessels detected. 

- Take two horizontal pixels from both sides where the blood vessel exists. 

- Create a horizontal matrix hm using these pixels.  

- Set the length of the horizontal matrix is hw + 2.2. 

- Replace the corresponding horizontal image pixels with the created horizontal matrix. 

-    The following steps are repeated in the vertical direction and get the approximated background image of   

the given fundus images. 

14. Subtract the approximate background Iabg from the image IHE and get the new segmented output Iseg 

15. Repeat steps 9-11 to get the final segmented blood vessel Isbv.  
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Figure 4: Block diagram to estimate background and blood vessels.   

The small segmented blood vessels may contain true pixels or false pixels. To find the appropriateness of these 

pixels, here an algorithm is proposed that detect the trueness and falseness of the small blood vessels. 

3.3. True/False pixel correction 

The effectiveness of any retinal blood vessel segmentation algorithm depends on the appropriate detection of 

true blood vessel pixels and how suitably excludes the false pixel. To increase the effectiveness of the proposed 

retinal blood vessels scheme here has been proposed a correction algorithm to detect true pixels and exclude the 

false pixels for small separated vessels. The proposed algorithm takes the output of step 11 of algorithm 1 as an 

input Itf. The input image Itf contains both large and small connected blood vessels. Then, all small separate 

blood vessels Isbv have been segmented. Each small segmented vessel is checked whether true/false based on  

 

(a)                                         (b)                                        (c)                                        (d) 

 

(e)                                        (f)                                        (g)                                          (h) 
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(i)                                           (j)                                  (k)                                               (l) 

 

(m)                                       (n)                                           (o)                                        (p) 

 

(q)                                  (r) 

Figure 5: (a) Input retinal fundus image, (b) Lab image (c) PCA output (d) gray scale image (e) anisotropic 

difussion based image smoothing (f) CLAHE enhanched image (g) Averaging image (h) Background Exclusion 

image (i) Binary image (j) remove very small seperated object (k) large vessel segmented image  (l) moderately 

small segmented object (m) extimated background (n) background Exclusion image (o) binary image of (o), (p) 

large blood vessels (q) Small segmented blood vessels (r) segmented blood vessel 

local processing of intensity gradient and transformation based. To do so, at first the CLAHE enhanced image is 

cropped based on Isbv by having several pixels surrounding Isbv. This is called an image subblock ISC. Then, 

calculated the horizontal (hg), vertical (vg) and two diagonal (dg) intensity gradient of the ISC image. The 

maximum intensity gradient image subblock Imax_SC has been calculated from the four intensity gradient image. 

Then, I applied log transformation operator on Imax_SC to get the transformation to image IT. Again, the threshold 

value TT is calculated by using the average of IT plus the adjustment controller k. The value k is used to varying 

the threshold. Here is used an additive value ITB of k and it is 10 percent of the average value. The transformed 

image IT has been converted into binary image using the threshold TT, and removed all small separate objects. 
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Now, a 3x3 dimensional mask is created with all elements 1 and performed hole filling operation on the ITB 

image using the created mask. Then, the convolution operation has been performed between the mask and ITB to 

smooth the ITB image. Then performed „AND‟ operation with input Isbv image. If the sum is 50% of the input 

image Isbv, marked the segmented object „True‟ otherwise marked „False‟. The proposed algorithm is described 

as follows: 

Algorithm 2:   

1. Take the output from step 11 of algorithm 1 as the input Itf of this process. 

2. Find all small blood vessels Isbv and segment it. 

3. Each segmented object is validated using intensity gradient and transformation based local processing with 

estimating blood vessels. 

a. Get the image subblock from the CLAHE enhanced image ISC such that; 

(i, j); , dim(I ) 3SC CLAHE sbvI I given that i j    

b. Find the intensity gradient of ISC in the horizontal hg, vertical vg and two diagonal dg directions. 

c. Calculate maximum intensity gradient subblock       max_ , , , , ,SC g g gI Max h i j v i j d i j  

d. Apply intensity transformation function on Imax_SC image subblock such that;       

 T 2 max_log 1 SCI I   

e. Calculate threshold  T TT Avg I K   ; where k is the adjustment controller.   

f. Convert IT into binary image 
1;

0;

T T

TB

T T

I T
I

I T


 



 

g. Remove small separated object from the ITB image. 

h. Create a 3x3 mask with all elements 1. 

i. Perform hole filling operation using the mask Ms.  

j. Again, convolve the mask Ms with ITB such that

, 1

, 1

1 5
(i, j)

0

i j

TB s

i jTB

if I M
I

Otherwise





  
   

   




 . 

k. Perform „AND‟ operation on ITB and Isbv. 

l. If the output of step „k‟ is greater than 50% of the input segmented object then detect „true‟ object 

otherwise detect „false object‟. i.e. 
( ) 50%sbv TB sbv

sbv

Trueif I I of I
I

False Otherwise

  
 


  

4. Check the availability of line in the local subblock: 

a. Get the image subblock as mention step 3 (a). 
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b. Apply canny edge detection algorithm. 

c. Apply „Hough transform‟ to find line into the image subblock. 

d.  If the detected line length is greater than 60% compare with the length of the object detect „true‟ 

otherwise detect „false‟. 

5. True/false detection based on the perimeter and area of the object. 

a. Find the perimeter (Po) of the segmented object in terms of pixels. 

b. Find the horizontal hl, vertical vl and 2 diagonal dl length. 

c. Also calculate the area (Ao) covered by the object in terms of pixels. 

d. Calculate the ratio (Ro) of Ao to Po. 

e. If the output of Ro is less than 1.5 and if every length of step b is not comparable length then detect 

„true‟ object otherwise false object. 

The true and false objects can be further checked by finding the availability of line in the local subblock and 

compare the perimeter and area ratio of the object. To do this, the well-known „Canny‟ edge detection algorithm 

has been performed on the ISC image. Then, I applied the „Hough‟ transform to find the line into the image 

subblock. If the Euclidean distance of the detected line is greater than 60% of the object, marked „True‟ object 

otherwise marked 'False' object. For the ratio of the area to the perimeter-based approach, the perimeter and area 

of the segmented objects are calculated in terms of pixels number. Also, the horizontal, vertical and two 

diagonal lengths are calculated of the object. If the ratio of the area to the perimeter is less than 1.5 and if one or 

two calculated lengths is 80% percent greater than the other length, then marked it „True‟ blood vessel otherwise 

marked it 'False‟ blood vessel. 

3.4. Detect optical disk and remove false pixel around the disk 

The presence of the optical disk influences the output of the retinal blood vessel segmentation algorithm. The 

optical disk is the high-intensity regions in the retinopathy images and the surrounding pixel has low intensity 

compared with the optical disk. These properties of the optical fundus image detect some false blood vessels 

around the optical disk. To remove the false pixel around the optical disk, it is essential to detect and localize 

optical disk in the fundus image. The input image has been blurred by applying a 9x9 averaging filter. Then, an  
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Figure 5: Block diagram to validate True/False blood vessels. 

 

Figure 6: shown the small blood vessels validation output, (a) Blood vessel segmented output with false blood 

vessels (b) all small segmented blood vessel objects (c) Segmented small blood vessels for validation check (d) 

Perimeter of the small blood vessels (e) Region of interest (f) Intensity gradient based transformation (g) 

LPBPC output with small object (h) Vessels detection output of LPBPC (i) Hough transform output, (j) Hough 

line detection. 
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80x80 sliding window is used to divide the image into a subblock. Now „C‟, is calculated for each channel given 

that

 
2

1

1 i i

i

C
p q


 

.  

Where p, q are the two subsequent image pixels. Now, all C for each channel has been combined by multiplying 

a constant tr, tg, and tb with corresponding red, green and blue channels. The maximum value of C is the center 

of the optical disk of the retinal fundus image. To remove the false pixel around the optical disk, find all pixels 

„O(i,j)‟ within the optical disk, all pixels SO(i,j) surrounding the optical disk, and segment it from the retinal 

fundus image. Now, the 'SO' divided into 20x20 pixel blocks and the proposed LPBPC scheme has been applied 

to find blood vessels. The detection process is described in step 3 of algorithm 2.  If the subblock is detected 

„True‟ then marked each group of the pixel is true, otherwise false. These processes verify whether each pixel is 

situated on a blood vessel or not based on local processing. Then, all pixels situated on the boundary of the „O‟ 

and „SO‟ has been removed. Finally, the retinal blood vessel is segmented. The proposed blood vessel removal 

around optical disk suffers some block error. The vessel is remove block by block basis and any block may 

contain both true and false blood vessel. The optical disk detection, localization, and remove of false pixel 

algorithm are described as:  

Algorithm 3: 

1. Blur the image using a 9x9 averaging filter. 

2. Use 80x80 sliding window for each blur image window. 

3. Calculate 
 

2

1

1 i i

i

C
p q


 

for each channel. 

4. Find combined C as  , r r g g b bC i j t c t c t c       

5. Find the maximum value of C, which represents the center of the disk. 

6. Find all pixels „O‟ which is within the optical disk. 

7. Find all pixels „SO‟ which is surrounding the optical disk. 

8. Divide the „SO‟ region into 20x20 small subblocks. 

9. The true vessel and false vessel detection are done of the subblock using the 3 steps of algorithm 2. 

10. Remove all pixels situated on the intersecting boundary of „O‟ and „SO‟, except those pixels on the 

blood vessel. 

11. Finally, the blood vessel is segmented. 
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Figure 6: Block diagram to remove false pixels around optical disk. 

 

(a)                                     (b)                                               (c)                   (d)                            (e) 

Figure 7: Optical disk detection and false pixel remove around optical disk. (a) Detection of optical disk (b) 

Optical disk segmentation (c) Detected blood vessels around optical disk (d) false pixel remove around optical 

disk (e) final segmented image. 

4. Result and Discussion 

The proposed method is tested on two publicly available databases (DRIVE and STARE). Both database images 

contains color retinal fundus image with 8 bits color channel and have ground truth image. The effectiveness of 

the proposed blood vessel segmentation algorithm is measured by the parameter of Accuracy (ACC), sensitivity 

(Sen), Specificity (Spe). Accuracy is the ratio of the number of pixels correctly segmented from background and 

blood vessels to the number of pixels within the field of view (FOV). However, sensitivity and specificity 

represent the accuracy of blood vessel and background segmentation. Sensitivity and specificity only represent 

information, while accuracy is the most important performance parameter. So that, if sensitivity is high and 

specificity is low, which indicate that non blood vessels regions are identified as blood vessels. When sensitivity 

is low and specificity is high i.e., the vessels are not properly identified. When both specificity and sensitivity 

are high, that represent the blood vessels are properly segmented. The comparisons of blood vessel extraction in 

different phases are shown in figure 8.  
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Table 1: Comparison of accuracy, sensitivity, specificity and precision for different image of STARE and 

DRIVE dataset. 

 
Image 

no. 
Before Small pixel correction Adding true small vessels 

Background estimation and 

addition of true vessels 

  Sen Spe Acc Prec Sen Spe Acc Prec Sen Spe Acc Prec 

DRIVE 

21 74.59 93.62 92.20 48.56 71.14 98.62 96.57 80.68 77.79 98.13 96.61 77.06 

32 65.26 96.38 93.84 61.63 61.63 99.45 96.35 90.84 74.63 97.99 96.08 76.80 

33 68.73 95.51 93.35 57.41 65.60 99.06 96.35 85.99 73.42 98.43 96.41 80.50 

35 73.80 95.48 93.60 60.80 71.56 98.91 96.54 86.18 79.44 97.89 96.29 78.16 

40 76.51 96.44 94.93 63.81 73.47 99.11 97.17 87.11 88.80 96.43 95.85 67.07 

Average 71.78 95.49 93.58 58.44 68.68 99.03 96.60 86.16 78.82 97.77 96.25 75.92 

STARE 

0005 49.17 97.00 92.62 62.23 47.45 99.33 94.59 87.69 60.45 98.46 94.98 79.79 

0044 70.72 95.51 93.75 54.66 68.53 97.17 95.13 64.94 81.14 95.69 94.66 59.03 

0077 68.01 96.66 94.30 64.56 67.1 99.23 96.62 88.64 90.51 97.47 95.98 69.64 

0081 67.49 96.43 94.20 61.11 65.13 99.24 96.45 87.77 92.57 95.78 95.53 64.60 

0082 69.54 96.46 94.27 63.42 68.18 99.12 96.61 87.27 89.68 95.92 95.41 65.99 

Average 64.99 96.41 93.83 61.20 63.28 98.82 95.88 83.26 82.87 96.66 95.31 67.81 

 

Table 2: Average performance parameter (accuracy, sensitivity, specificity and precision) for different vessel 

extraction phases. 

Database Type of phases Sen Spe Prec Acc 

DRIVE 

Before Small true pixel 

addition 
63.73 96.06 62.76 93.12 

Adding true small vessels 60.64 99.37 90.86 95.88 

Background estimation and 

addition of true vessels 
75.80 94.68 80.69 95.83 

STARE 

Before Small true pixel 

addition 
61.61 96.30 58.65 93.51 

Adding true small vessels 58.79 98.95 83.97 95.71 

Background estimation and 

addition of true vessels 
77.91 96.89 67.89 95.20 
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(a)                               (b)                                   (c)                                (d)                               (e) 

Figure 8: segmented blood vessel of the proposed method. (a) Input retinal fundus image, (b) initial segmented 

blood vessel, (c) blood vessel after background estimation and false pixel correction (d) segmented image after 

removing false pixel around optical disk, (e) Ground truth image. 
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Table 3: Performance comparison with other methods in terms of accuracy (%). 

Year  Methods  DRIVE STARE 

 Unsupervised   

2010 lam and his colleagues [51] 94.72 95.67 

2013 Wang and his colleagues [52] 94.61 95.21 

2013 Nguyen and his colleagues [53] 94.07 93.24 

2014 Zhao and his colleagues [54] 94.77 95.09 

2015 Yin and his colleagues [55] 94.33 93.25 

2015 Azzopardi and his colleagues [56] 94.42 94.97 

2016 Zhang and his colleagues [57] 94.76 95.54 

2017 Rezaee and his colleagues [58] 94.63 95.21 

2019 Wang and his colleagues [44] 95.41 96.40 

2017 Dharmawan and his colleagues [45] 95.40 95.30 

2017 Gao and his colleagues [46] 96.36 - 

 Supervised    

2011 You and his colleagues [59] 94.34 94.97 

2011 Marin and his colleagues [60] 94.52 95.26 

2012 Fraz and his colleagues [61] 94.80 95.34 

2015 Roychowdhury and his colleagues [62] 95.20 95.10 

2015 Vega and his colleagues [63] 94.12 94.83 

2016 Li and his colleagues [64] 95.27 96.28 

2016 Liskowski and Krawiec [65] 95.15 - 

2017 Barkana and his colleagues [66] 95.02 95.53 

2017 Zhang and his colleagues [67] 94.66 95.47 

2019 Wang and his colleagues [68] 95.36 95.38 

2019 Soomro and his colleagues [69] 95.10 95.30 

 Proposed Method 95.88 95.71 

The inputs for different dataset are shown in figure 8(a). Figure 8(b) is the output before the true small blood 

vessels. The segmented blood vessels blood vessel after background estimation and false pixel correction are 

shown in figure 8(c). The false pixel remove around optical disk image is shown in figure 8(d) and the 

respective ground truth is shown in figure 8(e). The experimental result shown that, the ground truth and 

segmented output are closed enough in visual perception. The comparison of accuracy, specificity, sensitivity 

and precision for different image in DRIVE and STARE are represented in table 1. The experimental result 

shown that, the final segmented output have better performance parameter than the output of excluding and 

including small true blood vessel for both DRIVE and STARE image. The average accuracy for five Drive and 

STARE images are 96.25 and 95.31 when the Background is estimated and false pixel around optical disk is 

removed. Which is slightly less than the accuracy (96.60 and 95.88), when the background is not estimated but 

only adding true small vessels. However, the final output has better combination of specificity (97.77 and 96.66) 
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and sensitivity (78.82 and 82.87) than other. The average overall performance for DRIVE and STARE dataset 

are shown in table 2. It is shown that the segmented output from the phase of background estimation and 

addition of true vessels have higher sensitivity (75.80 and 77.91) but comparable specificity, accuracy and 

precision than adding true small vessel phase. However, for background estimation and addition of true vessels 

phase both sensitivity and specificity is high, which indicate that the blood vessels properly segmented. The 

comparisons of accuracy (%) with other methods are shown in table 3. The result has shown that, the accuracy 

(%) for Drive dataset is 95.88, which is better than [48-55, 44, 45, 59-69] and comparable with 96.36 [46]. On 

the other hand, the accuracy (%) for STARE dataset is 95.71 is comparable with 96.40 [44], and 96.28 [64] and 

better than other. 

5. Conclusion 

Retinal blood vessels segmentation helps to observe and find the retinal diseases. In this paper, I proposed a 

segmentation algorithm that efficiently detect and segment the retinal blood vessels. At first, the retinopathy 

image is de-noised using anisotropic diffusion process. Which blur the image by preserving the edge contrast. 

However, the blur image is enhanced using CLAHE process and estimates the background to segment the 

appropriate blood vessels. Background segmented image is converted into binary image using a threshold. The 

segmented binary image contains both small and large object, while all of the object are not desired blood 

vessels. To remove the false blood vessels here I have proposed Local Property Based Pixel Correction 

algorithm. Which identify the false object and remove from the segmented blood vessels. Moreover, to remove 

the false pixel around optical disk, proposed an algorithm that detects the blood vessel around optical disk and 

removes false pixels. The proposed algorithm is tested on different well known database (STARE, DRIVE). 

Experiment result shown that, the proposed retinal blood vessels algorithm have better accuracy (95.88 and 

95.71) for both DRIVE and STARE dataset with compare to existing algorithm. In case of high glaucoma 

fundus image, it is difficult to detect retinal blood vessels. The proposed vessels algorithm is a rule based 

algorithm, and the classification process contains some error, which reduced the performance of the algorithm. 

To overcome this limitation, in future this algorithm is extended by using machine learning classifier. 
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