16,401 research outputs found

    A Programming Environment Evaluation Methodology for Object-Oriented Systems

    Get PDF
    The object-oriented design strategy as both a problem decomposition and system development paradigm has made impressive inroads into the various areas of the computing sciences. Substantial development productivity improvements have been demonstrated in areas ranging from artificial intelligence to user interface design. However, there has been very little progress in the formal characterization of these productivity improvements and in the identification of the underlying cognitive mechanisms. The development and validation of models and metrics of this sort require large amounts of systematically-gathered structural and productivity data. There has, however, been a notable lack of systematically-gathered information on these development environments. A large part of this problem is attributable to the lack of a systematic programming environment evaluation methodology that is appropriate to the evaluation of object-oriented systems

    Evaluating definitive principles for interaction in graphics

    Get PDF
    This paper is an appraisal of current progress towards supporting interactive graphics within the framework of a general-purpose programming paradigm based upon definitions. It considers how the use of definitive principles relates to other work, why it appears promising, and what progress has been made towards the resolution of technical difficulties. It re-examines potential for applications of definitive principles in interactive graphics in the light of more recently developed ideas about dealing with control issues and dynamically changing relationships in a definitive programming framework. It also takes account of new research into notations for graphics that makes use of geometrical constructions. As a subsidiary theme, the paper contrasts the support for reference and representation of geometric relationships in various kinds of interactive graphics systems

    [Subject benchmark statement]: computing

    Get PDF

    Pervasive Parallel And Distributed Computing In A Liberal Arts College Curriculum

    Get PDF
    We present a model for incorporating parallel and distributed computing (PDC) throughout an undergraduate CS curriculum. Our curriculum is designed to introduce students early to parallel and distributed computing topics and to expose students to these topics repeatedly in the context of a wide variety of CS courses. The key to our approach is the development of a required intermediate-level course that serves as a introduction to computer systems and parallel computing. It serves as a requirement for every CS major and minor and is a prerequisite to upper-level courses that expand on parallel and distributed computing topics in different contexts. With the addition of this new course, we are able to easily make room in upper-level courses to add and expand parallel and distributed computing topics. The goal of our curricular design is to ensure that every graduating CS major has exposure to parallel and distributed computing, with both a breadth and depth of coverage. Our curriculum is particularly designed for the constraints of a small liberal arts college, however, much of its ideas and its design are applicable to any undergraduate CS curriculum

    Image databases: Problems and perspectives

    Get PDF
    With the increasing number of computer graphics, image processing, and pattern recognition applications, economical storage, efficient representation and manipulation, and powerful and flexible query languages for retrieval of image data are of paramount importance. These and related issues pertinent to image data bases are examined

    Modelling Reactive Multimedia: Design and Authoring

    Get PDF
    Multimedia document authoring is a multifaceted activity, and authoring tools tend to concentrate on a restricted set of the activities involved in the creation of a multimedia artifact. In particular, a distinction may be drawn between the design and the implementation of a multimedia artifact. This paper presents a comparison of three different authoring paradigms, based on the common case study of a simple interactive animation. We present details of its implementation using the three different authoring tools, MCF, Fran and SMIL 2.0, and we discuss the conclusions that may be drawn from our comparison of the three approaches

    PyCUDA and PyOpenCL: A Scripting-Based Approach to GPU Run-Time Code Generation

    Full text link
    High-performance computing has recently seen a surge of interest in heterogeneous systems, with an emphasis on modern Graphics Processing Units (GPUs). These devices offer tremendous potential for performance and efficiency in important large-scale applications of computational science. However, exploiting this potential can be challenging, as one must adapt to the specialized and rapidly evolving computing environment currently exhibited by GPUs. One way of addressing this challenge is to embrace better techniques and develop tools tailored to their needs. This article presents one simple technique, GPU run-time code generation (RTCG), along with PyCUDA and PyOpenCL, two open-source toolkits that support this technique. In introducing PyCUDA and PyOpenCL, this article proposes the combination of a dynamic, high-level scripting language with the massive performance of a GPU as a compelling two-tiered computing platform, potentially offering significant performance and productivity advantages over conventional single-tier, static systems. The concept of RTCG is simple and easily implemented using existing, robust infrastructure. Nonetheless it is powerful enough to support (and encourage) the creation of custom application-specific tools by its users. The premise of the paper is illustrated by a wide range of examples where the technique has been applied with considerable success.Comment: Submitted to Parallel Computing, Elsevie
    • …
    corecore