
http://wrap.warwick.ac.uk/

Original citation:
Beynon, Meurig (1988) Evaluating definitive principles for interaction in graphics.
University of Warwick. Department of Computer Science. (Department of Computer
Science Research Report). (Unpublished) CS-RR-133

Permanent WRAP url:
http://wrap.warwick.ac.uk/60829

Copyright and reuse:
The Warwick Research Archive Portal (WRAP) makes this work by researchers of the
University of Warwick available open access under the following conditions. Copyright ©
and all moral rights to the version of the paper presented here belong to the individual
author(s) and/or other copyright owners. To the extent reasonable and practicable the
material made available in WRAP has been checked for eligibility before being made
available.

Copies of full items can be used for personal research or study, educational, or not-for-
profit purposes without prior permission or charge. Provided that the authors, title and
full bibliographic details are credited, a hyperlink and/or URL is given for the original
metadata page and the content is not changed in any way.

A note on versions:
The version presented in WRAP is the published version or, version of record, and may
be cited as it appears here.For more information, please contact the WRAP Team at:
publications@warwick.ac.uk

http://wrap.warwick.ac.uk/
http://wrap.warwick.ac.uk/60829
mailto:publications@warwick.ac.uk

Research report 133

Departrnent of Computer Science
University of Warwick
Covenury CV4 7 AL
United Kingdom

EVALUATING DEFINITIVE PRINCIPLES

FOR INTERACTION IN GRAPHICS

Meurig Beynon
(RR133)

This paper is an appraisal of current progress towards supporting interactive graphics within
the framework of a general-purpose programming paradigm based upon definitions. It
considers how the use of definitive principles relates to other work, why it appears
promising, and what progress has been made towards the resolution of technical difficulties.
As a sequel to l2l, it re-examines potential for applications of definitive principles in
interactive graphics in the light of more recently developed ideas about dealing with control
issues and dynamically changing relationships in a definitive programming framework. It
also takes account of new research into notations for graphics that makes use of geometrical
constructions. As a subsidiary theme, the paper contrasts the support for reference and
representation of geometric relationships in vaious kinds of interactive graphics systems.

November 1988

Evaluating definitive principles for interaction

Meurig Beynon
Deparfnent of Computer Science
University of Warwick
Covenury CV4 7 AL
e-mail: wmb@uk.ac.warwick FAX +M QA! 525714

in graphics

Tel: +44 (203) 523089

ABSTRACT

fFl.pup.tr is an appraisal of current progress towards supporting interactive graphics
within the framework .of a general-pgrpo.sg programmlng plradigm basiA upon
definitions. It considers how the use ofldefinitiv! frincipl-es relites to 6ther work, *ttyit appears promising, and what progress has be-en made towards the resolution of
technical difficulties. As a sequel to l2l, it re-examines potential for applications of
definitiveprinciples in interactive graptrics iq thg light of more recently ddveloped ideas
about dealing with control issues and dynamically Changing relationstrips in a definitive
programming framework. It also tak6s account of newlesearch into notations for
graphics that makes use of geometrical constructions. As a subsidiary theme, the paper
contrasts.th,e support for reference and representation of geometric relationshipi in
various kinds of interactive graphics systems.

Key words: interactive graphics, spreadsheets, geometric constructions,
constraint-based graphics systems, functional programming, reference, animation

1 . Introduction

Most existing interactive graphics systems focus on providing the user with a toolkit that

makes it possible to draw complex diagrams; they reflect a view that is oriented towards tools rather

than frameworks. The emphasis is upon programming as a "means to an end", viz the d.epiction of a

complex diagram. Though graphical interfaces are fashionable, and user-computer interaction

concerns are deemed imponant, the underlying idiom often resembles batch programming. The user

is an unequal partner who makes use of an interactive interface for convenience, but is not therebv
J

enabled to intervene more significantly and directly in the computational process.

Modern applications for graphics demand a broader perspective. It has become necessary ro

think of "interaction in the large": to consider the issues of managlng many thousands of drawings,

perhaps over many years of development, within the broader semantic context of such applications

as engineering design and manufacture. In developing interactive graphics systems that can supporr

large applications, it is surely important to first identify simple and powerful principles for their

design. More sophisticated tools per se:ue no panacea- Experience has shown that developing tools

based upon ostensibly less powerful techniques can enhance the range of application: c.f. [7]

" ... the use of geometric constructions eliminates the need for solving large systems

2

of non-linear equations inherent in declarative constraint-based systems.

Consequently, L.E.G.O. can be used to model comparatively more complex objects."

A framework within which existing approaches to interactive graphics can be interpreted and

integrated must depend upon generic techniques with wide - if not universal - applicability.

Unification of principles in interactive graphics appears hard to attain. The methods used are

notoriously diverse; there is a conspicuous lack of fonnalisation and standardisation, and ad hoc

techniques a.re prevalent. The problem of formulating an abstract view is compounded by the very

different functions that graphical images can serye: as in computer-generated aft, medical image

analysis, symbolic representations in architecture or circuit design, or technical drawing. The many

different types of hardware and software support for graphics pose complementary problems. Nor

are existing techniques for formal specification necessarily well-suited for interactive applications.

This paper aims to appraise current progress towards supporting interactive graphics within

the framework of a general-purpose programming paradigm based upon definitions: "definitive

programming". Previous papers dealing with related work include U,2,31. Though many of the

issues addressed were considered in [2], there have been several subsequent developments that

motivate a re-examination. As described in [4,5], the concept of definitive programming has itself

been enriched through the identification of an abstract machine model that can suppon far more

sophisticated computation than the "pure definitive notations" of [1]. This significantly enhances the

scope for representing dynamic data relationshipr, and dealing with concerns - such as animation -

where control structures are required. Of additional interest is the parallel development of interactive

graphics systems based upon geometric constructions U,l3l: work rhat can be directly related to the

definitive programming approach - with mutual benefit. For instance, definitive programming

provides a much broader perspective within which to consider the use of "imperative constraints",

whilst research on constnrction-based modelling suggests new and better solutions to the technical

problems of dealing with complex operators raised in t2l.

2 . Fundamental issues for interactive graphics

The focus in this paper is upon graphics systems that involve interaction in a significant

sense. A system that supports "visual programming" is not necessarily such a system: the main

function of a graphical interface may be to permit convenient editing of a program that routinely

3

generates graphical images in an autonomous way. To invoke the concept of "significant

interaction" is itself to beg a question: "Is it possible to make an objective claim that one sysrem

supports richer interaction between the user and the computer than another?" This paper argues that

it is - provided that the reader will accept the thesis that a spreadsheet gives better support for

interactive calculation than a pocket calculator.

To appreciate the context in which "interaction" is being interpreted, the user may think of a

major design project involving the abstract description and evaluation of a complex artefact such as

a building. A very large number of drawings may be developed in the design process, and the

timescale may be such that drawings have to be revised many months after they are first drawn.

Naively, the user will need to be able to specify relationships between objects and components of

objects that are to be stored and maintained by the computer. Several key issues arise: How are the

relationships to be established? When is the maintenance of relationships ca:ried out? To what

extent are relationships maintained through autonomous action on the part of the computer? How is

the current status of the design to be represented to the user? How can data relationships be

represented in such a way that semantic analysis or simulation can be conveniently performed?

The demands that a user would ideally wish to make upon a design system ile very great:

- relationships should be easily perceptible, and conveniently mod"ified

- it should be possible to record partial information about relationships conveniently

- relationships should be expressible at many levels of abstraction

- it should be possible to accommodate a temporary failure to meet constraints, to

compensate at a later stage, and conveniently make consequent changes retrospectively.

For the user, a ffansaction with the system will typicatly be an incrementat change - a single addition

to the sequence of perhaps many thousands of previous transactions. The architect who moves a

wash-basin a metre nearer to the door will not expect the plans for the entire building to be

reprocessed, but might reasonably expect to be advised that the waste pipe is obstnrcted by a

balcony on the floor below. Many existing programming paradigms for interactive graphics are

better suited for the complete reappraisal of a design after every trivial amendment than to modest

and selective processing proponionate to a minor transaction. To some extent, this is a symptom of

a more profound difficulty: how to represent relationships betrveen objects so subtly that a trivial

action has some impact, but not too much. Such problems of maintaining relationships that are both

4

consistent and admit a multitude of very minor modifications have promoted the development of

systems that avoid the emba:rassment of user-intervention wherever possible. Thus a sophisticated

design system might invoke a computational scheme of enormous ingenuity that involved

reconfiguring all the waste pipes and balconies on an entire wall, at considerable computational

cost, and perhaps in violation of the user's aesthetic preferences.

3 . Current approaches

The above discussion indicates that the effective representation of geometrical relationships is

essential for significant interaction in a graphics system. Many existing approaches fail to address

this issue adequately. When the emphasis is on supporting a repertoire of drawing operations (as in

say MacDraw), the graphical image is described by the cumulative effect of procedural actions, and

the geometric relationships that can be established are limited to the independent manipulation of

explicitly defined groups of points and lines. Within such a framework it is not possible ro supporr

relationships benveen geometric entities at an appropriate level of abstraction.

It is clear that an interactive graphics system that gives effective support for abstract

relationships must be based upon higher-level primitives. Construction-based modelling recognises

this by adopting fundamental geometric constructions as the primitive operations, and describing

structural relationships in terms of these. The formulation of data relationships over an appropriate

system of data types and operators at a reasonable level of abstraction is common to many

approaches: their difference lies in the way that this "underlying algebra" is exploited. Four

interrelated approaches to modelling geometric relationships are particularly relevant to this paper:

- functional programming principles (c.f. [9] p255),

- equational /constraint-based principles (c.f. [6]),

- construction-based modelling 17,L3f ,

- definitive programming principles [2,3].

Systems to represent planar line-drawings within these paradigms would typically be based upon an

underlying algebra consisting of scalars, points, lines, and shapes comprising multisets of points

and lines, together with elementary geometric operators e.g. specifying the line joining a pair of

points, the angle bet'ween two lines, or the union of two shapes. A brief outline of the different

superstructures that can be built upon this foundation within these paradigtns will be useful.

5

Following [9], a functional prograrnmer might represent an abstract shape by a function

pointxpoint+shape

(i.e. as the set of points and lines determined by a choosing a panicular coordinate system as

represented by a pair of points), and define complex shapes by applying higher-order funcrions to

basic shapes. During interaction, the curent status of the functional programming system will be

determined by what functions have been defined, and the image currently depicted will be

determined by what function evaluations have been performed. Geometric relationships are

specified and modified by editing a script that defines appropriate higher-order functions, and

redisplay is effected through function re-evaluation. ;

In a constraint-based system, geometric entites are represented by variables, and geometric

relationships are expressed as equational constraints between variables over the underlying algebra

e.g. insisting that four points lie on a circle, or that nvo lines are parallel. Ideally, these consffaints

are considered to be purely declarative in nature: they prescribe the relationships that must hold

without burdening the user with details of how they are maintained. Interaction involves editing the

current set of constraints, invoking a constraint-satisfaction process that first attempts to reconfigue

the geometric entities appropriately, and subsequently leads to their redisplay.

In a construction-based modelling system, the relationships between data are formulated

through a sequence of "imperative constraints". In effect, the locations of geometric entities are

specified relative to each other through explicit prescriptions that are directly or indirectly expressed

in terms of the operators of the underlying algebra. The constraints established in this way are

conceived and stored as procedural fragments that encapsulate the description of a graphical image,

and can be edited for purposes of reconfiguration or re-display.

In a definitive programming idiom [2], the points, Iines and shapes rhat make up rhe

graphical image are represented by a system of variables of the appropriate type. The value of a

variable can either be specified explicitly, or implicitly by an algebraic expression in terms of the

values of other variables and constants. The system of variable definitions is free of cyclic

reference, so that the variables can be partially ordered by a data dependency relation:

vSw if the value of w is defined - directly or indirectly - in terrrs of the value of v.

Every part of the image is associated in this way with a variable, and the interrelationship between

6

parts is expressed through the defining formulae. Interaction is effected through editing the current
system of definitions, re-evaluation of those variables whose values may be affected, and redisplay
of the associated entities.

4 . Limitations of current interactive systems

The different programming parad'igms for interactive graphics briefly sketched above are
often ostensibly evaluated and compared on performance considerations. For instance,
construction-based modelling is primarily seen as avoiding the technical problems posed by
complex consrraint satisfaction in consrrainr-processing systems (c.f. t7r $3.1). It will be argued in
this paper that perfonnance coruideratioru apartneither a functional nor an equational programming
idiom is an appropriate basis for interactive systems for major applications, and that the merits of
consffuction-based modelling are in part related to a separate concern: the coincidental advantages
that result from formulating geometric relationships in a way that de factoexploits systems of
variable definitions' To dispel any impression that this links definitive programming more closely to
construction-based modelling than to the other paradigms, it should be added that definitive
prograrnming is in certain respects more akin to functional and equadonal programming; it merely
introduces one significant abstract concept (viz variable definition) that can be very directly linked to
the use of geometric constructions.

The evaluation of interactive systems proposed here is based upon the criteria for significant
interaction outlined in $2 above. The questions that are most relevant to the user,s concern in
interacting with a graphics system may be formulated as: "what iue the current relationships
between entities? How can I reference entities? How can I modify the relationships?,, The architect
who moves the wash-basin may not appreciate the implications of this simple acdon. In a

well-conceived system' it is to be expected that some effects of actions consequent upon moving the
basin - such as moving an associated mirror - are performed automatically, but such automatic
responses have their limitations, and may need to be acdvated at the user,s discretion. In a badly
conceived system, moving the basin might involve changing the dimensions of the building to
accommodate a dislocated balcony at the corner of an external wall. Such an illustration highlights
the very significant part played by data dependencies in an interactive system: it may be
exceeedingly hard to anticipate what entities can be referenced in isolation, and what the

7

implications of modiFrcation might be.

How can issues of reference of this nature be handled in existing.paradigms? Irrespective of

which paradigm is used, it seems clear that a solution must involve making the program code that

generates an image transparent to the user. For instance, to give informal support to the architect

who wishes to understand the consequences of moving the basin, it would be necessary to highlight

those parts of the code pertaining to the basin, to indicate in some way how modifying this code

would affect the rest of the program, &trd - to ensure a tnrly interactive rather than batch processing

environment - equip the compiler to interpret a local change to the code without complete

recompilation. The effectiveness of a programming paradigm for interaction may be better gauged

by how easily these processes can be performed than by traditional criteria. Paradoxically, the

fundamental principles that are represented as special virtues of good programming idioms, viz

referential transparency in declarative systems, and modularity and information hiding in

sophisticated procedural systems, do not assist the recognition of implicit data dependencies.

The notion of "moving the basin" is itself rooted in a procedural computational framework.

Conceptually, there is a specific variable wash_basin whose value is an image of a basin on the

architectural plan, and whose value is changed when the basin is moved. In the L.E.G.O. idiom,

the basin might itself be represented by a procedure including a parameter specifying its position.

By editing this procedure definition, it would certainly be possible to relocate the basin in isolation,

but to model the relationship between the basin and the mirror would require some data dependency

between the procedures drawing the mirror and the basin. From an implementation perspective, an

object-oriented paradigm may clarify this model, making it possible to represent the basin by art

object rather than a family of primitive procedural variables, and the geometric relationship bet'ween

the basin and the mirror through a message passing protocol, but the data dependencies established

in this way will nonetheless be diffrcult to ascertain.

Witttin a purely declarative programming paxadigm, there is - ideally - no direct way to model

procedural variables such as wash_basin: a program is a set of functions, or a system of

equations, that defines a set of values through evaluation, or solution. In this respect, the

philosophical foundations of declarative paradigms militate against rich support for reference. To

modify the graphical image the user must edit the set of functions or equations, so that in principle a

totally new program has to be interpreted. Though some special provision for modularisation could

I

be made by elaborating the specification (c.f. [10]), these are unlikely to enable rhe user to view the

specification flexibly as incorporating references to parts of the image that are subject to change.

In a constraint-based framework, there are variables to represent geometric entities, though it

may not be easy to choose these at an appropriate level of abstraction. Even if the problem of

identifying the constraints that pertain to the wash-basin can be solved, formidable difficulties

remain. Determining whether the simplest new constraint leads to inconsistency is presumably

algorithmically undecidable in general, so that its impact can neither be conveniently represented to

the user, nor acknowledged by the compiler.

Within the definitive programming paradigr.n, it is still necessary to determine data

dependencies through examination of the program code. The difference is that the use of definitions

makes these dependencies transparent, in that they can be precisely identified syntactically, and

readily interpreted. These virnres are epitomised in numeric rather than geometric appplications by

the spreadsheet, which allows relationships and values to be defined and modified in an easilv

comprehensible manner. This has important ramifications, to be investigated below.

5. Geometric constructions and definitions

To explore the significance of using definitions to formulate geometric relationships, it will

be helpful to recast a constnrction-based specification in definitive terms. This is easily done for the

simple example of a geometric construction "bisection of a line", &S formulated in L.E.G.O in [7]:

point a = {400,3701
point b = {600,470}
line I = [a,b]
circle cl = circle of radius I with centre a
circle c2 = circle of radius I with centre b
pointset {x1,x2} = intersection (cL,c})
line p = [x1,x2]

The left-hand column is the original L.E.G.O specification; the right-hand an equivalenr formulation

using a fictional variant of the definitive notation DoNaLD [2,3]. Note that the "operators of the

underlying algebra" required for this definitive notation correspond precisely to the primitive

constructions of L.E.G.O. The strong syntactic resemblance betrveen the two specifications should.

not detract from very fundamental semantic distinctions. The order of the definitions on ttre right is

not significant: the data relationships that they express is intrinsic in the variable references. The

definitions are not to be interpreted as a sequence of constructions to be carried out, but as an

(point 400 370 A)
(point 600 470 B)
(line A B L)
(circle A L Cl)
(circle B L C2)
(intersection Cl CzXl X.2)
(line Xl X2 P)

I

explicit description of the data dependencies between geometric entities. Such systems of definitions

can form a component of a larger definitive specification irespective of whether the variables to

which they refer are curently well-defined- The effect of redefining a variable is to update thar parr

of the specification that is linked through data dependency to the variable, and to lead - through

re-evaluation - to selective redisplay.

The above illustration may suggest that the distinction between the L.E.G.O. and DoNaLD

approaches is cosmetic. After all, the difference between the two code fragments above is small

enough for easy re-interpretation in either direction. It can be argued - for instance - that storing a

set of definitions that describes the bisector of the line AB when A and B denote the same point, is

essentially the same as storing a procedural file of instructions that happens at present not to be

executable. The data dependencies between variables in the L.E.G.O. specification are in this case

easy to identify, and incremental recompilation of the procedural specification after any single

statement were to be modified (as in "redeftning a variable") is well within the scope of current

compiler technology U4l.

The virtues of the new perspective afforded by definitive programming cannot be fully

appreciated from such a small example. To justify the L.E.G.O. specification as a system of

"imperative constraints" requires an interpretation of the variables different from that used in a

raditional procedural approach, lest they exist only whilst the drawing procedure is being execured.

The reinterpretation of construction steps as definitions captures this distinction, and exposes the

characteristics of a small-scale L.E.G.O. specification that make it conceptually simple for the user

to interpret. As the history of procedural prograrnming testifies, a procedural fragment can become

very hard to interpret in the context of a large specification. On these grounds, a definitive

reformulation seems to be a promising way to express the particular qualities of specifications in the

L.E.G.O. idiom, provided that it can be shown that definitive progamming in principle has the

expressive power to support major applications.

6. Towards definitive programming in the large: data representation

How do definitive programming principles scale up? There are two aspects to be considered.:

the representation of data, and the specification of control. The issue of treating complex data types

within a definitive framework has received much attention in previous papers [L,2]. The principle is

10

clear: defining the value of a variable of a complex data type should be possible at many different

levels of abstraction, so that either a recipe for the entire value of a variable is suppli ed, or the

variable is composed of a family of independently defined variables whose values describe its

constituent parts. Two methods of dealing with this issue have been developed: the use of "moding"

as in the definitive notation ARCA, and the use of openshape variables that permit a hierarchical

definition of sets of points and lines as in DoNaLD [3,4]. The principal outstanding problem is

describing a formal framework in which to treat the specification of operators of a complex rype: a

topic that provides a natural context for the further consideration and comparison of functional,

construction-based and definitive methods.
;

The issues are well illustrated by considering the design of user-defined operators of type

shape within DoNaLD. The naive view is that a userdefined operator of type shape is an extension

to the underlying algebra, and should be described by a pure function rehrrning a value of type

shape. The idea of using a definitive notation to specify the function itself is superficially

unattractive - within the function body, there seems to be no purpose in having variables whose

values are specified by definitions. In the original DoNaLD design [3], this was rhe position

adopted: a new shape operator should be a function without side-effects to be specified using a

simple procedural or functional notation.

Such a convention is not wholly satisfactory. A typical use of the shape operator f(a,b,c,...)

would involve a shape variable declaration followed by a definition:

. shape S; S=f(A,8,C,...).

The problem then arises: in making use of the implicitly defined variable S, what references to the

constituents of S are valid? For instance, if f returns a set of points and lines that defines a square,

how is it possible to reference its edges and vertices? Oddly enough, though functional

programming might appear to be the obvious paradigm to choose for the specification of a pure

function, it is unhelpful in this respect. It seems that the problems associated with interactive

revision of a functional specification referred to in connection with interaction in g4 above also

impinge where only reference to a specification rather than revision is involved.

A trivial illustration will clarify the issues, and indicate why the presenr proposal for the

specification of DoNaLD shape operators is as much influenced by the ostensibly procedural

reaunent of function definition in L.E.G.O. as by functional programming ideas. Following [9], a

11

system of lines resembling the rungs of a ladder might have the follo*ing functional specificarion:

ladder: NxVxV + P

ladder(n,a,b) = if n=1 then line(a,b) else pictule(line(n.a,b),ladder(n-1 ,a,b)).

In this specification, a and b are parameters representing vectors, n is an integer to specify the

number of rungs, and P designates the data type "picture". It is an elegant and concise description,

but is many ways inappropriate in an interactive graphics setting. To depict the rungs of a ladder, a

function evaluation such as

ladder(n, <1,2>,<2, 1 >)

must be performed. To reference a particular rung of the ladder, as might be required in simulating

"climbing the ladder", is impossible without embellishment of the original specification. To model a

real ladder, that might consist of two congruent hinged sections that could be locked into a

V-shaped or linear relation, it would not be enough to use such a functional specification - even in

conjunction with a DoNaLD shape variable. Of course, it is not infeasible to elaborate functional

methods to partially redeem the situation (c.f. t10l), but there appeil to be fundamental limirarions

associated with the srictures of referential transparency.

By contrast, a procedural approach to the specification of the ladderg function makes the

problems of attaching references to the individual rungs of the ladder less acute. In effect, it is

relatively to easy to formulate a procedural description of a function that retgrns not only a value of

type shape to represent the ladder, but a family of variables of type line to represent rhe rungs. To

illusffate the form that such a specification might take, consider the two following specifications -

the one written in the construction-based L.E.G.O. idiom, the orher in the definitive DoNaLD swle:

(define_function ladder(n a b))
(line n.a n.a+(b-a) t)
(write_function)
(if (p1) then

(ladder n-l a b)
(end_function)

openshape ladder(int n, point a,b)
within ladder {

line L - [n.a, n.a+(b-a)]
if n>l then {

shape Ladder = ladder(n- l,a,b)
)

)

The same considerations that applied to the comparison of the "bisection of the line" construction

discussed above again apply. The dual semantics that makes it possible to view a L.E.G.O.

specification from a procedural and a definitive perspective is helpful here in interpreting the

specification on the right as defining an operator together with a system of references to the value it

12

returns. By introducing such operator specifications it is possible to formulate a DoNaLD definition:

shape Laddeq Ladder = ladder(7, {1,2},{Z,L})

so that Ladder/L refers to the top rung , Ladder/Ladder to the remaining set of rungs, of which

Ladder/Ladder/L is the topmost etc. This is the kind of referencing facility that is required when

establishing relationships between complex objects that cannot conveniently be explicitly defined.

6. Definitive programming in the large: control

In this paper, the case for "programming with definitions" has so far been made on technical

grounds. The primary argument has been that conventional interactive graphics involves ed.iting

functional, procedural or constraint-based specifications that typicalty correspond only in a very

obscure way to the cognitive models the user requires. Par:ticular attention has been focussed on the

limited way in which conventional paradigms for interactive graphics support references to objects

and their constituent parts. Some of the problems can be attributed to the vague semantics of

variables, and the dichotomy between declarative frameworks in which references are too inflexibly

established, and procedural environments in which they are too impermanent. The result is that

interactive systems are frequently ill-equipped for significant user intervention.

In what respects does definitive programming potentially offer better prospects? To an exrent,

the ideas introduced above meet the need for better support for the abstract description and

referencing of graphical images, and allow incremental changes to relationships to be subtly an6

efficiently represented. The representation of dependencies between data using definitions is a

pa:ticularly significant concept, since it enables the user to prescribe, and to anticipate, the effects of

amending a specification.

The significance of using definitions to support interaction goes beyond technical

considerations alone, however. A central thesis of current work on definitive programming is that a

definitive system is a useful cognitive model not merely for user-computer interaction, but for the

actions of an agent in a concurent system [4,5]. In effect, a single system of definitions is best

conceived as articulating the effects of a particular action or intended action. Only by such a

generalisation of the concept of "definitive notations for interaction" does it become possible to

express the fact that an architect's expectations on moving the wash-basin might or might not

encompass an automatic compensating movement of the mirror, Bod could lead to the invocation of

13

an automatic process to reconfigure the external balconies.

As this illustration suggests, though it may not be possible for the user to predict the outcome

of an automatic computation intiated during an interaction, it is necessary to give the user both a

degree of control over such computation, and a good appreciation of its effects. The perspective

taken in this paper is that the description and manipulation of geometrical relationships throughout

the entire user-computer interaction should be seen as one consistent (non-terminating) computation

comprising many simple transactions. In this interactive process, the user and the compurer

participate via sequences of homogeneous actions, and the effect of each individual action is

ffansparent to the user. This means, in particular, that the user knows the effective geometric

relationships throughout the entire interaction, even to the extent that it is possible for the user to

suspend and intervene during an automatic computation.

The appropriate abstract machine model adopted for this purpose is the absffact definitive

machine (ADM), as described in [4,3,5]. A full discussion of the ADM is beyond the scope of this

paper, but a brief sketch of its use in the animation of a simple concurrent system will be used to

illustrate the key ideas. In many respects, this ADM simulation resembles examples developed

using the NoPumpG software Uzl.

Suppose that two blocks bl and b2 are connected by a string of length d, and that the blocks

are independently controlled by two handlers. The behaviour of the pair of blocks can be described

by the ADM program in Figure 1. The handlers are represented by entities: each entity comprises a

set of variable declarations and definitions, and a set of guarded actions. In this context, each action

consists of a sequence of redefinitions. The operation of the ADM is such that in each machine cycle

the guards of all actions within curently instantiated entities are evaluated, and the actions

associated with true guards are performed in parallel (subject to non-interference). The entity

handler0 for instance, n&y at any stage be holding bl - as defined by the variable hl, and when

holding the block may be pushing left (p11) or right (prl).The movement of the blocks is

determined by the bmover0 entity, and depends upon the directions in which the blocks are

currently being driven (dr1, dl1, dr2, dl2).

The specification of bmover0 illustrates how the context within which variables are redefined

must be altered to reflect conditions such as whether the blocks are touching (t12), &trd whether the

string is taut (st). For instance, if bl is being driven to the left, and the string is taut, the action

14

"dI1. and st -> p2-p1+d; p1=lp1l-1"

is enabled, indicating that the movement of b1 to the left must necessarily drag bZ to the left also.

As it stands, the specification does not include any method for resotving interference between

actions, as for instance would arise if bZ were simultaneously being driven to the right (c.f. t5l).

The entity bstate0 records the cturent position and status of the blocks: theirpositions (p1,

p2) and whether the string either should snap or has been snapped (nostr).

The simulation is very simply animated by complementing the ADM specification with a file

of DoNaLD definitions to describe the required display. The DoNaLD definitions of the

openshapes b1 andb2 that represent the blocks, and the line sr that represents the string can be

abstractly viewed as an additional entity within the ADM specificarion. The block display registers

the location of the blocks (as specified by the variables p 1 and p2), and the handler-block

relationship (as specified by h1, d1, drl etc). The simulation snapshot depicts a situation in which

b1 is being driven to the right, and the block b2 is being held, for instance.

Concluding remarks

This paper has argued the case for giving serious consideration to the development of

definitive programming as a medium for describing interactive systems, and perhaps indicated

something of its potential. There are many issues still to be explored., and work is in progress on a

variety of related topics, including applications to CAD, and to the simulation of concurrenr

systems

Good semantic models for graphics and interaction deserve closer consideration. There are

many indications in this paper of the apparent inadequacy of our present theoretical foundations for

programming in respect of data representation and manipulation (c.f. [11]). An intriguing historical

sidelight on this issue is the demise of the concept of a mathematical variable as "representing a

variable quantity" during the arithmetisation of analysis in the 19th cenrury [8]. Perhaps the

development of better methods of programming for interactive graphics can stimulate

reconsideration of the formal status of the rich - if obscure - concept of variable that geometrical

innrition formerly inspired-

November 14, 1g8B

Acknowledgements

I am indebted to Mike Slade and to Edward Yung for their support in designing and implemenring

software prototypes for DoNaLD and the ADM, and to Steve Russ for many helpful discussions on

the subject of reference and interaction.

References

1. W M Beynon Definitive rntationsfor interaction,Proc hci'85 CUP 1985, 23-34
2. W M BeynonDeftnitive principlesfor interactive graphics, NATO ASI series F:40, 1987,

1083- 1097

3. W M Beynon, D Angier, T Bissell, S HuntDoNaLD: a line drawing system based on definitive
principles, Univ of Warwick RR#86, 1986

3. W M Beynon, Y W Yung,Implementing a definitive rntationfor interactive graphics, New
Trends in Computer Graphics, ed N Magnenat-Thalman, D Thalman Springer-Verlag 1988,

4s6-68

4. W M Beynon, M D Slade, Y W Yung Parallel computation in deftnitive models, in Proc

Conpar'88 (to appear)

5. W M Beynon Definitive programming for parallelisra, CS RR#132, Warwick Univ, 1988

6. A Borning The programming langwge aspects of Thingl^ab, a constraint-oriented simulation
laboratory, ACM Transactions on Programming Languages 3(4), 1981 ,353-387

7' N Fuller, P Prusinkiewicz Geometric Modelling with Euclidean Constructions,New Trends in
Computer Graphics ed N Magnenat-Thalmann, D Thalmann, Springer-Verlag, 37g-3g1

8. P Geach, M Black Philosophical writings of Gotttob Frege.

9. P Henderson F unctio nal P ro gramming, Wentice-Hall International 1 980

10. J Hughes Why Functional Programming Matters,PMc Report #16, Chalmers Univ of Tech &
Univ of Goteborg, 1984

11. W Kent Data and Realfry, North-Holland L9TB

12. C Lewis Using the NoPumpG primitive,Deptof Computer Science and Inst of Cog Sci, Univ
of Boulder

13. T Noma, T L Kunii, N Kin, Henomoto, E Aso, T Yamamoto Drawing Input Through
Geomeffical Constructiorts: Specification adn Applications, New Trends in Computer Graphics,

ed N Magnenat-Thalman, D Thalman Springer-verlag 1988, 403-4ls
14. T W Reps Generating Language-Based Environrnents MIT Press 1984

15

Figure 1:
A block moving simulation illustrating definitive principles

entity handlerl 0
{

definition
d1 = dl1 or dr1 ,

dl1 = h1 and pl1, dr1 = h1 and pr1,
pl1 = 0, pr1 = 0, h1 =0

action
not h1 -> h1=1 ,

h1 and not d1 -> h1=0: pl1 =1: pr1=1,
dl1 -> pl1 = 0, dr1 -> pr1 = 0

t
)

entity bstate0
{

definition
p1, p2, d,
st = flot nostr and (p2-p1)==6,
t12 = (p2-p1)==1,
nostr = 0

action
not nostr and (p2-p1)>d

)

entity bmover0
t

action
dl1 and not st -> p1=lp1 l-1 ,

dl1 and st -> p2=p1+d; p1=lp1 l-1 ,

dr2 and not st -> p2=lp2l+1,
dr2 and st -> p1=p2-d; p2=lp2l+1 ,

dr1 and not t12 -> p1=lp1 l+1,
dr1 and t1 2 -> p2=p1+1 ; p1=lp1 l+1
dl2 and not t1 Z -> p2=lp2l-1,
dl2 and 112 -> p1=p2-1 ; p2=lp?l-1 ,

)

bstate0; bmover0, handlerl 0; handler20

openshape b1

within b1 {
point O

O = {500+-/p1*100, 500}
point NE,NW, SW,SE
NE=O+{50,50}
NW=O+{50,-50}

line n,s,e,w
p = [NW,NE]
s = [SW,SE]

point N, E, S, W, X
N = if -/h1 then (NE+NW) div 2 else O
S ='if -/h1 then (SE+SW) div 2 etse O
E = if -/h1 then (NE+SE) div 2 else O
W - if -/h1 then (NW+SW) div 2 etse O
X = if -/dr1 then E else

if -/dl1 then W else O
line WE, NX, SX = [W,E], [N,X], [S,X]

)
int p1,h1,dr1,dl1,p2,h2,drZ,dl2,nostr
line str
str = [b1/E, if nostr then b1/E else b2lw]

Above: The ADM control program

Bottom right: Simulation snapshot

Middle right: Detail of the blockl display

Top right: DoNaLD display specification

