
NASA NASA

.
* *
* *
*
*
*
*
*
*
*
*
*
*
*
*
*
*

USL / D M NASA / PC RBrD

MOWING PAPER SERIES

R e p o r t Number

D m .NASA/PC R B I - 2 0

*
*
*
*
*
*
*
*
*
*
*
*
*
*

* *
.

The USL/DBMS NASA/PC R&D Working Paper Series contains a collection of formal and
informal reports representing results of PC-based research and development activities being
conducted by the Center for Advanced Computer Studies of the University of Southwestern
Louisiana pursuant t o the specifications of National Aeronautics and Space Administration
Contract Number NASW-3846.

For more information, contact:

Wayne D. Dominick

Editor
USL/DBMS NASA/PC R&D Working Paper Series

Center for Advanced Computer Studies
TJniversity of Southwestern Louisiana

P. 0. Box 44330
Lafayette, Louisiana 70604

(318) 231-6308

(hASA-CR-184552) A P B C G B A B B I E G E Y V J B O I 8 E N T 189-14992
E V A L U A T X C N EE'XHCCCLOGY P O 6 CEJECZ-CBXEITED
S Y S T E R S Eh.D l h e s i s E i n a l BE&crt, 1 Jul.
1 4 8 5 - 3 1 Dec. { t a i v e r s i t y of Eouthwestern Unclas
Lcrlisiana. L a f a y e t t e . Center fcr Advanced G3/82 0183590

DBMS.NASA/PC R&D-20 WORKING PAPER SERIES

https://ntrs.nasa.gov/search.jsp?R=19890005621 2020-03-20T05:06:05+00:00Z

Consequently, the research presented in this document addresses the design, development, and
evaluation of a systematic, extensible, and environment-independent methodology for the compara-
tive evaluation of object-oriented programming environments. This methodology is intended to serve
as a foundational element for supporting research into the impact of object-oriented software
development environments and design strategies on the software development process and resultant
software products. A systematic approach is defined for conducting the methodology with respect to
the particular object-oriented programming environment under investigation. The evaluation of each
environment is based on user performance of representative and well-specified development tasks on
well-characterized applications within the environment. Primary metrics needed to characterize the
software applications under examination are also defined and monitored for subsequent use in the
analysis and evaluation of the environments.

The major contributions of this work are as follows:

1. This research has formally established the primary metric data definitions that com-
pletely characterize the unique aspects of object-oriented software systems, including
the inheritance lattice and messaging graph.

2. This research has established language-independent procedures for automatically
capturing this primary metric data during an evaluation. These procedures have
been shown to be instantiable in a representative set of objectsriented languages.

3. This research has established the fundamental characteristics of object-oriented
software that indicate consistent applications of object-oriented design techniques,
namely, that common capabilities are factored throughout the inheritance lattice and
that individual objects focus on providing specific capabilities.

4. This research has defined a language-independent application domain-specific
development paradigm based on these fundamental characteristics for highly interac-
tive graphical applications.

5 . This research has identified design principles for a programming environment evalua-
tion methodology (PEEM) that ensure its applicability to object-oriented develop-
ment environments. The PEEM design principles unique to this work include the fol-
lowing: the requirement for primary metric data definitions that completely charac-
terize the object-oriented characteristics of the software under evaluation, the
requirement for the identification of relevant applications domain-specific develop-
ment paradigms to support the validity and comparability of evaluative results, and
the requirement for automatic capture oi performance and primary metric data to
ensure consistency and eliminate human bias.

6. Finally, this research has produced a systematic, extensible, and environment-
independent programming environment evaluation methodology capable of support-
ing research into complexity models and metrics for object-oriented systems. The
design principles, identified in contribution-5 above, establish the basis of the funda-
mental distinctions between exiting PEEMs and the PEEM developed as part of this
research.

This report represents one of the 72 attachment reports to the University of Southwestern Louisiana’s
Final Report on NASA Grant NGT-19-010-900. Accordingly, appropriate care should be taken in
using this report out of the context of the full Final Report.

A PROGRAMMING ENVIRONMENT EVALUATION

METHODOLOGY FOR

OBJECT-ORIENTED SYSTEMS

A Dissertation

Presented to

The Graduate Faculty of

The University of Southwestern Louisiana

In Partial Fulfillment of t h e

Requirements for the Degree

Doctor of Philosophy

Dennis R. Moreau

September, 1987

A PROGRAMMING ENVIRONMENT EVALUATION

METHODOLOGY FOR

OBJECT-ORIENTED SYSTEMS

Dennis R. Moreau

APPROVED:

Wayne D. Dominick, Chairman
Professor Associate Professor
of Computer Science

William R. Edwards

of Computer Science

Steve P. Lsndry
Assistant Professor Dean
of Computer Science Graduate School

Joan T. Cain

ACKNOWLEDGEMENTS

I would like to express my profound gratitude to Professor Wayne D. Dom-
h i c k for chairing my committee and for supporting and guiding this research.
His encouragement, commitment, professionalism, responsiveness and friendship
have made this work possible. I would also like to thank Dr. William R. Edwards
and Dr. Steve P. Landry for providing their valuable assistance and serving on
my committee.

Several other researchers with whom I have had insightful discussions con-
cerning the significance and progress of this research should also be ack-
nowledged. They include John Eubbing and Bob Walstra of Hewlett-Packard’s
Palo Alto Research Laboratories, Kurt Shmucker of Productivity Products Inter-
national and Zack Shorer of AT&T Bell Laboratories.

The author would like to acknowledge the significant support provided to
him throughout the duration of these research activities from the National
Aeronautics and Space Administration via a number of grants and contracts,
including NASA Contract Number NASW-3846, NASA Research Grant Number
NAGW-701, and NASA Training Grant Number NGT-19-010-900.

The author would also like to acknowledge certain key individuals whose
assistance in developmental activities through participation in the USL NASA
Project proved invaluable. They are Brijesh Agarwal, Peter C. Bahrs, John M.
Love, Desiree J. Matta, Patrick R. Michaud, and Kam C. Wong.

Finally, the author would like t o acknowledge XT&T Information Systems,
Inc. for donating to the USL NASA Project the hardware environment that has
served as the set of controlled-usage workstations for supporting the specific test
case implementation and experimentation aspects of this research, and t o ack-
nowledge the 110f different organizations whose donated software to the USL
NASA project has provided an exceptional software development environment for
these activities:

1.
2.
3.
4.
5 .
6.
7.
8.
9.
10.
11.
12.
13.
14.

International Business Machines Corporation
Life boat Associates
SPSS, Incorporated
Phoenix Computer Products Corporation
Applied Technical Systems
Wiley Professional Software
Rational Systems, Inc.
Arity Corporation
Central Point Software Incorporated
Spruce Technology Corporation
Gold Hill Computers
UniPress Software
The Software Link, Incorporated
Oracle Corporation

iii

iv

15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.
35.
36.
37.
38.
39.
40.
41.
42.
43.
44.
45.
46.
47.
48.
49.
50.
51.
52.
53.
54.
55.
56.
57.
58.
59.
60.
61.

Relational Database Systems, Inc.
Com p uter Innovat ions, Inc.
Greenleaf Software, Inc.
Emerging Technology Consultants, Inc.
Microrim, Inc.
WELCOM Software Technology
Spartacus, Inc.
F T G Data Systems
Strategic Software Planning Corporation
Penton Software, Inc.
Zanthe Information, Inc.
Expertware, Inc.
Productivity Products International, Inc.
Production Systems Technologies, Inc.
Network Software Associates, Inc.
The Lisp Company
IMSL Incorporated
MacMillan Software Company
Simulation Software, Ltd.
Alloy Computer Products, Inc.
Texas Instruments, Incorporated
Mi c rosof t Corporation
Lotus Development Corporation
FTP Software, Inc.
Foresight Resources Corporation
Micrografx, Inc.
Gimpel Software
Lugaru Software, Ltd.
Enertronics Research, Inc.
Prosper0 Software
American Small Business Computers
McDermott Corporation
Wordperfect Corporation
Software Architecture & Engineering, Inc.
AT&T Information Systems, Inc.
Locus Computing Corporation
UNIFY Corporation
Touchstone Software Corporation
Rhodnius Incorporated
The Pilot Group, Intelligent Courseware, Inc.
BRS Information Technologies
Conetic Systems, Inc.
Aker Corporation
Prior Data Sciences Product Sales, Inc.
Systems Compatibility Corporation
HavenTree Software Limited
Paul Mace Software, Inc.

V

62.
63.
64.
65.
66.
67.
68.
69.
70.
71.
72.
73.
74.
75.
76.
77
78.
79.
80.
81.
82.
83.
84.
85.
86.
87.
88.
89.
90.
91.
92.
93.
94.
95.
96.
97.
98.
99.
100.
101.
102.
103.
104.
105.
106.
107.
108.

Inst aPlan Corporation
The Whitewater Group
D at alig ht
MathSoft, Inc.
Personal TEX, Inc.
Kemp- Carr away Heart Ins tit ut e
MicroPro International Corporation
POWER-BASE Systems, Inc.
mbp Software and Systems Technology, Inc.
Gazelle Systems
Software Publishing Corporation
MicroControl Systems, Inc.
Scientific Endeavors Corporation
Persoft, Inc.
Expert Systems International
AT&T Bell Laboratories (Murray Hill Labs)
AT&T Bell Laboratories (Morristown Labs)
Datastorm Technologies, Inc.
Catspaw, Inc.
Micro Data Base Systems, Inc.
Ron Turley Computer Associates
P eachtree Software
EXSYS, Inc.
Universal Technical Systems, Inc.
C a1 Com p
Image Network
The Santa Cruz Operation
Symantec Corporation
R.R. Software, Inc.
Custom Software Systems
DataEase International
True BASIC, Inc.
JMI Software Consultants, Inc.
Automata Design Associates
The Wollongong Group
MIX Software
The Small Computer Company, Inc.
Generic Software, Inc.
UniPress Software
Data Language Corporation
Integral Quality, Inc.
Communications Research Group
STSC, Inc.
Mouse Systems Corporation
MicroProducts, Inc.
Access Technology, Inc.
Ash t on- T a t e

vi

109. General Research Corporation
110. Campbell Services, Inc.
111. Meridian Software Systems, Inc.
112. Interactive Systems, Inc.
113. Nastec Corporation

The hardware and software environments, donated by these organizations
and integrated into the NASA P C R&D Laboratory under the auspices of the
USL NASA Project, have provided an extremely robust and comprehensive
developmental and experimental laboratory for supporting the object-oriented
systems aspects, the automatic monitoring and program metrics aspects, and the
graphics aspects of this research.

TABLE OF CONTENTS

Chapter

ACKNOWLEDGEMENTS .. 111

LIST OF FIGURES .. x11

LIST OF TABLES ... xlll

1 THE PROBLEM .. 1

Object-Oriented Systems Defined ... 2

Overview of Existing Object-Oriented Systems Efforts 3

1.2.1 The User Interface Perspective .. 4

1.2.2 The Simulation Perspective ... 5

1.2.3 The DBMS Perspective .. 6

1.2.4 The Artificial Intelligence Perspective 6

1.2.5 The Operating Systems Perspective 7

1.2.6 The General Applications Development Perspective 8

...

..

...

1.1

1.2

1.3 General Research Objectives ... 9

SPECIFIC RESEARCH OBJE!XTIVES ... 13

2.1

2

Specific Refinements of the Evaluation Methodology

General Research Objective ... 13

2.2 Specific Refinements of the Application-Specific

Paradigm General Research Objective .. 15

2.3 Specific Refinements of the Primary Metrics General

Research 0 b j ect ive .. 17

vii

v iii

PROPOSED PROGRAMMING ENVIRONMENT EVALUATION

METHODOLOGY ... 21

3.1 Existing Programming Environment Evaluation

Methodologies .. 21

3.2

3.3

Problems with Existing Methodologies .. 23

Design Principles of the Proposed Methodology 25

3.3.1 Based on User Activities ... 26

3.3.2 Environment Independence .. 26

3.3.3 Based on Experiments .. 27

3.3.4 Test a Core of Functionality .. 28

3.3.5 Extensible ... 28

3.3.6 Provisions for Applications Development

Paradigms ... 29

Ensure the Capture of Relevant Structural

Information ... 29

Automatic Primary Metric Data Capture 30

3.3.7

3.3.8

A Systematic Methodology for Evaluating Object-Oriented 3.4

Systems ... 31

Phase 1: Identify the Applications Domain 31

Phase 2: Identify the Test Development Systems 32

3.4.1

3.4.2

3.4.3 Phase 3: Identify the Respective Application-Specific

Development Paradigms ... 32

Phase 4: Identify and Define Additional Metrics 33 3.4.4

ix

3.4.5 Phase 5: Identify and Classify User Development

Activities .. 33

Phase 6: Establish Evaluative Criteria 34 3.4.6

3.4.7

3.4.8

3.4.9

Phase 7: Develop Environment-Independent Experiments ... 35

Phase 8: Prepare the Respective Environments 38

Phase 9: Develop Environment-Specific Experiments 38

3.4.10 Phase 10: Execute Environment-Specific Experiments 39

3.4.11 Phase 11: Analyze Results .. 39

3.5 Evaluation Methodology Summary ... 40

SPECIFIC TEST CASE .. 45 4

4.1

4.2

4.3

4.4

4.5

4.G

4.7

4.8

4.9

Phase 1: Identify the Applications Domain 45

Phase 2: Identify the Test Development Systems 47

Phase 3: Identify the Respective Application-Specific

Development Paradigms .. 48

4.3.1

4.3.2

4.3.3 C++ Applications-Specific Paradigm 50

Phase 4: Identify and Define Additional Metrics 51

Phase 5: Identify and Classify User Development

Activities ... 52

Phase G : Establish Evaluative Criteria .. 54

Phase 7: Develop Environment-Independent Experiments 55

C Environment Applications-Specific Paradigm 49

C++ Environment Application Design Constraints 49

Phase 8: Prepare the Respective Environments ... ; 57

Phase 9: Develop Environment-Specific Experiments 58

X

4.10

4.11

EVALUATION OF RESEARCH WITH RESPECT T O

RESEARCH OBJECTNES 67

5.1

Phase 10: Execute Environment-Specific Experiments 60

Phase 11: Analyze Results ... 61

5

Evaluation of the Evaluation Methodology General

Research Objective 69

5.1.1 Evaluation of the Associated Specific

Theoretical 0 bjective ,69

5.1.2 Evaluation of the Associated Specific

Methodological 0 b j ec t ive76

5.1.3 Evaluation of the Associated Specific

Developmental 0 bject ive.77

Evaluation of the Associated Specific

Evaluative Objective .. 78

5.1.4

5.2 Evaluation of the Application-Specific Paradigm

General Research Objective 82

5.2.1 Evaluation of the Associated Specific

T heore t ic a1 0 b j ec tive .82

Evaluation of the Associated Specific

Methodological Objective ... 83

Evaluation of the Associated Specific

Developmental 0 bj ective84

5.2.4 Evaluation of the Associated Specific

Evaluative 0 bjective 85

5.2.2

5.2.3

xi

Evaluation of the Primary Metrics General Research Objective 87

5.3.1

5.3

Evaluation of the Associated Specific

Theoretical 0 bj ec tive ... 87

5.3.2 Evaluation of the Associated Specific

Methodological 0 bject ive ... 88

Evaluation of the Associated Specific 5.3.3

Developmental Objective .. 93

5.3.4 Evaluation of the Associated Specific

Evaluative 0 bjective .. 93

SUMMARY AND CONCLUSIONS ... 95

6.1 Summary ... 95

6

6.2 Summary of Research Contributions .. 96

6.3 Major Conclusions ... 98

6.4 Identification of Future Research Directions 98

BIBLIOGRAPHY .. 101

APPENDIX A . TRADEMARKS REFERENCED IN THIS DOCUMENT 107

APPENDIX B . PROFICIENCY TESTS AND ANSWER KEYS 108

APPENDIX C . PERFORMANCE MONITOR DOCrJTvENTATION 146

APPENDIX D . LEX GRAMMAR FOR OBJECT-ORIENTED

PRIMARY METRIC DATA ANALYSIS 150

LEX GRAMMAR FOR TRADITIONAL

PRIMARY METRIC DATA ANALYSIS 159

AI3 S TRAC T .. 165

BIOGRAPHICAL S I B T C H .. 168

APPENDIX E .

Figure i

3.1 An Overview of the Proposed Evaluation Methodology 44

4.1 USL NASA/RECON & NASA/JPL P C Research Project 46
I

xii

LIST OF TABLES

Table

3.1

3.2

4.1

4.2

4.3

4.4

4.5

4.6

4.7

5.1

Evaluation Methodology Phase/Design Guidelines Mapping 42

Evaluation Methodology Phase/Results Mapping 43

Proficiency Test Scores Prior to the First Development Set 65

Proficiency Test Scores Prior to the Second Development Set 65

Task Completion Times for C Development .. 65

Task Completion Times for C++ Development .. 65

Summarized Object-Oriented Characteristics of C++ Graphics

Applications ... 66

Summarized Traditional Metrics for C-Based Graphics

Applications ... 66

Summarized Traditional Metrics for C++-Based Graphics

Applications ... 66

Research Objective/Evaluation Section Mapping 68

xiii

CHAPTER 1: THE PROBLEM

The object-oriented design strategy as both a problem decomposition and

system development paradigm has made impressive inroads into the various areas

of the computing sciences. Substantial development productivity improvements

have been demonstrated in areas ranging from artificial intelligence t o user

interface design. But, formally characterizing these productivity improvements

and identifying the underlying cognitive mechanisms remain as research tasks.

There is no formal cognitive approach that adequately models traditional

software development, let alone one that models software development under

non-traditional paradigms [JonesC 1986, Harrison 19851. The task at hand, then,

is to attempt to develop such a model and the associated complexity metrics for

object-oriented systems. The development and validation of models and metrics

of this sort require large amounts of systematically gathered structural and

productivity data [Harrison 19851. There has, however, been a notable lack of

systematically gathered information on these development environments. A large

part of this problem is attributable to the lack of a systematic programming

environment evaluation methodology that is appropriate to the evaluation of

object-oriented systems.

~

I
i Such a methodology is critical to the reliable collection of performance

data and software characteristics, and to the effective dissemination of this

information in support of long-term research into software complexity metrics for i

object-oriented systems. It is this long-term complexity research that holds the

promise of identifying just why object-oriented development environments are so

effective in increasing software productivity in a wide variety of applications I

1

2

areas.

Consequently, the research presented in this document addresses the

design, development, and evaluation of a systematic, extensible, and

environment-independent methodology for the comparative evaluation of object-

oriented programming environments. This methodology is intended to serve as a

foundational element for supporting research into the impact of object-oriented

software development environments and design strategies on the software

development process and resultant software products. A systematic approach is

defined for conducting the methodology with respect to the particular object-

oriented programming environment under investigation. The evaluation of each

environment is based on user performance of representative and well-specified

development tasks on well-characterized applications within the environment.

Primary metric data needed to characterize the software applications under test

is also collected for subsequent use in the analysis and evaluation of the

environments. These metrics are not intended as complexity measures themselves,

but rather as systematic indexes of software characteristics.

1.1 Object-Oriented Systems Defined

Despite the recent widespread emergence of object-oriented systems

technology in widely diverse software domains, there is a strong consensus among

researchers as to the characteristics of a truly object-oriented system [Agha 1986,

Cox 1986, Meyer 1987, Kaehler 1985, Schmucker 1985, Wegner 1986). According

to this consensus, object-oriented systems are those which include an inheritance

mechanism for module construction, data and procedure encapsulation, typed

messaging for module invocation, and some form of late-binding of messages to

3

target modules. A consensus has also formed with regard to object-oriented

systems terminology. This section establishes these fundamental definitions as a

prelude to a survey of object-oriented systems activity in several areas.

An object consists of private data and a set of operations that can access

that data. An object is requested to perform an operation by sending it a typed

message. A particular method (operation) is invoked based on the type of the

incoming message. In pure object-oriented systems, this is the only way t o invoke

an object’s method and is consequently the only way to change an object’s state.

The messaging mechanism is responsible for associating typed messages with the

appropriate objects. A class is an abstract object type. All objects of a class have

data and method characteristics in common. The inheritance mechanism

provides a means of constructing new object classes from existing classes. Only

the differences between the existing class(es) and the new class need be specified.

There are two primary varieties of inheritance mechanisms, the single

inheritance mechanism, which allows only one parent class per object, and the

multiple inheritance mechanism in which this restriction is not observed. This

characterization of object-oriented systems and the associated definitions have

emerged as a result of the efforts of many researchers and are not attributable to

any one person. However, many of the ideas and much of the foundational

development in this area is attributable t o Adele Goldberg (SMALLTALK)

(Goldberg 19831 and Kristen Nygaard (SIMCrLA) [Dahl 19661.

1.2 Overview of Existing Object-Oriented Systems Efforts

This section overviews the development of object-oriented systems

technology in widely diverse areas of the computing sciences. This overview is

4

intended to provide a motivation for, and preliminary indication of the potential

for research in this area. I t is the opinion of many researchers in software

engineering that object-oriented design strategies and development environments

are the most promising approaches t o increasing productivity on the horizon

[JonesC 1986, Meyer 1987, Cox 19861.

1.2.1 The User Interface Perspective

It is likely that no other applications area is more closely associated with

object-oriented systems technology than that of user interface design and

implementation. Ironically, the two topics are only peripherally connected. There

is certainly no requirement that object-oriented systems have good user

interfaces, and one can certainly build traditional user interfaces in an object-

oriented development environment such as SMALLTALK. Also, it is conceivable

(just barely) that a windowing iconic user interface could be constructed in a

language like COBOL. The nature of the connection between these two issues lies

in the ability of object-oriented systems to provide complexity management

mechanisms to the user interface developer including facilities for module re-use

and encapsulation.

Work conducted by numerous researchers including Brad Cox of

Productivity Products International [Cox 19861, Norman Meyrowitz of Brown

University [Meyrowitz 19861, David Anderson of Carnegie-Mellon University

[Anderson 19861, and Daniel Bobrow of the Xerox Palo Alto Research Center

[Bobrow 19861 has demonstrated productivity improvements of 300 to 600

percent over traditional approaches to developing complex user interfaces. It is no

wonder that graphical, iconic, windowing user interfaces came to be known as

5

object-oriented user interfaces. This sort of user interface, together with a

generous portion of object-oriented systems technology, has been popularized in

the current crop of consumer-oriented personal computers, including the Apple

Macintosh, Atari ST, Commodore Amiga, and IBM PCs running Microsoft

Windows.

1.2.2 The Simulation Perspective

Simulation is probably the applications area most legitimately associated

with object-oriented systems technology. It can be argued that object-oriented

design had its start in SIMULA, a language specifically designed to support

simulation development. While simulation applications benefit strongly from the

same complexity management facilities that support user interfaces so well,

simulation systems were able to capitalize on an additional benefit characteristic

to object-oriented systems, namely, simulation systems were able to make use of

a reduction in the semantic gap between the system to be simulated and the

simulation software. This is due t o the fact that objects (modules) in object-

oriented systems communicate by sending messages to other objects. This

provides a very flexible way of structuring simulation software; so flexible in fact,

tha t i t very closely resembles the real system being simulated.

Research by Birtwistle [Birtwistle 19841, Franta [Franta 19731, Papazoglou

[Papazoglou 19841, and Kreutzer [Kreutzer 19861 has established object-oriented

design as the technique of choice for discrete event simulation and for combined

discrete-continuous simulation approaches. Object-oriented simulation languages

in these categories include SIMULA [Dahl 19661, SIMON [Sim 19751, DEMOS

[Kreutzer 19861, and DISCO [Helsgaun 1980). However, other languages including

6

SMALLTALK [Goldberg 19831, GLISP [Novak 19831, and Flavours

[Weinreb 19811 are being used extensively primarily due to their support for

multiple inheritance and animated graphical presentation.

1.2.3 The DBMS Perspective

Database management systems researchers, in addition to capitalizing on

the complexity management features and natural modeling characteristics of

object-oriented software, have been able t o make use of the messaging

mechanism t o model the usage of distributed resources. This has led t o a flurry of

DBMS activity in the CAD/CAM area. Notable representative research includes

that of Maier of Servio Logic Development Corporation [Maier 19861, and Skarra

of Brown University [Skarra 19861. CAD/CAM applications are highly dynamic

by virtue of the rapidly changing technologies employed and so make good use of

the semantic similarity between object-oriented database designs and the "real"

application. These systems are highly flexible and support runtime re-

configuration of the database while providing high query efficiency due to the

practical locality of item references. That is, items tha t are closely related in the

real system are closely related in the database design so natural access paths are

explicitly captured in the object-oriented DBMS implementation.

1.2.4 The Artificial Intelligence Perspective

Object-oriented development facilities have been commonplace in artificial

intelligence development environments for some time. These facilities provide

integrated and consistent access to AI-workstation resources and support highly

productive software development activities [Moon 19861, but the most significant

7

use of object-oriented techniques within AI environments lies in the area of

knowledge base organization.

In these systems, knowledge is typically organized as a collection of

implementation-independent communicating objects. This organization facilitates

modularization of the knowledge base. The inheritance mechanism enables the

incremental development of new objects by specialization of existing object types,

supporting a factorization of knowledge as a class hierarchy [Stefik 19861.

These capabilities have led to the inclusion of object-oriented features in a

large number of AI development languages. There are widely used object-oriented

logic programming languages including SPOOL [Fukunaga 19861 and Intermission

[Fukunaga 19861. Object-oriented extensions to LISP include LOOPS

[Bobrow 19861, FLAVORS [Moon 19861, and SCHEME [Lang 1986).

SMALLTALK [Goldberg 19831 and Orient84/K [Ishikawa 19861 provide a basis

for AI development in distributed computing environments, as does Carl Hewitt's

ACTOR [Hewitt 1973). Finally, many knowledge engineering and expert system

development environments include object-oriented capabilities as primary

features. These include ESP [Chikayama 19841, KEE [Fikes 19851 and URANUS

[Nakashima 1984).

1.2.5 The Operating Systems Perspective

Emphasizing the encapsulation, polymorphism, and dynamic binding

aspects of object-oriented systems, several operating systems have been developed

using object-oriented techniques, including MACH [JonesM 19861, CLOUDS

[Dasgupta 19861 and Emerald [Black 1986). The dynamic binding aspect of

object-oriented messaging supports dynamic reconfiguration of distributed

8

resources and can be supported on top of existing network services facilities. The

encapsulation aspects support the integration of multiple heterogeneous

distributed environments in a consistent and extensible fashion.

In MACH, this is embodied in the port, message and memory kernel

abstractions that are consistently modeled on all member distributed systems.

Generic messages that control distributed tasks are mapped into the appropriate

system service requests on the receiving system. The computational objects, tasks

and their constituent threads can be distributed to distinct servers for execution,

since they also issue and respond t o generic object messages. Even presentation

facilities are modeled as object-oriented resources in that user interface windows,

graphical and textual capabilities can be inherited and distributed across

available resources.

This research has much in common with the DBMS research referred to in

Section 1.2.3 and holds equal promise for providing highly functional and flexible

distributed heterogeneous computing environments.

1.2.6 The General Applications Development Perspective

Recent object-oriented systems research has focused on migrating the

capabilities cited in the sections above into the general software development

domain. These efforts have demonstrated significant progress as indicated by the

degree of commercial interest and involvement in using object-oriented software

development systems for both internally-used and commercially-marketed

products. The languages that fall into this category include Productivity

Products International’s Objective-C [Cox 19861, AT&T’s C++

[Stroustrup 1986], and Interactive Software Engineering’s EIFFEL [Meyer 19871.

9

These languages are hybrid in that they provide linkages to traditional languages

and traditionally-developed software libraries. This preserves investments in, and

capitalizes on, the large base of existing software facilities. These languages bring

object-oriented techniques to the traditional UNIX software development

environment and have made possible productivity gains of about 5-to-1 for a

large variety of application domains [Cox 1986, Stroustrup 19861.

Although this work has been generally confined to C and UNIX

environments, the increases in productivity that have been experienced have

raised interest in object-oriented extensions to other general purpose languages.

The areas overviewed above are representative of the scope of the work

currently being conducted in object-oriented systems and do indicate clear and

substantial evidence for the advantages of this approach. It is this evidence that

motivates the research presented in this document.

1.3 General Research Objectives

The following are the general research objectives identified for this

research:

1. The design, development, application, and evaluation of a systematic,

extensible, and environment-independent evaluation methodology capable

of supporting investigation into the impact of object-oriented design

strategies on the software development process.

Existing approaches to programming environment evaluation have serious

shortcomings in the context of evaluating object-oriented systems. Approaches

developed for traditional software development environments have no provision

10

for capturing and recording software characteristics unique to object-oriented

software [Weiderman 19871. Approaches based on criteria checklists (typical of

the Ada environment evaluation methodologies) [Brinker 1985, Castor 1983,

Hook 19851 do not provide adequate detail and rigor t o support research into

software complexity metrics. None of the existing traditional approaches provide

for inter-paradigm comparison and evaluation. The primary justification of this

general objective, then, is the lack of an existing methodology appropriate t o the

evaluation of object-oriented systems and to the support of complexity metrics

research. A representative application of this methodology forms the basis of an

analytical evaluation and demonstration of its capabilities. Comprehensive

validation of this methodology will require long-term usage, beyond the scope of

this research.

2. The design, development, application, and verification of domain-specific

applications development paradigms to support consistent comparisons of

applications developed under an object-oriented strategy.

Domain-specific application development paradigms are sets of problem

decomposition and solution guidelines that are appropriate to certain applications

domains under certain software technologies. For example, the development of

2-D vector graphics applications typically incorporates a decomposition at the

highest level into four components, namely, the user interface, the device

interface, the file system interface, and the application interface. A specific

instance of this paradigm for a graphical kernel system (GKS) graphics library

would include the workstation interface, the virtual device interface (VDI), the

metafile system, and the specific language binding. These application

11

development paradigms guide software into appropriate organizations. Other

common application development paradigms include recursive descent

organization for parsers, protocol layering for communications and networking

software, and various organizational strategies for user interface development.

It is clearly possible to use an inappropriate application organization

strategy to develop object-oriented applications. This would result in applications

that do not benefit from object-oriented design techniques and so would not

exhibit the productivity characteristics of object-oriented systems, obscuring any

meaningful comparison between the "object-oriented'' and non-object-oriented

applications. The intent of this general objective is to identify specific design

characteristics that characterize object-oriented applications and to design

development paradigms that promote those characteristics for specific

applications domains. The evaluation of these paradigms consists of an analysis

of how the overall design space for a specific application is constrained by the

paradigm.

Existing programming environment evaluation methodologies do not even

make provisions for recording the specific development paradigm used. The

presented methodology incorporates the application-specific paradigm as a means

of providing consistency within applications under consideration.

3. The design, development, application, and completeness verification of

primary metric data definitions appropriate t o systems developed under an

ob j ec t -or ient e d design strategy .

In order to perform comparative evaluations of competing object-oriented

systems, one must have information on the differences between the characteristics

12

of the code produced using the respective systems. This information is also

necessary for supporting software complexity metric research. For the purposes of

this research, primary metric data is defined as the minimal set of particular

software characteristics needed to fully characterize the unique aspects of object-

oriented systems, together with those measurements needed to support

comparisons using accepted traditional metrics (e.g., McCabe’s cyclomatic

complexity [McCabe 19761, Halstead’s software science metrics [Halstead 19771,

etc.). While there has been some work performed on providing comprehensive

primary metric data definitions for traditionally-developed software, this work is

still exploratory [Harrison 19851. No existing programming environment

evaluation methodologies provide for the characterization of object-oriented

systems.

The procedures developed for capturing this data for specific object-

oriented environments is comprehensively evaluated for accuracy and coverage

across existing object-oriented language features.

CHAPTER 2: SPECIFIC RESEARCH OBJECTIVES

In this chapter, the general research objectives of Section 1.3 are refined

into constituent specific research objectives. The primary intent of this research is

to provide a framework for the investigation of the impact of object-oriented

software development environments and design strategies on the software

development process and resultant software products.

2.1 Specific Refinements of the Evaluation Methodology General

Research 0 bj ect ive

Evaluation Methodology General Research Objective: The design,

development, application, and evaluation of a systematic, extensible, and

environment-independent evaluation methodology capable of supporting

investigation into the impact of object-oriented design strategies on the software

development process.

The specific research objectives identified pursuant to the satisfaction of

the evaluation methodology related general research objective include the

following:

A. Specific theoretical objective: to develop design principles for the proposed

evaluation methodology that ensure systematic, reproducible, and

environment-independent performance evaluations, thereby supporting the

long-term development of theoretical models and metrics for the

characterization and comparison of object-oriented systems.

These design principles provide the theoretical foundation for the proposed

13

14

methodology. The evaluation of the methodology is based in part on the

degree to which it adheres to these principles.

B. Spec i f ic methodological objective: to design an evaluation methodology

$hat incorporates automatic performance and primary metric data

collection. The practicality of any evaluation methodology is determined

by the relevance of its results and, to a lesser extent, by the cost of its

execution.

The automatic data collection characteristic of the methodology eliminates

the high cost and inherent unreliability of manual data collection within

the evaluation process, while focusing emphasis on user performance data

as an evaluation criteria provides results that are directly relevant t o the

needs of the organization conducting the evaluation.

C. Spec i f ic developmental objective: to develop a prototype evaluation

environment capable of supporting the proposed methodology.

This environment is evaluated based on its support for the specific

requirements of the proposed evaluation methodology, including

unobtrusive automatic performance data collection and primary metric

computation and recording.

D. Speci f ic evaluative objective: to conduct a systematic comparison of

selected software development tasks in a specific applications domain using

an object-oriented programming system with the same development tasks

using a traditional programming system under the proposed methodology

t o demonstrate its evaluation strategy and the capabilities of this

15

approach.

The intent of this evaluation process is to provide a demonstration of the

ability of this methodology to support evaluations across heterogeneous

programming environments. This intent is reflected in the relatively small

number of subjects selected for participation in the evaluation process (see

Section 4.7).

Significance: Existing system evaluation methodologies make no provision for

cross-environment evaluation. This prohibits use of these methodologies in

comparing object-oriented versus non-object-oriented systems. The

research literature in object-oriented systems is notably devoid of

systematically collected data and structured analytical results. This

methodology addresses these problems specifically.

2.2 Specific Refinements of the Application-Specific

General Research Objective

Application-Specific Paradigm General Research Objective:

development, application, and verification of domain-specific

development paradigms to support consistent comparisons of

developed under an object-oriented strategy.

Paradigm

The design,

applications

applications

The specific research objectives identified pursuant to the satisfaction of

the application-specific development paradigm related general research objective

include the following:

A. Specific theoretical objective: To determine fundamental design

characteristics for specific applications domains that promote the

16

theoretical validity of systematic comparisons of object-oriented systems.

If these characteristics are present in the applications under consideration,

confidence in the generalizability of the performance comparisons is

enhanced, since the applications are truly representative object-oriented

designs.

B. Specific methodological objective: To design applications domain-specific

paradigms that support the effective application of object-oriented design

techniques.

The applications domain-specific development paradigms are intended to

guide software development so that the resultant product exhibits the

organizational characteristics referred to in Specific Objective A above.

The evaluation of this specific objective is based on the degree to which

this paradigm ensures these characteristics.

C. Specific developmental objective: To develop procedures for the application

of the applications domain-specific paradigms within a specific object-

oriented development environment.

These procedures are the instantiation of the paradigms referred to in

Specific Objective B above, for a specific object-oriented programming

environment. These procedures are evaluated for their accuracy in

representing the application-specific paradigms and for the degree to which

they make use of, or preclude features within the specific environment.

D. Speci f ic evaluative objective: To analytically verify that the applications-

specific development paradigm does

software products so that they are indeec

designs.

17

ndeed constrain the resultant

representative of object-oriented

This evaluation is based on an analysis of the software generated under

the application-specific paradigm and the degree to which it exhibits the

fundamental characteristics of an object-oriented design.

Significance: It is certainly possible to develop applications using traditional

design strategies within an object-oriented environment. This produces

applications that are not representative of object-oriented designs and

invalidates any meaningful comparison for our purposes. The application

domain-specific paradigms proposed under this research objective provide

problem decomposition and application development guidelines that, when

applied, will ensure that the application is indeed representative of an

object-oriented design. These types of guidelines do exist for traditionally-

developed software in specific domains and include standard system

organizations for graphics systems software, compiler construction,

network system software, operating system software, and various user

interface organizations.

2.3 Specific Refinements of the Primary Metrics General Research

Objective

Primary Metrics General Research Objective: The design, development,

application, and completeness verification of primary metric data definitions

appropriate to systems developed under an object-oriented design strategy.

18

The specific research objectives identified pursuant to the satisfaction of

the primary software metrics related general research objective include the

following:

A. Specific theoretical objective: To design primary metric data definitions

that theoretically characterize the various aspects of software unique to

object-oriented designs, including the inheritance lattice, the messaging

graph, the degree of polymorphism exhibited, and degree of object re-use.

This primary metric data is necessary to describe the structural aspects of

software unique to object-oriented systems. The evaluation of this

objective consists of a completeness verification of these defintions, that is

how completely the primary definitions capture these unique

characteristics.

B. Spec i f ic methodological objective: To develop language-independent

methods for capturing this data for object-oriented designs. Language

independence is demonstrated by constructing language-specific metric

evaluation procedures for a representative set of object-oriented languages.

Consistent capture of the primary metric da ta requires language-

independent specification of the respective acquisition procedures. The

evaluation of this objective is based on the ability of these language-

independent methods to be instantiated in a representative set of existing

object-oriented languages as language-specific procedures.

C. Specific developmental objective: To provide language-specific acquisition

of this metric data for the object-oriented development systems under

18

consideration in the evaluation environment.

This objective provides the language-specific mechanism for supporting the

automatic primary metric data collection aspects of the evaluation

methodology general objective.

D. Speci f ic evaluative objective: To comprehensively test these metric data

acquisition methods for accuracy.

This objective provides confidence in the automatic primary metric data

acquisition mechanisms. The accuracy of these mechanisms is essential to

conducting valid complexity metric research.

S i g n i j c a n c e : Existing software metrics are not appropriate to comprehensively

characterizing object-oriented systems for several reasons. The most

accepted (and validated) metrics are motivated by assumptions about the

relationship between program size and programmer productivity that are

not directly valid in object-oriented systems due to code re-use.

Traditional metrics do not address the structural aspects of software

characteristic of object-oriented systems, including the organization of the

inheritance lattice, the organization of the messaging graph, and module

re-use characteristics. In traditional metrics research, the complexity of

very large systems is often viewed as an extrapolation of the complexity of

its constituent components; however, inheritance and encapsulation in

object-oriented systems have the demonstrated effect of reducing

individual module size and external coupling to the extent that very large

system complexity is not clearly an extension of the aggregate complexity

20

of the constituent objects [Cox 1986, Stroustrup 1986, Meyer 1987).

As part of the final evaluation of this research, Table 5.1 indicates the

mapping between the specific research objectives identified in this chapter and

the specific sections in Chapter 5 which evaluate the degree to which each

respective objective is accomplished.

CHAPTER 3.0: THE PROPOSED PROGRAMMING ENVIRONMENT

EVALUATION METHODOLOGY

This chapter overviews representative programming environment

evaluation methodologies and analyses these methodologies with respect t o their

ability to support the research objectives of Section 1.3.

3.1 Existing Programming Environment Evaluation Methodologies

Very little work has been done in the area of programming environment

evaluation methodologies. The majority of work in this area has focused, not

surprisingly, on Ada development environments. The work that does exist in this

area has taken three major approaches.

The first approach is based on extensions of evaluation work performed in

traditional applications areas including DBMS evaluation, user interface

evaluation, compiler evaluation, and, most prolifically, text editor evaluation.

Notable research of this type in the area of programming environment evaluation

includes Lindquist's "hsessing the Usability of Human-Computer Interfaces"

[Lindquist 19851. However, this evaluation approach focuses on the individual

tools within an environment without considering how well the tools are

integrated.

A second approach in the literature, exemplified by Brinker's "An

Evaluation of the Softech Ada Language System" [Brinker 19851, is to focus on

specific program development environments. While work of this type does make

explicit provision for evaluating the overall environment, no provision is made for

inter-environment comparisons. This work tends t o focus on system-specific

21

22

criteria and metrics that are very difficult to evaluate consistently across

heterogeneous environments.

A third approach includes research that proposes lists of often subjective

criteria, concerning features and facilities of the environments in question. While

there is a characteristic effort t o construct very comprehensive sets of criteria,

these criteria still tend to be rather system and domain specific. There have been

some surprising results from methodologies incorporating this sort of approach,

including the COCOMO work [Conte 19851 and Productivity Research

Incorporated’s Software Productivity, Quality, and Reliability (SPQR) model

[JonesC 19861. The SPQR technique has demonstrated a predictive accuracy of

within 15% for software productivity and quality over a large number of tests for

very large systems development efforts [JonesC 19861. Unfortunately, these

techniques are often difficult t o apply consistently and are all but impossible to

automate. There is work that suggests that each criteria be given an operational

definition t o permit automatic evaluation [Bailey 19851; however, this approach

has come under substantial criticism, since the operational definitions of

subjective criteria are themselves subjective interpretations of how these criteria

should be measured [Weiderman 19871.

Recent work at CMU’s Software Engineering Institute has resulted in a

hybrid approach, combining traditional techniques with evaluative questionnaires

constructed by ”experienced” evaluators. This technique makes provision for

experimentation as well as subjective evaluation, but makes no provision for

ensuring the representativeness of the test applications with regard to their

respective design strategies. This technique would be difficult to apply across a

large and diverse evaluation base due to its reliance on ”experience” in

23

questionnaire formulation and this technique may suffer from consistency

problems in application due to the subjective nature of many of its criteria.

Validation of this approach is currently under way [Weiderman 19871.

3.2 Problems with Existing Methodologies

Each of the programming environment evaluation strategies referred to in

Section 3.1 is inadequate for supporting the general research objectives cited in

Section 1.3. Each of these approaches falls short in at least one of the following

areas:

1. Certain of the existing approaches focus on particular tools and, in doing

so, ignore the overall impact of the environment on software development.

While the information gathered in these approaches is valuable in

characterizing and evaluating individual tools, the information so gathered

is of little use in evaluating the much more complex programming

environments where the interaction between support facilities is a major

factor in development productivity. For example, while C++ and C in a

UNIX environment each provide tools of similar functionality, the degree

of integration and coordination of these facilities accounts for a fivefold

productivity improvement of C++ ovlr C [Cox 1986, Stroustrup 1986,

Meyer 1986, JonesC 19861.

2. Certain of the existing approaches make assumptions that preclude or

make no provision for evaluations of systems across highly heterogeneous

environments. This is primarily due to the lack of correspondence

between tools and facilities in the competing environments. There is

24

simply no comparison between the facilities provided by SMALLTALK

[Goldberg, 19831 and the facilities typically provided to FORTRAN

programmers. The only common ground in this situation (in the absence

of a generically-valid cognitive complexity model) is user performance

within the respective environments for tasks accomplishable in both.

3. Certain of the existing approaches rely on sets of expertly-defined

evaluation criteria as a basis for programming environment evaluation.

These criteria tend to be subjective in nature and are characteristically

environment-specific. They do not lend themselves to automation and so

retain human bias and inconsistency. I t is difficult to imagine a set of

evaluation criteria that would provide an objective evaluation of

Objective-C [Cox 19861 versus SMALLTALK, since any set of criteria

would be either incomplete for SMALLTALK or primarily irrelevant for

Objective-C. Even if such a set of criteria could be established, the results

of a comparative evaluation of these two environments using this approach

would consist of a criteria check list that would not support the

development of formal models for the complexity of object-oriented

systems.

4. All of the existing approaches fail to identify minimal primary metrics

relevant to characterizing the structure of object-oriented software

systems. This aspect of the evaluation methodology is critical to

supporting long-term research into software complexity metrics for object-

orient e d systems.

25

In summary, the existing approaches to programming environment

evaluation are not appropriate t o supporting the evaluation of object-oriented

systems. The research presented within this document focuses on this issue.

3.3 Design Principles of the Proposed Methodology

The evaluation of software development environments is a difficult

problem primarily because of the wide variation in the available sets of tools in

respective environments and the levels of design abstraction at which these tools

are aimed [Weiderman 19871. The problem is further compounded for the

evaluation of development systems in which the software development paradigm

violates the fundamental assumptions of long-accepted relationships between

software organization and programmer productivity. Object-oriented software

development environments, with all of their potential for productivity

improvement, are just such systems.

Evaluation results in the research literature to date concerning object-

oriented systems have been lacking in the degree t o which they can be used to

support further research. The intent of this proposed methodology is to

systematize the evaluation of object-oriented development environments. This

section identifies the design principles basic to the development of this

methodology and builds on work conducted at the Software Engineering

Institute, Carnegie Mellon University by identifying principles necessary t o the

valid evaluation of object-oriented development environments. The design

principles identified in the work at CMU are insufficient to ensure a

comprehensive and extensible evaluation of object-oriented development

environments. The methodology design principles unique to the proposed research

26

are so identified.

3.3.1 Based on User Activities

The performance of user software development activities is inherently

sensitive to the facilities provided by any software development environment and

is therefore the ”common denominator” by which we can compare significantly

different environments, provided, of course, that the activities of interest are

accomplishable within these environments and that user performance is measured

in environment-independent terms. Evaluation methodologies based on feature

analyses and environment-specific performance measures become inapplicable

when the environments t o be compared differ significantly in the tool sets or the

level of language abstraction provided to the software developer. These

considerations motivate the design principle that evaluations under the presented

methodology must be based on the performance of user activities.

This principle ensures a consistent basis for the evaluation of environments

with widely differing support facilities. As noted in [Weiderman 19871, this is the

approach adopted by Roberts and Moran [Roberts 19831 in their work on the

evaluation of highly heterogeneous text editors.

3.3.2 Environment Independence

Any objective evaluation methodology, by definition, must not be

inherently biased for or against the environments to be evaluated. Evaluation

methodologies based upon the evaluation of particular mechanisms for

accomplishing user activities rather than based upon evaluating user

performance in accomplishing those activities must exhibit a bias toward

27

environments with specific features to support those mechanisms. Evaluation

methodologies based on environment-specific criteria are likewise biased toward

the environments which support usage concepts closely related to those criteria,

while penalizing environments with different, but possibly more efficient,

mechanisms for accomplishing user development activities. For these reasons, we

have adopted the design principle that the presented evaluation methodology

must be environment-independent in the specification of evaluation criteria and

user activities.

This principle ensures that the methodology is not biased toward any

particular environment, but rather focuses on basing evaluations on user

activities and formulating criteria and tests in a generic fashion.

3.3.3 Based on Experiments

The reliability of an evaluation methodology as a tool is directly related to

the repeatability of the results obtained from its exercise. Results that are not

repeatable are simply not convincing. The reliability of the results is also related

t o the degree to which the methodology produces objective evaluative results. A

scientific experimental approach to evaluation directly supports both the

repeatability and the objectivity of evaluative results. This is the primary

motivation for including the design principle that evaluations must be based on

well-defined experiments. The experiments must be conducted in rigorously

defined steps with clearly defined measurements to be taken at each step.

28

3.3.4 Test a Core of Functionality

Software development is a highly diverse activity involving many aspects

of any environment. It is therefore necessary to test a representative core of the

functionality provided by the environments t o be evaluated. The scope of this

”core of functionality” is determined by the functionality requirements of a

particular applications domain. The results of the evaluation will then indicate

the degree of support for representative development activities within the

selected applications domain, rather than the performance of isolated features of

the environment. For this reason we have adopted the design principle that the

evaluation methodology must require the testing of a core of functionality.

3.3.5 Extensible

Issues of interest in software development evolve and change with

experience and technological advances. An evaluation methodology must be

flexible enough to address emergent interests and capabilities within software

development environments. As a result of an evaluation, attention may focus on

one or more aspects of development within the candidate environments. An

evaluation methodology must therefore also permit the incorporation of

additional evaluation criteria and facilities. To accomplish this, the evaluation

methodology must not be based on assumptions which preclude the addition of

user activities, evaluation criteria or additional metrics. Existing text editor

evaluation methodologies, for example, have often been based on the number of

operations needed to manipulate lines of text in various ways. This basis

absolutely precludes the evaluation of the new hypertext editors in which there is

no concept of text lines (sentences are the basic unit of text in these editors).

29

To support the ability of the evaluation methodology to address new

issues and areas as software technology and user interests evolve, we have

adopted the design principle that the evaluation methodology must be extensible.

3.3.6 Provisions for Applications Development Paradigms

An Applications Development Paradigm (ADP) is a set of guidelines for

problem decomposition and software construction. ADPs have evolved in many

applications domains. In the area of user interface development, for example,

development paradigms include the transition graph, hierarchic, iconic, and

Model View Controller (M V C) strategies for organizing the software components

of an interface. Each of these strategies is appropriate for various applications

and software development environments. A consistent comparison of user

performance of software development activities must account for the ADPs used

in such development, since it is these development paradigms that guide the use

of the software development facilities available in the development environment.

Documentation and enforcement of ADPs during an evaluation also ensures that

developed software represents an appropriate application of the software

technology in question, thereby increasing the evaluator’s confidence in a valid

comparison. Consequently, the specification of ADPs is included as a design

principle of the presented evaluation methodology. This principle is unique to this

research.

3.3.7 Ensure the Capture of Relevant Structural Information

To fulfill the primary intent of this research to support long-term research

into software complexity metrics for object-oriented systems, the evaluation

30

methodology must provide for the capture of data characterizing the performance

of users developing software, as well as data which characterizes the object-

oriented aspects of that software. This data is essential to the formulation and

subsequent validation of models and appropriate metrics of developer

performance and product quality for object-oriented software development. The

user performance data may be used independently to support the comparison of

candidate environments for development activities within a specific applications

domain. The structural information captured as a result of the evaluation

process will be used t o investigate the impacts of tools, organizational strategies,

and new language features on the object-oriented aspects of developed software.

This design principle is also unique to this research.

3.3.8 Automatic Primary Metric Data Capture

The reliability of any evaluation process can be compromised by the

inconsistency, bias and imprecision of manually-collected performance data and

manually-evaluated criteria. The cost in time and personnel of using manual data

collection can make an otherwise highly desirable evaluation effort prohibitively

expensive even if the manual data collection mechanisms perform flawlessly. If

data is contaminated by a manual error (a much more likely outcome than errors

introduced by automatic mechanisms), the entire evaluation may have to be

discarded. In consideration of these issues, automatic capture of primary metric

data is included as a design principle of the evaluation methodology presented as

a result of this research.

31

3.4 A Systematic Methodology for Evaluating Object-Oriented

Systems

This section presents the proposed methodology and delineates the

environment-independent and environment-specific aspects of each phase. The

individual phases comprising the proposed object-oriented programming

environment evaluation methodology are presented in the following sections.

3.4.1 Phase 1: Identify the Applications Domain

The specific applications domain must be clearly defined and any specific

areas of interest identified. This phase focuses on the specific context in which the

evaluation is to be conducted. It is intended to focus consideration on the

expectations of the evaluators. Test applications that are representative of the

applications domain must be selected. A t this time, the phase of the development

life cycle under consideration must also be specified. Development phases include

software development, debugging, and enhancement.

The results of this phase are the identification of the applications area, the

identification of specific applications, and the identification of the software

development phase of interest within the evaluation process. This phase is the

first step in establishing the scope of user activities to be executed during the

evaluation process and thus is supportive of the design principle that evaluations

be based on performance of user activities (Section 3.3.1). The primary guideline

for the execution of this phase is t o select applications and development phases

appropriate to the development area being investigated.

32

3.4.2 Phase 2: Identify the Test Development Systems

In this phase, the candidate software development systems are selected

and characterized. These systems must also be evaluated for their ability to

support applications of the type identified in Phase 1.

The results of this phase are the selection of the languages, the support

libraries, the support tools, and the equipment platform that will comprise the

evaluation environment. This phase represents a refinement of the evaluation

scope from an applications area into a set of candidate development systems and

thus represents the second step in establishing the scope of the user activities

that form the basis of the evaluation (Section 3.3.1). The focal guideline for the

execution of this phase is that the selected evaluation environments must be

representative development environments employed within the applications

domain identified as a result of Phase 1.

3.4.3 Phase 3: Identify the Respective Application-Specific Development

Paradigms

Development paradigms relevant to both the selected development

environments and to the specific test applications must be identified and/or

developed in this phase. The purpose of this phase is to ensure that the

environment-specific tes t applications are representative of their respective design

strategies as well as of their respective applications domains.

The result of this phase is the identification of development paradigms for

each test development system, typically one for each candidate language t o be

evaluated.This phase directly supports the design principle of Section 3.3.6 that

33

requires the identification of appropriate Application Development Paradigms.

The primary guideline for the execution of this phase is that these development

paradigms must be selected for their ability to support software development in

the applications domain of Phase 1 and for the ability of the environments

selected in Phase 2 to support these paradigms.

3.4.4 Phase 4: Identify and Define Additional Metrics

Metrics of interest, but not included in the required primary metric data

definitions, must be identified in this phase. Generic evaluation methods must

then be defined and generic evaluation procedures developed for each of these

additional met ri cs.

The results of this phase are the generic specification of any additional

metrics and metric evaluation procedures to be supported during the evaluation

process. This phase directly supports the extensibility design principle referred to

in Section 3.3.5. The primary guideline for the execution this phase is to ensure

tha t all of the characteristics of interest are captured by either the required

primary metric data definitions or the additional metrics defined in this phase

[Conte 19861.

3.4.5 Phase 5: Identify and Classify User Development Activities

The specific life cycle interests identified in Phase 1 must be refined into

specific groups of user activities. These must be identified as developmental

specifications or changes thereto in order to preserve the generic nature of these

activities. It is reasonable t o expect that a specificational criteria or change is

implementable across the candidate development environments. These activities

34

must comprise a representative core of the developmental functionality for the

specific applications selected as a result of Phase 1.

The results of this phase are the identification of specific user development

activities, the generic specification of those activities, and the generic specification

of acceptance test criteria for each activity. These are very well developed

software engineering issues and, as such, do not require specific explanation

within this document. This phase is the third step in the refinement of the scope

of the user activities for the evaluation process (Section 3.3.1) and directly

supports the design principle that the user activities test a core of functionality

(Section 3.3.4).

3.4.6 Phase 6: Establish Evaluative Criteria

The user performance criteria'of interest must be identified and defined in

this phase and strategies for automatically monitoring these criteria must be

established at this time. These criteria must also be environment-independent.

The results of this phase are the generic specification of the evaluation

criteria and the generic strategies for monitoring the selected criteria. This phase

is supportive of the design principle that the evaluation be based on experiments

(Section 3.3.3) in that it defines the terms in which the experimental hypothesis

may be phrased. The primary guidelines for the execution of this phase are that

the criteria should be selected from Basili's direct cost/quality criteria

[Basili 19861 and that these criteria must be appropriate to the evaluative issues

of interest [Shneiderman 19871.

35

3.4.7 Phase 7: Develop Environment-Independent Experiments

This phase encompasses the development of an appropriate experimental

design and the logical integration of the monitoring facilities for the primary and

additional metrics as well as performance criteria.

The primary metrics to be monitored during the experiment are intended

to capture structural information relevant to object-oriented systems. This

information is essential t o making valid comparisons between object-oriented

designs and to supporting long-term research interests in the development of

formal complexity models for such systems.

Within the scope of a particular object, traditional software metrics are as

relevant t o object-oriented systems as they are t o traditionally-developed

software because, within this scope, traditional complexity factors come into play,

including control, data, and temporal coupling. Traditional assumptions about

the relationship between productivity and the number of lines of code are still

valid. For this reason and for the ability t o make'comparisons between object-

oriented and non-object-oriented systems, we have elected t o include as primary

metrics Halstead's basic software science metrics, namely, the number of unique

operators, the number of unique operands, the total number of operators, and the

total number of operands [Halstead 19771. Halstead's more familiar metrics of

length, vocabulary, and volume can be trivially calculated from these basic

metrics and so are not included here, however, these derived metrics may

correlate more closely with productivity factors under investigation. For the

same reasons, we have included as a primary metric McCabe's "cyclomatic

complexity" metric [McCabe 19761. Each of these traditional (traditional in the

sense that they have been used extensively on traditionally-developed software)

36

metrics has proven to be a good indicator of software complexity and a good

predictor of software development effort [JonesC 1986, Harrison 19861.

The primary metrics that pertain to the object-oriented aspects of the

software under investigation are derived from the structural organization of

object-oriented systems.

Objects communicate exclusively by sending and receiving messages to and

from other objects. These messages can be viewed as forming edges on a graph

in which each node is a unique object. To completely characterize this graph, it is

both necessary and sufficient to record the destination and source of each

message within an application. The pragmatics of doing this for any specific

object-oriented system depend on the implementation of the messaging facility. If

the messaging facility is centralized, as in SMALLTALK and Objective-C, then

the monitor is likewise centralized. However, if the messaging facility is

distributed in the procedure/function call mechanism, as in LOOPS,

encapsulation of application objects within a monitor object is appropriate.

Another structural aspect of object-oriented systems is the inheritance

lattice. This lattice represents the paths by which methods are associated with

object classes. These paths are established by class references within object-

oriented code. Objects may have many descendants and many ancestors in this

graph, depending on the object-oriented language in question. A complete

representation of this graph requires identification of all ancestors and

descendants of any application object, as well as the identification of the defining

class for any method, since navigation of this graph is dependent on the

inheritance mechanism(s) supported by the language. This information

completely characterizes the inheritance lattice and, therefore, represents another

37

primary metric within the proposed methodology.

All metrics concerning the object-oriented structure of software under

investigation can be computed from the two graphs defined above. Examples of

such additional metrics include the number of messages to which an object will

respond, the number of other objects to which messages will be sent, the number

of parents in the inheritance lattice, the number of descendants in the inheritance

lattice, the number of siblings in the objects class, and, for each method

referenced within an object, the shortest path to the definition of the method in

the inheritance lattice and the ratio of unique code to total code needed to

support the method (degree of re-use).

On the systems level, Halstead’s basic software science metrics and

McCabe’s cyclomatic complexity metric are inappropriate to representing the

structural relationship between objects in an object-oriented system. More recent

research into metrics based on structural linguistics [JonesC 19861 holds some

promise, but these metrics have yet to be validated. Therefore, the primary

system-level metric data t o be monitored under this methodology will include the

inheritance lattice and messaging graph structure. Graph sizes in terms of nodes,

edges, depth, and breadth can be directly calculated from this information.

This methodology is intended to be independent of any specific

experimental design.

The results of this phase are the identification of the experimental design

and the logical specification of the evaluation process. This phase is pivotal in

supporting the design principles that require environment-independence

(Section 3.3.2), experimental evaluation basis (Section 3.3.3) and the capture of

relevant structural information (Section 3.3.7). The primary guideline for the

38

execution of this phase is that specific aspects of sound experimental design must

be adhered to faithfully t o ensure validity [Basili 1981a, Boehm 1981, Conte 1986,

McCabe 1976, Shneiderman 1987, Soloway 1984, Weissman 19741.

3.4.8 Phase 8: Prepare the Respective Environments

In this phase, the support facilities such as graphics libraries,

communications libraries, and distributed peripheral resources should be brought

t o comparable levels within the respective environments. This may include

providing object-oriented interfaces to existing support libraries and facilities in

order to provide an appropriate and meaningful comparison.

The results of this phase are the complete test development environments.

This phase represents a normalization of the environments to be evaluated and is

directly supportive of the environment independence design principle referred to

in Section 3.3.2 in that i t reduces any bias that might be caused by differences in

support libraries and peripheral resource access. The primary guideline for the

execution of this phase is that the resultant environments must be representative

of support facilities available in the area of interest.

3.4.9 Phase 9: Develop Environment-Specific Experiments

In this phase, the environment-independent experiment is translated into

the specific test environments and the monitoring facilities for metrics and

performance criteria are implemented. Any clarification of the development

specifications due to the specific environments must be identified and

implemented here.

39

The results of this phase are the environment-specific monitoring facilities

and the environment-specific experimental procedures. This phase is supportive

of the design principles that this methodology must have an experimental basis

(Section 3.3.3) and that automatic primary data capture be provided

(Section 3.3.8). The primary guidelines for the execution of this phase are to

ensure that the monitoring facilities are reliable and that the activity

specifications are unambiguous and do completely specify the user activities to be

performed during the evaluation.

3.4.10 Phase 10: Execute Environment-Specific Experiments

This phase represents the conduct of the experiment within specific

environments. This phase produces the data that will be t h basis of both

comparative evaluations and long-term metrics research.

The results of this phase include user performance criteria measures,

metrics data, and interaction logs, all of which are to be collected automatically

during the course of the experiment. This phase supports directly the design

principles that require the experimental basis (Section 3.3.3) and the automatic

capture of primary metric data (Section 3.3.8). The primary guidelines for the

execution of this phase are to follow sound experimental procedure and to verify

that the collected data is reliable and complete.

3.4.11 Phase 11: Analyze Results

Once the experiment has been conducted in each of the test environments,

a comparison of the user performance results can be made. The validity of this

comparison and any conclusions will, of course, be dependent upon the quality of

40

the experimental design. At this point, we also have a comprehensive

characterization of the object-oriented software produced as a result of the

experiment. This data can then be used in conjunction with the user performance

measurements in order t o test hypotheses about relationships between the data

and software complexity.

The results of this phase are the hypothesis test results. This phase

primarily supports the design principle that the evaluations be based on

experiments (Section 3.3.3) in that valid interpretation of experimental results

complete the evaluation process. The primary guideline for the execution of this

phase is to carefully select the appropriate statistical tests and techniques

[Conte 1986, Basili 19861.

3.5 Evaluation Methodology Summary

This chapter has overviewed existing approaches to programming

environment evaluation and has identified their respective weaknesses with

regard t o the ability of those methodologies t o support the evaluation of object-

oriented environments and to support object-oriented software complexity

research. Design principles for a new evaluation methodology which address these

weaknesses were then identified. Finally, the specific phases of this new

methodology were presented. The next chapter will demonstrate the application

of this methodology to a specific evaluative situation.

Table 3.1 summarizes the relationship between the specific phases of the

evaluation methodology and the methodology design principles established in

Section 3.3. Each phase of the evaluation methodology supports one or more of

the methodology design principles. These design principles were motivated by the

41

criticism of existing programming environment evaluation methodologies in

Section 3.2.

Table 3.2 summarizes the results of each of the evaluative phases of the

evaluation methodology and delineates the language-independent, language-

specific and environment-specific nature of those results. The language-

independent results apply to all of the candidate languages being evaluated. The

language-specific results are tailored t o a specific language, but are independent

of the specific implementation of that language. The environment-specific results

are tailored to the specific environment used to support a candidate language.

Figure 3.1 overviews the relationship between the proposed methodology,

the processes that define the environment-specific context of the evaluation, post

evaluation analysis and evaluation of performance data and primary metrics, and

long-term complexity model research goals of the development and validation of

cognitive models for software development in object-oriented systems. These

goals are motivated by the cognitive impact of the differences between object-

oriented and traditional development systems. Currently defined issues for this

long-term research include modeling and comparing the impact of various

inheritance mechanisms and various inheritance lattice organizational strategies.

Inheritance lattice characteristics have been observed t o affect the time needed to

become productive in object-oriented environments and the level of reusability

typically achieved in such systems [Cox 19861. The methodology presented in

this chapter is critical to investigating these types of issues.

Evaluation Methodology P h ase/Desivn Guidelines MaDpinP ’
Phase Design Guidelines 1

2. Identify test development sys-
tems.
3. Identify applications development
paradigms.
4. Identify and define additional
metrics.
5. Identify and classify user
development activities.

I 6 . Establish evaluative criteria

7. Develop environment-
independent experiments.

8. Prepare the respective environ-

experiments.

environment-speclfic
experiments

I 1 1 . Analyze Results

tion 3.3 1) .
Based on user activities (Sec-
tion 3.3.1).
Provisions for Applications Develop
ment Paradigms (Section 3.3.6).
Extensible (Section 3.3.5).

Based on user activities (Sec-
tion 3.3.1).
Test a core of functionality (Sec-
tion 3.3.4).
Based on experiments (Sec-
tion 3.3.3).
Environment independence (Sec-
tion 3.3.2).
Based on experiments (Sec-
tion 3.3.3).
Ensure the capture of relevant
structural information (Sec-
tion 3.3.7).
Environment independence (Sec-
tion 3.3.2).
Based on experiments (Sec-
tion 3.3.3).
Automatic Primary Metric Data
Capture (Section 3.3.8).
Based on experiments (Sec-
tion 3.3.3).
Automatic Primary Metric Data
Capture (Section 3.3.8).
Based on experiments (Sec-

Tab le 3.1

Evaluat ion Methodology Phase/Design Guidelines Mapping

42

Evaluation Methodolo-
Language

Specific Resul ts Phase
1. Identify applications
domain.

Environment
Specific Results

~

2 Identify test develop-
ment systems

Identification of
languages to be
evaluated
Identification of
library requirements
Identification of tool
requirements
Identification of
application-specific
paradigms

Language
Independent Results
Iden ti ficat ion of app I ica-
tions area
Identification of
development phase
Identification of specific
applications

Identification of
hardware evaluation
p I at form

3. Identify applications
development paradigms.

6 Establish evaluative cri-
teria

7 Develop environment-
independent experiments

8 Prepare the respective
environments
9 Develop environment-
specific experiments

10 Execute environment-
specific experiments

4. Identify and define addi-
tional metrics.

Identification of evalua-
tive criteria
Specification of generic
monitoring facilities
Experimental design

Identification of addi-
tional metrics.
Identification of generic
metric evaluation pro-

~~ ~ ~

5 Identify and classify
user development activi-
ties

Identification of specific
user development activi-
ties.
Generic specification of
user development activi-

1 1 , Analyze Results

Generic specification
of the evaluation pro-

Complete develop-
ment environments
Environment- specific
monitoring facilities
Environment-specific
experimental p r e
cedures
User performance
da ta
Software analysis
da t a
Hypothesis test
results

Table 3.2

Evaluat ion Methodology Phase/Resul ts Mapping

43

ENVIRONMENT INDEPENDENT

I

E N V I R O N M E N T SPECIFIC

Evaluation Environment

- Experiment Design

Application Systems t o be Evaluated
(Constrained by Application Specific

Paradigms)

I I

Development Tasks for
Performance Evaluation

I 1 I

Performance Primary Metrics

I Analysis/Evaluation I

Long-Term Formal Complexity Models Research

Figure 3.1

An Overview of the Evaluation Methodology

44

CHAPTER 4: SPECIFIC TEST CASE

This chapter represents the application of the programming environment

evaluation methodology proposed in Chapter 3 to a specific applications domain

and set of applications development environments. I t intended as a concrete

demonstration of the capabilities of this evaluation strategy.

This research has grown out of a long-standing interest, within the USL

NASA Project [Dominick 19871, in object-oriented systems and in the impact of

this technology on traditionally difficult applications development domains,

specifically those of interactive graphical applications.

As illustrated in Figure 4.1, object-oriented systems technology has now

become the primary experimental software development and evaluation

foundation for future P C workstation components of the USL NASA Project.

Due t o our interest and expertise in the interactive graphical applications

domain, we have selected this area as the domain of the specific test case

presented in this chapter. This demonstration will follow the phase sequence

presented in Chapter 3.

4.1 Phase 1: Identify the Applications Domain

As stated above, the applications domain identified for this specific test

case was that of interactive graphical applications; more specifically, systems

which present an integrated and highly interactive user interface to an underlying

application. A very large fraction of the development effort required for

applications in this domain is typically spent on the user interface [Cox 1986,

Goldberg 1983). Consequently, the specific interest for this evaluation was the

45

S

0
Integrated

Statistics and Graphics
Processor

Expert System
Interface

P
PC/PIPE Protocols for
Interface Prototyping

and Evaluation

I
Statistical Graphical
Support Support

(textual)

P
Information Systems

Common Command Language/
Natural Language

(graphics
extension)

S
Simulator
Generator

Local
Systems

0
PC/MISI

Remote
Systems

Simulator 1 Remote Remote Simulator N System N System 1

0
Local Area Networking Structural Foundation

I
I
I
I

Object-Oriented Systems Research
Experimental Software Development & Evaluation Foundation

PROJECT STATUS LEGEND: S : Specification Stage 0 : Operational Stage
P : Prototyping Stage

Figure 4.1

USL NASA/RECON & NASA/JF'L P C Research Projects

46

47

impact of object-oriented systems design on the development of the graphical

user interface .
The most general form of a graphical user interface is that of an

interactive graphics editor, in that it encompasses a very broad and

representative set of user interactions, including creation, selection, and

manipulation of graphical objects in a variety of ways. Graphical attributes may

be assigned to objects by simple icon selection. Objects are constructed, placed,

and manipulated using combinations of selection and location interactions. Due

to its generality and importance to graphical applications, the specific application

identified for this evaluation was an interactive graphics editor.

In this evaluation, the development phase identified was the product

maintenance/enhancement phase [Balzer 19861, more precisely, the addition of

specific capabilities to the graphics editor application. Activities in this phase of

development account for most of the cost of a software system over its lifetime

[Cox 1986, JonesC 19861.

4.2 Phase 2: Identify the Test Development Systems

Since the focus of this evaluation was the impact of object-oriented

technology with respect to traditional graphical applications technology on

interactive graphical applications development, i t was appropriate to identify

both an object-oriented and non-object-oriented development system. Other

evaluations that focus on the impact of specific object-oriented features,

inheritance mechanisms for instance, would identify multiple appropriate object-

oriented development systems.

48

The development languages identified for this evaluation were C and

AT&T’s object-oriented extension to C, namely, C++ [Stroustrup 19861. Each of

these languages is based on the UNIX operating system and supports standard C

calling sequences t o support libraries. The complete availability, from the USL

NASA Project, of seven identical networked AT&T 7300 UNIXPCs with mice

led t o the selection of this workstation as the platform for this evaluation. The

fact that these workstations, under the control of the USL NASA Project, could

be completely dedicated to evaluation activities simplified many configuration,

monitoring, integration, and scheduling issues. The primary software interface to

the graphical capabilities of this workstation was through the AT&T Virtual

Device Interface (VDI) and Window Control (WC) libraries. A C++ interface to

these libraries was needed to preserve consistency in the C++ development tasks.

Only the standard UNIX development tools make and vi were used to support

development activities since they were readily available and were equally

applicable to both the C and C++ environments. The make facility also insulates

users from having to deal with complicated compiler/linker command line syntax

and library/object module interdependencies. The facilities provided by these

workstations and these graphical libraries are highly typical of those provided

within commercial graphical applications development environments.

4.3 Phase 3: Identify the Respective Application-Specific Development

Paradigms

Application-specific development paradigms are intended to ensure that

the applications developed using the environments under evaluation are

representative of the respective software development technologies. In this

49

evaluation, a specific paradigm was identified for each development environment.

Other evaluations considering only object-oriented systems may require only one

applications development paradigm.

4.3.1 C Environment Applications-Specific Paradigm

For the C-based environment, the applications paradigm was the

traditional Graphical Kernel System (GKS) applications organization strategy. In

this development paradigm the application is organized into functional modules

representing the individual graphical interaction capabilities. These functional

modules are then imbedded in a nested "case" statement control structure

representing possible interaction sequences. Additional capabilities are added by

providing any new interaction capabilities (e.g., line style selection) and

modifying the control structure appropriately. This paradigm is taught (however

implicitly) in virtually every introductory graphics class and text book.

4.3.2 C++ Environment Application Design Constraints

For the C++-based environment, the application-specific development

paradigm has been developed as part of this research. For software to be

appropriately representative of object-oriented development, it must exhibit

evidence of the use of object-oriented techniques in its structural organization.

Object-oriented software typically exhibits a high degree of re-use of internal

methods and a large number of small objects that communicate in patterns

similar t o the structure of the application being modeled. The aspects of

structural organization unique to object-oriented systems involve the inheritance

lattice, representing the relationship between methods and objects, and the

5 0

messaging graph, representing the relationship between objects and other objects.

Maximizing the re-use of methods defined throughout the inheritance lattice

requires that these methods be appropriately factored into common parent object

classes. Methods that are used in multiple objects but not factored into the

inheritance lattice are clearly replicated and, so, not re-used. Additionally, to

maximize the generality and, thereby, the utility of any individual object, the

object should be constructed to deal with a small set of messages and to

manipulate a single principal data structure. The more messages and data

structures an object manipulates, the more specialized and less generic is its

function.

The fundamental design constraints that affect to what degree objects

make use of object-oriented facilities are the degree to which methods are

factored into the inheritance lattice and the degree to which an object focuses on

a specific function or capability.

4.3.3 C++ Applications-Specific Paradigm

The applications-specific paradigm developed pursuant to these design

constraints is presented in this section.

Each graphical entity must be represented as a separately instantiated

object with the appropriate methods for reporting its characteristics in response

to generic messages. Typical methods include current object location, size,

creation, deletion, selection and display operations. Private object data

structures must be sufficient to support local methods. Common methods and

data structures must be factored into classes t o be used in constructing the

inheritance lattice.

51

Objects are to be organized into two disjoint groups, namely, user

interface objects and generic application objects. Graphical interactions must

occur through the user interface objects which must, in turn, activate appropriate

generic objects to accomplish non-interface oriented functions. The intent of this

partitioning of objects is to isolate graphical interaction functions from

applications-specific functions like file access and generic data manipulation. The

term "generic" in this context refers t o functions which may be activated by a

variety of interaction mechanisms and that are not directly associated with

support of the user interface.

This applications paradigm enforces decomposition of the interactive

graphical application into objects which are directly related to the entities with

which the user interacts and limits the scope of such objects to one such entity.

This forces any interaction between graphical entities to be accomplished through

the messaging mechanism, preserving the extensible and re-usable nature of these

objects. Additionally, the factoring of common methods into the inheritance

lattice preserves another important characteristic of object-oriented systems

without constraining just which methods are implemented. The user interface

structure of any interactive graphical application developed under this paradigm

will be representative of an appropriate application of object-oriented techniques.

4.4 Phase 4: Identify and Define Additional Metrics

The methodology presented in Chapter 3 does not require identifying and

defining additional metrics, but certainly does not preclude doing so. This would,

of course, require the implementation of additional monitoring facilities. For this

evaluation, no metrics other than those required by the methodology were

52

identified.

4.5 Identify and Classify User Development Activities

Three independent development activities were identified for this

evaluation. These tasks were selected t o be representative of commercial software

maintenance/enhancement activities. By far the most predominant features

available in commercial graphics editors are the large variety of geometric

primitives. The set of primitives available to the user of a graphics editor directly

affects that user’s productivity since he must himself build anything not directly

available within the editor. The primary difficulty, for the developer, in

implementing new geometric primitives lies in the integration of that primitive

into the icon/menu system that comprises the user interface. The implementation

of geometric primitives are highly representative of commercial graphics editor

development activities in both functionality and difficulty. For this reason, the

first task identified was the addition of a rectangle geometric primitive to the

base graphics editor. The second development task identified was the

implementation of another geometric primitive to permit opportunities for code

re-use and attribute polymorphism. Polymorphism, in this case, refers to the

implicit selection of appropriate implementations of an attribute based upon the

type of the geometric primitive with which it is associated. Finally, the

development of an attribute primitive was identified as the third task. Attributes

are the next most prevalent feature in commercial graphics editors and include

color, fill, texture, selectability, blinking, and intensity. The difficulty involved in

integrating the attribute primitives is greater than that of geometric primitives

due t o the need for establishing an additional level of icons/menus. An attribute

53

primitive is also a highly representative feature and thus its implementation is a

highly representative development task. We have selected the implementation of

a solid fill attribute for this third and final task.

As stated above, the first development task identified was the addition of

a rectangle geometric primitive to the base graphics editor. The rectangle was to

be constructed by selecting the appropriate menu item with the mouse and

subsequently selecting two opposing diagonal corners indicating the size and

position of the new object. Certification of correct completion of this task

involved testing the new capability over its input equivalence classes. For the

rectangle, primitive this required constructing the rectangle using the four

possible combinations of opposing diagonal corners, namely, upper right to lower

left, lower left to upper right, upper left to lower right, and lower right to upper

left. Testing of the existing line drawing primitive was also required to ensure

that it had not been damaged as a result of development task activities.

The second development task identified was the addition of a triangle

geometric primitive t o the base graphics editor. The triangle was t o be

constructed by selecting the triangle menu item and subsequently, the three

vertices of the triangle. Task certification for this primitive involved testing over

only two input equivalence classes, namely, the clockwise and counter-clockwise

entry of the triangle vertices. Again, testing of the existing primitives was

required to ensure that no damage had occurred.

The final development task identified was the addition of solid fill

capability t o both the rectangle and triangle geometric primitives. Once the

geometric primitive was selected, an attribute menu was to appear, allowing the

selection of a filled or hollow attribute for that primitive. Certification of this

54

task required testing both the rectangle and triangle geometric primitives as

specified above for both filled and hollow attributes. Testing of the existing line-

drawing primitive was required once again to ensure its continued correct

operation.

The development tasks as specified in this section are completely generic

with respect to the candidate development environments.

4.6 Phase 6: Establish Evaluative Criteria

The proposed methodology is independent of the specific criteria used to

evaluate subject performance on the user development tasks identified as a result

of the Phase 5 activities, as long as the criteria are environment-independent in

definition. Potential criteria are based on Basili’s direct cost/quality criteria

[Basili 19861 and include measures of cost, errors, changes, and reliability.

This test case application of the proposed evaluation methodology

identified total development time as the primary performance criteria. Total

development time was defined as the time from the delivery of task specification

t o the successful completion of the certification tests for each task. As noted

above, this choice of criteria, being environment-independent, does not affect the

validity of the proposed evaluation methodology. Time-stamped interaction

transcripts were identified as the generic facilities for monitoring this criteria,

since this approach permits a detailed characterization of each subject’s activities

during the experiment. For example, we can easily derive the number of compiles,

time spent compiling, number of editor invocations and time spent editing during

a development session from interaction transcripts by classifying the time-

stamped interactions as compile-related or edit-related and accumulating the

5 5

respective interaction times and counts. Other evaluations might include other

performance criteria. The identification and documentation of such criteria is

critical to ensuring the comparability of the results of independent evaluations.

4.7 Phase 7: Develop Environment-Independent Experiments

This methodology is also independent of the specific experiment design

identified in support of the evaluation. The specific hypotheses are, however,

constrained to assert ions involving envi ronmen t-independent performance criteria

monitored during the conduct of the identified development tasks. The data

collected during the experiment is also constrained t o include the primary metrics

identified in Section 3.4.7. Selection of the specific experiment design must be

based upon standard experiment a1 considerations including the number of

subjects available, the time commitment of those subjects, the degree to which

the population is homogeneous, the number of treatments involved, and the

degree of control desired for "maturation" effects [Conte 19861. Since these

considerations are specific to the environment in which the evaluation is t o be

conducted, the proposed evaluation methodology must assume that the

experiment design is appropriate and that the experiment is conducted according

t o sound experimentation procedures. The validity of the proposed methodology

in no way depends on the validity of the design or conduct of any specific

experiment.

The null hypothesis identified for this experiment was that there would be

no difference between the paired development time distributions for development

in the C and C++ environments. Determination of the level of significance of

the results of this experiment required computation of the probability of wrongly

5 6

rejecting this hypothesis.

The experiment population for this evaluation consisted of Computer

Science seniors and graduate students who had extensive C, UNIX, and graphics

experience, in particular, who had completed major course-related projects (e.g.,

operating systems, databases, etc.) using C in a U N E environment and who had

experience using at least two highly-interactive graphical tools (e.g., paint

packages, drafting packages, graph editors, etc.). Four subjects participated in

the experiment whose activities spanned two months. Since multiple observations

were t o be conducted involving related tasks, there was a need to control for

maturation effects. This consideration led t o the identification of a counter-

balanced design for the experiment.

The generic evaluation procedure specified for this test case consisted of

five steps, as follows:

The subjects are t o be randomly assigned to one of two groups. The first

group is t o approach the development tasks in C on the first day and in

C++ on the second day, while the second group is to approach the

development tasks in C++ on the first day and in C on the second day.

C++ and VDI proficiency are to be tested immediately before beginning

the first development task on each of the two days.

Each development task is to be uninterrupted and begins with the

disclosure of task specifications and ends with successful certification of

the task.

Upon completion of the first task, the subjects are to logout of the

workstation environments (this permits flushing all transfer buffers and

re-initialization of storage management facilities to protect data in the

(5)

57

event of a power outage; this is the only way to re-initialize the 7300’s

virtual memory management mechanisms to prevent swap space

fragmentation and the associated excessive performance degradation).

The next development task is to be started immediately upon completion

of the previous task until all three tasks for the day are completed. A

maximum time limit of four hours is specified since development activities

exceeding this limit would only occur in the pathological case of the

subject chronically overlooking a particular error, inappropriately affecting

the observed development time distributions. In such a case, the

respective data would be considered missing.

Primary focus was to be on the differences in development time in C versus the

development time in C++ for each subject. This experimental organization is

similar to that used by Gannon [Gannon 19771 in evaluating the impact of strong

typing on program development.

4.8 Phase 8: Prepare the Respective Environments

The C and C++ environments within the selected NASA AT&T

workstation environments were identical except for the Virtual Device Interface

(VDI) and Window Control (WC) mechanisms. A C++ language interface

mechanism was developed in this phase to provide C++ users access to VDI and

W C at the same level of abstraction and functionality as was available t o the C

users. These libraries were tested by using them to construct the base editor

applications. The intent here was to provide support function invocation in a

style consistent with C++.

58

The graphics editor applications were also developed in this phase. These

editors provided the software base to be used in the development activities and

were extensively tested for equivalent functionality and reliability by exercising

all primitives over identified input equivalence classes. No functional differences

existed between the environments in either the available tools or the base

graphics editors.

4.9 Phase 9: Develop Environment-Specific Experiments

Automatic performance monitoring facilities for the performance criteria

established in Section 4.6 were implemented in both the C and C++

environments. These facilities were completely transparent to the user and

consisted of an interaction monitor imposed between the user and the operating

system command shell. Each interaction is captured and time-stamped for start

and finish times. The interaction is then passed on to the standard shell for

execution. This data is collected in log files that are distinct for each development

task. A file name generation scheme was developed t o avoid filename collision.

Automatic documentation facilities for subject, time, and workstation

identification was also implemented as part of this phase.

Automatic primary metric computation facilities for C and C++ were

based on LEX LR(1) grammars. The grammars essentially support the counting

of operands, operators and conditional statements in support of the traditional

metrics. To determine the inheritance lattice in C++ software, it is only

necessary to capture the names of all of the members defined in all of the classes

of the application. This was accomplished by automatic analysis of the class

definition sections of the software, identified by the grammar, and the

59

construction of class member tables. Determination of the messaging graph,

however, required runtime information, since the binding of messages to C++

virtual functions occurs during execution (virtual functions are a specific type of

C++ method). To support construction of the messaging graph, class member

tables were augmented to capture argument typing for each defined method and

static class identifier strings were imbedded within class declarations by

establishing standard class header macros which are expanded during

compilation.

These facilities for providing automatic primary metric computation were

completely implemented with the exception of the C++ messaging graph facility.

The messaging graph data collection mechanism was completely designed but was

not implemented due t o vendor delays in the delivery of the C++ translator

source code. The source code for the translator was needed t o gain access to

internal runtime messaging mechanisms known as vtables. A compromised

mechanism could have been implemented using static code analysis techniques

alone; however, this static approach was foregone in favor of the technique

described above. The implemented primary metric computation facilities were

tested on the National Institute of Health’s OOPS C++ library [Gorlen 19861

and the equivalent generated C code and performed correctly.

Environment specific preparation of the subjects was also conducted in

this phase. The subjects involved in the experiment were extensively trained in

C++ over a two month period. Training effectiveness was monitored by testing

subjects on the C++ features and concepts incorporated within the base graphics

editors. The subjects were also required t o complete programming exercises on

the AT&T 7300 workstations using C, C++ and the Virtual Device Interface

60

libraries.

The generic experimental procedure of Phase 7 required no refinements for

the specific environments used in this evaluation and was adopted as the

environment-specific experimental procedure with no changes. In evaluations

within which the facilities for the candidate environments differ appreciably, this

phase would include distinct environment-specific experimental procedures.

4.10 Phase 10: Execute Environment-Specific Experiments

This phase represents the actual conduct of the environment-specific

experimental procedure developed in Phase 9.

The four subjects were randomly assigned to one of two experimental

groups. The first group, containing subjects 1 and 4, approached development in

C++ first and subsequently in C. The second group, containing subjects 2 and 3,

approached development in the opposite order.

Before each set of development tasks, the subjects were tested for

proficiency in both C++, VDI, and WC. Tables 4.1 and 4.2 summarize the

results of these tests for both sets of development tasks. The tests covered all of

the features and concepts incorporated within the base graphics editors that were

not a part of standard C programming. The maximum possible score on each

test was 12. The minimum threshold for participating in the experiment was

established to be 80% correct, or 10 out of 12. As can be seen from the tables, all

subjects met or exceeded this threshold for both days of the evaluation without

additional training.

The specifications were distributed to all subjects at the same time. A

maximum time limit of four hours was set for each development set. The

61

development tasks proceeded without interruption until the entire set of three

development tasks was completed and the certification tests passed. On the

following day, the groups were reversed and re-tested for proficiency. The

subjects were then allowed t o proceed with the development task sets. The user

performance data gathered (in real time seconds for task completion time) is

presented in Tables 4.3 and 4.4, and represents the total development times for

each task for each subject as monitored during the experiment. The

characteristics of the base graphics editors and the completed editors from each

of the subjects in both C and C++ are summarized in Tables 4.5, 4.6 and 4.7.

.

4.11 Phase 11: Analyze Results

As stated in Phase 7, the null hypothesis for this experiment was that

there is no difference between the development time distributions in C and C++.

Since sample sizes were small and sensitive to isolated bad performances,

nonparametric statistical tests were in order, even with the greater risk of

accepting a false null hypothesis [Basili 19861. The performances of each of the

subjects in C and C++ were compared using a one-tailed Wilcoxon test

[Gannon 1977) since these are related measures. From the analysis of the data in

Tables 4.3 and 4.4, the performance data exhibited 11 samples with a positive

difference averaging rank 6, and 1 sample with a negative difference at rank 11.

The calculated probability of wrongly rejecting the null hypothesis is .07 for this

data, just over the standard .05 level [Conte 19861 (.l is often used in software

productivity studies [JonesC 1986, Basili 198lb, Conte 19861, although most

modern experimenters do not adhere to a rigid significance threshold

[Conte 19861). We consider this level significant and we conclude that there is a

62

significant difference between the development time distributions in C and C++

for the context of this experiment. Further, the C++ development time was often

half of the C development time for these development tasks as shown in Tables

4.3 and 4.4. In particular, subjects 2, 3 and 4 exhibited total development times

(combining times for all three tasks) in C++ that were 64, 50 and 51 percent of

those in C respectively, while for subject 1 C++ development took 45 percent of

the time required for equivalent C development for tasks 1 and 2 combined.

Subject 1 encountered difficulty in debugging during task 3 in C++, accounting

for the inordinate time consumed.

As initially stated in Section 4.6, as a framework for object-oriented

programming environment evaluation, the validity of the methodology developed

as part of this research does not depend on the outcome of any specific evaluation

or on the validity of any supportive experiments. The purpose of this specific

test case application of the developed evaluation methodology is solely to provide

a concrete demonstration of its systematic nature and evaluative capabilities.

The VDI and C++ proficiency tests were administered prior each of the

development sets to permit the identification of any ”learning” effects. Table 4.1

presents the results of the VDI and C++ proficiency tests administered prior to

the subjects beginning the development sets on the first day of the experiment.

All subjects’ scores exceeded the 80% threshold needed to participate in the

experiment. Table 4.2 presents the results of the same tests administered on the

second day of the experiment. Once again, all subjects’ scores exceeded the

minimum threshold. The distributions of these scores did not differ significantly

between testings, indicating the absence of any significant ”learning” effect. The

administered tests are contained in Appendix B.

63

Table 4.3 presents the total development times, measured in real-time

seconds, for each subject by tasks for development in C. Table 4.4 presents the

corresponding development times for development in C++. The development

time for Subject 1 for task 3 resulted from difficulty encountered in debugging.

The complete monitor script used during this evaluation is included in

Appendix C.

Table 4.5 summarizes the object-oriented characteristics of both the base

graphics editor and the editors completed by each subject. The LEX code used

during this evaluation for supporting this object-oriented characteristics analysis

is included in Appendix D.

Tables 4.6 and 4.7 present the traditional metric characteristics of both

the base graphics editor and the editors completed by each subject for C and

C++ development respectively. The metrics used are McCabe's "Cyclomatic

Complexity" and Halstead's basic "Software Science" metrics including N, (total

number of operators), N, (total number of operands), n, (number of unique

operators), n2 (number of unique operands), N (total number of tokens (size)), n

(n + n2 (vocabulary)), and V (N * log2(n) (volume)). The LEX code used during

this evaluation for traditional metrics analysis is included in Appendix E.
1

The large disparity between the measured values of the traditional metrics

for the C and C++ graphics applications is attributable to the explicit typing,

inter-object messages, and method declarations of C++, in contrast to defaults,

side-effects, and simple function definitions that were employed in C.

Additionally, as can be seen from Table 4.5 subjects added an average of three

classes, containing of average of four members during development, facilitating

very localized (primarily intra-class) code modification. The C++ mechanisms,

64

while more verbose, are seen as central to improving productivity by many

software engineers [JonesC 1986, Cox 19861. This view is consistent with the

results achieved in the test case PEEM execution. The ability to formally validate

this sort of intuition is the principle motivation of this research.

Proficiency T e s t 1 Scores
Subject 1 Subject 2 Subject 3 Subject 4 ,

VDI 11 12 12 12 ,
C++ 12 12 11 10

Proficiency Test Scores Prior to the First Development Set
Table 4.1

VDI
C++

Proficiency Test 2 Scores
I Subject 1 I Subject 2 I Subject 3 I Subject 4

12 12 12 12
12 11 12 11

User P e r f o r m a n c e in C (seconds)
Subject 1 Subject 2 Subject 3 Subject 4

Task 1 754 64 3 378 992
Task 2 425 33 1 225 306

. Task 3 1101 1263 727 1461 -

Proficiency Test Scores Prior to the Second Development Set
Table 4.2

Subject 1 Subject 2
Task 1 379 515
Task 2 150 219
Task 3 2675 702

Subject 3 Subject 4
150 635
119 161
405 616

Task Completion Times for C Development
Table 4.3

Task Completion Times for C++ Development
Table 4.4

65

0 b iect- Or ien ted Char act er ist ics Summary
I Subject 1 I Subject 2 I Subject 3 I Subject 4 I Base

Total Classes 8 8 9 8 5 ,
, Avg. Members/Class 4 4 3.78 4.25 5

Avg. Lines/Class 9.63 9.88 9.56 9.88 10.6 ,

Summarized Object-Oriented Characteristics of C++ Graphics Applications
Table 4.5

Summarized Traditional Metrics for C-Based Graphics Applications
Table 4.6

Summarized Traditional Metrics for C++-Based Graphics Applications
Table 4.7

66

CHAPTER 5: EVALUATION OF RESEARCH WITH RESPECT

TO RESEARCH OBJECTIVES

The specific research objectives which have served as guidelines for the

development of this Programming Environment Evaluation Methodology for

Object-Oriented Systems were identified in Chapter 2. These specific objectives

were grouped under the following three general research objectives:

1. The design, development, application, and evaluation of a systematic,

extensible, and environment-independent evaluation methodology capable

of supporting investigation into the impact of object-oriented design

strategies on the software development process (Section 2.1).

2. The design, development, application, and verification of domain-specific

applications development paradigms t o support consistent comparisons of

applications developed under an object-oriented strategy (Section 2.2).

3. The design, development, application, and completeness verification of

primary metric data definitions appropriate to systems developed under an

object-oriented design strategy (Section 2.3).

This research will be evaluated according to the extent to which it has

attained the specific research objectives stated in support of each general research

objective and, subsequently, according to the extent to which it has satisfied the

intent of that general research objective. The significance of each of the research

objectives was already identified in Chapter 2. Table 5.1 presents a mapping of

the research objectives to their associated evaluative sections.

67

Research Objective
Evaluation Methodology General Research Objective

Associated Specific Theoretical Objective:
T o develop design principles that ensure a systematic, reproducible,
and environment independent PEEM
Associated Specific Methodological Objective:
To design a PEEM tha t incorporates automatic performance and
primary metric da ta capture.
Associated Specific Developmental Objective.
T o develop a prototype evaluation environment capable of support-
ing the PEEM
Associated Specific Evaluative Objective:
To conduct a demonstrative test case execution of the PEEM com-
paring development in a traditional and an object-oriented

Application-Specific Paradigm General Research Objective
Associated Specific Theoretical Objective
To determine application domain-specific design characteristics that
promote consistent application of objectoriented technology
Associated Specific Methodological Objective
To design application domain-specific development paradigms tha t
support effective application of oblect-oriented design techniques
Associated Specific Developmental Objective
T o develop procedures for the application of the applications
domain-specific paradigms within a specific objectoriented environ-

Section
Section 5.1
Section 5.1.1

Section 5.1.2

Section 5.1.3

Section 5.1 4

Section 5.2
Section 5.2.1

Section 5.2.2

Section 5 2.3

~ ~

Associated Specific Evaluative Objective
To verify tha t the application-specific development paradigm does
produce representative object-oriented software

Associated Specific Theoretical Objective
To design primary metric data definitions tha t characterize the
aspects of software unique to objectoriented designs
Associated Specific Methodological Objective
To develop language-independent methods for capturing primary
metmc da ta for oblectroriented desiEns
Associated Specific Developmental Objective
To provide language-specific acquisition of the primary metric da t a
for the object-oriented systems under evaluation
Associated Specific Evaluative Objective
To comprehensively test these metric da ta acquisition methods for

Primary Metrics General Research Objective

Section 5.2.4

Section 5 3
Section 5 3 1

Section 5.3.2

Section 5 3.3

Section 5.3.4

accuracv. I

Table 5.1

Research Objective/Evaluation Section Mapping

68

69

5.1 Evaluation of the Evaluation Methodology General Research

0 b ject ive

This section presents the evaluation of the evaluation methodology general

research objective identified in Section 2.1. Each specific research objective is

considered individually and represents a different aspect this general research

objective.

5.1.1 Evaluation of the Associated Specific Theoretical Objective

To develop design principles for the proposed evaluation methodology that

ensure sys temat ic , reproducible, and env ironment - independent per formance

evaluations, thereby supporting the long-term development of theoretical models

and m e t r i c s for the characterization and comparison of object-oriented sy s t ems .

The theoretical aspect of this general research objective represents the

establishment of design principles for the presented PEEM (Section 3.3). These

design principles were developed based on an analysis of existing PEEMs

(Section 3.2) with respect to our stated research goal of supporting long-term

research into object-oriented complexity models/metrics (Chapter 1). The

primary motivation for, and justification of each of the PEEM design principles

were presented in Section 3.3. The support of these principles for the desired

systematic, reproducible, and environment-independent nature of the PEEM was

also established in Section 3.3. Table 3.1 established the mapping between the

design principles and the individual phases of the PEEM. What remains is to

establish that the PEEM developed pursuant to these design principles is, indeed,

systematic, reproducible, and environment-independent in nature.

70

5.1.1.1 Systematic Procedure

The systematic nature of any methodology refers to the degree to which

the relationships between the individual phases of that methodology have been

established. This section evaluates the systematic nature of the presented PEEM.

This PEEM provides a structural framework for the evaluation of object-

oriented programming environments. The individual phases of the PEEM are

defined generically, but specific results are identified and specific execution

guidelines are established for each phase (Section 3.4).

The first seven phases of the PEEM embody a procedure for establishing

the scope of the evaluative activities t o be pursued. This procedure includes the

specification of the applications domain, the selection of candidate development

environments for evaluation and comparison, the development/selection of

applications domain-specific development paradigms, the identification of metrics

of interest, the identification of subject development activities, the establishment

of evaluative criteria, and the design of generic experiments.

The results of these phases are subsequently refined into environment-

specific activities and procedures that support the evaluation process. Phases 1-7

can be refined independently of the specific evaluation facilities available. The

applications domain is refined into specific representative applications. Specific

implementations of the selected development environments are selected,

providing the base hardware and software facilities for the evaluation. The

applications-specific development paradigms are refined into environment-specific

development procedures. Metric definitions are refined into environment-specific

computation procedures. Subject development activities are translated into

71

environment-specific development specifications. Evaluative criteria are refined

into environment-specific monitoring procedures. Generic experiment designs are

translated into environment-specific experiment designs. These activities, taken

together, establish the specific evaluative procedures for each environment.

Phases 8 and 9 address the normalization of specific environments and the

implementation of experiment support facilities within those environments.

These activities are based on the results of Phases 1-7 and require access to the

specific evaluative environments for execution. These activities must also be

completed before the start of Phase 10.

In Phase 10, the environment-specific experiments are conducted in each

environment, with associated performance and primary metric data being

collected. Clearly, this phase must be complete before before the start of

Phase 11.

Finally, in Phase 11, the results of the experiment are analyzed and any

formulated hypotheses are tested. ,4t this point, we have valid experimental

results, consistent and complete performance data, and well-characterized

evaluative environments. We can then immediately assess performance differences

in the environments being compared.

In summary, for each phase of this PEEM, this research has identified

specific results and specific execution guidelines. As shown in this section, these

phases have been logically grouped and inter-group execution dependencies have

been determined from the identified phase results. With this information,

application of the presented PEEM can be carried out in a systematic manner.

72

5 .l. 1.2 Reproducible Evaluations

The reproducible nature of any PEEM is dependent on two primary

factors, namely, adequate documentation of the evaluation context and the

employment of an objective evaluation mechanism. If the context in which the

evaluation occurs is thoroughly documented, then an equivalent context can

clearly be established (for all practical concerns). Given an equivalent context, an

objective evaluation mechanism must produce statistically equivalent evaluative

results. The basis of the evaluation of the reproducible nature of this PEEM is

the adequacy of its provisions for documenting the context of an evaluation and

the objectivity of its evaluative mechanism.

The documentation provided by this PEEM is composed of the collection

of specific phase results as summarized in Table 3.2. This collection of results

completely characterizes the scope addressed in the evaluation, the candidate

environments evaluated, the development paradigms employed, the tools and

techniques used to gather data, the experimental design employed, and the

statistical techniques applied. This completely documents the process of

preparing for, and conducting the evaluation. It should be noted that this level

of documentation is far in excess of that required by existing and widely accepted

PEEMs and certainly exceeds the information typically provided to the research

community. However, in our application of this methodology, we have found this

level of documentation to be both justified and workable.

The core of the evaluation mechanism employed within this methodology

is the controlled experiment. As utilized within the methodology, this forces a

formalization of the questions in which an evaluator is interested and discourages

qualitative evaluations. This approach also ensures objectivity with respect to the

73

formulated hypotheses [Weiderman 19871 and thereby directly supports

reproducible results. The evaluation mechanism is further supported by the

automatic collection of performance and primary metric data. This circumvents

the inherent bias and unreliability of manual data collection mechanisms (e.g.,

stopwatches, manual counting, etc.).

Either of the two issues discussed in this section would, taken alone, be

insufficient to ensure reproducible evaluative results, since inadequate

documentation would admit uncertainty about the equivalence of evaluation

contexts and the lack of an objective evaluation mechanism or a reliable data

collection mechanism admits variability in the evaluation process itself. In

Section 3.2, existing PEEMs were criticized for several factors affecting the

reproducibility of evaluative results, namely, the adoption of subjective

evaluation criteria, the selection of inherently biased evaluation criteria, and the

incorporation of unreliable data collection mechanisms. The PEEM developed as

a result of this research directly addresses each of these criticisms of existing

PEEMs with respect t o the reproducibility of evaluative results.

5.1.1.3 Environment Independence

Environment-independence, in this context, implies that the PEEM is not

biased toward or away from any candidate environment. This objective is

motivated by the environment-specific nature of performance criteria, metric

data, and evaluative mechanisms defined within existing PEEMs, inherently

limiting the applicability of these PEEMs across heterogeneous environments.

Environment-independence is not intended t o imply that all evaluations of all

environments will be comparable under the PEEM. Clearly, any evaluation

74

results must also depend upon the applications domain selected, the test

development systems identified, the applications development paradigms

employed, and the user development activities performed. Rather, environment-

independence ensures that evaluations of highly heterogeneous software

development environments, where other environmental factors are comparable,

will be comparable. To accomplish this, the specification of the PEEM must be

independent of any environment-specific requirements and the evaluative process

itself must not be biased as a result of the conduct of any phase.

Observe that each phase in the PEEM is defined in generic terms, that the

results of each phase are identified in generic terms, and that the execution

guidelines for each phase are specified in generic terms; that is, there are no

environment-specific references in the specification of the PEEM. The

environment independence claim, then, depends solely on how well the PEEM

preserves the environment-independence of the evaluative process.

There are only three evaluative phases within the PEEM that have a

potential biasing effect on the evaluative process, namely, Phase 4, Phase 6 and

Phase 7 . These phases establish additional metric data definitions, performance

evaluation criteria, and the experimental design, respectively. Phase 3, the

identification of application-specific paradigms, is intended to promote valid

comparisons across highly heterogeneous environments, but the results of this

phase affect test case consistency only, and not the evaluative process. This issue

is evaluated in Section 5.2. The remaining phases of the methodology affect and

are affected by the evaluative context, thereby affecting evaluative results, but

these phases cannot bias the evaluative process itself.

75

If the results of Phase 4 are defined in environment-specific terms, then

the collected metric data may not be comparably defined for widely differing

environments. For example, it is ridiculous to compare the number of lines of

code for a specific application in assembler versus Smalltalk. The PEEM

developed as part of this research requires that any additional metrics must be

defined in environment-generic terms. This ensures that, for any candidate

environments, collected metrics can be compared based on this environment-

generic definition.

If the results of Phase 6 are defined in environment-specific terms, the

evaluative criteria may not be equally applicable across heterogeneous

environments. Consider the problem of comparing productivity in lines of

code/month in assembler versus Smalltalk. The assembler programmer would

look unduly more productive. This PEEM also requires that performance criteria

must be selected from Basili's direct cost/quality criteria. Again, this ensures that

criteria from widely varying environments can be compared.

Finally, if a specifim experimental design were part of the PEEM

specification, the PEEM would be inherently limited to evaluative contexts in

which that experimental design is appropriate. Since good experimental design is

driven by the context in which the experiment is conducted (e.g., number of

subjects, variability in expertise of subjects, etc.), this would be a crippling

problem. The PEEM presented in this document treats experiment-related

activities a s independent support activities. The PEEM assumes that the

experiment design is valid and that sound experimental procedure is followed, as

stated in Sections 3.4.7 and Section 4.7; however, t o preserve the comparability

of experimental results, the PEEM does constrain hypothesis formulation to

76

assertions concerning the environment-generic performance criteria of Phase 6.

An experiment’s validity depends exclusively on the appropriateness of the

experimental design to the specific evaluation environment, and on the soundness

of the conduct of the experiment within that environment [Conte 1986,

Basili 19861. The considerations involved in selecting and executing a specific

appropriate experimental design are not within the scope of this PEEM.

Additionally, the specification of Phase 7 in Section 3.4.7 includes the

definition of required primary data metrics (to be evaluated in Section 5.3) that

provide IL complete characterization of the object-oriented aspects of the object-

oriented test applications. These required primary metric da ta definitions also

support the comparability of experimental results, but cannot bias the evaluative

process .

5.1.2 Evaluation of the Associated Specific Methodological Objective

To des ign a n evaluation methodology that incorporates automatic

per formance and pr imary metr ic data collection.

This section represents the evaluation of the methodological aspect of this

general research objective and focuses on the extent to which the resultant

PEEM achieves the objective of incorporating automatic performance and

primary metric data collection. This issue is pivotal in establishing the

practicality of this PEEM and the reproducibility of its evaluative results.

Phase 6 of the PEEM provides for the establishment of specifications for

all evaluative criteria. The specification of Phase 7 of the PEEM establishes

required primary metric data definitions, while Phase 4 provides for the

identification and definition of any additional metrics. These environment-

77

independent specifications provide the starting point for the development of the

automatic performance and primary metric data collection facilities that are

developed in Phase 9. While the specific implementation strategy for these

facilities cannot be defined as part of this PEEM (since it is environment-

specific), these phases have proved sufficient to guide the implementation of such

facilities in a test case application of this PEEM (Section 5.1.4).

5.1.3 Evaluation of the Associated Specific Developmental Objective

To develop a prototype evaluation env i ronmen t capable of supporting the

proposed methodology.

As part of this research, a prototype environment for conducting

evaluations under this PEEM was developed. As stated in Chapter 4, this

environment was based on seven identical networked AT&T 7300 UNIX PCs

with mice that were completely dedicated to these activities by the USL NASA

Project. These systems supported the complete U N M System V operating

system, including all development utilities. Interface libraries for graphics and

window control were available for the C language. Language support for both C

and C++ was provided. The only capabilities not already established in these

environments for support of the PEEM were automatic performance monitoring

and primary metric recording and computation.

To establish the automatic performance monitoring capability on these

workstations, several approaches to interactive transaction logging were

prototyped, including a C-based transaction monitor program, a signal-based

monitor based on multiple processes, and a shell-based monitor. Each of these

monitors was inserted between the user and the operating system’s default shell.

Testing revealed that the shell-based approach imposed the least overhead since

78

the operating system interpretation mechanism was always resident. Both the C-

based approach and the signal-based approach caused excessive paging since they

started new processes and competed with the operating system and user

applications for residency. The shell-based approach was adopted based on this

evaluation. Unique file name generation techniques were also developed to

support the logging of collected data.

To establish the automatic primary metric data collection capability in

this environment, LEX grammars were developed to scan both C and C++

source code. C support routines were also developed to augment the LEX

capabilities with respect t o token type determination.

With the establishment of these capabilities, the prototype environment

was determined t o be capable of supporting the PEEM. These activities served as

the foundation for the evaluative execution (evaluated in Section 5.1.4) of the

PEEM.

5.1.4 Evaluation of the Associated Specific Evaluative Objective

To conduct a sys temat ic compar ison of selected software deve lopment tasks

in a specif ic applications domain using a n object-oriented programming s y s t e m

wi th the s a m e deve lopment tasks using a traditional programming s y s t e m under

the proposed methodology t o demons tra te its evaluation strategy and the

capabilities of this approach.

Chapter 4 of this document presented the test case application of the

PEEM in the evaluation of development in C versus C++ for a highly interactive

graphical application. This section focuses on the evaluation of this test case

PEEM execution.

79

The test case PEEM execution presented in Chapter 4 was conducted over

the course of two months utilizing seven graduate students in Computer Science.

In particular, these students were involved in the development of the automatic

monitoring facilities, the development of the automatic code analysis facilities,

and the development of the base graphics editor applications. Four of these

students were able to participate as subjects in the actual experiments. These

substantial development activities represent a large part of the cost of executing

the PEEM. The successful execution of the PEEM in this short amount of time,

using only seven graduate students (including subjects) on a part-time basis, is

indicative of the systematic and practical nature of this PEEM.

The automatic monitoring of development transactions and the automatic

analysis of developed code served to reduce the amount of time and personnel

needed t o support the PEEM execution. If these facilities had been performed

manually, this execution of the PEEM would have required at least four

additional staff members for monitoring and classifying development transactions

and another six staff members t o assist in the manual analysis of the development

transcripts and generated code. Needless to say, the results of such a manual

process would be far less reliable and timely than those produced by this test case

PEEM execution.

The PEEM execution produced extensive documentation of the evaluative

context, the actual development processes, and the characteristics of the

developed software (see Tables 4.1-4.7 and Appendices B-E). It is interesting to

note that, while the scale of this evaluation (only four subjects) reflects the

demonstrative nature of this execution of the PEEM, a larger scale evaluation

could re-use all of the PEEM phase results, thereby significantly reducing the cost

80

of PEEM re-execution.

The test case execution of the presented PEEM has successfully

demonstrated its systematic and practical evaluation strategy. The capabilities

and hence the potential value of this PEEM are also evidenced in the scope and

detail of the information produced as a result of its execution (see Tables 4.1-4.7).

The only aspect of this general research objective not addressed in the

evaluation of the associated specific research objectives is extensibility.

Extensibility refers t o the ability of the methodology to support extensions to the

scope of its evaluative capabilities. Users of the methodology should be able to

add new metrics, evaluate new features, and compare new environments. Existing

programming environment evaluation methodologies were criticized in Section 3.2

for a lack of extensibility of this type.

The proposed methodology was defined in environment-generic terms and,

accordingly, does not incorporate any specific environmental characteristics in

establishing the evaluative framework. Specific provision has been made for

identifying and incorporating additional metrics within the evaluation procedure,

while comparability of results is preserved by requiring only a minimal set of

primary metrics. These primary metrics are fundamentally based on the defining

characteristics of object-oriented systems and, accordingly, are applicable to any

newly-developed object-oriented system, regardless of additional features which

may be included in such systems. The independence of the developed

methodology of any specific experimental design allows even more fundamental

extensibility .

This type of extensibility cannot be provided by evaluation methodologies

that are based on environment-specific evaluation procedures, criteria and

81

metrics, as are existing programming environment evaluation methodologies (see

Section 3.2). The extensibility of the developed methodology is one of its

strongest features.

The final consideration in the evaluation of this general research objective

is this PEEM’s support for long-term software complexity research for object-

oriented systems. The degree t o which the proposed methodology supports

software complexity research for object-oriented systems depends on how

completely it characterizes the aspects of software due to object-oriented design,

on how consistently it can be applied, and on how well it can address emergent

questions about object-oriented systems.

Specific design aspects of this methodology address these issues explicitly.

The definition of primary software metrics is provided for the express purpose of

characterizing unique object-oriented aspects of software. The systematic and

experimental aspects of the methodology support consistent and repeatable

evaluative results and comprehensive reliable data collection. Finally, the

extensibility of the methodology permits the incorporation of developing aspects

of software complexity research. We believe that the methodology developed as

part of this research has met its initial goal of providing features supportive of

metrics research for object-oriented systems; however, complete validation of the

methodology must, in the final analysis, be based on extensive application in

actual research and development settings.

82

5.2 Evaluation of the Application-Specific Paradigm General

Research Objective

This section presents the evaluation of the application-specific paradigm

general research objective identified in Section 2.2.

5.2.1 Evaluation of the Associated Specific Theoretical Objective

T o de te rmine fundamen ta l design characteristics for specif ic applications

domains that promote the theoretical validity of systematic comparisons o f object-

oriented sys tems .

This research has focused on the area of highly interactive graphical

information systems in dealing with all application-domain specific issues. This

focus was selected based on the high degree of object-oriented development

activity involving these types of applications and to the particular long-standing

interest of the USL NASA Project in this area. Consequently, the applications-

specific object-oriented design characteristics developed in Section 4.3.3 focus on

this specific area.

The fundamental object-oriented design characteristics identified in

Section 4.3.2 were that truly object-oriented software must exhibit methods

which are factored throughout the inheritance lattice and that each individual

object must focus on a specific function or capability. In Section 4.3.3, these

characteristics were refined to apply t o interactive graphical applications, in

particular. These ap plic at ion-speci fic characteristics included a distinct object

associated with each graphical entity, methods and data structures factored

throughout the application inheritance lattice, and objects partitioned between

generic application-related and user interface-related functionality.

C-a,

83

Since these applications-specific characteristics preserve the more general

object-oriented software characteristics established in Section 4.3.2, software

satisfying the applications-specific characteristics must be representative of

object-oriented software technology. This prevents the pathological consideration

of "one-object" software as being object-oriented and, thereby, promotes valid

and systematic comparisons of software developed using this technology.

5.2.2 Evaluation of the Associated Specific Methodological Objective

To des ign applications domain-specific paradigms that support the egec t ive

application of object- orie n t e d design techniques.

Applications domain-specific paradigms for object-oriented systems are

guidelines for problem decomposition and software construction that preserve the

fundamental object-oriented software characteristics of Section4.3.2. In

Section 4.3.3, application domain-specific characteristics and an associated

paradigm were developed for highly interactive graphical applications. It was

determined that only one paradigm was necessary to support the activities

related to this research.

The individual guidelines of the paradigm mirror the desired

characteristics directly but are phrased in terms of requirements for problem

decomposition and software construction and include the requirement of

separately instantiated objects with appropriate data structures and methods for

each graphical entity, the requirement of sufficient private data structures to

support all methods local t o an object, the requirement that all common methods

and data structures be factored into classes in the application inheritance lattice,

and the requirement for a disjoint partitioning of generic spplication-related and

user interface-related objects. The factoring, partitioning, and private data

84

structures required in this paradigm force all inter-object communication to occur

through messaging. The methods factored into the inheritance lattice are, by

definition, re-used in the places from which they were factored. As shown in

Section 4.3.3, if these requirements are satisfied, the fundamental object-oriented

software characteristics of Section 4.3.2 will be preserved for highly interactive

graphical applications.

5.2.3 Evaluation of the Associated Specific Developmental Objective

To develop procedures for the application of the applications domain-

specif ic paradigms wi th in a specific object-oriented deve lopment env i ronmen t .

As stated in Section 4.2, the specific object-oriented environment selected

for this research was AT&T’s C++. This environment provides a full set of

object-oriented facilities including a single-inheritance inheritance mechanism, a

late-binding messaging facility (via virtual functions), and full encapsulation (via

default private member type definitions). Since the application domain-specific

paradigm of Section 4.3.3 was defined in terms of these basic object-oriented

facilities, no translation into language specific procedures was necessary. For a

language with limited object-oriented facilities (Ada, for example), some of the

requirements of the application domain-specific paradigm may require the

simulation of missing facilities, thereby requiring language-specific procedures.

This may also be the case if the application domain-specific paradigm requires an

intermediate model of execution (e.g., interprocess signaling, monitors, etc.) that

is t o be implemented with language-specific features.

In this research, the application domain-specific paradigm was directly

applied to the test development situations. No difficulty was encountered in this

approach in that the application specific paradigm directly mapped into the

85

object-oriented facilities available within the selected environment.

5.2.4 Evaluation of the Associated Specific Evaluative Objective

To analytically verijy that the applications-specific deve lopment paradigm

does indeed cons tra in the resultant software products so that they are indeed

representative o j object- orie n t e d designs.

The fundamental characteristics of object-oriented software, as identified

in Section 4.3.2, are the degree to which methods are factored into the

inheritance lattice and the degree t o which an object focuses on a specific

function or capability. Table 4.5 summarizes the object-oriented characteristics of

the software generated using the application domain-specific paradigm of

Section 4.3.3 pursuant to this research.

Observations from this table will suffice to establish that the fundamental

object-oriented characteristics were preserved in the resultant software. Firstly,

subjects 1, 2 and 4 added three classes each in the course of development. This

included one class (object type) for each of the two geometric primitives and one

class for the fill attribute capability. Subject 3 added a specialized menu class for

the fill attribute primitive in addition to the other three classes and thus added a

total of four classes. This observation directly demonstrates the second

characteristic, namely, that objects focus on a specific function or capability. In

this case, each added class provided exactly one function corresponding to one of

the geometric primitives or t o the fill attribute.

Secondly, to violate the factoring requirement, subjects would have had to

implement only two classes, with each class replicating the features it needed.

This would have resulted in one class that implemented filled and solid triangles

86

and one class that implemented filled and solid rectangles; the fill attribute would

not have been factored but redundantly implemented. As indicated above, this

was not the case.

The evaluation of this specific research objective has demonstrated that

the fundamental object-oriented software characteristics identified in

Section 4.3.2 were preserved in software developed under the application

domain-specific paradigm developed in Section 4.3.3 as part of this research.

In the evaluation of these specific research objectives, we have established

that the application domain-specific paradigm (Section 4.3.3) does preserve the

fundamental object-oriented software characteristics (Section 4.3.2) and we have

established this to be the case for the specific software developed under this

paradigm. The remainder of this section evaluates the effect of the application

domain-specific paradigm on the design space available to the software developer.

Any large object can clearly be represented as a collection of smaller, more

generic objects by constructing objects around data structures and transforming

all references to those data structures into messages to the appropriate objects.

Similarly, any inheritance lattice with redundantly-defined methods can be

transformed into a factored lattice by establishing the appropriate class, and

replacing the redundant methods by references to that class. Incidently,

completely factored inheritance lattices can be transformed into unfactored

inheritance lattices by substituting redundant implementations for factored class

references, and small generic objects can be arbitrarily aggregated into larger

more specialized objects, so that these transformations are bi-directional. Hence,

the application domain-specific paradigm, in preserving object-oriented software

characteristics, cannot restrict the space of possible designs available t o the

87

software developer. Any software developed under any other paradigm can be

transformed to exhibit fundamental object-oriented characteristics.

5.3 Evaluation of the Primary Metrics General Research Objective

This section presents the evaluation of the primary metrics general

research objective identified in Section 2.3.

5.3.1 Evaluation of the Associated Specific Theoretical Objective

To design pr imary metr ic data dejinit ions that theoretically characterize

the various aspects of software unique to object-oriented designs, including the

inheri tance lattice, the messaging graph, the degree of polymorphism exhibited,

and degree of object re-use.

The primary metric data definitions developed as part of this research are

identified in Section 3.4.7. They consist of the definition of two graphs that

formally and completely establish the structural characteristics unique t o object-

oriented software (Section 3.4.7). The first of these graphs is the messaging

graph, which represents the interaction between objects in a software system.

The objects in a software system form the nodes of this graph and there exists a

directed edge between two objects from the source object t o the destination

object for all messages exchanged between these nodes. This completely and

formally defines the messaging graph in terms of object-oriented features. The

second graph is the inheritance lattice, the navigation of which determines which

specific methods and data structures comprise each class. The classes in a

software system form the nodes in this graph and edges exist from any

descendant class to its immediate parent class. This completely and formally

defines the inheritance lattice in terms of object-oriented features.

88

The remaining object-oriented aspects of software can be defined in terms

the aspects defined above. The degree of polymorphism is the number of

methods defined for a particular object message. This can be defined since we

know the method structure from the inheritance lattice. The degree of object

re-use is the number of descendants which inherit the capabilities of that object.

This can be directly determined from the inheritance lattice. Since these last two

object-oriented software aspects can be determined from the inheritance lattice,

only the inheritance lattice and the messaging graph need be captured during an

evaluation.

5.3.2 Evaluation of the Associated Specific Methodological Objective

To develop language-independent methods for capturing this data f o r

object-oriented designs. Language independence is demonstrated b y construct ing

language-speciJc me t r i c evaluation procedures f o r a representat ive s e t of object-

oriented languages.

The generic procedures developed as part of this research for capturing

both the messaging graph and the inheritance lattice were established in

Section 3.4.7. The generic procedure for capturing the inheritance lattice is to

determine, for every application class, its ancestors, descendants, and the defining

class of any methods referenced within the class definition. For different

languages, the syntactic structure of class definitions will be different, however

the basic structure is the same. The sole function of any class definition is to

establish any ancestors from which capabilities will be inherited and to permit

the refinement or extension of those inherited capabilities. The generic procedure

for capturing the messaging graph is to capture the source and destination of

every message sent between objects within an application. As stated in

89

Section 3.4.7, the appropriate strategy for capturing this information is different

for different languages and may require access to internal language mechanisms.

As demonstrated in Section 5.3.1, both degree of polymorphism and degree

of re-use can be determined from the inheritance lattice. The degree of

polymorphism can be determined by counting the number of different method

definitions of a method within a class definition. Since all methods referenced

within a class definition are captured as part of the inheritance lattice

(Section 3.4.7), this information is immediately available. The degree of re-use

for a class is determined by simply counting the number of classes that reference

that class as an ancestor. This information is also immediately available as part

of the inheritance lattice.

The evaluation of the language-independent aspect of these procedures is

based on their ability to be instantiated as language-specific procedures for a

representative set of object-oriented languages. The languages selected for this

evaluation are CommonLoops, Objective-C, and Smalltalk. These languages are

representative in that they are the most extensively used object-oriented

languages available [Cox 1986) and they exhibit all of the current variations in

object-oriented system features.

CommonLoops [Bobrow 19861 is a Common Lisp based object-oriented

system and is becoming widely used in AI applications in Lisp-based

workstations. In CommonLoops, the inheritance syntax is as follows:

(defstruct (new-class (:include (ancestorl, ancestor2, ...))))

where defs truct signals a new class definition, new-class is the name of the newly

defined class, :include is the inheritance function, and ancestor1 and uncestm-2

90

are the names of the classes from which to inherit capabilities. The method

definition syntax:

(defmethod new-class ((type argl) argl arg2 ...) <code for method>)

establishes a new method for new-class that will be invoked when an object of

type new-class gets a message of type a r g l . Finally, the messaging syntax of '

CommonLoops is:

(send a 'object b)

where a message of type a is sent to object with arguments a and b.

The language specific procedure for determining the inheritance lattice for

CommonLoops is as follows: recognize all defstructs, parse out the class being

defined and any ancestors established, and record any methods defined for this

class via defmethod. This procedure completely determines the inheritance lattice

for Commodoops, including any possible multiple inheritance relationships.

The messaging graph can be determined by modifying the s e n d function to

record the name of the calling function and the result of the standard

CommonLoops expression

(methods-specified-by 'dest-object (type-of argl))

(which returns the destination method) for each message.

Objective-C [Cox 19861 is an object-oriented extension t o the C language

developed by Productivity Products International and is widely used in user

interface development. In Objective-C, the inheritance syntax is:

91

= NewClass : Ancestor { <additional data elements>;}

where NewClass is the name of the new class being created, A n c e s t o r is the name

of the parent class from which capabilities are inherited, and <additional data

elements> refers to data elements added to those inherited. Additional methods

are established as follows:

- NewMethod : Selector {<code for method>}

where NewMethod is associated with the last class defined previous to its own

definition. A message of type Selector to an object of this class type will invoke

this method. The messaging syntax for Objective-C is:

[0 b j Select or :ar g 11

which sends a message of type Selector to the object Obj with the argument argl .

The language-specific procedure for determining the inheritance lattice for

Objective-C is as follows: recognize all class definitions (this is trivial since only

class definition statements begin with =), parse out the name of the class being

defined and the ancestor established, and record any methods defined for this

class (also trivial since only method definition statements begin with -). This

procedure completely determines the inheritance lattice for Objective-C.

The messaging graph can be determined by modifying the internal

Objective-C function -msg to record the name of the sending object and the

destination method resolved, for all messages.

Xerox’s Smalltalk [Goldberg 19831 was one of the first object-oriented

programming languages and set the standard for integrated iconic user interfaces.

92

Smalltalk environments provide different textual representations of the

inheritance construct, since inheritance is normally dealt with through the

interactive browser facilities and not in a textual form. The syntax used here was

defined by Timothy Bud of Oregon State University [Bud 19871. Any other

textual syntax for Smalltalk inheritance would be very similar. The Smalltalk

inheritance syntax is:

Class NewClass : Ancestor I <additional data elements> I
[

1
<method definitions>

where NewClass is the name of the new class being created, Ancestor is the name

of the parent class from which capabilities are inherited, and <additional data

elements> refers to data elements (known as instance variables) added to those

inherited. Method definitions are established as follows:

NewMethod : Selector I <temporary variables> I <code for method>l

A message of type Selector to an object of class NewClass will invoke this

method. The messaging syntax for Smalltalk is:

Obj Se1ector:argl

which sends a message of type Selector to the object Obj with the argument a r g l .

The language specific procedure for determining the inheritance lattice for

Smalltalk, then, is as follows: recognize all class definitions via the Class

keyword, parse out the name of class being defined and the ancestor established,

and record any methods defined for this class which are identified by the a colon

following the method name within the method definition section. This procedure

93

completely determines the inheritance lattice for Smalltalk.

All statements within Smalltalk methods are message expressions. The

messaging graph can be determined by inserting additional message expressions

for each of these lines which send the class message t o 0 6 j and to the current

object via the selfreference and recording the returned results for all messages.

These language-specific procedures demonstrate the instantiation of the

PEEM’s language-independent primary metric data capture procedures for a

representative set of object-oriented languages.

5.3.3 Evaluation of the Associated Specific Developmental Objective

To provide language-specific acquisition of this me t r i c data f o r the object-

oriented deve lopment s y s t ems under consideration in the evaluation env ironment .

As part of the activities of Phase 9 (Section 4.9) of the test case execution

of the presented PEEM, the automatic facilities for capturing the primary metric

data were implemented for C++. The automatic facilities for capturing the

traditional metrics for C++ were also designed for use on C code. Both sets of

facilities were based on LEX grammars; however, the memory requirements of the

resulting code was very large. This may indicate a problem with this approach

for more complex languages. The LEX grammars are included in Appendices D

and E.

5.3.4 Evaluation of the Associated Specific Evaluative Objective

To comprehensively test these metr ic data acquisit ion methods f o r

accuracy.

The testing of these primary metric computation facilities was conducted

on the National Institute of Health’s OOPS (object-oriented programming

94

support) library developed by Keith Gorlen [Gorlen 19871. This library consists of

over 2500 lines of commercially developed C++ code and implements the C++

equivalent of all of the non-graphical Smalltalk classes. This library represents

extensive coverage of available C++ language features. The facilities for C were

tested on the post-processed form of this same library.

The results of these tests were verified manually for randomly selected

C++ classes and no runtime errors were detected in the final version of the

primary metric computation facilities, indicating more than adequate sizes for

static internal data structures generated by LEX.

The evaluation of these specific research objectives has established the

design, development, application, and validation of the these primary metric data

definitions and facilities. These facilities have played a pivotal role in establishing

both the capability and the practical usability of the presented PEEM. The

advantages of reliability and consistency in these facilities have far outweighed

the initial investment in their development.

CHAPTER 6: SUMMARY AND CONCLUSIONS

This concluding chapter summarizes the research presented in previous

chapters, identifies the significant contributions contained therein, establishes the

major conclusions of this work, and establishes research directions that are direct

extensions of this work.

6.1 Summary

This section will follow the organization of this dissertation, summarizing

each chapter individually.

Chapter 1 established an identification of the problem that has motivated

this research, namely, the insufficiency of available research data and facilities to

support complexity model and metric research for object-oriented systems. This

chapter also provided an overview of object-oriented activities in a broad set of

applications domains as empirical substantiation of the productivity potential of

object-oriented systems technology. Chapter 1 concluded with an identification of

the three general objectives of this research (Section 1.3).

Chapter 2 provided a refinement of each of the general research objectives

into specific theoretical, methodological, developmental, and evaluative

objectives. This chapter also established the significance of the each of the

general research objectives and the attainment criteria for each of the supportive

specific research objectives.

Chapter 3 overviewed the existing approaches to programming

environment evaluation and identified the specific weaknesses of these approaches

with respect to supporting the consistent evaluation of object-oriented systems.

95

96

This chapter continued with the identification of the methodology design

principles intended to address these weaknesses. Chapter 3 concluded with a

complete specification of the individual phases of the developed PEEM, including

an identification of related design principles and specific phase execution

guidelines.

Chapter 4 presented a demonstrative test case application of the

methodology which consisted of a comparative evaluation of highly interactive

graphical software development in C and C++. This test case was intended only

as a concrete demonstration of the capabilities of this methodology. The results

of the evaluation, despite the small scale of the experiment, were consistent with

the observations made in Chapter 1 concerning the positive impact of object-

oriented techniques on development productivity.

Chapter 5 presented a detailed evaluation of the degree of attainment of

each of the general and specific research objectives. Chapter 5 also established

that this research has indeed fulfilled both the general research objectives

identified in Section 1.3 and the specific research objectives identified in

Chapter 2.

6.2 Summary of Research Contributions

This section summarizes the major contributions of the research presented

in this document. These contributions closely reflect certain of the research

objectives identified in Sections 2.1, 2.2, and 2.3. These major contributions are

as follows:

1. This research has formally established the primary metric data definitions

that completely characterize the unique aspects object-oriented software

97

systems, including the inheritance lattice and messaging graph.

2. This research has established language-independent procedures for

automatically capturing this primary metric data during an evaluation.

These procedures have been shown to be instantiable in a representative

set of object-oriented languages.

3. This research has established the fundamental characteristics of object-

oriented software that indicate consistent applications of object-oriented

design techniques, namely, that common capabilities are factored

throughout the inheritance lattice and that individual objects focus on

providing specific capabilities.

4. This research has defined a language-independent application domain-

specific development paradigm based on these fundamental characteristics

for highly interactive graphical applications.

5. This research has identified design principles for a programming

environment evaluation methodology that ensure its applicability to

object-oriented development environments. The PEEM design principles

unique to this work include the following: the requirement for primary

metric data definitions that completely characterize the object-oriented

characteristics of the software under evaluation, the requirement for the

identification of relevant applications domain-specific development

paradigms t o support the validity and comparability of evaluative results,

and the requirement for automatic capture of performance and primary

metric data to ensure consistency and eliminate human bias.

98

6. Finally, this research has produced a systematic, extensible, and

environment-independent programming environment evaluation

methodology capable of supporting research into complexity models and

metrics for object-oriented systems. The design principles, identified in

contribution 5 above, establish the basis of the fundamental distinctions

between exiting PEEMs and the PEEM developed as part of this research.

6.3 Major Conclusions

This research has developed a programming environment evaluation

methodology which is unique in its ability t o support consistent and repeatable

evaluations of the productivity implications of object-oriented software

development environments and which provides a strategic mechanism for

supporting research into complexity models and metrics for software development

in such environments. The methodology incorporates two unique design concepts

which are pivotal in supporting these characteristics, namely, the applications

domain-specific development paradigms to support consistent and valid

comparative evaluations and the primary metric data definitions to support the

complete characterization of the object-oriented aspects of developed software.

The systematic, extensible and environment-independent nature of the presented

methodology has been established by analysis and demonstrated by test case

execution of the methodology.

6.4 Identification of Future Research Directions

As stated in Chapter 1, the primary motivation of this research was, and

continues to be, the support of long-term research into complexity models and

99

metrics appropriate t o object-oriented systems. We feel that the research

presented within this document represents a very significant step toward this

strategic goal and provides a solid mechanism for pursuing emerging research

issues with respect to object-oriented systems.

The most direct extension of the work presented here is the large scale

application of this methodology to additional evaluation contexts. This would, of

course, include evaluations within additional applications domains, the

incorporation of alternate applications domain-specific development paradigms,

and the extension of evaluations to include other object-oriented development

environments.

The comparative investigation of the productivity impact of various

extensions to, and refinements of, the object-oriented paradigm would, likewise,

be a natural extension of this work. Issues that could be addressed based on

currently proposed object-oriented system extensions include the investigation of

the productivity impact of:

1.

2 .

3.

4.

5 .

Alternate inheritance mechanisms, including various forms of strict

inheritance.

Inheritance lattice organizational strategies (e.g., name space partitioning).

Messaging graph organizational strategies (e.g., message protocols).

Object and message protocol specification and consistency mechanisms

(e.g., method post- and pre-conditions, class consistency constraints; see

[Meyer 19871).

Parallel computation extensions t o the object-oriented paradigm (e.g.,

100

Actors; see [Agha 19861).

6. Object-oriented distributed processing mechanisms (e.g., Orient84/K; see

[Is hi kaw a 198 61).

Finally, the most significant direct extension of this work involves the

formulation of cognitive complexity models of software development using

object-oriented techniques, the development of appropriate software metrics for

these models, and the subsequent validation of these metrics and the associated

models via application of this methodology. Proposed models must attempt to

account for the currently inadequately understood phenomena associated with

development in object-oriented environments, including the very significant

productivity improvements in a wide variety of application domains and the very

long developer learning curves for large scale object-oriented environments (e.g.,

the Symbolics’ Flavors system). Models which successfully account for these

phenomena will certainly improve our ability to apply object-oriented technology

and may provide a mechanism for significantly advancing our understanding of

the fundamentals of the software development process as a whole.

BIBLIOGRAPHY

[Agha 19861 Agha, Gul A. ACTORS: A Model of Concurrent Computation in
Distributed Systems, Cambridge Press, Cambridge, Massachusetts, 1986.

[Anderson 19861 Anderson, David B. ”Experience with Flamingo: A Distributed,
Object-Oriented User Interface System,” OOPSLA ’86: Sigplan Notices
Special Issue, November 1986, pp. 177-184.

[Bailey 19851 Bailey and Icramer, J.F. A Framework for Evaluating the Usability
of Programming Support Environments, Computer and Software Engineer-
ing Division, Institute for Defense Analysis, IDA Paper T R P-1942, No-
vember, 1985.

[Balzer 19861 Balzer, R . and Goldman, N. ”Principles of Good Software
Specification and their Implications for Specification Languages,” Software
Specification Techniques, Addison-Wesley, Reading, Massachusetts, 1986,
pp. 25-39.

[Basili 1981a] Basili, V. and Phillips, T. ”Evaluating and Comparing Software
Metrics in the Software Engineering Laboratory,” Performance Evaluation
Review, Vol. 10, March 1981, pp. 95-106.

[Basili 1981b] Basili, V. and Reiter, R.W. ”A Controlled Experiment Quantita-
tively Comparing Software Development Approaches,’’ IEEE Transactions I
on Sojtware Engineering, May 1981, pp. 299-320. ~

[Basili 1986) Basili, V., Selby, W.R. and Hutchens, D.H. ”Experimentation in
Software Engineering,” IEEE Transactions on Software Engineering, Vol. I

12, July 198G, pp. 733-743.

[Birtwistle 19841 Birtwistle, G.M. ”Future Directions in Simulation Software,”
Panel Discussion. In, Proceedings of an SCS Conference, La Jolla, 1984,
Bryant, R. and Ungers, B.W. (eds.), pp. 120-121.

I

[Black 19861 Black, A., Hutchinson, N., Jul, E. and Levy, H. ”Object Structure in
the Emerald System,” OOPSLA ’86: Sigplan Notices Special Issue, No-
vember 1986, pp. 78-86.

,

[Bobrow 19861 Bobrow, D.G., Kahn, IC, Kiczales, G., Masinter, L., Stefik, M.
and Zdybel, F. ” CommonLoops: Merging Lisp and Object-Oriented Pro-
gramming,” OOPSLA ’86: Sigplan Notices Special Issue, November 1986,
pp. 17-29.

101

102

[Boehm 19811 Boehm, B.W. Software Engineering Economics, Prentice-Hall, En-
glewood Cliffs, New Jersey, 1981.

(Brinker 19851 Brinker, E. An Evaluation of the Softech, Inc. A d a Language Sys-
tem, Version 1.5., NASA/GSFC Code 522.1, NASA, December 1985.

[Bud 1987) Bud, T. A Little Smalltalk, Addison-Wesley, Reading, Massachusetts,
€985.

[Castor 19831 Castor, V.L. Criteria for the Evaluation of ROLM Corporation’s
A d a Work Center, Air Force Wright Aeronautical Laboratories, January
1983.

[Chikayama 19841 Chikayama, T. ESP Reference Manual, Technical Report TR
044, ICOT, 1984.

[Conte 19861 Conte, S.D., Dunsmore, H.E. and Shen V.Y. Software Engineering
Metrics and Models, Benjamin Cummings, Menlo Park, California, 1986.

[Cox 19861 Cox, B.J. Object Oriented Programming: An Evolutionary Approach,
Addison- Wesley, Boston, Massachusetts, 19 86.

[Dahl 1966] Dahl, O.J. and Nygaard, K. ”SIMULA - An ALGOL-based Simula-
tion Language,” CACM, Vol. 9, No. 9, pp. 671-678.

[Dasgupta 19861 Dasgupta, Partha. ” A Probe-Based Monitoring Scheme for an
Object-Oriented, Distributed Operating System,” OOPSLA’86: Sigplan
Notices Special Issue, November 1986, pp. 57-GG.

[Dominick 19871 Dominick, W.D. ”Annotated Index of USL NASA/RECON and
NASA/JPL Project Publications,” Center for Advanced Computer Stu-
dies, University of Southwestern Louisiana, Lafayette, La., Updated:
April 22, 1987, 33p. (This document represents an annotated index of the
80+ publications and reports that have resulted from NASA-funded pro-
jects at USL from December, 1983 to the present.)

[Ewing 10861 Ewing, Juanita J. ”An Object-Oriented Operating System Inter-
face,” OOPSLA ’86: Sigplan Notices Special Issue, November 1986, pp. 46-
56.

[Fikes 19851 Fikes, R. and Kehler, T. ”The Role of Frame-based Representation
in Reasoning,” CACM, Vol. 28, No. 9, pp. 904-920.

[Frants 19731 Franta, W.R. and Maly, IC. The Suitability of a Very High Level
Language (SETL) for Simulation and Control, Technical Report TR 73-4,
Department of Computer Science, University of Minnesota, 1973.

103

[Fukunaga 19861 Fukunaga, Koichi and Shin-ichi Hirose. ”An Experience with a
Prolog-Based Object-Oriented Language,” OOPSLA’86: Sigplan Notices
Special Issue, November 1986, pp. 224-231.

[Gannon 19771 Gannon, J.D. ”An Experimental Evaluation of Data Type Con-
ventions,” CACM, Vol. 20, No. 8, August 1977, pp. 584-595.

[Goldberg 19831 Goldberg, A. and Robson, D. SMALLTALK-80: The Language
and Its Implementation, Addison-Wesley, Boston, Massachusetts, 1983.

[Gorlen 19861 Gorlen, IC. Object-Oriented Program Support: Reference Manual,
National Institutes of Health, Bethesda, Maryland, 1986.

[Halstead 19771 Halstead, M.H. Elements of Software Science, Elsevier North-
Holland, New York, 1977.

[Harrison 19851 Harrison, W. ” A Method of Sharing Industrial Software Complex-
ity Data,” ACM: Sigplan Notices, February 1985, pp. 42-51.

[Helsgaun 19801 Helsgaun, IC. ”DISCO - A SIMULA-based Language for Continu-
ous, Combined and Discrete Simulation,” SIMULATION, July 1980, pp.
1-12.

[Hewitt 19731 Hewitt, C., Bishop, P. and Steiger, R. ” A Universal Modular AC-
TOR Formalism for Artificial Intelligence,” Proceedings on the 3rd Inter-
national Joint Conference on Arti’cial Intelligence, August, 1973.

[Hook 19851 Hook, A.A., Riccardi, G.A., Vilot, M. and Welke, S. User’s Manual
for Prototype A d a Compiler Evaluation Capability, Version 1, Institute for
Defense Analysis, IDA Paper T R P-1879, October, 1985.

[Ishikawa 19861 Ishikawa, Yutaka and Tokoro, Mario. ” A Concurrent Object-
Oriented Knowledge Representation Language Orient84/K: Its Features
and Implementations,” OOPSLA ’86: Sigplan Notices Spec ia l Issue, NG-
vember 1986, pp. 232-241.

[JonesC 19861 Jones, Capers. Programming Productivity, McGraw-Hill Inc., New
York, 1986.

[JonesM 19861 Jones, Michael B. and Rashid, Richard F. ”Mach and Matchmak-
er: Kernel and Language Support for Object-Oriented Distributed Sys-
tems,” OOPSLA ’86: Sigplan Notices Special Issue, November 1986, pp.
67-77.

[Kaehler 19851 ICaehler, Ted and Patterson, Dave. ” A Small Taste of Smalltalk,”
BYTE: The Small Systems Journal, August 1985, pp. 145-159.

104

[Kahn 19861 Kahn, Kenneth, Tribble, E.D., Miller, M.S., and Bobrow, D.G. ”Ob-
jects in Concurrent Logic Programming Languages,” OOPSLA ’86: Sigplan
Notices Special Issue, November 1986, pp. 242-257.

[Kreutzer 19861 Kreut zer, W. System Simulation: Programming Styles and
Languages, Addison- Wesley, Boston, Massachusetts, 1986.

[Lang 19861 Lang, Kevin J. and Pearlmutter, Barak A. ”OAKLISP: An Object-
Oriented Scheme with First Class Types,” OOPSLA ’86: Sigplan Notices
Special Issue, November 1986, pp. 30-37.

[Lindquist 19851 Lindquist, T.E. ”Assessing the Usability of Human-Computer In-
terfaces,” IEEE Software, Vol. 2, No. 1, January 1985, pp. 74-82.

[Maier 19861 Maier, David, Stein, J., Otis, A. and Purdy, A. ”Development of an
Object Oriented DBMS,” OOPSLA ’86: Sigplan Notices Special Issue, No-
vember 1986, pp. 472-482.

[Maier 19851 Maier, David, Otis, A. and Purdy, A. ”Object-Oriented Database
Development at Servio Logic,” Database Engineering Bulletin, Vol. 8, No.
4, December 1985, pp. 58-65.

[McCabe 19761 McCabe, T. J. ” A Complexity Measure,” IEEE Transactions on
Software Engineering, Vol. 2, No. 4, December, 1976, pp. 308-320.

[Meyer 19871 Meyer, Bertrand. ”Reusability: The Case for Object-Oriented
Design,” IEEE Software, Vol. 4, No. 2, March 1987, pp. 50-64.

[Meyer 19861 Meyer, Bertrand. ”Genericity Versus Inheritance,” OOPSLA ’86:
Sigplan Notices Special Issue, November 1986, pp. 391-405.

[Meyrowitz 19861 Meyrowitz, Norman. ”Intermedia: The Architecture and Con-
struction of an Object-Oriented Hypermedia System and Applications
Framework,” OOPSLA ’86: Sigplan Notices Special Issue, November 1986,
pp. 186-201.

[Moon 19861 Moon, David A. ”Object Oriented Programming With Flavors,”
OOPSLA ’86: Sigplan Notices Special Issue, November 1986, pp. 1-8.

[Nakashima 19841 Nakashima, H. ”Knowledge Representation in Prolog/I(R,”
Proceedings of the 1984 International Symposium on Logic Programming,
1984, pp. 126-130.

[Novak 1980] Novak, G.S. ”Data Abstraction in GLISP,” Proceedings of the
ACM Conference on Principles of Programming Languages, ACM, 1980,
pp. 170-177.

105

[Nygaard 19861 Nygaard, Kristen. ”Basic Concepts in Object Oriented Program-
ming,” ACM: Sigplan Notices, October 1986, pp. 128-132.

[Papazoglou 19841 Papazoglou, M.R. ”An Outline of the Programming Language
SIMULA,” Computer Languages, Vol. 9, No. 2, pp. 107-131.

[Pascoe 19851 Pascoe, Geoffrey A. ”Elements of Object-Oriented Programming,”
BYTE; The Small Systems Journal, August 1985, pp. 139-144.

[Roberts 19831 Roberts, T.L. and Moran, T.P. ”The Evaluation of Text Editors:
Methodology and Empirical Results,” CACM, Vol. 26, No. 49, pp. 265-283.

[Schmucker 19851 Schmucker, Kurt J. ” Object-Oriented Languages for the Ma-
cintosh,” BYTE: The Small Systems Journal, August 1985, pp. 177-185.

[Sim 19751 Sim, I<. CADSIM Users’ Guide and Reference Manual, Imperial Col-
lege Publishers, London, England, 1975.

[Skarra 10861 Skarra, Andrea H. and Zdonik, Stanley B. ”The Management of
Changing Types in an Object-Oriented Database,” OOPSLA ’86: Sigplan
Notices Special Issue, November 1986, pp. 483-495.

[Shneiderman 19871 Shneiderman, B. Designing the User Interface, Addison-
Wesley, Boston, Massachusetts, 1987.

[Soloway 19841 Soloway, E. and Ehrlich, E(. ”Empirical Studies of Programming
Knowledge,” IEEE Transactions on Software Engineering, Vol. 10, Sep-
tember 1984, pp. 595-609.

[Stefik 19861 Stefik, M. and Bobrow, D.G. ”Object-Oriented Programming:
Themes and Variations,” AIMugazine, Vol. 6, No. 4, 1986, pp. 40-62.

[Stroustrup 19861 Stroustrup, B. The C++ Programming Language, Addison-
Wesley, Boston, Massachusetts, 1986.

[Tesler 19851 Tesler, Larry. ”Programming Experiences,” BYTE: The Small Sys-
tems Journal, August 1085, pp. 195-206.

[Wegner 19861 Wegner, Peter. ”Classification in Object-Oriented Systems,”
ACM: Sigplun Notices, October 1986, pp. 173-182.

[Weiderman 19871 Weiderman, N.H., Habermann, A.N., Borger, M.W., and Klein,
M.H. ” A Methodology for Evaluating Environments,” A CM; Sigplan No-
tices, January 1987, pp. 199-207.

[Weinreb 19811 Weinreb, D. and Moon, D. LISP Machine LISP Manual (4th edi-
tion), MIT Press, Cambridge, Massachusetts, 1981.

106

[Weissman 19741 Weissman, L. 77Psychological Complexity of Computer Pro-
grams: An Experimental Methodology,” ACM: Sigplan Notices, June 1974,
pp. 25-36.

[Yokote 19861 Yokote, Yasuhiko and Tokoro, Mario. ”The Design and Implemen-
tation of ConcurrentSmalltalk,” OOPSLA ’86: Sigplan Notices Special Is-
sue, November 1986, pp. 331-340.

APPENDIX A

TRADEMARKS REFERENCED IN THIS DOCUMENT

Ada is a trademark of the U.S. Department of Defense

Amiga is a trademark of Commodore-Amiga, Inc.

Atari ST is a trademark of Atari Computers

ESP is a trademark of Expert Systems International.

FLAVORS is a trademark of Symbolics, Inc.

KEE is a trademark of Intellicorp.

Macintosh is a trademark of Apple Computer, Inc.

Microsoft is a trademark of Microsoft Corporation

Objective-C is a trademark of Productivity Products International.

SMALLTALK is a trademark of XEROX Corporation.

UNIX is a trademark of AT&T Bell Laboratories.

107

APPENDIX B

PROFICIENCY TESTS AND ANSWER KEYS

This appendix documents the C++ and VDI proficiency tests tha t were

administered during the experiment execution phase, Phase 10 Section 4.10, of

the developed programming environment evaluation methodology. The structure

of this document is as follows: Section B1 contains the C++ proficiency test,

SectionB2 contains the C++ answer key, SectionB3 contains the VDI

proficiency test, and Section B4 contains the VDI answer key. All section refer-

ences within the C++ and VDI answer key sections are from Stroustrup’s The

C++ Programming Language published by Addison-Wesley; see [Stroustrup 19861

in the bibliography section of this dissertation document.

108

109

B1. C++ Proficiency Test

Instructions: Circle the most appropriate choice. Only one
choice may be selected for each question.

Each question references a given program.
Each program uses the same include file, ”classdef‘”
which accompanies the test.

1) Select the most correct choice.

i n c 1 u de ” c 1 ass de f”
main()

(1) apple b;
(2) banana y(3);
(3) orange 0;

1

a)
b)
c)
d)
e)

Statement (1) cannot be invoked.
Statement (2) cannot be invoked.
Statement (3) cannot be invoked.
Statements (l), (a), and (3) cannot be invoked.
Statements (l), (2), and (3) CAN be invoked.

2) Select the most correct choice.

The ”classdef” program fragment,
”apple operator+(apple& a) {return (apple(num() + a.num()));}”
produces the same results as
”apple operator+(apple& a) {return (apple(number + a.number));}” .
The ”classdef” program fragment,
”banana operator+(banana& a) {return(banana(a.num() + num()));}”
produces the same results as
”banana operator+(banana& a) {return (banana(number + a.number));}”

The ”classdef” program fragment,
”orange operator+(orange& a){return(a.onum + onum);}”
produces the same results as
”orange operator+(orange& a) {return (orange(number + a.number));}” .

Choices b) and c) are true.
Choices a) and b) are true.

110

3) Select the most correct choice.

#in c 1 u de ” c 1 ass d e f”
main()

(3j orange 0;

(4) a.print();
(5) b.print();
(6) o.print();

1

a)
b)
c)
d)
e)

Statement (4) produces the output ”Number of fruit: I”.
Statement (5) produces the output ”Number of banana: 0”.
Statement (6) produces the output ”Number of fruit: 0”.
Choices a) and c) are true.
Choices a) and b) are true.

4) Select the value of the ”ap2” number field in statement (6).

i n c 1 u de ” c 1 ass de f”
main()
{

(1) apple apl(1);

(3) apple ap3(3);
(2) apple ap2(2);

(4) ap2 = 4;
(5) a p l = ap3;
(6) ap2 = a p l + ap3;

1

a) 3.
b) 6.

d) 5.
e)

c) 4.

Has no value because one or more statements cannot be done.

111

5) Select the value of the "b2" number field in statement (3) .

#include " classdef"
main()
{

(1) banana ba;
(2) banana ban = 4;
(3) banana b2(ba+ban);

1

a) 2.
b) 4.

d) 3.
e)

c) 0.

Has no value because one or more statements cannot be done.

6) Select the value of the "ba" number field in statement (4).

#include " classdef"
main()
{

(1) banana ba;
(2) banana b2(8);
(3) banana ban = 4;
(4) ba = b2 + 2 + ban;

1

a) 2.
b) 10.
c) 4.
d) 14.
e) Has no value because one or more statements cannot be done.

112

7) Select the value of the "or3" number field in statement (5).

include " c 1 assde f"
main()
{

(1) orange or, orl , 01-2;
(2) or = 3;
(3) or2 = 4;
(4) or1 = 2;
(5) orange or3 = or + or1 * or2;

a) 20.
b) 9.

d) 0.
e)

c) 11.

Has no value because one or more statements cannot be done.

8) Select the results of statement (4).

#include "classdef"
main()
{

(1) apple 4 5) ;

(3) PP = 1;

1

(2) apple& pp = a;

(4) a.print();

a) Number of fruit: 1.
b) Number of fruit: 6.
c) Number of fruit: 7.
d) Number of fruit: 5.
e) Has no value because one or more statements cannot be done.

113

9) Select the most correct choice.

#include ”classdef”
main()
I
1
fruit *xx;
fruit f;
xx = &f;
banana *yy;
banana b;
yy = &b;
apple *zz;
apple a(0);
z z = &a;
(*xx) . print ();
yy- > print();
* zz. print ();
1

a)

b)

c)

d)
e)

Statement (10) compiles and produces the same results
as ”f.print()”.
Statement (11) compiles and produces the same results
as ” b.print()”.
Statement (12) compiles and produces the same results
as ”a.print()”.
Choices a) and b) are true.
Choices a) and c) are true.

10) Select the most correct choice.

i n c 1 u de ” c 1 ass de f”
main()
l
apple a(2);
banana b;
orange 0;

if (a.num() < 0) {};
if (b.num() < 0) {};
if (o.num() < 0) {};
1

a)
b)
c)
d)
e)

Statement (4) is a legal statement.
Statement (5) is a legal statement.
Statement (G) is a legal statement.
Statement (4) and (5) are legal statements.
Statement (4), (5) , and (G) are ALL ILLEGAL statements.

0

114

11) Select the value of the "b2" number field in statement (4).

#include "classdef"
main()
{

(1) banana ba;
(2) banana b2(13);
(3) banana ban = 2;
(4) b2 = 7 + ba + ban;

}

a) 22.
b) 0.
c) 17.
d) 9.
e) Has no value because one or more statements cannot be done.

12) Select the value of the "0" number field in statement (4).

#include " classdef"
main()
{

(1) orange 0 ;

(2) orange 01(22);
(3) orange oZ(11);

(4)
(3) apple a(8);

o = 01 + a + 02;

a) 30.
b) 11.
c) 41.
d) 8.
e) Has no value because one or more statements cannot be done.

c

115

Class Definitions for this Test

#include <stream.h>

class fruit {
friend orange;
int number;

friend banana;
fruit() {number = 0 ;)
fruit(fruit& k) {number = k.number;}
fruit(int i) {number = i;}
int num() {return number;}
int operator=(int j) {return number = j;}
virtual void print() {cout < < "Number of fruit: " < < number < < " O ; }

public:

1;
class apple : public fruit {

int numl;

apple(int i) : (i) {};

apple operator+(apple& a) {return (apple(num() + a.num()));}
int operator=(int j) { return fruit :: operator=(j);}

public:

apple(apple& k) : (k) {};

>;

class banana : fruit {
public:

banana () {};
banana(int i) : (i) {};
banana operator+(banana& a){return(banana(a.num() + num()));}
int operator=(int j) { return fruit :: operator=(j);}
virtual void print() {cout < < "Number of banana: " < < number < < o}

1;
class orange {

public:
int onum;

orange() {onum = 0 ;)
orange(int i) {onum = i;}
orange(apple& a) {onum = a.num();}
int operator=(int j) { return onum = j ;}
orange operator+(orange& a){return(a.onum + onum);}
orange operator*(orange& a){return(a.onum * onum);}

116

B2. C++ Answer Key

.
Question One .

Major Testing Focus : Rules of inheritance between a base class
and other classes with respect to the
public members. The other classes are:
public derived, derived friend, and
friend.

Answers : (a) Recognizes the rules of inheritance
between a base class and other classes.
Recognizes the concept of constructors.

(b) Fails t o recognize that a derived class
does not inherit the constructor of its
base class. Fails to recognize valid and
invalid constructors.

(c) Fails t o recognize that a derived class
does not inherit the constructor of its
base class. Fails to recognize valid
constructors.

(d) Fails to recognize valid constructors.

(e) Fails to recognize that a derived class
does not inherit the constructor of its
base class.

Correct Answer a

References : All section references are to Stroustrup’s
The C++ Programming Language [Stroustrup 19861.

1.13 Derived Classes (pg 30)
5.2.2 Classes (pg 136)
6.10
7.2 Derived Classes (pg 192)
8.5.5 Constructors (pg 278)
8.5.9
8.5.10 Friends (pg 281)

Friends and Members (pg 187)

Visibility of Member Names (pg 281)

117

.
Question Two .

Major Testing Focus : Rules of inheritance between a base class
and other classes with respect to the private
members. The other classes are: public derived,
derived friend, and friend.

Answers : (4

Correct Answer b

References 1.13
5.2.2
6.10
7.2
8.5.5
8.5.9

Fails t o recognize that a public derived
type cannot access the private part of
its base class. Fails t o recognize
the rules of inheritance with regard to
friend classes.

Recognizes the rules of inheritance between
a base class and other classes.

Fails t o recognize that a friend declaration
can be placed in either the private or the
public part of a class declaration and/or
fails to recognize that a friend class can
only use the private variables that are
defined for that class.

Fails t o recognize that a friend class
can only use the private variables that
are defined for that class.

Fails to recognize that a derived class
cannot access the private variable(s) of
a base.

Derived Classes (pg 30)
Classes (pg 136)
Friends and Members (pg 187)
Derived Classes (pg 192)
Constructors (pg 278)
Visibility of Member Names (pg 281)

8.5.10 Friends (pg 281)

118

.
Question Three .

Major Testing Focus : Rules of virtual functions between a base
class and other classes. The other classes are:
public derived, derived friend, and friend.

Answers

Correct Answer e

References 1.18
7.2.8
8.5.4
8.5.5

Fails to recognize tha t a virtual
function can be redefined in a derived
class.

Fails to recognize the concept of
virtual functions. Only acknowledged
the ”print” member function.

Fails to recognize the concept of
virtual functions.

Fails to recognize the concept of
virtual functions.

Recognizes tha t only a derived class can
use the base class’ yirtual function when
the derived class has not defined its
own version.

Virtual Functions (pg 37)
Virtual Functions (pg 201)
Virtual Functions (pg 277)
Constructors (pg 278)

119

.
Question Four .

Major Testing Focus : User-defined Type Conversion

Answers : (a) Logical arithmetic error.

(b) Recognizes the user-defined addition
operator and the bitwise copying of
objects.

(c) Logical arithmetic error.

(d) Logical arithmetic error.

(e) Fails t o recognize that statement (4)
can be accomplished through a bitwise
copying of objects.

Correct Answer b

References : 1.14 More about Operators (pg 32)
1.8 Operator Overloading (pg 25)
6.0 Operator Overloading (pg 169)
6.3
6.6

User-defined Type Conversion (pg 173)
Assignment and Initialization (pg 178)

120

.
Question Five .

Major Testing Focus : Messaging and Operator Overloading

Answers : (a) Logical arithmetic error.

(b) Recognizes that a bitwise copy is implicit
since a banana(banana&) constructor doesn’t
exist .

(c) Logical arithmetic error.

(d) Logical arithmetic error.

(e) Fails to recognize that a banana(banana&)
is not required because an implicit bitwise
copy is done.

Correct Answer b

References : 1.14 More about Operators (pg 32)
1.8 Operator Overloading (pg 25)
2.3.10 References (pg 56)
5.5
6.3

Constructors and Destructors (pg 157)
User-defined Type Conversion (pg 173)

121

.
Question Six .

Major Testing Focus : Messaging and Operator Overloading

Answers : (a) Logical arithmetic error.

(b) Logical arithmetic error.

(c) Logical arithmetic error.

(d) Recognizes that the compiler can construct
a banana object from "2" only because the
left to right evaluation identified the
operation as a banana operation.

(e) Fails t o recognize that the banana
can construct an object from "2"
and/or fails to recognize tha t a
user-defined addition operation for
a banana and integer addition was not
necessary. Fails to recognize the
a left to right evaluation.

Correct Answer d

References : 1.14 More about Operators (pg 32)
1.8 Operator Overloading (pg 25)
3.2 Operator Summary (pg 84)

122

.
Question Seven .

Major Testing Focus : Messaging and Operator Precedence

Correct Answer C

References 1.14
1.8
3.2

Fails t o recognize operator precedence.

Logical arithmetic error.

Recognized operator precedence and
user defined types.

Logical arithmetic error.

Fails t o recognize that "operator+"
receives a "temporary" orange object
containing the results of "operator*".

More about Operators (pg 32)
Operator Overloading (pg 25)
Operator Summary (pg 84)

123

.
Question Eight .

Major Testing Focus : References

Answers : (a) Recognized the concept of references.

(b) Fails to recognize an assignment over
an addition to "a".

(c) Fails to recognize a reference pointer,
constructor, and assignment operator.

(d) Fails to recognize assignment of "1"
to "pp" as an assignment to "a".

(e) Fails to recognize the declaration of
a reference pointer.

Correct Answer a

References : 2.3.10 References (pg 56)

124

.
Question Nine .

Major Testing Focus : Pointers

Answers : (a) Fails t o recognize equivalent and
non-equivalent pointer expressions
t o virtual functions.

(b) Fails t o recognize equivalent and
non-equivalent pointer expressions
to virtual functions.

(c) Fails to recognize equivalent and
non-equivalent pointer expressions
to virtual functions.

(d) Recognizes equivalent and non-equivalent
pointer expressions to virtual functions.

(e) Fails t o recognize equivalent and
non-e quivalent pointer expressions
to virtual functions.

Cor re c t Answer d

References : 1.18 Virtual Functions (pg 37)
7.2.4 Pointers (pg 197)
7.2.8 Virtual Functions (pg 201)
8.5.4 Virtual Functions (pg 277)
8.5.5 Constructors (pg 278)

125

.
Question Ten .

Major Testing Focus : Scoping and Self Reference

Recognizes that a public derived
class can access the public members of
its base class.

Fails t o recognize that a derived
friend class can access public members
of its base class only with its body and
not externally.

Fails to recognize that a friend class
can only access the public members of the
”base” class within its body and not
externally.

Fails to recognize that a derived class
can only use the public members of its base
externally when the derived class declares
a public base class.

Fails to recognize the access of
member functions outside of the object’s
body.

References : 5.2.3 Self Reference (pg 137)

126

.
Question Eleven .

Major Testing Focus : Messaging and Operator Overloading

Operator Precedence

Answers : (a) Logical arithmetic error.

(b) Logical arithmetic error.

(c) Logical arithmetic error.

(d) Fails t o recognized that a banana object
could not be constructed because an integer
and banana addition operator had not been
defined. The left to right evaluation
would not allow the operation t o be
defined within the banana class.

(e) Recognizes that the left to right
evaluation would not allow the
operation to be defined within the
banana object.

Correct Answer e

References : 1.14 More about Operators (pg 32)
1.8 Operator Overloading (pg 2 5)
3.2 Operator Summary (pg 84)

127

.
Question Twelve .

Major Testing Focus : User-defined Type Conversions

Answers : (a) Logical arithmetic error.

(b) Logical arithmetic error.

(c) Recognizes that the orange class has
a constructor that can convert an apple
into an orange so that the "operator+"
can add an apple and an orange.

(d) Logical arithmetic error.

(e) Fails to recognize the conversion of the
apple to an orange so tha t the "operator+"
can add an apple and an orange.

Correct Answer C

References : 1.14 More about Operators (pg 32)
1.8 Operator Overloading (pg 25)
3.2 Operator Summary (pg 84)
8.5.5 Constructors (pg 278)

128

B3. VDI Proficiency Test

Instructions: Circle the most appropriate choice. Only one
choice may be selected for each question.

Some questions reference the C and C++ graphics
editors which will be provided with appropriate
documentation. Other questions will reference
the VDI and TAM functions and the respective
reference manuals will be available.

1) Which VDI command should be used in order to clear the
workstation screen ?

a)

b) wcreateo;

w i ni t ();

c) system(”c1ear”);

d) v-clrwk();

e) The commands are not VDI and do not clear the screen.

2) A device handle is:

a) A number that uniquely identifies a specific device so
that one or more devices may be opened simultaneously.

b) Initialized by v-opnwk().

c) Used in subsequent VDI calls t o identify a specific device.

d) Choices a), b), and c) are true.

e) Choices a), and c) are true.

129

3) When adding a new line style (e.g. dash twodots) to the line style
menu in the C version of the graphics editor, the following modules
must be modified:

a) kern.c

b) attr.c

c) main.c

d)

e)

Choices a) and c) are true.

Choices a) and b) are true.

4) How many unique line types are supported on the AT&T 7300?

a) 2 -> Green and Black.

b) 7 -> Solid, Long dashed, Dotted, Dashed-dotted, Medium
dashed, Dashed with Two Dots, and Short Dash.

c) N -> User defined within the limits of the ASCII Table.

d) 4 -> Hollow, Solid, Hatch, and Pattern.

e) 6 -> Solid, Long dashed, Dotted, Dashed-dotted, Medium
dashed, and Dashed with Two Dots.

130

5) The difference(s) between GET-MOUSE-POINT and GET-MOUSEPOINT-LINE
functions in the C graphics editor is/are:

a) GET-MOUSEPOINT-LINE accepts a point and a button and
returns a new point. GET-MOUSE-POINT accepts a button
and returns a point.

b) GET-MOUSE-POINT-LINE draws a line and GET-MOUSE-POINT
draws a point.

c) GET-MOUSE-POINT-LINE accepts a button and returns two points.
GET-MOUSE-POINT accepts a button and returns one point.

d) Choices a) and b).

e) Choices b) and c).

6) In the C graphics editor, which of the functions below should
be used to get the initial point of a polygon?

a) GE T-MOUSE-P OINT-LINE()

b) GET-MOUSE-POINT()

c) GET-MOUSEPOINTBOX()

d) Choice b) followed by choice a)

e) Choices a), b), c), and d) are false.

131

7) Which C graphics editor function would be equivalent to
the C++ graphics editor function, "get-mouse(point p)" ?

a) GET-MOUSE-P OINT-LINE()

b) GET-MOUSEPOINT()

c) GET-MOUSE-P O I N T B OX()

d) Choices a), b), and c) are true.

e) Choices a), b), c), and d) are false.

8) After a polyline is drawn in the C and C++ graphics editor,
the vertices of the polyline:

a) Do not exist any more in the C graphics editor.

b) Remain as an instantiation of polyline-object in the
C++ graphics editor.

c) Cannot be referenced in C++ graphics editor.

d) Choices a), b), and c) are true.

e) Choices a), b), and c) are false.

132

9) The design of the C++ program provides an interface to
the VDI commands in:

a) kern-ic.c

b) gfxed.c

c) obj-ic.c

d) menu-ic.c

e) attr-ic.c

.
The next three questions will test your understanding of the program
organization of the ***C++ GRAPHICS EDITOR***. The questions will
revolve around the insertion of a "hexagon" primitive and should be
answered within the design constraints of the program.
.

10) In order to have the "hexagon" choice appear in the
main menu, which module must be modified:

a) gfxed.c

b) menu-ic.c

c) menu-ic.h

d) kern-ic.c

e) Choices b) and c) are true.

133

11) The "hexagon" primitive requires a class declaration. Where
should tha t declaration be placed:

a) kern-ic.c

b) obj-ic.h

c) obj-ic.c

d) Choices b) and c).

e) Choices a), b), and c).

12) The "hexagon" class member functions that are defined outside
of the class declaration should be placed in:

a) kern-ic.c

b) obj-ic.h

c) obj-ic.c

d) Choices b) and c).

e) Choices a), b), and c).

134

B4. VDI Answer Key

.
Question One
.

Major Testing Focus : Distinguish VDI primitive, TAM primitive,
and System Call

Answers : (a) Fails t o recognize the difference between
a TAM and VDI primitive. Fails to
recognize that the TAM primitive does not
clear the screen.

(b) Fails t o recognize the difference between
a TAM and VDI primitive. Recognizes that
the TAM primitive clears the screen.

(c) Fails t o recognize the difference between
a System call and VDI primitive. Recognizes
that the System call clears the screen.

(d) Recognized the VDI primitive and its
functionality.

(e) Fails t o recognize a VDI primitive and/or
its functionality.

Correct Answer d

References : AT&T VDI Programmer’s Guide 5-7
AT&T User’s Manual Volume I1 TAM(3T)
C Kernighan and Ritchie 157

135

.
Question Two .

Major Testing Focus : Understanding of the device handle.

Correct Answer d

Recognizes that a device handle
can simultaneously reference more than
one device because of the unique value.
Fails to recognize where the value
is initialized and that it is required
for subsequent VDI calls.

Recognizes that the device
handle receives the unique value from
the invocation of opnwk(). Fails
to recognize that the device handle
can reference multiple devices and its
subsequent use in VDI calls.

Recognizes that the device handle
references a specific device in
VDI calls. Fails t o recognize that
the device handle is used to differentiate
between open devices. Fails to
recognize that its value is obtained
from opnwk().

Recognizes the concept of device handle.

Fails t o recognize that v-opnwk()
initializes the variable, device handle.

References : AT&T VDI Programmer’s Guide 2-16
AT&T VDI Programmer’s Guide G-3

136

.

. Question Three

Major Testing Focus : Design of the C Graphics Editor with respect
to the task of adding a line style

Answers : (a) Fails to recognize that the kern.c
module is for VDI primitives

(b) Recognizes that the line style menu
(line style type) is defined
within the attr.c module

(c) Fails t o recognize that the menu
for line style is contained within
attr.c

(d) Fails to recognize that line style
is a drawing attribute.

(e) Fails to recognize that attr.c
defines the domain of attributes
that kern.c may use in subsequent calls.
Recognizes that a data structure in
attr.c contains the available line
attributes.

Correct Answer b

Re fe re nces : AT&T VDI Programmer’s Guide 5-87
ATStT VDI Programmer’s Guide C-12
C Graphics Editor

.
Question Four .

Major Testing Focus : Design of the C Graphics Editor with respect
to the definition of the VDI vsl-type().

Answers : (a) Fails t o recognize the difference
between a line type and color

(b) Recognizes that the line type is device
dependent. For the AT&T, the number
of types supported is seven.

(c) Fails t o recognize that line type is
device dependent.

(d) Fails t o recognize the difference
between a line type and interior fill style.

(e) Recognizes line types. However, fails
to recognize that the line types are device
dependent, and that the AT&T 7300 provides
more than the standard 6 line types.

Correct Answer b

References : AT&T VDI Programmer’s Guide 5-87
AT&T VDI Programmer’s Guide C-12

138

$*$*******************************$*$************$*$****$********
Question Five
*******$****************$*$****$**$********$**********$****************

Major Testing Focus : Basic ”Point” Functions of the C Graphics Editor

Answers : (a) Recognizes that GET-MOUSE-POINT-LINE
requires input parameters, point and button,
and returns a new point.
Recognizes that GET-MOUSE-POINT accepts a
button and returns a point.

(b) Fails t o recognize that the function
does not draw a line but rather assists
in the acquisition of a second point by
rubberbanding. Fails to recognize that the
function does not draw a point but rather
returns a point.

(c) Fails to recognize that GET-MOUSE-POINT-LINE
returns only one point. Recognizes that
GET-MOUSE-POINT returns only one point.

(d) Fails t o recognize the function of
GET-MOUSE-POINT-LINE and
GET-MOUSE-POINT.

(e) Fails to recognize the function of
GET-MOUSE-POINT-LINE and
GET-MOUSE-POINT.

Correct Answer a

References : AT&T VDI Programmer’s Guide 5-104
C Graphics Editor

139

.
Question Six .

Major Testing Focus : Initial Construction of a Polygon or Arc

Answers : (a) Fails to recognize that an initial point
is required for the function to operate
or that GET-MOUSE-LINE expects a (prior)
point to draw from.

(b) Recognizes that the GET-MOUSE-POINT function
is used to get an initial point.

(c) Fails to recognize that an initial point
is required for the function to operate.

(d) Fails t o recognize the function of
GET-MOUSEP OINT-LINE and
GET-MOUSEPOINT.

(e) Fails to recognize the function of
GET-MOUSE-P OINT-LINE and
GET-MOUSE-POINT.

Correct Answer b

References : AT&T VDI Programmer’s Guide 5-104
C Graphics Editor

140

.

. Question Seven

Major Testing Focus : C equivalent of the C++ overloaded
function, ” ge t-mouse(point p)” .

Answers Recognizes that when get-mouse is
called with a point parameter, it
rubberbands a line to identify the point
to be returned.

Fails to recognize that get-mouse is an
overloaded function and when passed a
point as a parameter refers to the
GET-MOUSEPOINT-LINE.

Fails to recognize that when get-mouse()
is called with no parameters, it only
returns a point and that it doesn’t
rub berband.

Fails to recognize that the kern-ic.c
module provides a lcvel of abstraction
from the VDI primitives.

Fails to understand the question.

References : C++ Graphics Editor

141

.
Question Eight .

Major Testing Focus : The difference in scope of the polyline
object between the C and C++ graphics
editors.

Answers

(4

(e)

Corre c t Answer d

Recognizes that the C version uses
automatic vertex array in the DO-POLY
routine and when DO-POLY is out of scope,
the information is lost.

Recognizes that when polylines are drawn,
a polyline object is instantiated and that
the object remains after the object is
drawn.

Recognizes that even though the object
still exists, it cannot be referenced
because the object’s pointer value
is not saved.

Recognizes the concept of object
instantiation and object scope.

Fails t o recognize the concept of object
instantiation and object scope.

References : C++ Graphics Editor

142

.
Question Nine .

Major Testing Focus : Design of the C++ Graphics Editor with respect
t o the of VDI commands.

Recognizes that the kern-ic.c
is the interface for VDI commands.

Fails to recognize that the kern-ic.c
module provides a level of abstraction
from the VDI primitives.

Fails t o recognize that the kern-ic.c
module provides a level of abstraction
from the VDI primitives.

Fails to recognize that the kern-ic.c
module provides a level of abstraction
from the VDI primitives.

Fails t o recognize that the kern-ic.c
module provides a level of abstraction
from the VDI primitives.

References : C++ Graphics Editor

143

.
Question Ten
.

Major Testing Focus : Design of the C++ Graphics Editor with respect
to the task of adding a "hexagon" choice t o
the main menu.

Answers : (a) Recognizes that the modular design of
the C++ graphics editor instantiates the
main menu in gfxed.c

(b) Fails to recognize that the menu-ic.c
contains the menu class member functions
for menu operations.

(c) Fails to recognize that the menu-ic.h
contains the menu class declaration and
not the actual objects.

(d) Fails to recognize that the kern-ic.c
module provides a level of abstraction
from the VDI primitives.

(e) Fails to recognize that the menu modules
are only for class definition and member
functions.

Correct Answer a

References : C++ Graphics Editor

144

.
Question Eleven
.

Major Testing Focus : Design of the C++ Graphics Editor with respect
to the task of adding a "hexagon" class
definition.

Answer : (a) Fails to recognize that the kern-ic.c
module provides a level of abstraction
from the VDI primitives.

(b) Recognizes that the modular design of
the C++ graphics editor requires the
class declaration of the "hexagon"
within the obj-ic.h.

(c) Fails to recognize that the obj-ic.c
contains the member functions of the
"hexagon" class and not the class
declaration.

(d) Fails to recognize that the kernjc .c
module provides a level of abstraction
from the VDI primitives.

(e) Fails to recognize the modular design of
the C++ graphics editor.

Correct Answer b

References : C++ Graphics Editor

145

.
Question Twelve
.

Major Testing Focus : Design of the C++ Graphics Editor with respect
t o the task of adding a ”hexagon” class
member functions.

Answer : (a) Fails t o recognize that the kern-ic.c
module provides a level of abstraction
from the VDI primitives.

(b) Fails to recognize that the obj-ic.h should
only contain the class declaration of the
” hexagon”.

(c) Recognizes that the modular design of
the C++ graphics editor requires the
member function of the ”hexagon”
within the obj-ic.c.

(e) Fails to recognize the modular design of
the C++ graphics editor.

Correct Answer C

References : C++ Graphics Editor

APPENDIX C

PERFORMANCE MONITOR DOCUMENTATION

This appendix documents the performance monitor mechanism imple-

mented to support the test case experiment execution phase (Phase 10 of Sec-

tion 4.10) of the developed programming environment evaluation methodology.

The structure of this appendix is as follows: Section C1 contains the definitions of

all collected data associated with the performance monitor; Section C2 contains

the source for the monitor script a s implemented for the AT&T 7300 UNM PC

under System V; Section C3 contains a brief and partial excerpt from the result-

ing transaction log.

146

147

C1. Definitions of Collected Data

The following data elements are collected for each transaction with the
system (all times are in hour:minute:second format):

Begin time The time at which the return key was typed at the end of the
current command line.

Command The text of the current command a s typed by the subject. This
command will subsequently be passed on to a shell for execution.

User Name The user identification associated with the subject for the
current command. This identification is a coded reference t o the
subject. This element is tracked on a per transaction basis to
enable the detection of changes in user identity between transac-
tions (e.g., super user, root, etc.).

Finish Time The time at which the command, dispatched to the execution
shell, has completed and control is returned to the user.

The following set of data elements are used as documentation of the tran-
saction logging session itself and include the time, date, and user name that were
in effect when the monitor was invoked.

File Name

File Owner

Creation Time

This is a unique file name generated by concatenating the string
log. with the numeric values of the month, day, hour, and
minute at which the monitor was invoked. This is the filename
under which the current monitored data is stored.

This data item is maintained by the operating system for the
transaction log file and is accessible to all analysis programs. It
serves a s an external identifier of the User Name associated with
the current subject and is always the User Name at monitor
invocation. The subject cannot change this value as he can the
User Name above. This permits the identification of a subject’s
transaction logs from a directory listing.

This data item documents the time at which the monitor was
invoked. Subjects were permitted t o read the task specification
and commence at this time (this was signaled by a system
prompt).

148

C2. MONITOR SCRIPT SOURCE

trap "" 2
DATE='date '+%m%d%H%M"
L 0 GFILE =" / u/exp / log. $DATE"
while :
do

echo "unixpc% read command argument
case $command in

"logout") break ..
7 7

",'> ;;
" c d")

*>

echo " 0 >> $LOGFILE
echo "Begin time :'date"' > > $LOGFILE
echo "Command
echo "User Name : $USERNAME" > > $LOGFILE
$command $argument;
echo "Finish time: 'date"' > > $LOGFILE

: $command $argument'' > > $LOGFILE

..
'1

echo "0 > > $LOGFILE
echo "Begin time : 'date"' > > $LOGFILE
echo "Command
echo "User Name : $USERNAME" > > $LOGFILE
ksh -c "$command $argument";
echo "Finish time: 'date'" > > $LOGFILE

: $command $argument" > > $LOGFILE

..
' 7

esac
done
kill -9 $$

149

C3. TRANSACTION LOG EXCERPT

Data Maintained by the Operating System

Filename
File Owner
Creation Time

Data Logged by Monitor

Begin time
Command
User Name
Finish time

Begin time
Command
User Name
Finish time

Begin time
Command
User Name
Finish time

Begin time
Command
User Name
Finish time

Begin time
Command
User Name
Finish time

log.0723 1647
subject2
16:47:30

16:47:35
cd gfxed-c
subject2
16:47:35

16:47:37
15
subject2
16:47:39

16:47:47
vi 0bj.c
subject2
16:53:45

16:53:47
make
subject2
16:55:38

16:55:41
gfed
subject2
16:56:10

APPENDIX D

LEX GRAMMAR FOR OBJECT ORIENTED

PRIMARY METRIC DATA ANALYSIS

tion 4.9) of the developed programming environment evaluation methodology.

The relevant primary metric data definitions are presented in Section 3.4.7. This

appendix contains the LEX grammar developed t o support determination of the

inheritance lattice. As stated in Section 4.9, the messaging graph mechanism was

not implemented due to vendor delays in delivery of t h e C++ translator source.

150

151

LEX Grammar for C++ Analysis

%{
#include ”y.tab.h”
extern int class, class-head, braces, fin-fun-param, start_garbage;
extern int class-member-defs, num-classes, total-num-members;
extern int total-lines-per-cia, lines-per-class, on, off;

D
%I

0 1@71
P [l-9

E [eEI

A ”#” c ” I / ”
F “\n”
M ”/*”
N ’I */”
%%
”#” [\n]*”\n” {}
”//”[\nl*”\n” { }
{M)l {N}I*{N)

return(check(ASM));)
return(check(AUT0));)

”asm”
” auto”
”break” { return(check(BREAK));}
”case” { return(check(CASE));}
”char” { return(check(CHAR));)
”cin” { return(check(1DENTIFIER));)
”class” { return(check(CLASS));}
”continue” return(check(C0NTINUE));)
” cout” { return(check(IDENTIF1ER));)

L

return(check(DEFAULT));)
re turn(chec k(DELETE)); }

”do” { return(check(D0));)
”double” { return(check(DOUT3LE));)
I’ else” return(check(ELSE));}
”enum” { return(check(ENUM));)
”extern” { return(check(EXTERN));}
”float” { return(check(FL0AT));)
”for” { return(check(F0R));)

”gob”
” i f ” { return(check(1F));)
”inline” { return(check(INLINJ3));)
” int” { return(check(1NT));)
”long” { return(check(L0NG));) ::;;rr’itor,, 1 return(check(NEW));}

return(check(OPERATOR));}
”overload” return(check(OVERLOAD));}

check(PUBLIC)); }
check(REG1STER));)

”return” { return(check(RETURN));)
”short” { return(check(SHORT)),}

return(check(SIGNED));}

”static” { return(check(STAT1C));)
return(check(SIZE0F));)

152

”struct” { return(check(STRUCT));}
”switch” { return(check(SWITCH));}
”this” return[check[THIS));}
”typedef” return check TYPEDEF));}
”union” { return(check(UNI0N));)
”unsigned” return check UNSIGNED));}
”virtual” 1 return[check[VIRTUAL));}
”void” return(check(VOID));}
”volatile” 1 return(check(VOLAT1LE));)
”while” return(check(WH1LE));)
{I}{V}* { return(check(IDENTIF1ER));)

O{ 0) + { L}? { U}? { return(check(CONSTANT));}
O{ O}+{ U}?{L}? { return(check(CONSTANT));}
{P} {D}* { L}?{ U}?
{ P} {D}* {U}?{L}?

I return(check(C0NSTANT));
return(check(C0NSTANT));

{ return(check(CONSTANT));}
{ return(check(C0NSTANT));)

\’(I ’\n\\lI(\\({ESC}l {X}{H}{H}?{H}?I{0}{0}7{0}?)))+\’

\”(I ”\n\\ l I(\\(~EsC~I~X~~H~~H~?~~~?l~~~~~~?~~~?)))+\”
{ return(check(C0NSTANT));)

return(check(STR1NG-LITERAL));}
{D}+ I E}{L}? { return(check(CONSTANT));}
{D} *” . I ’ {D}+{E}?{L}? { return(check(CONSTANT));}
{D}+” .” {D}*{E}?{L}? { return(check(C0NSTANT));)
8 , . .. ,,
” > >=” { return(check(RIGHT-ASSIGN));}

{ return(check(ELLIPS1S));)

check(LEFTJSS1GN));)
+=” check(ADD-ASSIGN));}

11-=11 { return(check(SUBfiS1GN));)
3) *=”
” % =”
” &= ”
” =” { return(check(X0R-ASSIGN));}
”/=” { return(check(OR-ASSIGN));}
” > > ”
” < < ” ”++” { return(check(1NC-OP));}

return(check(MUL-ASSIGN));} I return(check(DIV-ASSIGN));}
{ return(check(MOD-ASSIGN)); }
{ ret urn(check(AND -ASS1 GN)); }

” /=”

return(check(R1GHT-OP));} I return(check(LEFT-OP));}

return(check(DEC-OP)
return(check(PTR-OP)

,,__,,

”&&” {return(check(AND-OP));}
’ ’ 1 1’’ { return(check(0R-OP));}
” < =” { return(check(LE,OP));}
I’ > =” { return(check(GE-OP));}
3 3 --I, -- { return(check(EQ-OP));}
”!=” { return(check(NE-OP));} ,, , . , I { return(check(SMCLN));}

,, , 8 , { return(check(COMh4A));)

return(check(CRBRO));
return(check(CRBRC));

,, ,,, return(check(FLCLN));}
>! -,, - I return(check(EQUAL));}
”(” { return(check(PARN0));)

return(check(SQBR0));)
{ return(check(SQBRC)); }

return(check(PRIOD));}
return(check(AMPSD)); }

return(check(PARNC));}

” 1 ”

0 , (I { return(check(EXCLM));}

” +” { return(check(PLUSS));}
” * ” { return(check(MULT));}
”%” { return(check(PRSNT));}
” <” { return(check(LSTHN));}

153

” > ” { return(check(GRTHN));}
{ return(check(CARET));}

return(check(ORSYM));}
I, I,

,, 7” . return(check(QUSTN));}
[\t\v\n\f] { countJnes();}
%%
Y Y wrap()

{

””’ 1
/*----- SYSTEM ROUTINE ------*/
return(1); 1
int count,lines() /* ...
COUNT LINES PER CLASS.

+

int i ;
{

extern int trace;
i f (class)

if (yytext[O]==’\n’)
li nes-per-c lass+ + ;

1
/* ... int check(value)

CHECK THE CURRENT VALUE AND PERFORM APPROPRIATE ACTIONS
+--
int value;

+
*/

if (trace) prmtf(”\nclass(%d)token(%s)\n” ,class,yytext);

if ((!class)&&(value==CLASS))

{

{ class=on;
class-head= on;
num-classes++;
class-member-defs=O;
I i nes-per-c lass= 1;
re turn(CLASS);

}
if (!class)

re turn(GARBAGE);

if (class-head)
{ i f (value==CRBRO)

{class-head=off;
braces++;

return(va1ue);
1

1
i f (value==CRBRO)

{++braces;
return(va1ue);
1

i f (value==CRBRC)
i f (--braces <= 1)

return (CRBRC);

if (braces > 1)
re turn(STUFF);

if (trace) printf(” 1 \n”);

if (trace) printf(”2 \n”);

if (trace) printf(”3 \n”) ;

i f (trace) printf(”4 \n”);

if (trace) printf(”5 \n”);

i f (trace) printf(”6 \n”);

154

if ((value==SMCLN)&&(braces==O))
{ fin-fungaram = class = class-head = off;

total-num-members = total-num-members + class-member-defs;
tot al-linesg er-class = tot al-l i n e s g er-class + 1 inesger-cl ass;
return (SMCLN);

if (value==PARNO)
{ start_garbage=on;
class-mem ber-defs+ +;
return(va1ue);

if (trace) printf(”7 \n”);
1

if (trace) printf(”8 \n”) ;
1

if (value==PAFtNC)
{ fin-funqaram=on;
start_garbage=off;
return(va1ue);

if (trace) printf(”9 \n”);
1

if ((fin-fun-param)&&(value==SMCLN))
{ fin-fun-param=off;
return(va1ue);

if (trace) printf(” 10 \n”) ;
1

if (value==SMCLN)
return(SMCLN);

if (trace) printf(” 11 \n”);

if (trace) printf(” 12 \n”);

if (start-garbage)
return(PARAMS);

i f ((value==FLCLN)I I(value==PUBLIC)I I(value==FRIEND)
I I(value==CLASS))

return(value);

return (STUFF);
1

if (trace) printf(” 13 \n”);

155

Rudimentary Driver

%{
char class-name[151;
int xxx, yylineno;
int on=l , off= 0;
int class=O, fin-fun-param=O, num-classes=O, start_garbage=O;
int class-member-defs=O, clas-def=O, class-head=O, braces=O;
int lines-per-class=l, total-num-members=O, total-linesger-cIass=O;
char buff [5001;

%start file
%union { char rest[5000];

%I

1 I
%token <rest>
%token <rest>
%token <rest>
%token <rest>
%token <rest>
%token <rest>
%token <rest>
%token <rest>
%token <rest>
%token <rest>
%token <rest>
%token <rest>
%token <rest>
%token <rest>
%token <rest>
%token <rest>
%token <rest>
%token <rest>
%token <rest>
%token <rest>
%token <rest>
%token <rest>
%token <rest>
%token <rest>
%token <rest>
%token <rest>
%token <rest>
%token <rest>
%token <rest>
%token <rest>
%token <rest>
%token <rest>
%token <rest>
%token <rest>
%token <rest>
%token <rest>
%token <rest>
%token <rest>
%token <rest>
%token <rest>
%token <rest>
%token <rest>
%token <rest>
%token <rest>
%token <rest>
%token <rest>
%token <rest>
%token <rest>
%token <rest>
%token <rest>
%token <rest>

AUTO
BREAK
CASE
CHAR
CLASS
CONST
CONTINU2
DEFAULT
DELETE
DO
DOUBLE
ELSE
ENUM
EXTERN
FLOAT
FOR
FRIEND
G O T 0
IF
INLINE
INT
LONG
NEW
OPERATOR
OVERLOAD
PUBLIC
REGISTER
RETURN
SHORT
SIGNED
SIZEOF
STATIC
STRUCT
SWITCH
THIS
TYPEDEF
UNION
UNSIGNED
VIRTUAL
VOID
VOLATILE
WHILE
CONSTANT
STRING-LITERAL
ASM
IDENTIFIER
ELLIPSIS
RIG HT-AS SI GN
LEFT-ASS1 G N
ADD-ASSIGN
SUB-ASSIGN

156

%token <rest> MUL-ASSIGN
%token <rest> DW-ASSIGN
%token <rest> MOD-ASSIGN
%token <rest> AND-ASSIGN
%token <rest> XOR-ASSIGN
%token <rest> OR-ASSIGN
%token <rest> RIGHT-OP
%token <rest> LEFT-OP
%token <rest> INC-OP
%token <rest> DEC-OP
%token <rest> PTR-OP
%token <rest> AND-OP
%token <rest> OR-OP
%token <rest> LE-OP
%token <rest> GE-OP
%token <rest> EQ-OP
%token <rest> NE-OP
%token <rest> SMCLN
%token <rest> CRBRO
%token <rest> CRBRC
%token <rest> COMMA
%token <rest> FLCLN
%token <rest> EQUAL
%token <rest> PARNO
%token <rest> PARNC
%token <rest> SQBRO
%token <rest> SQBRC
%token <rest> PRIOD
%token <rest> AMPSD
%token <rest> EXCLM
%token <rest> NEGAT
%token <rest> MINUS
%token <rest> PLUSS
%token <rest> MULT
%token <rest> DIVE
%token <rest> PRSNT
%token <rest> LSTHN
%token <rest> GRTHN
%token <rest> CARET
%token <rest> ORSYM
%token <rest> QUSTN
%token <rest> ENUM-CONST
%token <rest> TYPEDEF-NAME
%token <rest> GARBAGE
%token <rest> FOR-LATER
%token <rest> DEFOP
%token <rest> STUFF
%token <rest> PARAMS
%type <rest> identifier
%type <rest> file
%type <rest> program
%type <rest> garbage
%type <rest> class-specifiers
%type <rest> class-head
%type <rest> class-specifier
%type <rest> class-descr
%type <rest> i-am-in-a-class
%type <rest> what-we-need
%type <rest> fun-body
%type <rest > what-we-do-not-need
%type <rest> some-stuff
%type <rest> somegarams
%type <rest> deck
%type <rest> deck2
%type <rest> funct ionpame

157

%type <rest> type-and-identifier
%type <rest> some-decl
%type <rest> rest-of-function
%type <rest> function-paramsl
%type <rest> function-params2
%type <rest> typedef-name for-later references
%type <rest> operator defined-op sc-specifier
%%
file

: program
\n”); {printf(” \n \ t \ t \&

print f(” \ t \ t \ t
printf(”\t \ t \ t FOR INHERITANCE AND MESSAGING\n”);

printf(”\t \ t \ t * TOTAL # CLASSES (%d)\n”,num-classes);
printf(”\t\t\t * AVG. MEMBERS/CLASS (%2.2f)\n”,

(float)totalgum-members/(float)num-classes);
printf(”\t \ t \ t * AVG. CODED LINES/CLASS (%2.2f)\n”,

(Roat)total-lines-per-class/(float)num-classes);
printf(”\n%s\n”,$l,strIen($ I));}

C+ + METRICS ANALYZER \n”);

\n” 1; printf(”\t\t\t-

program
: garbage {strcpy($$,””);}
I class-specifiers

{sprintf(buff,” \n%s--# O F MEMBERS (%d)--# LINES (%d)--\n\n” ,
$1, c lass-m em ber-de fs, 1 i nes-per-class);

strcpy($$, buff);}
I program class-specifiers

{sprintf(buff,” \n%s%s--# OF MEMBERS (%d)--#LINES (%d)--\n\n”,

strcpy($$,buff);}
$1,$2,class~member~defs,lines~per~class);

I program garbage {sprintf(buff,”%s”,$l); strcpy($$,buff);}

: GARBAGE {strcpy($$,””);}

: class-head CRBRO CRBRC SMCLN
{sprintf(buff,”%s ” ,$l);strcpy($$,buff);}

1 class-head CRBRO class-descr CRBRC SMCLN
{sprintf(buff,” %s%s”,$1,$3);strcpy($$,buff),}

I class-head CRBRO class-descr PUBLIC FLCLN class-descr

{sprintf(buff,”%s%sPUBLIC\n%s”,
$1,$3,$6);strcpy($$,buff);}

{sprintf(buff,”%sPUBLIC\n%s”,$1,$5);strcpy($$,buff);}

garbage

class-splcifiers

CRBRC SMCLN

I class-head CRBRO PUBLIC FLCLN class-descr CRBRC SMCLN

class-dek
: i-am-in-a-class {strcpy($$,$ I);}

i-am-in-a-class
: what-we-do-not-need{strcpy($$,””);}
I what-we-need

{sprintf(buff,” %s” ,$I); strcpy($$,buff);}
I i-am-in-a-class w hat-w e-need

{sprintf(buff,”%s %s”,$l,$2); strcpy($$,buff);}
1 i-am-in-a-class what-we-do-not-need

{ sprintf(buff,” %s” ,$1); strcpy($$,buff);}

w hat-we-do-not-need
: some-stuff SMCLN

{strcpy($$,””);}

w hat-w e-need

158

: FRIEND some-stuff SMCLN
{sprintf(buff,” friend %s; \n” , $2); strcpy($$, buff); }

I CLASS some-stuff SMCLN
{ sprintf(buff,” class %s;\n” , $2); strcpy($$, buff);}

I some-stuff PARNO PARNC SMCLN
{sprintf(buff,”%s (); \n”>$l); strcpy($$,buff);}

1 some-stuff PARNO PARNC fun-body
{sprintf(buff,” %s ();\n”,$l); strcpy($$, buff);}

I some-stuff PARNO somegarams PARNC SMCLN
{sprintf(buff,” %s(%s)\n”,$ ~ $ 3) ; strcpy($$, buff);}

I some-stuff PARNO some-params PARNC fun-body
{sprintf(buff,” %;s(%s)\n”,$l,$3); strcpy($$,buff);}

fun-body : CRBRO CRBRC
I CRBRO some-stuff CRBRC
I CRBRO CRBRC SMCLN
I CRBRO some-stuff CRBRC SMCLN

some-params
: PARAMS

1 some-params PARAMS
{strcPY($$,YYtext); 1
{sprintf(buff,”%s%s” ,$l,yytext);strcpy($$, buff);}

some-stiff : STUFF
{strcpy($$,yytext); } I some-stuff STUFF
{sprintf(buff,”%s %s”,$l,yytext); strcpy($$,buff);}

class-he Ad
: CLASS { st rcp y($$, ” CLASS : \nBASE : \n”); }
I CLASS identifier

I CLASS identifier FLCLN identifier
{sprintf(buff,”CLASS: %s\nBASE:\n”,$2); strcpy($$,buff);}

{sprintf(buff,”CLASS: %s\nBASE: %s\n”,$2,$4);
strcpy($$,buff); }

I CLASS identifier FLCLN PUBLIC identifier
{sprintf(buff,”CLASS: %s\nBASE: PUBLIC %s\n” ,$2,$5);
strcpy($$,buff);}

APPENDIX E

LEX GRAMMAR FOR TRADITIONAL

PRIMARY METRIC DATA ANALYSIS

This appendix documents the traditional primary metric data capture

mechanism implemented to support the test case execution of Phase 9 (Sec-

tion 4.9) of the developed programming environment evaluation methodology.

The relevant primary metric data definitions are presented in Section 3.4.7. This

appendix contains the LEX grammar developed t o support determination of these

traditional met rics.

159

180

LEX Grammar for Traditional Metric Analysis

%
include ” y . t ab. h”
#include ” 1ex.ext.h”
#include <stdio.h>
#include <strings.h>
#include <math h >
#define SL 200
#define ID 40
#define OT 200
#define OD 400
#define NC 100
main()

int i,index,cindex,tokvaI,noc,cci;
double N,V,eta;
struct pac {

{

int numtokoccur;
char tokenid[SL];

1;
struct {

char cname[ID];
int N1,N2;
int numof prdcts;
int numofoprnds;
int numof oprtrs;
struct pac operators[OT];
struct pac operands[OD];

1
moc[NC];
struct {

int tval;
char tname [ID] ;

1
Itok,ptok;

for(i=O;i<NC;i++) {
moc[i] .numofoprnds = 0;
moc(i] .numofoprtrs = 0;
moc(i].numofprdcts = 0;
strcpy(moc[i] .cname,” ”);
1

ptok.tval = 0;
strcpy(ptok.tname,””);
s t rcpy(moc[O]. cname, ” main”);

/* INITIALIZATION */
noc = 1;
cci = 0:

while((tokva1 = yylex()) != 0)

Itok.tva1 = ptok.tval;
strcpy(Itok. tname,ptok.tname);
ptok.tval = tokval;
strcpy(ptok.tname,yytext);

switch(tokval)
{

161

case MAIN :
cci = 0;
break;

case CLASS :
if(ltok.tval == FR1END)break;

tokval = yylex();
Itok.tval = ptok.tval;
strcpy(ltok.tname,ptok.tname);
ptok.tval = tokval;
strcpy(ptok. tname,yytext);

cci = noc;
strcpy(moc[noc] .cname,yytext);

moc[cci] .operators[Itok. tval-2571 .numtokoccur++;
moc[cci] .NI++;
strcpy(moc[cci] .operators[Itok. tval-2571 .tokenid,ltok.tname);
noc++;
break;

case DBCLN :
index = 0;
while(index <= moc[cci].numofoprnds &&

moc[cci] .N2--;
moc[cci] .operands[index] .numtokoccur-- ,
cci = 0;
while(strcmp(ltok.tname,moc[cci].cname)!=O && cci < = noc+ l)cci++;

strcmp(moc[cci].operands[index] .tokenid,ltok.tname) != 0) index++;

strcmp(moc[cci] .operands[index] .tokenid,ltok.tname) != 0) index++;

index = 0;
while(index < moc[cci].numofoprnds &&

moc[cci] .operands[index] .numtokoccur++;
moc[cci].N2++;
strcpy(moc[cci] .operands[index] .tokenid,ltok.tname);
break;

break;
default :

1
tokval == CASE) 1 1
Ytokval == FOR) 1 1
:tokval == IF) 1 1
:tokval == WHILE) 1)
tokval == AND-OP) 1 1
,tokval == OR-OP))

moc[cci] .numofprdcts++;

if(tokval!=IDENTIFIER && tokval!=CONSTANT &&
tokval != STRING-LITERAL && tokval != MAIN)

moc[cci] .operators[tokval-2571 .numtokoccur++;
mot [cc i] .N 1 ++ ;
strcpy(moc[cci] .operators[tokval-257] .tokenid,yytext);

{

1
{
else

index = 0;
while(index < moc[cci] .numofoprnds &&

i f (index < moc[cc~] .numofoprnds)
strcmp(moc[cci] .operands[index] .tokenid,yytext) != 0) index++;

moc[cci] .operands[index] .numtokoccur++;
moc[cci] .N2++;

{

162

strcpy(moc [cci] .operands[index]. tokenid, yytext);
}

{
else

moc[cci] .operands[moc[cci] .numofoprnds] .numtokoccur++;
moc[cci] .N2++;
strcpy(moc[cci] .operands[moc[cci] .numofoprnds] .tokenid,yytext);
moc[cci] .numofoprnds++;

} 1
}
cindex = 0;
while(cindex < noc)

index = 0;

while(index < OD){index++;
if(moc[cindex].operators[index].numtokoccur > O)moc[cindex] .numofoprtrs++;}

i = 0;
printf(”\n\n\n”);
printf(”The CLASS name : %s\n\n”,moc[cindex] .cname);
printf(”The operators are as follows :-\nNo. of occurrences The operator\n”);
while(i < OT)

{

if(moc[cindex] .operators[i].numtokoccur != 0)
printf(” %d %s\n”,

{

moc(cindex1 .operators(i] .numtokoccur,
moc(cindex1 .operators(i] .tokenid);

i++;

printf(” \n\n\n”);
printf(”The operands are as follows :-\nNo. of occurrences The operand\n”);
i = 0;
while(i < moc[cindex].numofoprnds && moc[cindex].operands[i] numtokoccur != 0)

1

printf(” %d %s\n” ,moc[cindex] .operands[lj. numtokoccur,
{

moc[cindex] .operands[i] .tokenid);
i++;

brintf(”\nNl = %d, N2 = %d, eta1 = %d, eta2 = %d\n”,moc[cindex].Nl,moc[cindex].N2,

printf(” \n\n\n”);
N = (double) moc[cindex].Nl + moc[cindex].N2;
e t a = (double) moc[cindex].numofoprtrs + moc[cindex].numofoprnds - 2;
V = N * log(eta)/log(2.0);
printf(” \n\n”);
printf(”The Halstead’s parameters are ’ \nN = %f\nV = %f\nETA = %f\n”,N,V,eta);
printf(” \n\n\n”);
printf(”The McCABE’s parameter is : %d\n\n”,moc[cindex].numofprdcts+1);
cindex++;

moc[cindex] numofoprtrs-l,moc[cindex] .numofoprnds);

%}
D [0-91
I [a-zA-Z]

H ‘O-ga-zA-zl (0-Sa-fA-F
0 [0-71

u bUl
E IeEl

x [f i l
ESC [abfnrtv”’?\\]

163

” auto”
”break”
”case”
”char”
”class”
”continue”
” const”
”default”
“delete”
” do”
”double”
”else”
” enum”
”extern”
”float”
I’ for”
”friend”
”goto”
” I f ”
”inline”
” int”
” long”
”main”
”new”
”operator”
”overload”
” pub I ic”
”register”
”return”
I’ short”
”signed”
” sizeof”
”static”
“struct”
”switch”
”this”
” typedef”
” union”
”unsigned”
”virtual”
”void”
” volat ile”

C E *I\/
A ” #” c ”I/”
F ” \n”
%%
” #” [{F}] *” \n” { traceposo; } ”//”[{F}]*”\n” { traceposo; }
” / * ’ I [{CE}]*” */I ’

” asm” { tracepos(); return(ASM);}
{ tracepos(); return(AUT0);)
{tracepos(); return(BREAK);}

(tracepos(); return(CASE1;)

{ tracePoso; }

{tracepoqj; return(CHAd)l}
{tracePoso; return(CLASS);}

{tracepos(); return(CONST);}
{ traceposo; return(DEFAULT);}
{ tracepos(); return(DELETE);}
{tracePo$); return(D0);)
{tracepos(); return(DOUl3LE);)

{tracepos(); return(ELSE);}
{ tracepos(); return(ENUM);}

{ traceposo; return(EXTERN);}

{ tracepos(); return(CONT1NUE);)

{ traceposo; return(FL0AT);)
{tracepos(); return(FOR);}
{ tracepos(); return(FRIEND);}
{tracepos(); return(GOTO);}

{ tracepoq); return(IF);}
{tracepos(); return(INLINE);}
{tracepa(); return(INT);}
{ tracepos(); return(L0NG);)
{tracepos(); return(MAIN);}
{tracepos(); return(NEW);}
{ tracepa(); return(OPERATOR);.}
{ tracepos(); return(OVERLOAD);}

{tracepos(); return(PUBL1C);)
{ tracePo<); return(REG1STER);)
{ traceposo; return(RETURN);}
{ tracepos(); return(SH0RT);)
{ traceposo; return(SIGNED);}

{ tracePo$); return(SIZE0F);)
{ tracePo<); return(STAT1C);)
{ tracepog); return(STRUCT);}
{tracepos(); return(SWITCH);}

{ tracepa(); return(THIS);}
{ tracepog); return(TWEDEF);}
{tracepos(); return(UNI0N);)
{tracepos(); return(UNSIGNED);}

{tracepos(); return(VIRTUAL);}
{ traceposo; return(V0ID);)
(traceDos0: return(VOLATILE1:)

,I I

”while” {trace’pod): return(WH1LE);)
{I >({ Z } I ” -”)* { tracepoq); return(IDENTIFIER);}

trace pos(); re turn(CO NS TANT);
trace pos(); re turn(CO NS TANT);

O { O}+ { L}?{ U}? {tracepos(); return(CONSTANT);}
O { O}+{U}?{ L}? {tracepos(); return(C0NSTANT);)

{ traceposo; return(C0NSTANT);)
{ traceposo; return(CONSTANT);}

\’([’\n\\] I(\\({ESC} I {X}{H} {H}?{H}?J { O } { O}?{O}?)))+\’ {tracepos(); return(C0NSTANT);)
\”([” \n \ \] I(\\({ESC} I {X}{H}{H}?{H}?~{ 0}{ O}?{ O}?)))+\” { traceposo; return(STR1NGLITERAL);)
{D}+{E}{L}? { tracepos(); return(CONSTANT);}
{D *”.”{D}+ E ? L ? tracepog); return(C0NSTANT);
{D{+” .”{D}&]?lL]? {tracepos(); return(CONSTANT),
), ... 8 ,

{P){D}*{L}?{U}?
{P){DI*{U}?{L}?

{ tracepos(); return(ELL1PSIS);)

164

{ traceposo; return(RIGHT,ASSIGN);}
{ tracepos(); return(LEFTASS1GN);)

{tracePo<); re turn(ADDBS1GN ;}
{tracepos(); return(SUB&SIGN);{
{ tracePo$); return(MUL&SIGN);}
{tracepos(); re turn(DIVBS1GN);)
{ tracepoq); return(MOD-ASSIGN);}
{tracepoq); return(ANDJSS1GN);)
tracepos(); return(XOR&SIGN);}
tracepoq); return(ORJSS1GN);)
{ tracepos(); return(R1GHT-OP);}
{ traceposo; return(LEFT-OP);}

{tracepos(); return(1NC-OP);}

{tracepos(); return(PTR-OP);}
{ traceposo; return(AND-OP);}

tracepos(); return(LE-OP);} I tracepos(); return(GE-OP);}
{ tracepos(); return(EQ-OP);}

{ tracepos(); return(DEC-OP);}

{ tracepoq); return(OR-OP);}

{ tracepoq); return(NE_OP);}
{ tracepos(); return(DBCLN);}
{ tracepoq); return(SMCLN);}

tracepos(); return(CRBR0);)
tracepos(); /*return(CRBRC);*/}

{ tracepoq); return(C0MM.A);)
{tracePo<); return(FLCLN);}

{ tracepos(); return(EQUAL);}
{ tracepos(); return(PARN0);)
{ tracepos(); /*return(PARNC); */}
{tracePo<); return(SQBR0);)
{ tracepos(); /*re turn(SQBRC); */}
{ tracePo<); return(PRI0D);)
{ tracepoq); return(AMPSD);}

{ tracepos(); return(EXCLM);}
{ tracepos(); return(NEGAT);}

{ tracepos(); return(MINUS);}
{ tracePo$); return(PLUSS);}
trace pos(); re turn(MULTP); }
trace pos() ; return(D IVJ S) ; }
{ tracepos(); return(PRSNT);}
I

int column = 0;
int tracePo<)

int i;
for (i=O; yytext[i] != ’\o’; i++)

{

if (yytextli] == ’\n’)

else i f (yytext[i] == ’\t’)

else

ECHO;

column = 0;

column += 8 - (column % 8);

column++;

}

ABSTRACT

The object-oriented design strategy as both a problem decomposition and

system development paradigm has made impressive inroads into the various areas

of the computing sciences. Substantial development productivity improvements

have been demonstrated in areas ranging from artificial intelligence t o user

interface design. However, there has been very little progress in the formal

characterization of these productivity improvements and in the identification of

the underlying cognitive mechanisms. The development and validation of models

and metrics of this sort require large amounts of systematically-gathered

structural and productivity data. There has, however, been a notable lack of

systematically-gathered information on these development environments. A large

part of this problem is attributable to the lack of a systematic programming

environment evaluation methodology that is appropriate t o the evaluation of

ob j ec t -orien t ed systems.

Consequently, the research presented in this document addresses the

design, development, and evaluation of a systematic, extensible, and

environment-independent methodology for the comparative evaluation of object-

oriented programming environments. This methodology is intended to serve as a

foundational element for supporting research into the impact of object-oriented

software development environments and design strategies on the software

development process and resultant software products. A systematic approach is

defined for conducting the methodology with respect t o the particular object-

oriented programming environment under investigation. The evaluation of each

environment is based on user performance of representative and well-specified

165

~

166

development tasks on well-characterized applications within the environment.

Primary metrics needed to characterize the software applications under

examination are also defined and monitored for subsequent use in the analysis

and evaluation of the environments.

The major contributions of this work are as follows:

1.

2.

3.

4.

5.

This research has formally established the primary metric data definitions

that completely characterize the unique aspects of object-oriented software

systems, including the inheritance lattice and messaging graph.

This research has established language-independent procedures for

automatically capturing this primary metric data during an evaluation.

These procedures have been shown to be instantiable in a representative

set of object-oriented languages.

This research has established the fundamental characteristics of object-

oriented software that indicate consistent applications of object-oriented

design techniques, namely, that common capabilities are factored

throughout the inheritance lattice and that individual objects focus on

providing specific capabilities.

This research has defined a language-independent application domain-

specific development paradigm based on these fundamental characteristics

for highly interactive graphical applications.

This research has identified design principles for a programming

environment evaluation methodology (PEEM) that ensure its applicability

to object-oriented development environments. The PEEM design principles

167

unique to this work include the following: the requirement for primary

metric data definitions that completely characterize the object-oriented

characteristics of the software under evaluation, the requirement for the

identification of relevant applications domain-specific development

paradigms to support the validity and comparability of evaluative results,

and the requirement for automatic capture of performance and primary

metric data to ensure consistency and eliminate human bias.

6. Finally, this research has produced a systematic, extensible, and

environment-independent programming environment evaluation

methodology capable of supporting research into complexity models and

metrics for object-oriented systems. The design principles, identified in

contribution 5 above, establish the basis of the fundamental distinctions

between exiting PEEMs and the PEEM developed as part of this research.

BIOGRAPHICAL SKETCH

Dennis R. Moreau was born in on

 He received his B.S. and M.S. degrees in Computer Science from the

University of Southwestern Louisiana, Lafayette, Louisiana in 1984 and 1986

respectively. He has worked as a professional systems analyst and systems

consultant since 1979. Since 1984, he has served as the Senior NASA Research

Assistant on the USL NASA Project of the Center for Advanced Computer

Studies at the University of Southwestern Louisiana. During this time period, he

has authored or eo-authored 17 NASA research reports, conference publications,

and journal articles. Additionally, he has served in capacities ranging from

Project Manager to Technical Coordinator for over 115 hardware/software

donation grants to the USL NASA Project.

168

1. Report No.

//J-8-2,

U n i v e r s i t y of S o u t h w e s t e r n L o u i s i a n a
The Center f o r Advanced Computer S t u d i e s
P.O. Box 44330

2. Government Accession No. / 833- 90 3. Recipient's Catalog No. -- .
/;/; 2-

11. Contract or Grant No.

NGT-19-010-900

/E L) f? 4. Title and Subtitle

USL/NGT-19-010-900: A PROGRAMMING ENVIRONMENT EVALUATION
METHODOLOGY FOR OBJECT-ORIENTED SYSTEMS

7. Author(s1
DENNIS R. MOREAU

9. Performing Organizarion Name and Address

13. Type of Repon and Period Covered

FINAL; 0 7 / 0 1 / 8 5 - 1 2 / 3 1 / 8 7

Lafayette, LA 70504-4330
12. Sponsoring Agency Name and Address

2fi: 7 fL' 5. Repon Date
Sep tember 1987gg{:.,, ,#, , -;: .;

6. Performing Organization Code

8. Performing Organization Report No.

10. Work Unit No.

14. Sponsoring Agency Code

15. Supplementary Notes

19. Security Classif. (of this report) 20. Security Classif. (of this page) 21. NO. of Pages

U n c l a s s i f i e d U n c l a s s i f i e d 168

16. Abmaa

22. Rice'

This Working Paper Series entry represents the final Ph.D. Dissertation of Dennis R. Moreau, Senior
USL NASA Research Assistant. The abstract of this research follows.

The objectioriented design strategy as both a problem decomposition and system development para-
digm has made impressive inroads into the various areas of the computing sciences. Substantial
development productivity improvements have been demonstrated in areas ranging from artificial
intelligence to user interface design. However, there has been very little progress in the formal char-
acterization of these productivity improvements and in the identification of the underlying cognitive
mechanisms. The development and validation of models and metrics of this sort require large
amounts of systematically-gathered structural and productivhy data. There has, however, been a
notable lack of systematically-gathered information on these development environments. A large part
of this problem is attributable to the lack of a systematic programming environment evaluation
methodology that is appropriate t o the evsluation of object-oriented systems.

(Abstract continued on following page)

~

17. Key Words (Suggested by Author(s))

Programming Environment Evaluation
Methodology, Object-Oriented Sys-
terns, PC-Based Research and
Development

~ ~~~

18. Distribution Statement

*For wIe by the National Technic31 Information Service, Springfield, Virginia 221 61

