356 research outputs found

    Getting Relational Database from Legacy Data-MDRE Approach

    Get PDF
    The previous management information systems turning on traditional mainframe environment are often written in COBOL and store their data in files; they are usually large and complex and known as legacy systems. These legacy systems need to be maintained and evolved due to several causes, including correction of anomalies, requirements change, management rules change, new reorganization, etc. But, the maintenance of legacy systems becomes over years extremely complex and highly expensive, In this case, a new or an improved system must replace the previous one. However, replacing those systems completely from scratch is also very expensive and it represents a huge risk. Nevertheless, they should be evolved by profiting from the valuable knowledge embedded in them. This paper proposes a reverse engineering process based on Model Driven engineering that presents a solution to provide a normalized relational database which includes the integrity constraints extracted from legacy data. A CASE tool CETL: (COBOL Extract Transform Load) is developed to support the proposal. Keywords: legacy data, reverse engineering, model driven engineering, COBOL metamodel, domain class diagram, relational database

    Ada and the rapid development lifecycle

    Get PDF
    JPL is under contract, through NASA, with the US Army to develop a state-of-the-art Command Center System for the US European Command (USEUCOM). The Command Center System will receive, process, and integrate force status information from various sources and provide this integrated information to staff officers and decision makers in a format designed to enhance user comprehension and utility. The system is based on distributed workstation class microcomputers, VAX- and SUN-based data servers, and interfaces to existing military mainframe systems and communication networks. JPL is developing the Command Center System utilizing an incremental delivery methodology called the Rapid Development Methodology with adherence to government and industry standards including the UNIX operating system, X Windows, OSF/Motif, and the Ada programming language. Through a combination of software engineering techniques specific to the Ada programming language and the Rapid Development Approach, JPL was able to deliver capability to the military user incrementally, with comparable quality and improved economies of projects developed under more traditional software intensive system implementation methodologies

    Quantifier-Free Interpolation of a Theory of Arrays

    Get PDF
    The use of interpolants in model checking is becoming an enabling technology to allow fast and robust verification of hardware and software. The application of encodings based on the theory of arrays, however, is limited by the impossibility of deriving quantifier- free interpolants in general. In this paper, we show that it is possible to obtain quantifier-free interpolants for a Skolemized version of the extensional theory of arrays. We prove this in two ways: (1) non-constructively, by using the model theoretic notion of amalgamation, which is known to be equivalent to admit quantifier-free interpolation for universal theories; and (2) constructively, by designing an interpolating procedure, based on solving equations between array updates. (Interestingly, rewriting techniques are used in the key steps of the solver and its proof of correctness.) To the best of our knowledge, this is the first successful attempt of computing quantifier- free interpolants for a variant of the theory of arrays with extensionality

    Weighted Modal Transition Systems

    Get PDF
    Specification theories as a tool in model-driven development processes of component-based software systems have recently attracted a considerable attention. Current specification theories are however qualitative in nature, and therefore fragile in the sense that the inevitable approximation of systems by models, combined with the fundamental unpredictability of hardware platforms, makes it difficult to transfer conclusions about the behavior, based on models, to the actual system. Hence this approach is arguably unsuited for modern software systems. We propose here the first specification theory which allows to capture quantitative aspects during the refinement and implementation process, thus leveraging the problems of the qualitative setting. Our proposed quantitative specification framework uses weighted modal transition systems as a formal model of specifications. These are labeled transition systems with the additional feature that they can model optional behavior which may or may not be implemented by the system. Satisfaction and refinement is lifted from the well-known qualitative to our quantitative setting, by introducing a notion of distances between weighted modal transition systems. We show that quantitative versions of parallel composition as well as quotient (the dual to parallel composition) inherit the properties from the Boolean setting.Comment: Submitted to Formal Methods in System Desig

    Supporting Software Development by an Integrated Documentation Model for Decisions

    Get PDF
    Decision-making is a vital activity during software development. Decisions made during requirements engineering, software design, and implementation guide the development process. In order to make decisions, developers may apply different strategies. For instance, they can search for alternatives and evaluate them according to given criteria, or they may rely on their personal experience and heuristics to make single solution claims. Thereby, knowledge emerges during the process of decision making, as the content, outcome, and context of decisions are explored by developers. For instance, different solution options may be considered to address a given decision problem. In particular, such knowledge is growing rapidly, when multiple developers are involved. Therefore, it should be documented to make decisions comprehensible in the future. However, this documentation is often not performed by developers in practice. First, developers need to find and use a documentation approach, which provides support for the decision making strategies applied for the decision to be documented. Thus, documentation approaches are required to support multiple strategies. Second, due to the collaborative nature of the decision making process during one or more development activities, decision knowledge needs to be captured and structured according to one integrated model, which can be applied during all these development activities. This thesis uncovers two important reasons, why the aforementioned requirements are currently not fulfilled sufficiently. First, it is investigated, which decision making strategies can be identified in the documentation of decisions within issue tickets from the Firefox project. Interestingly, most documented decision knowledge originates from naturalistic decision making, whereas most current documentation approaches structure the captured knowledge according to rational decision making strategies. Second, most decision documentation approaches focus on one development activity, so that for instance decision documentation during requirements engineering and implementation are not supported within the same documentation model. The main contribution of this thesis is a documentation model for decision knowledge, which addresses these two findings. In detail, the documentation model supports the documentation of decision knowledge resulting from both naturalistic and rational decision making strategies, and integrates this knowledge within flexible documentation structures. Also, it is suitable for capturing decision knowledge during the three development activities of requirements engineering, design, and implementation. Furthermore, a tool support is presented for the model, which allows developers to integrate decision capturing and documentation in their activities using the Eclipse IDE

    Common spatiotemporal processing of visual features shapes object representation

    Get PDF
    none10Biological vision relies on representations of the physical world at different levels of complexity. Relevant features span from simple low-level properties, as contrast and spatial frequencies, to object-based attributes, as shape and category. However, how these features are integrated into coherent percepts is still debated. Moreover, these dimensions often share common biases: for instance, stimuli from the same category (e.g., tools) may have similar shapes. Here, using magnetoencephalography, we revealed the temporal dynamics of feature processing in human subjects attending to objects from six semantic categories. By employing Relative Weights Analysis, we mitigated collinearity between model-based descriptions of stimuli and showed that low-level properties (contrast and spatial frequencies), shape (medial-axis) and category are represented within the same spatial locations early in time: 100-150 ms after stimulus onset. This fast and overlapping processing may result from independent parallel computations, with categorical representation emerging later than the onset of low-level feature processing, yet before shape coding. Categorical information is represented both before and after shape, suggesting a role for this feature in the refinement of categorical matching.nonePapale, Paolo; Betta, Monica; Handjaras, Giacomo; Malfatti, Giulia; Cecchetti, Luca; Rampinini, Alessandra; Pietrini, Pietro; Ricciardi, Emiliano; Turella, Luca; Leo, AndreaPapale, Paolo; Betta, Monica; Handjaras, Giacomo; Malfatti, Giulia; Cecchetti, Luca; Rampinini, Alessandra; Pietrini, Pietro; Ricciardi, Emiliano; Turella, Luca; Leo, Andre

    Research Data Management at CERN

    Get PDF

    Temporal Models for History-Aware Explainability

    Get PDF
    On one hand, there has been a growing interest towards the application of AI-based learning and evolutionary programming for self-adaptation under uncertainty. On the other hand, self-explanation is one of the self-* properties that has been neglected. This is paradoxical as self-explanation is inevitably needed when using such techniques. In this paper, we argue that a self-adaptive autonomous system (SAS) needs an infrastructure and capabilities to be able to look at its own history to explain and reason why the system has reached its current state. The infrastructure and capabilities need to be built based on the right conceptual models in such a way that the system's history can be stored, queried to be used in the context of the decision-making algorithms. The explanation capabilities are framed in four incremental levels, from forensic self-explanation to automated history-aware (HA) systems. Incremental capabilities imply that capabilities at Level n should be available for capabilities at Level n + 1. We demonstrate our current reassuring results related to Level 1 and Level 2, using temporal graph-based models. Specifically, we explain how Level 1 supports forensic accounting after the system's execution. We also present how to enable on-line historical analyses while the self-adaptive system is running, underpinned by the capabilities provided by Level 2. An architecture which allows recording of temporal data that can be queried to explain behaviour has been presented, and the overheads that would be imposed by live analysis are discussed. Future research opportunities are envisioned

    Context Sensitive Typechecking And Inference: Ownership And Immutability

    Get PDF
    Context sensitivity is one important feature of type systems that helps creating concise type rules and getting accurate types without being too conservative. In a context-sensitive type system, declared types can be resolved to different types according to invocation contexts, such as receiver and assignment contexts. Receiver-context sensitivity is also called viewpoint adaptation, meaning adapting declared types from the viewpoint of receivers. In receiver-context sensitivity, resolution of declared types only depends on receivers' types. In contrast, in assignment-context sensitivity, declared types are resolved based on context types to which declared types are assigned to. The Checker Framework is a poweful framework for developing pluggable type systems for Java. However, it lacks the ability of supporting receiver- and assignment-context sensitivity, which makes the development of such type systems hard. The Checker Framework Inference is a framework based on the Checker Framework to infer and insert pluggable types for unannotated programs to reduce the overhead of manually doing so. This thesis presents work that adds the two context sensitivity features into the two frameworks and how those features are reused in typechecking and inference and shared between two different type systems --- Generic Universe Type System (GUT) and Practical Immutability for Classes And Objects (PICO). GUT is an existing light-weight object ownership type system that is receiver-context sensitive. It structures the heap hierarchically to control aliasing and access between objects. GUTInfer is the corresponding inference system to infer GUT types for unannotated programs. GUT is the first type system that introduces the concept of viewpoint adaptation, which inspired us to raise the receiver-context sensitivity feature to the framework level. We adapt the old GUT and GUTInfer implementation to use the new framework-level receiver-context sensitivity feature. We also improve implicits rules of GUT to better handle corner cases. Immutability is a way to control mutation and avoid unintended side-effects. Object immutability specifies restrictions on objects, such that immutable objects' states can not be changed. It provides many benefits such as safe sharing of objects between threads without the need of synchronization, compile- and run-time optimizations, and easier reasoning about the software behaviour etc. PICO is a novel object and class immutability type system developed using the Checker Framework with the new framework-level context sensitivity features. It transitively guarentees the immutability of the objects that constitute the abstraction of the root object. It supports circular initialization of immutable objects and mutability restrictions on classes that influence all instances of that class. PICO supports creation of objects whose mutability is independent from receivers, which inspired us to add the assignment-context sensitivity feature to the framework level. PICOInfer is the inference system that infers and propagates mutability types to unannotated programs according to PICO's type rules. We experiment PICO, PICOInfer and GUTInfer on 16 real-world projects up to 71,000 lines of code in total. Our experiments indicate that the new framework-level context sensitivity features work correctly in PICO and GUT. PICO is expressive and flexible enough to be used in real-world programs. Improvements to GUT are also correct
    • …
    corecore