
DISSERTATION
submitted

to the

Combined Faculty for the Natural Sciences andMathematics

of

Heidelberg University, Germany

for the degree of

Doctor of Natural Science

Put forward by

M.Sc. Tom-Michael Hesse

Born in Leipzig

Oral examination:

Supporting Software Development by an
Integrated DocumentationModel for Decisions

Advisors: Prof. Dr. Barbara Paech
Prof. Bernd Bruegge, Ph.D.

Abstract

Decision-making is a vital activity during software development. Decisions made during require-
ments engineering, software design, and implementation guide the development process. In order to
make decisions, developers may apply different strategies. For instance, they can search for alterna-
tives and evaluate them according to given criteria, or they may rely on their personal experience and
heuristics to make single solution claims. Thereby, knowledge emerges during the process of decision
making, as the content, outcome, and context of decisions are explored by developers. For instance,
different solution options may be considered to address a given decision problem. In particular,
such knowledge is growing rapidly, when multiple developers are involved. Therefore, it should be
documented to make decisions comprehensible in the future.

However, this documentation is often not performed by developers in practice. First, developers
need to find and use a documentation approach, which provides support for the decision making
strategies applied for the decision to be documented. Thus, documentation approaches are required
to support multiple strategies. Second, due to the collaborative nature of the decision making process
during one or more development activities, decision knowledge needs to be captured and structured
according to one integrated model, which can be applied during all these development activities.

This thesis uncovers two important reasons, why the aforementioned requirements are currently
not fulfilled sufficiently. First, it is investigated, which decision making strategies can be identified
in the documentation of decisions within issue tickets from the Firefox project. Interestingly, most
documented decision knowledge originates from naturalistic decision making, whereas most current
documentation approaches structure the captured knowledge according to rational decision making
strategies. Second, most decision documentation approaches focus on one development activity, so
that for instance decision documentation during requirements engineering and implementation are
not supported within the same documentation model.

The main contribution of this thesis is a documentation model for decision knowledge, which
addresses these two findings. In detail, the documentation model supports the documentation of
decision knowledge resulting from both naturalistic and rational decision making strategies, and
integrates this knowledge within flexible documentation structures. Also, it is suitable for capturing

i

decision knowledge during the three development activities of requirements engineering, design, and
implementation. Furthermore, a tool support is presented for the model, which allows developers to
integrate decision capturing and documentation in their activities using the Eclipse IDE.

ii

Zusammenfassung

EinewichtigeAktivität imSoftwareentwicklungsprozess ist dasTreffen vonEntscheidungen. Entschei-
dungen etwa beim Erheben von Anforderungen, dem Softwareentwurf oder der Implementierung
steuern den gesamten Entwicklungsprozess. Um Entscheidungen zu treffen, nutzen Softwareent-
wickler unterschiedliche Strategien. Beispielsweise können sie nach Lösungsalternativen suchen
und diese anhand gegebener Kriterien analysieren, oder sie orientieren sich an ihrer Erfahrung
und Heuristiken, um sich ohne weitere Abwägung für eine Lösung zu entscheiden. Während dieses
Prozesses entstehen große Mengen an Wissen zu Inhalt, Ergebnissen und Kontext von Entschei-
dungen. Die Menge dieses Wissens kann rapide ansteigen, wenn mehrere Entwickler an einer
Entscheidung beteiligt sind - etwa durch die Diskussion zu unterschiedlichen Lösungsmöglichkeiten
eines Entscheidungsproblems. Damit die getroffenen Entscheidungen in Zukunft nachvollziehbar
bleiben, sollte Entscheidungswissen deshalb dokumentiert werden.

Trotzdem wird die Dokumentation von Entscheidungswissen in der Praxis oft nicht durchgeführt,
da Softwareentwickler zunächst einen Dokumentationsansatz für Entscheidungswissen finden
und anwenden müssen, der die von ihnen verwendete Entscheidungsstrategie unterstützt. Das er-
fordert Dokumentationsverfahren, die möglichst verschiedene Strategien zum Treffen von Entschei-
dungen unterstützen. Außerdem entsteht durch die Zusammenarbeit von mehreren Entwicklern
während des Entscheidungsprozesses über verschiedene Entwicklungsaktivitäten hinweg Entschei-
dungswissen, das in einem integrierten Modell dokumentiert werden sollte, welches in allen Ent-
wicklungsaktivitäten angewendet werden kann.

Die vorliegende Arbeit untersucht zwei wesentliche Gründe, warum die beiden vorgenannten An-
forderungen derzeit nicht hinreichend erfüllt werden. Erstens wird untersucht, welche Strategien
zum Treffen von Entscheidungen in bereits dokumentierten Entscheidungen aus Issue-Tickets des
Firefox-Projektes identifiziert werden können. Dabei zeigt sich, dass das meiste dokumentierte
Wissen aus naturalistischen Entscheidungen stammt, obwohl viele Dokumentationsverfahren sich
auf Wissen aus rationalem Entscheiden fokussieren. Zweitens wenden sich die meisten bestehenden
Dokumentationsverfahren einer Entwicklungsaktivität zu, sodass beispielsweise Entscheidungen zu
Anforderungsmanagement und Implementierung nicht im selben Dokumentationsmodell vorgehal-
ten werden können.

iii

Der wichtigste Beitrag der vorliegenden Arbeit ist ein Dokumentationsmodell für Entscheidungswis-
sen, welches diese beiden Gründe für die bisher selten explizit stattfindende Dokumentation von
Entscheidungswissen aufgreift. Dieses Modell unterstützt insbesondere die Dokumentation von
Entscheidungswissen, welches sowohl aus rationalem als auch aus naturalistischem Entscheiden
entstanden sein kann. Dieses Wissen wird in flexiblen Dokumentationstrukturen integriert. Darüber
hinaus ist das Modell in der Lage, Entscheidungswissen in den drei verschiedenen Entwicklungsak-
tivitäten Anforderungsmanagement, Softwareentwurf sowie Implementierung zu erfassen. Dafür
wird eine Werkzeugunterstützung für das Modell entwickelt und vorgestellt, welche es Entwicklern
parallel zu ihren Tätigkeiten ermöglicht, Entscheidungswissen innerhalb der Entwicklungsumgebung
Eclipse zu erfassen und zu dokumentieren.

iv

Acknowledgements

First and foremost, I thank my supervisor Prof. Barbara Paech for her enduring support and advise.
She taught me her systematic and comprehensive way of working on scientific problems. I learned
from her to unfold the full complexity of a problem in multiple iterations over time, and to review the
related solution options carefully. With this idea, she also gave fundamental direction to my solution
approach for documenting decisions.

Furthermore, I would like to thank Prof. Bernd Bruegge, PhD., for a very successful and inspiring
cooperation within the URES project. He provided invaluable feedback on our project work and my
thesis, which helped me to improve my results significantly. Also, I enjoyed working with Tobias
Roehm, with whom I had many insightful discussions about my research.

Great thanks deserve all members of the Software Engineering Group at Heidelberg University for a
very constructive atmosphere and a lot of valuable feedback on my ideas. Moreover, many students
supported my research by their theses and by working with me as student assistants. In particular, I
want to thank Arthur Kuehlwein for supporting me with the creation of DecDoc.

Finally, I deeply thank my parents and Wiebke for supporting me and believing in me. They helped
me to overcome the most urgent obstacle in finishing this thesis — me, when being doubtful or
distracted.

v

Contents

List of Figures xi

List of Tables xiii

List of Abbreviations xv

I Preliminaries 1

1 Introduction 3
1.1 Motivation and Research Goals . 3
1.2 Research Methodology . 9
1.3 Solution Approach and Contributions . 11
1.4 Structure of the Thesis . 12
1.5 Previous Publications . 13

2 Background 17
2.1 Decision Problems . 17
2.2 Development Activities . 18
2.3 Decision Making Strategies . 21
2.4 Decision Knowledge . 25

II Problem Analysis 31

3 State of Practice for Decision Making Strategies 33
3.1 Study Foundations . 33
3.2 Research Process . 37

3.2.1 Preparation Phase . 38
3.2.2 Coding Phase . 42
3.2.3 Analysis Phase . 43

vii

Contents

3.3 Results and Discussion . 44
3.3.1 Results for Issue Dimensions . 44
3.3.2 Discussion of Results for Issue Dimensions 46
3.3.3 Results for RQ1: Dominance of NDM . 47
3.3.4 Discussion of Requirement A: Documentation of RDM and NDMDecisions 47
3.3.5 Results for RQ2: Distribution of Strategy Elements 48
3.3.6 Discussion of Requirement B: Iterative Decision Documentation 50
3.3.7 Results for RQ3: Differences between Feature Requests and Bug Reports . . 51
3.3.8 Discussion of Additions to Requirement A 52

3.4 Threats to Validity . 53

4 State of the Art for Decision Knowledge Documentation 57
4.1 Study Foundations . 57
4.2 Research Process . 61

4.2.1 Preparation Phase . 61
4.2.2 Search Phase . 63
4.2.3 Analysis Phase . 64

4.3 Results and Discussion . 65
4.3.1 Results for RQ1: Decision Knowledge Structures 65
4.3.2 Discussion of Additions to Requirements A and B 70
4.3.3 Results for RQ2: Tools for Capturing and Linking Decision Knowledge . . 71
4.3.4 Discussion of Requirement C: Capturing Decision Knowledge during De-

velopment . 74
4.3.5 Discussion of Requirement D: Decision Knowledge Links 75
4.3.6 Results for RQ3: Usage of Decision Knowledge 75
4.3.7 Discussion of Additions to Requirements C and D 76

4.4 Threats to Validity . 77

III Solution Approach 79

5 An Incremental and Strategy-Independent Approach for Documenting Deci-
sions 81
5.1 Running Example . 81
5.2 Requirements Overview . 83
5.3 Decision Documentation Model . 84

5.3.1 Overview . 84
5.3.2 Decision and DecisionComponent . 86
5.3.3 Question, Issue and Goal . 88
5.3.4 Solution, Alternative and Claim . 90
5.3.5 Context, Assumption, Constraint and Implication 91
5.3.6 Argument and Assessment . 94
5.3.7 Relations between DecisionComponents 95
5.3.8 Model of Running Example . 97

5.4 Integration with Development Activities . 98
5.4.1 Requirements Engineering: Decisions on Security Requirements 99
5.4.2 Design: Decisions on UML Design Models 104

viii

Contents

5.4.3 Implementation: Decisions on Code . 106

6 DecDoc: Tool Support for the Documentation Approach 111
6.1 Requirements Overview . 111
6.2 Design and Feature Overview of DecDoc . 112
6.3 Knowledge Editor for the Decision Documentation Model 115
6.4 Knowledge Importer from Heuristic Use Case Analysis 119
6.5 Capturing Support for Design Decisions . 121
6.6 Code Annotations for Implementation Decisions 123

IV Evaluation 129

7 Evaluation of Documentation Model 131
7.1 Study Foundations . 131
7.2 Research Process . 136

7.2.1 Preparation Phase . 137
7.2.2 Coding Phase . 141
7.2.3 Analysis Phase . 141

7.3 Results and Discussion . 144
7.3.1 Results for RQ1: Feasibility of Documenting RDM and NDM Decisions

using the Model . 144
7.3.2 Discussion of Results for RQ1 . 146
7.3.3 Results for RQ2: Feasibility of Documenting Decisions Iteratively using the

Model . 147
7.3.4 Discussion of Results for RQ2 . 149
7.3.5 Results for RQ3: Feasibility of Capturing Decision Knowledge during De-

velopment using the Model . 150
7.3.6 Discussion of Results for RQ3 . 152
7.3.7 Results for RQ4: Feasibility of Linking Decision Knowledge using the Model153
7.3.8 Discussion of Results for RQ4 . 155

7.4 Threats to Validity . 155

8 Evaluation of Tool Support 159
8.1 Feasibility of Documenting Complex Decision Knowledge using DecDoc 159
8.2 Feasibility of Documenting Implementation Decisions using DecDoc 163

8.2.1 Study Foundations . 163
8.2.2 Research Process . 163
8.2.3 Results and Discussion . 164
8.2.4 Threats to Validity . 166

V Summary 169

9 Conclusion and Future Work 171
9.1 Conclusion . 171
9.2 Limitations of this Work . 173
9.3 Future Work . 174

ix

Contents

A Literature Review Hits 177

List of References 179

Errata

x

List of Figures

1.1 Relationships between Decision Support Systems, Decision Documentation, Deci-
sion Knowledge and DM Strategies . 4

1.2 Practice Problems Addressed in this Thesis . 6
1.3 Overview of Engineering and Design Cycle according to [Wieringa 2014] 10
1.4 Overview of Chapters in this Thesis . 13

2.1 The Analytic Hierarchy Process according to [Saaty 2008] 22
2.2 The Recognition-primed Decision Model according to [Klein 2008] 24
2.3 Basic Decision Knowledge Elements . 26
2.4 Fundamental Components of UNICASE . 29

3.1 Overview of the Research Process . 37
3.2 Relationships between Issue Dimensions . 46
3.3 Relationships between Strategy Elements . 50
3.4 Percentage of NDM as a Function of Branch and Issue Type 52

4.1 Overview of the Literature Review Process . 61
4.2 Search Hits and Relevant Hits from Searches Performed in the Review 64

5.1 Overview of Decision Knowledge for the Running Example 82
5.2 Overview of the Decision Documentation Model 85
5.3 Details of Decision and DecisionComponent . 86
5.4 Examples for Decision . 88
5.5 Details of Question, Issue, and Goal . 89
5.6 Examples for Question, Issue, and Goal . 90
5.7 Details of Solution, Alternative, and Claim . 90
5.8 Examples for Solution, Alternative, and Claim . 91
5.9 Details of Context, Assumption, Constraint, and Implication 92
5.10 Examples for Context, Assumption, Constraint, and Implication 93
5.11 Details of Argument and Assessment . 94

xi

List of Figures

5.12 Examples for Argument and Assessment . 95
5.13 Relations between DecisionComponents . 96
5.14 Example of Relations between DecisionComponents 96
5.15 Model of the Running Example (without Associations for Associated Classes) 98
5.16 Integration of Documentation Model with Development Activity Artifacts 99
5.17 HeRA Knowledge Structure [Gärtner et al. 2014] 100
5.18 Decision Knowledge related to UML Class ProductOrder from CoCoME 105
5.19 Example of Decision Annotations in Class ProductOrder 106
5.20 Annotation Model . 108

6.1 Architecture of DecDoc using the Eclipse IDE and UNICASE 113
6.2 Navigator View on Running Example Decisions . 116
6.3 Standard View with Highlighted Enumeration Attributes and Statistics 116
6.4 Decision Editor with Argument Graph . 118
6.5 Graph Visualization of Decisions and Their Elements 118
6.6 Solution Management Dialog with Running Example Data 119
6.7 Issues Overview with Highlighted Import-Button 120
6.8 First Step of the Importer Wizard with Potential Decisions 120
6.9 Third Step of the Importer Wizard with Knowledge Element Instances 121
6.10 Third Step of the Importer Wizard with Knowledge Element Instances 121
6.11 Opening the Documentation Wizard in the Papyrus UML Editor 122
6.12 Documenting new Decision Knowledge using the Documentation Wizard 122
6.13 Design Decision Overview with Running Example Data 123
6.14 Core Annotations in the ProductOrder Class . 124
6.15 Creation and Linking Pop-up for Core Annotation @Question 124
6.16 Tree View for Creating New DKE Instances by Core Annotations 125
6.17 Pro-Argument with Highlighted Supports-Relation Resulting from @Pro 126
6.18 Annotations Overview with Highlighted Link Information 126
6.19 Preferences Dialog for Code Annotations . 126

7.1 Overview of the Study Research Process . 137
7.2 Example for Documented Decision Knowledge from Adobe Transcript in DecDoc . 142
7.3 Adobe Decision Excerpt with Mix of RDM and NDM Element Instances 145
7.4 Amberpoint Decision Excerpt with Mix of RDM and NDM Element Instances . . . 146
7.5 Amberpoint Decision Excerpt with Iterative Refinements by Adding DKE Instances 148
7.6 Amberpoint Decision Excerpt with Different Context Instances 149
7.7 Amberpoint Decision Excerpt with Relations between DKE Instances and Require-

ments . 152
7.8 Amberpoint Decision Excerpt . 153
7.9 Excerpt from Adobe Relations Graph for Decisions 154

8.1 Statistics Overview Showing all Decision Knowledge from the Transcripts 160
8.2 Decision Editor with Claim Descriptions . 160
8.3 Graphical Decision Overview Showing an Adobe Decision 161
8.4 Solution Management for Decision Knowledge from Adobe Transcript 162

xii

List of Tables

2.1 Characteristics of Decision Problems . 18
2.2 Comparison of Strategy Elements for RDM and NDM 25

3.1 State of Practice: Description of Study Goal with GQM 34
3.2 Coding Table for Strategy Elements of Decision Making [Hesse, Lerche, et al. 2016] 40
3.3 Intraclass Correlation Coefficients (ICC) for Strategy Element Codes 42
3.4 Summary of Relationships between Issue Dimensions 45
3.5 Means and Standard Deviations of the Frequency of each Strategy Element per

Issue Report, Proportions of Strategy Elements and Intercorrelations between the
Frequencies of Strategy Elements per Comment [Hesse, Lerche, et al. 2016] 49

4.1 State of the Art: Description of Study Goal with GQM 58
4.2 Overview of Search Terms for the Literature Review [Paech, Delater, and Hesse 2014] 62
4.3 Search Requests Applied for Different Sources . 63
4.4 Decision Knowledge Elements of the Model by Tyree and Akerman 66
4.5 Comparison of Revealed Decision Documentation Approaches 67
4.6 Comparison of Knowledge Structures within the Documentation Approaches . . . 69
4.7 Comparison of Capturing Mechanisms and Linked Development Knowledge 72
4.8 Comparison of Usage Support for Decision Knowledge 76

5.1 Developer Actions for a Heuristic Finding . 101
5.2 Heuristic Match for Running Example . 102
5.3 Default Mapping between Incident Knowledge and Decision Knowledge 103
5.4 Overview of Developer Actions with Code Annotations 109

6.1 Features and Plugins of DecDoc . 114

7.1 Summary of Design Task Requirements . 132
7.2 Summary of the Design Space according to [Shaw 2012] 133
7.3 Evaluation of Decision Docuemntation Model: Description of Study Goal with GQM134
7.4 Codes for Identifying Instances of Documentation Model Elements 139

xiii

List of Tables

7.5 Codes for Identifying Relations between Documentation Model Element Instances 140
7.6 Example for Codes Applied on Transcript Statement 141
7.7 Total Number of Documentation Model Element Codes 143
7.8 Total Number of Documentation Model Relation Codes 143
7.9 Decisions with Highest Amounts of DKE Instances [Hesse and Paech 2016] 144
7.10 Amounts of RDM- and NDM-related Codes . 145
7.11 Numbers of Context Codes . 148
7.12 concerns-Relations between DKEs and Requirements for the Adobe Transcript . . . 150
7.13 concerns-Relations between DKEs and Requirements for the Amberpoint Transcript 151

8.1 Questionnaire Results from all Sprints . 165

A.1 Overview of Search Hits included within the Literature Review 177

xiv

List of Abbreviations

DKE Decision Knowledge Element

DM Decision Making

DRL Decision Representation Language

GQM Goal Question Metric

IDE Integrated Development Environment

NDM Naturalistic Decision Making

QOC Questions, Options and Criteria

RDM Rational Decision Making

RQ Research Question

UML Unified Modeling Language

xv

Part I

Preliminaries

1

1
Introduction

This chapter introduces the domain of decision documentation, its current shortcomings and the
contributions of this thesis to improve documentation by developers. First, the need for reflecting the
actual decision making strategies andmultiple development activities within decision documentation
is motivated. Also, the research goals resulting from this need are defined and justified. Second, the
major contributions of this thesis are outlined to illustrate how the research goals are investigated.
This is the foundation for the structure of this thesis, which is presented in the third section. Finally,
a list of previous publications is presented to describe the findings and results published beforehand.

1.1 Motivation and Research Goals

Decision making is a crucial activity within the process of software engineering [Ruhe 2003]. The
decisions made by developers in various software engineering activities give direction to the devel-
opment process and heavily impact its outcome [Davide Falessi, Cantone, and Becker 2006]. For
instance, important decisions are made regarding the realization of architecturally significant re-
quirements during requirements engineering [Chen, Ali Babar, and Nuseibeh 2013], on the structure of
the system’s architecture during software design [Jansen and Bosch 2005], and on the optimal coding
for particular functionality during implementation [Lougher and Rodden 1993; Canfora, Casazza, and
De Lucia 2000]. It should be noted, that the terms “software” and “system” are used synonymous in
this thesis.

Two major kinds of strategies for decision making (abbreviated as DM) can be distinguished: Rational
decsion making (abbreviated as RDM) and naturalistic decision making (abbreviated asNDM). These
strategies consist of different possible actions, which can be executed by the developers in order to
determine a decision according to the respective strategy. Such actions are called strategy elements.

3

CHAPTER 1. INTRODUCTION

Developers follow an RDM approach when they perform a detailed analysis of the decision situation
and explore all available options according to defined criteria [Zannier, Chiasson, and Maurer 2007].
In contrast, developers may also rely on their personal knowledge and experience from former
decisions to make a solution claim without a detailed investigation of different options [Lipshitz et al.
2001]. Then, they apply an NDM approach.

During decision making, developers acquire and evaluate knowledge related to their decisions. In
the remainder of this thesis, all knowledge related to a decision is called decision knowledge. Within
decision knowledge, different parts of knowledge focusing on a certain topic can be distinguished.
For instance, developers explore the current decision problem, alternatives for solving the prob-
lem, rationales justifying their choice, and additional information on the decision context, such
as constraints for the decision [Tyree and Akerman 2005]. These parts of decision knowledge are
called decision knowledge elements (abbreviated as knowledge elements). For developers, access to and
exploitation of decision knowledge with its elements has great importance. A major reason is that
developers need to comprehend and review their decisions in order to understand and improve
many software engineering artifacts over time. This is highlighted by Jansen and Bosch when they
describe the software architecture of a system as “a set of design decisions” [Jansen and Bosch 2005].
In consequence, knowledge management for decision making during software engineering should be
supported [Zannier, Chiasson, andMaurer 2007], which is one of multiple areas addressed by decision
support systems. In general, decision support systems are concerned with supporting and documenting
both decision making strategies and decision knowledge. For instance, they can be realized as nego-
tiation support systems to support group decision making or as knowledge management-based systems
to support knowledge transfer, storage and retrieval [Arnott and Pervan 2008]. Because a system
for decision documentation support is a knowledge management-based system for decision support, it
captures and structures decision knowledge based on a decision knowledge model. Then, the term
documentation model is used synonymous for knowledge model. A summary of the relationships
between decision support systems, decision documentation, decision knowledge and decisionmaking
strategies is given in Figure 1.1.

Decision Support System

Decision Documentation Support
by a Knowledge Management System

Decision Knowledge
consists of Decision Knowledge Elements

Strategies for Decision making
consist of Strategy Elements

Is a Captures Originates from

Figure 1.1: Relationships between Decision Support Systems, Decision Documentation, Decision
Knowledge and DM Strategies

4

1.1. MOTIVATION AND RESEARCH GOALS

In particular, developers require knowledge management-based systems to document their decision
knowledge with respect to their individual documentation preferences and needs [Davide Falessi,
Cantone, and Becker 2006; Tang, Ali Babar, et al. 2006; Manteuffel, Tofan, Koziolek, et al. 2014].
Otherwise, decision knowledge might erode and may be lost completely over time [Jansen and Bosch
2005], as teams may change and decisions may be adapted. Actually, in practice, decision knowledge
often remains implicit and undocumented. The survey of Tang, Ali Babar, et al. emphasizes this
observation: Only 35.8% out of 81 professional software designers documented potential short-
comings of their design decisions, and only 39.5% captured the reasons why their solution was
implementable [Tang, Ali Babar, et al. 2006]. Then, most information needs towards the decisions
made remain unsatisfied, as a study of Ko, DeLine, and Venolia at Microsoft with 17 developer teams
showed: In 44% of all cases the question “Why was the code implemented this way?” could not be
answered [Ko, DeLine, and Venolia 2007].

The findings of the studies of Tang, Ali Babar, et al. and Ko, DeLine, and Venolia are surprising,
as already many approaches exist to support developers with capturing and managing decision
knowledge. For requirements engineering, Ngo and Ruhe and Aurum, Wohlin, and Porter describe
different approaches for capturing decisions on prioritizing requirements [Ngo and Ruhe 2005;
Aurum, Wohlin, and Porter 2006]. Various approaches exist for documenting design decisions using
text templates and knowledge models, as investigated by the comparative studies of Ali Babar, Boer,
et al. [Ali Babar, Boer, et al. 2007] and Tang, Avgeriou, et al. [Tang, Avgeriou, et al. 2010]. Also
during implementation, different support mechanisms are proposed by researchers in order to make
decisions explicit, such as markup languages for decisions by Lougher and Rodden [Lougher and
Rodden 1993] and links between code and decision knowledge proposed by Canfora, Casazza, and
De Lucia [Canfora, Casazza, and De Lucia 2000] or Burge and Brown [Burge and Brown 2008].
These approaches already cover a broad range of different methods for capturing, structuring and
accessing decision knowledge. However, the study findings of Tang, Ali Babar, et al. and Ko, DeLine,
and Venolia are not satisfactory, as many information needs related to decisions cannot be fulfilled
in practice due to unavailable knowledge. Thus, further improvements in decision documentation
support are required in order to supply developers with explicit and structured decision knowledge.

These improvements should address two practice problems, which decrease the acceptance and
application of current decision documentation approaches [Manteuffel, Tofan, Koziolek, et al. 2014].
First, current documentation approaches mostly rely on codifying knowledge based on RDM, instead
of also considering knowledge resulting from NDM decisions. Second, documentation is typically
focused on particular development activities, instead of integrating decision knowledge across related
activities. An overview of these practice problems is given in Figure 1.2. In the upper half, it depicts
three developers. Each of them is concerned with a different development activity. In addition,
all developers apply individual mixes of decision making strategies. For instance, the developer

5

CHAPTER 1. INTRODUCTION

performing the implementation mostly relies on NDM, whereas the designer mixes both, RDM and
NDM. This illustrates that documentation support needs to address decision knowledge resulting
from mixed decision making strategies containing both RDM and NDM elements. Over time
and during subsequent development activities, developers contribute various decision knowledge
elements as a result of their decision making process. This is shown in the lower half of the figure
for all considered development activities. As an example, consider an alternative proposed by the
requirements engineer in development iteration 2. This alternative is further refined by an implication
identified by the designer in development iteration 3. Thus, documentation support also needs to
consider that decision knowledge results from an incremental decision making process, which
intertwines related development activities.

Uses mostly RDM Uses RDM/NDMmix Uses mostly NDM

Requirements
Engineering

Design Implementation Activity

Applied
Strategy

Decision
Knowledge

Iteration 1

Iteration 2

Iteration 3

Issue Assumption

ClaimAlternative

Implication Argument

Practice Problem 1:
Different developers use
different DM strategies

Practice Problem 2:
Related decision knowledge emerges
in related development activities

Legend: Enriched by

Figure 1.2: Practice Problems Addressed in this Thesis

The practice problems addressed by this thesis are introduced in more detail in the following para-
graphs. For each practice problem, a corresponding research goal is described with several open
questions. This thesis will contribute findings for these open questions to the respective research
goal. Based on these findings, solution approaches will be proposed in order to address the practice
problems.

Practice Problem 1: Different Developers Use Different DM Strategies
The origin of the first practice problem is that both RDM and NDM strategies may be applied by
developers in practice [Zannier, Chiasson, and Maurer 2007; Zannier and Maurer 2006]. According
to the study findings of Zannier, Chiasson, and Maurer, developers may even mix both strategies

6

1.1. MOTIVATION AND RESEARCH GOALS

within the same decision. This impacts the methods and tools required for supporting decision
documentation, as the applied decision making strategy should be reflected within the knowledge
management enabled by decision documentation [Maule 2010]. However, Ali Babar, Boer, et al.
discuss a gap between the intentional codification of decision knowledge in research approaches and
the unintentional personalization of decision knowledge in practice [Ali Babar, Boer, et al. 2007].
On the one hand, most documentation approaches for decisions in research rely on intentional
and structured documentation of knowledge by developers. For instance, Davide Falessi, Cantone,
Kazman, et al. have claimed that developers may only use RDM for design decisions, as RDM is
required to make reasonable decisions within the engineering discipline of software design [Davide
Falessi, Cantone, Kazman, et al. 2011]. Thus, research approaches typically presume developers to
apply an exhaustive rational decision making strategy. On the other hand, in practice, developers
also apply NDM strategies, or mix both RDM and NDM [Zannier, Chiasson, and Maurer 2007].
Then, they can use their personal experiences and individual knowledge for making decisions. This
allows for making efficient decisions considering the real-world time and resource restrictions of
development projects [Klein 2008]. However, such decision making and its related personalized
knowledge typically are not taken into account by current decision documentation approaches, as
these approaches focus on RDM strategies.

Research Goal 1: Investigate Decision Documentation for Mixed DM Strategies
Recent qualitative studies (cf. [Tang and Vliet 2015; Tang, Aleti, et al. 2010; Zannier, Chiasson,
and Maurer 2007]) indicate that NDM strategies significantly contribute to the decision making of
developers in practice. But it is currently unknown, howNDMingeneral and amix of decisionmaking
strategies in particular should be supported during decision documentation [Zannier, Chiasson, and
Maurer 2007]. Thus, the existing qualitative studies need to be complemented with quantitative
findings on the the mix of RDM and NDM in practice. First, it is not clear which quantity of NDM
is actually used and documented by developers. Second, it is unknown which strategy elements of
NDM are reflected by developers within their decision documentation, and how these elements
are related to RDM strategy elements. Third, it is unknown whether specific distributions for the
percentage of NDM exist according to specific kinds of decision situations. Findings on these open
questions will provide further insights on the overall percentages of DM strategies documented,
and on the distribution of particular strategy elements documented for decisions. Based on these
quantitative insights, documentation support for decisions can be improved in order to reflect NDM
within decision documentation appropriately. In detail, the quantity of NDM used and documented
is needed to ground and specify a flexible decision documentation, which considers both RDM
and NDM. In addition, suitable documentation structures and an appropriate support for NDM in
relation to RDM can be identified according to the distribution of their strategy elements. Moreover,
knowledge about characteristics of this distribution is required to determine any specific challenges
and topics decision documentation should address to increase its value for developers. All these

7

CHAPTER 1. INTRODUCTION

open questions contribute to the first research goal addressed by this thesis: Investigate documentation
support for decision knowledge resulting from the mixed use of NDM and RDM.

Practice Problem 2: Decision Knowledge Emerges over Time
The second practice problem concerns the missing support for decision documentation across
different development activities during the software engineering process. Current approaches for
decision documentation typically focus on one development activity within this process. Most
existing approaches primarily address knowledge on design decisions (cf. the studies of [Tang, Ali
Babar, et al. 2006] and [Ali Babar, Boer, et al. 2007]). These approaches consider decisions and results
of other development activities mainly by providing relations between them. For instance, links are
provided for connecting design decisions with related requirements [Jansen and Bosch 2005; Capilla,
Nava, Pérez, et al. 2006; Tang, Jin, and Han 2007] or code files [Canfora, Casazza, and De Lucia 2000;
Burge and Brown 2008], or specific textual attributes are given to describe related knowledge [Tyree
and Akerman 2005; Capilla, Nava, and Duenas 2007]. In addition, a few approaches also focus on
decision documentation during requirements engineering [Ngo and Ruhe 2005; Aurum, Wohlin, and
Porter 2006] or implementation [Lougher and Rodden 1993].

However, decision making during software engineering is a collaborative and incremental process,
which spans across the individual development activities of requirements engineering, design and
implementation. For instance, developers work together during all these activities to determine and
realize design decisions on architecturally significant requirements [Nuseibeh 2001]. Then, a decision
originating from requirements can be also subject to refinements and adaptions within design and
implementation. An example for such a process is depicted in Figure 1.2. Here, an alternative is
contributed to a given decision problem in the second development iteration during requirements
engineering. This alternative is further explained by an argument identified during design in the third
development iteration. In consequence, the involved developers need to access and edit all decision
knowledge concerning a decision within different activities [Tang, Aleti, et al. 2010]. In particular,
this is important to support developers working at different locations [Rekha and Muccini 2014].
As a consequence, not all decision knowledge is available at once, as developers are collaborating
during decision making with multiple discussions and actions. Also, previous decisions may be
revised by developers in follow-up development iterations [Ko and Chilana 2011]. Furthermore,
different developers may stick to different decision making strategies, so that the available decision
knowledge varies depending on the applied strategy. Then, there is no complete set of decision
knowledge from the beginning, but the knowledge grows over time. In consequence, it is important
to bundle all decision knowledge in a knowledge model combining different development activities
and aggregating incrementally growing knowledge for each decision from all available sources.

8

1.2. RESEARCH METHODOLOGY

Research Goal 2: Investigate Decision Documentation during Different Development Ac-
tivities
As many current approaches already address decision documentation during development activities,
it is known in principle how decisions can be documented for RDM appropriately. However, it
is complicated to address the aforementioned documentation needs originating from a collabora-
tive and incremental decision making process within only one activity, such as design [Tang, Aleti,
et al. 2010]. Thus, it is even more challenging to provide documentation support across different
development activities. First, it is not clear which knowledge elements should be contained in a
core set for documentation during requirements engineering, design and implementation. This
insight is required to create a collaborative knowledge model for decisions integrating the knowl-
edge documentation of these activities. Second, it needs to be investigated which specific capturing
mechanisms for decision knowledge should be provided during each development activity. Insights
on the integration and adaption of these capturing mechanisms are necessary to capture decision
knowledge incrementally within each activity. These two open questions contribute to the second
research goal addressed by this thesis: How to support the integrated decision knowledge documentation

during closely related development activities?

1.2 Research Methodology

The overall goal of this thesis is to enhance the documentation of decision knowledge during software
engineering activities to increase the amount of captured and accessible decision knowledge within
software development projects. To achieve this goal, it is necessary to investigate the described
research goals with their current open questions. Based on the findings from these investigations,
an integrated knowledge model for decision knowledge and its respective tool support are created.
As research methodology, this thesis applies a design science approach. In general, design science is
concerned with “design and investigation of artifacts in context” [Wieringa 2014, p. 3]. Therefore,
engineering cycles are performed to investigate and treat a given design problem, so that the treatment
can be implemented in practice [Wieringa 2014]. The actual investigation, creation, and validation of
the treatment is performed in design cycles. The entire process is depicted in Figure 1.3. It should
be noted that design science research only addresses design cycles, as the implementation of the
treatment is a technology transfer to practice [Wieringa 2014].

Problem Investigation
The first action during the engineering and design cycle is to investigate the design problem. Such
problems “call for a change in the real world” [Wieringa 2014, p. 4], and are addressed by design
solutions. They may result in multiple knowledge questions, which ask for knowledge about specific

9

CHAPTER 1. INTRODUCTION

Problem Investigation
Phenomena, causes, mechanisms, reasons

Treatment Design
Requirements, available treatments

Treatment Validation
Check for satisfied requirements

Treatment Implementation
Technology transfer

Engineering
Cycle

Design
Cycle

Figure 1.3: Overview of Engineering and Design Cycle according to [Wieringa 2014]

phenoma, causes, mechanisms, or reasons within the real world [Wieringa 2014]. For this thesis, the
aforementioned overall goal describes the design problem to be addressed within the engineering
cycle. Two open questions were described in Section 1.1, which represent important knowledge
questions regarding this design problem. They are investigated by performing an observational case
study on decision making behavior of developers in practice and a survey as a literature review on
existing literature regarding decision documentation approaches.

Treatment Design
The treatment design represents the development and refinement of one or more solutions to the
addressed design problem. In detail, currently available treatments have to be analyzed, and require-
ments for the newly design need to be specified [Wieringa 2014]. Currently available approaches
for decision documentation are examined and compared within the literature review. Both the
observational case study and the literature review are then used to identify and specify requirements
for the decision documentation approach developed in this thesis. When creating the documentation
approach and its tool support during the design cycle, the contribution of each requirement to the
overall goals and its corresponding research goals is highlighted.

Treatment Validation
The developed solution is evaluated during treatment validation. In particular, the actual effect of the
solution and its capability to satisfy the specified requirements need to be assessed [Wieringa 2014].
In this thesis, the treatment validation is performed by applying the documentation approach and its
tool support in individual single-case experiments. Whereas this experiment is performed by using
the documentation with practice data, the tool support is demonstrated within a complex example
case.

10

1.3. SOLUTION APPROACH AND CONTRIBUTIONS

Treatment Implementation
Finally, if the developed solution has been found to be a suitable treatment for the addressed re-
quirements, it is implemented in practice [Wieringa 2014]. This implementation typically requires a
technology transfer from research projects to the market. Thus, it is not part of this thesis as a design
science research project [Wieringa 2014].

1.3 Solution Approach and Contributions

Towards a solution of the overall goal, the thesis provides three fundamental contributions according
to the described research methodology:

Studies on Open Questions
The thesis comprises two different studies in order to investigate the open questions described for
each research goal. Therefore, each study refines one research goal to a more concrete goal for the
respective study outcome. Then, both studies investigate different research questions, which address
and further refine the open questions given in this introduction. The first study is an empirical
investigation of documented decision making strategy elements in open-source software. Therefore,
comments on 260 issue reports of the Firefox project are evaluated for decision documentation. The
results of this study provide insights on howdevelopers document different decisionmaking strategies
in practice. In particular, the documentation of NDMwithin the issue comments for different issue
types is investigated. Thereby, the study addresses the open questions for research goal 1. The second
study investigates current approaches for decision documentation during requirements engineering,
design and implementation given in the literature. Therefore, approaches are investigated, which
are concerned with capture, linkage and usage support for documented decision knowledge. The
findings of this study describe how decision knowledge is currently documented during different
development activities. The knowledge models and functionality of the related tool support are
compared for similarities and differences. In particular, the knowledge elements and capturing
mechanisms for decision knowledge of each approach are investigated. Thereby, the study addresses
the open questions for research goal 2. Based on the investigation results of both studies, requirements
are derived for the decision documentation model and its related tool support.

DocumentationModel for Decisions
In this thesis, a documentation model is presented, which integrates decision documentation for
multiple related development activities. The model is build upon the insights and results of the
two performed studies and the resulting requirements. It integrates findings and documentation
structures of previous documentation approaches, such as QOC [MacLean et al. 1991] and DRL [Lee
1991]. The model combines selected knowledge elements from current approaches in a flexible

11

CHAPTER 1. INTRODUCTION

manner, so that an expressive model is created, which avoids static and prescriptive structures. In
detail, it supports documentation of RDM as well as of NDM in any mixed way. In addition, the
model allows for adding knowledge elements incrementally by different developers in a collaborative
manner. Therefore, the model provides different levels of knowledge element abstraction, so that
given knowledge can be refined or extended by developers. Moreover, knowledge elements in the
model can be linked in various ways to other knowledge elements and to development artifacts
related to the knowledge element. Thus, findings of the studies are reflected and used to improve the
support for decision documentation.

Tool Support for Decision DocumentationModel
The thesis also contributes to the improvement of decision documentation in practice by providing
an individual tool support for the presented documentation model. The tool support not only
makes model instances editable, but also allows for capturing decision knowledge semi-automatically
during different development activities, because the tool support is integrated with Eclipse. It enables
developers to import decision knowledge during requirements engineering. Therefore, knowledge
from a security analysis of documented use cases can be imported and used to propose security-
related decision knowledge. Furthermore, decisions can be captured during UML design with direct
links to any related UML entities. Moreover, developers are enabled to document decisions during
implementation by adding annotations containing the decision knowledge to their code. These
features address the findings for research goal 2. Thereby, they help developers to document their
decision knowledge as soon as it emerges during the respective development activity.

1.4 Structure of the Thesis

The structure of the thesis is depicted in Figure 1.4. The first part of this work, the Preliminaries,
consists of the thesis introduction and a description of fundamentals on decision making, decision
knowledge and the addressed development activities in Chapter 2. The next part is a detailed Problem
Analysis of the open questions for each research goal. First, this analysis is performed by studying the
documented decision making as the state of practice. The related case study is described in Chapter 3.
Second, the scientific state of the art for decision documentation is investigated in a literature review
on current documentation approaches for decision knowledge in Chapter 4. Part III presents the
Solution Approach of this thesis. Based on the problem analysis findings, the documentation model
for decision knowledge is explained in Chapter 5. Next, the design and implementation of the tool
support for the documentation model is given in Chapter 6. Part IV contains the Evaluation of the
documentation model and its tool support. In particular, the feasibility of the model to support
decision documentation is assessed in an empirical study presented in Chapter 7. Furthermore, the
tool support is evaluated in a case study described in Chapter 8. Finally, the thesis is concluded with

12

1.5. PREVIOUS PUBLICATIONS

Part I: Preliminaries

Part II: Problem
Analysis

Part III: Solution Approach

Part IV: Evaluation

Part V: Summary

Chapter 1: Introduction
Practice problems, goals, research method, and contributions

Chapter 2: Background
Definition of terms and context

Chapter 3: State of Practice
Investigation of documented decision making in practice

Chapter 4: State of the Art
Investigation of decision documentation in literature

Chapter 5: Documentation Approach
Incremental and strategy-independant model

Chapter 7: Evaluation of Documentation Approach
Approach application on practice data

Chapter 6: Tool Support DecDoc
Eclipse-based documentation support

Chapter 8: Evaluation of Tool Support
Demonstration of DecDoc with complex example

Chapter 9: Conclusion
Limitations and future work

Pr
ob
le
m
In
ve
st
ig
at
io
n

Tr
ea
tm

en
tD

es
ig
n

Tr
ea
tm

en
t

Va
lid

at
io
n

Figure 1.4: Overview of Chapters in this Thesis

a presentation of its limitations and ideas for future work in Chapter 9.

1.5 Previous Publications

Parts of the studies, formal concepts and implementation results for the tool support described in
this thesis were published in scientific venues beforehand. This section gives an overview in which
publications these parts can be found. The results from the state of practice (cf. Chapter 3) and further
fundamentals on decision making and decision knowledge (cf. Chapter 2) were published in:

Tom-Michael Hesse, Veronika Lerche, Marcus Seiler, Konstantin Knoess, and Barbara Paech
(2016). “Documented decision-making strategies and decision knowledge in open source
projects: An empirical study on Firefox issue reports”. In: Information and Software Technology
79, pp. 36–51

A previous version of the literature review from the scientific state of the art and parts of the
background related to decision making (cf. Chapter 4) are given in:

Barbara Paech, Alexander Delater, and Tom-Michael Hesse (2014). “Supporting Project Man-

13

CHAPTER 1. INTRODUCTION

agement Through Integrated Management of System and Project Knowledge”. In: Software
Project Management in a Changing World. Ed. by Guenther Ruhe and Claes Wohlin. Berlin,
Heidelberg: Springer, pp. 157–192

An early version of the documentation model for decisions (cf. Chapter 5) has been described in:

Tom-Michael Hesse and Barbara Paech (2013). “Supporting the Collaborative Development
of Requirements and Architecture Documentation”. In: Proceedings of the 3rd International
Workshop on the Twin Peaks of Requirements and Architecture (TwinPeaks’13). IEEE, pp. 22–26

The conceptual model for importing knowledge on security-related decisions from use case de-
scriptions (cf. Chapter 5) and ideas for supporting this import within the DecDoc tool support
(cf. Chapter 6) were published in:

Tom-Michael Hesse, Stefan Gaertner, Tobias Roehm, Barbara Paech, Kurt Schneider, and
Bernd Bruegge (2014). “Semiautomatic security requirements engineering and evolution using
decision documentation, heuristics, and user monitoring”. In: Proceedings of the 1st International
Workshop on Evolving Security and Privacy Requirements Engineering (ESPRE). IEEE, pp. 1–6

The conceptual model for annotating decision knowledge within code (cf. Chapter 5) as well as its
implementation within the DecDoc tool support (cf. Chapter 6) are given in:

Tom-Michael Hesse, Arthur Kuehlwein, Barbara Paech, Tobias Roehm, and Bernd Bruegge
(2015). “Documenting Implementation Decisions with Code Annotations”. In: Proceedings of the
27th International Conference on Software Engineering and Knowledge Engineering. KSI Research,
pp. 152–157

The evaluation results of DecDoc with decision data from different industry design sessions (cf. Chap-
ter 7) were presented in:

Tom-Michael Hesse and Barbara Paech (2016). “Documenting Relations Between Require-
ments and Design Decisions: A Case Study on Design Session Transcripts”. In: Requirements
Engineering: Foundation for Software Quality: 22nd International Working Conference, REFSQ 2016,

Gothenburg, Sweden, March 14-17, 2016, Proceedings. Ed. by Maya Daneva and Oscar Pastor.
Cham: Springer International Publishing, pp. 188–204

In addition, decision data of an architectural logbook was analyzed using the documentation model
to evaluate it (cf. Chapter 7). The results were reported in:

Tom-Michael Hesse, Christian Kuecherer, and Barbara Paech (2015). “Experiences with Sup-

14

1.5. PREVIOUS PUBLICATIONS

porting the Distributed Responsibility for Requirements through Decision Documentation”.
In: Softwaretechnik-Trends 35.1, pp. 14–15

Finally, a brief overview of the architecture and functionality of DecDoc (cf. Chapter 6) and its
evaluation (cf. Chapter 8) was presented in:

Tom-Michael Hesse, Arthur Kuehlwein, and Tobias Roehm (2016). “DecDoc: A Tool for Doc-
umenting Design Decisions Collaboratively and Incrementally”. In: 2016 1st International

Workshop on Decision Making in Software ARCHitecture (MARCH). IEEE, pp. 30–37

15

2
Background

In the following sections, terms and topics are introduced which are fundamental for this thesis.
First, decision problems are defined, as they form the context for decision making strategies, decision
knowledge and different kinds of decisions. Second, the development activities addressed by this thesis
are described to introduce their typical activities, tools, and decisions. Third, different kinds of
decision making strategies with corresponding example strategies are presented. Finally, the term
decision knowledge is described in more detail with fundamentals on documentation and management
of decision knowledge.

2.1 Decision Problems

Decision making is a problem solving activity for developers, as developers explore and structure
the underlying decision problem in order to make a decision. Thereby, they acquire and evaluate
knowledge on the decisions’ context and its potential solutions [Zannier, Chiasson, and Maurer
2007]. Thus, decision problems influence the applied decision making strategies. Moreover, they
are the origin for all decision knowledge, and drive the kind of decision which is taken to solve the
decision problem. Decision problems consist of a set of different options and criteria to evaluate these
options [Ngo and Ruhe 2005]. Two kinds of decision problems can be distinguished: Well-structured

and ill-structured problems [Zannier, Chiasson, and Maurer 2007]. Problems are well-structured if
developers are aware of criteria indicating appropriate solutions for the given problem. In this case,
developers can search for viable solution options in a structured andmanagedway using these criteria.
Moreover, different solutions become comparable, as their outcome typically can be evaluated as
true or false [Paech, Delater, and Hesse 2014]. According to these attributes, a chess game is a
typical example of well-structured decision problem. On the contrary, problems are ill-structured,

17

CHAPTER 2. BACKGROUND

if criteria for searching and evaluating solution options are not transparent to the developers and
need to be revealed. Such problems are closely related to wicked problems, for which specifying the
problem appropriately is a major part of solving the problem [Zannier, Chiasson, and Maurer 2007].
Specifying these problems is difficult, as there is no stopping rule for evaluating solutions that could
be formalized [Hesse, Lerche, et al. 2016]. In addition, solution options cannot be evaluated as true or
false, but only as good or bad [Paech, Delater, and Hesse 2014]. According to the described properties,
the architecture and design of a building is an example for an ill-structured problem.

Due to their characteristics, each kind of decision problem is related to the decision making strategy
applied by developers: whereas well-structured problems promote the usage of RDM [Zannier,
Chiasson, and Maurer 2007], ill-structured problems are often addressed by using NDM [Klein
and Klinger 1991]. However, in practice, developers also mix and merge both RDM and NDM for
the same decision problem [Zannier, Chiasson, and Maurer 2007]. An overview of the described
attributes of both kinds of decision problems is given in Table 2.1.

Characteristic Well-structured Problems Ill-structured Problems

Criteria for Solution Evaluation Transparent Unrevealed
Process of Problem-solving Structured, managed Unstructured
Evaluation of Solutions as True or false Good or bad
Related Decision making Strategy RDM NDM

Table 2.1: Characteristics of Decision Problems

2.2 Development Activities

Before decision making strategies and decision knowledge are introduced in detail, a brief overview
of the addressed software development activities, their software development tools, and related poten-
tial decision problems is given. In general, software development activities (abbreviated as development
activities) are “technical, collaborative, and managerial activities with the overall goal of specifying,
designing, implementing, and testing a software system” [Sommerville 2010, p. 36]. Whereas the
organization of these activities and their actual course of actions may vary according to the process
model, project, and the people involved, their goals and methods are similar [Sommerville 2010].
During each development activity, developers typically use different software development tools (ab-
breviated as development tools), which “are programs that are used to support software engineering
process activities” [Sommerville 2010, p. 37]. Such tools may be compilers, debuggers, editors for
textual and graphical artifacts, or interactive development environments (IDEs) [Sommerville 2010].

18

2.2. DEVELOPMENT ACTIVITIES

This thesis aims to support decision documentation during the development activities requirements
engineering, design, and implementation in general. These activities are fundamental to both, classic
development process models, such as the waterfall model, as well as incremental process models,
like SCRUM [Sommerville 2010]. Decision documentation during the further activities of software
validation and evolution is not addressed primarily. First, software validation typically evaluates
results of previous development activities. Therefore, decisions made during validation typically
do not shape the system under construction, but organize the type, content, and sequence of tests.
Furthermore, in case validation decisions impact the system, they are likely to require further require-
ments engineering, design, or implementation to be carried out by the developers. Then, validation
decisions will be captured there. Second, software evolution resembles a continuous process of
software development in multiple iterations, rather than a single development activity. Then, again,
evolution decisions will be captured within the addressed development activities. However, such
evolution decisions may require to adapt or even withdraw decisions previously made.

Requirements Engineering
During requirements engineering (abbreviated as RE), developers are concerned with “understanding
and defining what services are required from the system and identifying the constraints on the
system’s operation and development” [Sommerville 2010, p. 36]. Requirements of the stakeholders
and system requirements need to be elicited, specified, validated, andmanaged. An important result of
this activity is an agreed requirements document with high-level statements for users and customers,
as well as a detailed system specification to guide the further development activities [Sommerville
2010]. Different methods and tools exist to specify the requirements within this document. For
instance, use cases are often used to document the step-wise “interactions between the system and its
users or other systems” [Sommerville 2010, p. 107], including the system functions to respond to
user actions. Use cases may be specified in textual templates or as graphical models. For instance,
such models can be created in use case diagrams using the Unified Modeling Language (abbreviated as
UML) [Sommerville 2010]. Documentation of requirements is supported by various tools, such as
IBM Rational DOORS [IBM Rational DOORS 2017] or Atlassian JIRA [Atlassian JIRA 2017]. Besides
documenting requirements, these tools typically also support to version the requirements and link
requirements to other development artifacts. Decision problems related to RE results typically
result from identifying and defining architecturally significant requirements, such as core features
and quality attributes of the system [Chen, Ali Babar, and Nuseibeh 2013]. An example addressed
in this thesis are requirements related to system security [Hesse, Gaertner, et al. 2014]. However,
decision problems may also be related to the RE process, such as the selection of the appropriate RE
method [Jiang and Eberlein 2003].

Design
When developers design a software, they create and refine “a description of the structure of the

19

CHAPTER 2. BACKGROUND

software to be implemented, the data models and structures used by the system, the interfaces
between system components and, sometimes, the algorithms used” [Sommerville 2010, p. 38]. The
actual design actions vary according to type of system being developed. However, two general actions
can be distinguished. First, developers create a coarse-grained architectural design to identify the
overall system structures with principal components and their respective relationships [Sommerville
2010]. Second, a more fine-grained design details the interfaces, components and data structures for
each principal component [Sommerville 2010]. Typically, such design actions are documented in
UMLdiagrams, which can be created by specialized editors for theUMLnotation. Important decision
problems during design primarily concern architectural design, such as decisions on the system’s
principal structure [Jansen and Bosch 2005], or the engineering of software product lines [Capilla
and Babar 2008]. However, also more fine-grained decision problems may arise. Examples are the
detailed design of components and classeswith their attributes, methods, and relations [Davide Falessi,
Cantone, and Becker 2006], and the selection of appropriate design patterns and styles for these
tasks [Ali Babar and Gorton 2007]. Decisions on the selection of such patterns and styles concern the
design process. They can bemanaged according to sophisticated decision frameworks [Davide Falessi,
Cantone, Kazman, et al. 2011].

Implementation
Developers are concerned with the implementation of the software when they create code to realize
the system design [Sommerville 2010]. This activity highly depends on the personal experience and
preferences of developers, so there is no commonor general process for implementation [Sommerville
2010]. For instance, developers may start implementing those components first which are best
understood. Other developers might start with coding unfamiliar objects, because they can better
estimate the effort necessary for the known components [Sommerville 2010]. However, developers
typically use IDEs to develop code and implement object-oriented designs. A prominent example for
such an IDE is Eclipse [Eclipse Project 2016], which is very popular support tool for developing Java
programs [Geer 2005]. Furthermore, code is usually stored in version control systems integrated with
an IDE, such as SVN [Apache Subversion 2016] or git [Git 2016]. Then, each developer creates individual
code, and merges and shares the implementation results with the team. Also, issue tracking systems
can be used to document and manage knowledge on ongoing tasks and their progress during the
implementation process [Ko and Chilana 2011]. Furthermore, developers may document important
knowledge directly within their code using annotations, such as Javadoc [Javadoc Documentation by
Oracle 2016]. With these annotations, developers can create structured comments, which contain
information about the annotated code artifacts. An example is the textual explanation for parameters
of a given function. Although there is no standardized overall process for implementation, still many
important decisions are made during this activity. For instance, developers have to decide on the
optimal implementation of an algorithm, or on how to adapt a given function to address changed
requirements [Lougher and Rodden 1993].

20

2.3. DECISION MAKING STRATEGIES

2.3 Decision Making Strategies

In general, decision making strategies describe how a solution for a given decision problem is
determined [Paech, Delater, and Hesse 2014]. Rational decision making and naturalistic decision making
can be distinguished as two different kinds of decisionmaking strategies [Lipshitz et al. 2001; Zannier,
Chiasson, and Maurer 2007]. This means that both terms subsume different concrete approaches
and theories of decision making.

Rational decision making (RDM)
The origin of most RDM approaches is the development of social sciences in the 1950s, when re-
search on decision making significantly increased [Maule 2010]. Research on RDM dominated the
overall investigation of decision making for decades [Lipshitz et al. 2001]. According to Lipshitz et al.,
typical approaches for RDM are classical decision making, behavioral decision theory, judgement
and decision making, and organizational decision making. All RDM approaches share the impor-
tant assumption that humans are rational decision makers who search systematically for relevant
information and evaluate each solution option with regard to this information [Hesse, Lerche, et al.
2016; Jonassen 2012]. Based on this assumption, the RDM strategies have three strategy elements
in common [Zannier, Chiasson, and Maurer 2007]. First, RDM strategies aim to select the optimal
solution by intentional choice from a set of available alternatives. Thus, the goal of RDM is optimizing
the solution outcome in relation to the given criteria [Zannier, Chiasson, and Maurer 2007]. Second,
RDM is concerned with processing and comparing the prerequisites for and outcomes of different
alternatives. Therefore, a criterion evaluation for all given alternatives and criteria is performed in
order to determine the optimal solution [Zannier, Chiasson, andMaurer 2007]. Third, RDM typically
relies on a formalism to develop context-free and abstract representations of a decision [Paech,
Delater, and Hesse 2014]. Thereby, RDM approaches aim to achieve a comprehensive decision
making process. This means that determining the optimal solution should happen intentionally and
analytically [Lipshitz et al. 2001]. Thus, the solution selection within RDM is a process of consequential
choice.

A prominent example of an RDM strategy is the Analytic Hierarchy Process (AHP) by Saaty. Its core
steps are depicted in Figure 2.1. First, an analysis of the decision problem and the required kind
knowledge to solve the decision problem takes place. Then, the goal is defined, which needs to be
achieved in order to solve the decision problem. This goal is broken down into quantifiable objectives,
which serve as criteria to identify and evaluate all potential alternatives. After all knowledge is
acquired, comparison matrices are created for the criteria, and all alternatives are evaluated pairwise
for each criterion. Finally, overall priorities are calculated for each alternative based on all of its
evaluation results. The alternative with the highest priority represents the optimal solution and

21

CHAPTER 2. BACKGROUND

Define the
Decision Problem

Define the Kind of
Required Knowledge

Define the
Decision Goal

Identify all
Objectives (Criteria)

Identify all Solution
Options (Alternatives)

Create Comparison
Matrices for all Criteria

Compare Alternatives
Pairwise for all Criteria

Calculate overall Priorities
of Solution Options

Step 1: Problem Definition

Step 2: Knowledge Acquisition

Step 3: Knowledge Processing

Step 4: Solution Identification

Legend: Followed by

Figure 2.1: The Analytic Hierarchy Process according to [Saaty 2008]

should be chosen according to AHP [Saaty 2008].

It should be noted, that for RDM both the addressed decision problem and the related decision maker
need to fulfill several prerequisites. First, the decision maker requires accessible knowledge about all
relevant solution options, their outcomes and the probabilities of these outcomes [Zannier, Chiasson,
and Maurer 2007]. In addition, decision makers are expected to actually strive for selecting the
optimal solution to a given decision problem [Hesse, Lerche, et al. 2016]. Moreover, it is important
that there are no time limitations for acquiring all relevant knowledge and performing the evaluation
of alternatives [Zannier, Chiasson, and Maurer 2007]. As these assumptions clearly restrict the
applicability of RDM approaches in practice, doubts were raised by researchers concerning RDM.
Most importantly, Tversky and Kahneman investigated different real-world decision problems in the
1970s. Their study showed that decision makers often fail to make rational decisions as prescribed by
RDM approaches [Hesse, Lerche, et al. 2016; Tversky and Kahneman 1974]. Instead of performing
a thorough evaluation of solution options, decision makers used heuristics and shortcuts for their
decisions. Based on this finding, Kahneman developed the “Two Systems” approach. Here, decision
makers may vary between rational decision making as “System 1” and a more intuitive decision
making with heuristics and biases as “System 2” [Kahneman 2011]. This approach was investigated
in detail for decisions during software design in recent studies [Razavian et al. 2016; Tang, Aleti, et al.
2010].

In general, three fundamental concerns emerged towards RDM. First, as described by Tversky and

22

2.3. DECISION MAKING STRATEGIES

Kahneman, humans struggle to reason as prescribed by RDM due to their limited cognition and
memory [Maule 2010]. Instead, they are often influenced by biases and heuristics [Tversky and
Kahneman 1974]. Second, decision makers often do not aim to make the optimal decision, but
instead strive to find and select a satisfying solution [Klein 2008; Zannier, Chiasson, and Maurer
2007]. Then, they need less cognitive energy for their decision, as a satisfactory solution typically
can be determined easier than the optimal one [Jonassen 2012]. Third, Klein, Calderwood, and
Clinton-Cirocco criticize that RDM does not contribute to the understanding of decision making
in real-world situations, because RDM is typically investigated under laboratory settings [Klein,
Calderwood, and Clinton-Cirocco 2010]. These settings are standardized, and, therefore, cannot
reflect contextual and situational factors of individual decisions. Thus, these decisions are less likely
to create an actual impact on study participants [Hesse, Lerche, et al. 2016].

Naturalistic decision making (NDM)
The research on NDM originates from an initial conference in 1989 on the shortcomings of RDM
research [Lipshitz et al. 2001]. In particular, the difficulties with applying RDM approaches on
real-world decision situations were discussed. Thus, an important aim of NDM research is to address
the criticism concerning RDMwithin its approaches. This is reflected in the definition of Klein, that
natural decision making is the commitment of a decision maker to a course of action with plausible
alternatives, even if these alternatives were not identified or compared [Klein 2008]. Like for RDM,
a variety of different decision making approaches and theories form the term NDM. Most NDM
approaches are derived from findings of field studies, such as the observation of decision problems in
an emergency ormilitary context [Lipshitz et al. 2001]. Examples are the recognition-primed decision
model, decision making in natural contexts, “Image Theory”, decision making as argument-driven
action, and explanation-based decision making [Orasanu and Connolly 1993].

Also NDM strategies share similar strategy elements. The goal of the decision making process is
shifted from identifying the optimal solution to determining a sufficient one [Hesse, Lerche, et al.
2016; Klein 2008]. To do so, decision makers use their experience, heuristics, and their personal
knowledge [Zannier, Chiasson, andMaurer 2007]. Thus, it is unlikely that all existing solution options
are identified and compared. Instead, typically a singular evaluation of a past decision situation and
its related solution is performed. Hereby, the former situation is assessed and matched to the current
decision situation by its characteristics [Klein 2008]. To enable decision makers to match situations,
NDM approaches also aim to describe the prerequisites and rules for matching different decision
situations. Therefore, also informal models with incomplete information on the decision problem
are accepted [Paech, Delater, and Hesse 2014].

The recognition-primed decision model (RPD) by Klein is a prominent NDM strategy example. Its
steps are depicted in Figure 2.2. The focus of the RDMmodel is to describe how decisionmakersmake

23

CHAPTER 2. BACKGROUND

use of their experience within decision making. To do so, the current decision situation is assessed
for any pattern, which can be matched to previous decisions [Klein 2008]. Then, a mental simulation
is performed whether the formerly applied solution can be applied also for the current decision.
In particular, previous solutions can be modified to fit to the current situation in case the mental
simulation shows that adaptions are necessary. Then, an incremental process of solution refinement
and mental simulation is performed. However, the mental simulation may be omitted if time pressure
or other resource limitations force the decision maker to take a decision immediately [Klein 2008].
Obviously, the process of pattern matching implies that a decision is made without searching for
all potential solution options, as the decision makers is likely to choose the first working solution,
which passes the situation assessment and pattern matching as well as the mental simulation [Klein
2008]. Thus, RPD promotes decisions with a sufficient solution.

Experience the Situation in a Changing Context

Is the Situation
Familiar?

Seek More
Information
Reassess
Situation

Are Expectancies
Violated?

Recognition has Four Aspects

Plausible
Goals

Relevant
Cues

Expec-
tancies

Actions
1..n

Mental Simulation
of Action (n)

Will It Work?Modify

Implement

No

Yes

Yes

No

Yes

Yes, but
No

Figure 2.2: The Recognition-primed Decision Model according to [Klein 2008]

The applicability of NDM is grounded on several assumptions towards decision makers and decision
problems [Orasanu and Connolly 1993; Klein and Klinger 1991]. Most importantly, NDM expects
humans to act in real-time to solve a decision problem under dynamically changing conditions.
These conditions may include uncertainty, the possibility of contradictory goals, time stress, and
potentially far-reaching consequences of the decision. Thus, decision makers typically are required

24

2.4. DECISION KNOWLEDGE

to be experienced or even experts for the considered kind of decision problem [Lipshitz et al. 2001].
With respect to these assumptions, Gore et al. criticized NDM for being based mainly on qualitative
field studies. Therefore, NDM approaches highly depend on the setup andmethodology of the studies
they are built on [Gore et al. 2006].

Comparison of RDM and NDM
The different strategy elements of RDM and NDM are summarized in Table 2.2. If identified in a
decision making process, these elements indicate that activities of decision makers belong to the
respective kind of strategy. RDM andNDM strategies differ according to the selectionmechanism for
and the promoted quality of solutions, and the process steps required for this selection. Whereas RDM
enforces the selection of the optimal solution according to the identified criteria, NDM promotes the
application of a sufficient solution according to the personal knowledge of the decision maker and
experiences from previous decisions. The term sufficientmeans that the solution is applicable and
working for the current decision problem. Then, only a singular evaluation of this solution needs
to be performed. These decision making elements are the basis for the coding of decision making
elements in the study described in Chapter 3.

Kind of Strategy Element RDM NDM

Selection Mechanism for Solution Choice for Optimal Solution Match for Sufficient Solution
Problem Exploration Identification of all relevant criteria and

solution options, evaluation of all op-
tions according to these criteria

Assessment of and patternmatching for
current and past decision situations

Solution Identification Consequential choice based on evalua-
tion results

Evaluation of a singular solution, e.g. by
mental simulation

Table 2.2: Comparison of Strategy Elements for RDM and NDM

2.4 Decision Knowledge

All knowledge related to a decision problem is referred to as Decision Knowledge (abbreviated as
DK). Smaller parts of decision knowledge concerning a particular aspect of a decision are called
Decision Knowledge Elements (abbreviated asDKE). Knowledge on a concrete decision problem consists
of various DKE. Fundamental sets of DKE forming the overall decision knowledge on a decision
are depicted in Figure 2.3. Most basically, decision knowledge contains elements on the problem
description [Ngo and Ruhe 2005], which are represented by Problem DKE. Also, decision knowledge
comprises one or more SolutionDKE, such as different alternatives to solve the problem [Ngo and
Ruhe 2005]. In addition, the Context DKE relate the decision problem to potential solutions, e.g. by

25

CHAPTER 2. BACKGROUND

enabling developers to evaluate different solutions for their feasibility and appropriateness to solve
the given problem. A basic example for context knowledge is a criterion [Ngo and Ruhe 2005].
Moreover, these elements can be enriched by Rationales. For instance, rationales may justify the
problem description, argue for an alternative, or highlight context information. Typically, different
DKEs can form a hierarchy according to their degree of abstraction [Tang, Jin, and Han 2007]. As
an example, consider the DKE Argument as a more fine-grained sub-element of the DKE Rationale.
Finally, entire decision problems can be related to each other in various ways. For instance, Kruchten,
Lago, and Vliet outline different kinds of relationships for design decisions, such as depends on,
conflicts with, and bound to between two decisions [Kruchten, Lago, and Vliet 2006]. Also, DKEs can
be linked with other DKEs. One example is the argument: it might strengthen or weaken other DKE,
like alternatives [MacLean et al. 1991].

Knowledge on
Decisions

Problem Decision
Knowledge Elements

Solution Decision
Knowledge Elements

Context Decision
Knowledge Elements

Rationale Decision
Knowledge Elements

Figure 2.3: Basic Decision Knowledge Elements

It is important to note that not all relevant DKE are available to or accessible by decision makers
by default [Zannier, Chiasson, and Maurer 2007]. Instead, relevant decision knowledge may be
more or less structured according to the kind of decision problem (cf. Section 2.1). Then, it has to
be uncovered and processed by decision makers when following one or multiple decision making
strategies (cf. Section 2.3).

Documentation of Decision Knowledge
The first well-recognized approach for documenting development decisions for software are Issue-
based Informations Systems (IBIS) by Kunz and Rittel in the 1970s. The conceptual IBIS approach
aims to support problem-solving in groups by representing decision problems as issues [Kunz and
Rittel 1970]. When discussing these issues, arguments are constructed to support or attack different
positions [Kunz and Rittel 1970]. In particular, additional informationmay be requested from experts
or additional documentation to further substantiate issues and arguments. Later, this approach was
implemented as the hypertext tool gIBIS by Conklin and Begeman to actually enable developers to
document and explore decision knowledge within a software tool [Conklin and Begeman 1988].

In the early 1990s, two fundamental meta-models for decision documentation were presented: the
Questions, Options and Criteria (QOC) approach by MacLean et al., and the Decision Representation

26

2.4. DECISION KNOWLEDGE

Language (DRL) by Lee. QOC consists of six important elements [Paech, Delater, and Hesse 2014;
MacLean et al. 1991]. Questions are used to capture and structure the problem definition. Options
represent all considered solution alternatives. Criteria are used to evaluate and rank these options.
A concrete evaluation of an option by criteria is captured in an assessment. In addition, arguments
can be used to attack or support all of these elements. Finally, the selected option to solve the
given question is captured as decision. Similar elements are proposed by DRL [Paech, Delater, and
Hesse 2014; Lee 1991; Lee 1989]. Here, a goal describes a particular aspect of a decision problem,
whereas alternatives represent different solution options. Claims are used in the way of arguments. In
addition, DRL provides further context representations, such as questions to represent uncertainty,
and procedures to describe courses of action. However, it should be noted that the name and meaning
of similar documentation elements for decision knowledge may vary between different approaches.
This is illustrated by a third important documentation approach, the Scenario-based Claims Analysis
(SCA) proposed by Carroll and Rosson in 1992. In this approach, claims are not primarily used
as arguments. Instead, they represent a particular solution alternative, which can be backed up or
challenged by further individual arguments. Also, there is no explicit problem definition for a decision,
but a description of the decision situation as scenario.

In the last decades, many further meta-models for decision documentation during software devel-
opment emerged. Typically, they address decision documentation within selected development
activities. For instance, Aurum, Wohlin, and Porter describe in their case study which kinds of
decisions can be captured during the requirements engineering process [Aurum, Wohlin, and Porter
2006]. Also, they highlight important decision knowledge that should be documented for each kind
of decision, such as knowledge on business processes, requirement priorities, release plans, and
related features. For decisions during design, various documentation approaches exist. Many of
them were investigated in comparative studies [Paech, Delater, and Hesse 2014; Tang, Avgeriou, et al.
2010; Ali Babar, Boer, et al. 2007]. A prominent example is the documentation template of Tyree
and Akerman, as it is the foundation for many other documentation approaches for design deci-
sions [Davide Falessi, Cantone, Kazman, et al. 2011]. The template proposes to describe the actual
design decision, but also its assumptions, related requirements, and impacts on the design [Tyree and
Akerman 2005]. Implementation decisions can be documented typically as structured comments
directly within the code [Burge and Brown 2008; Canfora, Casazza, and De Lucia 2000; Lougher and
Rodden 1993] by adding a textual explanation of the decision near the code realizing it. Besides the
decision description, links to external knowledge bases may exist, e.g. to relate documented decisions
with corresponding requirements [Burge and Brown 2008]. A more detailed comparison of current
documentation approaches for decisions in different development activities is given in the literature
review in Chapter 4.

Depending on their documentation elements, documentation approachesmay bemore or less suitable

27

CHAPTER 2. BACKGROUND

for documenting decision knowledge originating from a particular decision making strategy [Paech,
Delater, and Hesse 2014]. For instance, QOC fits better to knowledge acquired from RDM, as
different solution options and a set of criteria can be captured explicitly. In contrary, SCA fits better
to knowledge acquired from NDM, as the situational description of decisions is covered, and single
solutions with their related argumentation are highlighted. However, it should be noted that no
approach explicitly addresses knowledge resulting fromNDM. Also, current approaches do not cover
knowledge resulting from a mix of decision making strategies.

Management of Decision Knowledge
Documenting decision knowledge is an important part of decision knowledgemanagement. Typically,
software tools are required to enable and support approaches for decision knowledge management
in general, and for documentation of decisions in particular [Arnott and Pervan 2008]. Thus, doc-
umentation approaches for decision knowledge often describe both, documentation meta-models
and software to allow for decision documentation according to this meta-model. Also, decision
knowledgemanagement is an important field within research onDecision Support Systems (abbreviated
as DSS), which are IT-based systems to support decision processes [Arnott and Pervan 2008]. Other
major fields of DSS research are Personal and Group Support Systems to support personal and group
decision tasks, Data Warehousing to provide an infrastructure for decision-related data analysis in
large scales, and Enterprise Reporting and Analysis Systems to provide performance management and
business intelligence [Arnott and Pervan 2008]. Whereas these major fields already had a significant
presence in practice [Arnott and Pervan 2008], knowledge management-based systems still need to
be improved in order to increase their value for application in practice. Most importantly, knowledge
management for decision knowledge needs to reflect the decision making strategies actually applied
by the developers [Maule 2010; Zannier, Chiasson, and Maurer 2007].

Chan and Song describe further characteristics shared by successful DSS [Chan and Song 2010]. They
should be easy to use and provide an appropriate presentation format for the available information
and functionality, so that there is a cognitive fit between the presentation and the user. In addition,
such systems should offer decisional guidance by providing assistance during the decision-making
process and allow for enough user interaction. However, the system should also limit the available
options within the decision-making process in an appropriate way and give feedback to the user about
these restrictions.

Documentation of decision knowledge can be supported by different kinds of software tools. First,
specialized tools may be used. These tools typically implement documentation support for one
particular decision documentation meta-model. They can be realized as stand-alone software, like
ADDSS [Capilla, Nava, Pérez, et al. 2006], or are integratedwith other tools used by developers. For
instance, the SEURAT tool is implemented as plugin for Eclipse [Burge and Brown 2008]. Also hybrid

28

2.4. DECISION KNOWLEDGE

approaches, such as Knowledge Architect [Jansen, Avgeriou, and Ven 2009], exist, which provide a
stand-alone software as well as plugins for existing development tools. Second, general documentation
tools can be used for documenting decisions during the development process. Such tools are not
dedicated to capture decision knowledge, but may cover a broad range of different kinds of artifacts
and knowledge. For instance, decisions may be documented in requirements specifications using
a text editor [Jansen, Avgeriou, and Ven 2009], or in comments to issue reports in issue tracking
systems [Ko and Chilana 2011].

Both, specialized and general documentation tools, may be closely integrated with IDEs. For instance,
the specialized SEURAT tool is a plugin for the Eclipse IDE. Another example is the knowledge
management tool UNICASE [UNICASE Project 2016]. This tool is also an extension to Eclipse. It
will be enhanced with additional features to support decision documentation in a specialized way,
implementing the approach presented in this thesis. The fundamental components of UNICASE
are depicted in Figure 2.4. The core of UNICASE is a set of client plugins to support a knowledge
model integrating project and system knowledge [Bruegge et al. 2008]. A variety of model elements
are provided for documentation, such as Use Cases, UML diagrams, and action items. Instances
of the model are versioned and exchanged between distributed development sites using the model
versioning system EMFStore [EMF Store 2016]. In addition, the tool offers a generic editing support
for this model as well as for any model extensions through the EMF Client Platform [EMF Client

Platform 2016].

Based on

Eclipse IDE UNICASE

EMF Store
Model

Repository

EMF Client
Platform

UNICASE
Client Plugins
with knowledge

model

Plugin Interface

Figure 2.4: Fundamental Components of UNICASE

29

Part II

Problem Analysis

31

3
State of Practice for Decision Making Strategies

In this chapter, an empirical study on the documentation of decision making strategies in practice is
presented. The study investigates comments to issue reports within the Firefox project in order to
investigate how developers document knowledge resulting from their decision making strategies in
practice. A full report on the study was published in [Hesse, Lerche, et al. 2016]. First, the Firefox
project is introduced as study subject with the study goal. Also, relations between existing empirical
studies and this study are discussed. Second, the research process of the study is described, including
preparation, data coding, and analysis applied during the investigation of issue comments. Third,
the results of data analysis are presented in detail. Fourth, these results are discussed in relation to
requirements, which can be derived from the results for developing the documentation presented
in this thesis. Finally, potential threats to validity are discussed together with mitigation measures
applied during the study.

3.1 Study Foundations

In the following paragraphs, the Firefox project with its issue reports as the study subject and the
study goal are introduced. In addition, the similarities and differences of this study and related
existing empirical studies are discussed.

Study Subject and Goal
Developers in open source software projects typically document their development progress in issue
tracking systems. There, developers can file issue reports to document recent development tasks and
share the results with other developers and users. Also, issue reports may be created by the system
users to inform the developers about problems, or to request improvements. Two different types
of issue reports may be distinguished: Bug reports are concerned with system errors or corrections

33

CHAPTER 3. STATE OF PRACTICE FOR DECISION MAKING STRATEGIES

of functionality, whereas feature requests describe new or extended functionality. In consequence,
issue reports typically indicate specific needs for changes and improvements ranging from the entire
system to particular functionality. As developers address the reports in their development activities,
they make decisions when implementing or rejecting the requested changes. These decisions are
documented as comments to issue reports, so that decision knowledge is distributed to and shared
between all involved developers and users. This is particularly important for large and globally
distributed development teams with a heterogeneous user community, like the Firefox project.
Prominent examples are decisions documented in issue reports of the Firefox project and the Linux
kernel [Ko and Chilana 2011].

The goal of the study presented in this chapter is described using the Goal Question Metric (GQM)
approach [Basili, Caldiera, and Rombach 1994]. GQM provides a structured template to formulate
study goals, including the aim of investigation, the investigated matter, the purpose of investigating
the data, the study context, and the viewpoint of examination. Table 3.1 shows the goal of this study,
structured according to GQM.

GQM Template Goal Description

Determine significant quantitative effects
with respect to documentation of knowledge according to the decision making strategies applied by devel-

opers
for the purpose of improving the knowledge documentation in relation to decision making strategies used by

developers
in the context of development decisions in comments to issue reports for the open source project Firefox
from the viewpoint of researchers.

Table 3.1: Description of Study Goal with GQM

The presented study aims to investigate documented decision making by identifying documented
strategy elements and examining their quantity. In detail, the quantity of NDM and RDM as well as
their strategy elements and relations between these elements are investigated. Thereby, the study
contributes insights to answer the open questions for research goal 1. The identification of strategy
elements was performed by manually reading and categorizing the content of each comment to
an issue report. This investigation step is called coding of the data. Thereby, the presented study
complements existing empirical studies on decision making (cf. the next paragraph for a detailed
analysis of related studies). First, current studies on decision making in software development
focus on particular kinds of decisions, such as design decisions (e.g., in [Zannier, Chiasson, and
Maurer 2007; Tang, Aleti, et al. 2010]). Second, their method of investigation is either to observe
decision making processes of developers [Tang, Aleti, et al. 2010], or to perform interviews with

34

3.1. STUDY FOUNDATIONS

developers for a retrospective examination of decision knowledge [Zannier, Chiasson, and Maurer
2007]. As a consequence, most of the existing studies perform only a qualitative analysis (cf. the
studies of [Zannier, Chiasson, and Maurer 2007; Mentis et al. 2009; Tang, Aleti, et al. 2010]). In
contrast, the presented study investigates documentation of the Firefox project with topical decisions
not only on design, but also on requirements and implementation of the Firefox software. In addition,
the coding of the comments provides a fine-grained data set of identified strategy elements, which
are analyzed quantitatively. This allows for testing concrete hypotheses, as well as for exploratory
analysis of the data.

It should be noted that this study aims to investigate documented decisions without restrictions
regarding a given specific decision making process. This requires investigating a detailed docu-
mentation of decisions from a large software project, such as the Firefox project. According to Ko
and Chilana, the Firefox project does not enforce a particular kind of decision making strategy and
documentation method for decision knowledge for its developers [Ko and Chilana 2011]. Also, the
documentation in the project results from real-world and complex development activities with their
related decisions. In issue tracking systems, this documentation is made explicit and available for the
study through issue reports with their comments [Hesse, Lerche, et al. 2016]. The documentation is
explicit, because the members of development teams in huge open source projects typically do not
work together in the same place, but are spread globally. Therefore, discussions on development
issues and their resulting decisions need to be visible for all team members, so that they are shared
in an explicit way through issue tracking systems. The documentation is available, because open
source projects typically need to attract and integrate new developers continuously. Therefore,
developers already involved in the project benefit from documenting discussions and decisions in
a comprehensive way through issue tracking systems. In consequence, new developers can easily
access and explore current and previous development results and the related decision knowledge.

Related Studies
Several studies have been performed to investigate decision making and documentation of decisions
by software developers. Most importantly, Ko and Chilana also investigated discussions on devel-
opment decisions formed by comments to issue reports within the Firefox project [Ko and Chilana
2011]. They analyzed quantitatively which rhetorical structures of argumentation emerged within
these comments over time. Therefore, Ko and Chilana marked the contribution of a comment, for
instance information clarifying the scope, dimension, or process of the discussed topic. The study
findings suggest that the investigated discussions were mostly concerned with exploring the design
space for potential issue solution in order to prepare the related decisions. Among other aspects,
this exploration typically consists of discussions between the developers to clarify the usage options
and qualities of solutions. Whereas these findings highlight the close relation between decision
making and documentation, Ko and Chilana mainly investigate the argumentation structures in

35

CHAPTER 3. STATE OF PRACTICE FOR DECISION MAKING STRATEGIES

issue comments to reason about the discussion outcome. Thus, their codes and data analyses do
not aim to provide detailed insights on the decision making strategies documented by developers.
In contrast, the study presented in this thesis uses fine-grained codes to capture different kinds of
decision making strategies in the given documentation.

Other related studies focus on decisions concerning software architecture and design. A well-
recognized qualitative study on decision making was performed by Zannier, Chiasson, and Maurer.
The study investigated how decision making strategies were applied by 25 professional developers in
different software projects [Zannier, Chiasson, and Maurer 2007]. Developers were found to mix
different kinds of decision making strategies for one decision. Also, this finding was confirmed for
agile projects [Zannier and Maurer 2006]. Another study was performed by Mentis et al. to inves-
tigate rational decision making in groups with planning tasks. Therefore, three discussion rounds
of 36 undergraduate and graduate students within 12 teams were captured [Mentis et al. 2009]. All
statements of each discussion were categorized either as information sharing, interpretation, arguing,
or summarizing. The authors found that the results varied between newly created and established
teams. Whereas new teams were mostly concerned with information sharing, established teams used
most statements for arguing. The beginning of the discussions was dominated by information sharing,
whereas arguing dominated the end of the discussions [Mentis et al. 2009]. In 2010, a set of studies
was performed on three recorded design sessions with different teams of two professional designers
working on the same design task. The studies can be found in special issues of the journals Design
Studies in 2010 and Software in 2012 as well as in a book presenting all original studies on this data
set [Petre and Hoek 2013]. Among these studies is the work of Tang, Aleti, et al. who investigated the
evolution of problems and solutions during decisionmaking processes in two design sessions. As they
investigate documented decision making by coding the designers statements, their study is related to
the study presented in this chapter. The authors found that the identical design task was approached
very differently in both sessions [Tang, Aleti, et al. 2010]. Whereas one team used a problem-driven
approach to guide their design space exploration, the other team applied a solution-driven approach
without defined structures. Recently, a study was presented by Tang and Vliet on the reasoning
process of software designers to make decisions on design problems. Within the study, 32 students
and 40 professionals were asked to make a design decision and state the considered rationale [Tang
and Vliet 2015]. [Tang and Vliet 2015] found software designers to rely on satisficing solutions
instead of searching for optimal solutions, which indicates the usage of NDM strategies.

However, none of the aforementioned qualitative studies provides a quantitative analysis of strategy
elements to investigate the decision making processes of developers in a fine-grained way. Instead,
the studies describe the identified strategy elements only in a textual summary. Regarding the
study subject, only the studies of Ko and Chilana and Zannier, Chiasson, and Maurer investigate
real-world decisions, whereas all other described studies use an experimental setup with prepared

36

3.2. RESEARCH PROCESS

decision tasks. These setups are either academic example projects or well-defined industry cases.
However, the decision making behavior of developers deviates when making decisions under real-
world conditions [Klein, Calderwood, and Clinton-Cirocco 2010]. In the study of Zannier, Chiasson,
and Maurer, interviews were performed to extract knowledge on decision making in retrospect. In
consequence, developers might not remember or not state all relevant details from their past decision
making, so that the acquired knowledge within the study may be incomplete or erroneous [Hesse,
Lerche, et al. 2016]. In contrast, the study presented in this thesis relies on comments to issue
reports, which can be added by developers over time. In these comments, developers capture the
available knowledge continuously over time. Also, it is possible to state questions and clarifications via
comments. Thus, decision knowledge within the issue comments is more likely to be comprehensive
and complete than interviews on decisions in retrospect.

3.2 Research Process

In this section, the research process with details on study execution and data analysis for the presented
empirical study are described. The research process is depicted in Figure 3.1. The study was carried
out as case study research according to the guidelines of Runeson et al. for case studies [Runeson
et al. 2012]. A pilot study was performed to explore documented decision making in issue comments
of one Firefox branch within a master thesis [Knoess 2014]. Based on the insights of this pilot study,
the research process for this study was developed.

Preparation Phase Coding Phase Analysis Phase

Definition of
Research Questions
and Hypotheses

Creation of
Coding Table

Data Selection,
Extraction and

Cleaning

Coder Training,
Assessment of

Intercoder Reliability

Coding of Issue Type,
Selection of Final Data

Coding of
Issue Comments

Preparation and
Execution of

Statistical Analysis

Legend: Followed by

Figure 3.1: Overview of the Research Process

37

CHAPTER 3. STATE OF PRACTICE FOR DECISION MAKING STRATEGIES

In the first phase, the open questions for research goal 1 (cf. Chapter 1) were refined to concrete
research questions for this study. For selected research questions, hypotheses were defined based on
the existing studies and decision making literature. Next, a coding table was created to classify issue
comments for their documentation of one or multiple strategy elements. Then, the data selection,
extraction and cleaning was performed for issue reports of two different Firefox branches. In the
second phase, the actual coding of issue comments took place by two coders [Hesse, Lerche, et al.
2016]. Therefore, the coders were trained regarding the semantics and application of the defined
codes. This was assessed by calculating the intercoder reliability for a training data set. Afterwards,
all selected issue reports were classified either as bug report or feature request according to their
content. This also lead to further balancing of the data set to ensure an optimal data quality. Finally,
all issue comments were coded according to the coding table. In third phase, the statistical analysis of
the coded comments was prepared and executed [Hesse, Lerche, et al. 2016].

3.2.1 Preparation Phase

Definition of Research Questions and Hypotheses
The research questions and hypotheses for this study were developed to provide insights for all open
questions related to research goal 1 (cf. Section 1.1). These research questions were investigated by
testing explicit hypotheses or by explorative analyses. In this study, it is assumed that developers of
the Firefox project mainly document knowledge according to the kind of decision making strategy
they use intuitively. In consequence, using a particular kind of decision making strategy should be
reflected in the related comment to an issue report.

The first open question for research goal 1 addresses the actual quantity of NDM used and docu-
mented by developers in practice. Previous studies already found NDM to be a substantial part of
decision making by developers in practice [Tang, Aleti, et al. 2010; Zannier, Chiasson, and Maurer
2007], whereas the actual amount of NDM used and documented by developers remains unclear.
However, it is important to quantify this amount of applied and documented NDM, so that the
knowledge documentation support for these decisions can be improved. For instance, if NDM is used
in large quantities, documentation approaches should consider the iterative nature of NDMmore
closely during documentation. Also, NDM-specific documentation elements would be required to
match knowledge originating from the particular strategy elements of NDM. Thus, research question
1 (abbreviated as RQ1) is defined as: Which percentages of NDM and RDM are documented? Regard-
ing RQ1, Zannier, Chiasson, and Maurer point out that for design decisions typically one kind of
decision making strategy dominates the decision making of one developer [Zannier, Chiasson, and
Maurer 2007]. This makes it less likely that both kinds of strategies are applied in a balanced mix.
Also, NDM occurs more often than RDM under real-world conditions with different situational

38

3.2. RESEARCH PROCESS

factors [Klein 2008; Orasanu and Connolly 1993]. Such factors can be “multiple deciders” [Orasanu
and Connolly 1993], like different developers participating in issue discussions, or an “uncertain en-
vironment” [Orasanu and Connolly 1993], like incomplete and changing information in issue reports.
These factors apply for the open source project Firefox with various, globally spread developers and
time pressure through short release cycles [Khomh et al. 2012]. In consequence,NDM is expected to

dominate RDM in the investigated comments (hypothesis H1).

The second open question for research goal 1 asks for strategy elements of NDM (cf. definitions in
Section 2.3) actually documented by developers and their relation to RDM strategy elements. Existing
studies did not reveal in detail, which strategy elements of NDM and RDM are documented by
developers in which quantity. However, this insight is essential to provide appropriate documentation
entities to support decision documentation. Otherwise, the provided entities do not match those
actually required by the developers. Therefore, it is also important to examine the relation of NDM
to RDM strategy elements during documentation. Then, a mix of both strategies can be supported
within the documentation model and its related tool support. Thus, research question 2 (abbreviated as
RQ2) is defined as:Which quantities are found for each strategy element and which relationships between

strategy elements can be identified?. To investigate this research question, explorative analyses are
performed without hypothesis formation for RQ2.

The third open question for research goal 1 is concerned with specific distributions for the percentage
of NDM according to specific kinds of decision situations. For this study, different kinds of decision
situationsmap to different types of issue reports due to the different characteristics of feature requests
and bug reports with their related decisions. In consequence, it should be investigated whether the
percentage of NDM to RDM differs for these issue types. This helps to clarify whether developers
address different types of decision situations with different kinds of decision making strategies.
Thus, research question 3 (abbreviated as RQ3) is defined as: Is the proportion of NDM to RDM related

to the issue type?. In detail, bug reports typically require developers to improve or adapt an existing
functionality. Then, the original solution and a claim for the intended change are already given. Thus,
development activities such as testing and debugging are performed to analyze the current situation
and determine applicable solutions to realize the intended change. This fits to the situation analysis
and matching procedure of NDM [Klein 2008] and could result in a higher percentage of NDM for
bug reports. In contrast, feature requests either address functionality that has to be newly developed,
or relate to given functionality that has to be extended significantly. Thereby, it is not clearly defined
for developers how a solution can be achieved due to various potential implementations for the
same functionality. To compare these implementations, developers will have to identify the relevant
criteria by investigating the decision problem in more detail. This procedure is in line with criterion
evaluation and consequential choice of RDM [Zannier, Chiasson, and Maurer 2007]. In consequence,
the percentage of NDM for feature requests should be lower than for bug reports. Overall, a higher

39

CHAPTER 3. STATE OF PRACTICE FOR DECISION MAKING STRATEGIES

percentage of NDM for bug reports than for feature requests is expected (hypothesis H3).

Creation of Coding Table
A coding table was developed to highlight different strategy elements within comments to issue
reports. All codes are presented in Table 3.2 with their definition and a corresponding example text

Source Code De�nition Comment Example

Naturalistic Decision Making

[Klein 2008;
Zannier, Chias-
son, and Maurer
2007]

Sat: Satisficing Alternatives are better or worse, a
satisfactory/workable solution is as-
pired.

“[...] In the mean time, this user
style appears to work around the
problem [...]”

[Klein 2008;
Zannier, Chias-
son, and Maurer
2007]

SE: Singular Eval-
uation

Further alternatives are not consid-
ered or they are evaluated serially.

“It works on today’s Nightly, so
I guess the problem was fixed in
the meantime.”

[Klein 2008] SA: Situation As-
sessment

Retrieval of attributes that make the
current situation comparable to oth-
ers.

“[...] are you saying that this only
happens when the 3 of them are
installed at the same time?”

[Klein 2008] Mat: Matching The current decision problem or situ-
ation is linked to another situation.

“In my case [...] the back button is
not activated, so there is no way
to restore the session. See bug
928626. [...]”

Rational Decision Making

[Klein 2008;
Zannier, Chias-
son, and Maurer
2007]

Opt: Optimizing Alternatives are right or wrong, the
best possible solution is desired.

“[...] Hence I think there is prob-
ably a better way to solve this -
how about using Firebug’s ability
to break onDOMevents towatch
what’s going on?”

[Klein 2008;
Zannier, Chias-
son, and Maurer
2007]

CC: Conse-
quential Choice

Further alternatives are considered,
one option is selected from a list of
others or options are evaluated con-
currently.

“[...] For Beta with irregular
builds and minimal functional
changes it seems a lot less impor-
tant. [...]”

[Lipshitz et al.
2001; Zannier,
Chiasson, and
Maurer 2007]

CE: Criterion
Evaluation

Criteria linked to alternatives are con-
sidered, reasons/rationales for choos-
ing an alternative are provided.

“[...] Also there are probably cases
where what we really need is the
state at onload or some other
milestone rather than what goes
across the wire. [...]”

Table 3.2: Coding Table for Strategy Elements of Decision Making [Hesse, Lerche, et al. 2016]

40

3.2. RESEARCH PROCESS

from a comment. The codes were created according to the principles of content analysis [Mayring
2010]. One code was created for each strategy element of RDM and NDM, which were introduced
in Section 2.3. The codes were tested during coding training. Also, the definition for applying a
code was refined in the second training session in case that misunderstandings or ambiguities were
recognized by the coders.

The textual description of an issue report was not included for coding strategy elements, because
reporters were required to use a default structure for writing the report. This structure contains the
expected and actual behavior of the software as well as steps to reproduce the actual behavior. In
consequence, codes like “Situation Assessment” or “Matching” would have been assigned to many
issue reports by default.

Data Selection, Extraction and Cleaning
The study was performed using issue reports from two different branches of the Firefox project,
branch Firefox 6 and 27. They will be referred to as branch 6 and branch 27. By using two different
branches, it shall be ensured that the analysis of the coded comments is not biased by branch-specific
development actions or external events. Branch 6 was developed in 2011, branch 27 in 2014. Both
branches provide a suitable number of issue reports for investigation: 642 issue reports belong to
branch 6, and 559 issue reports belong to branch 27. It should be noted that the release model
in the Firefox project changed in the last years to a rapid release model. Whereas branch 1 to 4
were developed in traditional release cycles with a typical cycle length of one or more years, later
branches were developed in shorter release cycles of 6 weeks length. This change affects the total
amount of issues contained within one branch as well as the overall variety of development actions
performed within one branch [Khomh et al. 2012]. In consequence, we selected only branches
developed according to the rapid release model. Therefore, the amount of issues within branch 6 and
27 is comparable. However, the decisions within both branches differ, as branch 27 was developed
three years after branch 6.

From the issue tracking system of Firefox [Firefox project 2015], 1201 issues were retrieved in total.
All issue reports with their comments were exported and imported as raw data to the spreadsheet
program Excel. Within this program, the textual contents of issue reports and comments were
formatted visually, so that the initial report could be distinguished from itsmetadata and its comments.
To avoid misinterpretations of the textual contents, artifacts resulting from the export and import
process were removed, such as misinterpreted characters and wrongly wrapped lines.

41

CHAPTER 3. STATE OF PRACTICE FOR DECISION MAKING STRATEGIES

3.2.2 Coding Phase

Coder Training and Intercoder Reliability Assessment
Before all issue reports and their comments were coded, the two coders performed a training to test
and harmonize the code assignment to comments. Therefore, two training sessions of coding were
performed with two training data sets of 50 randomly selected issue reports. Two benefits were
achieved by the training sessions. First, both coders reached a high level of agreement which code
to use for which content within an issue comment. Second, after each training session both coders
gave feedback on the coding table. Thereby, the codes were further improved, and ambiguities in the
code definition were clarified. The initial training session took place before the Issue Type coding, the
second training was performed afterwards. Each of the two coders assigned codes to the training
data sets individually. Both coders examined and discussed each other’s codes after a training session.
Different interpretations of content and differently coded comments were analyzed and resolved.
The codes of the second training session were used to calculate the intercoder reliability . Therefore,
the second set of training data had the same proportion of bug reports to feature requests as the final
data set. After the second training session, no further training was performed due to the good values
for intercoder reliability.

The intercoder reliability measures the similarity of code assignments between different coders. As
concrete measure, the intraclass correlation coefficient (ICC) [Shrout and Fleiss 1979] was calculated
for the amount of each code per issue for the codes of the second training data set. In detail, the
two-way random single measures ICC(2,1) were calculated for agreement between ratings with icc
out of the irr package of R [Gamer et al. 2012; R Core Team 2014]. As described by Cicchetti and
Sparrow, an ICC value below 0.40 is poor, between 0.40 and 0.59 fair, between 0.60 and 0.74 good, and
above 0.74 excellent. The ICC values after the second training session are given in Table 3.3. Whereas
the ICC results for RDM are already good, the values for NDM strategy elements are excellent. An
important reason for this difference is that the total amount of assigned RDM codes was lower than
the amount of NDM codes. In consequence, differences between the coders weigh higher for RDM
codes. However, the ICC values for RDM strategy elements are still good. This justifies that only one
coder coded the final data set of each branch.

Strategy
Element

NDM RDM
Sat SE SA Mat Opt CC CE

ICC value 0.96 0.88 0.86 0.78 0.61 0.66 0.61

Table 3.3: Intraclass Correlation Coefficients (ICC) for Strategy Element Codes

42

3.2. RESEARCH PROCESS

Coding of Issue Type and Final Data Selection
The Issue Type of all issues from branch 6 and 27 was coded either as feature for feature requests,
bug for bug reports, or spam for issue reports without useful content. In detail, one coder coded
all issue reports contained within one branch. To determine the appropriate code type of an issue
report, its headline and description text were examined by the coder. Bug reports typically contained
a description of an error or intended behavior of the software, whereas feature requests consisted of
a claim or request to newly develop or extend a functionality of the software.

The coding results for the Issue Type were used to select and balance the final data set for coding
the strategy elements. Therefore, all issue reports coded as “spam” (about 4% in total) and all issue
reports containing no comments (about 9% in total) were excluded. Also, some issues were marked
as irrelevant by one or multiple commentators, which lead to a stop in discussion (about 2% in total).
These issue reports were also excluded, because no codes could be assigned. In both branches, much
more bug reports than feature requests were identified. Thus, all feature reports were coded from
both branches in order to have a sufficient number of feature reports for analyzing a possible influence
of the Issue Type on the percentage of NDM to RDM (RQ3) and their corresponding hypothesis. Then,
four times as many bug reports as feature requests were selected for coding the comments to provide
a larger overall sample for analyses not considering the Issue Type. All bug reports in the final data set
were selected randomly from each branch. The final data set consisted of 260 issue reports with 52
feature requests and 208 bug reports. Of these, 100 issue reports originated from branch 6, and 160
reports were derived from branch 27.

Coding of Issue Comments
Each of the two coders analyzed and coded the issue reports and comments of one branch. If a
comment contained links to further resources, such as screenshots, code files, or patch notes, the
linked resources were also used to determine the appropriate codes for the respective comment.

3.2.3 Analysis Phase

Preparation and Execution of Analysis
Besides the main dependent variables (i.e., the strategy elements of decision making), several addi-
tional variables from the issue report meta-data were examined. Variables recording meta-data of
issue reports are called issue dimensions. By evaluating issue dimensions, it can be checked whether
relationships exist between meta-data and the main variables. Major issue dimensions were Issue
Type with the values “bug” or “feature” and Branch with the values “6” or “27”. Also, the technical
Component assigned to each issue report and the total Number of Comments per issue report were
recorded and analyzed. Moreover, the Issue Duration was captured as the difference between the

43

CHAPTER 3. STATE OF PRACTICE FOR DECISION MAKING STRATEGIES

creation date of the last comment and the creation date of the issue report. These issue dimensions
describe the environment and context of the decision making documented in the issue reports. In
addition, they can be recorded reliably for most issue reports in both branches with a broad range of
different values. Thus, these dimensions were selected for analysis.

After recording all issue dimensions and coding the strategy elements, both descriptive and inferential
statistics were applied on the data. As descriptive statistics, means (M), standard deviations (SD), and
relative frequencies were used. As inferential statistics, χ2 tests were used for analyzing relationships
between two categorical variables, whereas Pearson correlations coefficients were used to investigate
relationships between two metric variables. Also, t-tests and ANOVAs were applied to examine the
mean differences between two ore more groups. All tests performed are two-sided. It should be
noted that relatively small effects may lead to significant results with high sample sizes. Therefore,
an effect size measure was calculated for each test with significant results. Depending on the test
type, r, η2, ηp2 or Cramer’s V was used. According to Cohen, values of 0.1 indicate small, 0.3 medium,
and 0.5 large effects for r and Cramer’s V (df = 1) [Cohen 1988]. For η2 and ηp2, 0.01 corresponds to
a small, 0.06 to a medium, and 0.14 to a large effect.

3.3 Results and Discussion

In this section, analysis results for the coded data are presented and discussed. First, general findings
for all recorded issue dimensions are briefly described to identify potential reasons for differences in
the applied decision making strategies between branch 6 and 27. Then, the major results for each
of the three research questions are presented. For each research question, the respective results are
discussed with respect to requirements for a new documentation approach for decision knowledge.
All results of explorative analyses are presented in detail in result tables. Additionally, identified
relationships within these analyses are summarized in graphs for discussion. The graphs highlight
identified relationships and also provide an overview on relationships which have not been found to
be significant in this study. Thus, such insignificant relationships might serve as a subject for further
studies. However, for explorative analyses, interpretation and discussion of relationships are focused
on those of large and medium effect size.

3.3.1 Results for Issue Dimensions

In total, 36 different values for Componentwere identified and grouped into three categories: issue
reports may be related to specifically named components (such as “location bar”; category is called
“specific”, n=114), to unnamed but defined components (category is called “untriaged”, n=80), or to

44

3.3. RESULTS AND DISCUSSION

general components (category is called “general”, n=66). The Number of Comments ranged from 1
to 48 with a mean of 5.53 comments per issue report. For all investigated issue reports, the Issue
Duration ranged from 65 seconds to more than 4 years. The mean Issue Duration is 268 days. It should
be noted that Firefox’ official timeline for branch development does not necessarily fit the actual
relation between issue reports and branches. For instance, 28% of all investigated issue reports had a
starting time before the initiation of their respective branch. This indicates that some functionality
and error discussions were started earlier, but later became major topics for their respective branch.
Also, 76% of all issue reports exceeded their branch development time. This indicates that often issue
reports were not entirely solved during development of their associated branch. Then, the issue status
“closed” or “resolved” is a good indicator for an end of discussion. However, discussion on these issue
reports may have ended already, even if this status was not set. This was observed for many issues
with longer duration and no such status. But discussion may also start again in case former solutions
do not work out or do not address changed environmental or system conditions appropriately. These
uncertainties should be reflected when interpreting the results for Issue Duration.

The relationships between all investigated issue dimensions as the result of an explorative analysis
are summarized in Table 3.4. The table depicts significant relationships according to their related
effect size value as “no”, “small”, “medium”, or “large”.

Issue Dimensions Issue
Type

Branch Component Issue
Duration

Number of
Comments

Issue Type – no small small no
Branch – large large small
Component – large small
Issue Duration – small
Number of Comments –

Table 3.4: Summary of Relationships between Issue Dimensions

Due to the selection of the final data, Issue Type and Branch are completely independent. In contrast,
Issue Type is related to Component (χ2[2] = 20.54, p < 0.001,V = 0.28): The category “specific” for
Component predominates the other two categories stronger for features than for bugs. In addition,
the value for Issue Duration is significantly higher for bugs (M = 296.16, SD = 366.72) than for
features (M = 156.71, SD = 297.87, t[258] = 2.54, p < 0.05, r = 0.16). Significant relationships
were also found between Branch and Component (χ2 = 90.39, p < 0.001,V = 0.59). In branch 6,
mostly issue reports with “general” (54%) and “specific” component categories (42%) are given. In
branch 27, “untriaged” (48%) and “specific” (45%) component categories are predominant for issue

45

CHAPTER 3. STATE OF PRACTICE FOR DECISION MAKING STRATEGIES

reports. Also, significant effects of Branch on the Issue Duration (t[258] = 16.23, p < 0.001, r = 0.71)
and theNumber of Comments (t[258] = 2.01; p < 0.05, r = 0.12) were found. In detail, the average
Issue Duration in branch 6 is longer (in days) (M = 589.38, SD = 395.59 vs. M = 67.57, SD = 76.19),
and theNumber of Comments is higher for branch 6 than for branch 27 (M = 6.42, SD = 6.51 vs. M =
4.97, SD = 5.06).

Moreover, ANOVAs uncovered significant effects of Component on Issue Duration (F[2, 257] =

49.48, p < 0.001,η2 = 0.28) and the Number of Comments (F[2, 257] = 4.60, p < 0.05,η2 = 0.03).
Here, discussions on issue reports addressing “general” components took longest (in days) (M =
565.98, SD = 408.42) and comprised the highest number of comments (M = 6.82, SD = 7.48), followed
by “specific” (Issue Duration: M = 237.69, SD = 336.21;Number of Comments: M = 5.81, SD = 5.28),
and “untriaged” (Issue Duration:M = 66.22, SD = 65.03;Number of Comments:M = 4.06, SD = 4.10).
Finally, also Issue Duration and theNumber of Comments correlate positively (r = 0.24, p < 0.001): a
higher number of comments is related to a longer issue duration.

3.3.2 Discussion of Results for Issue Dimensions

An overview of the relationships between the different issue dimensions according to Table 3.4 is
given in Figure 3.2. Large relationships between Branch, Component, and Issue Duration probably
were found because the age of both branches differs significantly. Of course, some restrictions for the
interpretation of Issue Durations apply, as mentioned before. However, it is likely that issue reports in
branch 6 are less structured than in branch 27, for which development started later. So, reporters and

Number of Comments

Branch

Component Issue Duration

Issue Type

Legend: Large relationship
Small relationship

Figure 3.2: Relationships between Issue Dimensions

46

3.3. RESULTS AND DISCUSSION

developers could work with many existing features and the related knowledge from earlier branches
within branch 27. This interpretation is supported by the finding that mostly “general” was found as
category for Component in branch 6 in comparison to mostly “specific” for branch 27. Unspecific
issue reports also might be one important reason for the longer issue duration for branch 6, because
these reports required more discussion. This is in line with the slightly higherNumber of Comments
for branch 6 (M = 6.42) than for branch 27 (M = 4.97). Also, developers would then struggle to resolve
and close bug reports, when they cannot easily structure them to identify the described problem and
criteria to assess potential solutions. This is backed up by the longer Issue Duration for bug reports
than for feature requests.

However, this interpretation does not necessarily imply that the decision making behavior of de-
velopers differed significantly between branch 6 and 27. On the one hand, branch 27 appears to be
better structured, because more issue reports are assigned to specific components. Thereby, they
match better with well-structured decision problems, so the application of RDM is more likely in
this branch. On the other hand, issue reports in branch 27 were built upon more project knowledge
and experience of the developers due to the longer project duration Firefox had reached when the
branch started. In consequence, developers might also tend to use more NDM due to their increased
experience with former decision situations from earlier branches that could be matched to current
ones. In case the percentage of NDM to RDM strategy elements differs significantly between the
branches, one of these explanations may be reasonable.

3.3.3 Results for RQ1: Dominance of NDM

In total, 98.16% of all codes were NDM strategy elements, whereas only 1.84% RDM codes were set.
The mean number of NDM codes was compared with the mean number of RDM codes in a t-test for
dependent samples. Thereby, a significantly higher number of NDM strategy elements (M = 5.47, SD
= 5.94) than RDM strategy elements (M = 0.18, SD = 0.57, t[259] = 15.06, p< 0.001, r = 0.68) was
observed. This clearly shows the dominance of NDM over RDM in the investigated comments to
issue reports and confirms hypothesis H1.

3.3.4 Discussion of Requirement A: Documentation of RDM and NDM
Decisions

The confirmation ofH1highlights thatNDMplays an important role in decisionmaking of developers
in practice. For the investigated data, NDM dominated RDM clearly in both branches. This result
challenges the common understanding that developers and particularly designers should apply an

47

CHAPTER 3. STATE OF PRACTICE FOR DECISION MAKING STRATEGIES

engineering approach that is driven by RDM [Davide Falessi, Cantone, Kazman, et al. 2011]. RDM
may be the kind of decisionmaking strategy desired and advised by researchers and academia, because
it allows for determining the optimal solution. This is often the gold standard for decisions from a
theoretical perspective. However, in practice, not only a second kind of decision making strategies is
used, but it also outnumbers by far the actual percentage of RDM. The results of previous qualitative
studies already pointed in this direction. Nevertheless, this study is the first to confirm quantitatively
that developers use large amounts of NDM in practice.

Also, this finding implies that NDM should be considered more closely when creating and providing
documentation support for decisions. Developers in the Firefox project were not required to doc-
ument their decisions in a guided or prescribed way within their comments. Thus, it is likely that
they documented the decision making they actually applied, as they could have added more RDM
documentation at any time. That they did not add more RDMmay have two different reasons: On
the one hand, developers might have found the given NDM documentation to be sufficient. Then,
more documentation on RDMwas probably not requested for most of the decisions related to issue
reports. In consequence, RDM should not be enforced during documentation by default. On the
other hand, developers might have wanted to document more RDM, but were hindered by high
documentation effort. Then, RDM documentation needs better support.

It should be noted that the presented study did not evaluate the development outcome of the in-
vestigated issue reports and their related decisions. Thus, the result for hypothesis H1 does not
imply that the usage and documentation of NDM leads to better decision outcomes than using and
documenting RDM. However, the finding clearly indicates that both RDM and NDM should be
supported during documentation, as both are used by developers in practice. In consequence, the
documentation approach developed in this thesis should address the documentation of both RDM
and NDM. In detail, this requires specific documentation entities for decision knowledge resulting
from NDM. These entities should be captured in structures supporting a mix of RDM and NDM, as
different developers may work on the same decision, but apply different decision making strategies.

3.3.5 Results for RQ2: Distribution of Strategy Elements

The mean frequencies of each strategy element per issue are presented in Table 3.5. In addition,
the mean frequency of each strategy element per issue was divided by the mean total number of
strategy elements per issue. The resulting proportions are also shown in Table 3.5. In line with
the findings for RQ1, these proportions highlight a clear predominance of NDM strategy elements
over RDM strategy elements according to the proportions. It should be noted that the number of
codes to an issue report depends significantly on the Number of Comments of the respective issue

48

3.3. RESULTS AND DISCUSSION

Strategy Element M (SD) Pro-
portion
(in %)

Sat SE SA Mat Opt CC CE

Satisficing (Sat) 0.63
(0.99)

12.15 – 0.02 -0.23*** -0.10 0.06 0.01 -0.09

Singular Evaluation
(SE)

0.82
(1.41)

13.80 – -0.26*** -0.25*** 0.14* 0.17** 0.04

Situation Assessment
(SA)

2.88
(3.89)

47.88 – -0.50*** 0.00 0.00 -0.07

Matching (Mat) 1.13
(1.47)

24.33 – 0.01 0.01 0.01

Optimizing (Opt) 0.03
(0.19)

0.35 – 0.14* 0.21***

Consequential Choice
(CC)

0.06
(0.26)

0.72 – 0.21***

Criterion Evaluation
(CE)

0.08
(0.34)

0.76 –

Legend: * p< 0.05; ** p< 0.01; *** p< 0.001

Table 3.5: Means and Standard Deviations of the Frequency of each Strategy Element per Issue
Report, Proportions of Strategy Elements and Intercorrelations between the Frequencies
of Strategy Elements per Comment [Hesse, Lerche, et al. 2016]

report (r = 0.94, p< 0.001). In consequence, the proportion of each code per comment instead of the
absolute frequencies was analyzed and reported for the correlational analyses in Table 3.5. Thereby,
a positive correlation sign indicates that the higher one variable, the higher is the other variable.
Consequently, a negative correlation reveals that the higher one variable, the smaller is the other
one. For instance, the higher the proportion of Satisficing (Sat) codes, the smaller is the proportion of
Matching (Mat) codes (r = -0.26, p< 0.001). In the remainder of this chapter, the Percentage of NDM
as a combined measure of the sum of all NDM codes divided by the total number of all codes per
issue report is reported and discussed. This facilitates the comparison of amounts of NDM and RDM
codes per issue report. In total, 6 significant intercorrelations were found. Two of themwere positive:
the appearance of Optimizing (Opt) and Consequential Choice (CC) were positively correlated with
Criterion Evaluation (CE). Furthermore, four negative correlations were identified: a higher amount
of Satisficing (Sat) and Singular Evaluation (SE)was found, when the amount of Situation Assessment
(SA) was smaller. Also, higher amounts of Singular Evaluation (SE) and Situation Assessment (SA) were
observed, when lessMatching (Mat) codes were set.

49

CHAPTER 3. STATE OF PRACTICE FOR DECISION MAKING STRATEGIES

3.3.6 Discussion of Requirement B: Iterative Decision Documentation

The intercorrelations between the frequencies of strategy elements per comment presented in Sec-
tion 3.3.5 uncover relationships between strategy elements, as depicted in Figure 3.3. Significant
relationships were found only between strategy elements belonging to the same kind of decision
making strategy. Most importantly, a large negative correlation between Situation Assessment and
Matching was identified. Two different explanations may be relevant for this finding. First, an as-
sessment of the decision situation might be documented more often if developers cannot match the
given situation to former ones in order to identify potential solutions. Second, it is also possible that
more matching of decision situations is documented when the developers feel they have clarified the
decision situation sufficiently to compare it to others.

Matching Situation
Assessment

Satisficing Optimizing Consequential
Choice

Singular
Evaluation

Criterion
Evaluation

Legend: Large relationship
Small relationship

Figure 3.3: Relationships between Strategy Elements

An iterative documentation behavior for decision knowledge by developers is already reflected by the
comments added by developers over time. Thereby, the developers document the available decision
knowledge with adaptions and extensions incrementally over time. Whereas this behavior could be
leveraged by the comment functionality of the issue tracking system, it would have also been possible
for developers to document all decision knowledge at once within their issue reports. However, the
distributed decision making within large open source projects and the broad nature of the upcoming
decisions increase the likelihood of an iterative decision making behavior [Ko, DeLine, and Venolia
2007], and, therefore, also the need of developers to document newly emerging decision knowledge
in an iterative way.

The identified relationships between the different strategy elements indicate that this iterative
decisionmaking and documentation behavior does apply for both kinds of decisionmaking strategies
and their strategy elements. However, the actual behavior differs. On the one hand, the documentation
of RDM strategy elements increases the documentation of other RDM elements in further comments.
Examples are the positive correlations of Criterion Evaluation with Optimizing and Consequential

50

3.3. RESULTS AND DISCUSSION

Choice. So, the documentation of RDM elements seems to encourage developers to document further
RDM knowledge within different RDM strategy elements. On the other hand, the documentation of
NDM strategy elements decreases the documentation of other NDM elements. For instance, negative
correlations were found between Situation Assessment andMatching or between Singular Evaluation
and Situation Assessment. Thus, developers appear to document less NDM knowledge in different
NDM strategy elements when a set of NDM strategy elements of a particular type is already given.
Moreover, no correlations were found between the documentation of strategy elements belonging
to different kinds of decision making strategies. In consequence, the mix of both strategies within
one decision appears to be less likely for documentation, although it is possible in practice [Zannier,
Chiasson, and Maurer 2007].

These characteristics result in an important requirement for the documentation approach presented
in this thesis: The approach should provide iterative documentation structures for decision knowl-
edge, which can be used consistently for each kind of decision making strategy. For RDM, the
documentation of knowledge resulting from multiple strategy element types should be supported,
whereas documenting knowledge originating from NDM requires support for larger amounts of
knowledge resulting from particular strategy element types. The mix of both kinds of decision
making strategies during documentation should be supported due to results from existing studies
(e.g., as described by [Zannier, Chiasson, and Maurer 2007; Tang, Aleti, et al. 2010]), but was not
found to be significant within this study.

In addition, the overall amounts of strategy elements provide an important insight on the knowledge
actually documented by developers. These amounts are highest for Situation Assessment andMatching.
Both elements concern the decision situation, which is characterized by information on the decision
problem and its context [Zannier, Chiasson, and Maurer 2007]. In consequence, the documentation
approach should provide differentiated entities to capture and represent knowledge on decision
problems and context as precisely as possible.

3.3.7 Results for RQ3: Differences between Feature Requests and Bug
Reports

An ANOVA was conducted with Issue Type and Branch as between-subject factors and the Percentage
of NDM as dependent variable. The branch was included in order to check if the pattern of results is
similar for the two branches. This 2 (bug vs. feature) by 2 (branch 6 vs. branch 27) ANOVA yielded a
main effect of Issue Type (F[1,256] = 24.10, p< 0.001, ηp2 = 0.09). The Percentage of NDM for bugs
(M = 0.99, SD = 0.03) is significantly higher than for features (M = 0.94, SD = 0.13). This finding
confirms H3. In addition, there is no main effect of Branch (F[1,256] = 1.31, p = 0.25). Thus, the two

51

CHAPTER 3. STATE OF PRACTICE FOR DECISION MAKING STRATEGIES

branches do not differ regarding the percentage of NDM elements. Also, there is no interaction of
Issue Type and Branch (F < 1) which reveals that the pattern (higher percentage of NDM elements
for bugs than for features) is independent of the branch (see also Figure 3.4). However, it should be
noted that the observed difference between feature requests and bug reports is significant, but it is
not large in size as NDM clearly predominated RDM.

Figure 3.4: Percentage of NDM as a Function of Branch and Issue Type. Bars represent the means and
error bars the 95% confidence intervals of the means.

3.3.8 Discussion of Additions to Requirement A

The confirmation of H3 is in line with different decision situations and thereby different development
activity structures for feature requests and bug reports. For feature requests, developers document
slightly more RDM, as they exploit the design space to initially develop features. For bug reports,
developers tend to document more NDMwhen they carry out established development tasks to fix
errors. Both aspects might indicate different levels of reflection for decisions on feature requests
and bug reports by developers. It is possible that more RDM elements for decisions on new features
are documented to make these decisions more comprehensible to all developers. This reasoning is
supported by the small-sized correlation between Issue Type and Issue Duration, where a longer Issue
Duration for bug reports than for feature requests was observed. Thus, feature requests appear to
consist of better substantiated solutions, as developers need less time to discuss them.

However, the relation between the type of decision and the decision making performed by developers
is not yet comprehensive. Further investigation is required to understand how different project
setups and settings influence this relation. For instance, the observed difference between feature
requests and bug reports might be more pronounced in projects with higher degrees of uncertainty
and fewer experts involved. Based on the current finding, the requirement for documenting RDM

52

3.4. THREATS TO VALIDITY

and NDM knowledge can be refined. At least, it should be possible to capture the type of decision
when documenting decision knowledge. Therefore, the type of decision should be reflected within
the overall decision description, and may be refined by adding specific knowledge entities describing
the decision problem.

3.4 Threats to Validity

Four different categories of threats to validity have to be considered for this study according to
Runeson et al. [Runeson et al. 2012]. These categories are described and discussed in the following
paragraphs.

Internal Validity
Threats to internal validity concern the correlation between the investigated factors and other
factors [Runeson et al. 2012]. All retrieved issues were associated to their respective branch manually
by reporters or developers. Thus, associations between issue reports and branches might have
been incorrect due to inconclusive or misleading issue descriptions. This problem was addressed
by the coders, as they checked the content of all issue descriptions for determining the Issue Type.
Also, issue reports belonging to one of the investigated branches might have been missed during
extraction, if they were not associated properly to their respective branch within the issue tracking
system. Therefore, subsets of all issue reports were selected for investigation randomly from both
branches. Nevertheless, the actual ratio of bug reports to feature requests might deviate from our
calculated ratio. An important reason are potentially different report styles according to the role
of their reporters. For instance, it is possible that within issue reports Firefox developers focus on
other aspects than end users. In consequence, also issue discussions within the comments could
have been determined by the reporter. This might affect the issue type, dimensions, and coding
results of the comments. However, the guidelines of the Firefox project for its issue tracking system
mitigated this threat, because every new issue report is required to provide a set of standardized
description contents (i.e., for instance steps to reproduce, actual results, expected results). Finally,
not all information relevant for a decision might be documented within the issue tracking system.
Instead, such information could be retrieved from other sources for documentation, such as mailing
lists or forums. However, if these sources would have been used extensively by project members, they
would have likely referenced or copied information from these sources in order to make it accessible
to others. Some references to such external sources, like links to mailing lists or code revisions, were
found in issue comments and considered during coding.

Construct Validity
Threats to construct validity concern any gaps between intended and actual observations of the

53

CHAPTER 3. STATE OF PRACTICE FOR DECISION MAKING STRATEGIES

researchers [Runeson et al. 2012]. This study does not assess the quality and actual outcome of the
documented decisions, but only focuses on the documented decision making. Also, only documented
strategy elements are covered in this investigation. In contrast, developers may stick to one kind of
decision making, but document their thinking according to another one. For instance, documenting
a claim for a single solution might be the result of a consequential choice between multiple solution
options. Whereas such a situation might happen frequently for individual developers, the shared
documentation is less comprehensive for others due to the omitted information. Therefore, a team
of developers of an open source project is more likely to document the actual thinking to avoid
misunderstandings and diverging interpretations of the given documentation. Thus, this study is
focused on documented decision making only. However, there is the risk that the coding tables
applied within the study could have identified something else than strategy elements or might not
have covered the investigated strategy elements properly. This threat was addressed by creating
the coding tables based on a comprehensive overview of theories and fundamental approaches for
decision making strategies.

Reliability Validity
Threats to reliability validity concern the degree to which data and analyses of a study are dependent
on specific researchers [Runeson et al. 2012]. All codings were performed manually by two human
coders. Thus, codes might have been missed or were applied inappropriately. Also, the two coders
coded one branch each. In consequence, discrepancies in applying the codes could have exist between
the coders, but were not revealed. Both threats were mitigated by performing two rounds of coding
training, where both coders coded the same issues independently, and discussed any observed
differences. The calculated values for the intercoder reliability, which range from good to excellent,
demonstrate the positive effect of this measure.

External Validity
Threats to external validity concern the degree to which the results of our study can be general-
ized [Runeson et al. 2012]. The investigated issue reports originate from only one open source project.
In consequence, the presented findings might not be comparable to results acquired from other
open source projects. However, the Firefox project is a well-established study subject in many other
issue-related studies [Ko and Chilana 2011; Zaman, Adams, and Hassan 2011; Souza, Chavez, and
Bittencourt 2014]. Thus, this project was also chosen for the presented study, as the results should be
at least applicable to other open source projects with similar size and team distribution. Next, issue
reports within branches 6 and 27 might not be representative for issue reports originating from other
branches of the project. This problem exists for all subsets of branches, unless every branch is investi-
gated. This issue was mitigated by choosing two branches to cover both an early and a late project
stage. In consequence, it is not likely, that significant shifts or adaptions during issue documentation
have been missed. Only a small subset of all issues registered in the issue tracking system could be

54

3.4. THREATS TO VALIDITY

analyzed, because more than 173k issue reports existed in April 2017. Nevertheless, the issue sample
size ofN = 260 is large from a statistical point of view, so that the identified relationships are well
grounded.

55

4
State of the Art for Decision Knowledge Documentation

In this chapter, the scientific state of the art for documentation of decision knowledge is investigated
based on the literature. Therefore, a literature review is performed to identify and compare current
approaches with their knowledge models and tools for documenting decision knowledge. A previous
version of this review was published in [Paech, Delater, and Hesse 2014]. First, study foundations, like
the goal of the review and related studies, are presented. Second, the research process of the review
with the definition of research questions, search terms, and search procedures is introduced. Third,
the results of the review are presented and discussed with regard to resulting requirements for the
documentation approach of this thesis. Finally, the threats to validity for the literature review are
described and discussed.

4.1 Study Foundations

In this section, the study goal and search focus of the performed literature review are described. Also,
related studies brought up by the presented review are discussed with regard to their search focus,
results, and limitations.

Study Goal and Search Focus
The requirements derived from the results of the Firefox study (cf. Section 3.3) facilitate a documen-
tation of decisions according to different DM strategies applied by developers. However, the study
also indicated that developers do not make important decisions individually. Instead, they typically
collaborate to refine and adapt decisions over time during different development activities. Thus,
an investigation is required on how decision knowledge can be captured, structured and linked to
related artifacts across these activities.

57

CHAPTER 4. STATE OF THE ART FOR DECISION KNOWLEDGE DOCUMENTATION

Various approaches and tools already exist to support the documentation of decision knowledge, for
instance during the negotiation of requirements or the specification of an architecture. All these
approaches apply specific models to structure decision knowledge. In addition, they often come
with specialized tools to support capturing, linking, and exploiting decision knowledge according
to a proposed model. By identifying major contributions of current approaches regarding their
knowledge models and tools, gaps in covering the collaborative documentation of decisions can
be examined. Thereby, requirements are derived to address research goal 2 (cf. Section 1.1). This
literature review aims to provide such an overview on these approaches and tools with resulting
requirements for the documentation approach proposed in this thesis.

Similar to the goal of the presented Firefox study (cf. Section 3.1), also the goal for the literature
review is described using the Goal Question Metric (GQM) approach [Basili, Caldiera, and Rombach
1994]. The goal is given within the structured template of GQM in Table 4.1.

GQM Template Goal Description

Determine existing approaches and tools for decision knowledge documentation
with respect to supported knowledge structures, links, and usage purposes for documented knowledge
for the purpose of improving the documentation for decision knowledge elements
in the context of development decisions during different development activities
from the viewpoint of researchers.

Table 4.1: Description of Study Goal with GQM

In order to achieve this goal, the search for relevant publications focuses on automatic search engines
of large scientific publishers, selected individual venues, and a manual search. The goal of the search
is to uncover publications presenting a documentation approach for decision knowledge with respect
to requirements engineering, design, and implementation. However, the automatic search was
broadened to cover also other development activities to ensure that no relevant references were
missed.

Related Studies
Several other reviews and mapping studies on decision documentation were uncovered during the
search process. Two different groups of related studies can be distinguished: studies focusing on
concepts and knowledge models for documentation approaches, and studies comparing a selection of
tools for documenting decision knowledge.

Regarding concepts and knowledge models, two mapping studies were presented in [Li, Liang, and
Avgeriou 2013] and [Tofan et al. 2014]. Li, Liang, and Avgeriou investigated 55 papers on knowledge-
based approaches for enhancing and documenting software architecture. Among others, these

58

4.1. STUDY FOUNDATIONS

approaches proposed to support architecturs during knowledge capture and representation, sharing,
recovery, and reuse [Li, Liang, and Avgeriou 2013]. The study found that most papers covered knowl-
edge capture and representation (42 out of 55), whereas only few approaches address knowledge
recovery (3 out of 55) [Li, Liang, and Avgeriou 2013]. However, the study is concerned with architec-
tural knowledge in general, within which decision knowledge is covered only implicitly. Thus, this
study does not provide insights for documentation of decision knowledge in particular. In contrast,
Tofan et al. identified 120 papers concerned with architectural decisions. The authors examined the
papers to answer six different research questions, within which the first research questions explicitly
asked for the documentation of architectural decisions. Within the 120 papers related to documenta-
tion in principal, even 26 approaches with individual tool support were found [Tofan et al. 2014].
Nevertheless, the study of Tofan et al. focuses on architectural decisions. Knowledge on decisions
within other development activities, such as requirements engineering or implementation, was not
investigated. In consequence, differences in knowledge structures, links, and usage purposes for deci-
sion knowledge originating from these activities remain uncovered. Furthermore, several literature
reviews on documenting decision knowledge already exist. Ding et al. address decision documenta-
tion as part of their literature review on knowledge-based approaches for software documentation.
Therefore, they examined 60 different publications for cost, benefit, and quality attributes of soft-
ware documentation. In general, the study finds several attributes to be important for documented
decisions, such as consistency or correctness [Ding et al. 2014]. However, no detailed investigation
of decision documentation is performed, so that the identified quality attributes for documented
decisions are not related to means to facilitate them within decision documentation. Thus, the study
does not provide insights on how decision documentation may be improved in order to address the
identified quality attributes. The literature review of Weinreich and Groher examines 56 approaches
for architectural knowledge management and their empirical investigation. An important finding
of their study is that capturing architectural knowledge is still an unsolved problem [Weinreich
and Groher 2016]. In addition, maintaining and sharing architectural knowledge is addressed by
only a few approaches [Weinreich and Groher 2016]. As approaches for architectural knowledge
management typically include the management of knowledge on architectural decisions [Jansen and
Bosch 2005], these findings are likely to apply also for decision documentation approaches. Neverthe-
less, documented decisions are not covered explicitly within the study. Alexeeva, Perez-Palacin, and
Mirandola focus on investigating approaches for documenting design decisions. They examine 96
papers by six different classification dimensions [Alexeeva, Perez-Palacin, and Mirandola 2016]. In
detail, documentation approaches are examined regarding their goal, formalisation, extent of decision
capture, context, tool-support, and evaluation. Based on this examination, different open questions
for design decision documentation are presented [Alexeeva, Perez-Palacin, and Mirandola 2016].
Whereas the classification dimensions for documentation approaches are a major contribution of the
study, the investigation results for each approach are not described in detail, but only summarized
quantitatively and highlighted by examples. Moreover, the study focuses on design decisions, and

59

CHAPTER 4. STATE OF THE ART FOR DECISION KNOWLEDGE DOCUMENTATION

covers decisions during other activities only implicitly within the context dimension. Thus, it does
not cover the state of the art for decision documentation in general.

In addition to the discussed literature studies, three individual studies comparing different tools
for knowledge documentation were found. First, Ali Babar, Boer, et al. examine a selection of eight
different tools for architectural knowledge management from academia and industry with regard
to core functionality. The authors observe a gap between theories on knowledge management in a
scientific context and their practical implementation within industrial tools [Ali Babar, Boer, et al.
2007]. For instance, scientific tools focus on codification of knowledge, whereas industrial solutions
mostly support knowledge personalization [Ali Babar, Boer, et al. 2007]. However, the study does
not investigate the described tools in detail. In addition, the limited number of tools does not al-
low for more general conclusions. Second, Tang, Avgeriou, et al. present an extensive comparison
of five different tools for architectural knowledge management, which focus on knowledge from
architectural decisions. The tools are compared regarding their support for knowledge representa-
tion, relationships between knowledge elements, and activities to maintain and share documented
knowledge [Tang, Avgeriou, et al. 2010]. The study presents detailed results for each tool, but again
investigates only a small number of existing tools. Third, a recent study was presented by Capilla,
Jansen, et al. to reflect the last decade in architectural knowledge management. Therefore, three dif-
ferent generations of knowledge management tools are identified and described. The study discusses
selected attributes of each approach, such as supported knowledge structures. The authors highlight
the evolution of tools beginning with a focus on knowledge representation and capturing, continuing
with knowledge sharing, and finally addressing the collaborative creation and documentation of
architectural knowledge [Capilla, Jansen, et al. 2016]. This goal of the third generation of tools fits
very well with both research goals of this thesis. However, no structured comparison of the described
tools according to defined criteria is performed.

Overall, a variety of studies on approaches for documenting decision knowledge has been published.
Altogether, these studies indicate a growing amount of approaches and tools for documenting
knowledge, whereas the explicit focus on decision knowledge within the individual approaches
and tools varies. Also, there is a focus on knowledge management and decision documentation
during software architecture and design. In consequence, an overview on the state of the art for
decision documentation is still required to compare different approaches and tools regarding (i)
their representation for decision knowledge, (ii) links between knowledge elements within these
representations, and (iii) the actual capturing and usage of decision knowledge during different
development activities.

60

4.2. RESEARCH PROCESS

4.2 Research Process

In the following paragraphs, the research process for the conducted literature review is explained.
An overview of this process is depicted in Figure 4.1. In detail, the guidelines of Kitchenham and
Charters were applied for preparing and executing the search, as well as for documenting the results
of the review [Kitchenham and Charters 2007]. However, the presented review was not strictly
conducted as a systematic literature review, as the literature was assessed by one researcher only.

Preparation Phase Search Phase Analysis Phase

Definition of
Research Questions

Derivation of
Search Terms for
Automated Search

Manual
Search

Automated
Search

Identification of
Relevant Hits

Analysis of
Relevant Hits

Legend: Followed by

Figure 4.1: Overview of the Literature Review Process

4.2.1 Preparation Phase

First, the literature review was prepared by defining the research questions to be answered. Then,
appropriate search terms for automated search of relevant publications were derived based on the
research questions.

Definition of Research Questions
For the literature review, the following research questions (abbreviated as RQ) were defined with
regard to research goal 2, the investigation of decision documentation during different development
activities, and its open questions (cf. Section 1.1):

RQ1: How can decision knowledge be structured?

RQ2: Which tools are used to capture decision knowledge in relation to further knowledge?

RQ3: How is decision knowledge used?

61

CHAPTER 4. STATE OF THE ART FOR DECISION KNOWLEDGE DOCUMENTATION

In detail, RQ1 aims to investigate, which decision knowledge elements belong to a core set of elements
for documenting decision knowledge. Therefore, it is necessary to examine decision knowledge
elements and their related structures proposed by current documentation approaches. However, this
requires to also investigate the links between these elements, as linking knowledge elements is an
important mechanism for structuring them (cf. Section 2.4). Thereby, RQ1 contributes to the first
open question for research goal 2 by uncovering which knowledge elements should be contained
in a core set for documentation during requirements engineering, design and implementation. In
contrast, RQ2 aims to create a deeper understanding of the tools for documenting decision knowledge.
Regarding the currently available tools for documentation, capturing decision knowledge is an
important functionality according to the findings of the related studies presented in the previous
section. In particular, this requires capturing decisions in relation to development activities from
which they originate. Therefore, also relations between decision knowledge and other development
knowledge and artifacts need to be examined. Moreover, captured knowledge should be explored
and used by developers, which is addressed by RQ3. Together, RQ2 and RQ3 contribute to the
second open question for research goal 2 by providing insights on specific capturing mechanisms for
decision knowledge during different development activities, and how this knowledge could be used
by developers.

Derivation of Search Terms for Automated Search
In order to perform an automated search to investigate the presented research questions, search
terms for the automated search were derived. These terms are given in Table 4.2.

Search
Term

Definition of Search Term Restriction

Term 1a “Decision knowledge” OR “decision rationale” OR “decision motivation” OR “decision
intention”

Title, abstract,
keywords

Term 1b “Decision knowledge” OR “decision rationale” OR “decision motivation” OR “decision
intention” OR “design decision” OR “requirements decision” OR “implementation deci-
sion” OR “test decision” OR “maintenance decision” OR (“management decision” AND
“software project”)

Title, abstract,
keywords

Term 2 ModelOR representationOR informationOR captureOR linkORbenefitOR advantage Title, abstract,
keywords

Table 4.2: Overview of Search Terms for the Literature Review [Paech, Delater, and Hesse 2014]

Term 1a and term 1b were used to identify literature related to decision knowledge. Such literature
may address documented knowledge directly, drivers for decisions, or decisions during different
development activities. Therefore, various synonyms for decision knowledge and kinds of decisions,
such as “decision rationale” or “design decision”, were used alternatively in these terms. If term 1a

62

4.2. RESEARCH PROCESS

yielded not enough hits for a particular search engine, term 1b was used instead, as it provided more
alternative search strings for decision knowledge. However, searching solely for “decision” or “design
decision” produced far too many results. Thus, term 2 addressed the specific contents required to
answer the research questions. The literature was searched for contributions to knowledge models
or representations as well as for capturing and linking concepts for decision knowledge. Also,
approaches using unstructured representations were covered by adding “information” to the search
term. Furthermore, the usage of decision knowledge was described more specifically by “benefit”
and “advantage”. During the automated search, a combination of term 2 and either term 1a or term
1b was applied to the search request.

4.2.2 Search Phase

The actual literature search was performed twice. The first search was carried out in October 2012,
as reported in [Paech, Delater, and Hesse 2014]. The second search was performed in May 2017 to
enrich the previous search results with relevant literature published since the first search. In both
searches, an automated and a manual search was carried out.

Automated Search
During the automated search, the sources IEEE [IEEExplore 2017], ACM [ACM Digital Library 2017],
SpringerLink [SpringerLink 2017], and ScienceDirect [Elsevier ScienceDirect 2017]were searched using the
defined search terms. In addition, also the International Journal of Software Engineering and Knowledge
Engineering (IJSEKE) [The International Journal of Software Engineering and Knowledge Engineering 2017]
was included in the search, because this venue is focused on publishing knowledge-based approaches
for research problems in software engineering. Table 4.3 shows the search requests within each
source.

Sources Automated Search Request Restriction

IEEE, ACM Term 1a AND Term 2 None
SpringerLink, ScienceDirect Term 1a AND Term 2 Category “Computer Science”
IJSEKE Term 1b AND Term 2 None

Table 4.3: Search Requests Applied for Different Sources

In general, IEEE, ACM, and IJSEKE focus on publications belonging primarily to the discipline of
computer science. Therefore, it was not necessary to apply any search restrictions within the search
requests for these sources. In contrast, SpringerLink and ScienceDirect offer a broad variety of
publications from other disciplines, such as engineering, or medicine. Thus, the search for these two

63

CHAPTER 4. STATE OF THE ART FOR DECISION KNOWLEDGE DOCUMENTATION

sources was limited to the field of “Computer Science”.

Manual Search
The manual search complemented the automated search by assessing papers given in the references
of relevant hits by their title and abstract. Based on the hits of the automated search and the existing
related studies, approaches for documenting design decisions were explored in more detail with
this search. In addition, other topics related to decision documentation, such as decision science or
management, were partially addressed within the manual search. Whereas relevant hits for these
topics contributed to other chapters of the thesis, e.g. to enrich the background on decision making
(c.f. Section 2.3), these hits were not considered within the results of the literature review.

4.2.3 Analysis Phase

Finally, all hits retrieved by automated and manual search from the two literature searches were
assessed for relevant hits. Therefore, relevant hits were identified according to standardized criteria,
and afterwards analyzed for their contribution to the results.

Identification of Relevant Hits
An overview of the amounts of hits from the different searches and exclusion rounds is given in
Figure 4.2. In total, the automated search in 2012 provided 520 hits, whereas the automated search in
2017 added another 200 hits. Also, the manual search produced 27 further hits. Based on these hits,
two exclusion rounds were performed. Hits were considered relevant if they explicitly addressed
decision knowledge and its content structures, links, capturing mechanisms, documentation tools,
or usage of decision knowledge. Hits were not considered if their full text was not retrievable, or
if hits were duplicates. In the first round, all hits were examined according to their title, and their

Number of Search Hits Number of Relevant Hits

Automated
Search Hits:

720

Manual
Search Hits:

27

Exclusion
Round 1

Remaining: 109
out of 747

Exclusion
Round 2

Remaining: 39
out of 109

Legend: Processed in

Figure 4.2: Search Hits and Relevant Hits from Searches Performed in the Review

64

4.3. RESULTS AND DISCUSSION

abstracts, if necessary. Thereby, 109 hits were identified as potentially relevant. In the second round,
all abstracts were read and the full text of promising publications publications was examined carefully
for contributions. This revealed 39 publications to be relevant for the review.

A detailed overview of all publications resulting from exclusion round 2 can be found in Appendix A.
In detail, the automated search using term 1a produced 22 relevant publications, term 1b yielded 2
relevant sources, and manual search contributed another 15 relevant publications. Documentation
approaches and tools are addressed by 31 relevant publications, whereas 8 sources are reviews and
mapping studies. Compared to the previous review published in [Paech, Delater, and Hesse 2014], six
additional publications on documentation approaches were uncovered, and six additional related
existing studies were found.

Analysis of Relevant Hits
All relevant hits were carefully examined in detail for their contribution regarding the given research
questions. The resulting analysis regarding these research questions is presented in the following
Section 4.3. However, if a publication was found silent with regard to the research questions, it was
excluded from the aforementioned final set of relevant hits.

4.3 Results and Discussion

In the following sections, results for the research questions are described considering all relevant
publications. Requirements for the documentation approach presented in this thesis were either
newly derived from these results or, if appropriate, existing requirements were extended. It should
be noted, that the approach “Decision, goals, and alternatives” (DGA) was described in four different
publications [Davide Falessi, Cantone, and Becker 2006; Davide Falessi, Becker, and Cantone 2006;
David Falessi, Cantone, and Kruchten 2008; Davide Falessi, Capilla, and Cantone 2008], but is
referenced in the following sections by the first source only. Also, some approaches use the term
meta-model to distinguish a generalized knowledge model from its instances used to structure and
document specific decisions. In contrast, other approaches were found using the term knowledge model

for an abstract model for documenting decision knowledge. Both terms will be used synonymously
in the following sections.

4.3.1 Results for RQ1: Decision Knowledge Structures

All documentation approaches for decision knowledge revealed by this literature review propose and
employ their own meta-models for structuring decision knowledge. Nevertheless, these approaches

65

CHAPTER 4. STATE OF THE ART FOR DECISION KNOWLEDGE DOCUMENTATION

typically refer to basic representation concepts for decisions, such as QOC or DRL (cf. Section 2.4),
and adopt previous documentation approaches. An important and fundamental meta-model for
documenting decision knowledge is the documentation model by Tyree and Akerman. Like many
other current documentation approaches, this model aims to capture and structure knowledge
originating from design decisions [Tyree and Akerman 2005]. The knowledge elements of the model
are depicted in Table 4.4.

Knowledge Element Considered Content

Issue Open questions addressed by the decision
Decision The alternative finally chosen in the decision
Status A state describing the current decision condition, like pending, approved, or rejected
Group The category the decision belongs to
Assumptions Assumptions concerning the context of the decision and their influences on the alterna-

tives considered
Constraints Limitations that result from the chosen alternative
Positions Alternatives considered in the decision
Argument Rationale supporting the selected position
Implications The consequences which arise from the decision, like the need to adapt an artifact
Related decisions Decisions related to the one described, e.g., due to influences or dependencies
Related requirements Software requirements that set or influence the objectives for the described decision
Related artifacts Other artifacts being concerned by the decision or concerning it
Related principles Institutional principles that concerned or influenced the decision
Notes Further notes related to the decision process

Table 4.4: Decision Knowledge Elements of the Model by Tyree and Akerman

The model of Tyree and Akerman is structured as a documentation template for decisions with
predefined contents. For instance, the Decision itself is captured together with its underlying Issue as
a description of the decision problem. Context knowledge is covered by Assumptions, Constraints,
and Implications. Also different solution options may be stated by documenting different Positions
with their related Arguments. The decisions’ Status can be used to describe the actual condition of the
decision, whereas the Group classifies the topic addressed by the decision. Relations may be specified
between decisions, and to other related development knowledge, such as fundamental Principles,
Requirements and development Artifacts.

Whereas the model of Tyree and Akerman already provides 13 different knowledge elements, other
documentation approaches uncovered by the literature review add further knowledge elements or
refine existing ones. A summary of the characteristics of these documentation approaches and their
additions to the model of Tyree and Akerman is given in Table 4.5. Many approaches extend the
documentation by refining specific knowledge elements. For instance, some approaches provide

66

4.3. RESULTS AND DISCUSSION

Approach Characteristics Additions to Tyree and Akerman

Cooperative conceptual mainte-
nance model (CM2) [Canfora,
Casazza, and De Lucia 2000]

Focus on decision rationale in the soft-
ware maintenance process; comments are
used to state rationales on source files

Refinement of related artifacts

RATSpeak [Burge and Brown
2004]

Extends DRL; emphasis on position and
argument element

Background information like trade-
offs, argument ontology

[Jansen and Bosch 2005] Focus on architecture decisions Refinement of implications through
architectural modifications

[Smith, Bohner, and McCrickard
2005]

Decisions and related knowledge from de-
velopment and project management

Claims, risks

DAMSAK [Ali Babar, Gorton,
and Kitchenham 2006]

Focus on design decision and rationale Scenario descriptions for decisions

Decision, goal, and alternatives
(DGA) [Davide Falessi, Becker,
and Cantone 2006]

Extends Tyree and Akerman Project objectives

[Kruchten, Lago, and Vliet 2006] Focus on design decisions; Many rela-
tionships between decisions such as “con-
strains”, “forbids”, “enables”

Enhanced state model, decision scope

[Capilla, Nava, and Duenas 2007;
Capilla, Zimmermann, et al.
2011]

Distinguishes optional and mandatory at-
tributes; Focus on relationships between
decisions and other knowledge

Attributes for decision evolution, Re-
lationships to quality attributes

[Zimmermann, Gschwind, et al.
2007]

Extends QOC Involved persons such as decision
identifier, responsible, taker

Architecture rationale and ele-
ments linkage (AREL) [Tang, Jin,
and Han 2007]

Focus on design decisions and rationale Motivational reasons for decisions

ADDRA [Jansen, Bosch, andAvge-
riou 2008]

Focus on design decisions, identified by
the delta between two architectural states

Problem causes

[Jansen, Avgeriou, and Ven 2009] Focus on design decisions and knowledge
domain modeling

Tailored knowledge meta-model

[Konemann 2009] Focus on design decisions UML design models
[Rockwell et al. 2009] Focus on engineering design Extended description of alternatives
[Buchgeher and Weinreich 2011] Focus on tracing decisions from architec-

ture to code
Code resulting from decisions

Toeska rationale extraction
(TREx) [López et al. 2012]

Focus on realization of non-functional re-
quirements (NFR)

Ontology for architecture and NFR;
Decision goals

[Cleland-Huang et al. 2013]* Focus on architectural goals and concerns
of decisions

Quality goals

[Nowak and Pautasso 2013]* Focus on position-based argumentation
and situational awareness

Architecture elements

[Gaubatz, Lytra, and Zdun 2015]* Focus on collaborative decision making Formalized decision constraints
[Manteuffel, Tofan, Avgeriou, et
al. 2016]*

Focus on decision viewpoints, like rela-
tionships, details, chronology

Decision history, involved stakehold-
ers, UML design models

*Additional hit compared to the previous review published in [Paech, Delater, and Hesse 2014]

Table 4.5: Comparison of Revealed Decision Documentation Approaches

67

CHAPTER 4. STATE OF THE ART FOR DECISION KNOWLEDGE DOCUMENTATION

more sophisticated models for rationales, like RATSpeak with an argument ontology [Burge and
Brown 2004] or AREL with motivations for taking a decision [Tang, Jin, and Han 2007]. Other
approaches provide an extended problem description by adding problem causes [Jansen, Bosch, and
Avgeriou 2008], decision goals [López et al. 2012], and quality goals [Cleland-Huang et al. 2013].
The solution description is enhanced by providing a more sophisticated knowledge structure for
decision alternatives [Rockwell et al. 2009]. Furthermore, documentation approaches also propose a
specialized documentation of decision knowledge related to particular development activities. For
instance, Jansen and Bosch provide a refinement for implications by adding the resulting architectural
modification [Jansen and Bosch 2005]. In contrast, architectural elements can be added directly
to decision knowledge [Nowak and Pautasso 2013], or linked to UML diagrams [Konemann 2009;
Manteuffel, Tofan, Avgeriou, et al. 2016]. Similarly, requirements are integrated with links to project
objectives [Davide Falessi, Becker, and Cantone 2006] and non-functional requirements [López
et al. 2012]. Moreover, the content and status model of documented decisions may be more formal-
ized [Gaubatz, Lytra, and Zdun 2015; Kruchten, Lago, and Vliet 2006], as well as the evolution of
decisions can be covered explicitly by attributes [Capilla, Nava, and Duenas 2007].

A detailed examination of the knowledge models suggested by the different documentation ap-
proaches is given in Table 4.6. Several characteristics of the uncovered documentation approaches
are summarized in this table. First, themodel structure is investigated, because this structure offers
fundamental insights for answering the first research question of this review. Second, iteration support
and refinement support within these model structures are highlighted, as both aspects need to be
covered in order to support developers in documenting decisions collaboratively. Third, the strategy
support of each approach is investigated. Thereby, it is determined whether both RDM and NDM
strategies are supported.

In general, the model structure of documentation approaches may be monolithic like static text
templates, a meta-model with fixed relations, or flexible with compositions and aggregations of
knowledge elements. In detail, it was also investigated whether approaches support developers to
extend their documented decisions in multiple iterations over time. For instance, this requires a
versioning of knowledge elements or attributes to highlight evolved knowledge. Also, the approaches
were checked for any kind of refinement structures for documented knowledge, such as fine-grained
refinement elements or refinement relations within their meta-model. Finally, the approaches were
assessed for the support of different decision making strategies according to their documentation
support of decision solutions. The documentation could focus either on choice for RDM or match for
NDM according to the strategy’s mechanism for solving decision problems [Zannier, Chiasson, and
Maurer 2007].

Interestingly, RATSpeak is the only approach providing a flexible structure for its knowledge model

68

4.3. RESULTS AND DISCUSSION

Approach Model
Structure

Iteration
Support

Refinement
Support

Strategy
Support

CM2 [Canfora, Casazza, and De Lucia 2000] Fixed Yes No refinement Choice
RATSpeak [Burge and Brown 2004] Flexible Yes Refinement ele-

ments and rela-
tions

Choice

[Jansen and Bosch 2005] Monolithic No No refinement Choice
[Smith, Bohner, and McCrickard 2005] Fixed Yes No refinement Match
DAMSAK [Ali Babar, Gorton, and Kitchen-
ham 2006]

Monolithic No No refinement Match

DGA [Davide Falessi, Becker, and Cantone
2006]
[Kruchten, Lago, and Vliet 2006] Fixed Yes Refinement rela-

tions
Choice

[Capilla, Nava, andDuenas 2007; Capilla, Zim-
mermann, et al. 2011]

Fixed Yes Refinement
elements,
sub-types

Choice

[Zimmermann, Gschwind, et al. 2007] Fixed Yes Refinement rela-
tions

Choice

AREL [Tang, Jin, and Han 2007] Monolithic Yes Refinement ele-
ments

Choice

ADDRA [Jansen, Bosch, and Avgeriou 2008] Fixed Yes No refinement Choice
[Jansen, Avgeriou, and Ven 2009] Monolithic No Refinement ele-

ments
Choice

[Konemann 2009] Monolithic No No refinement Choice
[Rockwell et al. 2009] Fixed No Refinement rela-

tions
Choice

[Buchgeher and Weinreich 2011] Monolithic Yes Refinement rela-
tions

Choice

TREx [López et al. 2012] Fixed Yes Refinement ele-
ments

Choice

[Cleland-Huang et al. 2013]* Monolithic No Sub-types Choice
[Nowak and Pautasso 2013]* Fixed Yes No refinement Choice
[Gaubatz, Lytra, and Zdun 2015]* Fixed Yes No refinement Choice
[Manteuffel, Tofan, Avgeriou, et al. 2016]* Fixed Yes No refinement Choice

*Additional hit compared to the previous review published in [Paech, Delater, and Hesse 2014]

Table 4.6: Comparison of Knowledge Structures within the Documentation Approaches

69

CHAPTER 4. STATE OF THE ART FOR DECISION KNOWLEDGE DOCUMENTATION

with both refinement elements and relations [Burge and Brown 2004]. All other approaches either
rely on a monolithic or a fixed structure. The majority of approaches (13 out of 19) provides support
for an iterative documentation of decision knowledge. Nevertheless, this does not imply that these
approaches also propose structures for refining given knowledge. For instance, [Smith, Bohner, and
McCrickard 2005] and ADDRA [Jansen, Bosch, and Avgeriou 2008] do not support refinement of
documented decision knowledge. In contrast, [Rockwell et al. 2009] and [Jansen, Avgeriou, and Ven
2009] do offer fine-grained knowledge elements and relations for structuring decisions, but lack
support for distinguishing different documentation versions. Only the two approaches described
in [Smith, Bohner, and McCrickard 2005] and [Ali Babar, Gorton, and Kitchenham 2006] support
an NDM documentation by matching solutions according to a described decision situation. All
other approaches focus on RDM documentation by choice of a solution, e.g. by extending QOC
(cf. [Zimmermann, Gschwind, et al. 2007; Gaubatz, Lytra, and Zdun 2015]) or DRL (cf. [Burge and
Brown 2004]). In summary, no approach was found which offers a flexible structure of its knowledge
model together with support for iterative documentation, refinement of given knowledge, and
support for documenting both RDM and NDM.

4.3.2 Discussion of Additions to Requirements A and B

In the following paragraphs, additions to the requirements specified in Section 3.3 are discussed
based on the results for decision knowledge structures in current documentation approaches.

Additions to Requirement A: Documentation of RDM and NDMDecisions
The results of the Firefox study presented in Section 3.3.3 already highlight the necessity to capture
knowledge from both, RDM and NDM. In addition, the results of the literature review for RQ1
outline the missing support for a combined documentation of RDM andNDM in current approaches.
First, the majority of approaches supports decision knowledge resulting from RDM according
to their employed knowledge model, whereas only two approaches were found to support NDM
documentation. This shows a discrepancy between the actual decisionmaking behavior of developers
and the support for structuring decision knowledge according to the applied decisionmaking strategy
during documentation. Regarding the results of the Firefox study, this might indicate that decision
knowledge is currently lost because developers often use NDM, but are typically not supported
in documenting this knowledge. Second, no approach was found which actually integrates the
documentation of decision knowledge resulting from both RDM and NDM. However, the results of
the Firefox study and other studies (cf. [Zannier, Chiasson, and Maurer 2007; Tang, Aleti, et al. 2010])
indicate that different developers tend to mix decision making strategies within one decision. Thus,
knowledge models for documentation are required to provide structures supporting both RDM and
NDM documentation.

70

4.3. RESULTS AND DISCUSSION

Regarding the required knowledge structures for such an integrated documentation of RDM and
NDM, the results for RQ1 indicate that particularly knowledge elements capturing decision solutions
from RDM and NDM need to be integrated. For instance, it should be possible for developers to
document NDM-related claims as well as RDM-related solution alternatives for the same decision.
In addition, context knowledge, such as scenario descriptions originating from NDM and criteria
originating from RDM, should be structured to facilitate documentation within the same decision.

Additions to Requirement B: Iterative Decision Documentation
The results of the Firefox study indicate that developers extend decision documentation iteratively
over time, as new decision knowledge arises, which is subsequently added to the documentation
(cf. Section 3.3.5). Nevertheless, the results of the literature review regarding RQ1 indicate that
decision documentation in an iterative way with flexible knowledge structures is not supported
sufficiently. Whereas many approaches enable developers to add further decision knowledge itera-
tively, only a few approaches also provide structures that can be used for knowledge refinement or
even extensions of the knowledge model. Moreover, no approach was found that integrates support
for iterative refinement with flexible structures and support for RDM and NDM within a single
knowledge model. Also, current documentation approaches struggle to represent changes in the
content and structure of decision knowledge, such as new or extended knowledge elements, and
adaptions in the decision making behavior of developers.

In consequence, a flexible knowledge model with refinement support is an important addition
to requirement B. In detail, the documentation approach presented in this thesis is required to
provide defined abstract knowledge elements, which can serve as extension points for the given
knowledge structure. These defined abstract knowledge elements are an important improvement
to the monolithic and fixed structures employed by most current approaches. As a foundation
for iterative refinement of documented decisions, a versioning of decision knowledge is required.
Furthermore, refinement elements and relations should be provided that allow for extending and
adapting given knowledge elements. On the one hand, this requires fine-grained knowledge elements
to enrich already given general knowledge elements over time. On the other hand, specific relations
between related decision knowledge elements enable developers to add further dependencies, which
emerge during decision evolution.

4.3.3 Results for RQ2: Tools for Capturing and Linking Decision Knowledge

All approaches were examined for their capturing support for decision knowledge, and their abilities
to link decision knowledge to other related knowledge. A summary of this investigation is described
in Table 4.7. In general, three major mechanisms for capturing decisions knowledge were identified:

71

CHAPTER 4. STATE OF THE ART FOR DECISION KNOWLEDGE DOCUMENTATION

Approach Tool Capturing Linked Development Knowledge

CM2 [Canfora, Casazza, and De
Lucia 2000]

COMANCHE Manual Decisions and code files

RATSpeak [Burge and Brown
2004]

SEURAT, SEURATArchi-
tecture [Wang and Burge
2010]

Manual Decisions and requirements, code files

Archium [Jansen and Bosch 2005] Archium Manual Decisions and architectural knowledge
[Smith, Bohner, and McCrickard
2005]

LINK-UP Manual Decisions and design knowledge,
project management knowledge

[Tyree and Akerman 2005] – Manual Decisions and other related decisions,
requirements and artifacts

DAMSAK [Ali Babar, Gorton,
and Kitchenham 2006]

PAKME [Ali Babar and
Gorton 2007]

Manual Decisions and requirement

DGA [Davide Falessi, Becker, and
Cantone 2006]

– Manual Decisions and goals, other related deci-
sions, requirements, and artifacts

[Kruchten, Lago, and Vliet 2006] – Manual Decisions and architectural knowledge
[Capilla, Nava, and Duenas 2007;
Capilla, Zimmermann, et al.
2011]

ADDSS Manual Decisions and other related decisions
and architectural knowledge

AREL [Tang, Jin, and Han 2007] AREL Manual Decisions and architectural knowledge
[Zimmermann, Gschwind, et al.
2007]

ADkwik Hybrid Decisions and architectural knowledge

ADDRA [Jansen, Bosch, andAvge-
riou 2008]

– Automated Decisions and architectural knowledge

[Jansen, Avgeriou, and Ven 2009] Knowledge architect Hybrid Decisions and architectural knowledge
[Konemann 2009] – Manual Decisions and UMLmodels
[Rockwell et al. 2009] – Manual Decisions and requirements
[Buchgeher and Weinreich 2011] LISA Automated Decisions and architectural knowledge,

code files
TREx [López et al. 2012] Plugins/Rationale repos-

itory
Automated Decisions and text documents

[Cleland-Huang et al. 2013]* Archie Hybrid Decisions and requirements, architec-
tural knowledge, code files

[Nowak and Pautasso 2013]* Architecture Warehouse Manual Decisions and architectural knowledge
[Gaubatz, Lytra, and Zdun 2015]* CoCoADvISE Manual Decisions and architectural knowledge
[Manteuffel, Tofan, Avgeriou, et
al. 2016]*

Decision Architect [Man-
teuffel, Tofan, Koziolek,
et al. 2014]*

Manual Decisions and UMLmodels

*Additional hit compared to the previous review published in [Paech, Delater, and Hesse 2014]

Table 4.7: Comparison of Capturing Mechanisms and Linked Development Knowledge

72

4.3. RESULTS AND DISCUSSION

manual elicitation, automated extraction, or a hybrid approach. Manual elicitation supports develop-
ers in documenting decisions manually, whereas the automated extraction of decision knowledge
derives knowledge from existing sources by knowledge discovery techniques. Hybrid approaches
combine both manual elicitation and automated extraction. Applying these capturing mechanisms,
the investigated approaches create different kinds of links to related knowledge.

All early approaches up to AREL [Tang, Jin, and Han 2007] as well as the approaches of [Kone-
mann 2009], [Rockwell et al. 2009], [Nowak and Pautasso 2013], [Gaubatz, Lytra, and Zdun 2015],
and [Manteuffel, Tofan, Avgeriou, et al. 2016] support the manual elicitation of decision knowledge
according to the input of developers. ADDRA [Jansen, Bosch, and Avgeriou 2008], LISA [Buchgeher
and Weinreich 2011], and TREx [López et al. 2012] use an automated tool-based extraction of deci-
sion knowledge from given artifacts. In detail, ADDRA recovers architectural models from given
source code and other documents. Deviations in architecture are identified, which indicate possible
decisions. LISA logs change events for architectural models and within code files. Based on these
changes, decisions are linked with related architectural model elements and their implementation. In
contrast, TREx derives decision knowledge by text mining in given text documents. Furthermore,
the hybrid approaches ADkwik [Zimmermann, Gschwind, et al. 2007], knowledge architect [Jansen,
Avgeriou, and Ven 2009], and Archie [Cleland-Huang et al. 2013] allow developers to manually enter
decision descriptions according to their respective meta-models. In addition, ADkwik is capable
of creating an initial description of design decisions based on textual requirements. Knowledge
architect supports developers in semi-automatically extracting a project-specific decision knowledge
model. Archie supports developers in identifying decisions and trace links to requirements and code
by assigning an abstract link model to concrete project-specific goals, design elements, and code files.

Links are established to related knowledge in many areas. Beside links between related decisions and
their knowledge elements, several approaches link decisions to architectural knowledge or require-
ments from which they originate or which they impact. For instance, TREx creates links between
decision rationale and its source in textual documents. In addition, the approaches of Konemann
and Decision Architect [Manteuffel, Tofan, Koziolek, et al. 2014] enable developers to manually
relate decisions to their corresponding model elements in UML models. The approach of Tyree
and Akerman and DGA [Davide Falessi, Becker, and Cantone 2006] allow for linking any related
development artifact with a decision by textual reference. COMANCHE [Canfora, Casazza, and
De Lucia 2000], SEURAT [Burge and Brown 2004], LISA [Buchgeher and Weinreich 2011], and
Archie [Cleland-Huang et al. 2013] enable developers to link decisions with their realization in
code. The approach of Smith, Bohner, and McCrickard provides annotations for linking claims with
project-related knowledge, such as project deadlines and resource plans.

In summary, most approaches focus on linking decision knowledge with related knowledge originat-

73

CHAPTER 4. STATE OF THE ART FOR DECISION KNOWLEDGE DOCUMENTATION

ing from one specific development activity, such as design or requirements engineering. Only a few
approaches span their links across different development activities, such as the approach of [Tyree
and Akerman 2005], DGA [Davide Falessi, Becker, and Cantone 2006], and LISA [Buchgeher and
Weinreich 2011]. Archie [Cleland-Huang et al. 2013] even relates decisions with requirements, archi-
tectural knowledge, and code files. However, Archie and LISA do not provide extraction support
for decision knowledge from given artifacts, but focus on creating links based on manual decision
descriptions. Furthermore, the approaches of [Tyree and Akerman 2005] and DGA [Davide Falessi,
Becker, and Cantone 2006] only offer to create links between decisions and other artifacts manually
without any tool support.

4.3.4 Discussion of Requirement C: Capturing Decision Knowledge during
Development

Several approaches use artifacts from one development activity to extract or import knowledge
from these artifacts for related decisions. Hereby, it is important to align knowledge capturing and
extraction with the type of artifact that is used. Approaches focusing on design decisions typically use
architectural components and UMLmodels as knowledge source. They link decisions specifically
with these sources, and decision contents refer to these concrete design artifacts. In contrast, textual
descriptions of requirements are analyzed for decision knowledge using text mining and knowledge
discovery techniques. To cover the realization of decisions, typically code files are linkedwith decision
knowledge elements.

However, the results for RQ2 show that currently no approach provides capturing mechanisms
to support knowledge extraction for decisions from given artifacts during multiple development
activities for one integrated decision documentation. Thus, decision knowledge originating from one
development activity remains isolated and is not enhanced by further decision knowledge resulting
from other development activities. For instance, decisions made during requirements engineering
are not reflected during design and implementation due to missing integration of the related decision
documentation. Even current documentation approaches addressing more than one development
activity can be improved, as they do not import decision knowledge originating from these activities,
but only link existing decisions with the related artifacts.

Thus, it is an important requirement for the documentation approach developed in this thesis to
capture decision knowledge during different development activities. As outlined in Section 2.2, the
activities requirements engineering, design, and implementation are most suitable for an integrated
decision documentation. This is also backed up by the findings for RQ2, as all of the investigated
approaches provide links to knowledge originating from at least one of these activities. The doc-

74

4.3. RESULTS AND DISCUSSION

umentation approach is required to support a hybrid extraction of decision knowledge for these
activities, where it is technically suitable and provides useful contributions to decision contents.

4.3.5 Discussion of Requirement D: Decision Knowledge Links

Whereas many current approaches support developers in creating links between decisions and related
artifacts in automated or hybrid way, the granularity of these links varies. Some approaches, like
the model of Tyree and Akerman and DAMSAK [Ali Babar, Gorton, and Kitchenham 2006], link
decisions and their knowledge elements to entire artifacts. In contrast, Archie [Cleland-Huang et al.
2013] and the approach of Manteuffel, Tofan, Avgeriou, et al. link knowledge elements of decisions to
specific design elements, such as UML classes. Although some approaches link decisions to multiple
development activities, none of these approaches provides fine-grained links to all kinds of related
knowledge. Thus, links for one decision might be not comprehensive, as they may be detailed in
relation to design, but coarse-grained for requirements.

In consequence, the last requirement for the documentation approach presented in this thesis is to
provide links from decisions to development knowledge in a fine-grained way. On the one hand,
this complements the fine-grained knowledge elements within the decision knowledge model of the
approach. On the other hand, it assures that developers can always assign links between decisions
and related knowledge at the appropriate level of granularity within the target artifacts. For instance,
it may be important for developers to differentiate between links from decisions to entire use cases
or single actor steps within these use cases. This is also in line with the findings of the Firefox study,
where developers were found to reference entire code commits as well as single screenshots in their
comments to decisions.

4.3.6 Results for RQ3: Usage of Decision Knowledge

All approaches were investigated for usage support of decision knowledge. The results are presented
in Table 4.8. All approaches make decision making more transparent to developers through their
documentation. In addition, they provide a direct navigation to particular knowledge elements within
documented decisions. Three approaches support the enforcement of decisions made. The approach
of Zimmermann, Koehler, et al. proposes to inject decision contents during model transformation
of architectural models and code generation. Similarly, Konemann suggests to apply given decision
knowledge when new design decisions are captured in relation to their corresponding UML models.
The approach of Gaubatz, Lytra, and Zdun supports developers in specifying constraints for their
architectural decisions, which are evaluated for newdecisions. In contrast, several approaches provide

75

CHAPTER 4. STATE OF THE ART FOR DECISION KNOWLEDGE DOCUMENTATION

an impact analysis for decisions and decision changes on related artifacts. RATSpeak [Burge and
Brown 2004] visualizes the impact of decision changes regarding the coverage of requirements and
potential changes within the code. Also Buchgeher and Weinreich track decision to architecture and
code in order to visualize the realization of decisions made. By evaluating dependencies from trace
links, ADDRA [Jansen, Bosch, and Avgeriou 2008] and the approach of Jansen, Avgeriou, and Ven
address the impact of decision changes on the architecture. The approaches of Cleland-Huang et al.
andManteuffel, Tofan, Avgeriou, et al. extend this idea by integrating requirements and decision forces
as drivers for potential decision changes. Similarly, the AREL approach [Tang, Jin, and Han 2007]
employs causes to trace decisions to other knowledge, so that developers can explore requirements
or constraint as potential origins for decision knowledge elements. Only the approach of Smith,
Bohner, and McCrickard explicitly addresses risk management. In detail, potential risks, such as
delays or deviations from planned tasks, are identified in relation to claims within decisions.

Usage Approaches

Transparent decision making All approaches
Direct navigation All approaches
Decision enforcement [Zimmermann, Gschwind, et al. 2007], [Konemann 2009], [Gaubatz, Lytra, and Zdun

2015]*
Impact analysis RATSpeak [Burge and Brown 2004], AREL [Tang, Jin, and Han 2007], AD-

DRA [Jansen, Bosch, and Avgeriou 2008], [Jansen, Avgeriou, and Ven 2009], [Buchge-
her and Weinreich 2011]*, [Cleland-Huang et al. 2013]*, [Manteuffel, Tofan, Avge-
riou, et al. 2016]*

Risk management [Smith, Bohner, and McCrickard 2005]

*Additional hit compared to the previous review published in [Paech, Delater, and Hesse 2014]

Table 4.8: Comparison of Usage Support for Decision Knowledge

In summary, many approaches provide an impact analysis from decisions to related artifacts, and
some approaches are also concerned with preserving decisions within the system under development.
However, no approachwas found that provides particular support for analyzing the impact of changes
within development artifacts on decision knowledge. Also, quality management or communication
of decision knowledge typically remain implicit, as they may be supported by the results from tracing
decisions to quality requirements or from impact analysis.

4.3.7 Discussion of Additions to Requirements C and D

The results for RQ3 indicate the usage of decision knowledge is currently focused on how decisions
influence related development activities. However, it could be beneficial for developers to use such

76

4.4. THREATS TO VALIDITY

relations in a bidirectional way. For instance, this would make it easier for developers to recognize
that unclear or vague requirements lead to assumptions within their corresponding decisions [Hesse
and Paech 2016]. Regarding requirement C, this finding raises the need for bidirectional links, which
may originate from a development artifact to a decision and vice versa. This means that developers
are enabled to create links during decision documentation and when working on other development
artifacts, such as requirement descriptions, design models, and code. Regarding requirement D, links
between decisions and other development knowledge should focus on artifacts that can actually
impact decisions, and are not only affected by decisions themselves.

4.4 Threats to Validity

Four different categories of threats to validity have to be considered for this study according to
Runeson et al. [Runeson et al. 2012]. These categories are described and discussed in the following
paragraphs.

Internal Validity
Threats to internal validity concern the correlation between the investigated factors and other
factors [Runeson et al. 2012]. There is the risk that documentation approaches were designed to
serve other purposes than discovered within the review, for instance regarding the capturing and
usage of decision knowledge. This threat was mitigated by searching not only for the decision
documentation approach itself, but also for tools supporting the respective approach. Thereby, the
intended design and actual realization of the approach could be cross-checked within the tool and its
related publications.

Construct Validity
Threats to construct validity concern any gaps between intended and actual observations of the
researchers [Runeson et al. 2012]. Whereas as many sources as feasible were included, still even more
references from further conferences, journals, and publishers could have been searched. In particular,
the manual search might be incomplete due to low coverage of relevant publications. Nevertheless,
the automated search engines of IEEE, ACM, Elsevier, and Springer already include many important
venues. Thus, most of the relevant literature should have been covered. As the manual search was
based on the references of hits from automatic search, it is less likely that important publications were
not found. Another threat could be that algorithms and data sources of automated search engines
evolve over time, so that quantity and quality of search results might vary. This risk was mitigated
by increasing the quality of the automated searches with exploratory search, and cross-checks for
references within the manual search.

77

CHAPTER 4. STATE OF THE ART FOR DECISION KNOWLEDGE DOCUMENTATION

Reliability Validity
Threats to reliability validity concern the degree to which data and analyses of a study are dependent
on specific researchers [Runeson et al. 2012]. As described in Section 4.2, no strict literature review
according to [Kitchenham and Charters 2007] was conducted. In consequence, the assessment of
literature might have been biased or its classification even might have been incorrectly due to a
missing second reviewer. This threat was addressed by checking all classification results with the
existing studies and examining publications twice, if deviations or different interpretations occurred.

External Validity
Threats to external validity concern the degree to which the results of our study can be general-
ized [Runeson et al. 2012]. Many investigated approaches address design decisions, whereas only a
few approaches focus on decisions related to requirements or code. In consequence, the findings
for the research questions might be specific to design decisions, so that the significance of these
findings is limited for other kinds of decisions. However, this threat is mitigated by the findings for
RQ1 and RQ2. These findings show that approaches addressing different kinds of decisions share
similar knowledge structures and capturing mechanisms for decision knowledge. Next, approaches
not discovered during the searches might influence the findings of the review. In this case, the results
could not be generalized because important approaches were missed. This threat was addressed
by employing the manual search to complement potential gaps of the automated search engines.
Furthermore, related studies were used to check that all important approaches were covered by the
search.

78

Part III

Solution Approach

79

5
An Incremental and Strategy-Independent Approach for

Documenting Decisions

In this chapter, a documentation approach for decision knowledge is developed. This approach
incremental documentation of decisions, and can be used with NDM as well as RDM. First, a running
example is specified to demonstrate the usage of the different documentation elements provided by
the approach. Next, the developed Decision Documentation Model is presented with its elements, their
attributes, and relationships between the elements. Subsequently, it is highlighted how the model
supports decision documentation during requirements engineering, design, and implementation
by providing integrated decision knowledge representations and tailored knowledge capturing
mechanisms for these development activities. Within the presentation of the model, it is explained
how the model realizes the requirements identified in Chapters 3 and 4.

5.1 Running Example

For the introduction of the documentationmodel, a running example is used to illustrate the structure
and usage of the model, its elements, and relationships. This example is derived from decision
situations within the CoCoME project, which models a sales and storage management system for
supermarket enterprises. In particular, the system modeled in the CoCoME project supports sales
processes in single stores as well as an inventorymanagement within the entire enterprise to optimize
product orders from suppliers [Hesse, Kuehlwein, and Roehm 2016]. A detailed description of the
modeled system and the CoCoME project as case study for different architecture and performance
benchmark approaches is given in [Herold et al. 2008]. In this thesis, the modeled system and the
CoCoME project are used synonymously and referred to as CoCoME.

81

CHAPTER 5. AN INCREMENTAL AND STRATEGY-INDEPENDENT APPROACH FOR
DOCUMENTING DECISIONS

For the running example, knowledge on a design decision concerned with migrating major parts of
CoCoME to the cloud is used (abbreviated as migration). Whereas the migration impacts security
requirements and the actual implementation of the system, it is beneficial for its cost-effectiveness
and scalability [Hesse, Kuehlwein, and Roehm 2016]. In practice, decision knowledge typically arises
over time in an unstructured and loosely related way, as indicated by the results of the Firefox
study (cf. Section 3.3). This is reflected by the detailed presentation of the decision knowledge for
the running example, as depicted in Figure 5.1. Within the example, it is assumed that different
developers contribute decision knowledge to the migration. First, the architect Alice brings up the
decision, because she is concerned about the cost-effectiveness of the current system. From her point
of view, migrating sales and order services to the cloud would help to decrease costs significantly.
She also states that this cannot be achieved by only optimizing the current architecture. However,
requirements engineer Bob is worried that the cloudmigration of services may impact system security.
In particular, he wants to preserve secure interactions with customers, but assumes that personal

Bob Alice Carol

Requirements Engineering Design Implementation

Decision: Migration

Decision: Service Adaption

Follow-up Decisions

Ti
m
e

Costs for current
system are too high

Migrate services
to cloud

Decreased costs
for running system

Costs for running
the current system

Current architecture cannot
be optimized for lower costs

Preserve secure
customer interactions

Optimize current
architecture

Cloud is insecure
for personal data

Check all customer
transactions for changes

Integration with
suppliers’ systems missing?

Adapt CoCoME interfaces,
e.g. for interface ProductOrder

Suppliers need to be
informed about changes

Additional effort from
keeping suppliers informed

...... ...

... ...

Figure 5.1: Overview of Decision Knowledge for the Running Example

82

5.2. REQUIREMENTS OVERVIEW

customer data may be exposed within the cloud. Third, developer Carol looks into the details of
implementation. She recognizes a missing integration of external systems, e.g. from suppliers, with
the changed services of CoCoME. This results in additional effort for communication and creates
new dependencies between the systems. Thus, a follow-up decision is made to change the actual
implementation of CoCoME services to address the identified security concerns and third-party
dependencies.

5.2 Requirements Overview

Based on the study results presented in Sections 3.3 and 4.3, several requirements were derived for
the documentation approach and its tool support. These requirements are summarized with regard
to the documentation model in the following paragraphs:

• Requirement A: Documentation of RDM and NDMDecisions
The documentation model shall support the documentation of decision knowledge resulting
from both RDM and NDM. This includes:

A.1 Entities to capture decision knowledge resulting from RDM and/or NDM (cf. Sec-
tions 3.3.4, and 4.3.2)

A.2 Integration of RDMandNDMdocumentationwithin the same decision (cf. Section 4.3.2)

A.3 Classification of different decision types (cf. Section 3.3.8)

• Requirement B: Iterative Decision Documentation
The documentation model shall support an iterative documentation of decision knowledge
for one decision over time. This includes:

B.1 Consistent iterative documentation structures for each kind of DM strategy (cf. Sec-
tion 3.3.6)

B.2 Abstract knowledge elements as extension points (cf. Section 4.3.2)

B.3 Fine-grained knowledge elements for capturing decision problemand context knowledge
(cf. Section 3.3.6)

• Requirement C: Capturing Decision Knowledge during Development
The documentation model shall provide capturing mechanisms for decision knowledge during
different development activities. This includes:

83

CHAPTER 5. AN INCREMENTAL AND STRATEGY-INDEPENDENT APPROACH FOR
DOCUMENTING DECISIONS

C.1 Capturing of decision knowledge during requirements engineering (cf. Section 4.3.4)

C.2 Capturing of decision knowledge during design (cf. Section 4.3.4)

C.3 Capturing of decision knowledge during implementation (cf. Section 4.3.4)

• Requirement D: Decision Knowledge Links
The documentation model shall offer different relations to link knowledge elements with each
other, as well as with further development artifacts. This includes:

D.1 Relations to refine knowledge elements (cf. Sections 4.3.2, and 4.3.5)

D.2 Relations between knowledge elements and development artifacts (cf. Section 4.3.5)

5.3 Decision Documentation Model

In the following subsections, the documentation model elements with their attributes and relations
are introduced. Therefore, all elements of the model are briefly introduced to provide an overview of
the entire model. Then, every element is described in detail using the running example. To distinguish
the different entities, knowledge elements are written in italics, whereas attributes and relations
are written in Courier font. It should be noted that in the following sections decision knowledge element
is used as a term to reference the general type of decision knowledge, whereas concrete decision
knowledge documented for a given example decision is referred to as instance. However, both terms
might be used synonymously if the context clarifies whether general or concrete decision knowledge
is addressed. The graphical notation of the figures presented in the following sections is based on
UML. In detail, knowledge elements are depicted as UML classes, whereas instances of the elements
are shown as UML objects, having an underlined name and a knowledge element as type classifier.
Also, the UML relationship “generalization” is used to visualize sub-types of knowledge elements
by a white triangle arrow tip. Furthermore, the UML relationship “composition” shows that one
knowledge element is contained within another one. This is depicted by a filled rhombus shape as
arrow tip.

5.3.1 Overview

All model elements are depicted in Figure 5.2. The root element is Decision, which constitutes a
container element for decision knowledge regarding one decision. This decision knowledge can be
documented by adding multiple DecisionComponents. Thereby, a Decisionmay be a composition of

84

5.3. DECISION DOCUMENTATION MODEL

different DecisionComponents, so that these components are contained within the Decision. This is
depicted using the Contained in-relation. It should be noted that one DecisionComponentmay also
contain further components. Furthermore, both Decision and DecisionComponent are sub-types of the
abstract KnowledgeElement, which represents a general artifact of software development, such as a
requirement. This is visualized using the Sub-type of-relation.

Four major types of DecisionComponents are distinguished with different sub-types. First, a Question
and its sub-type elements Issue and Goalmay be used to capture knowledge on the decision problem.
Second, Solutions, such as Alternatives and Claims, may be used to document different options to
solve the decision problem. Third, Context elements capture knowledge on the decision context, like
Assumptions about the decision situation, Constraints for the decision, or Implications resulting from
choosing a particular solution. Finally, Arguments and their sub-type Assessment cover knowledge on
rationales supporting or attacking other knowledge elements within the decision.

0..* 0..*

KnowledgeElement

Decision

DecisionComponent

Question Solution Context Argument

Issue

Goal

Alternative

Claim

Assumption

Constraint

Implication

Assessment

Legend: Contained in
Sub-type of

Figure 5.2: Overview of the Decision Documentation Model

The realization of the requirements for the documentation model is briefly introduced using the
model overview. First, the documentation model supports knowledge documentation resulting from
both RDMandNDMdecisions (A.1), as knowledge elements for both kinds of DM strategies are given.
For instance, Claims from NDM decisions as well as Alternatives from RDM decisions may be used
to describe a solution option. Next, the model contains abstract knowledge elements as extension
points for more detailed elements (B.2). These high-level elements are Question, Solution, Context,
and Argument. They can be instantiated with concrete knowledge themselves or may be inherited by
more specific elements. As an example, consider the refinement ofQuestions into Issues and Goals,

85

CHAPTER 5. AN INCREMENTAL AND STRATEGY-INDEPENDENT APPROACH FOR
DOCUMENTING DECISIONS

as well as Context knowledge into Assumption, Constraint, and Implication. Thereby, fine-grained
knowledge elements are provided (B.3). Finally, aDecision is composed of variousDecisionComponents,
which themselves may contain further DecisionComponents. Using this composition mechanism, the
documentation for one decision can be extended over time in an iterative way (B.1). As all other
decision knowledge elements are sub-types of DecisionComponent, the extension allows for using
both RDM and NDM elements in a consistent way (A.2). More details on the realization of these
requirements are given in the following subsections.

5.3.2 Decision and DecisionComponent

The core of the documentation model is formed by the elements Decision and DecisionComponent.
These elements are depicted with their full specification in Figure 5.3. It should be noted that

concerns

0..1

concerns

0..1

contains
0..*

contains

0..*

relatedTo; dependsOn; boundTo; conflictsWith

KnowledgeElement

- name : String
- description : String
- creationDate : Date
- creator : KnowledgeElement

Decision

- progress : ProgressStatus
- implementation : ImplementationStatus
- classification : String
- takenBy : KnowledgeElement

DecisionComponent

- identifiedBy : KnowledgeElement

�enum�
ProgressStatus

Pending
Accepted
Rejected
PreliminaryAccepted

�enum�
ImplementationStatus

Envisioned
Applied
NotApplied
Obsolete

Figure 5.3: Details of Decision and DecisionComponent

86

5.3. DECISION DOCUMENTATION MODEL

KnowledgeElement is used as an abstraction for a basic knowledge element within the documentation
model, which is not necessarily concerned with decision knowledge. It provides basic attributes for
all other knowledge elements within the model, such as a description representing the content of
the element, and a name to summarize its payload. In addition, the creator and the creationDate
provide administrative information about the author and timewhen the knowledge element is created.
Thereby, KnowledgeElement becomes the common foundation for all other documentation model
elements.

Decision
This is a container element to store all knowledge elements a documented decision consists of.
Therefore, it can hold any set of DecisionComponents using the composition contains. This implies
that the existence of the contained DecisionComponent instances depends on the existence of the
containing Decision instance. This dependency was implemented to ensure that DecisionComponent
instances are documented individually for each decision with specific textual contents and links, so
that a particular decision becomes more comprehensive through the documentation. At the same
time, the existential dependency betweenDecisions andDecisionComponents supports the maintenance
of documented decision knowledge, because links to DecisionComponents are removed when the
containing Decision is no longer present. As an extension to the basic attributes of KnowledgeElement,
several administrative attributes are provided. The progress represents the status of decision
making for the decision. For instance, a decision may be Accepted, because the developers agreed
upon the solution, or Pending, when the decision making process is not yet finished. Also, the
decision may be Rejected, if no viable solutions were identified. In addition, is is possible to mark
decisions as PreliminaryAccepted, which is particularly useful for NDM decisions. Then, a
solution is accepted until a better one is discovered or the current solution is no longer applicable.
Furthermore, the Decision provides the ImplementationStatus, which describes the decision
outcome upon realization of the documented solution. This realization is Envisioned as long
as the implementation of the solution is not yet finished. When a solution is fully implemented
and working, developers can mark the decision as Applied. In contrast, NotApplied indicates
that a taken decision is not realized. Moreover, a valid decision may become Obsolete over time,
because it is overruled by follow-up decisions. To enable the classification of different decision types
(requirement A.3), the attribute classification allows for specifying different keywords for one
decision. Also, the developer actually taking the decision is stored within the attribute takenBy, as
the decision might have been documented by a different developer.

Decisions can be linked to each other using different relations. With relatedTo, it is expressed that
some kind of relation exists between two decisions, but the relation cannot be further specified. In
contrast, dependsOn between twodecisionsX andY expresses that Y depends on a successful decision
making process for X. When a decision is made, it can be documented by setting Accepted for the

87

CHAPTER 5. AN INCREMENTAL AND STRATEGY-INDEPENDENT APPROACH FOR
DOCUMENTING DECISIONS

respective decision (cf. ProgressStatus). Evenmore strict is the relation boundTo, which indicates
that Y depends on the application of X. If this relation is used, Applied should be documented for
X (cf. ImplementationStatus). Furthermore, an exclusion relation between two decisions X
and Y can be expressed using conflictsWith. In this case, X and Y cannot be applied together.
These relations help developers to refine their documented decisions over time, and thereby address
requirement D.1. In Figure 5.4, two decisions from the running example are documented as Decision
knowledge elements to illustrate the presented attributes and relations. In the example, the decision
to adapt the service layer of CoCoME is bound to the decision to migrate the system into the cloud.

boundTo

Migration : Decision

name = “Migration to Cloud”
description = “Migrate CoCoME to the cloud”
progress = Accepted
implementation = Envisioned
classification = “Architecture”
takenBy = Alice

Service Adaption : Decision

name = “Service Adaption for Cloud”
description = “Adapt several services provided
by CoCoME to fit Cloud infrastructure”
progress = Accepted
implementation = Applied
classification = “Implementation”
takenBy = Carol

Figure 5.4: Examples for Decision

DecisionComponent
TheDecisionComponent represents the core knowledge element within the documentationmodel, as it
is the parent element for all other decision knowledge elements. LikeDecision, it also inherits the basic
attributes of KnowledgeElement. In addition, it provides a link to the developer identifying the element
using identifiedBy. One DecisionComponentmay contain multiple further DecisionComponents via
the contains-relation. Thereby, trees of DecisionComponents can be created within one Decision
element. In this way, an iterative documentation structure is given (requirement B.1), which supports
developers in adding more DecisionComponents either to a Decision or to existing DecisionComponents
over time. Both Decision and DecisionComponentmay be linked to any other knowledge element using
the relation concerns. In particular, this enables developers to link development artifacts as a special
kind of KnowledgeElement with decisions and their components (requirement D.2, cf. Section 5.4).

5.3.3 Question, Issue and Goal

An overview of the Question element and its sub-elements is given in Figure 5.5. Whereas Question
serves as the general knowledge element to describe decision problems, Issue and Goal are more
fine-grained and specific. In detail, Issue provides the attribute errorDetails to capture erroneous

88

5.3. DECISION DOCUMENTATION MODEL

DecisionComponent

Question

Issue

- errorDetails : String

Goal

- relatedRequirement : KnowledgeElement

Figure 5.5: Details of Question, Issue, and Goal

situations as decision problems. For instance, this would be the case if a bug report is the starting
point of a decision. In contrast, Goal links a relatedRequirement with a textual goal description.
Thereby, a goal can be used to document a feature request, which is directed to extensions and
adaptions of given functionality. In summary, these elements enable the fine-grained capturing of
decision problems (requirement B.3). In addition, they cover decision problems regarding both RDM
and NDM. However, a Question can be instantiated directly if none of the two sub-types fits a given
problem description. This might be the case, when developers start documenting before the kind of
a decision problem is fully determined. Furthermore, aQuestion is appropriate for documenting a
rational problem description (cf. questions in the QOC approach in Section 2.4), whereas Issues and
Goalsmay be used to capture NDM problems. It should be noted that Question can be related with
Solution directly, which is described in Subsection 5.3.7.

Example instances of these three knowledge elements are depicted in Figure 5.6. The figure shows
that the missing integration with the suppliers’ systems from the running example was documented
as Question, which was brought up by Carol. In addition, Alice raised the concern of increased costs,
because the current ability to scale upwith an increasing number of shops is limited. The performance
of the current system appears to be insufficient, as costs increase dramatically for a relatively small
number of shops. Thus, it was documented as Issue with specific details on the error. Furthermore,
Bob strives for the Goal of secure interactions, so that the related security requirement is fulfilled.
This issue type was chosen, because a single requirement needed to be addressed with a solution,
although a potential erroneous behavior of the system was only anticipated, but not yet observed.
In the example, no direct links exist between the aforementioned instances, so that no relations are
depicted in Figure 5.6. However, these instances contain further instances of DecisionComponents
regarding the entire decision documentation for the running example, which will be summarized in

89

CHAPTER 5. AN INCREMENTAL AND STRATEGY-INDEPENDENT APPROACH FOR
DOCUMENTING DECISIONS

Section 5.3.8.

Missing Integration : Question

description = “Integration with
suppliers’ systems missing?”
identifiedBy = Carol

Expensive System : Issue

description = “Costs for current
system are too high”
identifiedBy = Alice
errorDetails = “Costs increase dramatically
for more than 10 shops”

Secure Interactions : Goal

description = “Preserve secure
customer interactions”
identifiedBy = Bob
relatedRequirement = InteractionSecurity

Figure 5.6: Examples for Question, Issue, and Goal

5.3.4 Solution, Alternative and Claim

The knowledge element Solution as well as its child elements are depicted in Figure 5.7. As forQuestion
and its children, also Solution is the general documentation element to cover all kinds of solutions
within decisions. It is extended by the RDM-oriented Alternative (cf. options in the QOC approach
in Section 2.4) and by the NDM-based Claim. For a Claim, the type can be specified, because these
solution descriptions strongly depend on the scenario they are derived from. The content of a Claim

DecisionComponent

Solution

Alternative
Claim

- type : ContentType

�enum�
ContentType

AsIs
ToBe
NotToBe

Figure 5.7: Details of Solution, Alternative, and Claim

90

5.3. DECISION DOCUMENTATION MODEL

may describe an intended and positive change by marking it with ToBe. Also, Claimsmay be used to
simply state an existing solution by using AsIs, or indicate a negative outcome through NotToBe.
Again, it should be noted that Question can be related with Solution directly, which is described in
Subsection 5.3.7.

An example of different instances of Solution elements is depicted in Figure 5.8. Here, the more
general idea of Alice to move the CoCoME services to the cloud is represented as Solution. Bobs
proposal to optimize the current architecture is another option to solve the CoCoME cost and
performance problems, so it is represented as Alternative. In contrast, Carols intended change of the
CoCoME interface was modeled as a Claim, which is an intended improvement within the scenario
of a cloud-based CoCoME.

CloudMigration : Solution

description = “Migrate services to cloud”
identifiedBy = Alice

Optimize Architecture : Alternative

description = “Optimize current architecture”
identifiedBy = Bob

Adapt Interfaces : Claim

description = “Adapt CoCoME interfaces,
e.g. for interface ProductOrder”
identifiedBy = Carol
contentType = ToBe

Figure 5.8: Examples for Solution, Alternative, and Claim

5.3.5 Context, Assumption, Constraint and Implication

An overview of all knowledge elements for documenting the decision context is given in Figure 5.9.
With a variety of attributes, the Context element supports various types of information regarding
the environment and situation surrounding a decision. First, the Context element may be used to
cover knowledge regarding solutions. For this purpose, isCriterion provides a flag to indicate
that context knowledge is useful for evaluating a given solution (cf. criterion in the QOC approach in
Section 2.4). This can be refined by indicating the type of measure for the criterion. For instance,
the evaluation might be performed regarding Quantitative or Qualitative aspects. Also, the
type of context can be specified to mark the description as a current or future situation. The
support for specifying a scenario is important to capture NDM decisions, because this represents a
typical foundation for Claims (cf. scenario-based claim analysis in Section 2.4). Furthermore, context

91

CHAPTER 5. AN INCREMENTAL AND STRATEGY-INDEPENDENT APPROACH FOR
DOCUMENTING DECISIONS

DecisionComponent

Context

- isCriterion : boolean
- measure : MeasureType
- type : ContentType
- scenario : String
- deadline : Date
- budget : float
- relatedPerson : KnowledgeElement
- requirement : KnowledgeElement

Assumption Constraint
Implication

- effect : EffectType

�enum�
EffectType

Positive
Indifferent
Negative
Unknown

�enum�
ContentType

AsIs
ToBe
NotToBe

�enum�
MeasureType

Quantitative
Qualitative

Figure 5.9: Details of Context, Assumption, Constraint, and Implication

knowledgemay refer to timelines, which can be specified using deadline. Similarly, a budget can be
captured. Finally, several references are provided. It is possible to document a relatedPerson as a
potential source of implicit knowledge for the documented context. Also, a requirement addressed
by this element can be specified, as requirements may be critical sources of Context knowledge. For
instance, a security requirement may constrain the solution space of a decision problem. Therefore,
it should be linked to the respective Context instance explicitly. It should be noted that relations
between Context and other DecisionComponents are described in Section 5.3.7.

Several sub-types of Context exist. First, Assumption allows for capturing uncertain information
related to a decision, such as suggestions and assumptions of developers. Second, restrictions and
limitations regarding a decision may be documented using Constraint element. Third, consequences
ofmaking a decision, e.g. by choosing a particular alternative, can be expressed through the Implication
element. Here, the effect can be specified as a qualitative assessment: consequences may be seen as
Positive, Indifferent, or Negative. However, the actual effect of a consequence can also be
unknown when the element is documented.

An example for the described knowledge elements is given in Figure 5.10. Alice has documented the

92

5.3. DECISION DOCUMENTATION MODEL

costs for running CoCoME as an instance ofContext. She marked it as criterion, and also specified the
costs as quantitative measure with a deadline for evaluation. In contrast, Bob contributed an instance
of Assumption for documenting his fear that a cloud solution would be insecure for personal data. In
addition, he has specified potential transaction changes for the customers as an Implication. It is still
unknown whether these changes will impact the transactions in a positive or negative way, so that
he flags the effect as Unknown. Furthermore, Carol identified the need to inform the CoCoME
suppliers as a Constraint.

Costs : Context

description = “Costs for running
the current system”
identifiedBy = Alice
isCriterion = true
measure = Quantitative
type = AsIs
scenario = -
deadline = “01.01.2018”
budget = -
relatedPerson = -
requirement = CostEffectiveness

Insecure Cloud : Assumption

description = “Cloud is insecure
for personal data”
identifiedBy = Bob

Inform Suppliers : Constraint

description = “Suppliers need to be
informed about changes”
identifiedBy = Carol

Transaction Changes: Implication

description = “Check all customer
transactions for changes”
identifiedBy = Bob
effect = Unknown

Figure 5.10: Examples for Context, Assumption, Constraint, and Implication

Overall, the Context element and its sub-types are crucial for enriching documented decisions with
specific knowledge. The intention behind theContext elements is to provide documentation structures
with many attributes to enrich other DecisionComponents with contextual knowledge. Thereby,
the documentation of knowledge on the decision problem and its solution can be separated from
describing the context. First, this allows for adding context knowledge over time, as it is uncovered
or emerges within the decision situation. Second, where attributes are given for Context, duplication
of these attributes is not necessary withinQuestion and Solution elements. Thus, it becomes easier
for developers to maintain the content of these attributes. For instance, the Claim of Carol to adapt
the product order interfaces in the CoCoME running example contains a Constraint, that suppliers
need to be informed about the change. Thereby, the Context element and its sub-types address the
requirement for fine-grained problem and context knowledge elements (B.3).

93

CHAPTER 5. AN INCREMENTAL AND STRATEGY-INDEPENDENT APPROACH FOR
DOCUMENTING DECISIONS

5.3.6 Argument and Assessment

In Figure 5.11, an overview of the elements for the documentation of rationale knowledge is given.
As every rationale for a decision is either an argument backing up the solution or attacking the
alternatives, Argument is the general knowledge element to cover rationales. A sub-type of Argument
is Assessment, which can be used to evaluate solutions according to criteria. Then, it is possible to
indicate whether the evaluation result is a certain quantity according to themeaning of the criterion
or if a certain quality was found. Hereby, the quality types range from VeryGood to VeryPoor
and Inapplicable in case that no quality could be determined.

Arguments can be linked to any other DecisionComponent. In detail, the supports-relation is used to
express that an argument strengthens another DecisionComponent. In contrast, the attacks-relation
indicates that an argument is opposed to a DecisionComponent. In case an argument is a neutral
statement, the comments-relation can be applied. As Argument is a child of DecisionComponent,
arguments can also be related to each other. This may lead to complex argumentation graphs with
sophisticated syntax and semantics.

supports; attacks; comments

1..*
DecisionComponent

Argument

Assessment

- quantity : int
- quality : QualityType

�enum�
QualityType

VeryGood
Good
Average
Poor
VeryPoor
Inapplicable

Figure 5.11: Details of Argument and Assessment

Argumentation Graphs
A prominent example for such argumentation graphs are abstract bipolar argumentation systems, which
are described in detail in [Cayrol and Lagasquie-Schiex 2009]. The foundation for such systems
are arguments that can be related with each other through a positive relation (here: the supports-
relation) and a negative relation (here: the attacks-relation). It is important that an argument
cannot support and attack another argument at the same time, but loops created with these relations
are allowed. For instance, an argument could be self-attacking. Then, complex paths of arguments

94

5.3. DECISION DOCUMENTATION MODEL

connected by the attacks- or supports-relationmay arise. In detail, a path of supports-relations
can end with an attack on a further argument. Then, the first argument of this path attacks the last
one indirectly (referred to as supported attack). Also, sets of arguments can attack or support another
argument, if a direct or supported path of attack or support exists from an argument within the set
to the other argument. Based on this syntax, semantics can be defined to evaluate given argument
graphs for coalitions, and victory regarding the documented relations.

Arguments from the running example are depicted in Figure 5.12. Here, Carol states that it is
additional effort to keep the suppliers informed about interface changes. This Argument is opposed
to the Claim for interface adaptions. In addition, Alice has uncovered that the current architecture
of CoCoME cannot be optimized for lower costs. This Assessment of the criterion of costs has
multiple relations to other knowledge elements. On the one hand, it supports the Solution of
migrating CoCoME to the cloud. On the other hand, it attacks the Alternative to optimize the current
architecture.

attacks

supports

attacks

Adapt Interfaces : Claim

Additional Effort : Argument

description = “Additional effort from
keeping suppliers informed”
identifiedBy = Carol

Costs for Optimized Architecture : Assessment

description = “Current architecture cannot
be optimized for lower costs”
identifiedBy = Alice
quantity = -
quality = Inapplicable

CloudMigration : Solution

Optimize Architecture : Alternative

Figure 5.12: Examples for Argument and Assessment

5.3.7 Relations between DecisionComponents

Several types of links exist to specify relations between DecisionComponents. An overview is given in
Figure 5.13. The principal idea behind these relations is to specify how the evaluation of a Solution
towards a given Question can be documented. First, Questionsmay result from or depend on a certain
Context, which represents a criterion for potential solutions to this question. To document this

95

CHAPTER 5. AN INCREMENTAL AND STRATEGY-INDEPENDENT APPROACH FOR
DOCUMENTING DECISIONS

isBoundTo isAssessedIn

resolves

ContextQuestion Solution

Argument

Assessment

Figure 5.13: Relations between DecisionComponents

situation, the isBoundTo-relation can be used. Second, a Solution can be evaluated for its capability
to fulfill a criterion. Then, it is linked via the isAssessedIn-relation to the respective Context element.
Details on the assessment may be provided by associating an Assessment to this relation. In case that a
solution for a given problem was identified and selected, the corresponding Solution element can be
linked with the underlying Question using the resolves-relation. Any key reason supporting this
selection can be documented through an associated Argument.

isBoundTo isAssessedIn

resolves

isAssessedIn
Costs : Context

Optimize Architecture : AlternativeExpensive System : Issue

CloudMigration : Solution

Costs for Optimized Architecture : Assessment

Decreased Costs : Argument

Figure 5.14: Example of Relations between DecisionComponents

96

5.3. DECISION DOCUMENTATION MODEL

Based on the running example, instances of knowledge elements with the presented relations are
modeled in Figure 5.14. Here, the currently expensive CoCoME system is an Issue, which is obviously
characterized by the Context of costs. Thus, a potential solution should reduce the costs for running
the system. The Solution to migrate CoCoME to the cloud is assessed with regard to this criterion.
It resolves the issue, as it is found to reduce the costs for CoCoME sufficiently. In contrast, the
Alternative to optimize the current architecture does not fulfill the criterion. It should be noted
that these relations are capable to capture any evaluation of Solution elements that was performed
by developers. In consequence, knowledge on criteria and their related Assessments may become
incomplete or inconsistent over time.

5.3.8 Model of Running Example

The detailed introduction of all documentation model elements and relations with their respective
excerpts of the running example in the previous subsections is summarized by an overview of the
entire example presented in Figure 5.15. Here, all instances of model elements with their relations are
depicted based on the example. In addition, it is marked which developer contributed an element to
the documentation. For instance, the original issue of CoCoME being to expensive with the current
architecture was brought up by Alice. Thus, it is one of top level elements within the decision to
migrate CoCoME to the cloud. Then, further elements are added to this issue, like context knowledge
on the costs, a solution for migrating to the cloud, and so on. Thereby, the interplay between Decision
and DecisionComponent via the composite relation contains is shown (visualized as composite
relation). This highlights how the documentation model supports the iterative documentation of
decision knowledge, as the model elements and their instances are able to form knowledge trees
using contains. This nested tree structure represents the origin of the knowledge element instances
in the context of the given decisions. As described in Section5.3.2, all instances ofDecsisionComponent
depend on the existence of their respective root element, which contains them. For instance, the
Constraint to inform suppliers about interface adaptions is contained within the Claim to adapt
the interfaces, as this constraint would not have been brought up and, therefore, could not exist
without the related claim. The tree structure is complemented by relations between the knowledge
elements, e.g. , that the Assessment of costs for an optimized architecture actually supports the Solution
to migrate to the cloud. Thereby, instances contained in different root instances are related to each
other. Thus, the documentation allows for a structural refinement of documented knowledge using
the contains-relation, as well as refinement relations between given knowledge element instances
are provided. Furthermore, it becomes visible how different developers add documented knowledge
for the example decision collaboratively over time. For instance, Alice adds the Assessment on the costs
for an optimized architecture after Bob has documented his Alternative, and Carol adds a Question on
missing integration with the suppliers’ systems to the Solution of a cloud migration identified by Alice.

97

CHAPTER 5. AN INCREMENTAL AND STRATEGY-INDEPENDENT APPROACH FOR
DOCUMENTING DECISIONS

supports

attacks

supports

attacks

isBoundTo

isAssessedIn

isAssessedIn

Migration : Decision

Expensive System : Issue

Costs : Context

Cloud Migration : Solution

Insecure Cloud : Assumption

Transaction Changes : Implication

Decreased Costs : Argument

Missing Integration : Question

Adapt Interfaces : Claim

Inform Suppliers : Constraint

Additional Effort : Argument

Secure Interactions : Goal

Optimize Architecture : Alternative

Costs for Optimized Architecture : Assessment

A

A

A

B

B

A

C

C

C

C

B

B

A

Legend: A B CIdentified by Alice Identified by Bob Identified by Carol

Figure 5.15: Model of the Running Example (without Associations for Associated Classes)

As Alice, Bob, and Carol serve in different roles within the running example, they collaboratively
document the migration decision when performing different development activities. The integration
of the documentation model with these activities is described in the following section.

5.4 Integration with Development Activities

The documentation approach presented in this thesis is integrated with different development ac-
tivities in two ways. First, the concerns relation is used to link Decisions and DecisionComponents

98

5.4. INTEGRATION WITH DEVELOPMENT ACTIVITIES

with knowledge resulting from requirements engineering, design, and implementation. An overview
of these links is given in Figure 5.16. Knowledge from development activities is typically codified
within development artifacts. For instance, use cases may be the result of requirements engineering,
UML diagrams can be created during design, and code files will most likely result from implementa-
tion (cf. Section 2.2). Thus, linking decision knowledge with different development artifacts is an
important step towards the integration of decision documentation with the respective development
activities. In consequence, the presented documentation approach is refined and adapted to provide
these flexible and meaningful links in order to fulfill requirement C. Therefore, a semi-automatic
capturing mechanism for decision knowledge from a heuristic security analysis of use cases and
two manual capturing mechanisms for decisions during UML design and code implementation are
presented in this thesis. It should be noted that these mechanisms demonstrate the principal idea
of capturing decision knowledge to support developers. Similarly to these mechanisms, further
approaches for knowledge capturing might be added using the documentation model in the future.
Second, tool support for linking decision knowledge and development artifacts is required, so that
developers benefit from these links by decreased documentation effort and easier collaboration
during documentation. This is addressed in Section 6.2.

contains

contains

0..*

KnowledgeElement

Requirements Artifact

Design Artifact

Code Artifact

Decision

DecisionComponent

Links via concerns relation

Figure 5.16: Integration of Documentation Model with Development Activity Artifacts

5.4.1 Requirements Engineering: Decisions on Security Requirements

The semi-automatic capturing of decision knowledge during requirements engineering is performed
for security requirements. This approach was previously described in [Hesse, Gaertner, et al. 2014].

99

CHAPTER 5. AN INCREMENTAL AND STRATEGY-INDEPENDENT APPROACH FOR
DOCUMENTING DECISIONS

Security requirements are of crucial importance for long-living information systems, as they have
to be checked and updated regarding new security issues. For instance, vulnerabilities discovered
in systems built previously should be addressed in given security requirements for a new system.
Developers need to address these security issues by making decisions on how to adapt and implement
the related security requirements. A structured documentation of this decision knowledge helps
developers to access and review the decisions, as security requirements are subject to monitoring and
change even after deployment [Hesse, Gaertner, et al. 2014]. Also, new security issues are typically
reflected in emerging expert knowledge. For instance, in order to mitigate these issues, legislation
may change, or developers may adapt their patterns. In consequence, the amount of knowledge
related to security requirements is large compared to other kinds of requirements. To keep track of
this knowledge on security requirements, it is useful for developers to reflect them within decision
documentation [Hesse, Gaertner, et al. 2014]. Thus, this kind of requirements was selected to be
integrated with the presented decision documentation model.

Heuristic Analysis with HeRA
For natural language requirements, vulnerabilities can be identified using the security heuristics
tool HeRA to analyze the textual specifications automatically. A detailed description of this tool,
which is developed by the Software Engineering group at Leibniz Universität Hannover, can be
found in [Gärtner et al. 2014]. HeRA searches use case descriptions for vulnerabilities based on
reported incidents, which are attempts to violate security policies or to gain unauthorized access to
data [Hansman and Hunt 2005]. Knowledge on incidents used for HeRA is modeled according to the
knowledge structure given in Figure 5.17. Here, an incident is described by actions in order to gain
access to assets via several entry points. The resulting vulnerabilities are assigned to incidents, which
may refer to further expert security knowledge, such as textbook knowledge, security obligations,
and experiences [Hesse, Gaertner, et al. 2014]. With these modeled incidents, HeRA assesses the

contains threatens

accessibleBy performs

mitigates exploits

realizes

consistsOfcontains accessTo

providesAccessTocontainsincludes

refines

contains

followedBy

System Component Asset Threat

Trust Level Entry Point Attack Attacker

Countermeasure Vulnerability Action

Figure 5.17: HeRA Knowledge Structure [Gärtner et al. 2014]

100

5.4. INTEGRATION WITH DEVELOPMENT ACTIVITIES

flow of events within use cases by scanning it for relevant elements of modeled incidents and their
chronological order. Hereby, the elements found in the use case steps are matched heuristically with
elements modeled for the incident. If the comparison yields a positive result, the modeled incident
has been identified within the use case. This indicates a potential security vulnerability [Hesse,
Gaertner, et al. 2014]. However, it should be noted that the developers need to review the findings in
order to decide whether the identified use case steps are actually vulnerable to security breaches. In
case a vulnerability was found by the developer, decisions should be taken based on the heuristic
findings to mitigate the vulnerability. Then, decision knowledge is acquired, which can be imported
semi-automatically using the HeRA results and the documentation approach.

Import Decision Knowledge fromHeRA Results
After a use case was scanned with HeRA, the analysis results can be classified according to their
outcome. This is shown in Table 5.1. In case that a modeled incident did not match the analyzed use
case (negative match), obviously no further semi-automatic support can be provided, and further
checks for missing identifications of security issues need be carried out manually. However, in case
that the heuristic analysis produced positive matches with modeled incidents, the heuristic results
highlight important decision points for addressing potential security issues. Of course, a positive
match may be a false positive, which has to be dismissed during manual check-up. Then, typically
no further action or decision is required. If, however, a true positive match was found (category 1A
and 1B in Table 5.1), developers can be supported in capturing decision knowledge, as the heuristic
findings highlight decision points regarding the analyzed use cases. Thereby, the documentation
effort for decisions is decreased, because knowledge on incidents can be incorporated as decision
knowledge.

Category Machting Result Actions by Developers

1A True positive match: The use case contains a secu-
rity issue, and all use case contents were matched
correctly to incident knowledge

Decisions need to be made and documented in
order to address the security issue

1B Partial true positive match: The use case contains
a security issue, but not all use case contents were
matched appropriately to incident knowledge

Decisions need to be made and documented to
address the security issue, but it is likely that the
documentation structure derived from the inci-
dent knowledge needs to be adapted manually

2 False positive match: The security issue was iden-
tified for the use case by mistake

The result can be discarded, no decisions need to
be taken

3 Negative match: The security issue was not identi-
fiedwithin the use case, either because it is actually
not relevant, or because thematching failed for the
use case

Manual check after heuristic analysis for poten-
tially unidentified security issues

Table 5.1: Developer Actions for a Heuristic Finding

101

CHAPTER 5. AN INCREMENTAL AND STRATEGY-INDEPENDENT APPROACH FOR
DOCUMENTING DECISIONS

The process of incorporating incident knowledge as documented decision knowledge is illustrated
using the running example CoCoME. Therefore, a use case of CoCoME is considered, which specifies
the sales process within physical stores using the CoCoME Trading System. Here, the customer pays
for multiple goods from the store at a cash desk. Requirements engineer Bob is worried that moving
CoCoME to the cloud will result in vulnerabilities for this use case, as personal data and money
transactions are exchanged between the customer and the cashier within this process. Therefore,
the cashier is required to be authenticated in the system and has to be authorized to perform these
transactions. It is assumed that for this use case a heuristic analysis using HeRA was performed
by requirements engineer Bob. Within HeRA, an incident regarding the missing authentication of
sensitive persons was modeled. This incident was now identified within the use case analyzed by
Bob. The results of the heuristic match are shown in Table 5.2.

Incident Knowledge Content for Running Example

System Component CoCoME Trading System
Asset Personal data, Money
Entry Point Sale Finished, Start New Sale, Cash Desk
Trust Level Customer, Cashier
Threat Authentication missing or unreliable
Attack Unauthorized money transfer, Unauthorized access to personal data
Attacker Inside or outside attacker (unknown)
Vulnerability Invalid authentication
Countermeasure Single sign-on using an external provider

Table 5.2: Heuristic Match for Running Example

To incoporate knowledge on identified security issues of category 1A and 1B into documented
decision knowledge, three different steps are necessary [Hesse, Gaertner, et al. 2014]:

1. Identify potential decisions: All identified security issues are grouped according to their origin
in the analyzed use case and their vulnerability.

2. Map incident and decision knowledge: Knowledge modeled for the incident within each match is
mapped to appropriate decision knowledge elements.

3. Complete decision documentation:Missing knowledge for decisions on the identified security
issues is elicited and added to related elements of the respective decision.

The first step is intended to ensure that the uncovered security issues are grouped into meaningful
decisions and linked to all use cases they were identified in. Therefore, one decision is created

102

5.4. INTEGRATION WITH DEVELOPMENT ACTIVITIES

automatically for each security issue, which is correct for all security issues belonging to category 1A
and 1B. However, developers may need to adapt these decisions. In detail, developers may discard all
decisions proposed for security issues belonging to category 2. Also, if decisions on similar security
issues were already made, those decisions should be linked to the investigated use case instead of
creating new decisions. Therefore, existing decisions need to be determined automatically, and the
security issues are filtered accordingly. In the running example, Bob decides to document a new
decision on the identified security issue of missing authentication within the sales process.

In the second step, the content of each heuristic finding is mapped to decision knowledge elements.
Based on this mapping, instance proposals for these knowledge elements with textual descriptions
and links to the related requirements are created. The default mapping with generated contents
for the running example is presented in Table 5.3. The Threat to a System Component describes the
decision related to the identified security issue, and is created as Decision. This decision is linked
via the concerns-relation to the use case the heuristic finding originates from. Attack and Attacker
provide details on the underlying decision problem based on the potential attack, and are mapped to
Issue. This element is linked via the concerns-relation to all use case steps, which are vulnerable to
the identified attack. A general Context of the decision is provided by Entry Point and Asset, as they
describe the exploited shortcomings and target of a potential attack. Furthermore, an Assumption
can be made on the circumstances of a potential attack, for which an attacker needs to exploit the
identified Entry Point at a certain Trust Level. Finally, several Alternatives are given within the heuristic
findings, as HeRA proposes Countermeasures based on the identified Vulnerabilities. It should be noted
that developers need to decide in the second step, whether the default mapping is appropriate for
each decision to be documented. Otherwise, changes to the mapping have to be made manually. For
instance, Bop could decide to map Entry Point and Trust Level on a Constraint instead of an Assumption,

Incident Knowledge Decision Knowledge Generated Content for Running Example

Threat, System Compo-
nent

Decision Authentication missing or unreliable in CoCoME Trading Sys-
tem, concerns-relation to affected use case

Attack, Attackers Issue Unauthorized money transfer, Unauthorized access to personal
datamight be performed by Inside or outside attacker (un-
known), concerns-relation to vulnerable use case steps

Entry Point, Asset Context Sale Finished, Start New Sale, Cash Desk holds the asset(s)
Personal data, Money

Entry Point, Trust Level Assumption Sale Finished, Start New Sale, Cash Desk is vulnerable by the
role(s) Customer, Cashier

Vulnerability, Counter-
measure

Alternative Invalid authentication can be mitigated by Single sign-on
using an external provider

Table 5.3: Default Mapping between Incident Knowledge and Decision Knowledge

103

CHAPTER 5. AN INCREMENTAL AND STRATEGY-INDEPENDENT APPROACH FOR
DOCUMENTING DECISIONS

because he is convinced that those are the only roles involved in a potential attack within this use
case.

In the third step, the generated proposals for textual contents and links of decision knowledge
elements can be adapted and refined manually if necessary. In particular, this is necessary if a decision
is documented for a heuristic match belonging to category 1B. In this case, the heuristic matching
between the incident and the examined use case was not appropriate for all use case steps. This may
happen if the incident was not modeled in detail, or if a finding is not appropriate in all contexts due
to language ambiguities. For instance, the term “enter” might have been found in a use case step. On
the one hand, this could indicate the potential vulnerability of date entered by customer, for instance
a PIN code for making a money transfer. On the other hand, also the cashier could simply enter a
different mask to change the price of a sold good. To clarify such ambiguities, developers can check
and decide finally in this step, which instance of decision knowledge elements are created andwhether
they are linked correctly. Furthermore, the generated descriptions might be incomplete, because not
all relevant knowledge was modeled for the identified incident. For instance, if no particular entry
point was specified for a system component, or if a countermeasure is missing, developers need to
add this information manually.

In summary, the presented steps allow developers to import decision knowledge during require-
ments engineering, when they incorporate knowledge on incidents into their documented decisions.
Thereby, the capturing of decision knowledge during requirements engineering (requirement C.1) is
addressed. As HeRA uncovers security issues in given use cases and their flow of events, links between
decisions to address security issues and their related use cases can be created semi-automatically.
The concerns-relation can be used to link entire decisions with use cases, and to relate individual
instances of decision knowledge elements with their corresponding use case steps. In consequence,
links between decisions and development artifacts are created (requirement D.2).

5.4.2 Design: Decisions on UML Design Models

To integrate the documentation model for decision knowledge with design activities, an approach is
presented to create and link decision knowledge within UML design models. As a prerequisite, all
model elements withinUMLdesignmodels are considered to be knowledge elements hold in a central
knowledge repository. For instance, such a representation of UML design models is provided by
UNICASE and the EMFStore (cf. knowledge management tools in Section 2.4). Then, the integration
of decision knowledge and UML model elements is achieved by linking them using the concerns-
relation. Depending on the granularity of the available UMLmodel elements, decisions can be linked
to entire diagrams, structural entities, such as components, classes, attributes, and methods, as well

104

5.4. INTEGRATION WITH DEVELOPMENT ACTIVITIES

as to relationships within the UMLmodel.

Regarding the tool support, it is important to provide designers with a shortcut functionality to
document decision knowledge directly within their respective UML editor. Thereby, it should be
distinguished whether decisions are newly created or existing ones are linked to given UML model
elements. Also, multiple UML model elements might be related to a design decision, which needs to
be captured within the editor. Furthermore, an initial set of typically used documentation elements
should be proposed to the designer for documentation. According to the value-based approach
by Davide Falessi, Capilla, and Cantone, it is perceived as beneficial by developers to capture a design
decisionwith its decision problem, its current solution, and a rationale regarding this decision [Davide
Falessi, Capilla, and Cantone 2008]. Due to various and complex changes that developers may apply
to UML diagrams over time, a manual check of the related decisions is necessary. If a UMLmodel
element is deleted, the corresponding reference to decision knowledge elements is removed. As design
decisions shape and guide the development process [Jansen and Bosch 2005], the related decisions are
not deleted automatically. Instead, developers should check whether the implementationStatus
and documented content of the related decisions has to be changed.

1

has

concerns

concerns

Migration : Decision

name = “Migration to Cloud”
description = “Migrate CoCoME to the cloud”
progress = Accepted
implementation = Envisioned
classification = “Architecture”
takenBy = Alice

Adapt Interfaces : Claim

description = “Adapt CoCoME interfaces,
e.g. for interface ProductOrder”
identifiedBy = Carol
contentType = ToBe

ProductOrder

- id : long
- deliveryDate : Date
- orderingDate : Date

OrderEntry

- id : long
- amount : int

Figure 5.18: Decision Knowledge related to UML Class ProductOrder from CoCoME

Regarding the CoCoME running example, architect Alice and developer Carol may document their
decision knowledge on moving CoCoME to the cloud within the related UML models of CoCoME.
This is depicted in Figure 5.18. For instance, Alice could document the decision for all UML model
elements within the current CoCoME architecture model, which cannot be optimized regarding

105

CHAPTER 5. AN INCREMENTAL AND STRATEGY-INDEPENDENT APPROACH FOR
DOCUMENTING DECISIONS

better performance and lower costs. Using the concerns-relation, she can link her decision to both
the entire component diagram ProductDispatcher in the application layer and selected UML
model elements from data layer, such as the classes ProductOrder and OrderEntry. Later on,
Carol may also link her Claim to the respective UML class.

Overall, capturing decision knowledge using UML diagrams provides direct links between decisions
and their related design artifacts. Such links can be provided on different levels of granularity for
both UML and decision knowledge elements. Thereby, requirements C.2 and D.2 are addressed.

5.4.3 Implementation: Decisions on Code

Based on the described documentation model, a model for code annotations is presented to integrate
decision documentation into code created during implementation. This approach was previously
presented in [Hesse, Kuehlwein, Paech, et al. 2015] and a related bachelor thesis [Kuehlwein 2014].
Such code annotations can be used by developers to document decisions when writing code. Thereby,
a context switch between different views or even tools is avoided for developers. Moreover, docu-
mented decisions are directly embedded into the corresponding development artifact, so that they are
accessible without access to a central knowledge repository and a sophisticated knowledge browser.

Regarding our running example, Carol identified the need to adapt the services of CoCoME to enable
suppliers to access the new interfaces of the trading system. Thus, a follow-up decision is made to
adapt the service implementation of CoCoME. For instance, this decision describes a change of the
service for ordering a product, which requires a cloud-based data object ProductOrder. Hereby,
Carol uses code annotations to document the related decision knowledge directly within the code, as
depicted in Figure 5.19.

/**

* The ProductOrder class represents a ProductOrder of a Store in the database

* @author Carol

*

* @Decision Move sales and order services to the cloud.

* @Solution Migrate services to the cloud.

* @Question Integration with suppliers’ systems missing?

* @Claim Adapt our connectors for processing product orders.

*/

Figure 5.19: Example of Decision Annotations in Class ProductOrder

Structure of Code Annotations
The principal idea is that all decision knowledge elements have a corresponding code annotation.

106

5.4. INTEGRATION WITH DEVELOPMENT ACTIVITIES

The only exception is DecisionComponent, which is an abstract knowledge element. Consequently, it
cannot be instantiated directly and, therefore, does not require an annotation. Code annotations may
be used in any inline code comment, including JavaDoc, to annotate class and method declarations as
well as any code part within the method body. Thus, different levels of code granularity are covered.
Code annotations may be employed by developers either to create a new instance of a decision
knowledge element or to reference an existing one [Hesse, Kuehlwein, Paech, et al. 2015]. First,
developers can type the presumed decision knowledge as text directly behind the annotation. This is
depicted in Figure 5.19. Second, an annotation holds several internal attributes. These attributes
are used to manage references to existing knowledge elements, to ensure persistent storage of the
annotation, and to locate the annotation within code files.

To create new instances of decision knowledge elements, two different kinds of code annotations
were established with different functional support for developers: core annotations and augmented
annotations. Core annotations represent an instance of a decision knowledge element from the
documentation model. For each decision knowledge element from the documentation model one
core annotation is derived. For instance, @Solution can be used to document an Solution, and
@Issue creates a new Issue instance. In contrast, augmented annotations represent one or more
decision knowledge elements with default values for attributes and relations. Thereby, developers
can create instances of decision knowledge elements using patterns codified within augmented
annotations, such that the manual documentation effort is reduced by this shortcut. For instance,
@Contra can be used to create a new argument as a child of the nearest DecisionComponent and to
link the argument to this component using the attacks-relation. In contrast, @Pro creates a new
argument with a supports-relation to its containing element.

To link code annotations with other knowledge elements and code files, administrative information is
required. Therefore, both core annotations and augmented annotations inherit the AbstractAnnotation
with several attributes for internal use, as depicted in Figure 5.20. Thus, annotations are knowledge el-
ements themselves, and can be stored explicitly in a knowledge repository. Within AbstractAnnotation,
the unique identifier of each annotation instance is stored. Furthermore, it contains the related code
revision for links to code files, as well as the knowledge revision for links to other knowledge elements.
These revisions are updated, whenever a change in code or knowledge management impacts an
annotation. Thereby, consistency can be assured between annotations within a central knowledge
repository and code files managed by a version control system.

It should be noted that this annotation structure suits an incremental and collaborative usage by
developers [Hesse, Kuehlwein, Paech, et al. 2015]. First, if a developer misses documented decision
knowledge for an already documented decision in the code, further annotations can be added easily.
For instance, a new @Alternative could be added by Carol, when she realizes that there are further

107

CHAPTER 5. AN INCREMENTAL AND STRATEGY-INDEPENDENT APPROACH FOR
DOCUMENTING DECISIONS

related to related to

contains concernsTextual
Annotation

Code
File

Decision Knowledge
Element

Knowledge
Element

AbstractAnnotation

UniqueID
CodeRevision
KnowledgeRevision

CoreAnnotation AugmentedAnnotation

Code Repository (like svn) Knowledge Repository (like EMFStore)

Figure 5.20: Annotation Model

solution options than only modifying the connectors within ProductOrder. Second, as every
annotation instance can be linked to an underlying decision knowledge element, knowledge created
by annotations is synchronized with the central knowledge repository. Thereby, decision knowledge
originating from implementation becomes visible to developers in other roles. For instance, architect
Alice might realize due to the documentation of Carol, that further constraints exist regarding the
cloud migration of CoCoME.

Actions with Code Annotations
With the presented code annotations, developers may create, modify, or delete both the annotation
and decision knowledge element instances [Hesse, Kuehlwein, Paech, et al. 2015]. This is summarized
in Table 5.4. When a new annotation instance is added, developers may decide to either create the
related instance of a decision knowledge element, or to link an existing one to the annotation instance.
If, however, the instance of a decision knowledge element was created first, it can be linked to an
annotation instance afterwards. Thus, there is no effect on annotations if knowledge elements are
created first. In case the content of an annotation is modified within the code, the corresponding
decision knowledge element needs to be updated. In turn, updates or removals of decision knowledge
elements stored in the knowledge repository also require the contents of code annotations within the
knowledge repository and code files to be modified or deleted. When developers delete annotation
instances in code files, the related core or augmented annotation needs to be removed from the
knowledge repository. In addition, the corresponding decision knowledge element is removed, if it
was created through the annotation.

108

5.4. INTEGRATION WITH DEVELOPMENT ACTIVITIES

Action Performed on Annotations Performed on Decision Knowledge
Elements

Create Create new decision knowledge element or link
existing one

No effect on annotation

Modify Update decision knowledge element content and
references

Update annotation and references

Delete Delete annotation, decision knowledge element and
references

Delete annotation and references

Table 5.4: Overview of Developer Actions with Code Annotations

In summary, the presented code annotations allow for documenting decision knowledge directly
during the implementation of code. Thereby, requirement C.3 is addressed. In addition, the code
annotations allow for linking decision knowledge with code files (requirement D.2). This is realized
by inserting annotations directly into code and linking annotations with other knowledge elements.

109

6
DecDoc: Tool Support for the Documentation Approach

In this chapter, DecDoc as the tool support for the decision documentation model is presented. First,
requirements for the tool support are derived from the documentation model described in Chapter 5.
Second, design and implementation of DecDoc are outlined using the running example of CoCoME
from Chapter 5. A first overview of DecDoc with several details regarding its architecture and usage
was published in [Hesse, Kuehlwein, and Roehm 2016]. DecDoc can be installed via an Eclipse update
site [DecDoc Update Site 2017]. The user manual is available online [DecDoc User Manual 2017].

6.1 Requirements Overview

DecDoc aims to support developers in documenting decision knowledge according to the docu-
mentation model presented in Chapter 5. Thus, the requirements for DecDoc are guided by the
requirements for the documentation model and their origins in the study results described in Sec-
tions 3.3 and 4.3. In detail, the four major requirements for the documentation shall be supported
within the tool DecDoc:

A. Support for the Documentation of RDM and NDMDecisions
DecDoc shall provide generic access and edit functionalities for all instances of RDM and NDM
model elements, which were introduced by the documentation model (Requirement A.1). In detail,
DecDoc is required to show an overview for a selected decision with the attributes of the Decision
element, as well as the numbers of contained element instances within this decision. Next, it shall
be possible to explore the actual structure of the contained elements by visualizing the containedIn-
relations between the instances (Requirement A.2). In addition, the attributes of each further decision
element need to be presented in an editable way, whenever an instance of this element is opened
(Requirement A.3). This shall be possible for both RDM and NDM elements.

111

CHAPTER 6. DECDOC: TOOL SUPPORT FOR THE DOCUMENTATION APPROACH

B. Support for Iterative Decision Documentation
The tool support needs to provide a version control for instances of decisionmodel elements, such that
multiple developers can document their decision knowledge within a shared knowledge repository
in a consistent way (Requirement B.1). In addition, DecDoc is required to support basic extensions of
the documentation model, so that its generic functionality for accessing and editing the documented
knowledge can also be used for these extensions (Requirement B.2). Thereby, the abstract knowledge
elements of the documentation model are supported as extension points of the model. Finally, the
tool support shall provide a dedicated view for evaluating Problem instances in contrast to the related
Solution instances. Open problems can thereby be identified and addressed by developers more easily
(Requirement B.3).

C. Support for Capturing Decision Knowledge during Development
DecDoc is required to provide an integration with HeRA, as described in Section 5.4.1 (Requirement
C.1). Developers are thus supported during requirements engineering, because they are enabled to
import decision-related knowledge from HeRA analysis results on security-related requirements as a
starting point for decision documentation. In addition, DecDoc shall support decision documentation
when creatingUMLdiagrams in Eclipse, as described in Section 5.4.2 (RequirementC.2). This enables
developers to capture and document their design decisions as they emerge during the design activities.
Moreover, DecDoc is required to enable the documentation of decision knowledge during the actual
implementation of code by embedding this documentation using code annotations, as described in
Section 5.4.3 (Requirement C.3).

D. Support for Decision Knowledge Links
The tool support shall provide a visualization functionality for both, links between decisions and links
between their contained knowledge elements (RequirementD.1). Furthermore, DecDoc is required to
propose the semi-automatic creation of links, where this is suitable and effective (Requirement D.2).
In particular, such a semi-automatic creation shall be supported when capturing decision knowledge
during requirements engineering, design, and implementation.

6.2 Design and Feature Overview of DecDoc

In principal, DecDoc is an extension to themodel-based knowledgemanagement toolUNICASE [UNI-
CASE Project 2016], as shown in Figure 6.1. This is enabled by the plugin interface provided by the
Eclipse IDE [Eclipse Project 2016]. While UNICASE itself consists of a set of plugins for the Eclipse
IDE, it can be further extended by the DecDoc plugin set. Both UNICASE and DecDoc rely on the
versioned model repository EMFStore [EMF Store 2016], such that knowledge element instances
created by developers can be persisted, versioned, and shared. This addresses requirement B.1.

112

6.2. DESIGN AND FEATURE OVERVIEW OF DECDOC

Furthermore, DecDoc is integrated with the HeRA plugin for Eclipse [Hesse, Gaertner, et al. 2014],
so that decision-related knowledge originating from the heuristic analysis of use cases for security
issues provided by HeRA may be imported to and documented in DecDoc. Also, the PapyrusUML
editor [Papyrus 2016] for Eclipse is extended by DecDoc in order to document and link decision
knowledge to UML design entities, such as classes or associations between classes. Finally, Eclipse
markers and code annotations are used to document and highlight decision knowledge directly within
the source code. To this end, decision knowledge versioned in the EMFStore is synchronized with
annotations related to revisions from the SVN code repository.

Eclipse IDE
UNICASE
Plugins

DecDoc
Plugins

SVN
Code

Repository

EMF Store
Model

Repository

Decision
Editor

HeRA

Papyrus

Annotations

Plugin Interface Plugin Interface

Legend: Based on

Figure 6.1: Architecture of DecDoc using the Eclipse IDE and UNICASE

Due to the architecture of DecDoc, its features can be grouped into four major parts. This feature
structure is shown in Table 6.1. First, DecDoc offers a general Knowledge Editor with both a generic
and a specialized editing support for DKEs. The editor includes the basic Standard Editor for all
instances of DKEs, as well as a more sophisticated Decision Editor for instances of Decision elements.
In addition, a graphical and statistical Decision Overview is provided. Furthermore, developers can
explore Question and Solution instances to set resolves-relations in a dedicated Solution Management

dialog for all decisions within a UNICASE project. Second, DecDoc provides a Knowledge Importer
from Heuristic Use Case Analysis. The actual heuristic analysis plugin provides an Issues Overview,
which presents all security issues uncovered by the heuristic analysis for a given use case in UNICASE.
The Importer Wizard can be used by developers to structure and document decisions based on the
heuristic findings and based on the question how they shall be addressed during further development.
Third, the tool support enables developers to capture their design decisions, when editing an UML
diagram in Eclipse Papyrus. Therefore, a specialized Documentation Wizard is provided. In addition,

113

CHAPTER 6. DECDOC: TOOL SUPPORT FOR THE DOCUMENTATION APPROACH

developers can use the Design Decision Overview to see all Decisions linked to UML entities in an
opened UML diagram. Finally, DecDoc providesCode Annotations for Implementation Decisions, so that
decision knowledge can be captured and documented within source code files. Therefore, the Eclipse
code editor is extended by Core and Augmented Annotations, which developers can use to either create
new DKE instances during implementation or link existing ones within their code. These tasks are
supported by different pop-ups, which can be opened directly within the code editor. Furthermore,
an Annotations Overview shows a summary of all used annotations for the opened code file. In addition,
the connection between UNICASE projects and Java projects containing the source code files may
be configured in different Configuration and Preferences dialogs. The appearance of the annotations
within the code can likewise be configured.

Part of DecDoc Related Plugins Features Implemented As

Knowledge Editor *.decision Standard Editor Editor
*.decision.edit Decision Editor Editor
*.decision.ui Decision Overview Editor, View

Solution Management Dialog

Knowledge Importer from +.hera Issues Overview View
Heuristic Use Case +.hera.wizard Importer Wizard Wizard
Analysis

Capturing Support for *.decision.umlcapture Documentation Wizard Wizard
Design Decisions Design Decision Over-

view
View

Code Annotations for *.decision.annotations Core Annotations Code Annotation
Implementation Decisions *.decision.annotations.edit Augmented Annotations Code Annotation

*.decision.annotations.ui DKE Creation & Linking Pop-up
Annotations Overview View
Configuration & Prefer-
ences

Dialog

Legend: * means "org.unicase", + means "de.unihannover.se"

Table 6.1: Features and Plugins of DecDoc

Each feature is realized using a specific implementation within the Eclipse platform. Whereas an
Editor is an additional page added to the basic UNICASE model element editor, a View is a separate
Eclipse view, which can be positioned anywhere in the Eclipse IDE. Furthermore, Dialogs allow for a
single-page interaction with the user for monolithic tasks that cannot be further refined or structured.
In contrast,Wizards are used where a complex task or procedure requires the user to take several
steps for completion. Finally, Code Annotations and Pop-ups are visually integrated in the Eclipse code
editor in order to avoid interruptions of the coding activities of the developer. It should be noted, that
all related plugins given in Table 6.1 are necessary to provide all the listed features. The mandatory

114

6.3. KNOWLEDGE EDITOR FOR THE DECISION DOCUMENTATION MODEL

part for DecDoc is the knowledge editor, as it provides the knowledge model and basic user interface
of DecDoc. All further parts of DecDoc, such as the code annotations and the knowledge importer,
are not required to run the tool support.

In the following sections, each part of DecDoc with its contained features is presented in more detail.
Therefore, the running example of the trading system CoCoME with its related decisions is used, as
described in Chapter 5.

6.3 Knowledge Editor for the Decision Documentation Model

The Knowledge Editor of DecDoc provides a general editing support for all DKEs. The basic knowl-
edge model of UNICASE was used as a foundation for the DecDoc knowledge model for decision
knowledge, which was modeled and implemented as ECore model. The abstract KnowledgeElement
from the documentation model is replaced by the UnicaseModelElement forming the root element of
the UNICASE knowledge model. Thus, in DecDoc and its knowledge editor all DKEs inherit basic
attributes from theUnicaseModelElement, such as name, description, creator, and creationDate. Moreover,
the concerns-relation between DKEs maps to the annotations-relation of the UnicaseModelElement.
Finally, there is a technical restriction in UNICASE, that does not allow for applying associated classes
within the knowledge model. Therefore, the Assessment element was implemented with a relation
to Context elements as criteria for the assessment. Because duplicated names for relations are not
supported in UNICASE, the isBoundTo-relation betweenQuestion and Context elements was renamed
to assessed. Finally, the containedIn-relation for Decisions and DecisionComponents was modeled as
composition. It should be noted that this underlying ECore model of DecDoc may be extended by
further model elements and relations, so that requirement B.2 is addressed.

Based on this ECore model of the documentation model, developers can access and edit instances
of DKEs with the basic UNICASENavigator, as well as with the Standard Editor, which is theModel

Element Editor of UNICASE (requirement A.3). A typical view with the Navigator on decision
knowledge is shown in Figure 6.2 using the data from the running example. Here, the Navigator
processes the containedIn-relation and depicts it as tree structure.

However, the Standard Editor of UNICASE was extended to address requirement A.3. First, a new
presentation of enumeration attributes was implemented, such that developers can set the enumera-
tion value by selecting a graphical icon. For instance, the progress and implementation attributes of
Decisionsmay be set by selecting the appropriate color. Furthermore, a statistics widget was added to
the editor, so that the number of contained elements can be easily retrieved for eachDecision instance.
Both extensions are depicted and highlighted in Figure 6.3. Of course, the Standard Editor also shows

115

CHAPTER 6. DECDOC: TOOL SUPPORT FOR THE DOCUMENTATION APPROACH

Figure 6.2: Navigator View on Running Example Decisions

Figure 6.3: Standard View with Highlighted Enumeration Attributes and Statistics

116

6.3. KNOWLEDGE EDITOR FOR THE DECISION DOCUMENTATION MODEL

all other attributes and relations of the currently opened model element instance, regardless whether
a RDM- or NDM-related element has been opened. In addition, both the Navigator and the Standard
Editor are capable of processing extensions of the ECore model of DecDoc without further need for
implementation changes. Thus, requirement B.2 is fulfilled.

With the Decision Editor, DecDoc provides a specialized editor for Decision element instances. This
editor is accessible as separate editor page within theModel Element Editor. It is depicted in Figure 6.4
with slightly modified data from the running example. Its fundamental layout consists of three
panels for element instances of Question, Solution, and Context elements. To enable developers to
distinguish themmore easily, different colors were used for the panels. Each of these panels shows the
respective instances. For Questions and Solutions, it is also indicated, whether the resolves-relation was
set. All instances can be expanded in order to present all attributes and relations, as well as a graph
representation for all Arguments linked to the currently viewed instance. This addresses requirement
D.1. All displayed attributes, relations, and arguments within the graph can be edited (requirement
A.3). Moreover, the Decision Editor works for both NDM- and RDM-related elements. Thereby,
Standard Editor and Decision Editor address requirement A.1. It should be noted, however, that due
to performance issues in the early development of DecDoc the Decision Editor only processes and
displays the DKE instances, which are directly contained within the selectedDecision. Thus, instances
contained in DKEs are currently not shown, except for Arguments related to a displayed instance.

Next, the Knowledge Editor contains a Decision Overview, which consists of an extended statistical
summary as Eclipse view, and an editor page for the Standard Editor with a graph visualization of
all knowledge related to a selected Decision. The visualization is shown in Figure 6.5. In contrast
to the arguments graph in the Decision Editor, the Decision Overview not only depicts instances
of DKEs, but also of other decision instances and linked development artifacts, such as use case
elements in UNICASE. In the figure, the decision to migrate CoCoME to the cloud from the running
example is depicted with its current references. It is noteworthy that also the isBoundTo-relation to
the succeeding decision to adapt the CoCoME service is visualized.

Finally, the Knowledge Editor of DecDoc provides a SolutionManagement dialog for a selectedDecision.
This dialog is shown in Figure 6.6 with Questions and Solutions from the example decision of the
CoCoME cloudmigration. Developers can use the dialog to quickly check potential Solutions for given
Questions, which consist of all respective DKE instances contained in all decisions of a UNICASE
project. This includes instances contained in other instances. Solution and Question instances, which
are already linked by the resolves-relation, are highlighted in green color. Moreover, when a Question
instance is selected, a previously linked solution element ismarkedwith a small link icon to distinguish
it from other linked Solution instances. Also, Solutions contained in the same decision as the selected
Question instances, are displayed in bold font. This helps developers to navigate easily through

117

CHAPTER 6. DECDOC: TOOL SUPPORT FOR THE DOCUMENTATION APPROACH

Figure 6.4: Decision Editor with Argument Graph

Figure 6.5: Graph Visualization of Decisions and Their Elements

118

6.4. KNOWLEDGE IMPORTER FROM HEURISTIC USE CASE ANALYSIS

larger amounts of Questions and Solutions. With the Solution Management dialog, requirement B.3 is
fulfilled.

Figure 6.6: Solution Management Dialog with Running Example Data

Overall, the Knowledge Editor addresses further requirements. Because the containedIn-relation is
visualized in the navigator and the Decision Overview, requirement A.2 is fulfilled. In addition, the
visualization of links between DKE instances in the argument graph of the Decision Editor and the
Decision Overview fulfills requirement D.1.

6.4 Knowledge Importer from Heuristic Use Case Analysis

The Knowledge Importer from Heuristic Use Case Analysis enables developers to import decision-related
knowledge from results produced by HeRA based on the analysis of UNICASE use cases for potential
security issues.

A prerequisite for the import process is that a heuristic analysis is performed by the developers
using the HeRA plugin for Eclipse [Hesse, Gaertner, et al. 2014]. As a result, the HeRA plugin creates
markers whenever a potential security flaw is uncovered within a use case and its contained steps.
These results are shown in the Issues Overview. This view shows the knowledge element instance a
result was derived from, as well as the content of this result, such as the affected system component
and uncovered threats. Figure 6.7 shows the result for an analysis triggered by requirements engineer
Bob for the use case “Sell Products” from the CoCoME running example.

The Importer Wizard can be activated by clicking the Import-button in the issues overview for a
selected result. Then, decision knowledge from the result is imported and presented to the developer
in multiple steps. According to the concept described in Section 5.4.1, the wizard works semi-
automatically for creating and linking instances of DKEs based on the heuristic results (requirement

119

CHAPTER 6. DECDOC: TOOL SUPPORT FOR THE DOCUMENTATION APPROACH

Figure 6.7: Issues Overview with Highlighted Import-Button

D.2). However, the automatically generated proposals for these instances and their links might be
inaccurate due to language ambiguities, redundant content in descriptions of use case steps, and the
quality of the applied heuristics. Thus, developers need to check the imported knowledge manually.
First, potential decisions resulting from the heuristic findings are presented to the developers, so
that they can decide on decisions to be actually created. Also, the use case instances linked to newly
created decisions are shown and may be changed. This is depicted in Figure 6.8 for the situation
where Bob has decided to create a new decision based on the HeRA finding of a potential invalid
authentication for the “Sell Products” use case.

Figure 6.8: First Step of the Importer Wizard with Potential Decisions

In the second step, developersmay decide which imported knowledge they actually want to document
by which type of DKE. Based on their selection, textual descriptions for all created instances of DKEs
are proposed to the developers in a third step (cf. default mapping in Table 5.3 in Section 5.4.1). Here,
the developers can decide to further refine the descriptions, as well as to adapt the linked element.
Also, it is possible to reset current changes of DKE types, content, and links back to the default
mapping. Furthermore, creation of instances can be omitted in case their content is not required
or inconsistent. This is presented in Figure 6.9, where Bob decides to create only one new Context

instance.

120

6.5. CAPTURING SUPPORT FOR DESIGN DECISIONS

Figure 6.9: Third Step of the Importer Wizard with Knowledge Element Instances

When finishing the wizard, a dialog invites the developer to choose the appropriate root element for
the newly created decision within the UNICASE project. After all instances have been created, the
new decision instance is accessible through the basic UNICASE navigator, as depicted in Figure 6.10,
and within the knowledge editor. In summary, by integrating the HeRA analysis results as starting
points and knowledge suppliers for decision documentation, DecDoc fulfills requirement C.1.

Figure 6.10: Third Step of the Importer Wizard with Knowledge Element Instances

6.5 Capturing Support for Design Decisions

The Capturing Support for Design Decisions enables developers to capture their design decisions, as
they create or edit UML diagrams in the Eclipse Papyrus UML editor. Therefore, DecDoc provides
two features: a Documentation Wizard for decision documentation during UML design, and a Design
Decision Overview to enable developers to keep track of decisions linked to the current UML diagram.

The documentation wizard for decision knowledge can be triggered directly within the Papyrus UML
editor by opening the context menu for a selected UML entity. This is shown in Figure 6.11. As a first
step, the developers can choose either to create a new decision with a flexible DKE structure or to link

121

CHAPTER 6. DECDOC: TOOL SUPPORT FOR THE DOCUMENTATION APPROACH

Figure 6.11: Opening the Documentation Wizard in the Papyrus UML Editor

an existing DKE instance with the selected UMLmodel entity. For example, developer Alice may link
the Constraint to inform the suppliers of CoCoME about the change to a cloud infrastructure with
the class ProductSupplier from the UML diagram. Instead, Carol may decide to document her
new decision to adapt the services for the cloud, while browsing through the related UML entities.
Thereby, the second step of the wizard is activated, and newly created instances of DKEs are provided
with names and descriptions. In particular, it is also possible to link these new instances to existing

Figure 6.12: Documenting new Decision Knowledge using the Documentation Wizard

122

6.6. CODE ANNOTATIONS FOR IMPLEMENTATION DECISIONS

ones. This is depicted in Figure 6.12. After finishing the second step, the new instances are created
and linked to the selected UML entity according to the developers input.

To get an overview of decision knowledge linked to a particular UML diagram, the design decision
overview can be used. This view shows a tree structure with the UML entities of the diagram as
root entries. On the deeper levels of the tree, all linked instances of DKEs are presented as leafs.
This is shown in Figure 6.13 with data from the running example: Alice and Carol have documented
their decision knowledge successfully with the documentation wizard. Now, both the linked existing
constraint and the newly documented decision have been related to the ProductSupplier and
ProductOrder classes.

Figure 6.13: Design Decision Overview with Running Example Data

Thereby, DecDoc fulfills the requirement to integrate a decision knowledge capturing support
during UML design in Eclipse (requirement C.2). Moreover, the abilities of the wizard to support
the creation of links between UML entities as development artifacts and decision knowledge are
addressing requirement D.2.

6.6 Code Annotations for Implementation Decisions

WithCode Annotations for ImplementationDecisions, developers can document their decision knowledge
directly within the source code files they are currently working on. DecDoc provides the feature
of Core and Augmented Annotations, which can be used within Java source code. Their appearance
and functionality was implemented in the style of the commonly used Javadoc annotations [Javadoc
Documentation by Oracle 2016]. An example is given in Figure 6.14, which shows developer Carol
from the running example documenting her service adaption decision within the code file of the
class ProductOrder.

Core annotations can be used to link existing knowledge elements with the code, and can also be used
to create new instance of DKEs. In both cases, an instance of Core Annotation is created, as described
in Section 5.4.3. This instance stores information on the relation between DKE instance and code

123

CHAPTER 6. DECDOC: TOOL SUPPORT FOR THE DOCUMENTATION APPROACH

Figure 6.14: Core Annotations in the ProductOrder Class

annotation. In the example depicted in Figure 6.14, the given annotations @Decision, @Solution,
and @Question link existing knowledge elements from the cloudmigration decision originally taken
by Alice. In contrast, Carol uses the @Claim annotation to create a new Claim instance with the
textual description given by the annotation content for her service adaption decision. The choice to
either link existing knowledge elements or create new ones is presented to developers as soon as
they save the code file with a newly added annotation. Therefore, a Creation and Linking pop-up is
used to guide the developers efficiently through the process. An example for the core annotation
@Question is depicted in Figure 6.15.

Figure 6.15: Creation and Linking Pop-up for Core Annotation @Question

Regarding the running example, it was chosen to link the depicted annotation with the existing
Question instance in the cloud migration decision. The appropriate instance has to be selected out of
a tree view on the related UNICASE project with its contained decisions and their elements. Instead,
new knowledge element instances can be created using the pop-up. Then, in one alternative, DecDoc
proposes to create the new instance as a child instance of the nearest preceding Decision instance
linked in the code file, which addresses requirement D.2. Otherwise, the appropriate location can be
manually selected in the tree view. An example of this tree view is depicted in Figure 6.16 for the
creation of the new Claim instance by Carol in the running example.

124

6.6. CODE ANNOTATIONS FOR IMPLEMENTATION DECISIONS

Figure 6.16: Tree View for Creating New DKE Instances by Core Annotations

Furthermore, developers may use Augmented Annotations to create new instances of DKEs with
predefined relations and contents. For instance, Arguments can be instantiated by using the @Pro and
@Con annotations. Thereby, either a supporting or attacking argument is created as child of the last
annotated decisionmodel element instance in the code file. When the code file with the augmentation
is saved, it is automatically transformed into the related core annotation, and the underlying instance
of Argument is created. A supports- or attacks-relation is subsequently set according to the type of
augmented annotation that was used. Also, the content of the annotation is set as description for the
newly created instance. An example is depicted in Figure 6.17, after Carol saved an @Pro annotation
to document that the adaption for the class ProductOrder can be easily performed for the primitive
variables.

Another important feature of DecDoc is the Annotations Overview, which allows developers to keep
track of their annotated decision knowledge within code files. This view shows all annotations linked
to a selected DKE instance. It is depicted in Figure 6.18, and shows the annotation for the newly
created Claim by Carol. Besides information on the annotated code file and the exact location of
the annotation within the file, the view also indicates, whether an annotation was used to create the
related DKE instance. This is shown in the column “Hard Linked?”. For Carols Claim it indicates
“Yes”, as the claim was created based on her annotation. Thus, the instance will be removed in case the
annotation is deleted from the code file. Otherwise, the annotation would be linked to a previously
existing DKE instance; even if the annotation was removed, the instance would nevertheless persist.

Finally, DecDoc provides two important Configuration and Preferences dialogs, where developers can
adapt DecDoc according to their needs. First, developers may adjust the appearance of the code
annotations for decision knowledge in an Eclipse Preferences dialog, as shown in Figure 6.19. Second,
they can configure the relation between UNICASE projects containing decision knowledge and

125

CHAPTER 6. DECDOC: TOOL SUPPORT FOR THE DOCUMENTATION APPROACH

Figure 6.17: Pro-Argument with Highlighted Supports-Relation Resulting from @Pro

Figure 6.18: Annotations Overview with Highlighted Link Information

Figure 6.19: Preferences Dialog for Code Annotations

126

6.6. CODE ANNOTATIONS FOR IMPLEMENTATION DECISIONS

Java projects containing source code files. For detail, one UNICASE project can be related to one
Java project, which is shared in an SVN repository. In this way DecDoc ensures that the versions of
knowledge contents in the UNICASE project is synchronized with the revision of the related code
files in the Java project. Furthermore, this setting controls in which UNICASE project the instances
of Core Annotation elements are created to link DKE instances and code annotations. Taking all these
features together, DecDoc fulfills requirement C.3, as it integrates code annotations to document
decision knowledge in source code files.

127

Part IV

Evaluation

129

7
Evaluation of Documentation Model

In this chapter, an empirical study is presented in order to evaluate the feasibility of documenting
real-world decision knowledge using the decision documentation model presented in Chapter 5.
Therefore, design session transcripts of professional software designers are analyzed for any contained
decisionknowledge, which is then documented using the documentationmodel. First, the investigated
transcripts and related studies are introduced as study foundations. Second, the research process with
the study setup and the applied data analysis is presented. Third, results and findings of the study are
described in relation to the requirements of the documentation model. Finally, potential threats to
validity and their mitigation during the study are discussed. A brief report on the study setup and
results was previously published in [Hesse and Paech 2016].

7.1 Study Foundations

In the following paragraphs, the investigated design sessions are introduced as the study subject
together with the study goal. Furthermore, related studies are discussed, which either investigate the
same data set or are related to this study due to a similar research goal and process.

Study Subject and Goal
The study subject are transcripts originating from two different design sessions, whichwere originally
distributed as material for the international workshop “Studying Professional Software Design” in
2010 [Hoek, Petre, and Baker 2010]. In these sessions, teams of professional software designers were
given the design task to create a high-level system design for a traffic simulation system. This system
was intended to be used by students to simulate traffic flows influenced by the road layout, traffic
lights, and the number of cars. All designer teams received a textual description of this design task and
had a time limit of one hour and fifty minutes to create the system. The designers were asked to use a

131

CHAPTER 7. EVALUATION OF DOCUMENTATION MODEL

whiteboard for any sketches or notes during their work. Each design session was performed with a
team of two professional designers. The entire session was recorded on video, and all discussions
were transcribed by the workshop organizers. In this study, the transcripts of two sessions with
designers from Adobe (referred to as AD) and Amberpoint (referred to asMB) are investigated. The
transcript of a third design session with designers from Intuit is not investigated, because the session
was significantly shorter than the others, and deviated in setup and conditions for the designers.

The task description for the designers included a set of briefly sketched requirements for the traffic
simulator. An overview of these requirements is given in Table 7.1. They describe several aspects of
the systemmodel, such as the need to provide representations of intersections (R-I) with a coordinated
system behavior for lights (R-II.a, R-II.b), traffic sensors (R-II.c), or the traffic simulation itself (R-III).
In addition, these requirements also cover the interaction of users with the system. For instance,
the students as users of the system shall be able to control the traffic flow or traffic density (R-IV).
Furthermore, non-functional requirements are given with regard to the user interaction and the
quality of the design. In detail, the system shall be easy to use (R-V) and motivate the users (R-VI),
while the system design is required to be elegant (R-VII) and clear (R-VIII).

No. Content of Requirement

Functional Requirements

R-I Enable students to create a visual map with at least six intersections and roads of varying length as
simulation area.

R-II Enable students to describe the behavior and timing of traffic lights; the system shall allow for left-hand
green arrow lights.

R-II.a Combination of traffic lights, which result in crashes, are not allowed.
R-II.b Every intersection on the map is a four-way intersection and has traffic lights.
R-II.c Enable students to choose for each intersection to have sensors, which trigger the traffic lights.
R-III Enable students to simulate traffic flows on the map in real-time; the system shall depict the traffic flows

and traffic light states.
R-IV Enable students to change the density of traffic entering the simulation.

Non-functional Requirements

R-V The system shall be easy to use.
R-VI The system shall motivate the students to explore the simulation.
R-VII The system design shall be elegant.
R-VIII The system design shall be clear.

Table 7.1: Summary of Design Task Requirements

To evaluate whether the documentationmodel is feasible to document real-world decision knowledge
in practice, a source of accessible decision knowledge from industry professionals is required. At

132

7.1. STUDY FOUNDATIONS

Category Design Aspect Team

System Concept MVC AD
System Concept User Interface MB

Road System

High-level organization Intersections; Network AD
Intersections Signals and sensors in approaches MB
Intersections Have roads (with lights and cars) AD
Roads Lanes, with signal per lane AD
Roads Capacity AD
Roads Latency MB
Connection of roads to intersections Intersections have queues (roads) AD
Connection of roads to intersections Lights and sensors in approaches MB

Traffic Signals

Place in hierarchy Belong to roads AD
Place in hierarchy Belong to approaches MB
Safety: Independent lights with safety checks Controller checks dynamically AD
Safety: Independent lights with safety checks UI checks at definition time MB
Relations among intersections Independent AD
Relations among intersections Synchronized MB
Setting timing System sets timing AD, MB
Setting timing Students set timing MB

Traffic Model

- Master traffic object, discrete cars MB
Discrete cars Cars with state, route, destination MB
Discrete cars Random choices at intersections AD, MB

Simulator

Set of objects executing in parallel threads MB
Set of objects traversed by a controller at each clock tick AD
Model of Time Uniform time ticks AD

User Interface: Display

Layout of visual map intersections implied by road crossings AD, MB
Relation of layout distances to road length layout determines road length MB
Relation of layout distances to road length layout determines length, constrained to grid AD
Define the map click-drag-drop visual editing AD, MB
Setting light timing double-click on intersection AD, MB
Defining traffic model set traffic loads only at edges AD, MB
Viewing results see individual cars, lights MB
Viewing results see view of density on roads MB
Saving and restoring supported MB
Saving and restoring not supported AD

Table 7.2: Summary of the Design Space according to [Shaw 2012]

133

CHAPTER 7. EVALUATION OF DOCUMENTATION MODEL

best, these professionals would apply the documentation model directly during decision making
and documentation. However, design decisions are often critical in the competitive environment of
industrial software development, because they reflect business knowledge and operational strategies
of the respective development organization. In consequence, it was difficult to find industrial
designers who were free and willing to apply a documentation model for decisions in practice, and
share the documentation outcome. In this regard, the design decision transcripts from the UCI
design workshop are a valuable source of raw decision knowledge from professionals, which is
accessible for further investigation. For this reason, the documentation model was applied on the
transcripts, although the underlying decisions were made beforehand. Furthermore, based on the
session transcripts, related studies (cf. [Jackson 2010] and [Shaw 2012] in the next paragraph) explored
and structured the underlying design space of the design task. A summary of the design space with
its different aspects is given in Table 7.2. Findings on the decision knowledge from these previous
studies can be used and reflected within the study for the evaluation of the documentation model.
For instance, design decisions identified by previous studies can be compared to those decisions,
which were uncovered in this study. This helps to improve the quality of results, and to mitigate
potential threats to validity.

The overall goal of this study is to investigate the feasibility of the documentation model to structure
and document decision knowledge resulting from real-world decisions. Using theGoal QuestionMet-
ric (GQM) approach [Basili, Caldiera, and Rombach 1994], this goal is described with the structured
template of GQM in Table 7.3.

GQM Template Goal Description

Determine the usage of the documentation model for documenting decisions
with respect to feasibility
for the purpose of evaluating the documentation model
in the context of design decisions driven by given requirements
from the viewpoint of researchers.

Table 7.3: Description of Study Goal with GQM

Regarding this study goal, the transcripts of the UCI design workshop are well suited to serve as
study subject. First, they provide real-world raw data on design decisions from professional software
designers. The transcripts represent the original design discussions held by the designers, and the
data was not altered or extended by others. Therefore, creating a structured decision documentation
with the documentation model using the data provides unbiased insights on the capabilities of the
model. Second, the transcripts are well recognized as a study object within the research community
on design decisions. Thus, the validity and integrity of the investigated data was checked in many

134

7.1. STUDY FOUNDATIONS

other related studies. Third, the setup of the UCI design workshop and its related studies provide
additional information on the requirements, design space, and context of the transcripts, which can
be used as additional input to this study. Thereby, it is possible to link the documented decisions
with requirements and design artifacts from the design space. However, it should be noted, that in
this study no evaluation of the model is performed regarding links to source code, as no source code
or other implementation artifacts were created during the design workshop.

Related Studies
Several studies were performed based on the introduced design session transcripts. An overview
of these studies is given in special issues of Design Studies in 2010 and IEEE Software in 2012 as well
as in the book of Petre and Hoek [Petre and Hoek 2013] as an extended collection of contributions
from the original workshop.

In the special issue of Design Studies, Ball, Onarheim, and Christensen have published a study to
investigate the solution development of designers in relation to the given requirements. They analyze
the design requirements and the mental simulation of solutions based on the thoughts expressed
by the designers [Ball, Onarheim, and Christensen 2010]. Similarly, Baker and Hoek focus on the
generation of ideas in multiple cycles of discussing different solution-related subjects. In particular,
they identify reoccuring solution ideas in these cycles [Baker and Hoek 2010]. In contrast, the study
of Tang, Aleti, et al. examines the decision making process of the designers. The authors find that
design decisions may either address the problem or solution space of the given design task, so that
both spaces co-evolve over time [Tang, Aleti, et al. 2010]. Also, the study of Christiaans and Almendra
focuses on investigating the design decision making. The authors describe the design strategies with
the related cognitive processes applied by the designers [Christiaans and Almendra 2010]. All these
studies apply a research process, which is similar to the study presented in this chapter: the studies
analyzed the transcripts by coding relevant text parts according to given coding schemes. However,
only the study of Ball, Onarheim, andChristensen explicitly considers relations between requirements
and decision knowledge. Here, the requirements for the designers are grouped according to their
level of complexity and examined for relations to different design strategies. All other studies focus
primarily on the design outcome in relation to the discussions and decision making processes of
the designers. None of the studies explicitly addresses the structured extraction and documentation
of decision knowledge given in the transcripts. Thus, the study presented in this chapters not only
evaluates the feasibility of the documentation model regarding its requirements. It also contributes
an investigation of relations between fine-grained decision knowledge, requirements, and design.

In 2010, Jackson has presented a study to analyze the specific structures of the design space addressed
by the designers in their sessions. In detail, the study outlines different layers of complexity for the
designed traffic simulation system resulting from simulation entities, such as road layouts, signal

135

CHAPTER 7. EVALUATION OF DOCUMENTATION MODEL

units, and vehicles, and their interactions [Jackson 2010]. This analysis is later extended and refined
by Shaw in the special issue of IEEE Software to model and classify the actual design decisions made
by the designers within the given design space. Therefore, the author describes different potential
designs of the traffic simulation and highlights the designs resulting from the decisions made by
the designers [Shaw 2012]. Both studies do not systematically codify the fine-grained decision
knowledge documented within the transcripts and, therefore, differ from the research process of
the study presented in this chapter. However, both studies provide representations of the design
space and its contained design decisions, which are valuable information for the evaluation of the
documentation model.

Further contributions published in the special issue of IEEE Software focus on decision making
processes of the designers. Dilmaghani and Dibble investigate, how the designers use the whiteboard,
for instance to draw system sketches or visualize aspects of the design problem and potential solutions.
From this analysis, they conclude 10 basic rules to enhance early-stage designs [Dilmaghani andDibble
2012]. Similarly, Rooksby and Ikeya examine, how designers may remain focused during the early-
stage design processes, so that their collaborative work becomes coordinated and productive. They
outline the importance of a shared focus, an open attitude towards new ideas, and the identification of
agreement and disagreement between designers [Rooksby and Ikeya 2012]. Vliet and Tang present an
extension to their study formerly published in Design Studies with a detailed analysis of the interplay
between the solution-driven and problem-driven approach of solving design problems [Vliet and
Tang 2012]. Finally, Nakakoji et al. present an approach to document decision knowledge by recording
and linking different visual sources, such as pictures from the whiteboard with a video from the
design session [Nakakoji et al. 2012]. Whereas this approach aims to improve the documentation of
decisions, the decisions itself remain implicit within the recorded sources.

Further related studies address links between decision knowledge and either requirements or de-
sign artifacts. An overview of these related empirical studies with their respective documentation
approaches can be found in the scientific state of the art for decision documentation presented in
Chapter 4. However, these studies differ from the study presented in this chapter, because they do
not investigate decision knowledge with fine-grained knowledge structures.

7.2 Research Process

In the following subsections, the research process of this study is described. An overview is depicted
in Figure 7.1. First, a preparation phase was performed to define the research questions for the
study. Then, a coding table was created based on these questions to code and document the decision

136

7.2. RESEARCH PROCESS

Preparation Phase Coding Phase Analysis Phase

Definition of
Research Questions

Creation of
Coding Table

Data Extraction
and Cleaning

Coding of
Transcripts

Documentation of
Decision Knowledge

Analysis of
Documented

Decision Knowledge

Legend: Followed by

Figure 7.1: Overview of the Study Research Process

knowledge within the transcripts. The data was extracted from the transcripts to prepare them
for coding. Second, a coding phase was carried out. Coders were trained to apply the coding table
on the extracted data, before the complete coding of the transcripts was performed. Third, the
coded decision knowledge was documented and examined using the documentation model and
DecDoc during the analysis phase. Finally, the research questions were investigated based on this
documentation.

7.2.1 Preparation Phase

Definition of Research Questions
Based on the overall goal, different research questions were derived in order to evaluate the feasibility
of the documentation model for documenting decision knowledge in practice with regard to the
requirements described for the model in Section 5.2. These research questions (abbreviated as RQ)
are:

RQ1: Is it feasible to document RDM and NDM decisions in practice using the documentation
model?

RQ2: Is it feasible to document decisions in an iterative manner in practice using the documentation
model?

137

CHAPTER 7. EVALUATION OF DOCUMENTATION MODEL

RQ3: Is it feasible to capture decision knowledge during development in practice using the docu-
mentation model?

RQ4: Is it feasible to document links within decision knowledge in practice using the documentation
model?

Each of these research questions maps to one of the four requirements for the documentation model
as described in Section 5.2. RQ1 investigates the feasibility of the model to fulfill requirement A, the
documentation of RDM andNDMdecisions. In particular, this requires an investigation of the actual
usage of knowledge elements for capturing knowledge resulting from RDM and NDM in practice.
Thus, decision knowledge resulting from RDM and NDM contained within the transcripts needs
to be identified, and structured using the model elements. Thereby, the integrated documentation
of NDM and RDM knowledge within one decision can also be examined, as it is likely that both
decision making strategies will occur mixed and intertwined within the transcripts.

Next, RQ2 investigates requirement B, the iterative decision documentation. Consistent iterative
documentation structures within the model can be examined by representing the flow of design
discussions and their contained decisions described in the transcripts using the model structures,
such as aggregations of model elements. Throughout these discussions, design decisions are enriched
with further knowledge and refined over time. Thus, the capabilities of the model to represent these
iterations with newly added instances of knowledge elements can be examined. Also, the fine-grained
knowledge elements for capturing decision problem and context knowledge will be instantiated
using the transcripts. However, no new knowledge elements will be derived based on the abstract
elements within documentation model, as this conflicts with the investigation method of coding the
transcripts according to defined coding tables.

Third, RQ3 investigates requirement C, which describes capturing mechanisms for decision knowl-
edge during development. It is mainly investigated how decision knowledge can be captured during
design, as the investigated studies contain the contents of design sessions. Furthermore, within the
study the relations between design decisions and given requirements are examined and discussed,
such that knowledge capturing during requirements engineering is partly covered. However, the
selection of transcripts as raw data for the current study does not allow for investigating how deci-
sion knowledge can be captured during implementation using the documentation model, because
implementation artifacts, such as code files or binaries, would be necessary for such an investigation.
Such artifacts were not created in the original setup of the UCI design workshop.

Finally, RQ4 investigates requirement D, the support of links within decision knowledge. In detail,
relations to reference and refine the content of knowledge elements will be investigated using the
different knowledge element instances originating from the coding of the transcripts. As these

138

7.2. RESEARCH PROCESS

instances emerge from the flow of design discussions over time, their refinement can be evaluated by
applying relations from the documentation model. Furthermore, relations between decisions are
investigated. However, links between knowledge elements and development artifacts are examined
for RQ3 by relating the given requirements to instances of decision knowledge elements. Thus, they
will not be considered within RQ4.

Creation of Coding Table
Leaf model elements and major relations defined by the documentation model were used to derive
a coding table, so that instances of the different knowledge elements and their relations could be
identified within the transcripts. Codes resulting from model elements are given in Table 7.4. As
decision knowledge within the transcripts unfolds over time due to the progress of each design
session, all codes aim to identify and document decision knowledge incrementally. Thereby, each
of these codes addresses RQ2. A general code for Context was added to capture context knowledge,
which could not be identified as one of themore detailed sub-type elements ofContext. In contrast, no
general codes were added for Solution and Problem, as their sub-type elements allow for distinguishing
decision knowledge either as resulting from RDM or NDM. In detail, knowledge resulting from
RDM is coded as Alternative and Issue, whereas knowledge resulting from NDM is represented by
Claim and Goal. By indicating decision knowledge originating either from RDM or NDM, these four
codes also address RQ1. Regarding the DKE Argument, codes were set according to relations to other
instances of knowledge elements, as arguments supported, challenged or assessed previous statements
within the transcripts. During the coding, supporting arguments were indicated as pro-Argument

Code Description Related RQ

Issue A concrete question explicitly stated within the transcripts; results from RDM RQ1, RQ2
Goal Amore general and broad goal expressed by the designers in relation to scenario

they have in mind; results from NDM
RQ1, RQ2

Alternative Proposed solution, which can be assessed according to defined criteria; results
from RDM

RQ1, RQ2

Claim Proposed solution, which is based on personal experience and informal knowl-
edge; results from NDM

RQ1, RQ2

Context Broad and less specific information regarding a decision or decision element RQ2
Assumption Information, which is uncertain or approximated by the designers RQ2
Constraint Information representing a limitation or restriction RQ2
Implication Information containing a consequence RQ2
pro-Argument Supporting information regarding a decision or another decision element RQ2
con-Argument Information challenging a decision or another decision element RQ2
Assessment Information given to assess a decision or another decision element RQ2

Table 7.4: Codes for Identifying Instances of Documentation Model Elements

139

CHAPTER 7. EVALUATION OF DOCUMENTATION MODEL

along with the supports-relation, and attacking arguments were coded as con-Argument with an
attacks-relation. In addition, assessment codes were used together with concerns-relations to
each assessed knowledge element instance. Instances of decisions were not explicitly coded, but
created for each design aspect within the design space description given in Table 7.2.

Furthermore, several codes were used to highlight relations between decisions, and relations between
decision elements. These codes are described in Table 7.5. As RQ4 is concerned with the capability
of the model to create links between model elements, all codes address this research question. First,
instances of DKEs are typically contained within a decision instance or another DKE instance, which
is expressed by the code containedIn. Also, DKE instances may be related to other instances, which
is indicated by concerns. In particular, this code is used to indicate relations of DKE instances to
requirements addressed by the designers in their decisions. Thereby, RQ3 is likewise addressed. Next,
arguments may support or attack other instances. Furthermore, several relations between decision
instances were investigated for each transcript. To this end, codes were used based on the model
relations for decisions: relatedTo for general relations, dependsOn to express the dependency of one
decision on the solution of another, boundTo to indicate that a decision requires the outcome of
another decision to be implemented, and conflictsWith to express that two decisions cannot be realized
together.

Code Description Related RQ

I.containedIn(D|DKE) The current instance I is part of the decision instance D or the decision
knowledge element instance DKE

RQ1, RQ2,
RQ4

I.concerns(D|DKE|R) I is related to D or DKE or requirement R, for instance if designers
express uncertainty about the given requirements or describe any ex-
tensions to them

RQ3, RQ4

I.supports(D|DKE) I is an argument in favor of D or DKE RQ4
I.attacks(D|DKE) I is an argument challenging D or DKE RQ4
D1.relatedTo(D2) Decision instance D1 is generally related to decision instance D2 RQ4
D1.dependsOn(D2) D1 depends on the successful identification of a solution for D2 RQ4
D1.boundTo(D2) D1 is bound to the implementation of D2 RQ4
D1.conflictsWith(D2) D1 cannot be implemented together with D2 RQ4

Table 7.5: Codes for Identifying Relations between Documentation Model Element Instances

However, four relations of the documentationmodel were not coded. The comments-relation between
Arguments and other DKEs was not used, because arguments from the design session transcripts
should be clearly identified either as supporting or attacking arguments. In addition, there was no
conclusive data to apply the relation isAssessedIn, as this requires Context instances to be determined
as criteria for decision solutions. This was not possible because the decision making processes were

140

7.2. RESEARCH PROCESS

not finished by the designers due to the time restriction of the UCI workshop. Similarly, there was no
foundation for identifying the resolves-relation for Solutions and the isBoundTo-relation for Questions.

Data Extraction and Cleaning
In order to prepare the data from the transcripts for coding, all discussion statements were extracted
from the textual PDF files provided by the workshop organizers into Excel sheets. The discussion
statements were ordered according to their time stamp indicating their occurrence within the discus-
sions. Discussion statements within transcripts, which were marked as inaudible by the workshop
organizers, were marked to be excluded from coding.

7.2.2 Coding Phase

Coding of Transcripts
The author of this thesis coded the extracted data of both transcripts completely. The actual coding
procedure is illustrated by an example statement of transcript and its assigned codes in Table 7.6. In
order to improve the quality of the coding, the second author of [Hesse and Paech 2016] also coded
the first 10% of both transcripts. Then, both codings were compared, all deviations were discussed,
and the coding table as well as the criteria for setting a code were further refined. For each DKE code
assigned to a statement within the transcripts, a sequential numerical ID was assigned in order to
clearly identify all coded knowledge element instances and their relations. Because the numerical
values of the ID were assigned sequentially, they constitute an ordinal ranking for time, i.e., the later
a statement was made, the higher is the respective ID.

Adobe session tran-
script at [54min:33.6s]

“[...] if we want to get more sophisticated we could have sensor logic taking sensor for
each in-road so that if say these two are empty then these two just stay green forever?
Until these sensors go down.”

Codes for RQ1 Alternative, ID: 100
Codes for RQ2, RQ4 100.containedIn(88), 100.concerns(73)
Codes for RQ3 100.concerns(R-II.c)

Table 7.6: Example for Codes Applied on Transcript Statement

7.2.3 Analysis Phase

Documentation of Decision Knowledge
Based on the coded data from the transcripts, all decision knowledge elements were documented

141

CHAPTER 7. EVALUATION OF DOCUMENTATION MODEL

using the documentation model and DecDoc accordingly. An example of this documentation process
with DecDoc is shown in Figure 7.2. In detail, the requirements given in Table 7.1 were created as
general KnowledgeElements. Furthermore, the design space described in Table 7.2 was created in
DecDoc as a high-level structurewith 20 decisions belonging to the Adobe transcript and 21 belonging
to the Amberpoint transcript. Categories were represented as a tree of basic Sections in DecDoc to
group the decision knowledge, whereas Design Aspects were modeled as Decision elements. Within
these decisions, all coded decision knowledge was created as instance of the appropriate sub-type of
DecisionComponent, such that all identified decision knowledge elements were either contained
in such a decision or in another decision knowledge element. These instances were subsequently
linked according to the coded data. It should be noted that the coded text was set as content of
the description attribute for all identified DKE instances, and the ID was set as name. Finally,
relations between Decisions were set based on their contained knowledge elements.

Figure 7.2: Example for Documented Decision Knowledge from Adobe Transcript in DecDoc

Analysis of Documented Decision Knowledge
In total, 182 instances of decision knowledge elements were identified within the Adobe transcript,
and 198 instances were found in the Amberpoint transcript. The accurate numbers per DKE are
presented in Table 7.7. It should be noted that the numbers for Issues, Claims, and Implicationswere
higher within the Adobe transcript, whereas more Arguments were found within the Amberpoint
transcript. Also, only one Assessment of different alternatives was uncovered within the Adobe
transcript. For the Adobe session, one additional decisionwas identified during coding in comparison

142

7.2. RESEARCH PROCESS

to the decisions identified in [Shaw 2012]. However, for three decisions originating from the design
space no DKE instances could be found. For Amberpoint, no additional decisions were found, but
one decision from the design space did not contain any DKE instances.

Transcript Issue Goal Alt. Claim Cont. Asp. Cstr. Impl. Arg+ Arg- Assm.
∑

Adobe 36 3 21 39 17 11 8 33 10 3 1 182
Amberpoint 35 2 22 30 28 18 14 23 15 11 0 198

Table 7.7: Total Number of Documentation Model Element Codes

Regarding the documentation model relations, 332 relations were identified within the Adobe
transcript and 359 within the Amberpoint transcript. The detailed numbers per relation are shown
in Table 7.8. As expected, the number for containedInmatches the total number of DKE instances
for both transcripts, because every DKE instance was either part of a decision or of another DKE
instance. Regarding the concerns-relation, 55 of these relations pointed to requirements for the
Adobe transcript, and 65 for the Amberpoint transcript. Interestingly, all Arguments within the
Adobe transcript had only one supports- or attacks-relation to another instance. In contrast, two
opposing arguments were foundwithin the Amberpoint transcript, which had two attacks-relations to
different instances. Relations between decision instances could only be identified for those decisions
containing DKE instances. Several boundTo-relations were identified to the top-level decisions from
the design space for both transcripts. Whereas most decisions depended on the outcome of another
decision mostly concerned with the same Design Aspect from the design space for the Adobe team,
mainly general relations between decisions via relatedTowere foundwithin the Amberpoint transcript.
Finally, one pair of conflicting decisions was identified within the Amberpoint decisions.

Code Adobe Transcript Amberpoint Transcript

containedIn 182 198
concerns 113 109
supports 10 15
attacks 3 13
relatedTo 6 13
dependsOn 10 8
boundTo 8 2
conflictsWith 0 1∑

332 359

Table 7.8: Total Number of Documentation Model Relation Codes

As highlighted by Shaw, both teams of designers followed different approaches to solve the given

143

CHAPTER 7. EVALUATION OF DOCUMENTATION MODEL

design problem [Shaw 2012]. The Adobe team was dedicated to the functionality of the system, and,
therefore, mostly considered the technical architecture according to the Model-View-Controller-
approach. In contrast, the Amberpoint designers focused on the user interface, as well as the interac-
tion design between the system and the students. These differences are illustrated by Table 7.9, which
depicts the decisions with most DKE instances for each team. Together with different personal inter-
ests and experiences of the involved designers this may explain why the total amounts of instances
per DKE differ between the teams, although both teams received the same problem description and
worked under equal conditions.

Adobe Decisions #DKE Amberpoint Decisions #DKE

Set of objects – traversed by a controller at
each clock tick

25 Discrete cars – Cars with state, route, destina-
tion

26

Intersections – Have roads (with lights and
cars)

22 Intersections – Signals and sensors in ap-
proaches

23

High-level organization – Network 17 Connection of roads to intersections – Lights
and sensors in approaches

20

Place in hierarchy – Traffic signals belong to
roads

16 Traffic Model – Master traffic object, discrete
cars

20

Layout of visual map – Intersections implied
by road crossings

12 System Concept – User Interface 16

Table 7.9: Decisions with Highest Amounts of DKE Instances [Hesse and Paech 2016]

7.3 Results and Discussion

7.3.1 Results for RQ1: Feasibility of Documenting RDM and NDM Decisions
using the Model

In order to answer the first research question, the codes for Issue, Goal, Alternative, and Claim need to
be examined, as they are related to decision knowledge originating either from RDM or NDM. With
regard to the amounts of DKE instances identified within transcripts, knowledge originating from
both strategies has been identified and documented, as summarized in Table 7.10. More than half of
all identified DKE instances for the Adobe transcript and nearly half of all identified DKE instances
for the Amberpoint transcript are related to RDM or NDM, which can be considered significant
numbers in relation to the overall numbers of DKE instances for the two transcripts. However, it
should be noted that the number of two identifiedGoalswithin each transcript is small in comparison
to 36 and 35 Issues, which were identified respectively. In contrast, the difference in numbers for

144

7.3. RESULTS AND DISCUSSION

identified Alternatives and Claims is less pronounced.

Transcript Issue Goal Alternatives Claim Percentage of Total Amount

Adobe 36 3 21 39 54.4%
Amberpoint 35 2 22 30 44.9%

Table 7.10: Amounts of RDM- and NDM-related Codes

For the Adobe transcript, two decisions were found containing no RDM elements, whereas the
Amberpoint transcript contained 4 decisions without RDM elements, and one decision without
NDM elements. Also, for one decision within the Amberpoint transcript, neither RDM- nor NDM-
related elements were identified. However, these decisions were rather small, as they had a total
size between one and eight DKE instances. Examination of the structure of the remaining decisions
revealed the mixed occurrence of RDM and NDM knowledge within the same decision. A typical
example from the Adobe transcript is given in Figure 7.3. Here, the Claim with ID 56 emerged as
a solution proposal to an Issue, after the designers had already discussed a couple of Alternatives. A
second example from the Amberpoint transcript is depicted in Figure 7.4. It shows a decision instance
containing a mix of Claims, Issues, and one Alternative. Whereas in the first example the last identified
DKE instance was an NDM-related element, it is an RDM-related Alternative in the second example.

Decision
Set of objects - traversed by a controller at each clock tick

Alternative (ID: 13)
Clock is a controller

Alternative (ID: 14)
Cop is a controller working with clock

Issue (ID: 15)
Cop model or controller?

Issue (ID: 55)
Cop or independent master controller?

Claim (ID: 56)
Master controller controls whole state of the world

Legend: containedIn

Figure 7.3: Adobe Decision Excerpt with Mix of RDM and NDM Element Instances

145

CHAPTER 7. EVALUATION OF DOCUMENTATION MODEL

Decision
Layout determines road length

Claim (ID: 35)
Derived distance between intersections

Issue (ID: 137)
Where do users see the road distance?

Claim (ID: 138)
Road distance is shown as movement

Issue (ID: 139)
When is the distance visible?

Claim (ID: 140)
Always show distance

Alternative (ID: 143)
Only show distance while dragging

Legend: containedIn

Figure 7.4: Amberpoint Decision Excerpt with Mix of RDM and NDM Element Instances

7.3.2 Discussion of Results for RQ1

The results for RQ1 show that it is feasible to capture and document decision knowledge originating
from RDM and NDM using the documentation model. Herein, the decision knowledge may be based
purely on RDM, purely on NDM, or on a mixture of both strategies. However, it should be noted
that the codes for documenting RDM- and NDM-related decision knowledge used in this study are
only a first approach to capture and structure this knowledge. Of course, many further and more
refined codes could be derived based on the two decisionmaking strategies. One promising candidate
could be Assessment, as it is related to the process of determining a solution using RDM. Interestingly,
only one Assessmentwas uncovered in the study. On the one hand, this could be related to personal
preferences of the specific designers who have participated in the investigated design sessions. In this
case, results for this DKE are assumed to vary if decision knowledge from further design sessions
would be coded and documented. On the other hand, further assessments could have been contained
in the investigated transcripts, which were not captured by the code for Assessment and its related
DKE. In this case, a further refinement of the Assessment code with regard to properties of solutions
may be helpful. Also, the low number of identified Goals is noteworthy. This, however, may have
been caused by the requirements given to the designers along with the problem description. Thereby,
the designers might not have felt the need to search and discuss their own goals, but referred to the
given ones with more concrete Issues.

146

7.3. RESULTS AND DISCUSSION

Furthermore, it is interesting that the designers in both teams did mix RDM and NDM in various
decisions. This is in line with the findings of Zannier, Chiasson, and Maurer who describe the
intertwined usage of both strategies in practice [Zannier, Chiasson, and Maurer 2007]. However, it
is not yet fully understood whether this mixed strategy use has any positive or negative impacts on
the quality of decision outcomes. In the presented study, no validation or quality assessment of the
design decisions regarding the design task and its requirements was performed. In the related studies,
the quality of the overall design process was examined (cf.[Tang, Aleti, et al. 2010] and [Shaw 2012]),
but no detailed reviews were executed to determine the quality of the identified design decisions.
Thus, it cannot be assessed if the mixed strategy use did impact the quality of the decisions made by
the designers. In particular, this implies that it is also not possible to draw conclusions if a mixed
strategy use should be documented this way. Nevertheless, the presented documentation model is
capable of documenting decision knowledge according to different structures that emerge over time
during design discussions. This would be even more beneficial in case that the mixed strategy use is
found to have a positive impact on decision outcome in future studies. In the opposite case, support
for incrementally adding new DKE instances freely over time should likely be limited or extended
by rule sets and transformation support, which enforce and help to automate the documentation
according to the preferred strategy.

7.3.3 Results for RQ2: Feasibility of Documenting Decisions Iteratively using
the Model

The iterative documentation of decision knowledge can be assessed by examining the structures for
decision instances, which emerged while documenting the coded knowledge from the transcripts.
For the Adobe transcript, 93 DKE instances were added directly to decisions, and 89 DKE instances
were contained in other DKE instances. Similar numbers were found for the Amberpoint transcript,
for which 97 DKE instances were added to decisions directly, and 101 DKE instances were part of
other DKE instances. Based on this distribution, twomajor patterns for refining existing documented
knowledge were observed. First, a given decision instance was enriched with additional knowledge
to clarify the current solution proposal or to add further context. DKE instances were then added
directly to the respective decision. Second, given DKE instance were refined during the flow of the
design discussions. This resulted in multiple deeper levels created using the containedIn-relation.
Examples for these two patterns are given based on the Amberpoint transcript in Figure 7.5. Box
(a) shows a decision refinement, where the Assumptionwith ID 27 was added in a further iteration
to refine a formerly emerged Constraint by stating that the timing of traffic lights would impact
the traffic speed simulated by the system. In contrast, box (b) depicts the specific refinement of an
Alternative, so that an Implication and an Assumption are added as part of this existing alternative.
This was the result of a discussion loop, which highlighted specific consequences and uncertainties

147

CHAPTER 7. EVALUATION OF DOCUMENTATION MODEL

regarding cyclic default timings for lights at intersections. As a result, it is feasible to cover both the
enrichment of given decisions and the extension of particular knowledge elements within a decision
using the decision documentation model.

(a) Refinement on Equal Level

(b) Refinement on Deeper Level

Decision
Lights and sensors in approaches

Claim (ID:15)
Traffic lights as default

Constraint (ID:16)
Timing for lights required

Assumption (ID:27)
Traffic speed affected by traffic lights

Alternative (ID:42)
Cyclic defaults for intersections

Implication (ID:57)
Duration of the cycle required

Assumption (ID:58)
Sensors might impact cycle duration

Legend: containedIn

Figure 7.5: Amberpoint Decision Excerpt with Iterative Refinements by Adding DKE Instances

In addition, it was investigated how the documentation model supports the refinement of docu-
mented knowledge by providing fine-grained knowledge elements. The usage of Issues and Goals for
knowledge on the problem space of decision was presented in Section 7.3.1. In this section, the usage
of Context and its sub-elements Assumption, Constraint, and Implication is assessed. An overview of
total numbers for these elements uncovered within the transcripts is given in Table 7.11. In general,
slightly more context knowledge emerged during the Amberpoint design session than during the
Adobe session. The distribution of DKE instances according to the type of context knowledge differs

Transcript Context Assumption Constraint Implication Percentage of All Codes

Adobe 17 11 8 33 37.9%
Amberpoint 28 18 14 23 43.2%

Table 7.11: Numbers of Context Codes

148

7.3. RESULTS AND DISCUSSION

between both teams. Whereas the Adobe mostly stated Implications, the Amberpoint team focused
on more general Context elements. Also, the Amberpoint designers made more explicit Assumptions
and Constraints than the Adobe team. This shows that the different fine-grained knowledge elements
could actually be applied for documenting the knowledge from the transcripts.

An example for applying these context elements during documentation is given in Figure 7.6. Here,
the Amberpoint designers stated different context aspects for the topic of cycle times within the
system during one iteration, as shown by the consecutive IDs. Interestingly, they started by stating
general thoughts regarding the timing and potential states of the traffic lights. Then, this knowledge
was enriched by more specific context knowledge, such as an Assumption on the actual time format
for the timing and an Implication concerning the symmetry of timing for the opposite directions of
an intersection.

Decision
System sets timing

Claim (ID:59)
Overall cycle time

Context (ID:60)
Overall timing and orange light

Assumption (ID:61)
Represent timing in seconds

Implication (ID:63)
Equal timing for north and south

Constraint (ID:64)
Depends on green arrow

Legend: containedIn

Figure 7.6: Amberpoint Decision Excerpt with Different Context Instances

7.3.4 Discussion of Results for RQ2

The results for RQ2 show how the documentation model supports different ways of documenting
refined decision knowledge in an iterative manner. Furthermore, the results show that the fine-
grained context elements are not yet over-specified, as all sub-types were applied frequently within
both transcripts. Nevertheless, it should be noted that knowledge coding and documentation was
performed based on written transcripts of finished design sessions, so that all knowledge was acces-
sible during documentation. Thus, DKE instances could be adequately assigned to other instances

149

CHAPTER 7. EVALUATION OF DOCUMENTATION MODEL

using the concerns-relation, as their place in hierarchy and content could be looked up and evaluated
without time pressure. However, it remains an open question whether this iterative refinement
process can be performed with similar accuracy during running design sessions without a transcript
or for design sessions being held in multiple meetings over time. On the one hand, the refinement
abilities provided by the documentation model could be useful to guide these design sessions by
making decision knowledge structures explicit and, thereby, highlighting open questions, missing
information, and conflicting discussion contributions. On the other hand, this introduces additional
challenges for the refinement process and the resulting documentation, as shifts in the interpretation
of documentation and inconsistencies between created DKE instances need to be addressed.

Interestingly, no DKE instances could be assigned to three Adobe design decisions and one Amber-
point design decision, although the related design aspects have been explicitly assigned to the teams
in the design space described by Shaw2012. The complete coding of the session transcripts and the
iterative documentation support of the documentation model make it less likely that existing DKE
instances actually contained in these decisions have been missed. In consequence, the documentation
provided by this study can complement the high-level view provided by the design space with detailed
structures of the underlying decisions.

7.3.5 Results for RQ3: Feasibility of Capturing Decision Knowledge during
Development using the Model

Many references between DKE instances and requirements from the task descriptions have been
uncovered and documented using the concerns-relation. An detailed distribution of these references
for the Adobe transcript is given in Table 7.12. The numbers per DKE highlight that especially

Require-
ment

Issue Goal Alt. Claim Cont. Asp. Cstr. Impl. Arg+ Arg- Assm.
∑

R-I 3 1 2 2 2 2 12
R-II 2 3 1 3 1 2 1 1 14
R-II.a 2 2
R-II.b 1 1 1 3
R-II.c 1 2 1 1 1 6
R-III 5 1 1 4 1 1 13
R-IV 1 1 1 1 1 5
R-V 0∑

11 2 8 10 4 4 5 6 3 1 1 55

Table 7.12: concerns-Relations between DKEs and Requirements for the Adobe Transcript

150

7.3. RESULTS AND DISCUSSION

Issues and Claims were driven by requirements during the design discussion, as these elements show
the highest numbers of references to requirements. In contrast, the Adobe designers were mostly
concerned with requirements I, II, and III, which address the map creation, the handling of traffic
lights, and the actual traffic simulation. This is in line with the teams’ focus on functionality according
to its Model-View-Controller-approach.

The aforementioned three requirements were also discussed by the Amberpoint team, as shown in
Table 7.13. In addition, the Amberpoint designers also addressed the non-functional requirement V,
which concerns the ease of use of the traffic simulation system. This fits the user interface focus of
this team. Most references to requirements were found for Issues, Alternatives, and Constraints.

Require-
ment

Issue Goal Alt. Claim Cont. Asp. Cstr. Impl. Arg+ Arg- Assm.
∑

R-I 2 1 2 2 2 3 2 1 15
R-II 4 1 1 1 4 2 1 14
R-II.a 1 2 1 4
R-II.b 0
R-II.c 2 2 1 1 6
R-III 1 5 2 3 2 1 1 15
R-IV 1 3 1 5
R-V 1 2 2 1 6∑

10 1 10 9 7 7 10 2 5 4 0 65

Table 7.13: concerns-Relations between DKEs and Requirements for the Amberpoint Transcript

The references to requirements also influenced the knowledge structures that emerged during the
design discussions. An example is depicted in Figure 7.7. Here, the Amberpoint team addressed
multiple requirements within the same decision. Thus, several context elements were uncovered,
which are related to requirement II and II.c. According to the content of DKE instances, several
solution proposals are discussed in order to satisfy the constraint of timing dependencies between
different directions for the traffic lights. This addresses the required behavior and timing control for
traffic lights, as described by requirement II, and the control of traffic lights by sensors, as described
in requirement II.c. The first Claim with ID 73 is concerned with an overlapping time to address
different timings for different directions. The second Claimwith ID 109 proposes to set the speed
per road, so that the designers assume a relation between the light sensors and the car speed in
the Assumption with the ID 148. This assumption also references requirement II.c, as it describes
an uncertainty of designers about the actual meaning of the requirement regarding their proposed
implementation. One cause for this knowledge structure might be the need to make trade-offs
between different solution proposals, as no formal assessments of alternatives were found within

151

CHAPTER 7. EVALUATION OF DOCUMENTATION MODEL

this transcript. Then, relations to requirements may help the designers to check whether a claim is in
line with all requirements they wanted to address with their decision.

Decision
Lights and sensors in approaches

Constraint (ID: 71)
Manual timing for two directions, others are implied

Claim (ID: 73)
Overlapping time as a separate setting

pro-Argument (ID: 74)
Avoid two crashing signals

Claim (ID: 109)
Set speed per road

Assumption (ID: 148)
Sensors related to car speed

Requirement II

Requirement II.c

Legend: containedIn
concerns

Figure 7.7: Amberpoint Decision Excerpt with Relations between DKE Instances and Requirements

7.3.6 Discussion of Results for RQ3

Overall, the results for RQ3 show that it is feasible to capture relations between decisions and
requirements with the documentation model. In particular, the presented example highlights that
decision knowledge and requirements impact each other. On the one hand, both teams derived
context knowledge, such as Constraints and Implications, based on the given requirements. Thereby,
there decisions and the emerging knowledge was guided. On the other hand, Assumptions made
during the decision process pointed out the need for clarifying or even extending the requirements
specification. In consequence, the study results outline the mutual impact of design decisions and
requirements, which became visible through the application of the decision documentation model. A
more detailed investigation of this impact is presented in [Hesse and Paech 2016].

Interestingly, both teams did not address any non-functional requirements in their design discussions,
except for requirement V in the Amberpoint session. In addition, the distribution of references to
requirements per DKE deviate between the two teams, whereas the overall numbers of references
are similar. First, this confirms the well-known fact that designers should consider non-functional

152

7.3. RESULTS AND DISCUSSION

requirements in their decisions more explicitly. Second, relations to requirements seem to depend
more on the preferences and priorities of the design team, than on the actual content of the given
requirements. These twobehaviors are likely to decrease the quality of design decisions, and, therefore,
should be avoided bydesigners. Thismakes it evenmore important tomake relations betweendecision
knowledge and requirements explicit to uncover and mitigate such behavior. Also, a higher number
of relations from design decisions to a particular requirement would indicate that this requirement
is an important driver for the design of the system. This would be in line with the findings described
in [Chen, Ali Babar, and Nuseibeh 2013], and strengthen the comprehensiveness and value of the
documented decision knowledge.

7.3.7 Results for RQ4: Feasibility of Linking Decision Knowledge using the
Model

Regarding the refinement of documented decision knowledge, it was investigated how different
DKE instances as well as different decisions were linked according to the coded knowledge. For
the DKE instances, 58 concerns-relations pointing to other DKE instances were set for the Adobe
transcript, and 44 for the Amberpoint transcript. In addition, several supports- und attacks-relations
have been set for Arguments. In the Amberpoint transcript, two contra-Argumentswere uncovered,
which had two attacks-relations to other DKE instances. One of these arguments is depicted in

Decision
Synchronized intersections

Issue (ID: 29)
How to capture influences between intersections?

Claim (ID: 30)
Coordinate points for intersections

Issue (ID: 31)
How to reference intersections?

Claim (ID: 32)
Grid layout for intersections

contra-Argument (ID: 33)
Roads and intersections need to be placed regularly

Legend: containedIn
attacks

Figure 7.8: Amberpoint Decision Excerpt

153

CHAPTER 7. EVALUATION OF DOCUMENTATION MODEL

Figure 7.8. This example highlights how relations helped to refine documented decision knowledge.
The contra-Argument with ID 33 occurred in the discussion loop concerned with a Claim to have
a grid layout for intersections, i.e., the argument was added as a part of this claim. However, the
argument also addressed coordinates for intersections in a previous claim, so it was linked to both
claims using the attacks-relation.

Furthermore, a total number of 24 relations between decisions was found for both, the Adobe and
the Amberpoint transcript. An example for these relations is depicted in Figure 7.9 based on the
Adobe transcript. The graph excerpt shows how the major decision regarding the Model-View-
Controller-approach as system concept impacted other decisions. For instance, the decisions for
having a network and intersections as entities of the model and visually forming intersections by road
crossings, are bound to the implementation of the related model, view, and controller components.
In contrast, other decisions only depend on the outcome of previous decisions, but do not require
their actual implementation. For instance, the content of the decisions to create roads and discrete
cars depends on the decision to have explicit intersections. Similarly, the attachment of a capacity
and lanes with signals to roads depends on the decision to have roads. However, these dependent
decisions could be changed in case the related decision is omitted or rejected.

Decision (System Concept)
Model-View-Controller

Decision (High-level organization)
Network

Decision (High-level organization)
Intersections

Decision (Layout of visual map)
Intersections implied by road crossings

Decision (Intersections)
Have roads (with lights and cars)

Decision (Discrete cars)
Random choices at intersections

Decision (Roads)
Lanes, with signal per lane

Decision (Roads)
Capacity

Legend: boundTo
dependsOn

Figure 7.9: Excerpt from Adobe Relations Graph for Decisions

Interestingly, no conflicting decisions were found in the Adobe transcript, but one pair of conflicting
decisions was identified within the Amberpoint transcript. In detail, two decisions on setting the

154

7.4. THREATS TO VALIDITY

timing within the system are in conflict, as they claim to let both, the system and the students set the
timing for the traffic lights. However, this conflict was resolved later on in a third decision on lights
and sensors in intersection approaches, when the designers proposed to introduce default timings
for the lights, which can be overwritten by the students.

7.3.8 Discussion of Results for RQ4

As the results for RQ4 point out, it is feasible to link both, decision instances and DKE instances,
using the decision documentation model. In particular, the concerns-, supports-, and attacks-relations
complement the containedIn-relation, which has the character of a composition. Thus, a DKE instance
can either be part of a decision or of a DKE instance. Then, the other relation types can be used to
document further references to DKE instances, as shown for the Argument from the Amberpoint
transcript.

Nevertheless, it should be noted that these references also cause additional effort for maintaining
existing links in case that further iterative refinements extend or adapt the documented knowledge.
This is highlighted by the example of the conflicting decisions in the Amberpoint transcript. Here,
the content of a third decision impacted the relation between two others. In the particular case,
the conflictsWith-relation has to be removed and a dependency is created from the third decision
to the two others. In consequence, the documentation process could be even better supported by
further extending the documentation model, so that relations between decisions can have associated
decisions similar to an Argument associated to the resolves-relation.

Finally, it should be noted that only the most relevant relations from the documentation model have
been investigated. Thus, specific relations, such as comments, isBoundTo, and isAssessedIn, were not
examined. However, due to the relatively small numbers of attacks- and supports-relations it appears
unlikely that these decisions would have occurred in significant amounts. One reason could be that
the designers were rather exploring the design space and discussing design problems and solution
than preparing particular decisions for an actual implementation. This reasonwas caused by the setup
for the design sessions with a strict time limit and a focus on design discussions without possibilities
to actually implement the designed system.

7.4 Threats to Validity

According to Runeson et al. [Runeson et al. 2012], four different categories of threats to validity
have to be considered for the presented study. These categories are described and discussed in the

155

CHAPTER 7. EVALUATION OF DOCUMENTATION MODEL

following paragraphs.

Internal Validity
Threats to internal validity concern the correlation between the investigated factors and other
factors [Runeson et al. 2012]. The decision knowledge stated by the designers in their discussions
might have been influenced by missing further instructions regarding documentation or design
reasoning. Thus, the designers might have worked less structured and did not articulate all decision-
related thoughts. However, these conditions are realistic and apply for most design discussions in
practice. In addition, if the designers would have been required to use specific methods or structured
processes for design reasoning or decision documentation, the investigated decision and results
of this study would depend on these methods and processes. Next, the quality and guidance of
the investigated design sessions might have been impacted by the rather short design prompt. In
consequence, the actual decision knowledge expressed by the designers might have been limited by
uncertainties about the actual decision problem and context. But again, this corresponds to decision
situations in practice. This threat was addressed by checking the acquired decision knowledge with
the results of additional studies, such as the studies of Tang, Aleti, et al. [Tang, Aleti, et al. 2010]
and Shaw [Shaw 2012].

Construct Validity
Threats to construct validity concern any gaps between intended and actual observations of the
researchers [Runeson et al. 2012]. The coding table for decision knowledge might have identified
something else than decision knowledge elements (cf. the related threat in Section 3.4). This threat was
mitigated by retrieving the codes based on the definitions for each knowledge element, as described
in Chapter 5. Also, all codes were tested on the given data and refined in order to capture the elements
given in the documentation model in an optimal way. In addition, there is an excellent fit of the
presented results with the decisions identified by Shaw [Shaw 2012]. The coding in the presented
study covered 18 out of 20 decisions for the Adobe transcript, and 20 out of 21 decisions for the
Amberpoint transcript identified in the study of [Shaw 2012]. Finally, the experiences and insights
from performing the Firefox study presented in Chapter 3 were used to improve the study setup and
coding procedure.

Reliability Validity
Threats to reliability validity concern the degree to which data and analyses of a study are dependent
on specific researchers [Runeson et al. 2012]. Only one coder coded all data from both transcripts,
which might make the coding less reliable. This threat was addressed by checking and aligning the
codes with samples acquired from the second coder. Small parts of the design discussions were
inaudible in the videos and, therefore, were marked and left out in the transcripts. In consequence,
some relevant decision knowledge might have been not accessible, because it was not contained

156

7.4. THREATS TO VALIDITY

in the transcripts. This was addressed by checking the surrounding text in the transcripts for all
inaudible parts to uncover hints on any missed content.

External Validity
Threats to external validity concern the degree to which the results of our study can be general-
ized [Runeson et al. 2012]. Only transcripts of two design sessions were investigated in this study.
In consequence, the presented findings depend on the designers of two investigated teams, and
generalization or comparison to other teams and other design setups may be difficult. The third
transcript of the UCI design workshop could have been included in the analysis, but this would
have caused more threats to internal validity due to the deviations in this session’s setup. Also, the
designers performing the investigated sessions were professionals from industry, holding key roles
in their respective companies. Thus, the investigated transcripts and the acquired results are likely to
represent typical design sessions and the related decision knowledge.

157

8
Evaluation of Tool Support

In this chapter, the tool support DecDoc is evaluated regarding its feasibility and practicability for
documenting decision knowledge. The feasibility of documenting complex decision knowledge using
DecDoc is illustrated by a demonstration of the tool support with decision knowledge investigated in
the previous chapter. These results were also briefly sketched in [Hesse, Kuehlwein, and Roehm 2016].
Because not all requirements for DecDoc can be covered with this demonstration, the feasibility
of documenting decision during implementation using DecDoc is evaluated by a first case study with
students. The students applied DecDoc functionalities on decision knowledge resulting from a task of
a practical course on software engineering. This study was formerly published in [Hesse, Kuehlwein,
Paech, et al. 2015].

8.1 Feasibility of Documenting Complex Decision Knowledge

using DecDoc

Todemonstrate the feasibility of documenting decision knowledge usingDecDoc for realistic amounts
of data exceeding the presented running example, DecDoc was used to document the decision
knowledge emerging from the design session transcripts of theUCI designworkshop (cf. Section7.2.3).
Thereby, decision knowledge was uncovered without the possibility to perform an analysis on
additional development artifacts, such as use cases, UML diagrams or source code files. Due to the
absence of these artifacts, they could not be linked to any emerging decision knowledge. Thus, only
the features of the Knowledge Editor of DecDoc can be demonstrated with the transcripts as the main
source of decision knowledge. In consequence, this demonstration concerns requirements A.1 to
A.3, B.3, and D.2, which mainly address the support for an incremental documentation process of
decision knowledge. First, the statistical Decision Overview gives an impression of the actual amounts

159

CHAPTER 8. EVALUATION OF TOOL SUPPORT

of documented knowledge from the transcripts. This is depicted in Figure 8.1. In total, 380 DKE
instances were created for both transcripts. It should be noted that due to the coding and analysis
procedure described in Section 7.2.1, no instances ofQuestion and Solution elements were created, i.e.,
the number of occurrences equals zero within the statistics. Also, one argument was linked to other
instances using both the attacks- and supports-relation, so that it was counted as pro-Argument and as
con-Argument. This explains why the sum of all distinct argument counts (pro, contra, unpositioned)
is one count higher than the overall sum of arguments, which correctly represents the number of all
argument instances.

Figure 8.1: Statistics Overview Showing all Decision Knowledge from the Transcripts

For documenting decision knowledge regarding one decision, the Decision Editor was used. An
example from the Adobe transcript comprising the decision that traffic signals belong to the road
within their simulation model is depicted in Figure 8.2. The picture shows the list of claims for

Figure 8.2: Decision Editor with Claim Descriptions

160

8.1. FEASIBILITY OF DOCUMENTING COMPLEX DECISION KNOWLEDGE USING DECDOC

this decision with their descriptions. Thereby, the time-efficient documentation of textual contents
within DKE instances using the Decision Editor is highlighted. It also outlines that the editor enables
developers to swiftly access and edit documented decision knowledge, even if many instances of the
same DKE exist within a decision. To explore the relations between DKE instances, the graphical
Decision Overview is used. An example is given in Figure 8.3 for the Adobe decision concerned with a
drag-and-drop visual editing support within the user interface of the traffic simulator. This graph
visualization represents DKE instances as nodes and their relations as edges. In consequence, it is
required to deal with larger numbers of nodes and edges, and it has to cope with the size of the
textual description resulting from realistic decision knowledge. Furthermore, the graph also includes
relations between further development artifacts and the actual decision knowledge. In the example,
this is highlighted by the relation between the functional requirement III regarding the simulation of
the traffic flow and claim 144 on the ability to follow a specific car through the simulation.

Figure 8.3: Graphical Decision Overview Showing an Adobe Decision

Finally, questions and solutions within the design session transcripts were explored using the Solution
Management dialog. An excerpt of the questions and solutionswithin documented decision knowledge
is given in Figure 8.4. In particular, the dialog allows for an easy comparison of the ratio between
questions and solutions per decision. For instance, the figure shows that the decision to create a
network of roads contains 5 questions, but seven potential solutions. It should be noted that the

161

CHAPTER 8. EVALUATION OF TOOL SUPPORT

dialog efficiently reduces the complexity of the emerged decision knowledge structures by presenting
all Question and Solution instances of one decision, regardless of the number of contains-relations for
the respective instances. Thus, developers are not getting confused by deeper hierarchy trees created
by contains-relations between instances, which emerge due to an iterative decision-making and the
collaborative documentation process in DecDoc.

Figure 8.4: Solution Management for Decision Knowledge from Adobe Transcript

In summary, the usage of DecDoc for documenting the decision knowledge from the UCI design
session transcripts showed the feasibility of documenting and structuring decision knowledge using
the Knowledge Editor. Thereby, the suitability of the Knowledge Editor with its Decision Editor to
fulfill the requirements A.1 to A.3 is demonstrated. Furthermore, using the Decision Overview, it was
feasible to visualize relations for decisions and DKE instances in general (requirement D.1), and the
containedIn-relation in particular (requirement A.2). The Solution Management helped to cope with
complex knowledge structures, so that DecDoc covers requirement B.3.

However, some requirements could not be examined using the data from the UCI design workshop.
Most importantly, the requirements C.1 and C.2 could not be evaluated, as the material of the UCI
workshop does not provide information on either security-related requirements or design diagrams.
Thus, the import of decision knowledge using the HeRA plugin and the documentation of decision in
UML diagrams could not be applied. Furthermore, this also impacts the evaluation of requirement
D.2, which describes the necessity to provide the semi-automatic creation of links between decision
knowledge and other artifacts. As these artifactswere not available and theHeRA importerwizardwas
not applied, the related features for proposing links within the wizard were not tested. Nevertheless,
requirement C.3 regarding the usage of code annotations will be evaluated in the case study presented
in the next section. In this case study, also requirement B.1 regarding the documentation support
for decision knowledge for collaborative work involving multiple developers, and requirement B.2
regarding support for extensions of the documentation model within DecDoc will be examined.

162

8.2. FEASIBILITY OF DOCUMENTING IMPLEMENTATION DECISIONS USING DECDOC

8.2 Feasibility of Documenting Implementation Decisions using

DecDoc

The requirements B.1, B.2, and C.3 for DecDoc were investigated regarding the feasibility of docu-
menting knowledge for implementation decisions, because these requirements mainly concern the
collaborative usage of DecDoc by multiple developers and its usage during development activities.
Therefore, a preliminary case study was performed with students from Heidelberg University.

8.2.1 Study Foundations

The overall goal of this studywas to evaluate the feasibility of documenting decision knowledge during
implementation using the tool support DecDoc with a focus on code annotations. Therefore, DecDoc
was presented to and applied by undergraduate students in computer science within a practical
course. Seven students participating in the course were grouped into two development teams. Team
members were assignedwith respect to their skill levels and prior programming experience to achieve
comparable and equally skilled teams. Both teams worked on a software project, which required them
to plan, implement and document an Eclipse plugin. The teams received an identical description of
the project with an initial set of requirements provided in the form of scenarios, which described the
intended usage of the plugin to be developed. Both teams performed three sprints with a duration
of one week from mid February until the beginning of March 2015. At the end of each sprint, both
teams presented their current development progress.

The setting of this practical course was chosen for the study, as it provides suitable conditions to
evaluate the aforementioned requirements. First, teams with multiple developers were studied, so
that the collaborative focus of requirements B.1 and C.3 could be investigated. Second, the students
created code during the course, which was another precondition to be able to examine requirement
C.3. To prepare the study, a tutorial for DecDoc was held for all students, so that they had a similar
level of competency regarding the usage of DecDoc. Also, the teams received a textual manual on how
to use the code annotations. Whereas the usage of UNICASE for documenting the related project
knowledge was mandatory for the students, they were not required to use DecDoc in order to pass
the course. Thus, annotation usage during implementation could be observed realistically.

8.2.2 Research Process

The overall goal of the study is covered by the research question: Is it feasible to document implemen-
tation decisions using DecDoc with its code annotations? To answer this question, the Technology

163

CHAPTER 8. EVALUATION OF TOOL SUPPORT

Acceptance Model (TAM) [Davis, Bagozzi, and Warshaw 1989] was applied to create questionnaires
for the students in order to explore the actual use of the DecDoc annotations. In detail, TAM consists
of three variables. First, the ease of use describes the degree to which a person expects the approach
to be effortless. Second, usefulness covers the subjective probability for a person to increase its job
or work performance. Third, the intention to use describes the willingness of a person to use the
approach in the future. These variables were assessed by the following statements designed to cover
a variable (numbered from S1 to S4):

S1: It was easy to create decision elements with code annotations. (Ease of use)

S2: It was easy to locate decision elements within the Eclipse Code Editor. (Ease of use)

S3: Code annotations have been useful for the documentation of decisions. (Usefulness)

S4: In the future I would use code annotations again to document decisions. (Intention to use)

Statements were used instead of open questions, so that the comparability of the responses could
be ensured. Thereby, the creation and usage of code annotations within DecDoc was distinguished
for further investigation by introducing statement S1 and S2, which both address the ease of use. In
contrast, S3 and S4 cover the entire code annotations for usefulness and the intention of use. The
answers for each statement were collected using a six point Likert scale [Likert 1932], as this is an
established approach in survey research. A statement is considered to be accepted, if the majority of
students marked a four or higher on the scale. For each sprint, one anonymous questionnaire was
formed using these statements. The questionnaires were handed out to the students and answered by
them after each sprint presentation. Only the third and last questionnaire contained statement 4, as
this statement refers to the overall experience with the code annotations of DecDoc during all sprints.
Thus, for this statement the ‘not used’-answer was not given. It should be noted, that the total number
of seven students is not sufficient to achieve statistical evidence. To address this shortcoming, in
each questionnaire the students were also asked for rationale and comments in general and for each
statement. Thereby, individual feedback could be collected to better understand the formal answers
for the statements.

8.2.3 Results and Discussion

The results of the questionnaires are depicted in Table 8.1. In general, more students used the code
annotations over time, what explains the declining amount of ‘Not used, no answer’-results for the
last sprint. However, the high amount of ‘Not used, no answer’-results particularly in the first sprint
provides only a limited support for the other statements. But according to the overall number of

164

8.2. FEASIBILITY OF DOCUMENTING IMPLEMENTATION DECISIONS USING DECDOC

rejecting answers and the definition for accepting a statement given in Section 8.2.2, no statement had
to be rejected. Thus, the results give an indication that it is feasible to document decision knowledge
during implementation using DecDoc and its code annotations (requirement C.3). This also concerns
the ability of DecDoc to provide generic functionality for accessing and editing knowledge elements
provided by extensions within DecDoc, because the code annotations feature provides several new
knowledge elements to represent the annotations. Thus, requirement B.2 is covered indirectly by
this study.

Sp
rin
t n
o.

Sta
tem

en
t n
o.

Str
on
gly

dis
ag
ree

Di
sag
ree

Ra
th
er
dis
ag
ree

Ra
th
er
ag
ree

Ag
ree

Str
on
gly

ag
ree

No
t u
sed
, n
o a
ns
we
r

∑ Di
sag
ree
, A
gr
ee

Ac
cep

ted

I
S1 0 0 0 0 1 2 4 0 / 3 yes
S2 0 0 0 2 1 1 3 0 / 4 yes
S3 0 1 0 3 1 1 1 1 / 5 yes

II
S1 0 0 0 1 2 1 3 0 / 4 yes
S2 0 0 0 2 1 1 3 0 / 4 yes
S3 0 1 0 0 1 3 2 1 / 4 yes

III

S1 0 0 1 0 3 2 1 1 / 5 yes
S2 0 1 0 0 3 0 3 1 / 3 yes
S3 0 0 1 0 2 2 2 1 / 4 yes
S4 0 1 1 0 4 1 - 2 / 5 yes

Table 8.1: Questionnaire Results from all Sprints

In addition, several students described in their individual feedback that DecDoc was very useful
for them in order to remember and reflect decisions made during implementation. As the code of
the project and the decision documentation emerged over time during three sprints, both the code
and the decision knowledge documented through the annotations were versioned and stored in the
code repository and the shared knowledge repository of DecDoc. Thus, the study also indicates that
requirement B.1 is fulfilled, as the team members were able to access and use this shared decision
knowledge. Nevertheless, regarding the usefulness of the annotations, one rejecting answer could
be found in the first two questionnaires and multiple rejecting answers were given in the third
questionnaire. According to the individual feedback on the questionnaires, it is likely that these
results are due to some errors in the integration of annotations and the code versioning system.
These errors lead to incorrect locations of already versioned decision annotations within the code.
These errors partly are related to the employed Eclipse version 3.7 and were not entirely fixed
during the course. Furthermore, some students proposed enhancements in functionality after trying

165

CHAPTER 8. EVALUATION OF TOOL SUPPORT

DecDoc. For instance, it was proposed to add keywords to annotations in order to create references
to other decisions when typing the annotation. This finding outlines the importance of supporting
the semi-automatic creation of links for DecDoc (requirement D.2).

8.2.4 Threats to Validity

Four different categories of threats to validity have to be considered for this study according to
Runeson et al. [Runeson et al. 2012]. These categories are described and discussed in the following
paragraphs.

Internal Validity
Threats to internal validity concern the correlation between the investigated factors and other
factors [Runeson et al. 2012]. First, the knowledge of the students regarding software engineering was
varying. Also, theywere not experienced in designing and implementing software. These aspects were
addressed by providing a tutorial for the presented documentation tool support to all student teams.
Furthermore, the teamswere grouped according the subjective experience levels stated by the students.
However, it was not possible to compensate the missing experience completely. Second, only links
between decision knowledge and code files as external knowledge were covered in the questionnaire
by questions concerning the usage of annotations. Thus, links to other kinds of external knowledge,
such as use cases or design diagrams, were not investigated. In consequence, the assessment of the
approach by the students might be incomplete regarding the linking features of DecDoc. This threat
was partly mitigated by exploring the feasibility to link decisions with other related artifacts using
DecDoc for documenting the relations between decisions and requirements from the UCI design
session transcripts, as described in Section 8.1. For instance, it was demonstrated that the Decision
Overview graph visualizes links between decision knowledge and related requirements from task
description of the UCI design sessions (cf. Figure 8.3).

Construct Validity
Threats to construct validity concern gaps between intended and actual observations of the re-
searchers [Runeson et al. 2012]. Regarding the presented case study, the questionnaire could have
measured something different than TAM, because it was not tested and refined before the study.
However, this threat was addressed by using questions in the questionnaire, which are typical for
TAM.

Reliability Validity
Threats to reliability validity concern the degree to which data and analyses of a study are dependent
on specific researchers [Runeson et al. 2012]. Regarding the study presented in this chapter, the
reliability validity might be affected, as the students of the practical course knew that the study

166

8.2. FEASIBILITY OF DOCUMENTING IMPLEMENTATION DECISIONS USING DECDOC

authors were both involved in supervising the practical course and investigating DecDoc. Thus,
the students could have provided altered documentation results and answers to the questionnaire
in order to improve their grades in the course. To mitigate this threat, the investigators were not
involved in grading the students.

External Validity
Threats to external validity concern the degree to which the results of the study can be general-
ized [Runeson et al. 2012]. First, the development project realized by the students during the practical
course was small in size regarding the available development time, the amount of requirements to be
addressed, and the team size. In consequence, the usefulness of DecDoc for the investigated project
might be assessed differently in larger development projects. Also, industry projects are performed
with different project settings, so that the results found for student projects are not applicable to
them. Nevertheless, the Eclipse IDE is a tool commonly used in industry, and UNICASE was also
applied in industry settings [Helming et al. 2009]. Thus, the results of the presented study give a first
indication for the usefulness of DecDoc in practice.

167

Part V

Summary

169

9
Conclusion and Future Work

In this chapter, the achievements presented in this thesis are summarized and reflected with regard
to future work. First, a conclusion of the contributions of the presented work is given. Next, open
issues and challenges are outlined as limitations of this work. Finally, potential future work is discussed
based on these limitations.

9.1 Conclusion

The twomajor goals of this thesis were to investigate decision documentation for a mixed application
of different decision making strategies, and decision documentation during different development
activities (cf. Section 1.1). To reach these goals, the thesis provides three fundamental contributions.

First, this thesis provided two different studies on the state of practice for decision making and the
scientific state of the art for decision documentation. In detail, the actual usage of different decision
making strategies by developers was studied by investigating the comments to 260 issue reports
collected from the Firefox project. Most importantly, it was found that the developers made the
overwhelming majority of decision in a naturalistic way. This finding outlines the importance of
documenting knowledge resulting from naturalistic decision making. Moreover, a previous finding
of Zannier, Chiasson, and Maurer was confirmed, i.e., that developers tend to mix rational and
naturalistic decision making, rather than applying only a single strategy for one decision [Zannier,
Chiasson, and Maurer 2007]. In contrast, an analysis of the scientific state of the art for decision
documentation showed that most approaches focus on documenting decision knowledge originating
from a rational decision making process. In addition, no comprehensive approach was found that
provides support for importing and linking decision knowledge from requirements engineering,
design and implementation activities. Thus, the need for a new documentation approach for decision

171

CHAPTER 9. CONCLUSION AND FUTURE WORK

knowledge was highlighted, which combines the support for mixed decision making strategies and is
capable of using decision knowledge from multiple development activities.

Second, the thesis introduced a new documentation model for decision knowledge based on the
requirements derived from the two studies. This documentation model supports the iterative and
collaborative documentation of decision knowledge during related development activities. In partic-
ular, the model provides a variety of different knowledge elements to document decision knowledge.
These elements offer different levels of granularity, such as the coarse-grained Solution-element, as
well as the fine-grained Claim-element. Furthermore, the elements can be combined in a flexible
manner, as the model does not prescribe or enforce strict documentation structures. Instead, the
knowledge elements can be nested and linked, as necessary. In particular, knowledge elements
originating either from rational or naturalistic decision making can be mixed. Thereby, the iterative
decision documentation is supported. Also, multiple developers can use the model for collaborative
documentation of decision knowledge. To this end, the model provides a capturing support for
decision knowledge emerging during requirements engineering, design, and implementation. In
more detail, the model is integrated with the UNICASE knowledge model, so that decision knowl-
edge can be linked to use cases, UML design diagrams and their contained entities, as well as to
code statements. Moreover, an evaluation of the model was provided in the form of a case study
on documented decision knowledge in design session transcripts from the UCI design workshop.
This evaluation showed the feasibility of documenting decision knowledge originating from mixed
decision making strategies in an iterative manner using the documentation model.

Third, this thesis contributed the tool support DecDoc to facilitate an effective and convenient use of
themodel in practice. Therefore, UNICASEwas extendedwith several plugins, which provide editing
and capturing support for the documentation model. More specifically, DecDoc provides both, a
general editor for all decision knowledge elements from the model, as well as a specialized support
for selected model elements. For instance, an editor for matching Problem and Solution elements
is provided. Moreover, DecDoc offers capturing support for decision knowledge originating from
security-related requirements through integrating the HeRA plugin. Also, the UNICASE UML editor
was extended, such that decision knowledge can be captured and documented when editing UML
diagrams. Most importantly, DecDoc provides specialized code annotations for decisions knowledge,
which can be used during implementation by the developers. Thereby, decision knowledge can
be captured similar to JavaDoc documentation directly within the code. Finally, the feasibility of
documenting decisions with DecDoc was demonstrated with complex examples from the transcripts
of the UCI design workshop. In addition, a case study with students using DecDoc was performed in
a practical course on software engineering.

172

9.2. LIMITATIONS OF THIS WORK

9.2 Limitations of this Work

Regarding the contributions, several limitations exist, which are discussed in the following paragraphs.

The findings of the two studies in Chapter 3 and 4 indicate that developers use both rational and
naturalistic decisionmaking for their decisions and document the knowledge according to the applied
strategy. Thus, it is important to highlight, that it is not yet clear, whether thismix of the two strategies
actually provides the best results for the decisions to be made. Therefore, the actual outcome of a
decision needs to be measured and evaluated, for instance in terms of economic value or benefits in
software quality and maintenance. Regarding the data investigated in this thesis, such measurements
were neither in the focus of the thesis nor applicable for the data. For the Firefox issue reports, the
decision outcome could not be determined exactly, whereas the outcome of the decisions described
in the UCI design session transcripts remains unclear, because those decisions were never actually
implemented in software. Also, the studies do not provide an insight, whether it is advantageous to
document decisions according to one strategy in order to make the documentation comprehensive
and accessible for future exploration, even if the decision was made by applying a different strategy.
The variety of scientific approaches, which support RDM rather than NDM, might indicate an
existing preference for documenting decision knowledge according to RDM. However, there might
be a difference between the preferences of developers to document their decision knowledge, as it
emerged, and the future users of this knowledge, such as researchers and other developers. This
was reflected by supporting both RDM and NDM in the documentation model. Nevertheless, this
estimated difference was not addressed by this thesis and requires further investigation.

It may be seen as a limitation of the documentation model that it allows documented decision
knowledge to be inconsistent. Whereas this characteristic of the model is caused by its flexible
structure and thereby addresses the iterative documentation support, it may complicate the further
analysis and exploitation of the documented knowledge due to missing or corrupted knowledge
structures. In addition, a mixed documentation according to different decision making strategies
and different abstraction levels of knowledge elements might decrease the comprehensibility of the
documentation. Several measures address this limitation of the model. First, developers need to
identify and discuss any issues of ambiguity and potential mistakes in the documentation, which
was created using the decision documentation model. This is likely to happen, as developers will
collaborate in any case during their development activities, for instance, when they discuss design
options ormerge code. Then, the developersmay add the results of their discussions as newknowledge
elements or adapt the relations of existing ones to optimize the documentation. Second, the manual
documentation effort by developers needs to be lowered in order to avoid mistakes and cover all
important knowledge sources. Whereas the documentation model and DecDoc already offer several
possibilities for this knowledge import, further knowledge sources still remain unused. For instance,

173

CHAPTER 9. CONCLUSION AND FUTURE WORK

analyses of requirements and design specifications in Word documents (cf. [Jansen, Avgeriou, and
Ven 2009]) can provide further semi-automatic input for decision knowledge from external artifacts.
However, this requires specialized approaches for both extracting the related knowledge from the
artifacts and storing the related knowledge in a shared knowledge repository. Thus, this is beyond
the scope of this thesis.

The tool support DecDoc is limited by its implementation as an Eclipse plugin, which binds DecDoc
to a specific version of Eclipse with all potential and actual errors and workarounds for this version.
Also, DecDoc is currently only integrated with SVN code repository system. Nevertheless, other
popular IDEs, such as IntelliJ IDEA or Microsoft Visual Studio, and code repositories, such as
Git, exist and are commonly used in industry. However, providing DecDoc for these IDEs would
also require providing UNICASE and the EMFStore within these environments. An integration
of DecDoc with Git would require a detailed analysis of the Git branching concept with a similar
concept for the EMFStore. As these prerequisites are currently not fulfilled, this thesis focused on
providing DecDoc within the Eclipse environment for SVN. Next, DecDoc is currently focused on
capturing and structuring decision knowledge for documentation purposes. Whereas the dashboard
and the graph visualizations of decision knowledge elements in general and Arguments in particular
already address the exploitation and reflection of decision knowledge, these features are not yet fully
comprehensive. For instance, a more sophisticated support for reviews of decisions could be provided
in the dashboard by analyzing the contains-relation between instances of decision knowledge elements.
However, further studies on the documentation model and DecDoc are required to determine the
necessity of and guidelines for these features.

9.3 Future Work

Based on the results and limitations of this thesis, the following points of future research should be
outlined:

Value of Decision Documentation
As the documentation of decision knowledge typically leads to an increased effort for developers, it
appears to be important to determine how the value of this documentation can be maximized, so that
this effort is indeed invested. Therefore, it is necessary to investigate which decisionmaking strategies
and decision knowledge elements are required to support specific usages. For instance, it was already
shown by Davide Falessi, Cantone, and Becker that documented RDM decision knowledge elements
helped developers to improve their understanding and time-efficiency for decision making processes
of future decisions. For decisions made in a naturalistic manner, the upside of documentation could
be even higher, because the decision knowledge for these decisions was found to be over-represented

174

9.3. FUTURE WORK

compared with decision knowledge resulting from RDM. If documentation for these decisions is
now supported, the related decision knowledge remains visible and helps developers to understand
the requirements, design and implementation of the system. Thus, lowered maintenance costs and
an improved integrity of design could be the benefits of documenting these decisions.

Focus on Important Decisions
In practice, it is not realistic for developers to document all decisions explicitly. Beside the required
effort for documentation, this is caused by individual differences between developers regarding their
preferences in creative and reflective thinking when making decisions [Razavian et al. 2015]. Thus,
DecDoc and many related tools focus on design decisions with importance for the success of the
development project, such as architectural design decisions (cf. [Jansen and Bosch 2005; Capilla, Nava,
Pérez, et al. 2006; Zimmermann, Koehler, et al. 2009]). Nevertheless, it remains an open question how
this importance of particular decisions can be determined early in the decision making process. A
prominent example is given by the study of Chen, Ali Babar, andNuseibeh, which shows the difficulty
of identifying decisions on architecturally significant requirements [Chen, Ali Babar, and Nuseibeh
2013]. Here, more research is required to determine classifications of important decisions and rule
sets to identify them.

Consistency between Documentation and Implementation of Decisions
Documentation tools, such as DecDoc, could be extended to support consistency checks between
documented decision knowledge and the actual implementation of these decisions within the code.
Thereby, the awareness of developers for these decisions would be increased, so that the decision can
either be implemented deliberately or challenged explicitly. However, such consistency checks are
difficult to realize based on documentation. Typically, a formal verification for both the decision
documentation and the implementation artifacts is required to provide such consistency checks
(cf. [Zimmermann, Gschwind, et al. 2007; Cleland-Huang et al. 2013]). Thus, investigating and
realizing such consistency checks requires dedicated future research projects.

Maintenance of Documentation
The evolution of documented decision knowledge still remains an open challenge. Whereas DecDoc
alleviates the recognition and adaption of outdated or incorrect documentation due to the collabora-
tive work of developers on this documentation, the principal problem remains: Decision knowledge
becomes outdated or even wrong, as the system under development and its design decisions evolve
over time. Current approaches show that this phenomenon cannot be addressed completely in an
automated way (cf. [Capilla, Nava, and Duenas 2007; Capilla, Zimmermann, et al. 2011]). Instead,
developers are required to explicitly maintain their documentation and update it, if necessary. Future
research should identify measures and rules to trigger this maintenance process semi-automatically,
because developers will not be able to check huge amounts of documented knowledge for necessary

175

CHAPTER 9. CONCLUSION AND FUTURE WORK

changes manually.

176

A
Literature Review Hits

In this appendix, the complete list of all included search hits for the literature review (cf. Section 4) is
provided. The type of hit A indicates a search hit generated by automatic search, whileM indicates
hits resulting frommanual search. An ES indicates hits containing an existing study comparing either
existing approaches or tools for documenting decision knowledge. The hits presented in Table A.1
were included within the literature review after the second exclusion round.

Type of Hit Sources Amount

A [Rockwell et al. 2009; Konemann 2009; Wang and Burge 2010; Smith, Bohner, and
McCrickard 2005; Davide Falessi, Cantone, andBecker 2006; Davide Falessi, Becker, and
Cantone 2006; David Falessi, Cantone, and Kruchten 2008; Davide Falessi, Capilla, and
Cantone 2008; Aurum, Wohlin, and Porter 2006; Canfora, Casazza, and De Lucia 2000;
López et al. 2012; Jansen, Avgeriou, and Ven 2009; Jansen, Bosch, and Avgeriou 2008;
Zimmermann, Gschwind, et al. 2007; Capilla, Zimmermann, et al. 2011; Manteuffel,
Tofan, Avgeriou, et al. 2016]

16

A, ES [Alexeeva, Perez-Palacin, and Mirandola 2016; Ali Babar, Boer, et al. 2007; Tang, Avge-
riou, et al. 2010; Weinreich and Groher 2016; Ding et al. 2014; Capilla, Jansen, et al.
2016; Li, Liang, and Avgeriou 2013; Tofan et al. 2014]

8

M [Ali Babar, Gorton, and Kitchenham 2006; Ali Babar and Gorton 2007; Capilla, Nava,
and Duenas 2007; Jansen and Bosch 2005; Tyree and Akerman 2005; Burge and Brown
2004; Burge and Brown 2008; Kruchten, Lago, and Vliet 2006; Tang, Jin, and Han 2007;
Buchgeher andWeinreich 2011; Gaubatz, Lytra, and Zdun 2015; Zimmermann, Koehler,
et al. 2009; Cleland-Huang et al. 2013; Nowak and Pautasso 2013; Manteuffel, Tofan,
Koziolek, et al. 2014]

15

Table A.1: Overview of Search Hits included within the Literature Review

177

List of References

ACM Digital Library (2017). URL: http://dl.acm.org/ (visited on 05/2017) (cited on p. 63).
Alexeeva, Zoya, Diego Perez-Palacin, and Raffaela Mirandola (2016). “Design Decision Documen-

tation: A Literature Overview”. In: Software Architecture: 10th European Conference, ECSA 2016,

Copenhagen, Denmark, November 28 – December 2, 2016, Proceedings. Ed. by Bedir Tekinerdogan,
Uwe Zdun, and Muhammad Ali Babar. Springer International Publishing, pp. 84–101 (cited on
pp. 59, 177).

Ali Babar, Muhammad, Remco C. de Boer, Torgeir Dingsoyr, and Rik Farenhorst (2007). “Archi-
tectural Knowlege Management Strategies: Approaches in Research and Industry”. In: Second
Workshop on Sharing and Reusing Architectural Knowledge - Architecture, Rationale, and Design Intent

(SHARK/ADI’07). IEEE, pp. 35–41 (cited on pp. 5, 7, 8, 27, 60, 177).
Ali Babar, Muhammad and Ian Gorton (2007). “A Tool for Managing Software Architecture Knowl-

edge”. In: Proceedings of the Second Workshop on Sharing and Reusing Architectural Knowledge -

Architecture, Rationale, and Design Intent (SHARK/ADI’07: ICSE Workshops 2007). IEEE, pp. 11–17
(cited on pp. 20, 72, 177).

Ali Babar, Muhammad, Ian Gorton, and Barbara Kitchenham (2006). “A Framework for Supporting
Architecture Knowledge and Rationale Management”. In: Rationale Management in Software

Engineering. Springer (cited on pp. 67, 69, 70, 72, 75, 177).
Apache Subversion (2016). URL: https://subversion.apache.org/ (visited on 11/2016) (cited

on p. 20).
Arnott, David and Graham Pervan (2008). “Eight key issues for the decision support systems disci-

pline”. In: Decision Support Systems 44.3, pp. 657–672 (cited on pp. 4, 28).
Atlassian JIRA (2017). URL: https://de.atlassian.com/software/jira (visited on 07/2017)

(cited on p. 19).

179

http://dl.acm.org/
https://subversion.apache.org/
https://de.atlassian.com/software/jira

List of References

Aurum, Aybüke, Claes Wohlin, and Andrew Porter (2006). “Aligning Software Project Decisions: A
case study”. In: International Journal of Software Engineering and Knowledge Engineering 16.06,
pp. 795–818 (cited on pp. 5, 8, 27, 177).

Baker, Alex and André van der Hoek (2010). “Ideas, subjects, and cycles as lenses for understanding
the software design process”. In: Design Studies 31.6, pp. 590–613 (cited on p. 135).

Ball, Linden J., Balder Onarheim, and Bo T. Christensen (2010). “Design requirements, epistemic
uncertainty and solution development strategies in software design”. In: Design Studies 31.6,
pp. 567–589 (cited on p. 135).

Basili, Victor R., Gianluigi Caldiera, and Dieter H. Rombach (1994). “Goal QuestionMetric Paradigm”.
In: Encyclopedia of Software Engineering. Ed. by John J. Marciniak. New York: Wiley-Interscience,
pp. 528–532 (cited on pp. 34, 58, 134).

Bruegge, Bernd, Oliver Creighton, Jonas Helming, and Maximilian Koegel (2008). “Unicase - An
Ecosystem for Unified Software Engineering Research Tools”. In: International Conference on
Global Software Engineering. IEEE, pp. 1–6 (cited on p. 29).

Buchgeher, Georg and Rainer Weinreich (2011). “Automatic tracing of decisions to architecture and
implementation”. In: Software Architecture (WICSA), 2011 9th Working IEEE/IFIP Conference on.
IEEE, pp. 46–55 (cited on pp. 67, 69, 72–74, 76, 177).

Burge, Janet E. and David C. Brown (2004). “An Integrated Approach for Software Design Checking
Using Design Rationale”. In: Proceedings of the First International Conference of Design Computing
and Cognition. Berlin, Heidelberg: Springer, pp. 557–576 (cited on pp. 67–70, 72, 73, 76, 177).

— (2008). “Software EngineeringUsing RATionale”. In: Journal of Systems and Software 81.3, pp. 395–
413 (cited on pp. 5, 8, 27, 28, 177).

Canfora, Gerardo, Gerardo Casazza, and Andrea De Lucia (2000). “A Design Rationale based En-
vironment for Cooperative Maintenance”. In: International Journal of Software Engineering and
Knowledge Engineering 10.5, pp. 627–645 (cited on pp. 3, 5, 8, 27, 67, 69, 72, 73, 177).

Capilla, Rafael and Muhammad Ali Babar (2008). “On the role of architectural design decisions in
software product line engineering”. In: European Conference on Software Architecture. Springer,
pp. 241–255 (cited on p. 20).

Capilla, Rafael, Anton Jansen, Antony Tang, Paris Avgeriou, and Muhammad Ali Babar (2016). “10
years of software architecture knowledgemanagement: Practice and future”. In: Journal of Systems
and Software 116, pp. 191–205 (cited on pp. 60, 177).

Capilla, Rafael, Francisco Nava, and Juan C. Duenas (2007). “Modeling and Documenting the Evolu-
tion of Architectural Design Decisions”. In: Proceedings of the Second Workshop on Sharing and

Reusing Architectural Knowledge - Architecture, Rationale, and Design Intent (SHARK/ADI’07: ICSE

Workshops 2007). IEEE, p. 9 (cited on pp. 8, 67–69, 72, 175, 177).
Capilla, Rafael, Francisco Nava, Sandra Pérez, and Juan C. Dueñas (2006). “A web-based tool for

managing architectural design decisions”. In: ACM SIGSOFT Software Engineering Notes 31.5,
pp. 1–8 (cited on pp. 8, 28, 175).

180

List of References

Capilla, Rafael, Olaf Zimmermann, Uwe Zdun, Paris Avgeriou, and Jochen M. Kuester (2011). “An
Enhanced Architectural KnowledgeMetamodel Linking Architectural Design Decisions to other
Artifacts in the Software Engineering Lifecycle”. In: 5th European Conference, ECSA 2011, Essen,

Germany. Springer, pp. 303–318 (cited on pp. 67, 69, 72, 175, 177).
Carroll, John M. and Mary Beth Rosson (1992). “Getting around the task-artifact cycle: how to

make claims and design by scenario”. In: ACM Transactions on Information Systems (TOIS) 10.2,
pp. 181–212 (cited on p. 27).

Cayrol, Claudette and Marie-Christine Lagasquie-Schiex (2009). “Bipolar abstract argumentation
systems”. In: Argumentation in Artificial Intelligence. Ed. by Iyad Rahwan. New York: Springer US,
pp. 65–84 (cited on p. 94).

Chan, Siew H. and Qian Song (2010). “Motivational Framework: Insights into Decision Support
System Use and Decision Performance”. In: Decision Support Systems. Ed. by Chiang S. Jao. 1st ed.
Vukovar: InTech, pp. 1–24 (cited on p. 28).

Chen, Lianping, Muhammad Ali Babar, and Bashar Nuseibeh (2013). “Characterizing Architecturally
Significant Requirements”. In: IEEE Software 30.2, pp. 38–45 (cited on pp. 3, 19, 153, 175).

Christiaans, Henri and Rita Assoreira Almendra (2010). “Accessing decision-making in software
design”. In: Design Studies 31.6, pp. 641–662 (cited on p. 135).

Cicchetti, Domenic V. and Sara A. Sparrow (1981). “Developing criteria for establishing interrater
reliability of specific items: Applications to assessment of adaptive behavior”. In:American Journal
of Mental Deficiency 86.2, pp. 127–137 (cited on p. 42).

Cleland-Huang, Jane, Mehdi Mirakhorli, Adam Czauderna, and Mateusz Wieloch (2013). “Decision-
centric traceability of architectural concerns”. In: 7th Int. Workshop on Traceability in Emerging

Forms of Software Engineering (TEFSE’13). IEEE, pp. 5–11 (cited on pp. 67–69, 72–76, 175, 177).
Cohen, Jacob (1988). Statistical Power Analysis for the Behavioral Sciences. 2nd. Hillsdale: Erlbaum

Associates (cited on p. 44).
Conklin, Jeff and Michael L. Begeman (1988). “gIBIS: A hypertext tool for exploratory policy discus-

sion”. In: ACM Transactions on Information Systems (TOIS) 6.4, pp. 303–331 (cited on p. 26).
Davis, Fred D., Richard P. Bagozzi, and Paul R. Warshaw (1989). “User Acceptance of Computer

Technology: A Comparison of Two Theoretical Models”. In:Management Science 35.8, pp. 982–
1002 (cited on p. 164).

DecDoc Update Site (2017). URL: http://svn.ifi.uni-heidelberg.de/unicase/0.5.2/
ures/decdoc-features/ (visited on 12/2017) (cited on p. 111).

DecDoc User Manual (2017). URL: https://svn.ifi.uni-heidelberg.de/unicase/0.5.2/
ures/manual_decision_editor_v01.pdf (visited on 12/2017) (cited on p. 111).

Dilmaghani, Ania and James Dibble (2012). “Strategies for Early-Stage Collaborative Design”. In:
Software 29.1, pp. 39–45 (cited on p. 136).

181

http://svn.ifi.uni-heidelberg.de/unicase/0.5.2/ures/decdoc-features/
http://svn.ifi.uni-heidelberg.de/unicase/0.5.2/ures/decdoc-features/
https://svn.ifi.uni-heidelberg.de/unicase/0.5.2/ures/manual_decision_editor_v01.pdf
https://svn.ifi.uni-heidelberg.de/unicase/0.5.2/ures/manual_decision_editor_v01.pdf

List of References

Ding, Wei, Peng Liang, Antony Tang, and Hans van Vliet (2014). “Knowledge-based approaches in
software documentation: A systematic literature review”. In: Information and Software Technology
56.6, pp. 545–567 (cited on pp. 59, 177).

Eclipse Project (2016). URL: http://www.eclipse.org/ (visited on 11/2016) (cited on pp. 20, 112).
Elsevier ScienceDirect (2017). URL: http://www.sciencedirect.com/ (visited on 05/2017) (cited

on p. 63).
EMF Client Platform (2016). URL: http://www.eclipse.org/ecp/ (visited on 11/2016) (cited on

p. 29).
EMF Store (2016). URL: http://eclipse.org/emfstore/ (visited on 11/2016) (cited on pp. 29,

112).
Falessi, David, Giovanni Cantone, and Philippe Kruchten (2008). “Value-Based Design Decision

Rationale Documentation: Principles and Empirical Feasibility Study”. In: Seventh Working

IEEE/IFIP Conference on Software Architecture (WICSA 2008). IEEE, pp. 189–198 (cited on pp. 65,
177).

Falessi, Davide, Martin Becker, and Giovanni Cantone (2006). “Design Decision Rationale: Experi-
ences and Steps Ahead Towards Systematic Use”. In: SIGSOFT Software Engineering Notes 31.5
(cited on pp. 65, 67–69, 72–74, 177).

Falessi, Davide, Giovanni Cantone, and Martin Becker (2006). “Documenting Design Decision Ratio-
nale to Improve Individual and Team Design Decision Making: An Experimental Evaluation”.
In: Proceedings of the 2006 ACM/IEEE International Symposium on Empirical Software Engineering -

ISESE ’06. ACM, pp. 134–143 (cited on pp. 3, 5, 20, 65, 174, 177).
Falessi, Davide, Giovanni Cantone, Rick Kazman, and Philippe Kruchten (2011). “Decision-making

techniques for software architecture design”. In: ACM Computing Surveys 43.4, pp. 1–28 (cited
on pp. 7, 20, 27, 48).

Falessi, Davide, Rafael Capilla, andGiovanniCantone (2008). “AValue-BasedApproach forDocument-
ing Design Decisions Rationale: A Replicated Experiment”. In: Proceedings of the 3rd international
workshop on Sharing and reusing architectural knowledge (SHARK’08). ACM Press, p. 63 (cited on
pp. 65, 105, 177).

Firefox project (2015). Issue tracking system Bugzilla. (visited on 08/2015). URL: https://bugzilla.
mozilla . org / page . cgi ? id = productdash % 5C % 5Cboard . html % 5C & product =

Firefox%5C&bug%5C_status=open%5C&tab=components (cited on p. 41).
Gamer, Matthias, Jim Lemon, Ian Fellows, and Puspendra Singh (2012). irr: Various Coefficients of

Interrater Reliability and Agreement. R package version 0.84. (visited on 08/2015). URL: http:
//CRAN.R-project.org/package=irr (cited on p. 42).

Gärtner, Stefan, Thomas Ruhroth, Jens Bürger, Kurt Schneider, and Jan Jürjens (2014). “Maintaining
Requirements for Long-Living Software Systems by Incorporating Security Knowledge”. In:
Proc. of the 22th International Requirements Engineering Conference. IEEE (cited on p. 100).

182

http://www.eclipse.org/
http://www.sciencedirect.com/
http://www.eclipse.org/ecp/
http://eclipse.org/emfstore/
https://bugzilla.mozilla.org/page.cgi?id=productdash%5C%5Cboard.html%5C&product=Firefox%5C&bug%5C_status=open%5C&tab=components
https://bugzilla.mozilla.org/page.cgi?id=productdash%5C%5Cboard.html%5C&product=Firefox%5C&bug%5C_status=open%5C&tab=components
https://bugzilla.mozilla.org/page.cgi?id=productdash%5C%5Cboard.html%5C&product=Firefox%5C&bug%5C_status=open%5C&tab=components
http://CRAN.R-project.org/package=irr
http://CRAN.R-project.org/package=irr

List of References

Gaubatz, Patrick, Ioanna Lytra, and Uwe Zdun (2015). “Automatic enforcement of constraints in
real-time collaborative architectural decision making”. In: Journal of Systems and Software 103,
pp. 128–149 (cited on pp. 67–70, 72, 73, 75, 76, 177).

Geer, David (2005). “Eclipse becomes the dominant Java IDE”. In: IEEE Computer 38.7, pp. 16–18
(cited on p. 20).

Git (2016). URL: https://git-scm.com/ (visited on 11/2016) (cited on p. 20).
Gore, Julie, Adrian Banks, Lynne Millward, and Olivia Kyriakidou (2006). “Naturalistic Decision

Making andOrganizations: Reviewing Pragmatic Science”. In:Organization Studies 27.7, pp. 925–
942 (cited on p. 25).

Hansman, Simon and Ray Hunt (2005). “A taxonomy of network and computer attacks”. In:Computers
& Security 24.1, pp. 31–43 (cited on p. 100).

Helming, Jonas, Joern David, Maximilian Koegel, and Helmut Naughton (2009). “Integrating System
Modeling with ProjectManagement - A Case Study”. In: 33rd Annual IEEE International Computer
Software and Applications Conference. IEEE, pp. 571–578 (cited on p. 167).

Herold, Sebastian, Holger Klus, Yannick Welsch, Constanze Deiters, et al. (2008). “CoCoME - The
Common ComponentModeling Example”. In: The Common Component Modeling Example. Ed. by
Andreas Rausch, Ralf Reussner, Raffaela Mirandola, and František Plášil. Springer, pp. 16–53
(cited on p. 81).

Hesse, Tom-Michael, Stefan Gaertner, Tobias Roehm, Barbara Paech, Kurt Schneider, and Bernd
Bruegge (2014). “Semiautomatic security requirements engineering and evolution using decision
documentation, heuristics, and user monitoring”. In: Proceedings of the 1st International Workshop

on Evolving Security and Privacy Requirements Engineering (ESPRE). IEEE, pp. 1–6 (cited on pp. 14,
19, 99–102, 113, 119).

Hesse, Tom-Michael, Christian Kuecherer, and Barbara Paech (2015). “Experiences with Support-
ing the Distributed Responsibility for Requirements through Decision Documentation”. In:
Softwaretechnik-Trends 35.1, pp. 14–15 (cited on p. 14).

Hesse, Tom-Michael, Arthur Kuehlwein, Barbara Paech, Tobias Roehm, and Bernd Bruegge (2015).
“Documenting Implementation Decisions with Code Annotations”. In: Proceedings of the 27th
International Conference on Software Engineering and Knowledge Engineering. KSI Research, pp. 152–
157 (cited on pp. 14, 106–108, 159).

Hesse, Tom-Michael, Arthur Kuehlwein, and Tobias Roehm (2016). “DecDoc: A Tool for Documenting
Design Decisions Collaboratively and Incrementally”. In: 2016 1st International Workshop on

Decision Making in Software ARCHitecture (MARCH). IEEE, pp. 30–37 (cited on pp. 15, 81, 82,
111, 159).

Hesse, Tom-Michael, Veronika Lerche, Marcus Seiler, Konstantin Knoess, and Barbara Paech (2016).
“Documented decision-making strategies and decision knowledge in open source projects: An
empirical study on Firefox issue reports”. In: Information and Software Technology 79, pp. 36–51
(cited on pp. 13, 18, 21–23, 33, 35, 37, 38, 40, 49).

183

https://git-scm.com/

List of References

Hesse, Tom-Michael and Barbara Paech (2013). “Supporting the Collaborative Development of
Requirements and Architecture Documentation”. In: Proceedings of the 3rd International Workshop

on the Twin Peaks of Requirements and Architecture (TwinPeaks’13). IEEE, pp. 22–26 (cited on p. 14).
— (2016). “Documenting Relations Between Requirements and Design Decisions: A Case Study on

Design Session Transcripts”. In: Requirements Engineering: Foundation for Software Quality: 22nd
International Working Conference, REFSQ 2016, Gothenburg, Sweden, March 14-17, 2016, Proceedings.
Ed. by Maya Daneva and Oscar Pastor. Cham: Springer International Publishing, pp. 188–204
(cited on pp. 14, 77, 131, 141, 144, 152).

Hoek, André van der, Marian Petre, and Alex Baker (2010).Workshop “Studying Professional Software

Design” at University of California, Irvine. visited on 12/2017. URL: http://www.ics.uci.
edu/design-workshop/ (cited on p. 131).

IBM Rational DOORS (2017). URL: https : / / www . ibm . com / software / products / de /
ratidoor (visited on 07/2017) (cited on p. 19).

IEEExplore (2017). URL: http://ieeexplore.ieee.org/ (visited on 05/2017) (cited on p. 63).
Jackson, Michael (2010). “Representing structure in a software system design”. In: Design Studies 31.6,

pp. 545–566 (cited on pp. 134–136).
Jansen, Anton, Paris Avgeriou, and Jan Salvador van der Ven (2009). “Enriching software architecture

documentation”. In: Journal of Systems and Software 82.8, pp. 1232–1248 (cited on pp. 29, 67, 69,
70, 72, 73, 76, 174, 177).

Jansen, Anton and JanBosch (2005). “SoftwareArchitecture as a Set of Architectural DesignDecisions”.
In: Proceedings of the 5th Working IEEE/IFIP Conference on Software Architecture (WICSA’05). IEEE,
pp. 109–120 (cited on pp. 3–5, 8, 20, 59, 67–69, 72, 105, 175, 177).

Jansen, Anton, Jan Bosch, and Paris Avgeriou (2008). “Documenting after the fact: Recovering ar-
chitectural design decisions”. In: Journal of Systems and Software 81.4, pp. 536–557 (cited on
pp. 67–70, 72, 73, 76, 177).

Javadoc Documentation by Oracle (2016). URL: http://www.oracle.com/technetwork/java/
javase/documentation/javadoc-137458.html (visited on 11/2016) (cited on pp. 20,
123).

Jiang, Li and Armin Eberlein (2003). “Decision support for requirements engineering process devel-
opment”. In: Electrical and Computer Engineering, 2003. IEEE CCECE 2003. Canadian Conference

on. Vol. 2. IEEE, pp. 1359–1362 (cited on p. 19).
Jonassen, David (2012). “Designing for decision making”. In: Educational Technology Research and

Development 60.2, pp. 341–359 (cited on pp. 21, 23).
Kahneman, Daniel (2011). Thinking, fast and slow. Farrar, Straus and Giroux (cited on p. 22).
Khomh, Foutse, Tejinder Dhaliwal, Ying Zou, and Bram Adams (2012). “Do Faster Releases Improve

Software Quality? An Empirical Case Study of Mozilla Firefox”. In: Proceedings of the 9th IEEE
Working Conference on Mining Software Repositories (MSR). IEEE, pp. 179–188 (cited on pp. 39,
41).

184

http://www.ics.uci.edu/design-workshop/
http://www.ics.uci.edu/design-workshop/
https://www.ibm.com/software/products/de/ratidoor
https://www.ibm.com/software/products/de/ratidoor
http://ieeexplore.ieee.org/
http://www.oracle.com/technetwork/java/javase/documentation/javadoc-137458.html
http://www.oracle.com/technetwork/java/javase/documentation/javadoc-137458.html

List of References

Kitchenham, Barbara and Stuart Charters (2007).Guidelines for performing Systematic Literature Reviews
in Software Engineering. Tech. rep. Keele University, Durham University, Joint Report (cited on
pp. 61, 78).

Klein, Gary (2008). “Naturalistic Decision Making”. In: Human Factors 50.3, pp. 456–460 (cited on
pp. 7, 23, 24, 39, 40).

Klein, Gary, Roberta Calderwood, and Anne Clinton-Cirocco (2010). “Rapid Decision Making on
the Fire Ground: The Original Study Plus a Postscript”. In: Journal of Cognitive Engineering and
Decision Making 4.3, pp. 186–209 (cited on pp. 23, 37).

Klein, Gary and David Klinger (1991). “Naturalistic Decision Making”. In: Gateway 11.3, pp. 16–19
(cited on pp. 18, 24).

Knoess, Konstantin (2014). “Decision making in software engineering: An issue tracker analysis”.
MA thesis. Heidelberg University (cited on p. 37).

Ko, Andrew J. and Parmit K. Chilana (2011). “Design, discussion, and dissent in open bug reports”. In:
Proceedings of the 2011 iConference. ACM, pp. 106–113 (cited on pp. 8, 20, 29, 34–36, 54).

Ko, Andrew J., Robert DeLine, and Gina Venolia (2007). “Information Needs in Collocated Software
Development Teams”. In: Proceedings of the 29th International Conference on Software Engineering
(ICSE’07). IEEE, pp. 344–353 (cited on pp. 5, 50).

Konemann, Patrick (2009). “Integrating decision management with UML modeling concepts and
tools”. In: 2009 Joint Working IEEE/IFIP Conference on Software Architecture & European Conference

on Software Architecture. IEEE, pp. 297–300 (cited on pp. 67–69, 72, 73, 75, 76, 177).
Kruchten, Philippe, Patricia Lago, and Hans van Vliet (2006). “Building Up and Reasoning About

Architectural Knowledge”. In:Quality of Software Architectures. Ed. by Christine Hofmeister, Ivica
Crnkovic, and Ralf Reussner. Vol. 4214. Lecture Notes in Computer Science. Berlin, Heidelberg:
Springer, pp. 43–58 (cited on pp. 26, 67–69, 72, 177).

Kuehlwein, Arthur (2014). Documentation of decisions during the implementation phase through code
annotations. BA thesis. Heidelberg University (cited on p. 106).

Kunz, Werner and Horst WJ Rittel (1970). Issues as elements of information systems. Vol. 131. Institute
of Urban and Regional Development, University of California Berkeley, California (cited on
p. 26).

Lee, Jintae (1989). “Decision representation language (DRL) and its support environment”. In: (cited
on p. 27).

— (1991). “Extending the Potts and Bruns model for recording design rationale”. In: Proceedings of
the 13th International Conference on Software Engineering. IEEE, pp. 114–125 (cited on pp. 11, 27).

Li, Zengyang, Peng Liang, and Paris Avgeriou (2013). “Application of knowledge-based approaches
in software architecture: A systematic mapping study”. In: Information and Software Technology
55.5, pp. 777–794 (cited on pp. 58, 59, 177).

Likert, Rensis (1932). “A Technique for the Measurement of Attitudes”. In: Archives of Psychology
22.140, pp. 1–55 (cited on p. 164).

185

List of References

Lipshitz, Raanan, Gary Klein, Judith Orasanu, and Eduardo Salas (2001). “Taking Stock of Naturalistic
Decision Making”. In: Journal of Behavioral Decision Making 14.5, pp. 331–352 (cited on pp. 4, 21,
23, 25, 40).

López, Claudia, Víctor Codocedo, Hernán Astudillo, and Luiz Marcio Cysneiros (2012). “Bridging
the gap between software architecture rationale formalisms and actual architecture documents:
An ontology-driven approach”. In: Science of Computer Programming 77.1, pp. 66–80 (cited on
pp. 67–69, 72, 73, 177).

Lougher, Robert and Tom Rodden (1993). “Supporting Long-term Collaboration in Software Main-
tenance”. In: Proceedings of the Conference on Organizational Computing Systems - COCS ’93. ACM,
pp. 228–238 (cited on pp. 3, 5, 8, 20, 27).

MacLean, Allan, Richard M Young, Victoria M E Bellotti, and Thomas P Moran (1991). “Questions,
Options, and Criteria: Elements of Design Space Analysis”. In:Human-Computer Interaction 6.3-4,
pp. 201–250 (cited on pp. 11, 26, 27).

Manteuffel, Christian, Dan Tofan, Paris Avgeriou, Heiko Koziolek, and Thomas Goldschmidt (2016).
“Decision architect – A decision documentation tool for industry”. In: Journal of Systems and
Software 112, pp. 181–198 (cited on pp. 67–69, 72, 73, 75, 76, 177).

Manteuffel, Christian, Dan Tofan, Heiko Koziolek, Thomas Goldschmidt, and Paris Avgeriou (2014).
“Industrial Implementation of a Documentation Framework for Architectural Decisions”. In:
Proceedings of the 11th Working IEEE/IFIP Conference on Software Architecture (WICSA’14). IEEE,
pp. 225–234 (cited on pp. 5, 72, 73, 177).

Maule, John A. (2010). “Can Computers Help Overcome Limitations in Human Decision Making?”
In: International Journal of Human-Computer Interaction 26.2-3, pp. 108–119 (cited on pp. 7, 21,
23, 28).

Mayring, Philipp (2010). “Qualitative Inhaltsanalyse”. German. In: Handbuch Qualitative Forschung
in der Psychologie. Ed. by Günter Mey and Katja Mruck. Wiesbaden: VS Verlag für Sozialwis-
senschaften, pp. 601–613 (cited on p. 41).

Mentis, Helena M., Paula M. Bach, Blaine Hoffman, Mary Beth Rosson, and John M. Carroll (2009).
“Development of Decision Rationale in Complex Group Decision Making”. In: Proceedings of the
27th international conference on Human factors in computing systems - CHI 09. ACM, pp. 1341–1350
(cited on pp. 35, 36).

Nakakoji, Kumiyo, Yasuhiro Yamamoto, Nobuto Matsubara, and Yoshinari Shirai (2012). “Toward
Unweaving Streams ofThought forReflection in Professional SoftwareDesign”. In: IEEE Software
29.1, pp. 34–38 (cited on p. 136).

Ngo, The and Guenther Ruhe (2005). “Decision Support in Requirements Engineering”. In: Engineer-
ing and Managing Software Requirements. Ed. by A. Aybüke and C. Wohlin. Berlin, Heidelberg:
Springer, pp. 267–286 (cited on pp. 5, 8, 17, 25, 26).

186

List of References

Nowak, Marcin and Cesare Pautasso (2013). “Team situational awareness and architectural deci-
sion making with the software architecture warehouse”. In: Software Architecture: 7th European
Conference (ECSA’13). Springer, pp. 146–161 (cited on pp. 67–69, 72, 73, 177).

Nuseibeh, Bashar (2001). “Weaving Together Requirements and Architectures”. In: IEEE Computer

34.3, pp. 115–119 (cited on p. 8).
Orasanu, Judith and Terry Connolly (1993). “The reinvention of decision making”. In:Decision making

in action: Models and methods. Ed. by Gary Klein, Judith Oransanu, R Calderwood, and C E
Zsambok. Westport: Ablex Publishing, pp. 3–20 (cited on pp. 23, 24, 39).

Paech, Barbara, Alexander Delater, and Tom-Michael Hesse (2014). “Supporting Project Manage-
ment Through Integrated Management of System and Project Knowledge”. In: Software Project
Management in a Changing World. Ed. by Guenther Ruhe and Claes Wohlin. Berlin, Heidelberg:
Springer, pp. 157–192 (cited on pp. 13, 17, 18, 21, 23, 27, 28, 57, 62, 63, 65, 67, 69, 72, 76).

Papyrus (2016). URL: https://eclipse.org/papyrus/ (visited on 11/2016) (cited on p. 113).
Petre, Marian and André van der Hoek (2013). Software Designers in Action: A Human-Centric Look at

Design Work. CRC Press (cited on pp. 36, 135).
R Core Team (2014). R: A language and environment for statistical computing. (visited on 08/2015). URL:

http://www.R-project.org/ (cited on p. 42).
Razavian, Maryam, Antony Tang, Rafael Capilla, and Patricia Lago (2016). “In two minds: how

reflections influence software design thinking”. In: Journal of Software: Evolution and Process 28.6,
pp. 394–426 (cited on p. 22).

Razavian, Maryam, Antony Tang, Rafael Capilla, Patricia Lago, et al. (2015). In Two Minds: How

Reflections Influence Software Design Thinking. Tech. rep. VU University Amsterdam (cited on
p. 175).

Rekha, Smrithi V and Henry Muccini (2014). “A study on group decision-making in software archi-
tecture”. In: Software Architecture (WICSA), 2014 IEEE/IFIP Conference on. IEEE, pp. 185–194
(cited on p. 8).

Rockwell, Justin A., Ian R. Grosse, Sundar Krishnamurty, and Jack C. Wileden (2009). “A Decision
SupportOntology for collaborative decisionmaking in engineering design”. In: 2009 International
Symposium on Collaborative Technologies and Systems. IEEE, pp. 1–9 (cited on pp. 67–70, 72, 73,
177).

Rooksby, John and Nozomi Ikeya (2012). “Collaboration in Formative Design: Working Together at a
Whiteboard”. In: IEEE Software 29.1, pp. 56–60 (cited on p. 136).

Ruhe, Guenther (2003). “Software Engineering Decision Support – A New Paradigm for Learning
Software Organizations”. English. In: Advances in Learning Software Organizations. Ed. by Scott
Henninger and FrankMaurer. Vol. 2640. Lecture Notes in Computer Science. Berlin, Heidelberg:
Springer, pp. 104–113 (cited on p. 3).

187

https://eclipse.org/papyrus/
http://www.R-project.org/

List of References

Runeson, Per, Martin Höst, Austen Rainer, and Björn Regnell (2012). Case Study Research in Software
Engineering. Guidelines and Examples. 1st. Hoboken: Wiley, p. 237 (cited on pp. 37, 53, 54, 77, 78,
155–157, 166, 167).

Saaty, Thomas L (2008). “Decision making with the analytic hierarchy process”. In: International
Journal of Services Sciences 1.1, pp. 83–98 (cited on pp. 21, 22).

Shaw, Mary (2012). “The role of design spaces”. In: IEEE Software 29.1, pp. 46–50 (cited on pp. 133,
134, 136, 143, 144, 147, 156).

Shrout, Patrick E and Joseph L Fleiss (1979). “Intraclass correlations: Uses in assessing rater reliability”.
In: Psychological Bulletin 86.2, pp. 420–428 (cited on p. 42).

Smith, Jamie L, Shawn A Bohner, and D. Scott McCrickard (2005). “Project management for the 21st
century: supporting collaborative design through risk analysis”. In: Proceedings of the 43rd annual
Southeast regional conference (ACM-SE 43). Vol. 2. ACM Press, pp. 300–305 (cited on pp. 67, 69,
70, 72, 73, 76, 177).

Sommerville, Ian (2010). Software Engineering. 9th. USA: Addison-Wesley Publishing Company (cited
on pp. 18–20).

Souza, Rodrigo, Christina Chavez, and Roberto A. Bittencourt (2014). “Do Rapid Releases Affect Bug
Reopening? A Case Study of Firefox”. In: Brazilian Symposium on Software Engineering (SBES).
IEEE, pp. 31–40 (cited on p. 54).

SpringerLink (2017). URL: https://link.springer.com/ (visited on 05/2017) (cited on p. 63).
Tang, Antony, Aldeida Aleti, Janet Burge, and Hans van Vliet (2010). “What makes software design

effective?” In: Design Studies 31.6, pp. 614–640 (cited on pp. 7–9, 22, 34–36, 38, 51, 70, 135, 147,
156).

Tang, Antony, Muhammad Ali Babar, Ian Gorton, and Jun Han (2006). “A Survey of Architecture
Design Rationale”. In: Journal of Systems and Software 79.12, pp. 1792–1804 (cited on pp. 5, 8).

Tang, Antony, Paris Avgeriou, Anton Jansen, Rafael Capilla, and Muhammad Ali Babar (2010). “A
comparative study of architecture knowledge management tools”. In: Journal of Systems and
Software 83.3, pp. 352–370 (cited on pp. 5, 27, 60, 177).

Tang, Antony, Yan Jin, and Jun Han (2007). “A rationale-based architecture model for design trace-
ability and reasoning”. In: Journal of Systems and Software 80.6, pp. 918–934 (cited on pp. 8, 26,
67–69, 72, 73, 76, 177).

Tang, Antony and Hans van Vliet (2015). “Software Designers Satisfice”. In: Software Architecture: 9th
European Conference, ECSA 2015, Dubrovnik/Cavtat, Croatia, September 7-11, 2015. Proceedings.
Ed. by Danny Weyns, Raffaela Mirandola, and Ivica Crnkovic. Cham: Springer International
Publishing, pp. 105–120 (cited on pp. 7, 36).

The International Journal of Software Engineering and Knowledge Engineering (2017). URL: http://
www.worldscientific.com/worldscinet/ijseke (visited on 05/2017) (cited on p. 63).

188

https://link.springer.com/
http://www.worldscientific.com/worldscinet/ijseke
http://www.worldscientific.com/worldscinet/ijseke

List of References

Tofan, Dan, Matthias Galster, Paris Avgeriou, andWes Schuitema (2014). “Past and future of software
architectural decisions – A systematic mapping study”. In: Information and Software Technology
56.8, pp. 850–872 (cited on pp. 58, 59, 177).

Tversky, Amos and Daniel Kahneman (1974). “Judgment under uncertainty: Heuristics and biases”.
In: Science 185.4157, pp. 1124–1131 (cited on pp. 22, 23).

Tyree, Jeff and Art Akerman (2005). “Architecture Decisions: Demystifying Architecture”. In: IEEE
Software 22.2, pp. 19–27 (cited on pp. 4, 8, 27, 66, 67, 72–75, 177).

UNICASE Project (2016). URL: http://unicase.org/ (visited on 11/2016) (cited on pp. 29, 112).
Vliet, Hans van and Antony Tang (2012). “Design Strategy and Software Design Effectiveness”. In:

IEEE Software 29.1, pp. 51–55 (cited on p. 136).
Wang, Wei and Janet E. Burge (2010). “Using rationale to support pattern-based architectural de-

sign”. In: Proceedings of the 2010 ICSE Workshop on Sharing and Reusing Architectural Knowledge

(SHARK’10). ACM Press, pp. 1–8 (cited on pp. 72, 177).
Weinreich, Rainer and Iris Groher (2016). “Software architecture knowledgemanagement approaches

and their support for knowledge management activities: A systematic literature review”. In:
Information and Software Technology 80, pp. 265–286 (cited on pp. 59, 177).

Wieringa, Roel (2014). Design Science Methodology for Information Systems and Software Engineering.
Springer (cited on pp. 9–11).

Zaman, Shahed, Bram Adams, and Ahmed E. Hassan (2011). “Security Versus Performance Bugs: A
Case Study on Firefox”. In: Proceedings of the 8thWorking Conference onMining Software Repositories

(MSR). ACM, pp. 93–102 (cited on p. 54).
Zannier, Carmen, Mike Chiasson, and Frank Maurer (2007). “A model of design decision making

based on empirical results of interviews with software designers”. In: Information and Software
Technology 49.6, pp. 637–653 (cited on pp. 4, 6, 7, 17, 18, 21–23, 26, 28, 34–40, 51, 68, 70, 147,
171).

Zannier, Carmen and Frank Maurer (2006). “Foundations of Agile Decision Making from Agile
Mentors and Developers”. English. In: Extreme Programming and Agile Processes in Software

Engineering. Ed. by Pekka Abrahamsson, Michele Marchesi, and Giancarlo Succi. Vol. 4044.
Lecture Notes in Computer Science. Berlin, Heidelberg: Springer, pp. 11–20 (cited on pp. 6, 36).

Zimmermann, Olaf, Thomas Gschwind, Jochen Küster, Frank Leymann, and Nelly Schuster (2007).
“Reusable Architectural Decision Models for Enterprise Application Development”. English. In:
Software Architectures, Components, and Applications. Ed. by Sven Overhage, Clemens A. Szyperski,
Ralf Reussner, and Judith A. Stafford. Vol. 4880. Lecture Notes in Computer Science. Berlin,
Heidelberg: Springer, pp. 15–32 (cited on pp. 67, 69, 70, 72, 73, 76, 175, 177).

Zimmermann, Olaf, Jana Koehler, Frank Leymann, Ronny Polley, and Nelly Schuster (2009). “Man-
aging architectural decision models with dependency relations, integrity constraints, and pro-
duction rules”. In: Journal of Systems and Software 82.8, pp. 1249–1267 (cited on pp. 75, 175,
177).

189

http://unicase.org/

Errata in this Thesis
Chapter 2.2.
Such tools may be compilers, debuggers, editors for textual and graphical artifacts, or interactive
development environments (IDEs) [Sommerville 2010].
This thesis aims to support decision documentation during the development activities requirements
engineering, design, and implementation in general. These activities are fundamental to both, classic
development process models, such as the waterfall model, as well as incremental process models,
like agile methods SCRUM [Sommerville 2010].

For instance, such models can be created in use case diagrams using the Unified Modeling Language
(abbreviated as UML) [Sommerville 2010].

First, developers create a coarse-grained architectural design to identify the
overall system structures with principal components and their respective relationships [Sommerville
2010]. Second, a more fine-grained design details the interfaces, components and data structures for
each principal component [Sommerville 2010].

Developers are concerned with the implementation of the software when they create code to realize
the system design [Sommerville 2010]. This activity highly depends on the personal experience and
preferences of developers, so there is no common or general process for implementation
[Sommerville2010]. For instance, developers may start implementing those components first which
are best understood. Other developers might start with coding unfamiliar objects the difficult
components, because they can better estimate the effort necessary for the simpleknown
components [Sommerville 2010].

Chapter 2.4.
Management of Decision Knowledge
Documenting decision knowledge is an important part of decision knowledge management. Decision
knowledge management was first described as software engineering activity in [Bruegge,Dutoit
2009]. Besides of documentation it comprises communication, modeling and conflict resolution.
Typically, software tools are required to enable and support approaches for decision knowledge
management in general, and for documentation of decisions in particular [Arnott and Pervan 2008].

Bernd Bruegge, Allen Dutoit: Object-Oriented Software Engineering: Using UML, Patterns and Java
(3rd edition), Prentice Hall, 2009

	List of Figures
	List of Tables
	List of Abbreviations
	I Preliminaries
	1 Introduction
	1.1 Motivation and Research Goals
	1.2 Research Methodology
	1.3 Solution Approach and Contributions
	1.4 Structure of the Thesis
	1.5 Previous Publications

	2 Background
	2.1 Decision Problems
	2.2 Development Activities
	2.3 Decision Making Strategies
	2.4 Decision Knowledge

	II Problem Analysis
	3 State of Practice for Decision Making Strategies
	3.1 Study Foundations
	3.2 Research Process
	3.2.1 Preparation Phase
	3.2.2 Coding Phase
	3.2.3 Analysis Phase

	3.3 Results and Discussion
	3.3.1 Results for Issue Dimensions
	3.3.2 Discussion of Results for Issue Dimensions
	3.3.3 Results for RQ1: Dominance of NDM
	3.3.4 Discussion of Requirement A: Documentation of RDM and NDM Decisions
	3.3.5 Results for RQ2: Distribution of Strategy Elements
	3.3.6 Discussion of Requirement B: Iterative Decision Documentation
	3.3.7 Results for RQ3: Differences between Feature Requests and Bug Reports
	3.3.8 Discussion of Additions to Requirement A

	3.4 Threats to Validity

	4 State of the Art for Decision Knowledge Documentation
	4.1 Study Foundations
	4.2 Research Process
	4.2.1 Preparation Phase
	4.2.2 Search Phase
	4.2.3 Analysis Phase

	4.3 Results and Discussion
	4.3.1 Results for RQ1: Decision Knowledge Structures
	4.3.2 Discussion of Additions to Requirements A and B
	4.3.3 Results for RQ2: Tools for Capturing and Linking Decision Knowledge
	4.3.4 Discussion of Requirement C: Capturing Decision Knowledge during Development
	4.3.5 Discussion of Requirement D: Decision Knowledge Links
	4.3.6 Results for RQ3: Usage of Decision Knowledge
	4.3.7 Discussion of Additions to Requirements C and D

	4.4 Threats to Validity

	III Solution Approach
	5 An Incremental and Strategy-Independent Approach for Documenting Decisions
	5.1 Running Example
	5.2 Requirements Overview
	5.3 Decision Documentation Model
	5.3.1 Overview
	5.3.2 Decision and DecisionComponent
	5.3.3 Question, Issue and Goal
	5.3.4 Solution, Alternative and Claim
	5.3.5 Context, Assumption, Constraint and Implication
	5.3.6 Argument and Assessment
	5.3.7 Relations between DecisionComponents
	5.3.8 Model of Running Example

	5.4 Integration with Development Activities
	5.4.1 Requirements Engineering: Decisions on Security Requirements
	5.4.2 Design: Decisions on UML Design Models
	5.4.3 Implementation: Decisions on Code

	6 DecDoc: Tool Support for the Documentation Approach
	6.1 Requirements Overview
	6.2 Design and Feature Overview of DecDoc
	6.3 Knowledge Editor for the Decision Documentation Model
	6.4 Knowledge Importer from Heuristic Use Case Analysis
	6.5 Capturing Support for Design Decisions
	6.6 Code Annotations for Implementation Decisions

	IV Evaluation
	7 Evaluation of Documentation Model
	7.1 Study Foundations
	7.2 Research Process
	7.2.1 Preparation Phase
	7.2.2 Coding Phase
	7.2.3 Analysis Phase

	7.3 Results and Discussion
	7.3.1 Results for RQ1: Feasibility of Documenting RDM and NDM Decisions using the Model
	7.3.2 Discussion of Results for RQ1
	7.3.3 Results for RQ2: Feasibility of Documenting Decisions Iteratively using the Model
	7.3.4 Discussion of Results for RQ2
	7.3.5 Results for RQ3: Feasibility of Capturing Decision Knowledge during Development using the Model
	7.3.6 Discussion of Results for RQ3
	7.3.7 Results for RQ4: Feasibility of Linking Decision Knowledge using the Model
	7.3.8 Discussion of Results for RQ4

	7.4 Threats to Validity

	8 Evaluation of Tool Support
	8.1 Feasibility of Documenting Complex Decision Knowledge using DecDoc
	8.2 Feasibility of Documenting Implementation Decisions using DecDoc
	8.2.1 Study Foundations
	8.2.2 Research Process
	8.2.3 Results and Discussion
	8.2.4 Threats to Validity

	V Summary
	9 Conclusion and Future Work
	9.1 Conclusion
	9.2 Limitations of this Work
	9.3 Future Work

	A Literature Review Hits
	List of References

