
Temporal Models for History-Aware Explainability
Juan Marcelo Parra-Ullauri

Antonio García-Domínguez

Luis Hernán García-Paucar

Nelly Bencomo

j.parra-ullauri@aston.ac.uk

a.garcia-dominguez@aston.ac.uk

garciapl@aston.ac.uk

n.bencomo@aston.ac.uk

SEA research group, EPS, Aston University

Birmingham, United Kingdom

ABSTRACT
On one hand, there has been a growing interest towards the appli-

cation of AI-based learning and evolutionary programming for self-

adaptation under uncertainty. On the other hand, self-explanation

is one of the self-* properties that has been neglected. This is para-

doxical as self-explanation is inevitably needed when using such

techniques. In this paper, we argue that a self-adaptive autonomous

system (SAS) needs an infrastructure and capabilities to be able to

look at its own history to explain and reason why the system has

reached its current state. The infrastructure and capabilities need

to be built based on the right conceptual models in such a way that

the system’s history can be stored, queried to be used in the context

of the decision-making algorithms.

The explanation capabilities are framed in four incremental lev-

els, from forensic self-explanation to automated history-aware (HA)

systems. Incremental capabilities imply that capabilities at Level 𝑛
should be available for capabilities at Level 𝑛 + 1. We demonstrate

our current reassuring results related to Level 1 and Level 2, using
temporal graph-based models. Specifically, we explain how Level
1 supports forensic accounting after the system’s execution. We

also present how to enable on-line historical analyses while the

self-adaptive system is running, underpinned by the capabilities

provided by Level 2. An architecture which allows recording of

temporal data that can be queried to explain behaviour has been

presented, and the overheads that would be imposed by live analysis

are discussed. Future research opportunities are envisioned.

CCS CONCEPTS
• Software and its engineering→ Systemmodeling languages;
Integration frameworks;Model-driven software engineering.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

SAM ’20, October 19–20, 2020, Virtual Event, Canada
© 2020 Association for Computing Machinery.

ACM ISBN 978-1-4503-8140-6/20/10. . . $15.00

https://doi.org/10.1145/3419804.3420276

KEYWORDS
self-explanation, temporal graphs, runtime models, graph databases

ACM Reference Format:
JuanMarcelo Parra-Ullauri, Antonio García-Domínguez, Luis HernánGarcía-

Paucar, and Nelly Bencomo. 2020. Temporal Models for History-Aware

Explainability. In 12th System Analysis and Modelling Conference (SAM ’20),
October 19–20, 2020, Virtual Event, Canada. ACM, New York, NY, USA,

10 pages. https://doi.org/10.1145/3419804.3420276

1 INTRODUCTION
Systems are increasingly expected to learn and adapt themselves to

changing environmental conditions, and cope with uncertainty and

external threats [31, 33]. Early solutions to self-adaptation adapt

according to monitored changes based on knowledge that was

known at design time, providing limited reasoning and reflection

capabilities [9]. Modern solutions learn new information during

execution and provide estimations about the future to support

better-informed decision-making [6, 26, 30].

These more advanced self-adaptive systems (SAS) can expose

behaviour that end-users may not understand [9]. Further, these

users may cease to use the system due to lack of trust[34]. Therefore,

providing understandable explanations for surprising behaviour is

relevant for SAS. Lately, there have been increasing interest about

the right to explanation [20, 36].

The explanations of the decision-making of a SAS that we sup-

port in this paper are based on the history of the execution of

the system, i.e. the system explains its behaviour based on what

the running system has observed in the past. In later iterations of

the SAS, the same history-based explanations can become an addi-

tional source of information for its decision processes, in addition

to its use of current observations and future projections. However,

the required integration of history-awareness capabilities into the

decision-making process can be complex, and therefore we propose

ideas to do it in a gradual fashion.

Based on the above, this paper has three main contributions:

(i) a 4-level spectrum of reflective capabilities for a self-aware

self-adaptive system (from forensic self-explanation to autonomous

history-aware decision-making), which acts as our research roadmap;

(ii) a description of the forensic analysis layer (Level 1); and
(iii) a scenario for the level beyond forensic analysis (live history-

aware explanation), with an evaluation of our current implementa-

tion of that level.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Aston Publications Explorer

https://core.ac.uk/display/337602484?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1145/3419804.3420276
https://doi.org/10.1145/3419804.3420276

SAM ’20, October 19–20, 2020, Virtual Event, Canada Juan Marcelo Parra-Ullauri, Antonio García-Domínguez, Luis Hernán García-Paucar, and Nelly Bencomo

We use the term self-explanation to describe the capability of

the system to answer questions based on its past behaviour. The

answers explain the reasons why a decision was made to reach a

particular system state. They can also prove or disprove hypotheses

on the system behaviour. Explanations should be readable by and

available to humans but also machines. Specifically, explanations

should be available to different stakeholders such as end-users,

developers, external systems, or the SAS itself. As part of the con-

tributions described above, we present in this paper the data model

and the progress made so far on building a querying infrastructure

for this purpose. Initial results of these ideas were discussed in the

workshop paper in [14].

The structured of the paper is: Section 2 presents the foundations

that underlie our research, in terms of reflective self-adaptation

and storage and retrieval of historic data. Section 3 presents the

spectrum composed by the four envisioned levels of reflective ca-

pabilities that a SAS may offer. Section 4 presents the Remote Data

Mirroring SAS which we use as our case study. Section 5 presents

the latest updates on Level 1 since our initial work. Section 6 in-

troduces a scenario around Level 2 of the spectrum for RDM, and

Section 7 evaluates our current implementation of Level 2. Finally,
Section 8 concludes the paper and presents several research av-

enues.

2 RESEARCH BASELINE
This section introduces the research that underpins the work, in

the areas of self-adaptive systems and management of historical

data.

2.1 Reflective, Self-aware Self-adaptation and
Self-explanation

Self-awareness can be seen as the capability of a system to acquire

and access knowledge about its own state and its environmental

context [6, 8]. Such knowledge allows for better understanding

and reasoning about its adaptive behaviour. Self-awareness is seen

as a low level of abstraction of self-adaptivity [33], allowing for

improvement of the self-adaptivity of a system. Self-awareness of a

computing system can be related to different specific capabilities

such as goal-awareness [38], requirements-awareness [34] or time-

awareness [3]. Time-awareness is the use of knowledge of historical

and perhaps future phenomena [3]. Time-awareness requires node-

level memory, and capabilities for time series modeling and/or

anticipation. History-awareness is implied in time-awareness.

Existing work tends to leave history-awareness implicit in the

formal model [8]. We argue that explicit representation of history-

awareness (i.e. time-awareness) will help to reason about the impact

that past history has on the decision process.

Leaving history-awareness as something implicit to the model

also means implementing the storage and retrieval of this past

history as an ad hoc effort, which changed from SAS to SAS. In

some cases, past history had been “compressed” to the point that it

was not recoverable: the user could not see what the system had

based its decisions upon.

The knowledge base of the MAPE loop [21] can be used to main-

tain historical data and knowledge used by the system for informed

adaptation. As a structured explicit knowledge is needed, the au-

thors of [28] propose an extension of the context representation

for the MAPE-K loop integrating the history of planned actions as

well as the expected effects over time. Their analysis and planning

phases can therefore compare measured and expected context met-

rics. The work is demonstrated on a cloud elasticity manager case.

Authors of [7] propose stochastic game analysis and latency aware-

ness, a kind of time-awareness, for proactive self-adaptation. In [27]

the authors tackle the problem of tracking historical changes as

well. To do that, they use causal relationships between requirements

and their corresponding adaptations. In our own case, we propose

the explicit use of temporal graph databases as a representation

for trace-based models to enable self-explanation in interactive

diagnosis or forensic analysis based on a generic meta-model that

supports the structure for execution traces of SAS.

In regard to accessing the history to support reasoning and

explanation, Welsh et al. [41] argue that an SAS needs to garner

confidence not only in its users by explaining its behaviour during

execution, but also in its developers by explaining “surprises” during

testing and maintenance. The authors specifically use requirements-

awareness and monitoring to enable the explanation capability

in adaptive systems. By extending the goal models with a claim-

refinement model, the aspects of the systems that will be monitored

are defined. According to the current state of these aspects, they can

explain why the system has adapted its behavior. Authors in [27]

tackle a very related issue, i.e interactive diagnosis.

There is a class of self-adaptive systems which explicitly use

models at runtime as abstractions of their state to implement reflec-

tive capabilities [5]. Rather than transforming structured logs into

a temporal graph, Reynolds et al. propose automatically collecting

a provenance graph of the evolution of these reflective models [32].

For every change, the agent involved, the activity the agent was

performing, and the entity affected are recorded. In relation with

our 4-level hierarchy in Section 3, the approach would be at Level 1
(forensic history-aware explanation), since its case study focused

on investigating issues after the system ran. The approach allows

for direct integration with systems already using reflective models

at runtime, but integrating it with other systems will require more

work than the approach presented in this paper, which reuses ex-

isting logs. On the other hand, the approach already applies time

windows to the collected information, simplifying the pruning of

history no longer of interest. It also provides for capturing other

types of activities in the system that impact its reflective models, be-

yond the decision making which is the focus of our trace metamodel

(Section 5).

2.2 Storage and retrieval of historic data
History-awareness requires an efficient manner to represent and

query the past history. Logs are prevalent in all kinds of computer

software: however, most of them are text-based and are usually

intended to be used by humans, with precarious support for auto-

mated processing such as simple filtering and tagging. However,

this has been changing as systems have become more complex. The

increasing level of automation in cloud deployments has motivated

some IaaS (Infrastructure as a Service) platforms to explicitly collect

historical data intended to be used by software systems as well. For

Temporal Models for History-Aware Explainability SAM ’20, October 19–20, 2020, Virtual Event, Canada

Figure 1: Required components by levels of reflective capabilities,
from forensic self-explanation to history-aware (HA) systems

instance, the Google Cloud platform is known to track memory

usage and recommend VM changes
1
. Another example is the Elastic

indexing platform, which has recently gained machine learning

capabilities for outlier detection capabilities in historical data
2
.

Analyzing sequences of values over time is not new: for over

20 years, there has been considerable work on time-series data

mining [10], which attempts to extract knowledge by looking at the

shape of the data. The survey lists a wide variety of approaches for

querying by content, clustering, classification, segmentation, and

prediction, among other tasks. However, the history of a system is

more complicated than a sequence of numbers: in its most general

form, the configuration of a system is a complex entity that changes

over time. Tracking this history requires a fitting data structure:

thankfully, there has been a recent push towards adding temporal

capabilities to graph databases, with the ability to efficiently store

and navigate the history of an entire labelled attributed graph. Two

examples include Greycat [18] and ChronoGraph [17].

Beyond storage, tracking the history of a SAS requires a data

model, a query language, and enabling the SAS to feed the tem-

poral graph database. In our prior work [16], we demonstrated a

first version of a solution that integrated a SAS with our Hawk

indexing framework for transparent forensic (after-the-fact) self-

explanation. The solution took the raw JSON logs of the decision

process over time and shaped them into a sequence of dedicated

trace data models, which were turned into a Greycat temporal graph

and exposed through a dedicated time-aware query language. This

initial prototype is the base of the further proposals made in this

paper.

3 LEVELS OF HISTORY-AWARE
EXPLANATION CAPABILITIES IN SAS

Ideally, systems should be able to access their adaptation history

and adjust future adaptations taking into account past results of pre-

vious adaptations. However, building this capability into a system

can be costly and hard to evaluate.

Rather than an all-or-nothing situation, we argue that it is easier,

safer and more rewarding in the short-term, to do it in stages or

levels. A first stage can build upon the capabilities for the next

one. The base level can focus on the basic capabilities for forensic

analysis, and the next stages can adapt the MAPE-K functions to the

use of history. A second stage focuses on Monitor and Knowledge

as the SAS is running, a third stage provides Execute, and the final

stage updates the Analysis and Plan functions.

Figure 1 shows our four envisioned levels of reflective capabilities

that a SAS should offer, as well as their required core components.

Each level requires the capabilities of the levels underneath. Sec-

tions 5 to 7 present the current state of the first two levels. At the

end of the paper, there is further discussion about the last two levels.

The levels are:

• Level 1 (forensic history-aware explanation): this level
operates very much like a “black box”. The system runs as

normal, while capturing logs in a machine-parseable form.

After the system has finished its execution (whether grace-

fully or crashing), the history of the system is converted into

a temporal graph database conforming to a reusable trace
metamodel. Users can then study its history with a temporal
query language. This level is useful for either post-mortem

analysis after an unexpected behaviour, or for internal eval-

uation during development.

• Level 2 (live history-aware explanation): this level al-
lows users to evaluate past observations, decisions and per-

formance on a running system without having to stop it.

As such, it requires an incremental importer that loads peri-
odically the latest state of the decision algorithms into the

temporal graph database, adding one more timepoint to its

history. To keep storage and memory costs manageable, the

history of the temporal graph may be bounded to a specific

time window. The temporal graph may be structured as a

strict linear sequence of system states, or as a graph of states

that the system may go to and from: this will depend on

whether there is a restricted and finite number of possible

system states, or not.

A live visualization/query platform will allow various types

of stakeholders (developers, end users) to study the history

of the system. This level can help users gain trust in the

SAS during its day-to-day operation, and does not require

modifying the existing decision making process.

• Level 3 (externally-guided andhistory-aware decision-
making with explanation capabilities): if we consider

the self-adaptive system as an autonomic element in MAPE-

K, Level 2 has provided the Monitor function, using the evolv-

ing models as a sensor from which to build the temporal

graph (the (K)nowledge base). However, the Analyze, Plan,

1
http://archive.is/mQ2k7

2
http://archive.is/oDDh9

http://archive.is/mQ2k7
http://archive.is/oDDh9

SAM ’20, October 19–20, 2020, Virtual Event, Canada Juan Marcelo Parra-Ullauri, Antonio García-Domínguez, Luis Hernán García-Paucar, and Nelly Bencomo

and Execute functions are still pending. The goal of Level 3
is to implement the Execute function by providing effectors

(e.g. input parameters or some type of configuration facility)

that allow external entities to perform the Analyze and Plan

functions. These external entities can be either a human

or another software system. Effectors designed for humans

should be defined in a notation flexible enough to express the

evolving preferences of the user, while also concise enough

to not overwhelm the user with low-level details. As con-

trol would be partly given to an external entity, it would be

important for the trustworthiness and accountability of the

Level 3 system to record these interventions accordingly.

• Level 4 (autonomous history-aware decision-making
with explanation/reasoning capabilities): at this last level,
a history-aware decision making process is introduced to fur-

ther support autonomous behaviour. It will be an improved

version of the existing decision-making process that takes

its own control over its history as one more dimension to

adapt [33, 39]. For example, one way to use the history would

be to be able to recognise major trends that may require re-

configuration, and which may not be evident from a single

timeslice: e.g. continued performance degradation over time

in a particular indicator. This may trigger its own adapta-

tions aiming at long-term effects. As there may be too few

observations to support it, or these observations may be too

different to the original ones, the system should evaluate its

confidence level on the estimated trajectory.

Another way to use the history would the identification of

similar situations in the past and the consequent evalua-

tion of the long-term performance of the decisions that were

made at those times. Those could be factored in the perceived

utility levels of the available options. The system could dou-

ble check the long-term performance of those decisions, and

establish a confidence level on its own prediction model.

Any interventions based on the history of the system should

also have to be tracked into a dedicated automated control
accountability. At this level, the explanation capability based

on the infrastructure provided by Level 1 and Level 2, will
enable reasoning about the history of the SAS, i.e. the system

and the adaptation logic will be history-aware (HA).

4 CASE STUDY: THE REMOTE DATA
MIRRORING SAS

In order to evaluate the current results of the proposed gradual

approach to history-aware self-adaptation, an existing SAS case

study was selected, the Remote Data Mirroring (RDM) system from

our prior work [4, 15, 30]. The RDM SAS is composed of data

servers and network links. It must replicate and distribute data

in an efficient manner by minimizing consumed bandwidth and

providing assurance that distributed data is not lost or corrupted

[19]. RDM uses an R-POMDP (Requirements runtime model based

on Partially Observable Markov Decision Processes [25]). Its overall

structure is shown in Figure 2.

R-POMDP runs over timeslices, just like regular POMDP. At each

timeslice, the SAS monitors the Ranges of Energy Consumption

(REC) and Number of Concurrent Connections (NCC), partially

Figure 2: RDM case study, SAS that protects aginst data loss by stor-
ing copies on servers. Configuration: 2 topologies(MST, RT), 2 NFRs
(MR, MEC), 2 monitoring variables (REC, NCC).

observable measures to estimate whether the corresponding Mini-

mize Energy Consumption (MEC) and Maximize Reliability (MR)

non-functional requirements (NFRs) are being met. Based on these

estimations of the current system and a reward table (e.g. “a re-

ward Y is given for action X if NFRs are estimated to be satisfied

or not”), the SAS decides whether to choose a Minimum Spanning

Tree (MST) network topology, or a Redundant Tree (RT) topology.

MST is more efficient in terms of energy consumption, whereas RT

is more reliable.

In contrast to reactive control methods [24], R-POMDP considers

future evolutions (i.e. projections into the future) of the satisfice-

ment of the NFRs to decide the next action 𝑎 ∈ 𝐴, i.e., to reason

about long-term effects of immediate actions [37]. These future

evolutions are represented by a belief over possible states or belief

tree. The root node of the tree is the belief 𝑏0 which represents the

current state of the running system, i.e. the current level of satisfice-

ment of the NFRs. From there, the R-POMDP uses lookahead search

[23] to approximate the optimal discounted reward value 𝑉 ∗ (𝑏0).
The result is an approximately optimal policy for the current belief

𝑏0 [37]. Accordingly, the system then executes the first action of

the policy, 𝜋 (𝑏0).
Other proactive approaches like CobRA [1] and PLA [26] also

predict future system states. Unlike R-POMDP, they assume full

observability of the system’s state (e.g. by using Markov Decision

Processes [26]), so they cannot model the uncertainty that may

arise from imprecise sensors in a real system. They do not explicitly

model the levels of satisficement of the non-functional requirements.

Proactive approaches can be deceiving at first while improving the

behaviour in the long term. This kind of situations may require

explanations.

5 FORENSIC SELF-EXPLANATION
According to Section 3, the first step to achieve automated history-

aware self-adaptation is to offer “black box” capabilities (Level 1).

Temporal Models for History-Aware Explainability SAM ’20, October 19–20, 2020, Virtual Event, Canada

Figure 3: Execution trace metamodel for a decision-based self-adaptive system (updated since [16]).

This section shows the latest version of the four elements required

for Level 1 (as shown in Figure 1), initially developed in our previous
work [16]:

• Trace metamodel: the state of the SAS at each timeslice

was reshaped into the metamodel based on the Eclipse Mod-

eling Framework
3
(EMF) of figure 3, essentially a custom

type system for a specific domain. The metamodel has been

improved since our previous work, based on community

feedback and seeking generalisation. The trace metamodel

is similar to the traceability information models used in the

traceability community [29], but rather than relating arte-

facts to each other, it links the goals and decisions of the

system to its observations and reasonings. It is divided into

two parts: one specific to R-POMDP, and one reusable across

other goal-oriented SAS types.

The top half is the most general one. The information of a

timeslice is contained inside a Log instance, which groups

together the NFRs to satisfy, the observableMeasures, the

Decisions to be made and the Actions to choose from. The

Measures are divided into ranges across Thresholds, and

theDecisions are based on specificObservations that result

in different types of Measurements of specificMeasures.

These observations help the decision making process derive

anActionBelief in the estimated value (i.e. expected utility)

of each action.

The bottom half is specific to reinforcement-based decision

processes like R-POMDP, and contains the RewardTables

used to make a decision, which is a lookup table made up

3
http://archive.is/OLeFq

of RewardTableRows. The lookup key is the truth value

of the NFRSatisfactions for each NFR, and the Action

under consideration. To produce these Boolean values, the

estimated probability of eachNFRBelief is compared against

the matching RewardTableThreshold. For instance, MEC

may be considered to be satisfied if the estimated probability

is higher than 70% (as stated by the requirements specifica-

tions).

• Temporal graph DB (TGDB): Section 2.2 already men-

tioned Greycat and ChronoGraph. The current version of

our approach is based on Greycat, based on its LevelDB back-

end. Our original work was based on the RocksDB backend.

However, we concluded LevelDB offered better performance

across operating systems.

• Batch log importer: our implementation of the RDM SAS

generates JSON logs, and can be told to produce either one

JSON with all timeslices from a run (potentially very large),

or one JSON per timeslice. The batch log importer works

by taking the all-timeslices JSON file and reshaping it into a

Git repository with a sequence of XMI files conforming to

the metamodel in Figure 3. The Git repository can then be

indexed by Hawk into a Greycat TDB. This has noticeably

better performance than the batch importer in prior works,

which used Subversion repositories [12].

• Temporal query language: Hawk already had its own

query language, the Epsilon Object Language [22] (concep-

tually, a mix of OCL and JavaScript). EOL was extended with

time-aware primitives, and with the concept of “history” for

any type and its instances. In a more recent work [13], the

time-aware EOL dialect was further extendedwith primitives

http://archive.is/OLeFq

SAM ’20, October 19–20, 2020, Virtual Event, Canada Juan Marcelo Parra-Ullauri, Antonio García-Domínguez, Luis Hernán García-Paucar, and Nelly Bencomo

User

User

RDM

RDM

BatchImporter

BatchImporter

Hawk

Hawk

execute

logs

importIntoGit

git repository

indexGitToTempGraph

temporal graph

loop [as desired by user]

runQuery(eolSource)

query results

Figure 4: UML sequence diagram for interaction between compo-
nents (RDM case study, Level 1)

inspired on Dwyer’s work on temporal specification patterns,

with the ability to use temporal assertions (e.g. always, never)
and version scopes (e.g. when, until). The same work pre-

sented a first version of timeline annotation, a mechanism for

automatically annotating specific moments in history where

an event of interest happened, speeding up its retrieval in a

later query.

Figure 4 shows a UML sequence diagram of how the components

communicate in Level 1. The user asks RDM to run, producing an

all-timeslices log. This log is given to the BatchImporter, which

produces a Git repository with one version of an XMI conforming

to the metamodel in Figure 3 per timeslice. The user then tells Hawk

to turn that into a temporal graph, which can be queried as needed.

The scalability of this approach is limited by the fact that such a

log may grow to be very large: indeed, naively parsing a log which

is in the GBs may tax the memory capacity of the computer. For the

parsing problem, one approach would be to index not a single JSON

file, but rather a database (e.g. a collection of Mongo documents) or

a stream of events. This would still not prevent the temporal graph

from growing too large. For very long runs, compressing and/or

pruning the history may be needed: for instance, we may only keep

the last X timeslices (time windows), index only one out of every X

timeslices (sampling), and/or keep only versions matching certain

situations of interest (filtering). The risk with these strategies is that

queries would be limited in scope (with time windows), or would

become approximate (sampling and filtering). Studying the impact

of these strategies in the query results for long-running systems is

part of our future work.

The trace metamodel assumes that the system follows a reward-

oriented strategy around non-functional requirements. This sug-

gests that queries written against this metamodel may still be

reusable beyond R-POMDP, and could work with other types of self-

adaptive algorithms (e.g. those based on reinforcement learning).

On the other hand, if the SAS follows a different type of strategy,

it could still reuse the Decision / Observation / Measurement

concepts, but it would need a different “bottom half” replacing the

current NFR / RewardTable concepts. For these reasons, we are

considering separating this metamodel into two in the future.

6 LIVE SELF-EXPLANATION: BEYOND
FORENSIC ANALYSIS

Level 1 has focused on after-the-fact analysis, taking a sequence of
system models to turn it into a single temporal graph, which can

subsequently be queried. It presents the advantage that it does not

require any changes in a system that is already producing its own

logs in a machine-parsable format. However, users may want to

demand questions about the system while it is running, and not

just after an event has happened.

In order to meet these demands, the presented implementation

of Level 2 introduces two new components: a live visualization
platform and an incremental importer. The temporal graph is kept

up to date as the SAS runs. This section introduces a case study

where the Level 2 infrastructure is used to answer queries while the
system is running. The current implementation of the components

of Level 2 is also described.

6.1 Scenario: illustrating proactiveness to users
If a user sees that the performance of the running system is de-

teriorating even if momentarily, they may become anxious about

its long-term viability. RDM may present cases like this. RDM is

proactive and estimates the future trajectory of the system; as such

it may decide to make a decision that may be perceived as nega-

tive in the short-term but, which will proof to be positive in the

long-term. Like the RDM, other proactive approaches, such as the

those mentioned in Section 4 (CobRA or PLA), may present these

initially “surprising” situations.

One way to explain this behaviour to the user while on-the-fly

(i.e. when the system is running) is to illustrate RDM’s proactiveness

with cases where a seemingly “bad” decision taken by the SAS

turned out to be a good one in the long run. Assuming we keep track

of the history of the system, Algorithm 1 can find the examples

that could then be presented to the user on demand, and close

to a simple plot of estimated requirement satisfaction levels over

time. This takes the monitoring beyond a passive set of listings

and figures, to allow users ask questions or request examples of

particular relevant nuances of the SAS.

The main idea of the example in the scenario is to find a timeslice

where the satisficement level of a NFR is below its threshold (e.g.

MR ≥ 0.9), and the action suggested by the SAS under this context

results in a further reduction in the next timeslice. However, as

the decision action is further kept in the following timeslices, the

satisficement gradually increases until it reaches and even exceeds

its threshold. This is an example of proactive adaptation [2], the

type of reasoning used in the RDM case study based on R-POMDPs.

In contrast to reactive systems [11], the RDM SAS can predict what

is the likely impact of the current decision action.The RDM SAS uses

look-ahead search on a tree [42] to take into account the likelihoods

Temporal Models for History-Aware Explainability SAM ’20, October 19–20, 2020, Virtual Event, Canada

of future sensor observations and their effects on NFR satisficement

belief levels.

Algorithm 1 Query to detect proactive adaptation: the long term

effects of immediate actions. 𝐿 is the current runtime log, 𝑇 the set

of timeslices in 𝐿, 𝑆NFR (𝑡) the satisficement of the NFR at timeslice

𝑡 , and 𝛼NFR the threshold for the NFR.

1: Result = {}
2: 𝑇𝐵 = {𝑡 ∈ 𝑇 |𝑆NFR (𝑡) < 𝛼NFR}
3: for each 𝑡𝑏 ∈ 𝑇𝐵 do
4: if 𝑆NFR (𝑡𝑏 + 1) < 𝑆NFR (𝑡𝑏) ∧

∃𝑛 ∈ N>0,∀𝑗 ∈ [1, 𝑛] |
𝑆NFR (𝑡𝑏 + 𝑗 + 1) > 𝑆NFR (𝑡𝑏) then

5: Add (𝑡𝑏 , 𝑛) to Result
6: end if
7: end for
8: Result: Sequences showing proactive adaptation.

6.2 Implementation of the Level 2 components
In the implementation offered in this paper, the infrastructure re-

lated to Level 2 takes advantage of the fact that Hawk can be run as

a network service [12], with the ability to run queries at any time

via its Thrift-based API
4
. Therefore, both RDM and Hawk can be

running at the same time.

The query to detect proactive adaptations (see Algorithm 1), was

implemented in the Hawk time-aware dialect of EOL supported by

our Hawk tool. The EOL query, the incremental importer and the

query tool are available from our Gitlab project
5
.

Hawk was extended with a component that can read the single-

timeslice JSON log produced by RDM, and reshape its contents into

an in-memory model while conforming to the trace metamodel of

Figure 3. This in-memory model can be given directly to Hawk,

while significantly reducing overheads in comparison to our initial

implementation. Previously in [14], the implementation serialised

the model back into an XMI file that the standard EMF support in

Hawk would use. The back-and-forth saving and loading on disk

used to introduce noticeable slowdowns in the simulation.

In addition, the RDM SAS has been extended with the ability to

notify Hawk when to update its temporal graph, by sending Hawk a

message through the same Thrift-based API. This also significantly

reduces overheads compared to spawning new Java subprocesses.

When told to synchronise, Hawk will compare the trace model

represented by the JSON file with the latest version in the temporal

graph, to create a new timepoint by applying the differences. The

new timepoint then becomes available for querying done by users.

The resulting communication between the various components

for the Level 2 version of the RDM case study is shown in Figure 5.

Hawk is assumed to be running and set up, having registered the

trace metamodel and the folder with the JSON file to be indexed.

The user then starts RDM. At the end of each timeslice, RDM will

update the JSON file with the information from the timeslice, and

will ask Hawk to update its graph from it. Hawk will acknowledge

4
https://archive.is/lJwUP

5
https://gitlab.com/a.garcia-dominguez/hawk-rdm

User

User

Hawk

Hawk

RDM

RDM

execute

loop [for each timeslice]

saveTimesliceJSON

synchroniseAndWait()

synchronised

opt [if desired by user]

runQuery(eolSource)

query results

completed

Figure 5: UML sequence diagram for interaction between compo-
nents (RDM case study, Level 2)

the update, and then RDM will continue on to the next timeslice.

At any point in time, the user can run a query based on the current

state of the temporal graph in order to obtain an explanation about

how it got there.

The latest version of Hawk introduces timeline annotation, which

allows the system to jump directly to situations of interest without

having to scan the full history of the temporal graph. Using this new

capability only requires minor preparations. Before RDM starts,

the user will signal Hawk about which situations it should moni-

tor. Once RDM has started, specifically when Hawk notices that a

new timepoint matches a situation of interest, it will subsequently

record it to therefore provide fast retrieval of the timepoint through

the whenAnnotated operation.

7 LIVE SELF-EXPLANATION: EVALUATION
AND DISCUSSION

Previously, Section 6 described a scenariowhere live self-explanation

support is needed for a developer to further understand the be-

haviour of a SAS. It also discussed the changes that were required

in our prototype in order to support that capability. This section

evaluates our prototype, studying both the results of the queries

and the overheads introduced by our current implementation of the

new time-awareness capabilities. Specifically, we study the perfor-

mance of the system with two different history-aware techniques

to extract explanations: i) run an EOL query that revisits the whole

history at every time slice, and ii) use timeline annotation to mark

situations of interest and directly jump to them while querying, as

introduced in [13].

7.1 Experimental setup
For the experiments, two 2000-timeslice simulation runs were con-

ducted, using the Eclipse Hawk model indexing server [12] (v2.1.0

nightly from July 6th, revision eeffd8f), which runs in the back-

ground to build the temporal graph. We used a Lenovo Thinkpad

T480 with an Intel i7-8550U CPU with 1.80GHz, running Ubuntu

18.04.5 LTS, Oracle Java version 1.8.0_201 and 15.6GB RAM, allo-

cating 8GB to Hawk (-Xmx8g).

https://archive.is/lJwUP
https://gitlab.com/a.garcia-dominguez/hawk-rdm

SAM ’20, October 19–20, 2020, Virtual Event, Canada Juan Marcelo Parra-Ullauri, Antonio García-Domínguez, Luis Hernán García-Paucar, and Nelly Bencomo

Listing 1: Excerpt of output fromAlgorithm1 about long term effect
of immediate actions.

[..., [719, Minimum Spanning Tree Topology, Maximization of

Reliability, 0.852294921875, [[720, Minimum Spanning Tree

Topology, Maximization of Reliability, 0.840590259674336],

[721, Minimum Spanning Tree Topology, Maximization of

Reliability, 0.935284515844998], [722, Minimum Spanning

Tree Topology, Maximization of Reliability,

0.94331412096612]]],

[1597, Minimum Spanning Tree Topology, Maximization of

Reliability, 0.835166769728076, [[1598, Minimum Spanning

Tree Topology, Maximization of Reliability,

0.0.824842465933626], [1599, Minimum Spanning Tree

Topology, Maximization of Reliability, 0.934522400804845],

[1600, Minimum Spanning Tree Topology, Maximization of

Reliability, 0.935870208967967]]], ...]

The RDM SAS was configured to communicate directly with

Hawk to update the temporal graph and then run the EOL im-

plementation of Algorithm 1 after each timeslice. In the case of

timeline annotation, the situation of interest to be monitored was

configured in the server in advance. No other processes were run-

ning in the system. The Greycat DB grew to 5MB with the first

technique and 14MB with timeline annotations.

7.2 Query results
Listing 1 shows an excerpt of the examples found by the query with

both techniques (with and without timeline annotation), which are

shown to the user in a human-readable way. One of the detected

sequences started at timeslice 719, when RDM decided to use the

Minimum Spanning Tree (MST) topology. As an immediate conse-

quence, a reduction on the satisficement level of the NFR Maximiza-

tion of Reliability (MR) is observed: from 0.85229 (timeslice 719) to

0.84059 (timeslice 720). However, the satisficement grew during the

subsequent timeslices, until it exceeded its threshold in timeslice

722. Similar situations were observed in different timeslices such as

1597. 29 situations were found during the 2000 timelices run. This

shows us that decisions with apparently immediate negative effects,

may produce the required expected increase of the satisficement

level of the NFRs in the long term. Developers and end users need

to be aware of this kind of behaviours, which otherwise could be

found unreasonable at first.

Based on the defined concept of self-explanation earlier in this

paper, this type of query allows the system to explain why it took

a decision and why it is showing the current behaviour. For this

specific case, the insight gained through the temporal query would

make the user aware of the use of time windows within the decision

making process, and would prepare the user to better interact with

it after Level 3 of the spectrum is reached.

7.3 Performance results
Figure 6 includes the execution times for the simulation run of RDM

over 2000 timeslices without timeline annotation. This stacked area

plot shows the different stages: the simulation of a timeslice, the

update of the temporal model within the Hawk indexer, and the

0 500 1,000 1,500 2,000

0

500

1,000

1,500

2,000

Timeslice

T
im

e
(m

s)

Simulate Update Query Overheads

Figure 6: Stacked area plot with execution times for RDM SAS simu-
lations in milliseconds, by timeslice and phase, for the queries run-
ning without annotations.

0 500 1,000 1,500 2,000
0
50

100
150
200
250
300
350

Timeslice

T
im

e
(m

s)

Update Query Overheads

Figure 7: Stacked area plot with execution times for RDM SAS simu-
lations in milliseconds, by timeslice and phase, for the queries run-
ning with annotations. “Simulate” times are excluded due to small
values in the other series, being the same as in Figure 6.

0 500 1,000 1,500 2,000

101

102

Timeslice

T
im

e
(m

s)

Without annotations With annotations

Figure 8: Raw server-side execution times of EOL query implement-
ing Algorithm 1 in milliseconds, by timeslice.

full execution of the query. The query times include client-server

communication overheads. The simulation times ranged from 1087

and 1148 milliseconds. Temporal graph update times represented

the 1.36% in average of the total time and remained stable. Query

invocation times grew over time, together with the length of the

Temporal Models for History-Aware Explainability SAM ’20, October 19–20, 2020, Virtual Event, Canada

history of the temporal graph. Query times came to represent up to

14% of the execution time in average. This is because the query has

to go through each time-point in the system history every time the

query is executed. For example, at timeslice 500 the query needs

to consider all the 500 time points that the simulation has gone

through and for the timeslice 2000 the query needs to consider 2000

time-points in history.

One way to attenuate the impact of querying every point in his-

tory in the system’s performance is to use timeline annotation. This

is done in such a way that a situation of interest would be defined

in advance, and matching timeslices would be annotated during ex-

ecution. Then, instead of going through the whole system’s history,

the query would jump to those annotations. For this experiment,

the situations to be tagged were the “bad decisions” mentioned in

section 6.1. In other words, when the system decided to change

(i.e. adapt) the topology and this action ended in a reduction of

the satisficement level of the NFR. Figure 7 shows the different

stages, except for the simulation time that is the same as in Figure 6.

Updates represented 1.47% of the total times on average, similar to

the first experiment, only presenting a initial peak of 147 ms. This

shows the time of setting up the indices for the annotation. On the

other hand, query times presented a significant improvement in

the simulation time, from representing up to 14% of the total time,

to only 1.5% of the total time on average.

In total, the 2000-timeslice simulation took 43.54 minutes with-

out timeline annotation and 38.36 with timeline annotation. The

simulation time without the Level 2 capabilities would have been

37.49 minutes. We can conclude with timeline annotation, that the

reduction in the system’s performing time can be kept to 2–3% due

to overheads. This is a significant improvement from our previous

version of our Level 2 implementation in [14], where the addition

of temporal graphs made a 1000-timeslice simulation to go from

18.25 minutes to 94.65 minutes (an increment over 400%).

Figure 8 shows the raw execution times for the EOL implemen-

tation of the query in Algorithm 1 for both approaches, using a

logarithmic scale for the times. These execution times exclude the

wait for synchronisation with the server and the network over-

heads, which dominate most of the time in the “Query” series of

Figures 6 and 7. Query times without annotation ranged from 2ms

to 486ms, with a median of 162ms. For the timeline annotation

approach, times ranged between 2ms to 54ms with a median of

12ms. Which shows the advantages of timeline annotation. The

peaks can be attributed to the natural variability in inter-process

communication times, and overheads.

7.4 Next steps
While the original solution (without timeline annotation) worked as

expected, the total simulation time raised to 43.54 minutes from the

original 37.49 minutes which could be considered still an important

overhead. Fortunately, the timeline annotation capability improved

the performance impact to 38.36 minutes. A different approach,

which we plan to pursue, would be to run the processing steps in a

concurrent fashion, while the time-awareness could run at a slower

pace than the main decision-making. Queries took longer as the

history grew, but different optimization strategies will be tested

in the future. Some new strategies we are considering to apply in-

clude: sampling, for only storing logs at a certain rate; time windows,
for focusing on the last 𝑛 timeslices; or event-oriented processing,
for storing logs only when certain events happen. These strate-

gies would allow us to further reduce the storage and processing

overheads imposed by the addition of history awareness.

Beyond increasing efficiency and improving the queries, future

work will also look into the completion of Level 2 with dedicated

visualisations, and the design of new queries that look into system

features desired by users (e.g. NFR satisficement status) and devel-

opers (e.g. stability or predictability). Work on Level 3 will continue,
with the extension of a decision-making process to allow hints from

an external entity (initially a human) using effectors. Once these

adaptation controls are in place, work on the Level 4 reflective and
self-aware SAS would start.

8 CONCLUDING REMARKS AND FUTURE
WORK

We have given our vision for developing reflective, self-adaptive

systems, proposing a spectrum of capabilities, starting from Level 1
(forensic “black box” self-explanation after the system has finished

running) and ending at Level 4 (autonomous history-aware decision-

making). An existing SAS in the Remote Data Mirroring domain

has been extended up to Level 2 (live self-explanation), which has

been reported in this paper. We have proposed the explicit use of

temporal graph databases as a representation for trace models to

support self-explanation, interactive diagnosis and forensic analy-

sis. We have presented a generic meta-model to structure execution

traces of SAS, based on the meta-model. A SAS system was ex-

tended to run arbitrary commands between timeslices. Two utilities

are offered to convert JSON-based logs into a reusable metamodel

to finally obtain a temporal history-based graph model. Moreover,

queries can be designed and implemented in the EOL query lan-

guage supported by the Hawk indexer to study long-term effects of

adaptations. The case study has been evaluated, where the temporal

graph was updated and queried.

We have also presented an architecture, which allows recording

of temporal data that can be queried to explain behaviour. Our

work so far is based on the use of cases supported by Bayesian

learning and Markov processes, which naturally fit in with the

idea of time series modelling. However, we are currently working

on how to include other learning techniques, and explore links

from deeper nuances of decision-making data with the time series

modelling. These techniques build up certain data structures during

their learning, such as the Q-tables in the Q-Learning model-free

reinforcement learning algorithm [40]. Combining internal data

(like the Q-table) with an understanding of the theory behind the

algorithm, we can explain some aspects of their decision-making.

However, the understanding is partial, and further, it still would

need to be linked to abstractions related to the understanding by

end users or at the level of requirements for explainability [35]. We

argue that the temporal graph models can provide further support

for more comprehensive explainability. Further, as self-adaptation

needs to be proactive and not just reactive, we are working on

further conceptual models to support proactive decision-making [7]

by anticipating adaptation actions based on history.

SAM ’20, October 19–20, 2020, Virtual Event, Canada Juan Marcelo Parra-Ullauri, Antonio García-Domínguez, Luis Hernán García-Paucar, and Nelly Bencomo

Acknowledgements: The work was partially funded by the

Leverhulme Trust Research Fellowship RF-2019-548 and the EPSRC

Research Project Twenty20Insight (Grant No. EP/T017627/1).

REFERENCES
[1] K. Angelopoulos, A. V. Papadopoulos, V. E. S. Souza, and J. Mylopoulos. 2016.

Model Predictive Control for Software Systems with CobRA. In 2016 IEEE/ACM
11th International Symposium on Software Engineering for Adaptive and Self-
Managing Systems (SEAMS). 35–46. https://doi.org/10.1109/SEAMS.2016.012

[2] H. Bai, S. Cai, N. Ye, D. Hsu, and W. S. Lee. 2015. Intention-aware online POMDP

planning for autonomous driving in a crowd. In 2015 IEEE Conference on Robotics
and Automation (ICRA). 454–460. https://doi.org/10.1109/ICRA.2015.7139219

[3] T. Becker, A. Agne, P. R. Lewis, R. Bahsoon, F. Faniyi, L. Esterle, A. Keller, A. Chan-

dra, A. R. Jensenius, and S. C. Stilkerich. 2012. EPiCS: Engineering Proprioception

in Computing Systems. In IEEE 15th International Conference on Computational
Science and Engineering. 353–360. https://doi.org/10.1109/ICCSE.2012.56

[4] N. Bencomo and L. H. Garcia Paucar. 2019. RaM: Causally-Connected

and Requirements-Aware Runtime Models using Bayesian Learning. In 2019
ACM/IEEE 22nd International Conference on Model Driven Engineering Languages
and Systems (MODELS).

[5] Nelly Bencomo, Sebastian Götz, and Hui Song. 2019. Models@run.time: a guided

tour of the state of the art and research challenges. Software & Systems Modeling
18, 5 (Oct. 2019). https://doi.org/10.1007/s10270-018-00712-x

[6] Javier Cámara, Kirstie L. Bellman, Jeffrey O. Kephart, Marco Autili, Nelly Ben-

como, Ada Diaconescu, Holger Giese, Sebastian Götz, Paola Inverardi, Samuel

Kounev, and Massimo Tivoli. 2017. Self-aware Computing Systems: Related
Concepts and Research Areas. Springer International Publishing, Cham, 17–49.

https://doi.org/10.1007/978-3-319-47474-8_2

[7] Javier Cámara, Gabriel A. Moreno, and David Garlan. 2014. Stochastic Game

Analysis and Latency Awareness for Proactive Self-adaptation. In Proceedings
of the 9th International Symposium on Software Engineering for Adaptive and
Self-Managing Systems (SEAMS 2014). ACM, New York, NY, USA, 155–164. https:

//doi.org/10.1145/2593929.2593933

[8] Tao Chen, Rami Bahsoon, and Xin Yao. 2018. A Survey and Taxonomy of Self-

Aware and Self-Adaptive Cloud Autoscaling Systems. ACM Comput. Surv. 51, 3,
Article 61 (June 2018), 40 pages. https://doi.org/10.1145/3190507

[9] Betty H. C. Cheng, Rogério de Lemos, Holger Giese, et al. 2009. Software Engineer-
ing for Self-Adaptive Systems: A Research Roadmap. Springer Berlin Heidelberg,

Berlin, Heidelberg, 1–26. https://doi.org/10.1007/978-3-642-02161-9_1

[10] Philippe Esling and Carlos Agon. 2012. Time-series data mining. Comput. Surveys
45, 1 (2012), 12. https://doi.org/10.1145/2379776.2379788

[11] D. Fox, W. Burgard, and S. Thrun. 1997. The dynamic window approach to

collision avoidance. IEEE Robotics Automation Magazine 4, 1 (March 1997), 23–33.

https://doi.org/10.1109/100.580977

[12] Antonio Garcia-Dominguez, Konstantinos Barmpis, Dimitrios S. Kolovos, Ran

Wei, and Richard F. Paige. 2019. Stress-testing remote model querying APIs for

relational and graph-based stores. Software & Systems Modeling 18, 2 (June 2019),

1047–1075. https://doi.org/10.1007/s10270-017-0606-9

[13] Antonio Garcia-Dominguez, Nelly Bencomo, Juan Marcelo Parra-Ullauri, and

Luis Garcia-Paucar. 2019. Querying and annotating model histories with time-

aware patterns. In Proceedings of the 22nd International Conference on Model
Driven Engineering Languages and Systems. ACM, Munich, Germany. https:

//doi.org/10.1109/MODELS.2019.000-2

[14] A. Garcia Dominguez, N. Bencomo, J. M. Parra Ullauri, and L. H. Garcia Paucar.

2019. Towards History-Aware Self-Adaptation with Explanation Capabilities. In

IEEE 4th Workshop on Foundations and Applications of Self* Systems (FAS*W).
[15] Luis Garcia-Paucar, Nelly Bencomo, and Kevin Fung Yuen. 2019. ARRoW: Au-

tomatic Runtime Reappraisal ofWeights forSelf-Adaptation. 34th ACM/SIGAPP
Conference on Applied Computing. Limassol, Cyprus (2019).

[16] Antonio García-Domínguez, Nelly Bencomo, and Luis H Garcia Paucar. 2018.

Reflecting on the past and the presentwith temporal graph-based models. In

Proceedings of MODELS Workshops, Vol. 2245. CEUR-WS.org, Denmark, 46–55.

[17] Martin Haeusler, Thomas Trojer, Johannes Kessler, Matthias Farwick, Emmanuel

Nowakowski, and Ruth Breu. 2018. ChronoGraph: A Versioned TinkerPop Graph

Database. In Data Management Technologies and Applications (Communications
in Computer and Information Science), Joaquim Filipe, Jorge Bernardino, and

Christoph Quix (Eds.). Springer International Publishing, 237–260.

[18] Thomas Hartmann, Francois Fouquet, Matthieu Jimenez, Romain Rouvoy, and

Yves Le Traon. 2017. Analyzing Complex Data in Motion at Scale with Temporal

Graphs. In Proceedings of the 29th Conference on Software Engineering & Knowledge
Engineering (SEKE’17). 596–601. https://doi.org/10.18293/SEKE2017-048

[19] Minwen Ji, Alistair C Veitch, John Wilkes, et al. 2003. Seneca: remote mirroring

done write.. In USENIX Annual Conference. 253–268.
[20] Margot E. Kaminski. 2019. The Right to Explanation, Explained,. Berkeley

Technology Law Journal (2019). https://doi.org/10.15779/Z38TD9N83H

[21] J. O. Kephart and D. M. Chess. 2003. The vision of autonomic computing. Com-
puter 36, 1 (Jan. 2003), 41–50. https://doi.org/10.1109/MC.2003.1160055

[22] Dimitrios S. Kolovos, Richard F. Paige, and Fiona Polack. 2006. The Epsilon Object

Language (EOL). In Model Driven Architecture - Foundations and Applications,
Second European Conference, ECMDA-FA 2006, Bilbao, Spain, July 10-13, 2006,
Proceedings. 128–142. https://doi.org/10.1007/11787044_11

[23] Hanna Kurniawati, David Hsu, and Wee Sun Lee. 2008. Sarsop: Efficient point-

based pomdp planning by approximating optimally reachable belief spaces.. In

Robotics: Science and systems, Vol. 2008. Switzerland.
[24] H. Kurniawati and V. Yadav. 2013. An Online POMDP Solver for Uncertainty

Planning in Dynamic Environment. Proc. Int. Symp. on Robotics Research (2013).

[25] George E. Monahan. 1982. State of the Art—A Survey of Partially Observable

Markov Decision Processes: Theory, Models, and Algorithms. Management
Science 28, 1 (Jan. 1982), 1–16. https://doi.org/10.1287/mnsc.28.1.1

[26] Gabriel A. Moreno, Javier Cámara, David Garlan, and Bradley Schmerl. 2015.

Proactive Self-adaptation Under Uncertainty: A Probabilistic Model Checking

Approach. In Proceedings of the 2015 10th Joint Meeting on Foundations of Software
Engineering (ESEC/FSE 2015). ACM, New York, NY, USA, 1–12. https://doi.org/

10.1145/2786805.2786853

[27] Ludovic Mouline, Amine Benelallam, François Fouquet, Johann Bourcier, and

Olivier Barais. 2018. A Temporal Model for Interactive Diagnosis of Adaptive

Systems. In 2018 IEEE International Conference on Autonomic Computing, ICAC
2018, Trento, Italy, September 3-7, 2018. 175–180. https://doi.org/10.1109/ICAC.

2018.00029

[28] Ludovic Mouline, Amine Benelallam, Thomas Hartmann, François Fouquet, Jo-

hann Bourcier, Brice Morin, and Olivier Barais. 2018. Enabling Temporal-aware

Contexts for Adaptative Distributed Systems. In Proceedings of the 33rd Sympo-
sium on Applied Computing (SAC ’18). ACM, New York, NY, USA, 1433–1440.

https://doi.org/10.1145/3167132.3167286

[29] Patrick Mäder and Jane Cleland-Huang. 2013. A visual language for modeling

and executing traceability queries. Software & Systems Modeling 12, 3 (July 2013),

537–553. https://doi.org/10.1007/s10270-012-0237-0

[30] Luis H Garcia Paucar, Nelly Bencomo, and Kevin Kam Fung Yuen. 2017. Juggling

Preferences in a World of Uncertainty. RE NEXT, Lisbon. (2017).
[31] Andres J Ramirez, Adam C Jensen, and Betty HC Cheng. 2012. A taxonomy of

uncertainty for dynamically adaptive systems. In 7th Symposium on Software
Engineering for Adaptive and Self-Managing Systems (SEAMS). IEEE.

[32] Owen Reynolds, Antonio García-Domínguez, and Nelly Bencomo. 2020. Towards

automated provenance collectionfor runtime models to record system history.

In Proceedings of SAM 2020. https://doi.org/10.1145/3419804.3420262 To be

published.

[33] Mazeiar Salehie and Ladan Tahvildari. 2009. Self-adaptive Software: Landscape

and Research Challenges. ACM Trans. Auton. Adapt. Syst. 4, 2, Article 14 (May

2009), 42 pages. https://doi.org/10.1145/1516533.1516538

[34] P. Sawyer, N. Bencomo, J. Whittle, E. Letier, and A. Finkelstein. 2010.

Requirements-Aware Systems: A Research Agenda for RE for Self-adaptive Sys-

tems. In 2010 18th IEEE International Requirements Engineering Conference(RE),
Vol. 00. 95–103. https://doi.org/10.1109/RE.2010.21

[35] Pete Sawyer, Nelly Bencomo, Jon Whittle, Emmanuel Letier, and Anthony Finkel-

stein. 2010. Requirements-Aware Systems: A Research Agenda for RE for Self-

adaptive Systems. In Proceedings of the 2010 18th IEEE International Requirements
Engineering Conference (RE ’10). IEEE Computer Society, Washington, DC, USA,

95–103. https://doi.org/10.1109/RE.2010.21

[36] Andrew D Selbst and Julia Powles. 2017. Meaningful information and the right

to explanation. International Data Privacy Law 7, 4 (12 2017), 233–242. https:

//doi.org/10.1093/idpl/ipx022

[37] Adhiraj Somani, Nan Ye, David Hsu, and Wee Sun Lee. 2013. DESPOT: On-

line POMDP planning with regularization. In Advances in neural information
processing systems. 1772–1780.

[38] Gabriel Tamura, Norha M. Villegas, Hausi A. Müller, Laurence Duchien, and

Lionel Seinturier. 2013. Improving context-awareness in self-adaptation using the

DYNAMICO reference model. In Proceedings of the 8th Symposium on Software
Engineering for Adaptive and Self-Managing Systems, SEAMS 2013, USA, May
20-21, 2013. 153–162. https://doi.org/10.1109/SEAMS.2013.6595502

[39] Norha M. Villegas, Gabriel Tamura, Hausi A. Müller, Laurence Duchien, and

Rubby Casallas. 2013. DYNAMICO: A Reference Model for Governing Control
Objectives and Context Relevance in Self-Adaptive Software Systems. Springer

Berlin Heidelberg, Berlin, Heidelberg, 265–293. https://doi.org/10.1007/978-3-

642-35813-5_11

[40] Christopher JCH Watkins and Peter Dayan. 1992. Q-learning. Machine learning
8, 3-4 (1992), 279–292. https://doi.org/10.1007/BF00992698

[41] Kristopher Welsh, Nelly Bencomo, Pete Sawyer, and Jon Whittle. 2014. Self-

Explanation in Adaptive Systems Based on Runtime Goal-Based Models. Trans.
Computational Collective Intelligence 16 (2014), 122–145. https://doi.org/10.1007/

978-3-662-44871-7_5

[42] Nan Ye, Adhiraj Somani, David Hsu, and Wee Sun Lee. 2017. DESPOT: Online

POMDP Planning with Regularization. J. Artif. Int. Res. 58, 1 (Jan. 2017), 231–266.
http://dl.acm.org/citation.cfm?id=3176764.3176770

https://doi.org/10.1109/SEAMS.2016.012
https://doi.org/10.1109/ICRA.2015.7139219
https://doi.org/10.1109/ICCSE.2012.56
https://doi.org/10.1007/s10270-018-00712-x
https://doi.org/10.1007/978-3-319-47474-8_2
https://doi.org/10.1145/2593929.2593933
https://doi.org/10.1145/2593929.2593933
https://doi.org/10.1145/3190507
https://doi.org/10.1007/978-3-642-02161-9_1
https://doi.org/10.1145/2379776.2379788
https://doi.org/10.1109/100.580977
https://doi.org/10.1007/s10270-017-0606-9
https://doi.org/10.1109/MODELS.2019.000-2
https://doi.org/10.1109/MODELS.2019.000-2
https://doi.org/10.18293/SEKE2017-048
https://doi.org/10.15779/Z38TD9N83H
https://doi.org/10.1109/MC.2003.1160055
https://doi.org/10.1007/11787044_11
https://doi.org/10.1287/mnsc.28.1.1
https://doi.org/10.1145/2786805.2786853
https://doi.org/10.1145/2786805.2786853
https://doi.org/10.1109/ICAC.2018.00029
https://doi.org/10.1109/ICAC.2018.00029
https://doi.org/10.1145/3167132.3167286
https://doi.org/10.1007/s10270-012-0237-0
https://doi.org/10.1145/3419804.3420262
https://doi.org/10.1145/1516533.1516538
https://doi.org/10.1109/RE.2010.21
https://doi.org/10.1109/RE.2010.21
https://doi.org/10.1093/idpl/ipx022
https://doi.org/10.1093/idpl/ipx022
https://doi.org/10.1109/SEAMS.2013.6595502
https://doi.org/10.1007/978-3-642-35813-5_11
https://doi.org/10.1007/978-3-642-35813-5_11
https://doi.org/10.1007/BF00992698
https://doi.org/10.1007/978-3-662-44871-7_5
https://doi.org/10.1007/978-3-662-44871-7_5
http://dl.acm.org/citation.cfm?id=3176764.3176770

	Abstract
	1 Introduction
	2 Research Baseline
	2.1 Reflective, Self-aware Self-adaptation and Self-explanation
	2.2 Storage and retrieval of historic data

	3 Levels of history-aware explanation capabilities in SAS
	4 Case Study: the Remote Data Mirroring SAS
	5 Forensic self-explanation
	6 Live self-explanation: beyond forensic analysis
	6.1 Scenario: illustrating proactiveness to users
	6.2 Implementation of the Level 2 components

	7 Live self-explanation: evaluation and discussion
	7.1 Experimental setup
	7.2 Query results
	7.3 Performance results
	7.4 Next steps

	8 Concluding remarks and future work
	References

