
Context Sensitive Typechecking And
Inference: Ownership And Immutability

by

Mier Ta

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Master of Applied Science
in

Electrical and Computer Engineering

Waterloo, Ontario, Canada, 2018

c© Mier Ta 2018

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Waterloo's Institutional Repository

https://core.ac.uk/display/157570749?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis, including
any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Abstract

Context sensitivity is one important feature of type systems that helps creating concise type
rules and getting accurate types without being too conservative. In a context-sensitive type system,
declared types can be resolved to different types according to invocation contexts, such as receiver
and assignment contexts. Receiver-context sensitivity is also called viewpoint adaptation, meaning
adapting declared types from the viewpoint of receivers. In receiver-context sensitivity, resolution
of declared types only depends on receivers’ types. In contrast, in assignment-context sensitivity,
declared types are resolved based on context types to which declared types are assigned to.

The Checker Framework is a poweful framework for developing pluggable type systems for
Java. However, it lacks the ability of supporting receiver- and assignment-context sensitivity,
which makes the development of such type systems hard. The Checker Framework Inference is a
framework based on the Checker Framework to infer and insert pluggable types for unannotated
programs to reduce the overhead of manually doing so. This thesis presents work that adds the
two context sensitivity features into the two frameworks and how those features are reused in
typechecking and inference and shared between two different type systems — Generic Universe
Type System (GUT) and Practical Immutability for Classes And Objects (PICO).

GUT is an existing light-weight object ownership type system that is receiver-context sensitive.
It structures the heap hierarchically to control aliasing and access between objects. GUTInfer
is the corresponding inference system to infer GUT types for unannotated programs. GUT is
the first type system that introduces the concept of viewpoint adaptation, which inspired us to
raise the receiver-context sensitivity feature to the framework level. We adapt the old GUT and
GUTInfer implementation to use the new framework-level receiver-context sensitivity feature. We
also improve implicits rules of GUT to better handle corner cases.

Immutability is a way to control mutation and avoid unintended side-effects. Object immutabil-
ity specifies restrictions on objects, such that immutable objects’ states can not be changed. It
provides many benefits such as safe sharing of objects between threads without the need of synchro-
nization, compile- and run-time optimizations, and easier reasoning about the software behaviour
etc. PICO is a novel object and class immutability type system developed using the Checker
Framework with the new framework-level context sensitivity features. It transitively guarentees
the immutability of the objects that constitute the abstraction of the root object. It supports
circular initialization of immutable objects and mutability restrictions on classes that influence all
instances of that class. PICO supports creation of objects whose mutability is independent from re-
ceivers, which inspired us to add the assignment-context sensitivity feature to the framework level.
PICOInfer is the inference system that infers and propagates mutability types to unannotated
programs according to PICO’s type rules.

We experiment PICO, PICOInfer and GUTInfer on 16 real-world projects up to 71,000 lines of
code in total. Our experiments indicate that the new framework-level context sensitivity features
work correctly in PICO and GUT. PICO is expressive and flexible enough to be used in real-world
programs. Improvements to GUT are also correct.

iii

Acknowledgements

I’d like to first thank my supervisor Professor Werner Dietl. This thesis would be not possible
without his enormous help and guidance. I also want to say thank you to my thesis readers
Professor Gregor Richards and Professor Arie Gurfinkel for their time to read this thesis and all
the feedbacks and comments to make this thesis better. I’m thankful to all my colleges in our
research group especially Zhuo Chen, Jeff Luo, and Jianchu Li for their help and support during
the two years of my study. Last but not the least, I thank all my friends who brought joy and
happiness to me and made me a better person.

iv

Dedication

This is dedicated to my parents who always support me no matter what happens.

v

Table of Contents

List of Figures ix

1 Introduction 1

1.1 Motivation . 3

1.2 Contribution . 4

1.3 Thesis Organization . 4

2 Background And Related Works 5

2.1 Background on Checker Framework . 5

2.2 Background on Checker Framework Inference . 7

2.3 Background on Generic Universe Type System (GUT) 9

2.4 Background on Freedom Before Commitment (FBC) Type System 12

2.5 Background on Immutability . 14

2.6 Related Work . 16

2.6.1 Javari . 16

2.6.2 ReIm And ReImInfer . 18

2.6.3 Google Error Prone Immutable . 20

3 Context Sensitivity 22

3.1 Introduction . 22

3.2 Receiver-context Sensitivity . 23

3.3 Assignment-context sensitivity . 24

3.4 Interaction Between Receiver-Context Sensitivity And Assignment-Context Sensitivity 27

3.5 Implementation Details . 27

3.5.1 Receiver-context sensitivity . 27

3.5.2 Assignment-context sensitivity . 28

vi

4 Practical Immutability For Classes And Objects (PICO) Type System 29

4.1 Overview . 29

4.2 Qualifiers And Hierarchies . 30

4.2.1 Mutability Hierarchy . 31

4.2.2 Assignability Dimension . 32

4.3 Viewpoint Adaptation Rule . 32

4.4 Motivating Examples . 33

4.4.1 Immutable Object And Its Creation . 33

4.4.2 Receiver-Context Sensitivity . 33

4.4.3 Assignment-Context sensitivity . 34

4.4.4 Separation of Assignability and Mutability 34

4.4.5 Transitive Immutability Guarantee . 34

4.4.6 Exclude Fields From Abstract State . 35

4.4.7 Initialization of Immutable Objects . 36

4.5 Abstract State . 37

4.6 Implicits . 39

4.7 Defaults . 39

4.7.1 Initialization Defaults . 40

4.7.2 Mutability Defaults . 40

4.7.3 Assignability Defaults . 42

4.8 Language Design . 42

4.8.1 Valid New Instance Creation Types . 42

4.8.2 Type Element Bound . 42

4.8.3 Compatability With Super Type Element 43

4.8.4 Fields . 44

4.8.5 Field Initializations . 44

4.8.6 Constructors . 45

4.8.7 Cirular Initialization of Immutable Objects 47

4.8.8 Compatiblity Between Constructor And Type Element Bound 48

4.8.9 Compatability Between Current Constructor and This/Super Constructor . . 48

4.8.10 Compatability Between Type Usage With Type Element Bound 50

4.8.11 Instance Methods . 50

4.8.12 Instance Methods Invocations . 51

4.8.13 Instance Methods Overriding . 51

vii

4.8.14 PolyMutable Methods And Their Resolutions 53

4.8.15 Static Context . 55

4.8.16 Possible Loophole Of Assignable Fields . 55

4.8.17 Arrays . 56

4.8.18 Type Casts . 57

4.9 Formalization . 57

4.9.1 Language Syntax Definition . 58

4.9.2 Type Environment . 58

4.9.3 Subtype Relations . 59

4.9.4 Helper Function . 59

4.9.5 Viewpoint Adaptation Rules . 59

4.9.6 Typing Rules . 59

4.9.7 Well-formedness Rules . 60

4.9.8 Extension to Real Java With Static And Blocks 61

5 Implementation And Experiments — PICO 63

5.1 Implementation . 63

5.1.1 PICO Type Checker . 63

5.1.2 PICOInfer . 64

5.2 Experiments . 65

5.2.1 PICO Type Checker . 67

5.2.2 PICOInfer . 71

6 Improvements to the Generic Universe Type System 85

6.1 Implementation Improvements . 85

6.2 Implicit Bottom Types . 86

6.3 Viewpoint Adaptation To Bottom Receiver Problems 86

6.4 Experiments - GUTInfer . 87

6.4.1 Benchmarks . 87

6.4.2 Inference Results . 88

6.4.3 Checker Framework Inference Statistics . 89

6.4.4 Solver and Timing Statistics . 89

7 Problems And Future Work 91

8 Conclusions 93

References 94

viii

List of Figures

2.1 GUT qualifier hierarchy . 10

2.2 Topology graph of the Person class example . 10

2.3 Topology graph of the compound expression example 11

2.4 Viewpoint adaptation rules for GUT . 12

2.5 Qualifier hierarchy of FBC . 13

2.6 Type rules for field update in form x.f = y . 13

4.1 Qualifier hierarchy of mutability . 31

4.2 Field declarations and abstract state . 37

4.3 Syntax of language . 58

4.4 Revised and extended syntax of language . 61

5.1 Benchmark projects for running PICO and PICOInfer 65

5.2 Categorization of errors by PICO type checker on unannotated benchmarks 67

5.3 Number of @UnderInitialization and @Assignable added 75

5.4 Number of each qualifier in the best combination of settings 75

5.5 Number of each qualifier without manual @UnderInitialization annotations inserted 79

5.6 Inferred results with @UnderInitialization . 79

5.7 Inferred results without @UnderInitialization . 79

5.8 Number of each qualifier with optimistic assumption for unchecked methods 81

5.9 Number of each qualifier without PreferenceConstraints 81

5.10 Numbers of Slots and Constraints (and PreferenceConstraints) generated 82

5.11 Solver related statistics and timing information with and without PreferenceConstraint 84

6.1 Numbers of peer and rep qualifiers inferred for static topology and owner-as-modifier 88

6.2 Numbers of other ownership qualifiers inferred for static topology and owner-as-
modifier . 88

6.3 Numbers of Slots and Constraints generated . 89

6.4 Solver statistic and timing information for static topology 90

ix

Chapter 1

Introduction

In software programs, depending on the specific choice of programming language, variables, ex-
pressions, functions, etc. are assigned some properties, which are called types, that specify some
requirements or expectations we have on those language constructs. For example, in Java, we can
declare:

1 int x = 0;

By this, we not only allocate a variable called x in the stack and assign value 0 to x, we also
restrict x to only hold integer values. If by accident or due to programmer’s lack of knowledge of
Java, a string value is assigned to x, then the Java compiler would report the error, saying the
assignment is not compatible, and doesn’t allow the program to compile and run. Otherwise, if
other language constructs depended on the assumption that x is guaranteed to only hold integer
values and performed numeric calculations over x, then the calculation would show undefined be-
haviors on strings. During the compilation phase, the Java compiler detects this ill-typed program
and won’t compile it. This is the result of Java’s built-in type system.

In general, the purpose of type systems is to restrict programs to a subset for which the behavior
is defined and predictable. Java’s type system already helps filtering out programs that are unable
to execute.

However, there can be even smaller subsets where more properties are guaranteed. For ex-
ample, a subset from which programs never throw NullPointerException that stops the program
immediately. This can be achieved by additional type checking on dereferences of null. One such
existing type system is the Nullness Type System[11]. For example, a programmer can write:

1 @NonNull Object o = new Object ();

o.toString ();

Then after the “extended type”, @NonNull Object, is enforced semantically, o.toString() is
guaranteed to not throw NullPointerException, because o is guaranteed to store a non-null value
(a reference to an object on the heap). In a malformed program, if null is assigned to o, then the
compiler would report the error and stop compiling the buggy program, just like in the previous
example, a string is not allowed to be assigned to x which should only hold integer values.

1

The Nullness Type System is an example of pluggable type systems for Java. Pluggable type
systems for Java allow extending standard Java types and running additional type checkers that
check the type soundness of the extended types, to enforce additional properties in many domains.
This additional checking is optional, meaning that programmers can choose whether to enable
it or not. Besides, pluggable type systems are orthogonal, so they don’t depend on each other1.
Programmers can choose whatever number of additional type checks they want to conduct to get
even stronger guarantees on their programs. For example, a programmer can choose to check
dereference-of-null, regular expression validity and concurrency-safety one after one to make sure
no such bugs exist in their code. Using pluggable type checking, programmers can get more
confidence on their code.

There are many applications of pluggable type systems to different domains. In addition to
the type systems we mentioned before, the applications also include detecting SQL injections,
forbidding unsafe operating system commands to be executed, ensuring correct usage of units to
perform meaningful arithmetic operations, and so on.

The Checker Framework[3] is the framework we use in this thesis for pluggable type checking.
It is a framework to facilitate the development of pluggable type systems for Java. Type system
developers can declare their own type qualifiers using Java’s annotation syntax since JavaSE 8,
and implement their own type checkers to enforce type rules of their type systems.

If the pluggable type checking checks whether existing pluggable types obey the type rules
or not, the inference is the process of giving a set of well-typed pluggable types to programs,
such that humans don’t need to manually insert them. The Checker Framework Inference[4]
is a framework that is based on the Checker Framework to infer annotations (pluggable types’s
concrete implementation) to unannotated or partially-annotated programs, to reduce the overhead
of manual annotation effort.

This thesis focuses on two applications of pluggable type checking and inference: ownership and
immutability. They are implemented as Generic Universe Type System (GUT)[25] and Practical
Immutability For Classes And Objects Type System (PICO), based on the Checker Framework
and Checker Framework Inference.

Ownership[16] is a way to structure the object store and to control aliasing and modifications of
objects[25]. Normally, relations among objects on the heap are complex: an object might reference
another object, which again might reference other objects transitively. As a result, there might
be a huge, complex network over objects on the heap. But since the network is not intentionally
organized, we can’t gain too much interesting knowledge from them or enforce additional rules
based on the topology of those objects. Ownership is one of the ways to gain more control over the
object network, specifically to control aliases and side-effects: it creates a topology by which objects
“own” other objects and mutation is restricted based on this ownership. Generic Universe Type
System is an existing light-weight ownership type system. In GUT, we can enforce a principle
called the owner-as-modifier, such that only the owner objects can directly mutate the owned
objects. The main benefit of this is to prevent aliases to the objects from mutating the objects as
aliases are not the owners so unintended side-effects can be effectively captured.

Immutability[16] is proposed by many experts to be a good software practice. It is a way
to control mutations to objects, to avoid unintended side-effects. Immutable objects are objects

1Type systems don’t depend on each other. However, a type system may be composed of several sub type
systems.

2

whose internal states don’t change in their lifetime[7]. Usually, their states are set during construc-
tion phase and will be “freezed” after constructions finish2. There are many benefits to immutable
objects. In concurrent programming, immutable objects are very useful because their state can-
not change, so they can’t be corrupted by thread interference or observed in inconsistent states.
Immutable objects also make reasoning about the software easier. It’s widely accepted that max-
imum reliance on immutable objects is a sound strategy to create simple and reliable code. We
developed a novel object immutability type system, PICO, which provides transitive immutability
guarantees over the abstraction of objects that are interesting to clients of the objects. It is based
on an existing initialization-tracking type system called Freedom Before Commitment (FBC)[23],
to handle initializations of objects correctly.

Context sensitivity is an important feature for type systems. In a context sensitive type system,
types of accessed elements aren’t always the declared types. Instead, their types are determined by
both “context types” and declared types. In this thesis, we show two kinds of context sensitivity:
receiver-context sensitivity and assignment-context sensitivity. Viewpoint adaptation is first intro-
duced by GUT, to get declared types from the “viewpoint” of receivers. We generalize viewpoint
adaptation to the high level concept, receiver-context sensitivity. In receiver-context sensitivity,
the context is receivers of the accessed elements such as fields, methods etc. In assignment-context
sensitivity, the context is the target to which the invoked methods are assigned. They both help
creating concise and polymorphic type systems and are core concepts for the two type systems,
GUT and PICO, in the thesis.

1.1 Motivation

1. The logic of performing viewpoint adaptation was tightly coupled to GUT, thus can’t be
shared by other type systems that are also receiver-context sensitive. Decoupling this logic
and raising it to the Checker Framework will make the development of such type systems
much easier.

2. We’d like to let the Checker Framework Inference support viewpoint adaptation too. Reusing
the viewpoint adaptation logic from the Checker Framework in Checker Framework Inference
will further reduce code duplications.

3. Polymorphic qualifiers are qualifiers that get resolved based on actual arguments to method
invocations in the Checker Framework3. However, the current resolution of polymorphic
qualifiers in the Checker Framework doesn’t consider the assignment context, therefore they
are not sensitive to assignment contexts. We want to add assignment-context sensitivity
feature to the resolution of polymorphic qualifiers to the framework, which can be easily
inherited by type systems that need it.

4. We want to explore the possibility of creating a new practical immutability type system
using the two new/updated framework-level context-sensitivity features, as a proof of the
correctness of them. The type system should be easy to understand and use, and expressive
enough to reflect the real-world need.

2Note that constructions don’t necessarily mean constructors. Constructions may continue after the constructors
finish.

3They can only be used on method declarations

3

5. The implementation of GUT is outdated and doesn’t work on the latest frameworks anymore.
Especially, the latest Checker Framework Inference introduces a new solver framework called
Type Constraint Solver[21]. But the inference for GUT, GUTInfer, wasn’t adapted to this
change. We want to update GUT and GUTInfer to make them workable again. This also
helps proving whether the framework-level receiver-context sensitivity feature is implemented
correctly.

6. In GUT, boxed primitive types and String types are not handled consistently compared to
primitive types: arbitrary ownership modifiers can be used on boxed primitive and String
types, but they just get ignored in subtype relations. This thesis aims to make ownership
types of those three consistent.

1.2 Contribution

1. We implemented receiver-context sensitivity and assignment-context sensitivity features in
the Checker Framework, and adapted the receiver-context sensitivity implementation to gen-
erate constraints in inference mode in Checker Framework Inference. In the future, type
systems that need either of or both forms of context sensitivity can inherit the logic from
the framework without any cost.

2. We created, implemented, formalized and experimented a novel immutability type system
called PICO, which provides transitive immutability guarantees over abstractions of objects,
instead of every in-memory details of fields. Its expressiveness and flexibility make it stand
out from other existing immutability type systems.

3. We updated the GUT implementation to the latest frameworks, and removed code duplica-
tions by combining the typechecking and inference implementations into one class for each
component. We also adapted GUTInfer to the Type Constraint Solver. GUT and GUTInfer
became workable again, and can help to make sure that the changes to Checker Framework
and Checker Framework Inference are correct by showing none of GUT and GUTInfer breaks.

1.3 Thesis Organization

Chapter 2 discusses background knowledge that is needed to read the thesis. They include: Checker
Framework, Checker Framework Inference, Generic Universe Type Systems, Freedom Before Com-
mitment type system, immutability, and several existing immutability type systems’ implementa-
tions. Chapter 3 introduces what receiver-context sensitivity and assignment-context sensitivity
are in detail. Chapter 4 explains theoretical aspects of PICO type system in detail. Chapter 5
shows implementations and experiments of PICO and PICOInfer on real-world projects. Chapter 6
presents improvements to GUT type system and experiments of GUTInfer on real-world projects.
Chapter 7 lists problems and future work. Finally, Chapter 8 summarizes all the work in this
thesis.

4

Chapter 2

Background And Related Works

This chapter explains the background and related work that are needed to read the thesis or
inspired us. Section 2.1 and section 2.2 introduce Checker Framework and Checker Framework
Inference, which are two frameworks for implementing pluggable type systems for Java. Section
2.3 and section 2.4 talks about two existing type systems: GUT for ownership and FBC for
initialization, respectively. Section 2.5 discusses what immutability is and classifies immutability
systematically. Section 2.6 presents related work about immutability that inspired us, using three
existing immutability type systems/tools.

2.1 Background on Checker Framework

Checker Framework[3] is a framework to facilitate developing pluggable type systems that enhances
Java’s type system to make it more powerful and useful. Type system developers can easily
implement their type systems without worrying about underlying low level jobs, such as parsing
the source code and traversing the Abstract Syntax Tree (AST). Users can select any checker
distributed with Checker Framework or third party checker to detect and prevent bugs, such as
the dereference of null bug that throws NullPointerException.

Since JavaSE 8 release, annotations can be used on type uses rather than only on declarations[13].
This change made it possible for us to define custom annotations, attach semantic meanings for
them and use them in the source code to extend Java’s type system. Checker Framework’s idea
is to use annotations as the extended types to standard Java types. Checker Framework also has
modules to parse Java source code to AST, and provides a standard implementation to traverse
the AST and perform the additional typechecking and basic validity checking. If any AST node
violates the type or well-formedness rules of a particular type system, Checker Framework reports
the error on the accurate position of the line that caused this violation.

For example, if we have source code:

class A {

2 void foo() {

Object o = null;

4 o.toString ();

}

6 }

5

In this example, we want to detect dereference-of-null bug, so we will run Nullness Checker[11].
As a pluggable type system, Nullness Checker is passed as a command line flag to javac:

javac -processor nullness testinput/A.java

The running result is:

1 testinput/A.java :4: error: [dereference.of.nullable] dereference

of possibly

-null reference o

3 o.toString ();

^

5 1 error

To create a new type system, type system developers need to do the following[6]:

• Define qualifiers/annotations and the qualifier hierarchy: a qualifier represents the extended
type that the type system needs to support. Among different qualifiers, there should also
be a hierarchy between them. This hierarchy tells which qualifier is the subtype of which
qualifier, and what the top qualifier and bottom qualifier are.

• Type rules: the standard subtyping rule is already enforced in the framework level, so de-
velopers don’t need to have special handling for subtype checks. This will be automatically
done once the qualifier hierarchy is provided. Developers only need to specify what type-
system-specific type rules to enforce. For example, when dereferencing a field in the Nullness
Type System, the receiver should be @NonNull.

• Type introduction rules: specify which qualifiers are treated as if being present if expressions
don’t have explicit qualifiers. For example, for literals except null literal, for example,
String.class, they are implicitly @NonNull. The default qualifier for unannotated references
is @NonNull.

• Dataflow rules: Checker Framework uses Dataflow Framework to perform flow-sensitive re-
finement to be more accurate when doing typechecking. For example, even though local
variables can be declared with the top qualifier, if there is an assignment to that local vari-
able, then that local variable will be treated as if it is declared with the rhs qualifier when
being read. If the type system has special dataflow rules, then type system developers can
override the default rules.

• Interface to the compiler: specifies what qualifiers are supported, what options are supported
by the type system, etc.

From the implementation point of view, a type system in Checker Framework typically is
composed of the below major components:

• Checker class: the main entry point to plug into the standard javac compiler. It creates all
the other dependent classes that are needed to perform the typechecking. It also lists what
checker options it supports.

6

• AnnotatedTypeFactory: a factory that queries qualifiers with standard Java types, Annotat-
edTypeMirror, from trees and elements. Explicit qualifiers, implicits, defaults, and dataflow
refinement are applied in order.

• Visitor: an class that is implemented with visitor pattern to traverse the AST and enforce
type rules. Additional type-system-specific rules are enforced in this class.

• Validator: ensure types are well-formed. It checks the validity of types to make sure invalid
types won’t be passed.

• Analysis, Value, Transfer: dataflow related classes.

2.2 Background on Checker Framework Inference

Checker Framework Inference[4] is a framework on which inference for a type system can be devel-
oped. Checker Framework checks if the existing qualifiers violate type rules or not. Even if there
is no explicit qualifier on some type uses, they are still implicitly applied or defaulted to a cer-
tain qualifier, according to the type introduction rule discussed before. We call this typechecking.
However, Checker Framework Inference is to infer the non-existing qualifiers so that the inferred
result still satisfies the type rule of the type system. By this, we could reduce the overhead for
type system users to manually annotate the source code, which is a big problem for legacy code
or projects of large size.

The idea of inference is to generate constraints while traversing the AST of source code, instead
of checking whether existing types are consistent with type rules. Since there are no existing
qualifiers in code, inference uses a place holder to represent the qualifier on the type-use locations.
Then depending on the kind of AST node, constraints between those place holders are generated,
Constraints represent the restriction among solutions, which is to make the solutions still obey
the type rules. After all the ASTs are visited, and constraints are generated, constraints will
be serialized so that solver can convert it to the domain-specific problem that it’s designed for.
For example, MaxSAT solver converts the constraints into a CNF form as a boolean satisfaction
problem and gives the solutions by finding a set of truth values for all variables in the CNF. After
the solver solves the constraints, as the final step, the solver’s result will be translated back to
qualifiers understandable by Checker Framework.

We use ui to represent a slot, the placeholder for source code locations that need to infer
qualifiers. i is the ID that uniquely determines each slot. Currently, Checker Framework Inference
supports these constraints:

1) SubtypeConstraint(u1 <: u2): the solution qualifier for u1 should be a subtype of the
solution qualifier for u2.

2) EqualityConstraint(u1 = u2): the solutions for u1 and u2 should be the same.

3) InequalityConstraint(u1 6= u2): the solutions for u1 and u2 should be different.

4) ComparableConstraint(u1 <:> u2): the solutions for u1 and u2 should be comparable.
Comparable means u1 <: u2 or u2 <: u1.

5) CombineConstraint(u3 = u1 . u2): the solutions for u3 should be the result of viewpoint
adapting the declared type u2 to the receiver type u1. What viewpoint adaptation is and how it
works will be discussed in detail in section 3.2.

7

6) PreferenceConstraint(u ∼= c): make the solution for u1 be the same as c, if possible. c
represents ConstantSlot, a special slot whose value is already known.

7) ImplicationConstraint(c1c2...cn-1 ⇒ cn): If constraints c1, c2 ... cn-1 all hold, cn should also
hold. c1c2...cn-1cn are arbitrary constraints from any of the above constraints except PreferenceCon
straint. This is the only composite constraint currently supported.

As an example, we illustrate an inference process using Dataflow Type System [21]. Dataflow
Type System can perform data-flow analysis by inferring all possible run-time Java types of method
return types, method parameters, fields, and variables at compile time. If we have completely
unannotated source code, and we would like to infer Dataflow qualifiers:

1 Object foo() {

if (...) {

3 return new Object ();

} else {

5 return 3;

}

7 }

After running the inference for Dataflow Type System, one slot will be placed on the method
return type. No Slot is inserted to new instance creation statement on line 3 or literal return
statement on line 5, as the type rules of Dataflow type system implicitly treat them to have type
@Dataflow(typeNames=“Object”) on line 3 and @Dataflow(typeNames=“Integer”) line 5. The
slot insertion result is as below:

1 @1 Object foo() {

if (...) {

3 return new Object ();

} else {

5 return 3;

}

7 }

The generated constraints are:

1 @Dataflow(typeNames="Object") <: @1

@Dataflow(typeNames="Integer") <: @1

According to the type rules of Dataflow Type System, slot @1 will be inferred to solution
@Dataflow(typeNames=“Object”, “Integer”), which is the supertype of both @Dataflow(typeNam-
es=“Object”) and @Dataflow(typeNames=“Integer”). Annotation-tools, a tool we use to insert
inferred solutions back to the source code, then inserts the solution to the return type of foo()
method. After the insertion, the code snippet will be annotated with typecheckable qualifiers from
Dataflow type system:

@Dataflow(typeNames="Object", "Integer") Object foo() {

2 if (...) {

return new Object ();

4 } else {

8

return 3;

6 }

}

Right now, Checker Framework Inference supports four different kinds of solvers: Sat4J[12],
Lingling[9], LogicBlox[10] and Microsoft Z3[18]. They use different theories to encode constraints
to equivalent solver domain-specific problems. Users can specify which solver to use, as for a
particular type system, there may be a backend which is the most suitable.

In this thesis, we only use Sat4J solver. Sat4j solver is a Java library for solving boolean
satisfaction and optimization problems. It can solve SAT, MAXSAT, Pseudo-Boolean, Minimally
Unsatisfiable Subset (MUS) problems.

2.3 Background on Generic Universe Type System (GUT)

Generic Universe Type System[25] is a lightweight object ownership type system that describes and
enforces heap topology in a hierarchical structure. Optionally it supports the owner-as-modifier
principle, so that only an owner object can change the state of objects that belong to it.

Generic Universe Type System defines the below qualifiers to represent static ownership infor-
mation of the referred-to object relative to the current receiver this[19]:

1) peer: referred-to object by peer reference has the same owner as current receiver object
this.

2) rep: referred-to object by rep reference belongs to the current object this. Or, we say the
current receiver this owns the object referred by this rep reference. One object has at most one
owner object. Objects that have the same owner are within the same context. Ownership is not
transitive — if a owns b, b owns c, a doesn’t own c.

3) any: doesn’t provide static information about the relationship of the referred-to object
relative to the current receiver this. This is the top qualifier of GUT.

4) lost: expresses that a relationship exits, but is not able to be expressed by peer or rep. The
difference between lost and any is that lost represents a certain static ownership information,
but it cannot be expressed by peer or rep; however, any express no static ownership information
at all.

5) self: used only for type of current receiver object this.

6) bottom (not shown in the hierarchy): bottom qualifier of GUT. Used for primitive types
that are not owned by anyone. Subtype of self and rep.

The qualifier hierarchy for GUT is shown in figure 2.1:

9

Figure 2.1: GUT qualifier hierarchy

One example from Tunable Static Inference for Generic Universe Types [19] is:

1 public class Person {

peer Person spouse;

3 rep Account savings;

rep List <peer Person > friends;

5 int assets () {

any Account a = spouse.savings;

7 return savings.balance + a.balance;

}

9 }

The topology graph of the Person class example is illustrated in figure 2.2:

Figure 2.2: Topology graph of the Person class example

10

spouse object is a peer of the current receiver object this: savings belongs to the current
receiver object this; friends is a list that belongs to current receiver object this, while elements
stored inside are Person objects that are peer to current receiver object this.

Compound expressions’ types are evaluated by combining ownership qualifiers of its compo-
nents. For example:

1 class A {

rep Person tony;

3 void foo() {

... tony.spouse;// Field access compound expression

5 }

}

Topology graph of the compound expression example is shown in figure 2.3:

Figure 2.3: Topology graph of the compound expression example

tony is rep to the current receiver this, spouse is peer to tony, thus tony.spouse also has
the same owner as tony (they are in the same context). Therefore, tony.spouse has ownership
type rep. This operation is called viewpoint adaptation — it adapts the declared type of spouse
to type of tony, which is the result of getting the type of spouse from the “viewpoint” of tony

to the current receiver this.

Viewpoint adaptation rules define what every combination of receiver type and declared type
yields as result types. Figure 2.4 shows the viewpoint adaptation rules for GUT:

11

Receiver
Declared

any lost peer rep self bottom

any any lost lost lost lost bottom
lost any lost lost lost lost bottom
peer any lost peer lost lost bottom
rep any lost rep lost lost bottom
self any lost peer rep self bottom
bottom any lost lost lost lost bottom

Figure 2.4: Viewpoint adaptation rules for GUT

Because there are so many combinations that yield lost, different losts may not be the same,
it doesn’t make sense to write to a lost type. GUT forbids lost on left-hand-side of assignments,
for example, variables (fields and local variables) and method parameters (pseudo-assignments).

The owner-as-modifier principle forbids mutation (re-assigning field, calling side-effecting meth-
ods etc.) through lost or any receiver. Only the owner object (rep) or objects in the same context
(peer) can initiate mutation. This avoids aliases to the target object that are not owners from
side-effectingly modifying the object’s state.

For example, A Person object can mutate savings.balance because savings is an Account

object owned by Person object and so the owner has the permission to mutate savings object.
This is reflected in implementation as savings having rep type. However, if there is an alias to
the Account object, e.g. any Account alias, then assignment to alias.balance is forbidden,
because alias is any and no ownership information is known so this assignment is not allowed.
By the owner-as-modifier principle, it’s enough that only owners guarantee invariants to hold on
representation (rep) objects, as there won’t be other places to mutate those representation objects
(every non-owner references will get type lost according to the figure 2.4).

2.4 Background on Freedom Before Commitment (FBC)

Type System

Freedom Before Commitment Type System[23] is a type system that statically tracks the initial-
ization state of objects, so that unsafe dependency on invariants based on the assumption that the
receiver object is fully initialized is forbidden when the receiver object is under initialization.

It’s very important to track initialization of objects for some type systems. Take the Nullness
type system as an example: even if a field of a class is @NonNull, until the receiver object of
that class finishes initializing all the fields, there is always a time frame in which some/all fields
haven’t been initialized and the references stored inside the fields are still null. As a result, if the
constructed receiver object is passed to a method or stored in the field of another object, which
assumes all the fields of the under-initialization object are @NonNull, and dereferences any of
them, then there is still possibility to throw NullPointerException. This is because the invariant
that field is @NonNull hasn’t been established yet, until the receiver object of that @NonNull field
is fully initialized.

Freedom Before Commitment Type System is to address this problem by tracking each object’s
state as either committed or free. Committed means that the object is already fully initialized

12

and invariants based on the full initialization of that object can be safely established, but free

means the object is still being initialized. unclassified is the top qualifier of FBC. Figure 2.5
shows the qualifier hierarchy of FBC:

Figure 2.5: Qualifier hierarchy of FBC

The meaning of each qualifier is:

• @UnknownInitialization: concrete implementation of unclassified. Initialization state is
unknown.

• @Initialized: concrete implementation of committed. Objects of this type are deeply initial-
ized.

• @UnderInitialization: concrete implementation of free. Objects of this type are in the
process of initialization. The invariant hasn’t been established yet. For example, @NonNull
fields of @UnderInitialization objects may still be null.

• @FBCBottom: bottom qualifier that makes the type hierarchy complete. Used on corner
cases such as null literals.

FBC type system has a transitive/deep initialization guarantee: if one object is committed,
then all the fields are also committed. That means that all transitively reachable objects from
the current committed object are also committed. This transitive guarantee needs to have well-
designed type rules, so that objects in correct initialization state are stored in committed and free

objects respectively, to not break the deep initialization guarantee. Figure 2.6 shows which types of
initialization states of objects can be stored safely to fields of receivers with different initialization
states:

x
y

committed free unclassified

committed X x x
free X X X
unclassified X x x

Figure 2.6: Type rules for field update in form x.f = y

13

this in constructors are implicitly free, because the constructor’s responsibility is initializing
objects. FBC also argues that if all the constructor parameters are of type committed, then the
created object is committed, otherwise it’s free. The proof of this can be found in Freedom Before
Commitment: A Lightweight Type System for Object Initialisation paper[23].

In general, FBC type system’s annotation overhead is low. Nearly all types are committed

in programs and the default type is committed, which greatly reduces the amount of explicitly
written committed. @UnderInitialization, the concrete implementation of free, is only needed
in very few cases, such as when constructors call instance methods, for example, init(), then the
declared receiver of that instance method needs to be @UnderInitialization. Methods declared
with @UnderInitialization shouldn’t assume the receiver object is already initialized, otherwise, an
error will be reported.

2.5 Background on Immutability

Immutability is a way of controlling mutations to avoid unintended side effects. There are many
existing immutability type systems. They have different definitions of immutability, and different
levels of immutability and different goals. Before continuing the topic of immutability, we need to
first systematically define 7 dimensions of immutability according to the classification introduced
by Exploring Language Support for Immutability [17] and the Immutability chapter of Aliasing in
Object-Oriented Programming: Types, Analysis, and Verification[16].

1. Reference immutability vs Object immutability: reference immutability applies mutability
restrictions to references to objects, rather than objects themselves. A mutable reference can
be used to modify the referred-to object, such as re-assigning its fields or calling side-effecting
methods; a read-only reference is forbidden to be used to mutate the referred-to object. By
reference immutability, one can avoid mutating states using a reference. However, an object
referenced by a read-only reference might still be mutated by other mutable alias references.
Object immutability applies to the object itself. All references to an immutable object are
not allowed to modify the state of the immutable object. Object immutability subsumes
reference immutability, as references are also checked against their immutability contracts
and no violations are allowed.

2. Class-based immutability vs Object-based immutability: class-based immutability applies to
every instance of a class. All instances of an immutable class are immutable. Object-based
immutability applies to a particular instance of the class. In this case, a class might have
both mutable instances and immutable instances.

3. Non-transitive immutability vs Transitive immutability: non-transitive/shallow immutability
only guarantees direct fields of an immutable object are not re-assignable. However, objects
stored in field may be mutated. However, transitive/deep immutability provides a stronger
guarantee, such that object collections that are reachable by following references from the
fields of an immutable object are also immutable. One example from Aliasing in Object-
Oriented Programming: types, analysis, and verification[16]:

class C {

2 D f;

14

}

4 class D {

int x;

6 }

8 immutable C c;

c.f = otherD;// error in both deep and shallow immutability

10 c.f.x++;// error in deep immutability; allowed in shallow

immutability

4. Immediate immutability vs Delayed immutability: in immediate immutability, immutability
guarantee holds as soon as the constructor finishes. Delayed immutability allows initialization
of an immutable data structure to continue after constructors finish.

5. Abstract immutability vs Concrete immutability: abstract immutability permits benevolent
side-effects that don’t affect the abstraction of the objects, such as caches, debug options,
rearrangement of elements, etc. Not all the details of the fields are visible to the clients.
One example is an internal cache field that saves time by avoiding duplicate, expensive re-
computations. In abstract immutability, the abstract state is protected by the immutability
guarantees. It refers to the set of objects that are part of the abstraction of the root object.
The cache field above is outside the abstract state. However, concrete immutability requires
that every in-memory field can not be changed. Therefore, even if the cache field’s state
changes, the object enclosing the cache is also considered changed in concrete immutability.

6. Static enforcement vs Dynamic enforcement: static enforcement is only at compile-time,
while dynamic enforcement requires a run-time component to actually guarantee the type
soundness at run-time, using the most-concrete types of objects. There are advantages and
disadvantages of both. The advantage of static enforcement is that it doesn’t introduce any
runtime overhead. However, since lacking run-time checks, some language features such as
downcasts, and covariant array component subtypes may not be safe at run-time, but the
static type system can do nothing about them. Dynamic enforcement makes sure at run-
time, program behavior obeys the immutability guarantees, but having additional run-time
checks slows down the performance.

7. Polymorphic vs non-polymorphic: in a polymorphic implementation, there can be a single
method signature that operates on multiple mutability types. Parametric polymorphism is
one relevant example. It allows using polymorphic mutability types on parameters so that the
method can accept inputs with different mutability types. However, in a non-polymorphic
proposal, declared types of those parameters should at least be the least upper bound of all
possible arguments for method parameters (similarly for fields).

One important thing to note is the difference between assignability and mutation. Assignability
is a property of variable: it specifies if a variable is allowed to be re-assigned or not. Assignment
to a variable doesn’t mutate the original object referred to. One example from Aliasing in Object-
Oriented Programming: types, analysis, and verification [16],

Date myVar =;// local variable

2 ...

15

myVar = anotherDate;// Reassignment doesn’t mutate old Date

object

Reassignment to a field isn’t mutation to the object referred by the field, but instead, is
mutation to the object that contains the field. For example,

1 myClass.itsDate = anotherDate; // myClass object is mutated

Java forbids re-assignment of final fields, but doesn’t forbid mutation to objects referred by
final fields, such as re-assigning fields of the final fields or calling side-effecting methods on the
final fields.

2.6 Related Work

In this section, we present several existing immutability type systems/tools that inspired us to
develop PICO. They don’t interact with each other, nor are they directly used by PICO.

2.6.1 Javari

Javari[24] is a static type system that expresses and enforces reference immutability constraints.
It transitively guarantees that the abstract state of objects referred by readonly references cannot
be changed.

Consider the following code snippet from JDK1.1.1:

1 class Class {

private Object [] signers;

3 Object [] getSigners () {

return signers;

5 }

}

signers is a private field, but the getSigners() method returns the internal signers array
directly to callers, so malicious callers might tamper with the array by adding arbitrary objects
into the signers array.

However, if we specify the mutability of the returned array as readonly according to the syntax
of Javari:

class Class {

2 private Object [] signers;

Object readonly [] getSigners () {

4 return signers;

}

6 }

16

Then the callers can only have readonly access to the returned array, thus any mutation to the
internal array is not allowed. Javari classifies a reference as either mutable or readonly. Javari is
a type system that enforces reference immutability and provides abstract immutability, supporting
excluding fields from abstract states by declaring them as assignable or mutable.

Javari clearly decouples mutability and assignability of fields. For mutability, it defines quali-
fiers:

1) mutable: a reference that can be used to mutate the referred-to object. Mutable fields are
excluded from the abstract state.

2) readonly: a reference that can’t be used to modify the abstract state of the referred-to
object. However, non-abstract state fields are still allowed to be mutated via readonly reference.

3) this-mutable: a polymorphic reference whose mutability restriction inherits from the re-
ceiver object. Only allowed on instance fields. this-mutable fields of mutable reference are
mutable; this-mutable fields of readonly reference are readonly, thus mutations are not al-
lowed.

For assignability, Javari defines:

1) assignable: a reference is always re-assignable. If used on a field, that field is excluded
from the abstract state, no matter what the mutability type of the receiver object is.

2) final: Java’s keyword to restrict a reference to be assigned only once. final fields must
be initialized in constructors as Java requires.

3) this-assignable: a reference’s assignability inherits from the receiver object. this-assign
able fields of mutable objects are resolved to assignable; of readonly objects are equivalent to
final.

Separating mutability and assignability increases orthogonality of them and makes Javari more
expressive. For example, previously, Javari2004, an older version of Javari, used mutable fields
to represent mutable and assiganble fields. But there wasn’t a way to declare a field is only
mutable or only assignable. The separation of mutability and assignability makes it possible to
declare such fields.

Consider the example:(/*@Q*/ means qualifier @Q is not explicitly written on that position
but will be treated as if they are there)

class C {

2 public mutable /*this -assignable */ List <String > logs;

public /*this -mutable */ /*this -assignable */ D d2;

4 public /*this -mutable */ assignable D d3;

public /*this -mutable */ final D d4 = new D();

6 }

class D {

8 public /* readonly */ /*this -assignable */ int x = 0;

}

10

mutable C c1;

12 c1.d2 = anotherD;// allowed. d2 is assignable

c1.d2.x++;// allowed. d2 is mutable

14 c1.d4 = anotherD; // error. d4 is final

17

16 readonly C c2;

c2.logs.add("hi");// allowed. logs is always mutable

18 c2.d2 = anotherD; // error. d2 is final

c2.d2.x++; // error. d2 is readonly

20 c2.d3 = anotherD; // allowed. d3 is assignable

c2.d4 = anotherD; // error. d4 is final

Re-assignment to c1.d2 on line 12 is allowed, because c1 is a mutable reference, d2 is this-assi
gnable, so the assignability of the field d2 is assignable, and therefore allows re-assignments;
c1.d2.x++ is allowed, because c1 is mutable and d2 is this-mutable, mutability of c1.d2 is
mutable. c1.d2.x++ is mutation through a mutable reference therefore allowed. Re-assignment
to c1.d4 is forbidden by Java, because d4 is final.

c2 is a readonly reference, therefore mutation to the abstract state of the referred-to object by
the readonly reference is not allowed. c2.logs is a mutable List of String, therefore adding a
new String element is allowed on line 17. We say logs is outside the abstract state of the object
referred by c2, thus mutation to it is allowed. c2.d2 is resolved to final because c2 is readonly,
therefore re-assignment to d2 is not allowed on line 18. Remember d2 was allowed re-assignment on
line 12 due to the mutable receiver c1. This is how this-assignable works. Similarly, c2.d2.x++
is not allowed because c2.d2 is resolved to a readonly reference. c2.d3 is allowed re-assignment
even though c2 is readonly because d3 is declared to be assignable, therefore it’s outside the
abstract state of the object referred by c2. c2.d4 is not allowed re-assignment because d4 is final,
and is forbidden by the Java compiler.

By declaring fields to be mutable or assignable, Javari allows excluding certain fields from
the abstract state of the receiver object. Those fields are open to mutation or re-assignments even
through readonly references.

Javari supports immediate immutability. In Javari, there is only one possibility: every newly
created object is immediately mutable after its constructor finishes. For mutable objects, delayed
immutability doesn’t really matter, because a mutable reference is always allowed to mutate the
object. This only becomes a problem in object-level immutability, when circular references between
immutable objects need to be created.

Every newly created object in Javari is mutable. So, in order to make an object effectively
immutable, every reference to the mutable object should be readonly. This definite enumeration of
all references isn’t scalable, and is not checked by machine, so it’s prone to errors and not suitable
for beginners.

2.6.2 ReIm And ReImInfer

ReIm[20] is another reference immutability type system. It has three qualifiers: mutable, polyread
and readonly. The meanings of these three qualifiers are:

1) mutable: a TMreference can be used to mutate the referenced object. The default qualifier
for references other than instance fields. ReIm supports concrete immutability, thus it doesn’t
allow excluding fields from the state of an object. Therefore, mutable is forbidden on instance
fields to avoid breaking type soundness (because mutable fields can be arbitrarily mutated by any
kinds of receivers).

18

2) readonly: a readonly reference cannot be used to mutate the referenced object, or the
transitively reachable objects from it.

3) polyread: a polymorphic qualifier. In the direct context where polyread is declared, it’s
effectively readonly because the direct context should typecheck whatever mutable or readonly

is substituted in the positions of polyread.

ReIm also uses viewpoint adaptations for field accesses and method invocations. Viewpoint
adaptation rules for ReIm are:

. mutable = mutable

. readonly = readonly

q . polyread = q

For field accesses, ReIm uses receiver contexts as the viewpoint adaptation target, which is
the same as the standard viewpoint adaptation. ReIm introduces a concept called calling-context
sensitivity. It’s basically a variant of viewpoint adaptation: for method invocations, instead of
viewpoint adapting declared types of method return types, formal parameters and declared re-
ceivers to actual receivers, ReIm adapts them to the calling context, namely the left-hand-side of
assignments. It’s claimed that the purpose of this is to generalize the viewpoint adaptation: instead
of only receivers can be contexts, left-hand-side of assignments can also be contexts. And they call
this dependency of viewpoint adaptation on the calling contexts call-transmitted dependencies.

We’ll show how this variant of viewpoint adaptation work using the example from Reim &
ReImInfer: Checking and Inference of Reference Immutability and Method Purity [20]:

1 class DataCell {

polyread Date date;

3 polyread Date getDate(polyread DateCell this) {

return this.date;

5 }

void cellSetHours(mutable DateCell this) {

7 mutable Date md = this.getDate ();

md.setHours (1);

9 }

void cellGetHours(readonly DateCell this) {

11 readonly Date rd = this.getDate ();

int hour = rd.getHours ();

13 }

}

The getDate() method’s declared return type is polyread. There are two contexts from which
getDate() is called — one in cellSetHours() and one in cellGetHours(). In cellSetHours(), the
calling context is mutable Date md, so the return type of getDate() gets adapted to mutable

and yields mutable, so mutable Date is returned. In the calling context, the returned md is used
to mutate hours. In cellGetHours(), however, the calling context is readonly Date rd, so the
polyread return type of getDate() is adapted to readonly and yields readonly, so the assignment
typechecks. The returned reference isn’t used to modify the referenced object, which is consistent
with the readonly calling context.

19

Although ReIm is much simpler than Javari, it loses the expressiveness of Javari. First, abstract
immutability isn’t enforced by ReIm, so every field must be part of the state of an object. This
restricted the use of ReIm in real world applications. Second, ReIm has a special viewpoint adap-
tation for method invocations, which is not consistent with field accesses. For method invocations,
the calling context is used as the context, rather than the receiver. The Uniform Access Principle
(UAP) states that “All services offered by a module should be available through a uniform notation,
which does not betray whether they are implemented through storage or through computation”[14].
This principle poses restrictions on the syntax of programming languages — there should be no
syntactical difference between working with an attribute, pre-computed property, or method/query
of an object. To achieve this, field accesses and method invocations should have consistent view-
point adaptation target — either only receivers or only calling contexts. ReIm’s usage of different
contexts makes understanding the system very hard. Third, ReIm doesn’t support generics —
there is no way of specifying, for example, a mutable List of readonly Object or a readonly

List of mutable Object. Supporting generics is a very important feature that Java programs
need. So, ReIm has several limitations that restricted its applicability to real world needs.

ReImInfer is the inference system for ReIm. It uses a set-based approach to infer solutions for
references including method formal parameters, declared method receivers, method returns, fields
and local variables. Its basic idea is: start from an initial set of qualifiers that make sense for each
kind of reference. For partially annotated programs, the set is singleton — it only contains the
explicitly written qualifier. ReImInfer keeps refining the set by removing qualifiers that violate
type rules of ReIm until: 1) one empty set is reached, meaning there is no solution for the program,
or 2) a fix-point is reached in which every set of each reference doesn’t change. If any set contains
more than one qualifier, ReImInfer chooses one in this order:

readonly > polyread > mutable

ReImInfer is claimed to run at O(n) in practice, but its worst-cast running time is O(n2).

2.6.3 Google Error Prone Immutable

Google Error Prone[8] is a static analysis tool that catches common programming errors at compile-
time. It’s used in Google’s Guava library. Guava is a set of core libraries that includes new
collection types (such as multimap and multiset), immutable collections, a graph library, functional
types, an in-memory cache, and APIs/utilities for concurrency, I/O, hashing, primitives, reflection,
string processing and so on[5]. Error Prone also has a type declaration annotation @Immutable,
to be used on class or interface declarations. Error Prone validates that @Immutable classses and
interfaces are deeply immutable by the below conservative definition of immutable:

• All fields are final.

• All reference fields are of immutable types, or null.

• It is properly constructed (the this reference does not escape the constructor).

• All subclasses or subinterfaces of immutable super classes or super interfaces should also be
immutable.

20

All fields being final avoids mutation by forbidding re-assignments of fields after an object is
initialized. All reference fields being immutable makes the immutability guarantee deep. Forbid-
ding this to escape from constructors avoids aliases from mutating objects. A class is immutable
only when all of its instances are immutable — an immutable class must be either final or all
the subclasses of immutable class should also be immutable.

Google Error Prone Immutability is simple and easy to understand, however there are still
some big limitations that affect its flexibility:

• It only supports class-level immutability. There is no way to specify that certain instances
of a class are immutable, while the others are mutable.

• By making all fields final, Java would restrict every field of an immutable class to be
initialized inside constructors. Calling a helper method that initializes fields, such as init(),
within the constructor would make the class ineligible for being immutable.

• It’s too restrictive to forbid this reference from escaping the constructor. For circular
initialization of two immutable objects, it’s impossible to achieve that as it’s not possible for
either one object to capture the other object.

• For JDK classes that have non-final fields, it’s not possible to have immutable subclasses.

• There is no way of declaring array types to be @Immutable, because every array is conser-
vatively mutable. Immutable class cannot have fields of array type.

Error Prone’s Immutability is concrete immutability, so all objects transitively reachable fol-
lowing the fields of immutable object are inside the state of the object. As a result, it’s not possible
to support caches. For example, the String class from JDK uses a hash field to store its hashcode
value:

@Immutable

2 public final class String {

private int hash; // error. not final

4 public int hashCode () {

int h = hash;

6 if (h == 0 && value.length > 0) {

char val[] = value;

8 for (int i = 0; i < value.length; i++) {

h = 31 * h + val[i];

10 }

hash = h;

12 }

return h;

14 }

}

If there is @Immutable declaration on class String, Error prone would warn the hash field
in String class violates immutable classes’ specifications. Such classes can’t be immutable under
Error Prone. But from the clients’ perspective, String class is immutable because hash field
doesn’t belong to the abstraction of String instances. Error Prone gives us noises when checking
similar classes like String if they are declared to be @Immutable.

21

Chapter 3

Context Sensitivity

This chapter is organized as follows: section 3.1 first introduces what context sensitivity is. Section
3.2 discusses receiver-context sensitivity and how it works. Section 3.3 explains assignment-context
sensitivity and how it works. Section 3.4 discusses the interactions between the two context sensi-
tivity and how they are coordinated together. Section 3.5 briefly talks about the implementation
related information about the two kinds of context sensitivity based on the Checker Framework
and Checker Framework Inference.

3.1 Introduction

In context insensitive type systems, when elements are accessed, their types at access sites are the
same as their declared types. For example, in the below program:

1 class C {

@NonNull Object o1 = new Object ();

3 @Nullable Object o2;

}

5 ...

C c;

7 c.o1 = null; // error.

c.o2 = null; // ok

The type of c.o1 is the same as the declared type of o1, which is @NonNull, so it does not make
sense to assign null to non-null variable. Similarly, the second assignment is allowed, because c.o2
has the same type as o2’s declared type, @Nullable.

However, some type systems have special semantics such that the types of accesses of elements
need to be different from the declared types of the elements. The type of accessed element is
the end result of combining types of actual access sites with declared types. We call this context
sensitive type refinement, meaning refining declared types according to contexts.

There are two kinds of contexts introduced in this thesis: receiver contexts and assignment
contexts. Different contexts have different ways of resolving declared types to yield result types.

22

3.2 Receiver-context Sensitivity

In receiver-context sensitive type systems, declared types are sensitive to receiver types and resolved
using a viewpoint adaptation operation (.)[25, 19]. The viewpoint adaptation operation takes two
inputs and yields a single result type. On the left side of the operator is the receiver type, while on
the right side is the declared type. The result of viewpoint adaptation is the result type. We then
say that the result type is the result of viewpoint adapting the declared type to the receiver type.
Viewpoint adaptation is order-sensitive to receiver types and declared types, so switching their
positions means a completely different adaptation. Any receiver-context sensitive type system
should define a set of rules that specify what the result type is for every combination of qualifiers,
which are the so-called viewpoint adaptation rules.

Receiver-context sensitivity is usually applicable to type systems in which there is an ownership
relationship between objects and receiver/owner objects’ types have an influence on the types of
objects accessed through the receiver/owner objects.

In GUT[25, 19], for example, accessing members through references needs viewpoint adaptation
as we discussed earlier. For example:

public class Person {

2 peer Person spouse;

...

4 }

rep Person tony;

6 tony.spouse; // Has type rep . peer = rep

The type of tony.spouse isn’t the declared type of spouse (peer). Instead, tony.spouse

has type rep, which is the result of viewpoint adapting the declared type of spouse peer to the
receiver type rep. This makes sense, because if the current receiver object owns tony, then tony’s
peer spouse is also owned by current receiver object, according the semantics of peer. This is
the semantics of the GUT type system, such that ownership information is correctly transmitted
when accessing members.

In PICO, there is also a similar scenario, when an object’s mutability should be dependent on
its receiver object. One example (RDM is the abbreviation of @ReceiverDependentMutable, which
implements receiver-context sensitivity in PICO):

class Hobby {

2 String name;

}

4 class Person {

RDM Hobby hobby;

6 }

immutable Person tony;

8 tony.hobby.name = "basketball";// error. tony.hobby has type

immutable . RDM = immutable. Mutation is not allowed

Viewpoint adapting hobby’s declared type RDM to the receiver type immutable yields immutable
according to PICO’s viewpoint adaptation rules. Since tony.hobby is immutable, mutation to
tony.hobby by re-assigning name field is not allowed at line 8.

23

The above two are both examples of receiver-context sensitivity. Result types are determined
by viewpoint adapting declared types to receiver types.

In receiver-context sensitive type systems, viewpoint adaptation happens on four types of
accesses of elements (for constructors and methods accesses, they can also be called construc-
tor/method invocations):

• Field Access: accesses of instance field elements. It’s already shown in the previous two
examples.

• Constructor Invocation: invocations of constructor elements. The constructor’s return type
and parameter types should be adapted. The constructor’s signature after viewpoint adap-
tion should be used as the signature to check whether constructor invocation typechecks or
not (in inference, to generate subtype constraints over the viewpoint adapted signature).
Receiver type in this case is the type of the new expression.

• Method Invocation: invocations of instance methods. The method return, the declared
receiver and parameter types should be viewpoint adapted to the receiver type. Typechecking
happens against the viewpoint adapted signature of the method (in inference, similar to
constructor invocation scenario).

• Instantiation of Type Parameters: lower and upper bounds of type parameter should be
adapted to the receive type. The type argument should be within the adapted lower bound
and adapted upper bound of the type parameter.

Since receiver-context sensitivity always needs receivers, there is no viewpoint adaptation happen-
ing on accesses of static elements such as static field accesses and static method invocations, as
there are never receivers in those cases.

3.3 Assignment-context sensitivity

Assignment-context sensitive type refinement is inspired by Java’s generic methods. In Java,
generic methods can declare method type parameters, and use them on method return types and
formal parameters. When the generic method is invoked, the actual signature of the method is
resolved based on the types of assignment context and arguments. However, in Java, method
declared receiver can’t be a type parameter, because a method must be declared in non-type-
parameter class and that class should be the declared receiver type. Whether the invocation of the
generic method typechecks or not depends on if there exist valid substitutions for all the method
type parameters. If there are such substitutions, the invocation typechecks. Otherwise, it doesn’t.
To illustrate, one example is:

class C {

2 <T> T foo(T t) {

return t;

4 }

}

6 C c;

Object o = c.foo("Hello"); // ok

24

8 String s = c.foo(new Object); // error

The constraints for inferring a solution for the invocation of the generic method foo() on line
7 are as follows:

String <: T (on method argument passing)

T <: Object (assignment of method return to assignment context)

T has two solutions, String and Object, so the method invocation one line 7 typechecks.
However, for the second method invocation on line 8, the generated constraints are:

Object <: T (on method argument passing)

T <: String (assignment of method return to assignment context)

There isn’t any solution for T, therefore, this invocation on line 8 doesn’t typecheck.

Compared to Java, pluggable type systems use qualifiers as extended types on method declared
receiver types. Since they don’t affect the resolution of the class to which a generic method belongs
to, assignment-context sensitive qualifiers can be used on method declared receiver just like they
can be used on formal parameters. The assignment-context sensitivity we’ll discuss later refers to
this more flexible version that can be applied also to declared method receivers.

Similar to Java, the resolution of an assignment-context sensitive method’s signature in terms
of extended qualifiers on invocation sites is as follows: based on the actual receiver, arguments and
assignment context’s types, whether there is any valid substitution such that after replacing the
assignment-context sensitive qualifiers on the method, the invocation typechecks. For example, in
PICO:

class A {

2 @PolyMutable Object foo(@PolyMutable A this , @PolyMutable

Object p) {...}

}

4

@Mutable A a;

6 @Mutable Object mo = a.foo(new @Mutable Object ()); // OK

@Immutable Object imo = a.foo(new @Immutable Object ()); // error

Method invocation on line 6 has solution @Mutable, therefore it typechecks. However, the
second invocation generates these constraints1:

@Mutable <: @PolyMutable (on method receiver)

@Immutable <: @PolyMutable (on argument passing)

@PolyMutable <: @Immutable (assignment of method to assignment context)

According to the PICO mutability qualifier hierarchy (section 4.2.1), there are no solutions, so
the invocation on line 7 doesn’t typecheck.

1Actually, @SubstitutablePolyMutable is used in the place of @PolyMutable. But we haven’t explained their
differences yet. For better explanation purpose, we still use @PolyMutable here. We’ll discuss the reason of this in
chapter 4.

25

Compared to the receiver-context-sensitive type refinement, assignment-context-sensitive type
refinement only applies to method invocations (some type systems may allow constructor invoca-
tions too), but not on field accesses or type parameter instantiations.

PICO has a dedicated qualifier, @PolyMutable, which is similar to method type parameter T

in generic methods in Java, to represent mutability types that should look for a valid substitution.
It implements assignment-context sensitivity in PICO. Using only receiver-context-sensitive type
refinement doesn’t consider the assignment context’s effect and limits expressiveness in some cases,
such as the factory design pattern. In PICO, for example:

1 @Immutable

class ImmutableFactory {

3 @ReceiverDependentMutable Object getObject1(@Readonly

ImmutableFactory this) {

return new @ReceiverDependentMutable Object ();

5 }

@PolyMutable Object getObject2(@Readonly ImmutableFactory this

) {

7 return new @PolyMutable Object ();

}

9 }

11 class Test {

@Immutable ImmutableFactory imfactory = ...;

13 void test1() {

@Immutable Object oim = imfactory.getObject1 (); // ok

15 @Mutable Object om = imfactory.getObject1 (); // error.

return type is @Immutable

}

17 void test2() {

@Immutable Object oim = imfactory.getObject2 (); // ok

19 @Mutable Object om = imfactory.getObject2 (); // ok

}

21 }

From the above example, we can see that the return type of ImmutableFactory#getObject1()
is declared as @ReceiverDependentMutable Object. However, all instances of the class Immutable-
Factory are immutable because there is an @Immutable annotation on the declaration of Im-
mutableFactory. This essentially means that ImmutableFactory#getObject1() can only return
immutable objects back, and can never create a @Mutable Object. This doesn’t make sense,
because conceptually, the created object shouldn’t be part of the abstract state of the factory.
An @Immutable factory should be able to create objects with any mutability types: mutable or
immutable. One possible solution is to create two copies of the method ImmutableFactory#getObj

ect1(), of which one returns @Immutable Object, and the other returns @Mutable Obj
ect, but Java’s method signature doesn’t consider annotations on method declarations, so those
two methods will be considered the same, and rejected. This approach also duplicates code, which
is not a nice way to solve this problem.

Using assignment-context sensitivity, however, the return type of ImmutableFactory#getObjec

26

t2() is resolved by assignment context only in this example, without the influence of actual receiver
(if the declared receiver of this method also has @PolyMutable, @PolyMutable resolution is also
affected by actual receiver, but here, @Readonly is used). In the third method invocation on line
18, @PolyMutable has inferred solution @Immutable, so the method invocation typechecks. In the
last method invocation on line 19, the return type of ImmutableFactory#getObject2() is resolved
to @Mutable, so the invocation also typechecks. Assignment-context sensitivity effectively solves
the problem. By having assignment-context sensitivity, we can reduce code duplication when a
method return type should be sensitive to the assignment context.

Assignment context can be a real assignment to a variable or can be pseudo-assignments such
as being used as the actual receiver for another method invocation, passed as arguments to another
method invocation etc. For example, for method invocation a.b():

1 @Mutable Object o = a.b();// Assignment context is @Mutable

Object

a.b().c();// Assignment context is c()’s declared receiver type

3 d.e(a.b());// Assignment context is e()’s formal parameter type

To emphasize the ability of being sensitive to assignment contexts, we call this kind of context
sensitivity assignment-context sensitivity, even though one can declare a method that doesn’t have
assignment-context sensitive qualifier (such as @PolyMutable in PICO) on the method return. In
this case, the assignment contexts’ types have no influence on the method’s signature resolution.

3.4 Interaction Between Receiver-Context Sensitivity And

Assignment-Context Sensitivity

If a type system supports both receiver-context sensitivity and assignment-context sensitivity,
there is one scenario that needs attention: if viewpoint adapted signatures of methods can contain
assignment-context sensitive qualifiers, then those adapted assignment-context sensitive qualifiers
shouldn’t take part in the resolutions. Only those assignment-context sensitive qualifiers that are
declared directly on method signatures should be resolved. We’ll show how this is handled in PICO
using an example in section 4.8.14.

3.5 Implementation Details

3.5.1 Receiver-context sensitivity

To implement receiver-context sensitivity as a framework-level feature, we add a new class View-
pointAdapter that has the abstract logic of traversing over different types and combining types dur-
ing viewpoint adaptation. Previously this logic was inside GUTUtils. We generalized and extracted
it from GUTUtils to ViewpointAdapter. ViewpointAdapter is used in AnnotatedTypeFactory in
the Checker Framework to perform viewpoint adaptation if there is a non-null viewpoint-adapter
instance provided by type system developer. In the four locations that should have viewpoint adap-
tation, AnnotatedTypeFactory uses ViewpointAdapter to perform a standard implementation of

27

viewpoint adaptations. Subclasses of AnnotatedTypeFactory can override corresponding methods
for each location to have different behaviours specific to type systems. In the Checker Framework
Inference, there is an InferenceViewpointAdapter that extends ViewpointAdapter, and overrides
necessary methods to generate CombineConstraints between declared, receiver and result slots.

For typechecking, a type system only needs to provide a concrete implementation of Frame-
workViewpointAdapter, which is an abstract subclass of ViewpointAdapter in the Checker Frame-
work side, to specify the result types for each combinations of types. That’s everything a type
system developer needs to let their type systems to support viewpoint adaptation.

On inference side, type system developers in most cases don’t need to override InferenceView-
pointAdapter, as the default implementation is already able to handle constraints generation for
viewpoint adaptation. If a type system has simpler viewpoint adaptation rules, they can override
InferenceViewpointAdapter to improve the performance, but other than that use case, there’s no
need to override InferenceViewpointAdapter. However, type system developers do need to provide
solver encoding logic for CombineConstraints.

3.5.2 Assignment-context sensitivity

There is a meta-annotation @PolymorphicQualifierInHierarchy in the Checker Framework. It can
only be applied to method returns, formal parameters and method declared receivers. Resolution of
it is quite similar to Java’s generic method resolutions, except the assginment context has no effect.
This is because in the previous implementation of resolution algorithm, QualifierPolymorphism,
only arguments and actual receivers’ types were considered and took part in the resolution process.
We extend the existing logic of QualifierPolymorphism to also consider assignment context with the
help of TypeArgInferenceUtil. This class is a utility class that can find types of direct assginments
or peudo-assignments.

28

Chapter 4

Practical Immutability For Classes And
Objects (PICO) Type System

This chapter is organized as follows: section 4.1 gives an overview on PICO type system. Section
4.2 introduces the qualifier hierarchy of PICO. Section 4.3 introduces viewpoint adaptation rules
for PICO. Section 4.4 gives several examples that motivate the key features of PICO. Section 4.5
talks about what kinds of fields belong to the abstract state of the enclosing object. Section 4.6
discusses implicitly immutable types in PICO. Section 4.7 explains how defaults are performed
for unannotated locations when no implicit types apply. Section 4.8 explains language design of
PICO with small examples that motivate each type rule. Finally, section 4.9 formalizes PICO type
system without generics.

4.1 Overview

Immutability has many benefits such as safe sharing of objects between threads, more reliable
software, better understanding and reasoning about software behaviors, etc. In this chapter, we
present a new immutability type system called PICO.

PICO is a static type system that extends Java’s standard type system to additionally enforce
object immutability guarantees for Java programs. In PICO, objects on the heap are either mutable
or immutable. Immutable objects’ abstract state is never changed once they are allocated and fully
initialized. PICO also supports reference immutability. Among references, readonly reference is
the most interesting — it can point to either mutable or immutable objects, and only perform read
operations, without needing to know the concrete mutability information of the underlying data
structure.

PICO is sensitive to both the receiver context and the assignment context using the @Re-
ceiverDependentMutable and @PolyMutable qualifiers respectively. With the receiver-context
sensitivity, a field, a method, or a class is able to be instantiated to either mutable or immutable
types, depending on receivers. Using the assignment-context sensitivity, PICO supports methods
whose mutability can depend on assignment contexts.

PICO’s immutability guarantee is over the abstract state of objects. Only objects that are
part of the abstraction of the receiver are under the immutability guarantee. Objects are still

29

allowed to have mutable in-memory representations not visible to clients, such as those for caching.
Assignability and mutability of fields are decoupled and enforced independently, which greatly
increases the space of possible kinds of fields. They together determine whether a field belongs
to the abstract state of the receiver. It’s up to end-users’ decision to declare fields to reflect their
needs and determine whether they should be under immutability protection or not.

PICO transitively protects every object that belongs to the abstract state of the receiver. We
believe that deep immutability is more useful to users, as it can provide stronger guarantees about
the behavior of the program thus making it easier to analyze and reason about code.

Initialization of immutable objects is a big challenge for object immutability type system de-
signers. Every object including immutable objects starts as being mutable, such that they can
be initialized. PICO leverages an existing initialization-tracking type system, Freedom Before
Committment[23], and combines it with mutability qualifiers to guarantee initialization is properly
performed for immutable objects during initialization phase. Circular initialization of immutable
data structures is also supported, to instantiate mutually dependent data structures.

Because PICO is a static type system, it doesn’t add any runtime overhead to the bytecode
of compiled programs, because at runtime, mutability qualifiers will be erased. Programs that
typecheck under PICO without programming constructs that need runtime enforcement such as
downcasts, will definitely satisfy the immutability guarantee during execution. However, if mutabil-
ity qualifiers were reserved at runtime, the JVM had the opportunity of improving the performance
based on the mutability information, even though lacking ways to utilize pluggable types at run-
time is a general problem for every pluggable type system based on the Checker Framework right
now.

4.2 Qualifiers And Hierarchies

PICO has two orthogonal qualifier hierarchies. One is for initializations, which is exactly the same
as Freedom Before Commitment type system’s qualifier hierarchy. The other is the mutability
hierarchy. There is third dimension, assignability qualifiers, but they are not part of the type.
Assignability qualifiers are just declarations on fields to specify if a field is allowed to be assigned
or not. Two types are subtypes only when initialization qualifiers, mutability qualifiers and Java
types all satisfy their subtype relations.

30

4.2.1 Mutability Hierarchy

Figure 4.1: Qualifier hierarchy of mutability

The meaning of each qualifier is:

• @Readonly: only applied to references. A readonly reference can never be used to modify
the abstract state of the referred-to object.

• @Mutable: applies to references, object creations and type element declarations (type ele-
ment refers to classes and interfaces declarations in Java). A mutable object can be mutated
at anytime after it is allocated on the heap. A mutable reference can only refer to mutable
objects.

• @Immutable: applies to references, object creations and type element declarations. immutabl
e objects are closed to modifications. Once it’s allocated and fully initialized, its ab-
stract state can never change in the entire lifetime. immutable references can only refer
to immutable objects.

• @ReceiverDependentMutable (@RDM): applies to references, object creations and type ele-
ment declarations. We’ll use RDM as the shorthand for receiver-dependent-mutable. RDM

objects are special in that their mutability is the same as the actual receiver’s mutability.
The receiver-context sensitivity of PICO comes from this qualifier.

• @PolyMutable (@PM): applies to both references and object creations. Only used on method
return, formal parameters and declared method receiver, or on object creations. Its muta-
bility is inferred depending on method arguments, the actual receiver and the assignment-
context type on invocation sites. The assignment-context sensitivity of PICO comes from
it.

• @SubstitutablePolyMutable (@SPM): internal qualifier that is invisible to clients. Can never
be written by users. When a method with at least one @PolyMutable is invoked, all oc-
curences of @PolyMutable will be transformed to a temporary @SubstitutablePolyMutable
first, then substituted by one actual mutability solution.

31

• @Bottom: represents the bottom type. Can only be used for the type of the null literal and
lower bound of type variables.

Note: in the remainder of the thesis, by saying “type”, we really mean “mutability types”, and
they never include substitutablepolymutable and bottom except as explicitly mentioned.

4.2.2 Assignability Dimension

There are three assignability qualifiers:

• final: used on references. final fields are fields that cannot be re-assigned. It is enforced
by Java. final fields must be assigned values in constructors. Java additionally allows using
final on references other than fields such as method parameters, but it doesn’t affect how
PICO handles assignability. PICO never warns on re-assignments to references other than
fields if they are not declared with final. If they are final, then it’s enforced by Java.

• @Assignable: used on fields. @Assignable is the opposite of final, meaning that a field can
always be re-assigned.

• @ReceiverDependentAssignable (@RDA)1: only used on instance fields. We’ll use RDA to
be the shorthand to represent receiver-dependent-assignable in the remainder of the
thesis. Assignability of a RDA field is determined solely by the actual receiver: if the actual
receiver is mutable, then this instance field can be re-assigned. Otherwise, the field cannot
be re-assigned as if it’s declared to be final.

Assignability qualifiers don’t belong to types. They are only declared qualifiers that specify
restrictions on the assignability of a field. The extended types (to Java types) contain one and
only one initialization qualifier and mutability qualifier respectively.

4.3 Viewpoint Adaptation Rule

PICO performs viewpoint adaptation for only the mutability qualifier hierarchy, not for the initial-
ization hierarchy, because initialization qualifiers are not receiver-context sensitive. The viewpoint
rules for combining mutability qualifiers are (q represents any mutability qualifier):

q . RDM = q
. q = q (otherwise)

From the above rule, we can find that only RDM is sensitive to the receiver context. It is
a “transparent” qualifier such that the result type is the same as the receiver’s type. Other
qualifiers are “opaque”: their mutability information is well-known, fixed, and doesn’t depend on
the receiver’s type.

1No writable qualifier exists for @ReceiverDependentAssignable for conciseness. If final and @Assignable don’t
apply, it’s equivalent to using receiver-dependent-assignable

32

4.4 Motivating Examples

We use several examples to illustrate and motivate some key characteristics of PICO. Again, we
use block comments (/*@Q*/) to represent that the qualifier @Q is not explicitly written in the
source code — they are either implicitly applied or defaulted to the location.

4.4.1 Immutable Object And Its Creation

1 Person imp = new /* @Immutable */ Person ();

imp.age++; // error. imp is immutable

3 @Readonly Person rop = imp;

rop.age++; // error. rop is readonly , not allowed to mutate

referent

The @Immutable annotation on the Person class declaration means all its instances are im-
mutable. new Person() is implicitly applied immutable type, because the Person class is declared
with @Immutable. imp points to an immutable object, whose abstract state cannot be changed.
After being assigned to rop reference, the immutable object behind cannot be changed, either.

4.4.2 Receiver-Context Sensitivity

We can declare methods that are receiver-context sensitive using the qualifier @ReceiverDepen-
dentMutable. The @ReceiverDependentMutable annotation on the Planet class declaration means
that it can be instantiated as both mutable or immutable instances.

@ReceiverDependentMutable

2 class Planet {

/* @ReceiverDependentMutable */ List </* @Immutable */ String >

aliases = ...;

4 }

...

6 @Mutable Planet mp = ...;

mp.aliases.add("Earth"); // OK, since mp is @Mutable , mp.aliases

is also @Mutable (@Mutable . @RDM = @Mutable)

8 @Immutable Planet imp = ...;

imp.aliases.add("Jupiter"); // error. imp is @Immutable , imp.

aliases is @Immutable

The root reason of having RDM is the transitive guarantees PICO provides: mutable objects
have mutable fields, immutable objects have immutable fields, and readonly references also have
only readonly access to the referred-to object. It’s necessary to have a uniform qualifier that
works in all kinds of receiver type cases. Therefore, we have such a qualifier, and we name it
@ReceiverDependentMutable, to reflect the fact that its real type is determined and dependent on
the receiver’s type.

33

4.4.3 Assignment-Context sensitivity

1 class ProductFactory {

@PolyMutable Product createProduct () {

3 return new @PolyMutable Product ();

}

5 }

...

7 @Mutable ProductFactory factory = ...;

@Mutable Product mp = factory.createProduct (); // OK

9 @Immutable Product imp = factory.createProduct (); // OK

The createProduct() methods’s return type is declared to be @PolyMutable. Both invocations
of the method typecheck. The returned Product’s mutability completely depends on the assignment
context: if the assignment context expects a @Mutable Product, a @Mutable object is returned;
the same argument holds for an immutable assignment context. The returned object’s mutability
is independent from the receiver’s mutability.

4.4.4 Separation of Assignability and Mutability

1 class C {

final /* @ReceiverDependentMutable */ Person p1;

3 /* @ReceiverDependentAssignable */ @Immutable Person p2;

}

5 ...

@Mutable C c = ...;

7 c.p1 = another Person; // error. Not allowed to be re-assigned

c.p1.age = 25; // OK. c.p1 is @Mutable

9 c.p2 = another Person; // OK. c.p2 is @Assignable

c.p2.age = 30; // error. c.p2 is @Immutable.

A field’s assignability and mutability are independent. A field can be mutable, allowing calling
side-effecting methods on it, but forbidden to be re-assigned to point to a new object; a field can
be immutable itself, ensuring that the referred-to object won’t get corrupted, but allowing the
field to point to another immutable object.

4.4.5 Transitive Immutability Guarantee

@ReceiverDependentMutable

2 class A {

/* @ReceiverDependentAssignable */ /* @Immutable */ int x = 0;

4 }

@ReceiverDependentMutable

6 class B {

/* @ReceiverDependentAssignable */ /* @ReceiverDependentMutable */

A a = new @ReceiverDependentMutable A();

34

8 }

@Immutable

10 class C {

/* @ReceiverDependentAssignable */ /* @ReceiverDependentMutable */

B b = new @Immutable B();

12 }

...

14 @Immutable C c = ...;

// Mutation to c

16 c.b = another B; // error. c is @Immutable , b is resolved to

final

// Mutation to c.b (direct field of c)

18 c.b.a = another A; // error. c.b is transitively @Immutable , a

is resolved to final

// Mutation to c.b.a (second level field of c)

20 c.b.a.x++;// error. c.b.a is transitively @Immutable , x is

resolved to final

We can see for @Immutable objects, PICO not only forbids mutation to the immutable object
itself, in this case c, but also forbids mutation to the direct fields c.b, fields of fields c.b.a.
Therefore, PICO does provide the transitive immutability guarantees such that all objects in
abstract state that are transitively reachable from the root immutable object are also immutable.

4.4.6 Exclude Fields From Abstract State

In the previous examples, all the fields are protected under the immutability guarantee: if the
receiver object is @Immutable, those fields cannot be re-assigned to point to a new object (or store
new values in primitive types cases). Side-effecting methods are also forbidden to be called on
those fields (not shown in the examples). However, users can break this restriction by declaring
a field to be @Assignable, @Mutable or @Readonly. By this, a field will be excluded from the
abstract state of an object, so that PICO will still consider the receiver object unchanged, even if
that field is re-assigned, or the referred-to object is mutated.

Assignable field example:

@Immutable

2 class CharContainer {

private @Assignable /* @Immutable */ int hc = 0;

4 char[] data;

int hashCode(/* @Readonly */ CharContainer this) {

6 if(hc == 0 && data.legnth != 0) {

// OK to re -assign hc even though "this" is @Readonly

8 hc = some computations on data field;

}

10 return hc;

}

12 }

35

The hashCode() method is implicitly declared to be @Readonly — in the method body, normally
it’s not allowed to mutate the current receiver object this. However, by making the hc field
assignable, re-assignment to hc is considered to be a benevolent side effect. The belief behind
this is that, since a field can be re-assigned at any time, it shouldn’t be part of the abstraction of
the receiver. Otherwise, it means programmers must have misunderstood their program to let the
abstraction of a class depend on an always-assignable field. By marking fields to @Assignable or
@Mutable/@Readonly, they will be excluded from abstract state. A mutable field can be mutated
by arbitrary clients that hold the reference to it, therefore it’s out of the owner object’s abstract
state. readonly fields are outside the abstract state because the underlying data structure may be
mutable so the owner can’t guarantee the referred-to object doesn’t change. Section 4.5 discusses
what kinds of fields belong to the abstract state in detail.

4.4.7 Initialization of Immutable Objects

Immutable objects are effectively “mutable” inside their constructors so that fields of them can
be initialized. To keep track of the initialization state of immutable objects, so that they are
initializable, PICO leverages Freedom Before Commitment type system.

@Immutable

2 class Car {

/* @ReceiverDependentAssiganble */ /* Immutable */ int

numberOfWheels;

4 /* @Immutable */ Car(int numberOfWheels) {

this.numberOfWheels = numberOfWheels;

6 }

}

this in the Car constructor has type @Immutable. In previous examples, @Immutable re-
ceivers are not allowed to assign fields. However, in the construction phase of immutable objects,
assignments via immutable reference are allowed. Actually, here is the point to introduce the ini-
tialization qualifier hierarchy, which we didn’t mention explicitly in the previous examples. this

in the Car constructor actually has type @UnderInitialization @Immutable. This type indicates
that the object is currently under initialization, so even though it points to an immutable ob-
ject, assignments are allowed. immutable receivers mentioned earlier all have type @Initialized
@Immutable, meaning the immutable object is already fully initialized, thus any mutation to that
object is forbidden.

Accroding to the FBC type rules, once the Car constructor finishes, the newly created instance
is considered to be fully initialized and have type @Initialized @Immutable. Thus, the mutation
at line 2 isn’t allowed.

1 @Initialized @Immutable Car imcar = new @Immutable Car(4);

imcar.numberOfWheels ++; // error. imcar is @Initialized

@Immutable , numberOfWheels is resolved to final

36

4.5 Abstract State

Since PICO is an abstract immutability type system, it is important to know what fields belong
to the abstract state so that they can be correctly declared. Below is a figure that illustrates this:

Assignability
Mutability

mutable readonly immutable RDM

assignable x x x x
final x x X X
rda x x X X

Figure 4.2: Field declarations and abstract state

Figure 4.2 illustrates what combinations of assignability qualifiers and mutability qualifiers for
fields are part of the abstract state of the enclosing object. x means the corresponding field is not
in the abstract state, while Xmeans the field is in the abstract state.

mutable and readonly fields are not part of the abstract state of the enclosing object. The
reason is that mutable fields can always be mutated by any alias, which is completely out of the
control of the enclosing object. So, mutable fields are excluded from the abstract state. readonly
fields are outside the abstract state, because the referenced objects may be mutable objects, as
readonly is the top qualifier that can be assigned any objects with any mutability. Enclosing
objects have no knowledge of the underlying objects stored to ensure anything about them. A
readonly field is useful to pass a data structure to a particular class to only read information, but
not write to it nor care about if the data structure is mutable or not.

Every assignable field is outside the abstract state, too. This is because assignable field
can be re-assigned to refer to a different object at any time. So the identity of the fields are not
guaranteed to be the same.

Only when a field is RDA or final, and the mutability type of the field is recursively RDM or
immutable2, then the field is in the abstract state of the receiver object.

In immutable objects, every recursively RDM field is resolved to an immutable object or a set of
immutable objects (for example, lists and arrays). immutable declared fields are immutable, no
matter what the receiver is. Therefore, the objects referred to by RDM and immutable fields can
not be mutated via immutable receivers. The other concern is assignability of fields. Even though
the objects are not mutable, if the field is re-assigned to point to another object, the immutable

object’s state also changes. final or RDA fields prevent this. RDA fields will be resolved to final

in immutable receiver objects, so re-assigning them would be forbidden. final fields are even
safer: Java compiler ensures that final fields are only assigned once in constructor, so there is no
re-assigning problems for final fields.

One interesting situation to consider is generic classes with type parameters, for example:

class List <E> {

2 ...

}

2Mutability requirement here applies recursively to composite types and type parameter uses — for arrays, array
dimension types; for parameterized types, type arguments; for type parameter, its declared upper bound.

37

As we discussed before, if a type parameter’s upper bound is recursively either immutable or
RDM, and the assignability of the field is still final or RDA, then any field that contains the type
parameter in its declared type3 is still in the abstract state.

Let’s see an example:

1 @Immutable

class Container <E extends @Immutable Person > {

3 E /* @ReceiverDependentAssignable */ /* @ReceiverDependentMutable

*/ [] elements;

...

5 }

/* @Immutable */ Container <@Immutable Person > imc = ...;

7 ... some initialization ...

imc.elements.add(new @Immutable Person ()); // error. elements is

immutable array

9 imc.elements [0]. age++; // error. Immutable person is stored

inside the Container

Field elements belong to the abstract state of the container. Not only the container itself’s
state is guaranteed to not change (adding/removing elements are not allowed), but also the stored
elements are unmodifiable.

More interestingly, users can still exclude elements from the abstract state of the enclosing
container class by declaring the type parameter’s upper bound as @Mutable or @Readonly.

For example, if we have:

1 @Immutable

class ShallowImmutableContainer <E extends @Mutable Person > {

3 E /* @ReceiverDependentAssignable */ /* @ReceiverDependentMutable

*/ [] elements;

...

5 }

ShallowContainer <@Mutable Person > imsc = ...;

7 ... some initialization ...

imsc.elements.add(new @Immutable Person ()); // error. elements

is immutable array

9 imc.elements [0]. age++; // OK. Stored Person is mutable.

Even though the container itself is TM, the stored elements are still also mutable, which are
excluded from the immutability guarantee of the container; In such case, we can also say elements

are outside the abstract state of the shallow immutable container.

By properly declaring upper bounds of type parameters, it’s up to user’s choice to adopt the
shallow immutability guarantees or the deep immutability guarantees regarding elements’ types.

3Maybe directly declared a field with the type parameter type, or used the type parameter in composite types,
for example array component type in arrays or type argument for parameterized types

38

4.6 Implicits

There are Java types whose mutability types are implicit. For example, every String in Java is
immutable. They cannot be mutated by any means. It would be nonsense to say ”@Mutable
String”. Primitive literals and primitive types are also implicitly immutable. For example:

1 int x = 0; // 0 is immutable.

// re-assignment doesn’t modify integer literal 0.

3 // Instead , x simply stores another immutable int value 5

x = 5;

5 // Integer instance can never change its internal value(Java

doesn’t provide

// methods to do this)

7 Integer y = new Integer (2);

// Reassignment to y doesn’t mutate original Integer instance ,

9 // y only points to a new Integer instance that stores value 3

y = new Integer (3);

Right now, these are the implicitly immutable types in PICO:

• All literals : primitive (1, 1.0 etc.), string (“hello”) and class literals (Object.class etc.).
Primitive literals include: integer, short, long, float, double, byte, char literals.

• Reference types: java.lang.Enum, java.lang.String, (java.lang.)Double4, Boolean, Byte, Char-
acter, Float, Integer, Long, Short, Number, BigDecimal, BigInteger.

• Primitive types: int, short, long, float, double, byte, char types. The difference between 1)
and 3) is that, 1) applies to literals, and 3) applies to types. Literals and types are treated
separately in the Checker Framework, so we also list them separately here.

• Enum classes and enum constants

Implicit types are built-in, and can never be overriden. Otherwise, well-formedness of the type
is broken and will be reported as errors.

4.7 Defaults

Not every program is fully or even partially annotated. In order to typecheck these programs,
a type system needs a mechanism to apply some default qualifiers from the type hierarchy if
there are no explicitly written qualifiers or no implicit type apply. This mechanism is defaulting.
Defaulting should be carefully chosen so that it reduces the number of errors and warnings to a
reasonable level, yet is still reasonably strong to reflect the real world need. Reducing the number
of errors and warnings is not the only goal — defaults should also maximize the guarantees that the
type system tries to enforce. If an improper default is chosen, then it’s more possible to raise false

4prefix java.lang. is omitted. The same for the other reference types in this list.

39

positive warnings that eventually make type system’s error messages less valuable. Or, the program
doesn’t raise any warnings, but the properties users are interested in may not be guaranteed. So,
choosing a proper default is a balance between reducing the number of false positive warnings and
maximizing the degree of guarantees over the typechecked programs.

Default qualifiers can be overridden. If there is an explicit qualifier written on a type use, then
that explicit qualifier will be used.

In previous sections, we used /*@Q*/ to represent not-explicitly-written qualifiers. However,
from this point, we’ll use /*@Q*/ uniformly in examples to represent @Q is defaulted to the
corresponding location instead of being explicitly written or applied implicitly in the remainder of
the thesis.

4.7.1 Initialization Defaults

For initialization qualifiers, if not explicitly written, @Initialized is the default. For extremely rare
cases, @UnderInitialization or @UnknownInitialization qualifier needs to be used, for example,
calling instance methods from constructors needs the called method’s declared receiver to be
@UnderInitialization, because this in constructors is implicitly @UnderInitialization. @Initialized
default can handle the majority of cases.

4.7.2 Mutability Defaults

4.7.2.1 Mutability Default For Type Element Bound

In PICO, there is a mutability qualifier on the type element to restrict its instances’ mutability.
We also call that mutability annotation the type element bound. By default, a type element bound
is mutable, meaning all instances of that type element are mutable. Users need to explicitly write
RDM or immutable on type elements when the type elements need to be instantiated to either
mutable or immutable, or immutable only, respectively.

4.7.2.2 Mutability Default For Usages of Type Element

Usages of type elements are uses of types, which are the opposite to declarations of types. For
type elements declared with mutable, every usage type is by default mutable. For an immutable

type element’s usages, they are defaulted to immutable. For an RDM type element’s usages, they
are defaulted to be mutable, except on instance fields (they are defaulted to RDM).

4.7.2.3 Mutability Default For Fields

Instance fields whose type elements are bounded with RDM are defaulted to RDM. The reason for
having the precondition that the field’s type element has to be RDM is that it is a violation of type
rules to have RDM usages of mutable or immutable type elements: usages of mutable or immutable
type elements on fields are defaulted to the same as their type elements’ mutability. In order to
maximize the number of objects that belong to the abstract state of the enclosing object, for RDM
type elements, we default RDM to their usages on fields.

40

Array types are special: they don’t have type element declarations. PICO defaults @Re-
ceiverDependentMutable to array types on fields to increase the number of objects that belong to
the abstract state of the enclosing object as much as possible.

Static fields have the same defaulting way as usages of type elements. A static field doesn’t
belong to the state of any object. Instead, it’s shared by all the instances of the corresponding class.
It doesn’t make sense to default static fields into RDM, even if the corresponding type element is RDM
since there are no receivers for them. Actually in static contexts, @ReceiverDependentMutable is
forbidden to be used.

4.7.2.4 Mutability Default For Constructor Return And New Expression

Constructor return type restricts the mutability of the instances created by the constructor. By
default, a constructor’s return type has the same mutability type as its type element bound. For
example:

@Immutable

2 class Factory {

/* @Immutable */ Factory () {}

4 }

By default, types of new expressions have the same mutability type as the corresponding
constructor if the constructor’s return type is mutable or immutable. If the constructor’s return
type is RDM, new expression’s type is defaulted to mutable.

4.7.2.5 Mutability Default For Local Variable

Local variables are defaulted to be readonly so that every mutability-typed object can be assigned
to it. However, local variables’ types are flow-sensitively refined to the actual type on the right-
hand-side of the assignment, and further read operations of that local variable use the refined type
to be more accurate. Write operations’ validity are still checked against the declared types of local
variables. For example:

void foo() {

2 /* @Readonly */ Person p = new @Mutable Person ();

p.setName("newName"); // ok. Because p is flow sensitively

refined to @Mutable

4 p = new @Immutable Person (); // allowed. Declared type of p

is @Readonly

p.setName("AnotherName"); // error. p is now refined to

@Immutable

6 }

Flow-sensitive type refinement is a way in the Checker Framework to reduce burden of anno-
tating types and eliminate false positive warnings. Checkers treat local variables and expressions
within a method body as having a subtype of their declared or default types. It doesn’t introduce
unsoundness nor causes an error to be missed[2].

41

4.7.2.6 Mutability Default For Lower And Upper Bound of Type Parameters and
Wildcards

In order to let every possible type argument be passed, bottom is used as the default lower bound
and readonly is used as the default upper bound for a type parameter or a wildcard.

4.7.2.7 Mutability Default For The Other References

If none of the above defaults apply, unannotated references are defaulted to mutable. In object-
oriented programs, objects’ states frequently change, such that they can store data, make com-
putations, interact with each other etc. So, mutable best reflects the real case. For functional
programming, one can change the default, to immutable to achieve functional-programming-like
behaviors using an object-oriented style.

4.7.3 Assignability Defaults

For assignability qualifiers, instance fields are defaulted to RDA, so that existing re-assignments
via defaulted mutable references still typecheck, yet it still guarantees more fields in the abstract
state (together with the mutability qualifier of course). Static fields are defaulted to assignable,
if final is not used.

4.8 Language Design

4.8.1 Valid New Instance Creation Types

PICO allows 4 kinds of object creation types: mutable, immutable, RDM, and polymutable. Cre-
ations of mutable and immutable instances are straightforward. Instances of RDM and polymutable

may not be intuitive. PICO’s type rules ensure that their instances’ mutability are resolved to
either mutable or immutable according to the corresponding contexts’ types, and at runtime there
won’t be both mutable references and immutable references to the same object. readonly instance
creations don’t make sense, because in the runtime model, every object should be either mutable
or immutable.

4.8.2 Type Element Bound

Type element bound specifies what kinds of instances can be created from that type element. It
can be any of the three among mutable, immutable, and RDM. In the later chapters, we’ll use type
declarations interchangeably with type elements.

mutable classes can only have mutable instances. immutable classes can only have immutable

instances. RDM classes can have either mutable, immutable, RDM or polymutable instances. By
“instances”, we mean the types of new expressions, not the usage types. RDM class bounds might
be tricky. It’s not obvious how a class can be instantiated to mutable and immutable instances,
and the mutability guarantee is not broken. The answer is that constructors in RDM classes are

42

carefully designed so that the same constructor can be reused to create both mutable or immutable
instances.

@Immutable

2 class Car {

int numberOfWheels = 4;

4 ...

}

6 @Immutable Car imc = new @Immutable Car(); // OK

@Mutable Car mc = new @Mutable Car(); // error.

8 mc.numberOfWheels = 0; // if mutable instance were allowed , this

assignment

// would change the abstract state of Car instance

1 @ReceiverDependentMutable

class Person {

3 ...

}

5 @Immutable Person imp = new @Immutable Person ();// OK

@Mutable Person mp = new @Mutable Person (); // OK

java.lang.Object is bounded with @ReceiverDependentMutable, so any valid instantiations of
instances are allowed.

4.8.3 Compatability With Super Type Element

The mutability bound of a type declaration should be compatible with the mutability bound of
super type declarations traversing all the way up to java.lang.Object. Specifically, a mutable class
can only have mutable subclasses. immutable classes can only have immutable classes. RDM classes
can have either mutable, immutable or RDM subclasses. Only the above cases are compatible type
declarations.

@Immutable

2 class A {

int x = 0;

4 }

@Mutable B extends A {} // error

6 @Mutable B mb = new @Mutable B();

mb.x++; // breaks the immutability guarantee if viewed as A

1 @ReceiverDependentMutable

class A {}

3 @Mutable

class B extends A {} // OK. Going to mutable instantiations

5 @Immutable

class C extends A {} // OK. Going to immutable instantiations

7 @ReceiverDependentMutable

43

class D extends A {} // OK. Transfers the receiver dependent

mutability downward

java.lang.Object is bounded with @ReceiverDependentMutable, so any valid bounded class
can inherit from java.lang.Object. For example, @Immutable Number extends Object, @Mutable
AbstractStringBuilder extends Object etc.

4.8.4 Fields

All mutability types of fields are allowed except polymutable. Two points to mention: since PICO
is an abstract immutability type system, mutable fields are allowed in immutable classes, meaning
the field is outside the abstract state of the owner object; readonly fields are also allowed in
immutable classes, even though both mutable objects and immutable objects may be captured by
them, which makes the field out of the abstract state.

We use a slightly different version of the factory design pattern example to illustrate why
polymutable fields are not allowed:

@Immutable

2 class ProductFactory {

4 @PolyMutable Product o = new @PolyMutable Product ();

6 @PolyMutable Product createProduct () {

return o;// Return polymutable field directly

8 }

}

10 ...

ProductFactory factory = new /* @Immutable */ ProductFactory ();

12 @Mutable Product mp = factory.createProduct (); // ok

@Immutable Product imp = factory.createProduct (); // ok

The single Product instance o gets both mutable and immutable aliases. This breaks the
soundness of assignment-context sensitivity. Therefore, polymutable fields are not allowed.

4.8.5 Field Initializations

There are three ways to initialize fields: on field declarations with field initializers, in initialization
blocks or in constructors. Initialization blocks are blocks that initialize fields of a class whenever
an instance of that class is created. It can hold the common initialization logic that can be shared
by every constructor.

1 class A {

Object o = new Object (); // On field declarations

3 {

o = new Object (); // In initialization blocks

5 }

44

A() {

7 o = new Object (); // In constructors

}

9 }

Every instance field has the receiver object, as this is how instance fields work. When initializing
them, accessing and writing to instance fields, their declared types should be viewpoint adapted
to the type of their receivers, and the result type should be used as the resolved type of the field.

The receiver type on field declarations and in initialization blocks is the bound of the enclosing
class. The receiver type in the constructor has the same mutability type as the constructor return
type. For example:

1 @Immutable class B {

// o’s type is @Immutable . @ReceiverDependentMutable =

@Immutable

3 /* @ReceiverDependentMutable */ Object o = new @Immutable Object

();

{

5 o = new @Immutable Object ();// receiver is the bound ,

@Immutable

}

7 /* @Immutable */ B() {

o = new @Immutable Object ();// receiver is the constructor

return , @Immutable

9 }

}

4.8.6 Constructors

The constructor return type determines what kinds of mutability instances can be created. There
are three valid constructor returns types: mutable, immutable and RDM. It’s obvious that mutable
constructors can only create mutable instances and immutable constructors can only create immuta
ble instances. RDA constructors can create any new instance as long as the new expression has a
valid type, namely mutable, immutable, RDM or polymutable. For example:

@Immutable class A {

2 int x;

@Immutable A (int x) {

4 this.x = x;

}

6 }

@Immutable A ima = new @Immutable A(0); // OK

8 @Mutable A ma = new @Mutable A(2);// error. Constructor

invocation incompatible

ma.x = 5;// if ma were valid , x’s value would be changed.

Immutable guarantee is broken.

45

To invoke constructors correctly, the rules are:

• The invoked constructor’s return type adapted to the new expression’s type must be a su-
pertype of the new expression’s type.

• All arguments must be subtypes of the corresponding result types of viewpoint adapting the
invoked constructor’s declared parameter types to the new expression’s type.

The first rule may be surprising at first glance. Because for the assignment of new expressions
to variables, the type of the new instance should be a subtype of the left-hand-side assignment
context’s type. It may seem possible that the result of adapting the invoked constructor’s return to
the type of the new instance becomes a supertype of the assignment context’s type, breaking type
soundness. However, PICO’s mutability type hierarchy and type rules for valid new instance types
are designed carefully so that this case can’t happen. For mutable or immutable invoked construc-
tor return types, rule 1 becomes a trivial subtype relation: new instance types are the subtypes of
the invoked constructor’s return type — either mutable or immutable. So, the soundness-breaking
case can’t happen. For RDM invoked constructor return types, after viewpoint adaptation, rule 1
becomes a trivial subtype relation: the type of new expression is a subtype of itself. Again, the
possible soundness-breaking case can’t happen.

It’s not obvious how RDM constructors make ensure there aren’t soundness-breaking aliases to
RDM fields (we mean an RDM object has both mutable and immutable references). In brief, they
work due to the following two reasons: one is viewpoint adaptation when invoking constructors;
the other is that there are no shared RDM objects by all instances of a class (because RDM is forbidden
in static contexts. Section 4.8.15 will discuss why) and one RDM object gets attached to one and
only one receiver object, so there won’t be soundness-breaking aliases to one RDM object.

1 @ReceiverDependentMutable

class C {

3 @ReceiverDependentMutable Date d;

5 @ReceiverDependentMutable C(@ReceiverDependentMutable Date d)

{

this.d = d;

7 }

}

9 @Mutable C mc = new @Mutable C(new @Mutable Date());

mc.d.setMonth (2);// mc.d refers to a mutable Date instance.

Mutation is allowed

11 @Immutable C imc = new @Immutable C(new @Immutable Date());

imc.d.setMonth (3);// error. imc.d refers to an immutable Date ,

so mutation is not allowed

With viewpoint adaptation, RDM fields are resolved to correct mutability types consistently with
the receiver, therefore immutability constraint won’t break.

A more interesting scenario is creating a RDM object inside a RDM constructor.

@ReceiverDependentMutable

46

2 class D {

@ReceiverDependentMutable Date d;

4 @ReceiverDependentMutable D() {

d = new @ReceiverDependentMutable Date();

6 }

}

8 @Mutable D md = new @Mutable D();

md.d.setYear (2018);// OK. Newly created RDM Date instance is

resolved to mutable

10 @Immutable D imd = new @Immutable D();

imd.d.setYear (2019);// error. Newly created RDM Date instance is

resolved to immutable

md.d and imd.d refer to two different Date instances on the heap. Since md and imd are created
only once, their mutability information is fixed once created, and the RDM instances that they
point to get resolved to the same types as the receiver types respectively. By this, there won’t be
both mutable and immutable aliases to the same Date instance created at line 5. Therefore, type
soundness is still guaranteed.

4.8.7 Cirular Initialization of Immutable Objects

Below is an example (inspired by Freedom Before Commitment: A Lightweight Type System for
Object Initialisation[23]) to illustrate how circular initialization of immutable data structures can
be achieved.

1 @Immutable

class List {

3 ListNode head;

List() {

5 head = new ListNode(this);

}

7 }

@Immutable

9 class ListNode {

List list;

11 ListNode(@UnderInitialization List list) {

this.list = list;

13 }

}

this in the constructor has the underinitialization type in the initialization hierarchy. So pass-
ing this to the ListNode constructor typechecks (of course mutability types also satisfy subtype
relations). new ListNode(this) returns underinitialization immutable ListNode. Since head in the
List constructor is unknowninitialization immutable, the assignment to head typechecks. After
the List constructor finishes, both List and ListNode instances finish initialization, and both turn
into immutable objects, which can’t be mutated later on. Mutually dependent immutable data
structure can thus be easily set up in PICO.

47

4.8.8 Compatiblity Between Constructor And Type Element Bound

We know that mutable classes can only have mutable instances, immutable classes can only
have immutable instances, and RDM classes can have instances of any mutability. To achieve this
restriction, constructor return types should be compatible with the type elements’ bounds. The
compatability rules between constructor returns and type element bounds are as follows:

• if the type element is mutable, the constructor return should be mutable

• if the type element is immutable, the constructor return should be immutable

• if the type element is RDM, the constructor return can be mutable, immutable or RDM

Let’s see a non-trivial violating example:

@Immutable

2 class A {

int x = 0;

4 @ReceiverDependentMutable A() {} // error. Constructor return

incompatible

}

6

@Mutable A ma = new @Mutable A();

8 ma.x--;

If a RDM constructor is allowed, then mutable instantiation ma is allowed. Then, field x’s value
can be arbitrarily changed. This breaks the immutability guarantee that instances of class A must
be immutable.

Regarding rule 3, since RDM type elements can have instances of any mutability type, hav-
ing mutable and immutable constructor return types makes sense — they are only restricting
mutability of instances earlier in the constructor level.

4.8.9 Compatability Between Current Constructor and This/Super
Constructor

In Java, one constructor can call another constructor declared in the current class (using this())
or super constructor (using super()). For example:

class B {

2 int x;

B(int x) {

4 this.x = x;

}

6 }

class C extends B {

8 int y;

C(int x, int y) {

48

10 super(x);

this.y = y;

12 }

}

When invoking another constructor from one constructor, the rules are:

• The invoked constructor’s return type adapted to the invoking constructor’s return type must
be a supertype of the invoking constructor’s return type.

• All arguments must be subtypes of their corresponding result types of viewpoint adapting
invoked constructor’s declared parameter types to the invoking constructor’s return type.

1 @ReceiverDependentMutable

class C {

3 Date d;

5 @Immutable C() {

this(new @Immutable Date());// OK

7 }

9 @ReceiverDependentMutable C(@ReceiverDependentMutable Date d)

{

this.d = d;

11 }

}

13 @Immutable C imc = new @Immutable C();

imc.d.setMonth (11);// error. as imc.d refers to immutable Date

instance.

If there is no restriction on invoking other constructors from a constructor, type soundness may
be compromised. For example:

@ReceiverDependentMutable

2 class C {

Date d;

4

@Immutable C() {

6 this(new @Mutable Date());// error. Invoking mutable

constructor from immutable constructor

}

8

@Mutable C(@Mutable Date d) {

10 this.d = d;

}

12 }

@Immutable C imc = new @Immutable C();

49

14 imc.d.setMonth (11);// imc.d is immutable reference , but points

to mutable Date

One thing to note is that in the formalization later, we didn’t consider this() constructor
invocations because it’s not part of the language syntax. But in the implementation, we have the
same restrictions on super() and this() constructors invocations.

4.8.10 Compatability Between Type Usage With Type Element Bound

There are rules regarding what kinds of usage types are valid within the type element’s bound in
terms of mutability. The rules are:

• If the type element is mutable, any usage type5 is allowed except RDM or immutable

• If the type element is immutable, any usage type is allowed except RDM or mutable

• If the type element is RDM, any usage type is allowed

We know that if a type element’s bound is mutable, PICO only allows mutable usages. For-
bidding immutable usage of a mutable type seems straightforward. Forbidding RDM is to avoid
the possibility of getting immutable reference if the receiver object is immutable, which breaks
type soundness, because this immutable reference can never capture a valid instance (because no
immutable instances exist for mutable type elements). However, polymutable usages are allowed.
The reason behind this is that polymutable types are resolved by actual invocations, but actual
invocations can only pass mutable or readonly instances in, making polymutable to always be
able to resolve to a valid usage type under the corresponding type element’s bound. For example:

@Mutable

2 class A {}

class B {

4 void foo(@PolyMutable A a){}; // OK.

}

6 @Mutable B mb = ...;

mb.foo(new @Mutable A());// Clients cannot pass RDM or immutable

A instances. polymutable is resolved to mutable

For immutable type elements, similar reasoning applies. For RDM type elements, as they are
naturally allowed to be instantiated to any valid mutability instances for new expressions (mutable,
immutable, RDM and polymutable), usage types of RDM type elements are compatible with all types.

4.8.11 Instance Methods

Instance methods follow the same mutability restrictions on other references and objects. A
readonly or immutable method never modifies the abstract state of the receiver object.

5As we said before, substitutablepolymutable and bottom are always not included

50

In PICO, the toString(), hashCode(), and equals(Object) methods are specially treated as
readonly methods: even if there aren’t explicit mutability qualifiers on those methods, their
declared method receivers are treated as readonly. The motivation is that those three methods
shouldn’t side-effectingly mutate the abstract state of the receiver object.

4.8.12 Instance Methods Invocations

There are no special rules with regards to references inside instance methods. The references inside
method bodies follow the same mutability restrictions as other ordinary references do. However,
invocations of instance methods should be checked against the viewpoint adapted signature of
the method. Viewpoint adaptation happens on the declared method receiver, parameters and the
return type. For example:

1 @ReceiverDependentMutable

class A {}

3 @ReceiverDependentMutable

class Test {

5 @ReceiverDependentMutable A a;

@ReceiverDependentMutable A getA(@ReceiverDependentMutable

Test this) {

7 return a;

}

9 }

11 @Mutable A ma = new @Mutable A();

@Mutable Test mt = new @Mutable Test();

13 @Mutable A maret = mt.getA(ma);

Assert.equals(ma , maret);

15

@Immutable A ima = new @Immutable A();

17 @Immutable Test imt = new @Immutable Test(ima);

@Immutable A imaret = imt.getA();

19 Assert.equals(ima , imaret);

The first invocation of the getA() method on line 13 after viewpoint adaptation becomes:

1 @Mutable A getA(@Mutable Test this);

The actual receiver is @Mutable Test, which is a subtype of @Mutable Test after viewpoint
adaptation; the viewpoint adapted return type is @Mutable A, which is a subtype of @Mutable
A. So the method invocation on line 13 typechecks. The second method invocation on line 18 also
typechecks using similar reasoning.

4.8.13 Instance Methods Overriding

Just like RDA classes can go to mutable or immutable (subclasses), instance methods whose declared
types contains RDM can also become mutable or immutable in overriding methods. For example:

51

1 @ReceiverDependentMutable

class A {

3 @ReceiverDependentMutable A identity(@ReceiverDependentMutable

A this) {

return this;

5 }

}

7

/* @Mutable */

9 class B extends A {

@Mutable B identity(@Mutable B this) {

11 return (B) super.identity(this);

}

13 }

15 @Immutable

class C extends A {

17 @Immutabl C identity(@Immutable C this) {

return (C) super.identity ();

19 }

}

Standard method overriding requires that the overriding method’s receiver and parameters are
contra-variant to the overriden method, and the return type of the overriding method should be
co-variant with the overriden method return. However, this breaks the flexibility of PICO. For
example, if a method parameter is RDM in the overridden method, an overriding mutable subclass
can only override it to RDM or readonly. We already discussed that RDM type usages are not
valid for mutable type elements. Thus, this mutable subclass can only make the parameter type
readonly. This is too restrictive. The only requirement an overriding method should satisfy is
that all existing instance methods should still be callable on subclasses’ instances.

PICO checks the validity of overriding method as the following steps:

1. Viewpoint adapt the declared receiver, formal parameters, and the return type of the over-
ridden method to the bound of the type element that encloses the overriding method.

2. Use standard override checks between the overriding method signature and the resulted
method signature after viewpoint adaptation.

This overriding rule is called flexible overriding rule in PICO. In the class B, we already know
that all instances of B are mutable, therefore the method signature is safe to change to the
signature: @Mutable identity(@Mutable B this). For the immutable subclass C, all instances of
it are immutable, thus changing the method signature to @Immutable C identity(@Immutable C
this) still assures that the method is callable on C’s instances.

52

4.8.14 PolyMutable Methods And Their Resolutions

PICO supports both receiver-context and assignment-context sensitivity features. @PolyMutable
receiver adapting @RDM declared type will yield @PolyMutable, which satisfies the condition in
which the interactions between the two context sensitivity should be handled carefully. In order to
correctly handle the interactions between the two, PICO uses an internal qualifier substitutablep-
olymutable to temporarily represent what polymutable used to represent: once the method
with at least one polymutable is invoked, PICO replaces every occurrence of polymutable with
substitutablepolymutable, then performs the viewpoint adaptation of the method signature.
For example:

@ReceiverDependentMutable

2 class C {

@PolyMutable List <@ReceiverDependentMutable Date >

getDateWrapped

4 @Readonly C this , @ReceiverDependentMutable Date date) {

List <@ReceiverDependentMutable Date > l = new ArrayList

<>();

6 l.add(date);

return new @PolyMutable ArrayList <>(l);

8 }

}

10

@Immutable C imc = new @Immutable C();

12 @Mutable List <@Immutable Date > ml = imc.getDateWrapped(new

@Immutable Date());

@Immutable List <@Immutable Date > iml = imc.getDateWrapped(new

@Immutable Date());

The above two method invocations are checked in the below way:

1. Replace all @PolyMutable occurrences with @SubstitutablePolyMutable. The method sig-
nature becomes:

1 @SubstitutablePolyMutable List <@ReceiverDependentMutable

Date > getDateWrapped(

@Readonly C this , @ReceiverDependentMutable Date date)

2. Perform viewpoint adaptation. Because the receiver object imc is immutable, the signature
becomes:

@SubstitutablePolyMutable List <@Immutable Date >

getDateWrapped(

2 @Readonly C this , @Immutable Date date)

3. Resolve the solution for substitutablepolymutable:

• In the first invocation on line 12, generate constraint:

53

@SubstitutablePolyMutable <: @Mutable // resolved to

@Mutable

Therefore the method signature becomes:

1 @Mutable List <@Immutable Date > getDateWrapped(@Readonly C

this ,

@Immutable Date date)

The actual receiver is a subtype of the result receiver type; arguments are subtypes of
result parameter types; the result return type is a subtype of the left-hand-side type,
so the method invocation typechecks.

• In the second invocation on line 13, generate constraint:

@SubstitutablePolyMutable <: @Immutable // resolved to

@Immutable

Therefore the method signature becomes:

1 @Immutable List <@Immutable Date > getDateWrapped(@Readonly

C this ,

@Immutable Date date)

Similar checks as above indicate the second method invocation also typechecks.

If polymutable wasn’t replaced to another internal qualifier before viewpoint adaptation, there
might be a way of getting polymutable on the method signature even though it’s not declared on
the method, but instead the result of viewpoint adaptation. To illustrate this:

class C {

2 void foo(@ReceiverDependentMutable Date date);

}

4 @PolyMutable C c;

c.foo(new @Mutable Date()); // error. Should pass polymutable

argument

After invoking the foo() method, there would be a polymutable on the result type of parameter
date as the result of viewpoint adaptation. This polymutable shouldn’t be resolved, because the
foo() method wasn’t declared to be assignment-context sensitive, but instead should be receiver-
context sensitive. So, in order to differentiate such a case, replacement of polymutable is always
performed when a method with at least one polymutable is invoked before viewpoint adaptation
happens, and the new type is substitutablepolymutable, an internal qualifier that can never be
written by users. Not being able to explicitly write substitutablepolymutable avoids the case
that substitutablepolymutable appears on method signatures not by replacing polymutable.

For static methods that don’t have viewpoint adaptation, the polymutable replacement still
happens when they are invoked.

PICO forbids @PolyMutable on constructor parameters. The reason is that @PolyMutable
fields are not allowed, therefore, it’s only possible to capture @PolyMutable constructor arguments
in @Readonly fields. However, in this case, declaring the constructor parameters to @Readonly is
simpler.

54

4.8.15 Static Context

The static context of a class includes static fields, static blocks and static methods. They are
not bound to a particular instance. Instead, they are shared by all the instances of the class. So
naturally, they don’t have receivers to access them. It’s a violation of the well-formedness constraint
if @ReceiverDependentMutable is used on static fields, static blocks or on static methods.

One violating example that illustrates this:

1 @ReceiverDependentMutable

class A {

3 static @ReceiverDependentMutable Date sd = new

@ReceiverDependentMutable Date();

@ReceiverDependentMutable A() {}

5 }

@Mutable A ma = new @Mutable A();

7 ma.sd.setYear (2019); // Allowed , since ma is mutable , ma.sd

become mutable

9 @Immutable A ima = new @Immutable A();

ima.sd.setYear (2020); // Error , ima is immutable , ima.sd is

immutable

If @ReceiverDependentMutable is allowed on static field sd, the single Date instance in static
field sd gets mutable and immutable references to it. The mutability of that instance becomes
unclear, which breaks the soundness of PICO.

RDA is also fobidden due to the same reason on static fields. Static fields are either final or
assignable.

4.8.16 Possible Loophole Of Assignable Fields

There is one case in which assignable field is forbidden to be re-assigned.

• If the receiver is readonly, and the field is assignable RDM, this assignment is forbidden.

If this is not the case, there will be a loophole in PICO to compromise immutable object’s
abstract state.

@Immutable

2 class C {

@Assignable /* @ReceiverDependentMutable */ Date date;

4 @Immutable C(@Immutable Date date) {

this.date = date;

6 }

}

8

@Immutable Date imdate = new @Immutable Date();

55

10 @Immutable C imc = new @Immutable C(imdate);

@Readonly C roc = imc;

12 @Mutable Date mdate = new @Mutable Date();

roc.date = mdate; // If this assignment were OK , roc.date would

capture mutable Date instance. However notice that roc is a

readonly reference to immutable C, therefore imc.date is

actually immutable reference but points to mutable Date object

now

It looks like the assignment roc.date = mdate is OK according to the discussions before: date
is assignable, so re-assignment is allowed; roc.date is readonly, which is a supertype of mdate.
However, this will cause immutable reference imc.date to point to a mutable Date instance, which
breaks the type soundness. Therefore, we forbid field assignment in this specific case to ensure
type soundness.

This problem is quite analogous to the writable fields’ variance issues. Subclasses can’t use co-
or contra-variance for fields. In PICO, writes to fields are not allowed through readonly references.
Therefore, it’s OK to use co-variant fields types for RDM fields from readonly receivers (equivalent
to superclasses) to mutable or immutable receivers (equivalent to subclasses). However, this
readonly restriction is broken by assignable fields: they can be re-assigned now. We have to
forbid this combination in order to achieve type safety.

4.8.17 Arrays

Arrays are special construct different from other reference types. There is no declaration of arrays
as other type elements do. However, array write and array read still have receiver, so their
mutability is also enforced by PICO. For example,

1 class C {

Date /* @ReceiverDependentMutable */ [] f = new Date /* @Mutable

*/ [3];// f is declared RDM array of mutable Date

3 void foo() {

f[0] = new Date();// OK. f[0] has mutable receiver.

Assignment is allowed

5 }

void bar(@Readonly C this) {

7 f[0] = new Date();// error. f[0] has readonly receiver ,

assignment is forbidden.

}

9 }

Java allows co-variant subtyping for array components. For example:

1 Object [] o = new String [2];// Allowed in Java

Java allows a String array to be assigned to an Object array. When writing to o, Java has
runtime checks to ensure that the value is of the String type, to make sure only Strings are stored
in Object array o.

56

PICO adopts the same co-variant array component subtype relations as if there are addi-
tional runtime checks in terms of mutability and writes to arrays can be performed safely, even
though there are no runtime components for PICO. We found in practice, doing so is more flexible
compared to only allowing invariant array component types, and it’s also consistent with Java’s
implementation.

This co-variant subtyping for array components is actually the default behavior of Checker
Framework at the moment. There is an option “-AinvariantArrays” to enable invariant array
component subtyping checks to address the lack of runtime enforcement. In this mode, array
components should be the same type in subtype relations.

4.8.18 Type Casts

Casting is a mechanism in Java to circumvent the compiler’s static type checking and delegate the
safety check to runtime. With casts, an arbitrary conversion of types is allowed by the compiler,
even though the conversion might not be safe at runtime.

Because PICO is a static type system, what it can do at most is to warn about possible unsafe
casts, if they are not always-safe upcasts. It’s only a warning, because the cast might be safe. It
would be annoying if PICO always reported errors for them. PICO only issues warning, and brings
the possible unsafe casts to programmers’ attention.

Casts sometimes can be useful to initialize a complex data structure as mutable, and then cast
it to immutable if there are no aliases to the mutable data structure. For example:

1 class C {

@Immutable Graph buildGrapgh () {

3 @Mutable Graph g = new @Mutable Graph();

... complex initialization to g...

5 return (@Immutable Graph) g;// no alises to g exist after

method returns

}

7 }

The cast to immutable type is actually safe, because there are no aliases that may side-effect
the returned graph. In such cases, provided that programmers make sure no aliases exist for the
mutable data structure, the mutable data structure can be cast to immutable, which is normally
not compatible with mutable6. This is another motivation for not reporting incompatible cast as
errors.

4.9 Formalization

We formalized PICO for a minimum core set of language constructs that PICO supports. Java’s
generics are not reflected in the formalization, but in the implementation, similar to GUT, generics
are also supported. In future work, we’ll formalize generics.

6“Incompatible” means neither type is a subtype of the other, between two types

57

4.9.1 Language Syntax Definition

We use A-normal form (ANF) to define the syntax of the language[1]. In ANF, instead of passing
expressions as arguments to functions, local variables are used to store the expressions first, and
then those local variables are passed as trivial arguments to functions.

P ::= cd (program)

cd ::= qC class C extends D {fd kd md} (class)

fd ::= a q C f (field)

kd ::= q C (t C g, t C f) { super(g); this.f = f ; } (constructor)

md ::= t C m (t C this, t C x) { t C y s; return z; } (method)

e ::= x | x.f (expression)

s ::= x = e | x.f = y | x = y.[q]m(z) | x = new [k] q C(y) | s; s (statement)

t ::= k q (qualifier type)

k ::= initialized | underinitialization (initialization qualifier)

| unknowninitialization | fbcbottom
q ::= readonly | mutable | polymutable (mutability qualifier)

| substitutablepolymutable | receiverdependentmutable | immutable | bottom
a ::= assignable | receiverdependentassignable | final (assignability qualifier)

Figure 4.3: Syntax of language

• Among mutability qualifiers, substitutablepolymutable and bottom are not part of the
surface syntax — they are only internal qualifiers that can’t be written by users.

• In method invocations, [q] is the substitution for substitutablepolymutable, but users
cannot write it explicitly. Inference of q is already discussed in section 3.3. Here it is made
explicit for a better explanation and easier formalization.

• In new instance creations, [k] is not allowed to be explicitly written according to FBC type
rules. Instead, it is inferred by the type rules of FBC (see section 2.4 for more details).

• For simplicity, program P is always available in helper functions and type judgements.

4.9.2 Type Environment

Γ = (x1 : k1 q1 C1, x2 : k2 q2 C2, ..., xn : kn qn Cn)

Γ(x) = k q C

Γ(x) = k q is a shorthand for Γ(x) = k q

58

4.9.3 Subtype Relations

k1 q1 <: k2 q2 ⇐⇒ k1 <: k2 ∧ q1 <: q2

4.9.4 Helper Function

• fType(C, f) = a q

• bound(C) = qC , in which C is a class

• constructor(C) = kd, in which C is a class

• typeof(C, m) = (kthis qthis, kp qp → kret qret)

• replacedtypeof(C, m) = (kthis q
′
this, kp q′p → kret q

′
ret) in which:

q′this = qthis [substitutablepolymutable/polymutable],
q′p = qp [substitutablepolymutable/polymutable],
q′ret = qret [substitutablepolymutable/polymutable],
typeof(C, m) = (qthis, qp → qret)

4.9.5 Viewpoint Adaptation Rules

q . receiverdependentmutable = q
. q = q (otherwise)

4.9.6 Typing Rules

4.9.6.1 Expressions

T-VAR
Γ ` x : Γ(x)

T-FLD

Γ(x) = kx qx C fType(C, f) = qf q = qx . qf
kx = initialized⇒ k = initialized

kx 6= initialized⇒ k = unknowninitialization

Γ ` x.f : k q

4.9.6.2 Statements

T-VARASS
Γ ` e : te te <: Γ(x)

Γ ` x = e

T-FLDASS

Γ(x) = kx qx C Γ(y) = ky qy fType(C, f) = af qf
qx = mutable

∨ (kx = underinitialization ∧ qx = immutable)
∨ (kx = underinitialization ∧ qx = receiverdependentmutable)

∨ (af = assignable ∧ (qx 6= readonly ∨ qf 6= receiverdependentmutable))
qy <: qx . qf kx = underinitialization ∨ ky = initialized

Γ ` x.f = y

59

• Every assignment to instance fields without an explicit receiver has implicit receiver this.
In constructors, qthis = qret. In initialization blocks, qthis = bound(C) where C is the class
that encloses the initialization block. In instance field declarations (with initializers), qthis =
bound(C) where C is the class that encloses fields f.

• Final fields are enforced by the Java compiler and doesn’t need PICO to do anything.

T-CALL

Γ(x) = kx qx Γ(y) = ky qy C Γ(z) = kz qz
replacedtypeof(C,m) = kthis q

′
this, kp q′p → kret q

′
ret

ky <: kthis kz <: kp kret <: kx
qthis-vp = qy . q

′
this qp-vp = qy . q′p qret-vp = qy . q

′
ret

qthis-vp = substitutablepolymutable⇒ qy <: q
qthis-vp 6= substitutablepolymutable⇒ qy <: qthis-vp

qp-vp = substitutablepolymutable⇒ qz <: q
qp-vp 6= substitutablepolymutable⇒ qz <: qp-vp
qret-vp = substitutablepolymutable⇒ q <: qx

qret-vp 6= substitutablepolymutable⇒ qret-vp <: qx

Γ ` x = y.[q]m(z)

T-SUPER

kd in C C <: D typeof(constructor(D)) = kp-D qp-D → qret-D
typeof(C, kd) = → qret-C

qret-D = immutable⇒ qret-C = immutable
qret-D = mutable⇒ qret-C = mutable

Γ(z) = kz qz kz <: kp-D qz <: qret-C . qp-D

ΓC ` super(z) in kd

T-NEW

Γ(x) = kx qx Γ(y) = ky qy typeof(C) = kp qp → qret
qy <: q . qp q <: q . qret q 6= readonly ky <: kp q <: qx k <: kx

kp = initialized⇒ k = initialized kp 6= initialized⇒ k = underinitialization

Γ ` x = new [k] q C(y)

T-SEQ
Γ ` s1 Γ ` s2

Γ ` s1; s2

4.9.7 Well-formedness Rules

WF-FLD
fType(fd) = q q 6= polymutable C <: D

`C fd is OK

WF-CONS

qC = bound(C)
qret = mutable ∨ qret = immutable ∨ qret = receiverdependentmutable
qC = mutable⇒ qret = mutable qC = immutable⇒ qret = immutable

`= (this : underinitialization qret, g : kg qg, f : kf qf)

`C super(g) in qret C (t C g, t C f){ super(g); this.f = f} ` this.f = f

`C qret C (t C g, t C f){ super(g); this.f = f} is OK

60

WF-METH

`= (this : kthis qthis, p : kp qp, y : klocal qlocal) ` s ` Γ(z) <: tret qC = bound(C)
qC = mutable⇒ (qthis 6= immutable ∧ qthis 6= receiverdependentmutable)
qC = immutable⇒ (qthis 6= mutable ∧ qthis 6= receiverdependentmutable)
typeof(msuper) = kthis-super qthis-super, kp-super qp-super → kret-super qret-super

kthis-super <: kthis kp-super <: kp kret <: kret-super
qC . qthis-super <: qthis qC . qp-super <: qp qret <: qC . qret-super

`C tret C m (tthis C this, tp C p) { t C y s; return z; } is OK

WF-EXTEND

qC = bound(C) qD = bound(D)
qD = mutable⇒ qC = mutable qD = immutable⇒ qC = immutable

` C <: D is OK

WF-CLASS

`C fd is OK `C kd is OK `C md is OK
C <: D ` D is OK ` C <: D is OK

qC = mutable ∨ qC = immutable ∨ qC = receiverdependentmutable

` qC class C extends D {fd; kd md} is OK

WF-TYPEUSE

` C is OK qC = bound(C)
qC = mutable⇒ (quse 6= immutable ∧ quse 6= receiverdependentmutable)
qC = immutable⇒ (quse 6= mutable ∧ quse 6= receiverdependentmutable)

` quseC is OK

4.9.8 Extension to Real Java With Static And Blocks

In real Java, there are static fields, static methods and initialization blocks.

4.9.8.1 Helper Method

usedQualifiers(s) returns all mutability qualifiers used in s recursively.

4.9.8.2 Revised And Extended Language Syntax

cd ::= qC class C extends D{sfd fd sib ib kd smd md} (class)

sfd ::= static q a C f (static field)

smd ::= static t C sm (t C x){ t C y s; return z; } (static method)

sib ::= static s; (static initialization block)

ib ::= s; (initialization block)

Figure 4.4: Revised and extended syntax of language

4.9.8.3 Revised And Extended Well-formedness Rules

WF-STATIC-FLD

fType(sfd) = a q q 6= polymutable q 6= receiverdependentmutable
a 6= receiverdependentassignable

`C sfd is OK

61

WF-STATIC-METH

` (p : kp qp, y : klocal qlocal) ` s ` Γ(z) <: tret
qp 6= receiverdependentmutable qret 6= receiverdependentmutable

receiverdependentmutable /∈ usedQualifiers(s; returnz)

`C static tret C sm (tp C p){ t C y s; return z; } is OK

WF-STATIC-BLK
Γ ` s receiverdependentmutable /∈ usedQualifiers(s)

`C static s is OK

WF-BLK
Γ ` s

`C s is OK

WF-CLASS

`C sfd is OK `C fd is OK `C sib is OK `C ib is OK `C kd is OK
`C smd is OK `C md is OK C <: D ` D is OK ` C <: D is OK

qC = mutable ∨ qC = immutable ∨ qC = receiverdependentmutable

` qC class C extends D{sfd fd; sib ib kd smd md} is OK

62

Chapter 5

Implementation And Experiments —
PICO

This chapter discusses the implementation of the PICO type system and PICOInfer, the infer-
ence system for PICO, and experiments on real-world open-source libraries. Section 5.1 gives
implementation-level information about PICO type checker and PICOInfer. Section 5.2 shows
experiment results of PICO type checker and PICOInfer on real-world projects.

5.1 Implementation

PICO type checker and PICOInfer are implemented in the same project called immutability. Un-
fortunately, we had to implement PICO type checker and PICOInfer separately because inference
related classes such as InferenceVisitor, only support one hierarchy in the Checker Framework
Inference, but PICO type checker needs support two hierarchies.

The core logic for PICO type checker is composed of 12 files and 1481 lines of non-comment,
non-blank1 Java code. The test cases for PICO type checker consist of 92 files and 2150 lines of
Java code.

The core logic for PICOInfer is composed of 10 files and 1469 liens of Java code. The test cases
for PICOInfer consist of 52 files and 576 lines of Java code.

In total, immutability project is composed of 178 files, 1298 lines of comments and 5788 lines
of Java code. We used local version of upstream dependency Checker Framework and Checker
Framework Inference to facilitate the development of PICO.

5.1.1 PICO Type Checker

PICO type checker is developed on Checker Framework. It is a type checking checker that enforces
the full features of PICO (initialization, mutability and assignability).

There is another annotation @AbstractSateOnly that’s only used on method declarations to
restrict a method body to only depend on fields that are in the abstract state of the enclosing

1Won’t be mentioned again. By Java code, we mean non-comment and non-blank lines

63

class. For method invocations inside @AbstractSateOnly methods, those methods should also be
@AbstractSateOnly methods recursively. If violations happen, PICO type checker will issue a
warning for it.

PICO internally treats the hashCode(), equals(Object) methods to be @AbstractSateOnly
without even explicit usage of @AbstractSateOnly. The benefit is that the @AbstractSateOnly
behavior is predictable and can be determined completely by the abstract state of the receiver
object. For example, an immutable object’s hashCode() method is guaranteed to return the same
result if hashCode() depends solely on the abstract state, because the abstract state of immutable
objects is protected by PICO.

We didn’t make @AbstractStateOnly part of PICO’s core language, because it’s only an appli-
cation of PICO in experiments. There are still some problems regarding it. First, it conservatively
warns about every instance method invocation from @AbstractStateOnly methods, if the invoked
method isn’t annotated with @AbstractStateOnly. But the result of the invoked method may not
flow into the returned result of @AbstractStateOnly methods. For example, System.out.println().
Second, it doesn’t support internal cache fields that cache expensive computations’ results. Those
cache fields are assignable, therefore they are outside the abstract state. Accessing them from
@AbstractStateOnly methods such as hashCode() is actually safe. However, they will still be
warned. So we only mentioned @AbstractStateOnly in the implementation chapter.

5.1.2 PICOInfer

PICOInfer is the inference system built on top of Checker Framework Inference. PICOInfer only
supports inferring mutability qualifiers. @PolyMutable is not supported because inference of it
is tricky: we need to track all the usages of an assignment-context sensitive method, and find a
solution that satisfies all those invocations at each assignment context. This is rather complicated
so we decided to not infer @PolyMutable.

Due to the limitations of Checker Framework Inference, that only one type hierarchy can be
inferred at a time, initialization qualifiers can’t be inferred. There is also no inference system for
FBC type system, so that we can infer in two passes, one for initialization qualifiers and the other
for mutability qualifiers. Therefore, for initialization hierarchy, PICOInfer assumes @Initialized
default for almost every type usage. However, PICOInfer does recognize any existing initializa-
tion qualifier, @UnderInitialization, in the source code, and generates the corresponding set of
constraints, so that the interaction between initialization and mutability types is consistent with
PICO type rules. Users can manually annotate source programs with @UnderInitialization such
as on helper methods that are only called from constructors. For constructors and initialization
blocks in which receivers are @UnderInitialization but there doesn’t exist an explicit tree2 to be
annotated with @UnderInitialization, PICOInfer is developed to be able to handle these cases so
that it also generates correct constraints for these language constructs. Other initialization qual-
ifiers don’t affect how constraints are generated on mutability side, therefore PICOInfer doesn’t
need to be aware of their existence.

Assignability qualifiers are also not inferrable, as they are not even part of types. The de-
fault @ReceiverDependentAssignable for instance fields is assumed. However, if there are existing

2See https://docs.oracle.com/javase/7/docs/jdk/api/javac/tree/com/sun/source/tree/Tree.html

64

https://docs.oracle.com/javase/7/docs/jdk/api/javac/tree/com/sun/source/tree/Tree.html

@Assignable annotations in the source code, PICOInfer is also aware of those, and relaxes the
restriction that the receiver (if there is one) must be mutable.

Generally, PICOInfer is guaranteed to infer correct mutability qualifiers if the input program
typechecks in FBC type system and assignability qualifiers are correctly used.

5.2 Experiments

We ran PICO type checker and PICO inference on 14 real world open-source projects to evaluate
whether PICO raises reasonable errors and PICOInfer gives valid inference solutions. Figure 5.1
shows the size of those 14 projects in different dimensions.

Project Name File Blank Comment Sloc
bdoorProto 8 52 81 152

AFHbackdoor 5 49 26 161
FaceDetection 14 162 72 538

imgscalr 11 302 2186 1181
ECC-RSA-Backdoor 5 416 332 1251

jump 23 770 3211 1937
jdepend 22 869 942 2557

jama 10 589 931 2599
exp4j 30 819 761 5129
jdeb 73 1471 1919 5199

jReactPhysics3D 84 3250 5549 9468
react 63 1147 6338 10095

JLargeArrays 17 882 2496 11337
jblas 72 3341 6738 11821

Figure 5.1: Benchmark projects for running PICO and PICOInfer

Brief introductions of the projects:

• bdoorProto backdoor network server/client for debugging/developing running apps

• AFHbackdoor Arduino Hacking Framework incubating backdoor

• FaceDetection Face Detection app based on Viola-Jones algorithm

• imgscalr simple Java image-scaling library implementing Chris Campbell’s incremental scal-
ing algorithm as well as Java2D’s ”best-practices” image-scaling techniques.

• ECC-RSA-Backdoor A backdoor based on Error correcting codes

• jump Java-based extensible high-precision math package

• jdepend a Java package dependency analyzer that generates design quality metrics

• jama a basic linear algebra package for Java

65

• exp4j A tiny math expression evaluator for the Java programming language

• jdeb This library provides an Ant task and a Maven plugin to create Debian packages from
Java builds in a truly cross platform manner.

• jReactPhysics3D 3D physics engine written in Java. Port of the ReactPhysics3D C++
physics library.

• react Real-time 3D physics library for Java, based on the ReactPhysics3D C++ library

• JLargeArrays library of one-dimensional arrays that can store up to 2ˆ63 element

• jblas A matrix library for Java which uses existing high performance BLAS and LAPACK
libraries like ATLAS.

We first ran PICO type checker on them, and got the number of errors on each project. We
manually examined the error results and analyzed if they make sense or not. We iteratively changed
implicit and default qualifiers several times, so that the error messages for unannotated programs
reduced to a reasonable number. We also got the conclusion that for unannotated programs, it is
impossible to be 100% free of errors that might be not real bugs. There are several ground truths
that we believe make sense, and we propagate them in unannotated programs. For example,
the toString() method should be @Readonly. We’ll discuss unavoidable errors in section 5.2.1.
However, on the test cases that violate mutability guarantees, PICO type checker nevers gives
false positive errors.

We then ran PICOInfer on the same set of projects, and all of the projects successfully get
solutions, with partial manual initialization/assignability qualifiers or no manual annotations at
all. But the tool we used to insert solutions back to the source code, annotation-tools, throws
exceptions and fails to insert 9 projects’ solutions back to the source code due to its bugs. We
had a workaround for the bug, and we were able to insert solutions to the source code, but we
found in one project (maybe there are more), some solutions were inserted to wrong locations, so
we gave up the workaround; due to Checker Framework Inference bugs, some valid source code
locations get inferred solutions, but those solutions were not written to the jaif file, a file that is
the input to annotation-tools to insert solutions; even though some solutions exist in the jaif file,
annotation-tools wasn’t able to insert them. Therefore, we were not able to typecheck the inferred
solutions and verify the correctness of the solutions. But for projects that were successfully inserted
solutions to the correct locations, they are mostly annotated, thus becoming easier for humans to
continue filling in the missing annotations. We manually examined part of the inserted source code
of projects on which the inference and insertion both succeeded3, and checked whether each PICO
type rule is correctly reflected in the result. After the examination, we conclude that the inference
results we examined do make sense and obey the full PICO type rules. We also manually filled in
missing annotations to source code after inference for the project jama by manually inferring what
annotations PICOInfer may have inferred. In the end, we ran PICO type checker and verified that
the inferred and manually inserted solutions together completely typecheck.

For PICOInfer, we evaluated its performance, such as running time, constraint sizes, slot sizes,
Sat4J[12] solver related sizes: CNF (Conjunctive Normal Form) variable sizes, and CNF clause
sizes etc.

3The problems mentioned above still exist: some source code locations still miss annotations

66

5.2.1 PICO Type Checker

Project Name Initialization Errors Mutability Errors Warnings
bdoorProto 0 0 0

AFHbackdoor 0 0 0
FaceDetection 0 6 0

imgscalr 0 44 0
ECC-RSA-Backdoor 3 2 0

jump 1 12 1
jdepend 35 29 15

jama 4 0 0
exp4j 0 0 0
jdeb 3 31 0

jReactPhysics3D 26 13 34
react 12 12 28

JLargeArrays 0 0 0
jblas 12 30 8

Figure 5.2: Categorization of errors by PICO type checker on unannotated benchmarks

5.2.1.1 Initialization Errors

Calling instance methods from constructors

Most of the initialization errors are raised because of calling instance methods within con-
structors according to experiment results. These invocations from constructors are potential prob-
lems when subclasses override the instance method and access subclass fields inside the instance
methods, because subclass fields haven’t been initialized yet when the super constructor is being
executed. This is due to Java’s restriction of initialization: the super constructor must be called
first, before subclasses’s one get called. As a result, NullPointerException might be thrown. FBC
type system captures this type of errors and they really reflect flaws in programs.

1 // react/src/main/java/com/flowpowered/react/math/Vector2.java

:68:

error: [method.invocation.invalid] call to setAllValues(float ,

float) not allowed on the given receiver.

3 setAllValues(x, y);

^

5 found : @UnderInitialization(java.lang.Object.class)

@Mutable Vector2

required: @Initialized @Mutable Vector2

Passing this as arguments to new instance creations

Another common initialization error is passing constructor implicit receiver this as an ar-
gument to new instance creation expressions. Since the corresponding constructor parameter is
unannotated, it’s defaulted to @Initialized, therefore passing this (whose type is @UnderInitial-
ization) caused argument.not.compatible errors.

67

// react/src/main/java/com/flowpowered/react/collision/

CollisionDetection.java :72:

2 error: [argument.type.incompatible] incompatible types in

argument.

mBroadPhaseAlgorithm = new SweepAndPruneAlgorithm(this);

4 ^

found : @UnderInitialization(java.lang.Object.class)

@Mutable CollisionDetection

6 required: @Initialized @Mutable CollisionDetection

5.2.1.2 Mutability Errors

Passing implicitly immutable types to defaulted mutable parameter

Method parameters in completely unannotated programs are defaulted to @Mutable (except
those implicitly immutable types). For example, if a method parameter is of Object type, then it’s
equivalent to having @Mutable Object. If, for example, an integer value is passed to the method,
then there is an error reported saying immutable types cannot be assigned to mutable types. One
example:

// imgscalr/src/main/java/org/imgscalr/Scalr.java :658

2 error: [argument.type.incompatible] incompatible types in

argument.

log(0, "Applying %d BufferedImageOps ...", ops.length

);

4 ^

found : @Initialized @Immutable int

6 required: @Initialized @Mutable Object

The signature of the log() method:

static void log(int depth , String message , /* Mutable */ Object ...

params);

Only when the log() method ensures that params are only read and has @Readonly Object
array component type for params, PICO can pass immutable values safely to the log method.

An unannotated CharSequence parameter is another example. Passing immutable String
would cause an argument incompatible error. The reason why CharSequence is RDM is that it
has the mutable StringBuilder subclass, because StringBuilder is intended for appending strings.
So, CharSequence cannot be immutable, otherwise it’ll break compatability between type element
with its super bound. As we discussed before, RDM type element usages are defaulted to mutable

in every location except instance fields. Therefore, passing immutable String to unannotated
CharSequence also raises errors.

Invoking non-readonly methods from readonly methods

68

For completely unannotated programs, the only source of readonly methods are the toString(),
hashCode() and equals(Object). If they again call other helper methods in the body, since the
invoked method is unannotated, we can only assume they are mutable and those methods cannot
be invoked from a readonly context. Therefore, errors are raised. One example:

1 // ECC -RSA -Backdoor/src/rsa/BinNum.java :897

error: [method.invocation.invalid] call to length () not allowed

on the given receiver.

3 @Override

public String toString (){

5 ...

for(int i=this.length () -1;i>=0;i--){

7 ^

...

9 }

found : @Initialized @Readonly BinNum

11 required: @Initialized @Mutable BinNum

1 public int length(/* @Mutable */ BinNum this){

return num.size();

3 }

The implementation of the length() method is actually readonly, but PICO, as a type system,
doesn’t have the ability to infer this knowledge, except there is an explicit @Readonly annotation
on the declared receiver of the length() method. Then, the method invocation would typecheck.
The length() method might be trivial to annotate with readonly, however, for more complex
methods whose names are not trivial, annotating with @Readonly does benefit programmers to
better understand their code and achieve mutation-free safety.

Passing defaulted mutable types as map keys

Map keys expect immutable objects in PICO. Unannotated types are by default mutable,
therefore there would be type argument type incompatible errors if they are used as map keys.
For example:

1 // jReactPhysics3D/src/main/java/net/smert/jreactphysics3d/

collision/broadphase/SweepAndPruneAlgorithm.java :66

error: [type.argument.type.incompatible] incompatible types in

type argument.

3 protected final Map </* Mutable */ CollisionBody , Integer >

mapBodyToBoxIndex;

^

5 found : @Initialized @Mutable CollisionBody

required: @Initialized @Immutable Object

Custom subclasses of java.lang.Number are not by default @Immutable

Except the boxed primitive types and several listed subclasses of Number listed in section 4.6,
custom subclasses of (java.lang.)Number get defaulted to @Mutable, which is not compatible with
the super class Number’s bound, @Immutable, thus there are errors reported about them.

69

Raw type’s type arguments are returned A raw type’s type argument is a wildcard.
Statically, PICO doesn’t have any knowledge what type argument is actually passed. So, PICO
assumes the type argument for raw type to be “? extends @Mutable Object”. If this is the
return type of a method defined in raw types, then casting it to immutable types such as String
or assigning it to immutable types causes warnings to be reported. For example:

// jdepend/src/jdepend/framework/PackageFilter.java :85

2 warning: [cast.unsafe] "@Initialized ?[extends @Initialized

@Mutable Object super @Initialized @Bottom Void]" may not be

casted to the type

"@Initialized @Immutable String"

4 public void addPackages(Collection packageNames) {

for (Iterator i = packageNames.iterator (); i.hasNext ();)

{

6 addPackage ((String)i.next());

}

8 }

This is only a warning, because the implementation might consistently pass and get types which
don’t throw errors at runtime.

Calling instance methods that are not known to be only dependent on abstract
state from hashCode() and equals(Object) methods

// jdepend/src/jdepend/framework/JavaPackage.java :266

2 [object.identity.method.invocation.invalid] Cannot invoke non -

object identity method getName () from object identity context!

public class JavaPackage {

4 private String name;

6 public int hashCode () {

return getName ().hashCode ();

8 }

10 public String getName () {

return name;

12 }

}

The hashCode() method invokes the getName() method internally, but the getName() method
doesn’t have a method annotation @AbstractSateOnly that specifies it’s only dependent on the
abstract state of the receiver, even though its implementation is only dependent on abstract state
(RDA immutable field). Similar to the readonly length() method, PICO cannot infer without
explicit usage of @Readonly, without explicit usage of @AbstractSateOnly, getName() is considered
to be not only dependent on the abstract state, therefore calling it from hashCode() is warned.

Accessing non-abstract state fields in hashCode() and equals(Object) methods

Example:

70

1 // react/src/main/java/com/flowpowered/react/math/Matrix3x3.java

:346

warning: [object.identity.field.access.invalid] Object identity

context cannot reference non abstract state field mRows!

3

package com.flowpowered.react.math;

5 class Matrix3x3 {

private final Vector3 [] mRows = {

7 new Vector3 (),

new Vector3 (),

9 new Vector3 ()

};

11

@Override

13 public int hashCode () {

int hash = 7;

15 hash = 83 * hash + Arrays.deepHashCode(mRows);

return hash;

17 }

}

19

package com.flowpowered.react.math;

21 /**

* Represents a 3D vector in space.

23 */

public class Vector3 {...}

Unannotated Vector3 is a mutable type element (by default), so the type of unannotated mRows

is mutable Vector3 RDM []. According to the discussion in section 4.5, mRows doesn’t belong to
the abstract state of Matrix3x3 because the array component is mutable (not recursively RDM or
immutable). So, accessing mRows in the hashCode() method, which is @AbstractStateOnly, causes
errors.

5.2.2 PICOInfer

We have already seen PICO typechecker gives errors on unannotated code, because of the lack of
necessary mutability annotations about which PICO can do nothing. If users manually annotate
the source code, the overhead will be huge. Especially for very large projects, it would be impossible
for users to inspect every piece of the program and add annotations. PICOInfer is developed to
address this issue of manual annotation overhead.

However, PICOInfer doesn’t solve all problems listed in section 5.2.1. Initialization related
errors don’t go away. Users need to manually annotate correctly with the @UnderInitialization
annotation on helper methods called only from constructors; PICOInfer doesn’t infer assignability
qualifiers, so users also need to manually annotate some fields with @Assignable to exclude them

71

from the abstract state if those fields are re-assigned4. Inference solutions don’t necessarily satisfy
the requirement of @AbstractStateOnly methods because we can’t currently generate a correct
set of constraints in inference mode for @AbstractStateOnly methods. The reason is that for
method invocations from the hashCode() and equals(Object) methods, those methods should also
be annotated with @AbstractStateOnly. However, Checker Framework Inference doesn’t support
inferring the method declaration annotation @AbstractStateOnly nor did we manually do the
job to annotate methods with @AbstractStateOnly annotations. Therefore, we didn’t generate
constraints that enforce that methods are really only dependent on abstract states. It would be
an interesting future work to see the effect of enforcing @AbstractStateOnly on inference results
in PICOInfer.

We found PICOInfer can effectively give mutability solutions for small to large projects. How-
ever, insertion of inference solutions back to the source code still have some problems, which are
due to bugs in the Checker Framework Inference and annotation-tools as we discussed before.

We experimented PICOInfer on the same set of real-world projects as in the figure 5.1, and
analyzed the inferred results from the following dimensions:

• Correctness: do the inferred results obey PICO’s type rules?

• Usefulness: how much do the inferred results help users to understand their code? How close
are the results to real-world usage?

• Performance: how fast is PICOInfer?

As we discussed before, PICOInfer is aware of the existing @UnderInitialization qualifiers in
the source code, and generates more relaxed constraints. We tried manually annotating all the
libraries with @UnderInitialization qualifiers in the proper locations, and compared the results to
the case without the @UnderInitialization annotations. We really see the difference in inference
results between completely unannotated programs and partially annotated programs with correct
@UnderInitialization. The @Assignable qualifier is also manually annotated properly to allow
PICOInfer to give solutions for two of the benchmark projects, jdepend and jReactPhysics3D.

Instead of only being able to infer just valid solutions for a program, we implemented PICOInfer
to be tunable using PreferenceConstraints, making the solutions more useful and meaningful.
PreferenceConstraint is an existing Constraint in the Checker Framework Inference, to prefer a
particular solution to be inferred at a location if there can be multiple valid solutions. Each
PreferenceConstraint can be attached a weight. The MaxSAT solver we use in PICOInfer, will
give a set of solutions so that the sum of weights of all PreferenceConstraints are maximized. There
are three locations that has PreferenceConstraints right now. They include:

• Instance Field: prefer recursively RDM or immutable at weight 3.

• Type Element Bound: prefer RDM or immutable at weight 2

• Method Declared Receiver: prefer readonly at weight 1

• Method Formal Parameters: prefer readonly at weight 1

4Right now, any re-assignments to initialized object is considered mutation to the receiver object because PICO
and PICOInfer don’t support lazy initialization at the moment. It’s a future work to support lazy initialization.

72

Preference 1 makes more fields be in the abstract state, which is a good thing. We think this
is the most important preference compared to the others, so we attach the biggest weight, 3.

Preference 2 makes more classes be RDM and immutable, because we think these classes are
more valuable than trivial mutable classes.

Preference 3 and preference 4 prefer method declared receivers and formal parameters be
readonly, making methods more general to be invocable and to accept more kinds of arguments.
This preference avoids inferring method declared receivers and formal parameters only based on
current invocations, and propagating the same types as current invocations. This is the weakest
preference we need compared to the below two preference, so we attach weight 1.

Note that there isn’t the best weighting schema. Weights should be adjusted depending on what
are the most important properties that a user want. We compared the difference between using
the preference mechanism with the no-preference case, and got the result that adding preferences
did improve the accuracy and usefulness of inference solutions.

Only allowing upcasts in inference is too restrictive. Downcasts should also be allowed to infer
annotations for more projects. PICOInfer supports three cast policies, in which Comparable Cast
is the default. For example, in

(@1 A) @2 B

• Only Upcast: generate subtype constraint @2 <: @1

• Comparable Cast: generate ComparableConstraint @1 <:> @2.

• Any Cast: doesn’t generate any constraint. @2 can be directly casted to @1. One can
always upcast to a super type and then downcast to a subtype. But if programmers didn’t
split these operations to two separate casts (one upcast and one downcast), it would be not
possible to achieve the same effect as Any Cast using only one cast expression.

If the to-be-inferred program contains casts that are annotated with mutability qualifiers by
users and the user-written casts are not safe under the selected cast policy at compile time, PI-
COInfer doesn’t exit the inference process. Instead, PICOInfer will automatically apply Any Cast
in those cast locations to respect the existing programmer-annotated casts. After the inference, if
users use PICO type checker to typecheck the program, PICO type checker still reports a warning
for it. The motivation for this is to make more programs inferrable. Again, since PICO and
PICOInfer is a static type system that doesn’t have a runtime component, we need to find a bal-
ancing point between type soundness and freedom. It would be user’s decision which cast policy
to choose according to their specific requirements and goals.

It’s inevitable for a project to interact with third party code whose source code is not checked
nor inferred by PICO. A stub file is a file that specifies annotations on type elements and method
signatures so that they can be picked up in typechecking or inference instead of applying defaults
for them. Although users can supply stub files that specify the signatures of methods from those
third-party code, it would not be practical to list all of them. PICOInfer has to default qualifiers on
some of the unchecked third-party methods. There can be three kinds of defaulting philosophies:
pessimistic, realistic, and optimistic:

73

• Pessimistic assumption: every unchecked method returns readonly objects and accepts
bottom arguments.

• Realistic assumption: every unchecked method accept mutable arguments and returns mutabl
e objects.

• Optimistic assumption: every unchecked method accepts readonly arguments and returns
bottom objects.

The pessimistic assumption would cause every inference to fail, because neither mutable

or immutable objects can be passed into third-party methods anymore. Returned objects are
readonly, therefore any mutations to them would cause inference to give no solutions.

The realistic assumption defaults mutable to every unchecked third-party method parameter
and return type. For parameters that are actually only read, defaulting them to mutable would
cause inference to give no solutions if immutable arguments are passed in. For example, when
immutable Strings are passed to a logger method with java.lang.Object parameters only for printing
them, PICOInfer can’t give solutions because PICOInfer assumes the parameters are mutated in
the unchecked method. But due to the fact that objects in OO programs need to change states
frequently, this realistic mutable default makes sense.

Other than the above two, in the optimistic assumption, methods have readonly parameters,
so they accept all kinds of arguments (either mutable or immutable), and return bottom objects so
the methods are invocable on every site. This is the upper bound of all possible inference solutions
in terms of readonly solutions.

At the implementation level, there is a flag -AuseDefaultsForUncheckedCode=bytecode that
does the job. @Readonly and @Bottom annotations can be declared with either the pessimistic or
optimistic assumption. Then passing the above flag to PICOInfer will tell PICOInfer to use the
configured defaults in declarations of @Readonly and @Bottom for third-party library methods
from bytecode (whose source code is unavailable). If no such flag is passed, the realistic defaulting
assumption is used.

Real-world programs fall into the range between the realistic assumption and the optimistic
assumption. Solutions for those programs must be bounded between the two boundaries. The
pessimistic assumption is so conservative that no programs can invoke any unchecked methods
from third-party libraries including the Java JDK. It would be interesting to see what inference
results are in each of the cases and have an understanding about the ranges of possible solutions.

5.2.2.1 Inference Result Manual Inspection

As the first step, we conducted experiments on the 14 projects. We manually inspected part of the
source code after inference to see whether PICOInfer gives correct and useful solutions for them.

In this section, in order to get solutions, and to get more useful solutions, benchmark projects
that have initialization errors are manually annotated with @UnderInitialization annotations.
Fields that are re-assigned in readonly instance methods (invoked from the hashCode() method,
for example) are annotated with @Assignable. Fields that belong to an immutable object used
as map keys but are outside the abstract state also get manual @Assignable annotations. We use
default comparable cast to generate constraints on casting sites. We chose the realistic defaulting

74

assumption and enabled PreferenceConstraint for better solution quality. We believe the above
settings can offer the best solutions for us to analyze their correctness and usefulness.

Figure 5.3 shows details about how many manual annotations are added to each project.

Project Name Number of @UnderInitialization Number of @Assignable
ECC-RSA-Backdoor 2 0

jump 1 0
jdepend 5 1

jama 5 0
jdeb 8 0

jReactPhysics3D 1 19
react 1 0
jblas 8 0

Figure 5.3: Number of @UnderInitialization and @Assignable added

Adding @UnderInitialization qualifiers manually doesn’t indicate that all the FBC type errors
are gone, but at least we know that FBC errors that affect the inference results of PICOInfer will
be gone. This guarantee is already good enough for better results for mutability.

Only jdpend and jReactPhysics3D must have @Assignable annotations added so that PICOIn-
fer can give solutions.

jdepend also uses raw typed HashTable instead of the latest generics in Java. Statically, PI-
COInfer can only assume the type argument for raw types are “? extends @Mutable Object”. Some
methods do return the wildcard type argument, and cast them to immutable String or assign the
returned vaule to immutable String. However, the implementation of jdepend correctly casts wild-
card type arguments consistently with element types when being put into the HashTable. In order
to infer this project, PICOInfer always enables Any Cast. Otherwise, there won’t be solution.

Figure 5.4 lists the number of each qualifier in inference solutions.

Project Name Readonly Immutable RDM Mutable Bottom
bdoorProto 33 101 2 29 1

AFHbackdoor 16 49 6 38 11
FaceDetection 227 342 22 247 77

imgscalr 83 217 3 355 49
ECC-RSA-Backdoor 736 387 17 1226 178

jump 990 699 1 243 51
jdepend 736 610 102 1966 352

jama 287 1613 74 390 409
exp4j 330 823 34 277 112
jdeb 796 1390 130 1905 311

jReactPhysics3D 3950 2360 503 7564 640
react 4007 2962 513 5829 567

JLargeArrays 2039 4388 145 3197 724
jblas 7404 7466 113 5133 645

Figure 5.4: Number of each qualifier in the best combination of settings

75

Below is a class in project jdeb after inference:

1 /**

* Builds the Debian changes file.

3 */

@Immutable

5 class ChangesFileBuilder {

7 public @Mutable ChangesFile createChanges(

@Readonly ChangesFileBuilder this ,

9 @Readonly BinaryPackageControlFile packageControlFile ,

@Readonly File binaryPackage ,

11 @Readonly ChangesProvider changesProvider) throws

IOException , PackagingException {

13 ChangesFile changesFile = new @Mutable ChangesFile ();

changesFile.setChanges(changesProvider.getChangesSets ())

;

15 changesFile.initialize(packageControlFile);

17 changesFile.set("Date", ChangesFile.formatDate(new

@Mutable Date()));

19 try {

// compute the checksums of the binary package

21 InformationOutputStream md5output = new @Mutable

InformationOutputStream(new @Mutable

NullOutputStream (), MessageDigest.getInstance("MD5")

);

InformationOutputStream sha1output = new @Mutable

InformationOutputStream(md5output , MessageDigest.

getInstance("SHA1"));

23 InformationOutputStream sha256output = new @Mutable

InformationOutputStream(sha1output , MessageDigest.

getInstance("SHA -256"));

25 FileUtils.copyFile(binaryPackage , sha256output);

27 changesFile.set("Checksums -Sha1", sha1output.

getHexDigest () + " " + binaryPackage.length () + " "

+ binaryPackage.getName ());

29 changesFile.set("Checksums -Sha256", sha256output.

getHexDigest () + " " + binaryPackage.length () + " "

+ binaryPackage.getName ());

31 StringBuilder files = new @Mutable StringBuilder(

76

md5output.getHexDigest ());

files.append(’ ’).append(binaryPackage.length ());

33 files.append(’ ’).append(packageControlFile.get("

Section"));

files.append(’ ’).append(packageControlFile.get("

Priority"));

35 files.append(’ ’).append(binaryPackage.getName ());

changesFile.set("Files", files.toString ());

37 } catch (@Mutable NoSuchAlgorithmException e) {

throw new @Mutable PackagingException("Unable to

compute the checksums for " + binaryPackage , e);

39 }

41 if (! changesFile.isValid ()) {

throw new @Mutable PackagingException("Changes file

fields are invalid " + changesFile.invalidFields () +

43 ". The following fields are mandatory: " + changesFile.

getMandatoryFields () +

". Please check your pom.xml/build.xml and your control file

.");

45 }

47 return changesFile;

}

49 }

• All method parameters and receivers are inferred to be @Readonly. There are no mutating
methods called on them or re-assignments to their states. All the existing accesses to them
are readonly operations.

• The initializer for the local variable changesFile is inferred to be @Mutable, because in the
method body, there are many setters called on it, such as setChanges(), initialize() etc. The
method return type is also @Mutable, which is consistent with the fact that changesFile is
returned in the line 47.

• Since class ChangesFileBuilder is just a builder that doesn’t have state, its bound is inferred
to be @Immutable, instead of @Mutable.

• The createChanges() method gets a @Readonly receiver, because its implementation only
allocates a new object, mutates it and returns it without affecting the abstract state of the
ChangesFileBuilder instance. A @Readonly declared receiver is better than @Immutable
declared receiver because it is more general.

We could find the inferred solutions are:

• correct: There are no mutations to objects referred by readonly references

77

• useful: Solutions didn’t just contain conservative types, but instead properly assigned mu-
tability types that reflect real-world needs. For example, even though the builder class is
inferred to be @Immutable, the declared receiver of the createChanges() method still gets
inferred with @Readonly, which is more general than @Immutable.

Manually inspecting all the results is inpractical. We tried to run PICO type checker on the
inferred projects to check inferred results. However, then are several factors that make them fail
to typecheck:

• Annotation-tools throws exceptions on 9 of the projects due to its bug. Workaround for the
bug inserts solutions to wrong locations in one project (we didn’t investigate every project),
so we gave up the workaround.

• Some annotations are inferred as solutions in the internal state of the Checker Framework
Inference, but didn’t get written to jaif files because of some bugs in the Checker Framework
Inference. Jaif files are the instructions for our too, annotation-tools, to insert solutions back
to the source code. So, some locations miss annotations that are different from the default
for the corresponding locations.

• Annotation-tools doesn’t support inserting annotations to some source code locations even if
jaif files contain valid annotations for those locations. Even though solutions contain correct
annotations, they aren’t actually inserted to source code. Annotation-tools complains that
those locations are not supported and skip inserting them.

So we inspected some parts of the inferred results manually according to each type rule dis-
cussed in section 4.9 and found they obey PICO type rules. We believe PICOInfer can correctly
infer typechecking solutions internally. In order to verify this belief, we did try manually inferring
and inserting missing annotations. By inferring, it means we examine several invocation sites
or contexts of the corresponding fields and methods after inference and guess what PICOInfer
may have inferred to those positions. Then we verify the inferred annotations by checking all the
invocation sites and compare them against PICO type rules. Since this process can be very time-
consuming, we only tried it on one project, jama. For jama, we ran PICO type checker to check
whether correct annotations are “patched”. The result shows that it completely typechecks under
PICO type checker after being inferred+inserted by Checker Framework Inference and manual in-
sertion of missing annotations. Its annotated result is publicly available on the GitHub repository:
https://github.com/topnessman/jama/tree/fully-annotated.

For the following sections, the best combinations of settings are always the base case. Only
one configuration changes at each section to really show the effects of that configuration change.

5.2.2.2 Inference Solutions Without Manual @UnderInitialization

Figure 5.5 shows the number of each qualifier if @UnderInitialization is not properly inserted
manually.

78

https://github.com/topnessman/jama/tree/fully-annotated

Project Name Readonly Immutable RDM Mutable Bottom
bdoorProto 33 101 2 29 1

AFHbackdoor 16 49 6 38 11
FaceDetection 240 302 32 264 77

imgscalr 83 217 3 355 49
ECC-RSA-Backdoor 738 383 22 1220 181

jump 990 699 1 243 51
jdepend 724 615 84 1990 353

jama 306 1601 69 386 411
exp4j 331 819 36 278 112
jdeb 796 1390 130 1905 311

jReactPhysics3D 3946 2359 503 7564 645
react 4176 3052 504 5582 564

JLargeArrays 2039 4388 145 3197 724
jblas 7418 7605 131 4830 634

Figure 5.5: Number of each qualifier without manual @UnderInitialization annotations inserted

We expected the number of @Mutable annotations will increase if source code is not annotated
with @UnderInitialization, because there will be more restrictive constraints to make references
be @Mutable, for example an instance method that assigns a field. Those will be inferred to
@Mutable. However, the actual data indicates this is not the case.

We did see a change in the inferred result in ECC-RSA-Backdoor: Before removing @Under-
Initialization annotation on the copy() method, its declared receiver is inferred to @Immutable.
However, after removing @UnderInitialization, its declared receiver is inferred to @Mutable. Figure
5.6 and Figure 5.7 show each of the cases respectively.

1 private void copy(@UnderInitialization @Immutable BinNum this ,

@Mutable ALB num){

this.num = new @Mutable ALB().addA(num);

3 }

Figure 5.6: Inferred results with @UnderInitialization

1 private void copy(@Mutable BinNum this , @Mutable ALB num){

this.num = new @Mutable ALB().addA(num);

3 }

Figure 5.7: Inferred results without @UnderInitialization

5.2.2.3 Inference Solutions Without Manual @Assignable

Only two projects, jdepend and jReactPhysics3D, are affected by removing manual @Assignable
annotations. They failed to be inferred.

79

For jdepend, the failure reason is that a readonly instance method getChildren() re-assigns
the children field. Removing @Assignable makes the children field @RDA, and thus it cannot be
re-assigned through readonly references. PICOInfer detected such violation of PICO type rules,
and failed to give solutions for jdepend.

1 class AfferentNode extends PackageNode {

...

3 public String toString () {

if (getParent () == null) {

5 return "Used By - Afferent Dependencies" + " ("+

getChildren ().size() + " Packages)";

}

7

return super.toString ();

9 }

...

11 }

13 class PackageNode {

...

15 public ArrayList getChildren () {

if (children == null) {

17 children = new ArrayList ();

... Some initialization code goes here ...

19 }

21 return children;

}

23 ...

}

One might argue that the children field is part of the abstract state of the PackageNode object.
The getChildren() method is nothing else but lazy initialization of the field, but not arbitrary re-
assignment. PICO right now doesn’t support lazy initialization: it assumes that for initialized
objects, assignments to their fields are mutations. It is a future work to let PICO support lazy
initialization for better typechecking errors and inference results.

For jReactPhysics3D, RigidBody objects are used as map keys, but are re-assigned fields after
being initialized. Removing @Assignable annotations from those fields make them be in the ab-
stract state of the RigidBody objects, therefore PICOInfer cannot infer solutions for them. This
would be really a problem if the hashCode() method was overriden to depend on those re-assigned
fields. So, PICOInfer catches this possible bug by failing to give solutions for this project.

If all third-party library methods are properly annotated with mutability qualifiers in the
stub file, and PICOInfer still cannot infer solutions, it indicates that the project won’t have the
guarantees that PICO provides. In this case, programmers should go back to the source code and
add/change annotations in order for the program to be inferred by PICOInfer, and gain confidence
about the their code using PICO.

80

5.2.2.4 Inference Solutions With Optimistic and Pessimistic Assumptions

Project Name Readonly Immutable RDM Mutable Bottom
bdoorProto 44 103 2 16 1

AFHbackdoor 28 49 6 30 17
FaceDetection 296 418 12 91 88

ECC-RSA-Backdoor 894 458 25 985 182
jump 977 760 4 185 58
jama 291 1573 19 481 410
exp4j 357 909 28 152 113

jReactPhysics3D 3785 2874 452 7228 632
react 4312 3085 500 5364 550
jblas 6127 7189 171 6506 644

Figure 5.8: Number of each qualifier with optimistic assumption for unchecked methods

Figure 5.8 shows the number of each qualifier when using the optimistic assumption for unchecked
third-party code. This is the other bound for each qualifier compared to the realistic assumption.
The best-case solutions fall in this region: min of the corresponding qualifier in figure 5.4 and
max of corresponding qualifier in figure 5.8. In pessimistic assumption for unchecked methods, all
projects fail to get solutions. These bounds are trivial: all 0s, therefore we don’t consider them.
Using the range of each qualifier, we can get a rough idea about where the most-suitable solutions
are.

5.2.2.5 Inference Solutions Without PreferenceConstraint

Figure 5.9 shows number of each qualifer without PreferenceConstraints.

Project Name Readonly Immutable RDM Mutable Bottom
bdoorProto 10 89 22 41 2

AFHbackdoor 2 58 5 40 15
FaceDetection 81 435 52 267 79

imgscalr 19 262 0 373 52
ECC-RSA-Backdoor 252 1455 145 475 217

jump 774 902 5 250 53
jdepend 455 718 138 2095 360

jama 42 1765 105 439 422
exp4j 109 991 53 312 111
jdeb 349 1528 154 2193 307

jReactPhysics3D 1306 3195 493 9402 620
react 1654 3261 502 7867 593

JLargeArrays 879 5253 47 3545 768
jblas 1621 11526 697 5981 788

Figure 5.9: Number of each qualifier without PreferenceConstraints

81

Compared to the results in figure 5.4, if PreferenceConstraints are disabled, the number of
@Mutable and @Bottom qualifiers increased in every project. These increases indicate trivial
@Mutable and @Bottom are inferred more, which means the inferred results become less useful.
@Readonly annotation’ numbers decreased, meaning less method parameters and declared receivers
are inferred to be @Readonly, which is a bad thing, because inferring them to @Readonly allows
more arguments to be passed in. Numbers of @Immutable and @ReceiverDependentMutable didn’t
necessarily go up or down. They don’t have a fixed pattern to predict their increase or decrease.
In order to get more useful inference results, it’s a must to enable PreferenceConstraints.

5.2.2.6 Checker Framework Inference Statistics With And Without PreferenceCon-
straint

Checker Framework Inference statistics include how many slots and constraints are generated.
In PICOInfer, there are always 5 ConstantSlots generated, which corresponds one-to-one to the
mutability qualifiers — readonly, mutable, RDM, immutable and bottom. Numbers of constraints
differ between enabling preferences and disabling preferences.

Figure 5.10 shows Checker Framework Inference statistics without and with preference
constraints.

Project Name Slot
Total Constraint PreferenceConstraint

NoPreference Preference NoPreference Preference
bdoorProto 177 776 837 0 61

AFHbackdoor 126 769 819 0 50
FaceDetection 940 4357 4551 0 194

imgscalr 715 5150 5332 0 182
ECC-RSA-Backdoor 2560 11603 11759 0 156

jump 2012 12321 12733 0 412
jdepend 3689 17968 18632 0 664

jama 2839 8464 8727 0 263
exp4j 1630 7733 8088 0 355
jdeb 4613 28067 29232 0 1165

jReactPhysics3D 15607 62197 64591 0 2394
react 14308 63757 66422 0 2665

JLargeArrays 10707 41897 43574 0 1677
jblas 20688 97462 103188 0 5726

Figure 5.10: Numbers of Slots and Constraints (and PreferenceConstraints) generated

The same numbers of Slots are generated for each project without and with PreferenceCon-
straints. Enabling PreferenceConstraint only adds the number of PreferenceConstraint but doesn’t
affect the numbers of other constraints.

82

5.2.2.7 Solver and Timing Statistics With and Without PreferenceConstraint

In order to find out how fast the Sat4J solver can solve the constraints with the size of projects
growing, we mainly tracked three different kinds of time: parsing time for Checker Framework
Inference to parse the source file, create Slots and generate Constraints over the Slots; encoding
time for encoding Constraints into solver domain-specific problems; and solve time for solvers to
really solve the domain-specific problems. For timing statistics, we run each experiment 3 times
and take their average to reduce deviations. Figure 5.11 illustrates this.

From figure 5.11, we can find that numbers of CNF variables are the same with and without
PreferenceConstraint. This is expected, because PreferenceConstraint doesn’t add new variables
— it only adds additional CNF clauses to let solver prefer a particular solution. This also explains
why the number of CNF clauses increases when PreferenceConstaint is enabled.

The timing results are a little more interesting. Some of the results are counter-intuitive,
because normally having extra PreferenceConstraints to solve seems to slow down solving speed.
However, the experiment results show that this seemingly obvious conclusion isn’t true. In projects
such as jReactPhysics3D and react, solving time decreases even with PreferenceConstraints. This
might be due to some optimizations in Sat4J library. Overall, it at least indicates that having
PreferenceConstraints won’t slow down solving speed too much.

We can also notice that parsing time takes the most portion of the inference time. As the size
of projects go up, parsing times grow much faster than encoding and solve time. Parsing time is
the bottleneck of the performance of PICOInfer. However, parsing is done by Checker Framework
Inference, so PICOInfer cannot really do anything to improve its performance without speeding
up parsing time for inference.

Overall, encoding and solving times are very small even the project sizes grow a lot (less than
5 seconds). The sum of encoding time and solving time doesn’t grow as fast as the CNF variable
sizes and CNF clauses sizes. From bdoorProto to jblas, the number of CNF variables grows more
than 100+ times, but the sum of encoding and solving time only grows less than 3 times. This
means Sat4J library is extremely scalable as the projects sizes grow.

The hardware and software environment for the experiments is:

• Personal laptop

• Intel Core i5-7200U CPU @ 2.50GHz 4 processor

• 7.7 GB RAM memory

• 64-bit Ubuntu 16.04 OS

• Java(TM) SE Runtime Environment (build 1.8.0 73-b02)

• Max Heap Size: 2.07 GB

This environment information also applies to experiments of GUTInfer in section 6.4.

83

P
ro

je
ct

N
am

e
C

N
F

V
ar

ia
b
le

N
o

P
re

fe
re

n
ce

P
re

fe
re

n
ce

C
N

F
C

la
u
se

s
T

im
in

g(
m

s)
C

N
F

C
la

u
se

s
T

im
in

g(
m

s)
P

ar
si

n
g

E
n
co

d
in

g
S
ol

ve
P

ar
si

n
g

E
n
co

d
in

g
S
ol

ve
b

d
o
or

P
ro

to
23

17
38

01
22

11
14

10
14

38
84

22
73

20
10

15
A

F
H

b
ac

k
d
o
or

16
43

28
20

24
05

12
10

09
28

70
24

47
12

10
14

F
ac

eD
et

ec
ti

on
12

50
9

21
14

6
53

07
47

10
04

21
34

0
53

26
48

10
10

im
gs

ca
lr

10
07

3
18

34
1

72
52

41
10

05
18

52
3

58
71

38
10

03
E

C
C

-R
S
A

-B
ac

k
d
o
or

35
59

3
64

51
5

10
78

5
89

10
09

64
67

1
99

42
91

10
05

ju
m

p
28

75
7

54
00

1
64

45
10

4
10

05
54

41
3

59
95

12
6

10
07

jd
ep

en
d

49
66

0
85

61
9

10
63

5
10

1
10

03
86

28
3

10
93

0
10

7
10

05
ja

m
a

37
79

4
60

95
9

18
54

3
84

10
12

61
22

2
17

19
4

67
10

08
ex

p
4j

21
56

3
37

37
8

66
97

62
10

09
37

73
3

60
93

55
10

02
jd

eb
64

60
1

11
54

72
13

56
5

13
5

10
02

11
66

35
13

44
0

19
6

10
06

jR
ea

ct
P

h
y
si

cs
3D

21
66

20
38

40
64

27
85

2
44

2
40

05
38

64
56

26
02

5
31

7
20

04
re

ac
t

19
68

95
35

93
51

32
40

9
31

9
40

08
36

20
14

35
42

3
35

1
20

03
J
L

ar
ge

A
rr

ay
s

14
87

79
25

14
45

34
16

0
19

6
10

02
25

31
20

32
68

6
23

6
14

11
jb

la
s

29
28

00
51

52
54

60
61

3
42

3
20

03
52

10
35

56
90

7
56

5
10

02

F
ig

u
re

5.
11

:
S
ol

ve
r

re
la

te
d

st
at

is
ti

cs
an

d
ti

m
in

g
in

fo
rm

at
io

n
w

it
h

an
d

w
it

h
ou

t
P

re
fe

re
n
ce

C
on

st
ra

in
t

84

Chapter 6

Improvements to the Generic Universe
Type System

This chapter is structured as follows: section 6.1 gives implementation-level information about the
improvements to GUT type system. Section 6.2 discusses additional types that are made implicitly
bottom. Section 6.3 discusses possible problem of viewpoint adapting types to bottom receiver and
solution for it. Section 6.4 shows experiment results of running GUTInfer on real-world projects.

6.1 Implementation Improvements

GUT and GUTInfer were implemented based on the Checker Framework and Checker Framework
Inference, but typechecking checker and inference checker were seperate before. This caused extra
effort to maintain the two systems and to keep them in sync. We unify the typechecking and
inference system for GUT in one checker. The new checker can both typecheck programs and infer
annotations for unannotated programs. Existing test cases all passed after this refactoring.

The new checker uses framework-level viewpoint adaptation logic that greatly reduces the
amount of code from GUT implementation. On the typechecking side, GUT only needs to specify
a minimum set of information to specify how GUT qualifiers can be combined and what result each
combination yields. On the inference side, GUTInfer only overrides InferenceViewpointAdapter
for the sake of performance. For example, if the declared type is implicitly bottom, the result
should always be bottom so there is no need to use the general implementation in InferenceView-
pointAdapter to generate a new result Slot — keeping the declared type is enough.

Previously, GUTInfer had Sat4J[12] encoding logic of viewpoint adaptation in its own package.
We decided to change to the new Type Constraint Solver[21], because it can save lots of duplicate
work in GUT. For example, SubtypeConstraint, EqualityConstraints and so on are common and
don’t need to be implemented inside GUT again. The only thing we can’t get for free from the Type
Constraint Solver is the encoding logic for viewpoint adaptation, as it needs type-system-specific
logic. We adapted the logic of encoding CombineConstraints based on the new Type Constraint
Solver.

The new implementation contains 17 Java files and 1478 lines of Java code for core logic; 37
files and 654 lines of Java code for the testcases.

85

In order to differentiate GUT type checker and GUT inference, we still use GUTInfer to indicate
the checker is used in inference mode.

6.2 Implicit Bottom Types

In GUT, there is an internal qualifier bottom that means no ownership is needed. Primitive types
such as int, long, and float can only hold numeric values that aren’t owned by any object. So,
primitive types have type bottom.

However, the previous GUT implementation doesn’t handle boxed primitive types and String
types well. They can have arbituary ownership modifiers on them and those ownership modifiers
don’t have any effect on the subtype relations. For example, the below are true in old GUT:

@Rep String <: @Peer String

2 @Any Integer <: @Rep Integer

@Rep Integer <: @Bottom int

Ownership modifers are inconsistently used for boxed primitive types and Strings, and cause
confusion. Especially on the inference side, constraint generations on them are confusing.

To address the inconsistency problem, we changed implicit rules so that all the below types
and literals are implicitly bottom:

• Primitive types: int, double, boolean, byte, char, float, int, long and short

• Boxed primitive types: Integer, Double, Boolean, Byte, Character, Float, Integer, Long,
Short

• String

• All literals: primitive literals, null literal, class literals

If other ownership qualifers are used on the above types, a type-invalid error will be raised.

6.3 Viewpoint Adaptation To Bottom Receiver Problems

After making the eight boxed primitive types and java.lang.String implicitly bottom, there comes
another problem: parameters of instance methods declared inside those classes can’t be defaulted
to peer anymore. For example:

1 package java.lang;

public final class String {

3 boolean contentEquals(/*@Peer*/ StringBuffer sb) {...}

}

5 ...

String s = "Hello";

7 s.contentEquals (...);

86

Method invocation at line 7 will always get stuck: by default, parameter sb has type @Peer
StringBuffer. Since method invocation on line 7 is an instance method invocation, the declared type
of the parameter, @Peer, should be adapted to @Bottom String, which results in @Lost according
to the viewpoint adaptation rules of GUT. However, writing to a lost type is not allowed at
any time in GUT as we discussed before. Therefore, no matter what arguments are passed, the
method invocation itself will always get stuck. In order to fix this issue, we manually annotated
methods declared in the boxed primitive types and String: all reference typed parameters (except
implicitly bottom typed ones) are annotated to accept any arguments in the stub file. Constructor
invocations also have the same problem. We also manually annotated their parameter types to
any.

The reason why we make the parameters any isn’t just because after viewpoint adaptation they
yield non-lost results, but we also believe they are not mutated inside the method bodies and
constructor bodies. Besides, the parameters of the methods and constructors don’t need concrete
ownership type information. Based on the above two reasons, we make the parameters any.

6.4 Experiments - GUTInfer

6.4.1 Benchmarks

We chose 10 open-source projects — four benchmarks from previous GUT inference paper[19], SRI1

hackathon projects, and some scientific libraries used by researchers and scientists from GitHub
to evaluate how GUTInfer performs on real-world projects. Some of them are the same as ones in
PICO’s experiments in section 5.2. Below is a summarization of additional libraries that are not
introduced before in section 5.2.

Project Name File Blank Comment Sloc
bdoorProto 8 52 81 152

AFHbackdoor 5 49 26 161
imgscalr 11 302 2186 1181

ECC-RSA-Backdoor 5 416 332 1251
javad 32 922 1410 1846

jdepend 22 869 942 2557
jama 10 589 931 2599

classycle 87 659 3540 4678
zip 48 956 5266 5466

JLargeArrays 17 882 2496 11337

• javad a Java class file disassembler

• classycle analysing tool for Java class and package dependencies

• zip JDKs implementation of the zip and gzip compression algorithms, taken from OracleJDK
1.7

1https://www.sri.com/

87

https://www.sri.com/

6.4.2 Inference Results

The numbers of peer and rep qualifiers inferred when enforcing static topology only and enforcing
the owner-as-modifier principle is shown in figure 6.1; the numbers of any, lost, self, bottom
qualifiers inferred when enforcing static topology only and enforcing the owner-as-modifier principle
is shown in figure 6.2;

Project Name
Peer Rep

Topol OAM Topol OAM
bdoorProto 4 7 23 22

AFHbackdoor 22 23 1 0
imgscalr 175 172 4 7

ECC-RSA-Backdoor 1034 1107 24 24
javad 212 424 170 115

jdepend 792 1027 371 294
jama 146 282 223 312

classycle 1040 1260 608 595
zip 436 514 248 209

JLargeArrays 790 902 1354 1458

Figure 6.1: Numbers of peer and rep qualifiers inferred for static topology and owner-as-modifier

Project Name
Any Lost Self Bottom

Topol OAM Topol OAM Topol OAM Topol OAM
bdoorProto 38 36 3 3 29 29 43 43

AFHbackdoor 11 12 21 20 24 25 42 41
imgscalr 174 175 88 87 50 50 227 227

ECC-RSA-Backdoor 262 260 690 644 202 186 309 300
javad 270 163 190 154 250 235 612 613

jdepend 487 314 655 616 743 712 677 631
jama 874 669 204 198 156 153 955 944

classycle 816 652 935 892 780 785 1491 1486
zip 294 250 359 361 473 474 900 902

JLargeArrays 1475 1445 1307 1145 1148 1124 3294 3294

Figure 6.2: Numbers of other ownership qualifiers inferred for static topology and owner-as-modifier

GUTInfer can infer solutions that enforce only the static topology or the owner-as-modifier
principle. In the static topology mode, GUTInfer only infers topology of objects, but doesn’t
prevent non-pure methods from being invoked on non-owner references. Pure methods are methods
that don’t side effect receiver objects’ states. In the owner-as-modifier mode, however, solutions
guarantee that any and lost references are not used to call non-pure methods because any and
lost references mean the current receiver object is not the owner of the referred-to object. We
can see from figure 6.2 that after enabling the owner-as-modifier principle, numbers of any and
lost references go down, which is expected. Figure 6.1 shows that numbers of peer go up, but
numbers of rep references go down in general. This is normal, because if there are more numbers

88

of ownership levels, more easily lost is produced. But lost is forbidden to be used mutate the
receiver object. So ownership structure becomes flatter (more peer). But we also see in some
projects, numbers of peer and rep both increase. This may be because there were too many any

and lost references that were used to mutate the receivers before. Having more rep in this case
means that previous no-so-structured any and lost aliases now form a hierarchical structure, so
the mutations are initiated more by owners.

For the correctness of inference results, we choose 1 project imgscalr and use GUT type checker
to check whether the inferred results typecheck or not. The result shows that both inference solu-
tions for enforcing the static topology only and enforcing the owner-as-modifier principle typecheck.

6.4.3 Checker Framework Inference Statistics

We collected the number of slots and constraints generated for each project. In each project,
there are always 6 ConstantSlots generated, each for one GUT qualifier. Generally, as the sizes
of projects grow, numbers of slots and constraints increase. Figure 6.3 shows how many slots
are generated for each project and numbers of constrains when enforcing the static topology and
enforcing the owner-as-modifier principle.

Project Name Slot
Constraint

Topol OAM
bdoorProto 163 300 317

AFHbackdoor 131 271 309
imgscalr 753 1913 1973

ECC-RSA-Backdoor 2570 5285 5756
javad 1815 3986 4186

jdepend 3805 6364 6705
jama 2836 5521 5756

classycle 5901 10852 11654
zip 2764 6221 6585

JLargeArrays 10060 22791 24035

Figure 6.3: Numbers of Slots and Constraints generated

When enforcing the owner-as-modifier principle, in addition to the constraints generated for
static topologies, additional InequalityConstraints are generated to forbid modification through
any or lost references. Therefore, increases in the number of constraints are as expected.

6.4.4 Solver and Timing Statistics

Figure 6.4 lists solver-related statistics and timing statistics for each project when only enforcing
the static topology. For the running time, we run each project three times and take the average
to reduce the deviation.

89

Project Name CNF Variable CNF Clauses
Timing(ms)

Parsing Encoding Solve
bdoorProto 2326 4338 2280 10 1010

AFHbackdoor 1779 3336 3563 15 1016
imgscalr 11469 21360 6338 39 1007

ECC-RSA-Backdoor 38747 87488 11380 84 2349
javad 28067 56456 5935 62 1004

jdepend 51491 104666 9188 104 1342
jama 44458 83964 17862 75 2007

classycle 86408 173719 13256 118 2670
zip 42037 83866 7867 76 1385

JLargeArrays 152953 299988 38352 221 9008

Figure 6.4: Solver statistic and timing information for static topology

Figure 6.4 shows that as the sizes of projects grow, sizes of CNF variables and clauses grow
quite fast. Most of the time in inference is spent on parsing Java source files, generating slots
and constraints. Encoding time and solve time grow much slower than the growing speed of CNF
variables and clauses.

Hardware and software information is the same as that in experiments for PICO. See section
5.2.2.7 for details.

90

Chapter 7

Problems And Future Work

Although we successfully applied GUT and PICO on some real-world projects, there is still lots of
space for improvement.

First, GUTInfer still infers @Self and @Bottom qualifiers on locations that are not qualified to
use those two annotations. But this problem is a general issue for every type systems that uses
Type Constraint Solver. The reason is that Type Constraint Solver doesn’t consider the semantics
of each type system and provides the most general encoding for slots, thus every qualifier has the
equal opportunity of being inferred even though for that location some qualifiers are not qualified.
One possible solution is to enforce a @QualifiedLocations meta-annotation, and uniformly enforce
it in Checker Framework and Checker Framework Inference. On the typechecking side, if an
annotation is not qualified on specific locations or types, issue errors. On the inference side,
generate InequalityConstraints so that unqualified annotations are not inferred on that location
or type. We have started working on this, but still need some time to implement it correctly.

Inference results right now cannot typecheck completely. One reason is as we mentioned above
— some unqualified qualifiers are inferred for unqualified locations or types. The other reason is
annotations are not inserted to some locations and they didn’t get solutions. Even if there are
solutions for some locations, they are not supported or failed to be inserted back to the source
code by annotation-tools for various unknown reasons. Important future work is to file those bugs
and fix them because every type system inference gets affected by them. After that, we need to
run PICO type checker to verify the inferred solutions completely typecheck.

As we discussed before, inference of mutability qualifiers can be affected by existing FBC qual-
ifier, @UnderInitialization — if a method’s declared receiver type is @UnderInitialization, then
field assignments in the method won’t generate constraint that the receiver must be @Mutable,
because during the construction phase, immutable and RDM receivers are also allowed to assign
fields. However, other FBC qualifiers won’t affect the inference result of mutability qualifiers. It’s
the best for PICOInfer to infer both FBC qualifiers and mutability qualifiers for unannotated pro-
grams. However, the Checker Framework Inference does not support inferring two type hierarchies
at one time, so we can’t implement PICOInfer right now to infer both initialization hierarchy and
mutability hierarchy at the same time. The workaround we took in the previous section is that we
manually annotated the programs with @UnderInitialization. Instead of inferring two hierarchies
at the same time, another possible solution is to infer in two passes: first infer initialization hier-
archy, then infer the mutability hierarchy. However, there is no efficient inference for FBC type
system and it would be not trivial to implement it correctly. Again, the annotation-tools bugs

91

should be fixed first in order to make the two-passes approach work. Otherwise, even if correct
annotations are inferred, if they are not inserted correctly, the second pass still gets an ill-typed
program that biases the inference for mutability hierarchy. It’s also good future work to infer
assignability qualifiers.

At the moment, even though PICO can warn about depending on non-abstract-state fields
in abstract-state-only methods such as hashCode(), it’s not guaranteed to prevent solutions from
depending on non-abstract-state fields when inferred programs are typechecked. The reason is
that in practice, other instance methods may also be called from those abstract-state-only meth-
ods, but they are not annotated with meta-annotation @AbstractStateOnly. PICOInfer can only
assume those methods are not only dependent on abstract states if the method called doesn’t have
explicit @AbstractStateOnly annotation, and abort the inference. This would be too restrictive.
If we could have a way of inferring @AbstractStateOnly during the whole inference process, there
could be nice solutions that prevent depending on non-abstract-state fields. However, till now,
Checker Framework Inference does not support inferring method declaration annotations. We also
need to think about the interactions between inference of method declarations annotations and
inference of existing annotated types. It would be a good feature to support in the future. An-
other possible solution is to manually examine the programs and annotate methods that should
be @AbstractStateOnly. But, this approach may need too much human effort.

PICO right now doesn’t support lazy initialization, but it’s also interesting to let it support
lazy initialization, without having to make the lazily-initialized fields be @Assignable, which makes
less fields be in the abstract state.

As a future work, we also want to extend the PICO formalization to also consider generics.
After extending formalization to generics, we plan to prove the soundness of PICO using theorem
provers such as Coq to mathematically have more confidence on PICO.

We also plan to work on a new type system that combines GUT and PICO. Having owner-
ship and immutability type systems combined into one type system must have very interesting
applications. We can use ownership information and mutability of the object itself to have many
interesting combinations that help controlling side-effects through references.

92

Chapter 8

Conclusions

In this thesis, we presented work that makes context sensitivity a framework-level feature in the
Checker Framework and Checker Framework Inference, and its successful applications to type-
checking/inference and two type systems, GUT and PICO. If type systems need either one of or
both receiver-context and assignment-context sensitivity, they can get it/them for free without
implementing it/them again.

We also introduced a brand new immutability type system, PICO, that supports abstract,
transitive, and object immutability features. We utilized the existing FBC type system to handle
initialization problems nicely, without worrying about initialization of immutable objects and
possible aliasing problems. We believe PICO stands out among other immutability type systems
by having flexible enough features such as supports for generics, exclusion of fields from the abstract
state, sensitivity to receiver contexts and assignment contexts etc. In order to reduce the burden of
manually writing mutability qualifiers, we developed PICOInfer, and inferred mutability qualifiers
for real-world projects up to 63.5kSloc.

We adapted the GUT implementation to the new framework-level context sensitivity feature
and latest Type Constraint Solver in Checker Framework Inference, and improved its ability to
better handle corner cases for boxed primitive types and Strings, which also made GUTInfer logic
easier. Then we successfully applied GUTInfer and inferred solutions for projects up to 31kSloc.

Finally, we concluded existing problems and interesting future works that are worthy to work
on, for example, combing PICO and GUT into a new type system to achieve even finer grained
control over mutations and side-effects. We are confident that we’ll achieve all these goals in the
future.

93

References

[1] A-normal form. https://en.wikipedia.org/wiki/A-normal_form. Accessed: 2018-04-20.

[2] Automatic type refinement. https://checkerframework.org/manual/#type-refinement.
Accessed: 2018-04-21.

[3] Checker Framework. https://github.com/typetools/checker-framework. Accessed:
2018-03-23.

[4] Checker Framework Inference. https://github.com/typetools/

checker-framework-inference. Accessed: 2018-03-23.

[5] Google core libraries for Java. https://github.com/google/guava. Accessed: 2018-03-24.

[6] How to create a new checker. https://checkerframework.org/manual/

#creating-a-checker. Accessed: 2018-03-23.

[7] Immutable Objects. https://docs.oracle.com/javase/tutorial/essential/

concurrency/immutable.html. Accessed: 2018-03-23.

[8] Immutable, Type declaration annotated with @Immutable is not immutable. http://

errorprone.info/bugpattern/Immutable/. Accessed: 2018-03-24.

[9] Lingeling, Plingeling and Treengeling. http://fmv.jku.at/lingeling/. Accessed: 2018-03-
23.

[10] LogicBlox. http://www.logicblox.com/technology/. Accessed: 2018-03-23.

[11] Nullness Checker. https://checkerframework.org/manual/#nullness-checker. Accessed:
2018-04-21.

[12] Sat4j, the boolean satisfaction and optimization library in Java. http://www.sat4j.org/.
Accessed: 2018-03-23.

[13] Type Annotations and Pluggable Type Systems. https://docs.oracle.com/javase/

tutorial/java/annotations/type_annotations.html. Accessed: 2018-03-23.

[14] Uniform access principle. https://en.wikipedia.org/wiki/Uniform_access_principle.
Accessed: 2018-04-14.

[15] Luca Cardelli. Type systems. In CRC Handbook of Computer Science and Engineering,
chapter 97. CRC Press, second edition, Feburary 2004.

94

https://en.wikipedia.org/wiki/A-normal_form
https://checkerframework.org/manual/#type-refinement
https://github.com/typetools/checker-framework
https://github.com/typetools/checker-framework-inference
https://github.com/typetools/checker-framework-inference
https://github.com/google/guava
https://checkerframework.org/manual/#creating-a-checker
https://checkerframework.org/manual/#creating-a-checker
https://docs.oracle.com/javase/tutorial/essential/concurrency/immutable.html
https://docs.oracle.com/javase/tutorial/essential/concurrency/immutable.html
http://errorprone.info/bugpattern/Immutable/
http://errorprone.info/bugpattern/Immutable/
http://fmv.jku.at/lingeling/
http://www.logicblox.com/technology/
https://checkerframework.org/manual/#nullness-checker
http://www.sat4j.org/
https://docs.oracle.com/javase/tutorial/java/annotations/type_annotations.html
https://docs.oracle.com/javase/tutorial/java/annotations/type_annotations.html
https://en.wikipedia.org/wiki/Uniform_access_principle

[16] Dave Clarke, James Noble, and Tobias Wrigstad, editors. Aliasing in Object-Oriented Pro-
gramming: Types, Analysis, and Verification. Springer-Verlag, Berlin, Heidelberg, 2013.

[17] Michael Coblenz, Joshua Sunshine, Jonathan Aldrich, Brad Myers, Sam Weber, and Forrest
Shull. Exploring language support for immutability. In Proceedings of the 38th International
Conference on Software Engineering, ICSE ’16, pages 736–747, New York, NY, USA, 2016.
ACM.

[18] Leonardo de Moura and Nikolaj Bjørner. Z3: An efficient smt solver. In C. R. Ramakrishnan
and Jakob Rehof, editors, Tools and Algorithms for the Construction and Analysis of Systems,
pages 337–340, Berlin, Heidelberg, 2008. Springer Berlin Heidelberg.

[19] W. Dietl, M. D. Ernst, and P. M”uller. Tunable Static Inference for Generic Universe Types.
In European Conference on Object-Oriented Programming (ECOOP), July.

[20] Wei Huang, Ana Milanova, Werner Dietl, and Michael D. Ernst. Reim & reiminfer:
Checking and inference of reference immutability and method purity. In Proceedings of the
ACM International Conference on Object Oriented Programming Systems Languages and Ap-
plications, OOPSLA ’12, pages 879–896, New York, NY, USA, 2012. ACM.

[21] Jianchu Li. A General Pluggable Type Inference Framework and its use for Data-flow Anal-
ysis. available online. https://uwspace.uwaterloo.ca/bitstream/handle/10012/11771/

Li_Jianchu.pdf?sequence=1; accessed 2018-03-23.

[22] Coblenz Michael, Sunshine Joshua, and Weber Sam. Exploring Language Support for Im-
mutability. In IEEE International Conference on Software Engineering, 2016.

[23] Alexander J. Summers and Peter Mueller. Freedom before commitment: A lightweight type
system for object initialisation. In Proceedings of the 2011 ACM International Conference
on Object Oriented Programming Systems Languages and Applications, OOPSLA ’11, pages
1013–1032, New York, NY, USA, 2011. ACM.

[24] Matthew S. Tschantz and Michael D. Ernst. Javari: Adding reference immutability to java. In
Proceedings of the 20th Annual ACM SIGPLAN Conference on Object-oriented Programming,
Systems, Languages, and Applications, OOPSLA ’05, pages 211–230, New York, NY, USA,
2005. ACM.

[25] Dietl Werner, Drossopoulou Sophia, and Muller Peter. Generic Universe Types. In European
Conference on Object-Oriented Programming, 2007.

95

https://uwspace.uwaterloo.ca/bitstream/handle/10012/11771/Li_Jianchu.pdf?sequence=1
https://uwspace.uwaterloo.ca/bitstream/handle/10012/11771/Li_Jianchu.pdf?sequence=1

	List of Figures
	Introduction
	Motivation
	Contribution
	Thesis Organization

	Background And Related Works
	Background on Checker Framework
	Background on Checker Framework Inference
	Background on Generic Universe Type System (GUT)
	Background on Freedom Before Commitment (FBC) Type System
	Background on Immutability
	Related Work
	Javari
	ReIm And ReImInfer
	Google Error Prone Immutable

	Context Sensitivity
	Introduction
	Receiver-context Sensitivity
	Assignment-context sensitivity
	Interaction Between Receiver-Context Sensitivity And Assignment-Context Sensitivity
	Implementation Details
	Receiver-context sensitivity
	Assignment-context sensitivity

	Practical Immutability For Classes And Objects (PICO) Type System
	Overview
	Qualifiers And Hierarchies
	Mutability Hierarchy
	Assignability Dimension

	Viewpoint Adaptation Rule
	Motivating Examples
	Immutable Object And Its Creation
	Receiver-Context Sensitivity
	Assignment-Context sensitivity
	Separation of Assignability and Mutability
	Transitive Immutability Guarantee
	Exclude Fields From Abstract State
	Initialization of Immutable Objects

	Abstract State
	Implicits
	Defaults
	Initialization Defaults
	Mutability Defaults
	Assignability Defaults

	Language Design
	Valid New Instance Creation Types
	Type Element Bound
	Compatability With Super Type Element
	Fields
	Field Initializations
	Constructors
	Cirular Initialization of Immutable Objects
	Compatiblity Between Constructor And Type Element Bound
	Compatability Between Current Constructor and This/Super Constructor
	Compatability Between Type Usage With Type Element Bound
	Instance Methods
	Instance Methods Invocations
	Instance Methods Overriding
	PolyMutable Methods And Their Resolutions
	Static Context
	Possible Loophole Of Assignable Fields
	Arrays
	Type Casts

	Formalization
	Language Syntax Definition
	Type Environment
	Subtype Relations
	Helper Function
	Viewpoint Adaptation Rules
	Typing Rules
	Well-formedness Rules
	Extension to Real Java With Static And Blocks

	Implementation And Experiments — PICO
	Implementation
	PICO Type Checker
	PICOInfer

	Experiments
	PICO Type Checker
	PICOInfer

	Improvements to the Generic Universe Type System
	Implementation Improvements
	Implicit Bottom Types
	Viewpoint Adaptation To Bottom Receiver Problems
	Experiments - GUTInfer
	Benchmarks
	Inference Results
	Checker Framework Inference Statistics
	Solver and Timing Statistics

	Problems And Future Work
	Conclusions
	References

