98 research outputs found

    Algebraic Analysis of Vertex-Distinguishing Edge-Colorings

    Get PDF
    Vertex-distinguishing edge-colorings (vdec colorings) are a restriction of proper edge-colorings. These special colorings require that the sets of edge colors incident to every vertex be distinct. This is a relatively new field of study. We present a survey of known results concerning vdec colorings. We also define a new matrix which may be used to study vdec colorings, and examine its properties. We find several bounds on the eigenvalues of this matrix, as well as results concerning its determinant, and other properties. We finish by examining related topics and open problems

    The bidimensionality theory and its algorithmic applications

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Mathematics, 2005.Includes bibliographical references (p. 201-219).Our newly developing theory of bidimensional graph problems provides general techniques for designing efficient fixed-parameter algorithms and approximation algorithms for NP- hard graph problems in broad classes of graphs. This theory applies to graph problems that are bidimensional in the sense that (1) the solution value for the k x k grid graph (and similar graphs) grows with k, typically as Q(k²), and (2) the solution value goes down when contracting edges and optionally when deleting edges. Examples of such problems include feedback vertex set, vertex cover, minimum maximal matching, face cover, a series of vertex- removal parameters, dominating set, edge dominating set, r-dominating set, connected dominating set, connected edge dominating set, connected r-dominating set, and unweighted TSP tour (a walk in the graph visiting all vertices). Bidimensional problems have many structural properties; for example, any graph embeddable in a surface of bounded genus has treewidth bounded above by the square root of the problem's solution value. These properties lead to efficient-often subexponential-fixed-parameter algorithms, as well as polynomial-time approximation schemes, for many minor-closed graph classes. One type of minor-closed graph class of particular relevance has bounded local treewidth, in the sense that the treewidth of a graph is bounded above in terms of the diameter; indeed, we show that such a bound is always at most linear. The bidimensionality theory unifies and improves several previous results.(cont.) The theory is based on algorithmic and combinatorial extensions to parts of the Robertson-Seymour Graph Minor Theory, in particular initiating a parallel theory of graph contractions. The foundation of this work is the topological theory of drawings of graphs on surfaces and our results regarding the relation (the linearity) of the size of the largest grid minor in terms of treewidth in bounded-genus graphs and more generally in graphs excluding a fixed graph H as a minor. In this thesis, we also develop the algorithmic theory of vertex separators, and its relation to the embeddings of certain metric spaces. Unlike in the edge case, we show that embeddings into L₁ (and even Euclidean embeddings) are insufficient, but that the additional structure provided by many embedding theorems does suffice for our purposes. We obtain an O[sq. root( log n)] approximation for min-ratio vertex cuts in general graphs, based on a new semidefinite relaxation of the problem, and a tight analysis of the integrality gap which is shown to be [theta][sq. root(log n)]. We also prove various approximate max-flow/min-vertex- cut theorems, which in particular give a constant-factor approximation for min-ratio vertex cuts in any excluded-minor family of graphs. Previously, this was known only for planar graphs, and for general excluded-minor families the best-known ratio was O(log n). These results have a number of applications. We exhibit an O[sq. root (log n)] pseudo-approximation for finding balanced vertex separators in general graphs.(cont.) Furthermore, we obtain improved approximation ratios for treewidth: In any graph of treewidth k, we show how to find a tree decomposition of width at most O(k[sq. root(log k)]), whereas previous algorithms yielded O(k log k). For graphs excluding a fixed graph as a minor, we give a constant-factor approximation for the treewidth; this via the bidimensionality theory can be used to obtain the first polynomial-time approximation schemes for problems like minimum feedback vertex set and minimum connected dominating set in such graphs.by MohammadTaghi Hajiaghayi.Ph.D

    On the adjacent-vertex-distinguishing-total colouring of graphs

    Get PDF
    Orientadores: Célia Picinin de Mello, Christiane Neme CamposTexto em português e inglêsDissertação (mestrado) - Universidade Estadual de Campinas, Instituto de ComputaçãoResumo: O problema da coloração total semiforte foi introduzido por Zhang et al. por volta de 2005. Este problema consiste em associar cores às arestas e aos vértices de um grafo G=(V(G),E(G)), utilizando o menor número de cores possível, de forma que: (i) quaisquer dois vértices ou duas arestas adjacentes possuam cores distintas; (ii) cada vértice tenha cor diferente das cores das arestas que nele incidem; e, além disso, (iii) para quaisquer dois vértices adjacentes u,v pertencentes a V(G), o conjunto das cores que colorem u e suas arestas incidentes é distinto do conjunto das cores que colorem v e suas arestas incidentes. Denominamos esse menor número de cores para o qual um grafo admite uma coloração total semiforte como número cromático total semiforte. Zhang et al. também determinaram o número cromático total semiforte de algumas famílias clássicas de grafos e observaram que todas elas possuem uma coloração total semiforte com no máximo Delta(G)+3 cores. Com base nesta observação, eles conjeturaram que Delta(G)+3 cores seriam suficientes para construir uma coloração total semiforte para qualquer grafo simples G. Essa conjetura é denominada Conjetura da Coloração Total Semiforte e permanece aberta para grafos arbitrários, tendo sido verificada apenas para algumas famílias de grafos. Nesta dissertação, apresentamos uma resenha dos principais resultados existentes envolvendo a coloração total semiforte. Além disso, determinamos o número cromático total semiforte para as seguintes famílias: os grafos simples com Delta(G)=3 e sem vértices adjacentes de grau máximo; os snarks-flor; os snarks de Goldberg; os snarks de Blanusa generalizados; os snarks de Loupekine LP1; e os grafos equipartidos completos de ordem par. Verificamos que os grafos destas famílias possuem número cromático total semiforte menor ou igual a Delta(G)+2. Investigamos também a coloração total semiforte dos grafos tripartidos e dos grafos equipartidos completos de ordem ímpar e verificamos que os grafos destas famílias possuem número cromático total semiforte menor ou igual a Delta(G)+3. Os resultados obtidos confirmam a validade da Conjetura da Coloração Total Semiforte para todas as famílias consideradas nesta dissertaçãoAbstract: The adjacent-vertex-distinguishing-total-colouring (AVD-total-colouring) problem was introduced and studied by Zhang et al. around 2005. This problem consists in associating colours to the vertices and edges of a graph G=(V(G),E(G)) using the least number of colours, such that: (i) any two adjacent vertices or adjacent edges receive distinct colours; (ii) each vertex receive a colour different from the colours of its incident edges; and (iii) for any two adjacent vertices u,v of G, the set of colours that color u and its incident edges is distinct from the set of colours that color v and its incident edges. The smallest number of colours for which a graph G admits an AVD-total-colouring is named its AVD-total chromatic number. Zhang et al. determined the AVD-total chromatic number for some classical families of graphs and noted that all of them admit an AVD-total-colouring with no more than Delta(G)+3 colours. Based on this observation, the authors conjectured that Delta(G)+3 colours would be sufficient to construct an AVD-total-colouring for any simple graph G. This conjecture is called the AVD-Total-Colouring Conjecture and remains open for arbitrary graphs, having been verified for a few families of graphs. In this dissertation, we present an overview of the main existing results related to the AVD-total-colouring of graphs. Furthermore, we determine the AVD-total-chromatic number for the following families of graphs: simple graphs with Delta(G)=3 and without adjacent vertices of maximum degree; flower-snarks; Goldberg snarks; generalized Blanusa snarks; Loupekine snarks; and complete equipartite graphs of even order. We verify that the graphs of these families have AVD-total-chromatic number at most Delta(G)+2. Additionally, we verify that the AVD-Total-Colouring Conjecture is true for tripartite graphs and complete equipartite graphs of odd order. These results confirm the validity of the AVD-Total-Colouring Conjecture for all the families considered in this dissertationMestradoCiência da ComputaçãoMestre em Ciência da Computaçã

    LIPIcs, Volume 258, SoCG 2023, Complete Volume

    Get PDF
    LIPIcs, Volume 258, SoCG 2023, Complete Volum

    Advanced Sensing and Image Processing Techniques for Healthcare Applications

    Get PDF
    This Special Issue aims to attract the latest research and findings in the design, development and experimentation of healthcare-related technologies. This includes, but is not limited to, using novel sensing, imaging, data processing, machine learning, and artificially intelligent devices and algorithms to assist/monitor the elderly, patients, and the disabled population

    Rotulações próprias por gap : variantes de arestas e de vértices

    Get PDF
    Orientadores: Christiane Neme Campos, Rafael Crivellari Saliba SchoueryDissertação (mestrado) - Universidade Estadual de Campinas, Instituto de ComputaçãoResumo: Uma rotulação própria é uma atribuição de valores numéricos aos elementos de um grafo, que podem ser seus vértices, arestas ou ambos, de modo a obter - usando certas funções matemáticas sobre o conjunto de rótulos - uma coloração dos vértices do grafo tal que nenhum par de vértices adjacentes receba a mesma cor. Este texto aborda o problema da rotulação própria por gap em suas versões de arestas e de vértices. Na versão de arestas, um vértice de grau pelo menos dois tem sua cor definida como a maior diferença, i.e. o maior gap, entre os rótulos de suas arestas incidentes; já na variante de vértices, o gap é definido pela maior diferença entre os rótulos dos seus vértices adjacentes. Para vértices de grau um, sua cor é dada pelo rótulo da sua aresta incidente, no caso da versão de arestas, e pelo rótulo de seu vértice adjacente, no caso da versão de vértices. Finalmente, vértices de grau zero recebem cor um. O menor número de rótulos para o qual um grafo admite uma rotulação própria por gap de arestas vértices é chamado edge-gap (vertex-gap) number. Neste trabalho, apresentamos um breve histórico das rotulações próprias por gap e os resultados obtidos para as duas versões do problema. Estudamos o edge-gap e o vertex-gap numbers para as famílias de ciclos, coroas, rodas, grafos unicíclicos e algumas classes de snarks. Adicionalmente, na versão de vértices, investigamos a família de grafos cúbicos bipartidos hamiltonianos, desenvolvendo diversas técnicas de rotulação para grafos nesta classe. Em uma abordagem relacionada, provamos resultados de complexidade para a família dos grafos subcúbicos bipartidos. Além disso, demonstramos propriedades estruturais destas rotulações de vértices por gap e estabelecemos limitantes inferiores e superiores justos para o vertex-gap number de grafos arbitrários. Mostramos, ainda, que nem todos os grafos admitem uma rotulação de vértices por gap, exibindo duas famílias infinitas que não admitem tal rotulação. A partir dessas classes, definimos um novo parâmetro chamado de gap-strength, referente ao menor número de arestas que precisam ser removidas de um grafo de modo a obter um novo grafo que é gap-vértice-rotulável. Estabelecemos um limitante superior para o gap-strength de grafos completos e apresentamos evidências de que este valor pode ser um limitante inferiorAbstract: A proper labelling is an assignment of numerical values to the elements of a graph, which can be vertices, edges or both, so as to obtain - through the use of mathematical functions over the set of labels - a vertex-colouring of the graph such that every pair of adjacent vertices receives different colours. This text addresses the proper gap-labelling problem in its edge and vertex variants. In the former, a vertex of degree at least two has its colour defined by the largest difference, or gap, among the labels of its incident edges; in the vertex variant, the gap is defined by the largest difference among the labels of its adjacent vertices. For a degree-one vertex, its colour is defined by the label of its incident edge, in the edge version, and by the label of its adjacent vertex, in the vertex variant. Finally, degree-zero vertices receive colour one. The least number of labels for which a graph admits a proper gap-labelling of its edges (vertices) is called the edge-gap (vertex-gap) number. In this work, we present a brief history of proper gap-labellings and our results for both versions of the problem. We study the edge-gap and vertex-gap numbers for the families of cycles, crowns, wheels, unicyclic graphs and some classes of snarks. Additionally, in the vertex version, we investigate the family of cubic bipartite hamiltonian graphs and develop several labelling techniques for graphs in this class. In a related approach, we prove hardness results for the family of subcubic bipartite graphs. Also, we demonstrate structural properties of gap-vertex-labelable graphs and establish tight lower and upper bounds for the vertex-gap number of arbitrary graphs. We also show that not all graphs admit a proper gap-labelling, exhibiting two infinite families of graphs for which no such vertex-labelling exists. Thus, we define a new parameter called the gap-strength of graphs, which is the least number of edges that have to be removed from a graph so as to obtain a new, gap-vertex-labelable graph. We establish an upper bound for the gap-strength of complete graphs and argue that this value can also be used as a lower boundMestradoCiência da ComputaçãoMestre em Ciência da ComputaçãoCAPE
    corecore