
Universidade Estadual de Campinas
Instituto de Computação

INSTITUTO DE
COMPUTAÇÃO

Celso Aimbiré Weffort Santos

Proper gap-labellings:
on the edge and vertex variants

Rotulações próprias por gap:
variantes de arestas e de vértices

CAMPINAS
2018



Celso Aimbiré Weffort Santos

Proper gap-labellings:
on the edge and vertex variants

Rotulações próprias por gap:
variantes de arestas e de vértices

Dissertação apresentada ao Instituto de
Computação da Universidade Estadual de
Campinas como parte dos requisitos para a
obtenção do título de Mestre em Ciência da
Computação.

Thesis presented to the Institute of Computing
of the University of Campinas in partial
fulfillment of the requirements for the degree of
Master in Computer Science.

Supervisor/Orientadora: Profa. Dra. Christiane Neme Campos
Co-supervisor/Coorientador: Prof. Dr. Rafael Crivellari Saliba Schouery

Este exemplar corresponde à versão final da
Dissertação defendida por Celso Aimbiré
Weffort Santos e orientada pela Profa. Dra.
Christiane Neme Campos.

CAMPINAS
2018



Agência(s) de fomento e nº(s) de processo(s): CAPES
ORCID:  https://orcid.org/0000-0001-6691-5316

Ficha catalográfica
Universidade Estadual de Campinas

Biblioteca do Instituto de Matemática, Estatística e Computação Científica
Ana Regina Machado - CRB 8/5467

    
  Santos, Celso Aimbiré Weffort, 1990-  
 Sa59p SanProper gap-labellings : on the edge and vertex variants / Celso Aimbiré

Weffort Santos. – Campinas, SP : [s.n.], 2018.
 

   
  SanOrientador: Christiane Neme Campos.
  SanCoorientador: Rafael Crivellari Saliba Schouery.
  SanDissertação (mestrado) – Universidade Estadual de Campinas, Instituto de

Computação.
 

    
  San1. Rotulação de grafos. 2. Coloração de grafos. 3. Teoria de grafos. 4.

Teoria da computação. I. Campos, Christiane Neme, 1972-. II. Schouery,
Rafael Crivellari Saliba, 1986-. III. Universidade Estadual de Campinas.
Instituto de Computação. IV. Título.

 

Informações para Biblioteca Digital

Título em outro idioma: Rotulações próprias por gap : variantes de arestas e de vértices
Palavras-chave em inglês:
Graph labelings
Graph coloring
Graph theory
Theory of computing
Área de concentração: Ciência da Computação
Titulação: Mestre em Ciência da Computação
Banca examinadora:
Christiane Neme Campos [Orientador]
Simone Dantas de Souza
Flávio Keidi Miyazawa
Sheila Morais de Almeida
Data de defesa: 22-05-2018
Programa de Pós-Graduação: Ciência da Computação

Powered by TCPDF (www.tcpdf.org)



Universidade Estadual de Campinas
Instituto de Computação

INSTITUTO DE
COMPUTAÇÃO

Celso Aimbiré Weffort Santos

Proper gap-labellings:
on the edge and vertex variants

Rotulações próprias por gap:
variantes de arestas e de vértices

Banca Examinadora:

• Profa. Dra. Christiane Neme Campos
Universidade Estadual de Campinas

• Profa. Dra. Simone Dantas de Souza
Universidade Federal Fluminense

• Prof. Dr. Flávio Keidi Miyazawa
Universidade Estadual de Campinas

• Profa. Dra. Sheila Morais de Almeida
Universidade Tecnológica Federal do Paraná

A ata da defesa com as respectivas assinaturas dos membros da banca encontra-se no
processo de vida acadêmica do aluno.

Campinas, 22 de maio de 2018



Agradecimentos

A conclusão deste trabalho não seria possível sem a ajuda indispensável de professores,
familiares, amigos e colegas.

� Agradeço, em primeiro lugar, a Deus: pela capacitação e pela inteligência. Sem Ele,
nada disso seria possível; a Ele, todo o mérito, todo o louvor, toda a honra e toda
a glória.

� Agradeço à minha maravilhosa esposa, Bianca Cristine: pelo apoio e suporte, pela
paciência, pelas discussões e correções, pela presença e companhia. Você é minha
alegria, minha inspiração e o amor da minha vida.

� Agradeço, especialmente, à Profa. Christiane: por confiar no meu trabalho, por
se dispor a me orientar e, principalmente, pela amizade e pelo carinho que você e
sua família demonstram diariamente. Você me ensinou muito mais do que Teoria
de Grafos e métodos de prova; você me ensinou como ser um pesquisador melhor e
uma pessoa melhor.

� De semelhante modo, agradeço ao Prof. Rafael: pela contribuição importantís-
sima ao trabalho e à minha formação. Obrigado pelas discussões, ensinamentos e
descontrações.

� Agradeço aos membros da banca: Profa. Sheila, Profa. Simone e Prof. Flávio. Pela
cuidadosa leitura, correção e avaliação da dissertação.

� Agradeço aos meus pais: Cid e Almeriane. Pelo encorajamento, pelo apoio e, prin-
cipalmente, pela amizade.

� Agradeço ao Prof. Lehilton por ter disponibilizado o tempo de seu aluno de doutorado
para concluir os trabalhos pendentes do mestrado.

� Em particular, agradeço ao meu colega de orientação Atílio, pela contribuição que
tornou possível a minha tão-desejada redução.

� Não por menos, agradeço também aos membros da Secretaria de Pós-Graduação do
IC. Denise e Wilson, a ajuda e prontidão de vocês foi indispensável em todas as
etapas deste mestrado.

� Agradeço às agências de fomento à pesquisa, CAPES e CNPq, pelo auxílio finan-
ceiro, tanto para os meus estudos quanto para as apresentações de trabalhos em
congressos.

� Por fim, agradeço aos membros do LOCo pelo ambiente divertido de trabalho, pelas
conversas, pelas críticas e pelos elogios.



Resumo

Uma rotulação própria é uma atribuição de valores numéricos aos elementos de um grafo,
que podem ser seus vértices, arestas ou ambos, de modo a obter – usando certas funções
matemáticas sobre o conjunto de rótulos – uma coloração dos vértices do grafo tal que
nenhum par de vértices adjacentes receba a mesma cor.

Este texto aborda o problema da rotulação própria por gap em suas versões de arestas e
de vértices. Na versão de arestas, um vértice de grau pelo menos dois tem sua cor definida
como a maior diferença, i.e. o maior gap, entre os rótulos de suas arestas incidentes; já
na variante de vértices, o gap é definido pela maior diferença entre os rótulos dos seus
vértices adjacentes. Para vértices de grau um, sua cor é dada pelo rótulo da sua aresta
incidente, no caso da versão de arestas, e pelo rótulo de seu vértice adjacente, no caso da
versão de vértices. Finalmente, vértices de grau zero recebem cor um. O menor número de
rótulos para o qual um grafo admite uma rotulação própria por gap de arestas (vértices)
é chamado edge-gap (vertex-gap) number.

Neste trabalho, apresentamos um breve histórico das rotulações próprias por gap e os
resultados obtidos para as duas versões do problema. Estudamos o edge-gap e o vertex-gap
numbers para as famílias de ciclos, coroas, rodas, grafos unicíclicos e algumas classes de
snarks. Adicionalmente, na versão de vértices, investigamos a família de grafos cúbicos
bipartidos hamiltonianos, desenvolvendo diversas técnicas de rotulação para grafos nesta
classe.

Em uma abordagem relacionada, provamos resultados de complexidade para a família
dos grafos subcúbicos bipartidos. Além disso, demonstramos propriedades estruturais
destas rotulações de vértices por gap e estabelecemos limitantes inferiores e superiores
justos para o vertex-gap number de grafos arbitrários. Mostramos, ainda, que nem todos
os grafos admitem uma rotulação de vértices por gap, exibindo duas famílias infinitas que
não admitem tal rotulação. A partir dessas classes, definimos um novo parâmetro chamado
de gap-strength, referente ao menor número de arestas que precisam ser removidas de um
grafo de modo a obter um novo grafo que é gap-vértice-rotulável. Estabelecemos um
limitante superior para o gap-strength de grafos completos e apresentamos evidências de
que este valor pode ser um limitante inferior.



Abstract

A proper labelling is an assignment of numerical values to the elements of a graph, which
can be vertices, edges or both, so as to obtain – through the use of mathematical functions
over the set of labels – a vertex-colouring of the graph such that every pair of adjacent
vertices receives different colours.

This text addresses the proper gap-labelling problem in its edge and vertex variants. In
the former, a vertex of degree at least two has its colour defined by the largest difference,
or gap, among the labels of its incident edges; in the vertex variant, the gap is defined by
the largest difference among the labels of its adjacent vertices. For a degree-one vertex,
its colour is defined by the label of its incident edge, in the edge version, and by the label
of its adjacent vertex, in the vertex variant. Finally, degree-zero vertices receive colour
one. The least number of labels for which a graph admits a proper gap-labelling of its
edges (vertices) is called the edge-gap (vertex-gap) number.

In this work, we present a brief history of proper gap-labellings and our results for both
versions of the problem. We study the edge-gap and vertex-gap numbers for the families
of cycles, crowns, wheels, unicyclic graphs and some classes of snarks. Additionally, in
the vertex version, we investigate the family of cubic bipartite hamiltonian graphs and
develop several labelling techniques for graphs in this class.

In a related approach, we prove hardness results for the family of subcubic bipartite
graphs. Also, we demonstrate structural properties of gap-vertex-labelable graphs and
establish tight lower and upper bounds for the vertex-gap number of arbitrary graphs. We
also show that not all graphs admit a proper gap-labelling, exhibiting two infinite families
of graphs for which no such vertex-labelling exists. Thus, we define a new parameter
called the gap-strength of graphs, which is the least number of edges that have to be
removed from a graph so as to obtain a new, gap-vertex-labelable graph. We establish an
upper bound for the gap-strength of complete graphs and argue that this value can also
be used as a lower bound.
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Chapter 1

Introduction

Graph Theory is arguably one of the most important theoretical fields of study in Com-
puter Science and its applications to day-to-day problems have attracted many researchers.
The origins of Graph Theory can be traced back to 1852, when Francis Guthrie asked
whether, given a map divided into regions and a set of colours, it would suffice to use only
four of these colours to paint the regions of the map, such that no two neighbouring re-
gions receive the same colour. Although the statement of this problem, which nowadays is
referred to as the Four-Colour Problem, is fairly simple and intuitive, it remained unsolved
for over one hundred years. In 1976, K. Appel and W. Haken [2] presented a controver-
sial computer-aided proof to this problem. Almost twenty years later, N. Robertson et
al. [23] presented a more simplified proof. However, no proof exists until this day to the
Four-Colour Problem which does not require an extensive case-checking phase, that can
only be done with the help of a computer.

The many attempts to prove (or disprove) the Four-Colour Problem originated and
developed several fundamental areas in Graph Theory. In fact, many concepts in these
areas are used in applications which are apparently unrelated to Graph Theory. As an
example, consider the implementation and development of social networks, which are
largely based on Graph Theory.

In this work, we study graph labellings, which is concerned with the assignment of
numerical values to the elements of a graph, obeying some arithmetical properties. More-
over, we study the concepts of graph labellings intertwined with graph colourings, in an
area of research called Proper Graph Labellings. This area originated in the 1960s when
A. Rosa [24] proposed labellings of graphs using numerical values that, through some
mathematical function over the set of labelled elements, create a colouring of the graph.
In particular, this thesis presents progress on two types of proper labellings: the edge and
the vertex versions of gap-labellings.

The remainder of this chapter is divided as follows. We begin by presenting some
fundamental concepts of Computer Science in Section 1.1. In Section 1.2, we introduce
basic concepts, definitions and terminology used in Graph Theory. Finally, Section 1.3
provides a short history of graph labellings and an overview of proper gap-labellings.
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1.1 Computational complexity

A (computational) problem is a general question accompanied with some parameters,
referred to as input, for which one desires to obtain a specific answer, called output. A set
of input data to a specific computational problem is called an instance of the problem.
The size n of an instance is the value which reflects the amount of data that is required
to describe such instance. The statement informs the desired relationship between input
and output. As an example, consider the Primality problem.

Primality
Instance: An integer k.
Question: Is k a prime number?

In this case, k is the input data and each distinct value of k is a different instance of
Primality. The value of k in this problem, however, does not necessarily reflect the size
of the instance. Given a binary representation of k, it requires dlog2 ke bits to describe
each instance. Hence, in this example, the size of the input is n = dlog2 ke.

Note that the output of Primality is a simple1 “yes” or “no” answer. A problem
whose output is a yes or no answer is called a decision problem. An instance of a decision
problem P whose answer is “yes” is referred to as a yes instance of P . Analogously, a no
instance of P is one whose answer is “no”.

There are other types of problems which require an answer that is more complex
than just a yes/no. For example, consider a problem which asks for an ordering of a
given set of integers {n1, n2, . . . , nm}. This example perfectly distinguishes the concepts
of input and instance. For this problem, the input is always a set and each distinct set is
a different instance. The output for this problem is an m-tuple (n′1, n

′
2, . . . , n

′
m), which is

a permutation of the input data, where n′1 ≤ n′2 ≤ . . . ≤ n′m.
Another type of problems are those called optimization problems. In this case, we wish

to find, for a given instance, a solution which is optimal according to some criteria that is
specified in the statement. For example, consider one of the most notorious problems in
Theoretical Computer Science, the Travelling Salesman Problem, stated as follows.

Travelling Salesman Problem (TSP)
Instance: A set of cities and distances between every pair of them.
Question: What is the shortest possible route that visits each city exactly once

and returns to the first city?

As an example, consider Figure 1.1(a), which depicts a set of four cities. Figure 1.1(b)
presents some of the possible routes, each of which visits every city and returns to the first
city, highlighted in red. For this particular instance, an optimal route travels a distance
of 220, starting at São Paulo, for example, then visiting Florianópolis, Foz do Iguaçu and
Curitiba, in sequence.

An algorithm is a finite set of rules which provides a sequence of operations that resolve
a specific computational problem. According to D. E. Knuth [19], every algorithm has

1The word simple, here, is used as an abuse of notation. We are not implying that solving this problem
is simple in any way; only that the answer is just a yes or no.
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Foz do Iguaçu
Curitiba

Florianópolis

São Paulo

53

25

34103

64

69

(a) An instance of TSP.

FOZ CWB

FLO

SP

FOZ CWB

FLO

SP

FOZ CWB

FLO

SP

(b) Three possible routes, with travelled distances 226, 250 and 220, respectively. The rightmost
is an optimal solution for this instance of TSP.

Figure 1.1: Example of the Travelling Salesman Problem.

five important characteristics: (i) it always ends, that is, it executes in a finite amount
of time; (ii) each step of the algorithm is rigorously defined, allowing no ambiguities or
doubts as to which operation should be executed in each step; (iii) it has input; and (iv)
output data; and, finally, (v) an algorithm must be feasible, that is, the operations in an
algorithm must be sufficiently basic such that any person will be able to perform them.

The area of Computational Complexity consists of determining the amount of re-
sources that are required to execute an algorithm. These resources encompass memory
usage, communication bandwidth, power consumption, amount of hardware required, and
execution time. The latter is the main focus of our study. Let us, then, define T (n) as
the maximum running time of an algorithm that solves a given problem P , for instances
of size n. An algorithm is said to be efficient if T (n) is bound by some polynomial f(n),
for a sufficiently large n.

Consider an arbitrary computational problem P and let AP be the collection of all
(known and unknown) algorithms that solve P . If there exists an efficient algorithm
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in AP , then P is said to be tractable, or polynomial-time solvable. However, if no such
algorithm exists, and AP is a nonempty collection, then P is said to be intractable. Class P
comprises all tractable decision problems, that is, problems for which the yes/no answer
can be determined in polynomial time.

Instances of intractable problems can be, at most, verified in polynomial time. This
procedure is done by a verification algorithm, which receives as input two objects: an
instance of the problem and a set of arguments related to that instance; these arguments
are called a certificate. The output of a verification algorithm is either yes or no. In case
of the former, we say that the verification algorithm accepts the certificate. According to
P. Feofiloff [9], a polynomial-time verification algorithm for a decision problem P is such
that: (i) for every yes instance of P , there exists a certificate which the algorithm accepts
in polynomial time (in the size of the instance of P); and (ii) for every no instance, there
is no acceptable certificate.

As an illustration of a verifying algorithm, consider the decision version of the Trav-
elling Salesman Problem, TSP-Decision. In this variant, we ask whether there exists a
route that visits each city exactly once, returns to the first city and has length no more
than a parameter k ∈ Z≥0, instead of asking for an optimal solution/route. A possible ver-
ifying algorithm for this problem receives as input an arbitrary instance of TSP-Decision
and a sequence of cities c1, c2, . . . , cn, c1. By following this sequence, the algorithm sums
the distances between consecutive cities. At the end, it checks if the total sum is less than
or equal to the input parameter k. If so, the algorithm answers yes. In this case, sequence
c1, c2, . . . , cn, c1 is the certificate and, moreover, the verification is done in polynomial time.

With that in mind, let us define NP as the class that comprises all the decision problems
whose yes instances can be verified in polynomial time. Note that a problem P which
belongs to P also belongs to class NP – one needs only use, as a verifying algorithm for P ,
the existing efficient algorithm that solves the problem. Therefore, P ⊆ NP.

Now, consider two decision problems P1 and P2. Let I1 be any instance of P1 whose
answer is R1. Let f be an algorithm which transforms I1 into an instance I2 of P2,
whose answer is R2. If answer R1 is yes if and only if answer R2 is also yes , then f is a
reduction from P1 to P2. Additionally, if f executes in polynomial time, we say that P1

is polynomial-time reducible to P2 and denote this relationship by P1 �P
P2.

Polynomial-time reducibility between problems P1 and P2 implies two fundamental
consequences. First, suppose there exists an efficient algorithm A2 that solves P2, i.e.
A2 ∈ P. Then, there exists an algorithm A1 that: transforms I1 into I2 using f ; solves I2
using A2; and answers R1 = R2. Thus, P1 is also in P since A1 also executes in polynomial
time. In this case, we say that P1 is as easy as P2. The second consequence follows in
the other direction and requires further attention; this is done next.

Let P1 and P2 be two problems. If P1 �P
P2, we know that solving an instance of P2

also solves an (equivalent) instance of P1. Therefore, we conclude that solving problem P2

is at least as hard as solving problem P1. Note that if P1 belongs to a certain class of
problems – say NP, for example – then problem P2 is at least as hard as an NP problem.

Then, we can define NP-hard as the class of problems P such that every problem
P ′ ∈ NP can be reduced to P in polynomial time. Finally, class NP-complete is defined
as the class of decision problems P such that: (i) P ∈ NP; and (ii) P is NP-hard. We
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abuse notation and say that a problem P is NP-complete when P belongs to this class.
The aforementioned problem TSP-Decision is an example of an NP-complete problem.
This means that every other decision problem in NP is polynomial-time reducible to TSP-
Decision. Therefore, if a polynomial-time algorithm is discovered for this problem (or
any other NP-complete problem), then the entire NP class collapses into P, implying that
P = NP. In this context, NP-complete problems are considered the “hardest” problems
in NP and comprise many of the day-to-day problems we face. Moreover, an efficient
algorithm for any NP-complete problem has yet to be discovered. In fact, the question
“is P = NP?” remains open, with many researchers devoting their efforts to settle the
question.

In this work, we focus on certain problems in Graph Theory, many of which have been
proven to be NP-complete. Before we present these problems, it is necessary to introduce
some concepts and the basic terminology used throughout this thesis.

1.2 Graph theory

A graph G = (V (G), E(G)) is an ordered pair consisting of a nonempty finite set V (G) of
vertices, a finite set E(G) of edges, disjoint from V (G), together with an incidence func-
tion, ψG, that associates each edge e ∈ E(G) with an unordered pair of (not necessarily
distinct) vertices of V (G). The elements of a graph are its vertices and its edges. The
number |V (G)| denotes the order of a graph and |E(G)| denotes its size. If ψG(e) = {u, v}
for an edge e of E(G), we say that u and v are the ends of e, or, equivalently, that u
and v are its endpoints. Whenever there is no ambiguity, V (G) may be denoted simply
by V , E(G), by E and ψG, by ψ.

A graphical representation of a graph G in the plane is called a drawing of G. In this
work, all drawings of graphs have vertices represented as different points on the plane, and
each edge is represented by a simple curve joining its ends. Also, a point corresponding
to a vertex v ∈ V (G) and a curve corresponding to an edge e ∈ E(G) intersect in a
drawing of G if and only if v is an endpoint of e. We say that G is planar if there exists
a drawing of the graph in the plane such that no two edges of G intersect, except at its
endpoints. Figure 1.2 shows drawings of some graphs. Observe that in Figure 1.2(a), the
incidence function is represented implicitly by the curves connecting vertices; as examples:
ψ(e1) = {v0, v1}, ψ(e6) = {v3} and ψ(e7) = ψ(e8) = ψ(e9) = {v2, v4}. Also, note that
the graph in Figure 1.2(a) is planar. Figures 1.2(b) and 1.2(c) illustrate two different
drawings of the well known Petersen Graph without naming its vertices and edges.

A graph with a single vertex and no edges is called a trivial graph; a graph with no
edges is called an empty graph. We say that an edge e = {u, v} links vertices u and v. If
an edge of G has a single vertex as both its ends, that is, edge e has ψG(e) = {u, u} = {u},
for some u ∈ V (G), then e is called a loop. If there are two edges e, f ∈ E(G) such that
ψ(e) = ψ(f), then e and f are called parallel or multiple edges. A simple graph is a
graph without loops and parallel edges. In this work, all graphs considered are simple.
Therefore, each edge e of G, such that ψ(e) = {u, v}, is unique and can be denoted simply
by e = uv. Thus, we can omit the incidence function ψ since it is implicitly defined by
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Figure 1.2: Drawings of graphs.

the ends of the edges. In Figure 1.2(a), e6 is a loop and e7, e8 and e9 are parallel edges.
Adjacency is a relation between elements of the same set. Two vertices u, v in a

graph G are adjacent if edge uv exists in E(G). Similarly, two edges are adjacent if
they share a common endpoint. Additionally, we define incidence as a relation between
elements of different sets, that is, between an edge and a vertex. We say that an edge e
is incident with a vertex v (and vice-versa) if e has v as one of its endpoints.

The neighbourhood N(v) ⊆ V (G) of a vertex v ∈ V (G) is the set of vertices that
are adjacent to v. The closed neighbourhood of a vertex v, denoted by N [v], is defined
as N [v] = N(v) ∪ {v}. If N [v] = V (G), then v is called a universal vertex. The set
of edges incident with a vertex v is denoted by E(v). In Figure 1.2(a), for instance,
E(v1) = {e1, e2}, E(v4) = {e5, e7, e8, e9}, and N(v2) = {v1, v3, v4}, N [v2] = {v1, v2, v3, v4},
and N(v3) = N [v3] = {v0, v2, v3, v4}.

Let v be a vertex of V (G). The degree of v in G, denoted by dG(v), is the number of
times v is an endpoint of edges in G. For example, vertices v3 and v4 in Figure 1.2(a) have
dG(v3) = 5 and dG(v4) = 4. If there is no ambiguity, dG(v) is denoted in the text simply
by d(v). The maximum degree of G is defined as ∆(G) = max{d(v) : v ∈ V (G)}; similarly,
the minimum degree of G is defined as δ(G) = min{d(v) : v ∈ V (G)}. If d(v) = k for
every v ∈ V (G), then G is said to be k-regular. In particular, when k = 3, G is called a
cubic graph. The Petersen Graph, illustrated in Figure 1.2(b), is an example of a cubic
graph. For the purposes of this work, we also define a subcubic graph, in which d(v) ≤ 3

for every vertex v.
A graph H is a subgraph of G, denoted by H ⊆ G, if V (H) ⊆ V (G), E(H) ⊆ E(G)

and ψH is a restriction of ψG to E(H). Note that every edge e = uv in E(H) has its ends
u, v in V (H). If H ⊆ G, we say that G contains graph H or, equivalently, that G has H
(as a subgraph). Additionally, H is said to be contained in G. A graph with vertex set
X ⊆ V (G) and edge set composed of every edge of G with both ends in X is an induced
subgraph of G and is denoted by G[X]. Figure 1.3 illustrates a graph G, a subgraph
H ⊆ G and an induced subgraph H ′ ⊆ G.

Let G and H be two graphs. An isomorphism from G to H is a pair (φ, θ) where
φ : V (G) → V (H) and θ : E(G) → E(H) are two bijections with the property that
ψG(e) = {u, v} if and only if ψH(θ(e)) = {φ(u), φ(v)}. In this case, we say that G and H
are isomorphic and denote this relation by G ∼= H. Note that the graphs in Figure 1.2(b)



15

a b

cd

x y

zw

G

(a)
a b

x y

w

H

(b)
b

x y

zw

H ′

(c)

Figure 1.3: In (a), a graph G; in (b), a subgraph of H of G; and in (c), an induced
subgraph H ′ = G[{b, x, y, z, w}]. Note that H is not an induced subgraph since edge
xy 6∈ E(H).

and 1.2(c) are isomorphic since they are different drawings of the Petersen Graph.
A clique in a graph is a set of mutually adjacent vertices. On the other hand, a set

of vertices that is pairwise nonadjacent is an independent set. Figure 1.4 illustrates these
concepts. A matching M of a graph G is a set of pairwise nonadjacent edges; such a set is
also called an independent set of edges of E(G). If a vertex v of G is incident with an edge
e ∈M , we say that v is saturated byM ; otherwise, v is unsaturated byM . A matchingM
is said to be maximal if there is no other matching M ′ in G such that M ⊂M ′. If every
v ∈ V (G) is saturated by a matching M , we say that M is a perfect matching of G. In
Figure 1.5, we provide some examples of matchings of graphs.

v5 v4 v2 v7

v1

v3
v6

(a) Graph G.

v5 v4 v2 v7

v1

v3
v6

(b) A clique in G.

v5 v4 v2 v7

v1

v3
v6

(c) An independent set.

Figure 1.4: A graph G and illustrations of cliques and independents sets in G.

Many times, it is necessary to perform modifications to the structure of a graph G

through some operations in the elements of G. Next, we define some of these that are
important in this work.

Let G be a graph, e ∈ E(G) and v ∈ V (G). The graph G − v is obtained by
removing vertex v from V (G). Therefore, G − v has vertex set V (G)\{v} and edge set
E(G)\{uv : uv ∈ E(G)}. Similarly, graph G − e is obtained by removing edge e from
E(G). In this case, the vertex set remains unchanged, while E(G − e) = E(G)\{e}.
For a given set of elements X ⊆ V (G) or X ⊆ E(G), the removal of X from G, denoted
by G\X, is defined as the removal, in any order, of each element x ∈ X from G, according
to the previous operations.
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G1

M1

(a)
G2

M2

(b)

Figure 1.5: Examples of matchings.

Now, let u,w ∈ V (G) be two distinct vertices of a simple graph G. The identification
of u and w is the operation defined by: (i) adding a new vertex vuw to G; (ii) removing
vertices u and w from G; (iii) for every xy ∈ E(G), x ∈ {u,w}, add edge vuwy to the
new graph; and (iv) removing any parallel edges and loops that may have been created in
step (iii). The graph resulting from identifying vertices u,w is denoted by Guw. Figure 1.6
illustrates this operation.

u w

G
vuw

Guw

Figure 1.6: The identification of vertices u and w.

A walk in a graph G is an alternating sequence of vertices and edges P = v0e1v1 . . . elvl
such that ei ∈ E(G), vi ∈ V (G) and ei = vi−1vi. If there is no repetition of vertices in P ,
it is called a path between v0 and vl. In case of simple graphs, we omit the edges in P since
every edge vi−1vi is uniquely determined. The number l of edges in a walk is its length and
is denoted by |P |. If there exists a path between u, v in G, then u and v are connected and
the distance between them is dist(u, v) = min{|P | : P is a path between u and v}; if u
and v are not connected, we define dist(u, v) = ∞. For example, there are several paths
between vertices a and z in Figure 1.3(a): P1 = abcdwz, P2 = adwxybz, P3 = axwdcz.
However, the shortest paths are P4 = abz and P5 = axz, both of length 2. Therefore,
dist(a, z) = 2.

A graph is connected if every pair u, v of vertices of G is connected. A maximal
subgraph of G that satisfies this property is called a connected component of G. A graph
that has no cycle is acyclic. A tree is a connected acyclic graph and is usually denoted by T .
Connectedness plays an essential role in Graph Theory. For instance, when considering
planarity, we can restrict our attention to connected graphs because a graph is planar if
and only if each of its connected components is planar.

Now, let c(G) denote the number of connected components of a graph G. For any
edge e of G, either c(G − e) = c(G) or c(G − e) = c(G) + 1. In the latter case, we say
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that e is a cut edge or, equivalently, a bridge. Thus, removing e from G increases the
number of connected components of G. A connected graph is said to be l-edge-connected,
l ≥ 1, if it requires the removal of l or more edges in order to disconnect G. For example,
graph G in Figure 1.7 is a 2-edge-connected graph since: there are no cut edges in G; and
removing edges e1 and e2 disconnects G.

e1

e2

Figure 1.7: A 2-edge-connected graph G.

A similar definition is used for vertices. A subset V ′ of V (G) of a graph G is a vertex
cut of G if c(G − V ′) > c(G). If V ′ = {v}, vertex v is a cut vertex of G. A connected
graph is l-connected, l ≥ 1, if there does not exist a vertex cut V ′ in G with |V ′| < l.
Note that graph G in Figure 1.7 is also 2-connected since there are no cut vertices in G.

We close this section defining some traditional families of graphs, which are collections
of graphs. By studying a family F of graphs, it is possible to extend results obtained for a
given graph G ∈ F , which shares some structural property with every other graph H ∈ F .
Other families and their properties are defined in further chapters of the text.

First, a complete graph, Kn, is a simple graph of order n for which every pair of
distinct vertices is adjacent. Figure 1.8(a) shows the complete graph with five vertices.
A cycle Cn of order n ≥ 3 is a simple graph with vertices V = {v0, v1, . . . , vn−1} and edge
set E = {v0v1, v1v2, . . . , vn−2vn−1, vn−1v0}. If the order of a cycle Cn is even (odd), we say
that Cn is an even (odd) cycle. Figure 1.8(b) exemplifies cycle C7.

A bipartite graph is a graph whose vertex set V can be partitioned into two subsets, X
and Y , such that every edge e ∈ E(G) has one end in X and the other, in Y . Such a
partition {X, Y } of the vertices of V (G) is called a bipartition of G. If G is a bipartite
graph with {X, Y } one of its bipartitions, it is also denoted by G[X, Y ]. If each vertex
x ∈ X is linked to every vertex y ∈ Y , then the graph is called a complete bipartite graph
and is denoted by Kr,s with r = |X| and s = |Y |. Figure 1.8(c) exemplifies K3,5. In
particular, the complete bipartite graph K1,n is called a star and is denoted by Sn. In
this text, V (Sn) = {v0, v1, . . . , vn}, where vn ∈ X is the central vertex. Notice that for
star graph Sn, |X| = 1 and n denotes the size of part Y .

Finally, a hypergraph H = (V,E ) is defined similarly to graphs, where V is a nonempty
finite set of vertices and E is a set of nonempty subsets of V called hyperedges. Observe
that if every hyperedge has exactly two distinct vertices, then H can be viewed as a
simple graph. If every hyperedge in H contains the same number k of vertices, then H

is said to be k-uniform. Moreover, if every vertex in V belongs to k hyperedges, then H

is k-regular.
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(a) (b)
X

Y

(c)

Figure 1.8: In (a), complete graph K5; in (b), cycle C7; and in (c), complete bipartite
graph K3,5.

1.2.1 Graph Colourings

In Graph Theory, the area of Graph Colourings studies the assignment of colours to
the elements of a graph G; these elements can be its vertices, edges or both. A vertex-
colouring is an assignment of colours to the vertices of G. Similarly, an edge-colouring is
an assignment of colours to the edges of G. Finally, a total-colouring is an assignment of
colours to both the edges and the vertices. A colouring of a graph is said to be proper if
no two adjacent/incident elements receive the same colour.

Let u, v ∈ V (G) be two adjacent vertices in a graph G. If u and v receive the same
colour in a vertex-colouring c of G, we say that there exists a conflict in c. Equivalently, u
and v are said to be conflicting vertices, or that they have conflicting colours.

If a proper vertex-colouring of G uses k different colours, we say that G admits a
k-(vertex-)colouring. Equivalently, we say that G is k-colourable. The least k for which G
admits a proper vertex-colouring is called the chromatic number of G and is denoted
by χ(G). Additionally, a proper edge-colouring of a graph G is an assignment of colours
to the edges of G such that no two adjacent edges receive the same colour. An edge-
colouring of a graph which uses k distinct colours is called a k-edge-colouring. Similarly,
the least k for which a graph admits a proper k-edge-colouring is called the chromatic index
of G, and is denoted by χ′(G). In this work, we are interested in vertex-colourings only.

Note that any graph can be coloured with k ≥ χ(G) colours, as illustrated in Fig-
ure 1.9 for the Petersen Graph. In fact, any graph can be properly coloured by assigning
a different colour to each vertex in V (G). Therefore, χ(G) ≤ |V (G)|. In 1941, R. L.
Brooks [5] demonstrated that χ(G) ≤ ∆(G) for every graph that is not a complete graph
or an odd cycle; these graphs have χ(Kn) = ∆(Kn) + 1 and χ(C2k+1) = ∆(C2k+1) + 1,
respectively. On the other hand, if set E(G) is nonempty, then there are at least two adja-
cent vertices in G. This implies that any proper colouring of G needs at least two colours,
which establishes a lower bound for χ(G). In particular, observe that the existence of a
proper 2-colouring of a graph with at least two vertices is an alternative definition for a
bipartite graph, as stated in the following theorem.

Theorem 1.1. A simple graph with at least two vertices is bipartite if and only if it is
2-colourable.
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Figure 1.9: A 5-colouring and a 3-colouring of the Petersen Graph. The chromatic number
of the Petersen Graph is 3.

Proof. Let G be a simple graph. The result follows from the fact that, in any 2-colouring
of G, vertices with the same assigned colour form an independent set and each part of
any bipartition of G is also an independent set.

Now, consider the family of cycles. Even-length cycles are bipartite graphs and are
2-colourable by Theorem 1.1. Also, by the same theorem, odd cycles do not admit 2-
colourings. In fact, χ(C2k+1) = 3. This can be observed by assigning a colour to an
arbitrary vertex of C2k+1 and, then, alternating two new colours along the remaining
vertices of the cycle.

Theorem 1.2. Let G ∼= Cn. Then, χ(G) = 2 if n is even, and χ(G) = 3, otherwise. �

It is important to remark that determining χ(G) can be very difficult. In fact, deciding
whether a graph admits a k-colouring, for any k ≥ 3, is an NP-complete problem. For
k = 2, however, this decision problem can be solved in polynomial time since there exists
a polynomial-time algorithm that decides whether a graph is bipartite.

As stated in the preamble of this chapter, graph colourings have been studied since
the 18th century, with discoveries and properties shaping the very basis of Graph Theory.
Each colouring of a graph can be seen as an assignment of labels, or colours, to elements
of the graph subject to certain constraints. In the 1960s, A. Rosa [24] defined a new type
of graph labellings, which we present in detail in the following section.

1.3 Graph labellings

Many authors trace the origins of graph labellings to Rosa [24] who proposed, in 1967, the
assignment of (numerical) labels to the elements of the graph, rather than simply colours.
In his article, Rosa defined a β-valuation f of a graph G with m edges as an injection
f : V (G) → {0, 1, . . . ,m} such that f induces another injection g : E(G) → {1, . . . ,m},
for which each edge e = uv is assigned label g(e) = |f(u)− f(v)|. This labelling was later
renamed by S. W. Golomb [16] as graceful labelling ; graphs that admit such a labelling are
also called graceful. Complete graph K4 is an example of a graceful graph, as illustrated
by Figure 1.10.

Since Rosa’s [24] original paper, different types of graph labellings have been proposed,
making use of mathematical properties of the labels. As examples, we cite: irregular as-
signments, harmonious labellings, AVD-colourings, magic and anti-magic labellings. For
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Figure 1.10: A graceful labelling of complete graph K4. The number inside each vertex
is its label f(v) and every edge e is assigned the absolute difference of the labels of its
endpoints.

a more detailed survey on these labellings, we refer the reader to: B. D. Aharya et al.’s [1]
“Labelings of Discrete Structures and its Applications”; A. M. Marr and W. D. Wall’s [21]
“Magic Graphs”; P. Zhang’s [32] “Color-Induced Graph Colorings”; J. Gallian’s [11] “Dy-
namic survey on graph labellings”; or S. C. López and F. A. Muntaner-Batle’s [20] “Grace-
ful, Harmonious and Magic Type Labelings - Relations and Techniques”.

In 1986, G. Chartrand et al. [6] proposed an assignment of labels {1, 2, . . . , k} to the
edges of a graph G, such that every vertex v ∈ V (G) receives a unique colour, computed
as the sum of the labels of the edges incident with v. This labelling is called an irregular
assigment and has several applications for nonsimple graphs. Based on their work, in
2004, M. Karoński et al. [18] presented a labelling in which the induced colouring is
just a proper vertex-colouring of the graph, rather than a colouring in which every vertex
receives a distinct colour. They prove that every 3-colourable graph admits such a labelling
using label set {1, 2, 3} and posed the 1-2-3 Conjecture, which states that every graph
with no connected component isomorphic to K2 admits such a labelling. In their article,
Karoński et al. [18] use the term proper edge-colouring to indicate a labelling of a graph
that – in this case, via the sum of edge labels – induces a proper vertex-colouring.

The notation of labellings and colourings is not standardized in the literature. In
several books, articles and papers, labels/colours are sometimes referred to as “weights”,
weights become colours, and even the words “labels” and “colours” are interchanged. In
order to avoid any ambiguity, we formally define a proper labelling of a graph G as a
pair (π, cπ), where π : S → {1, . . . , k} is a labelling of a set S of elements of G and cπ
is a proper vertex-colouring of G such that cπ(v) depends on π for every v ∈ V (G).
Labelling π is said to induce colouring cπ and we say that colouring cπ is induced by π.
Proper labellings are said to be neighbour-distinguishing since induced colouring cπ is
a proper vertex-colouring. In particular, if cπ induces a distinct colour for each vertex
v ∈ V (G), we say that (π, cπ) is also vertex-distinguishing. When S = E(G), (π, cπ)

is a proper edge-labelling. On the other hand, if S = V (G), then (π, cπ) is a proper
vertex-labelling. We state the 1-2-3 Conjecture as an example of our notation.

Conjecture 1.3 (1-2-3 Conjecture). Let G be a graph with no component isomorphic
to K2. Then, G admits a neighbour-distinguishing proper edge-labelling (π, cπ), such that
π : E(G)→ {1, 2, 3} and cπ(v) =

∑
e∈E(v) π(e) for every vertex v ∈ V (G).

The irregular assignment of graphs inspired many other proper labelling problems,
that assign labels to different elements or use new mathematical functions to induce
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colouring cπ. In this text, we are interested in two specific proper labellings: the edge
and vertex versions of the proper gap-labelling of graphs. Each version of this labelling
is defined in detail in Chapters 2 and 3, respectively. Here, we introduce only the basic
concept in which both labellings are based: inducing colours by “gaps”.

Let S ′ ⊆ S be a subset of some elements S of G. These elements can be the vertices or
the edges of G. Also, let π : S → {1, 2, . . . , k} be a labelling of S. We define ΠS′ as the set
comprising the labels assigned to the elements of S ′ in π. Formally, ΠS′ = {π(s) : s ∈ S ′}.
To exemplify, consider Figure 1.11, where S ′1 = N(v), S ′2 = E(u) and S ′3 = N [w]. Then,
we have ΠS′1

= {1, 2}, ΠS′2
= {1, 2, 4} and ΠS′3

= {2, 3, 5}.

S′3

S′1

S′2

u

vw

4

1

2

13 2 1

5

Figure 1.11: A simple graph G with some elements labelled. The numbers inside the
white boxes represent the labels of vertices.

In proper gap-labellings, the colour cπ(v) of a vertex v of degree at least two is induced
by the maximum difference among the labels in set ΠS′ for a specific set S ′: in the edge
version, S ′ = E(v) and in the vertex version, S ′ = N(v). We refer to this computed value
as the largest gap in ΠS′ . Isolated vertices in G and vertices with degree one are treated
separately in proper gap-labellings and are discussed in detail in the following chapters.

We close this chapter with an outline of this text. In Chapter 2, we present the defini-
tion, history and our results for the edge version of the gap-labelling problem. Chapter 3
presents the definition and history of the vertex version of proper gap-labellings, as well
as results we obtained during our research. We establish the first lower bound for the
vertex-gap number of graphs, a parameter associated with this labelling, and determine
it for some traditional classes of graphs. In Chapter 4, we present a different approach
to gap-[k]-vertex-labellings and define a new parameter called the gap-strength of graphs.
Chapter 5 presents concluding remarks.
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Chapter 2

Gap-[k]-edge-labellings

We begin our study of proper gap-labellings by investigating the first version of this
problem, which was introduced by M. Tahraoui et al. [27] in 2012. This type of proper
labelling assigns numerical values to the edges of a graph so as to induce a proper vertex-
colouring. In this work, we refer to this labelling as the gap-[k]-edge-labelling of a graph
and it is formally defined in the next section.

2.1 Preliminaries

In the previous chapter, we mentioned that many researchers proposed different types
of proper labellings since A. Rosa’s [24] seminal paper. In 2012, M. Tahraoui et al. [27]
introduced a new type of proper labelling called gap-k-colouring. A gap-k-colouring of
a graph G = (V,E) is defined as a pair (π, cπ) where π : E → {1, 2, . . . , k} is an edge-
labelling of G and cπ : V → C is a vertex-colouring of G for which every vertex v ∈ V has
a distinct colour defined by:

cπ(v) =


max
e∈E(v)

{π(e)} − min
e∈E(v)

{π(e)}, if d(v) ≥ 2;

π(e)e∈E(v), if d(v) = 1;

1, if d(v) = 0.

(2.1)

We remind the reader that E(v) denotes the set of edges incident with a vertex v ∈ V ,
as defined in Chapter 1. When d(v) ≥ 2, cπ(v) is induced by the largest difference, i.e. the
largest gap, among the labels of its incident edges. As an example, Figure 2.1 exemplifies
a gap-5-colouring. Note that each edge has been assigned a label between 1 and 5 and
the colour of every vertex is unique.

Tahraoui et al. [27] defined the least k for which a graph G admits a gap-k-colouring
as the gap chromatic number of G; they denote this parameter by gap(G). In their article,
the authors show that every graph G with no connected components isomorphic to K1

orK2 (also referred to as isolated edges) admits a gap-k-colouring, for some k ∈ N. In fact,
Tahraoui et al. [27] showed that gap(G) ≤ 2|E|−1. They also established the gap chromatic
number of paths, cycles, some families of trees and all l-connected graphs, for l ≥ 2. Based
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Figure 2.1: A gap-5-colouring of a graph. The number inside each vertex v is its induced
colour cπ(v).

on their results, the authors conjectured that gap(G) ∈ {|V | − 1, |V |, |V | + 1}, for every
graph G. In 2014, R. Scheidweiler and E. Triesch [25] showed that gap(G) ≤ |V | + 7 for
all graphs G with 2-edge connected components. They also improved the upper bound
for the gap chromatic number of arbitrary graphs, proving that gap(G) ≤ |V | + 9. This
is the best known bound for arbitrary graphs. Lastly, the authors disproved Tahraoui et
al.’s [27] Conjecture by exhibiting a class of graphs for which gap(G) = |V |+ 2.

In the finishing comments of Tahraoui et al.’s article, they propose that it would be
interesting to investigate a version of gap-k-colourings in which induced colouring cπ is just
a proper vertex-colouring. In Figure 2.2, we show that the graph from Figure 2.1 admits
an edge-labelling π using only labels 1, 2 and 3 such that cπ is a proper vertex-colouring
of G. The colour of each vertex is defined exactly as it is in a gap-k-colouring.

0 1

0

1

2

3

1

1

2 1

123

Figure 2.2: An edge-labelling π which induces a proper vertex-colouring cπ.

In 2013, A. Dehghan et al. [8] formally defined this new version of gap-k-colourings.
An edge-labelling by gap of a graph G = (V,E) is a proper labelling (π, cπ) in which
π : E → {1, 2, . . . , k} is an edge-labelling and cπ, a proper vertex-colouring such that, for
every v ∈ V , its colour is defined by equation (2.1).

Note that every gap-k-colouring is an edge-labelling by gap. In fact, Tahraoui et
al.’s [27] proof on the existence of the first labelling can be used to determine whether a
graph admits the latter. Dehghan et al. [8] also proved that every complete graph Kn,
n ≥ 3, admits an edge-labelling by gap using label set {1, 2, . . . , n + 1}. With these
results in mind, the authors questioned whether every graph admits an edge-labelling by
gap using label set {1, 2, . . . , χ(G) + 1}.



24

The focus of Dehghan et al.’s [8] article, however, is on determining the algorith-
mic complexity of proper labelling problems, such as the edge-labelling by gap. They
showed that deciding whether a graph G admits an edge-labelling by gap using label set
{1, 2, . . . , k} is NP-complete when k ≥ 3. For k = 2, the authors proved that deciding
whether a planar bipartite graph with minimum degree two admits an edge-labelling by
gap can be solved in polynomial time, and that by admitting degree-one1 vertices in these
graphs, the problem becomes NP-complete.

In 2015, Scheidweiler and Triesch [26] also studied edge-labellings by gap and defined
the gap-adjacent-chromatic number of G, gapad(G), as the least k for which a graph G

admits an edge-labelling by gap using label set {1, 2, . . . , k}. In their article, the authors
establish bounds for gapad(G) for bipartite graphs and 3-colourable graphs and prove that
χ(G)− 1 ≤ gapad(G) ≤ χ(G) + 5 for arbitrary graphs.

Later, in 2016, A. Brandt et al. [4] proposed the local gap k-colouring of a graph
without isolated vertices as a slightly different version of edge-labellings by gap, in which
every vertex, regardless of degree, has its colour induced by the largest gap among the
labels of its incident edges. Note that vertices v with d(v) = 1 always have induced
colour 0 in the local version. The authors use the local gap k-colouring to improve the
bounds set by Scheidweiler and Triesch [26], as stated in the following theorem. We
remark that Brandt et al.’s result shows that Scheidweiler and Triesch’s lower bound is
tight for stars.

Theorem 2.1 (Brandt et al.). If G is a graph without isolated edges, then gapad(G) ∈
{χ(G), χ(G) + 1} unless G is a star, in which case gapad(G) = 1 = χ(G)− 1. �

The best known bounds for the gap-adjacent-chromatic number of graphs are the ones
established in Theorem 2.1. In the concluding remarks of their article, Brandt et al. [4]
also determine the gap-adjacent-chromatic number for cycles and give a simpler labelling
for complete graphs (the one proposed by Dehghan et al. [8] is recursive).

Notation

As we mention in Chapter 1, there is no standard notation for proper labellings of graphs.
Moreover, some of the names used in the literature are misleading and do not accurately
express which elements are being labelled and/or coloured. Therefore, in this text, we
rename the concepts with the purpose of establishing a notation that properly reflects
these differences.

We define a gap-[k]-edge-labelling of a graph G = (V,E) as an ordered pair (π, cπ)

where π : E → {1, 2, . . . , k} is an edge-labelling of G and cπ : V → C is a proper vertex-
colouring of G. Set C is the set of induced colours. For every vertex v ∈ V , its colour is
defined as

cπ(v) =


max
e∈E(v)

{π(e)} − min
e∈E(v)

{π(e)}, if d(v) ≥ 2;

π(e)e∈E(v), if d(v) = 1;

1, if d(v) = 0.

1A degree-one vertex v is a vertex with d(v) = 1.
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The least k for which a graph G admits a gap-[k]-edge-labelling is called the edge-
gap number of G and is denoted by χg

E
(G). Note the three components of χg

E
(G): χ

indicates that we are interested in a proper colouring – in this case, of the vertices –
of G; the superscript g indicates we use gaps to induce the colour in each vertex; and the
subscript E is used to imply that the labels are assigned to the edges of G. Observe that
χg
E

(G) = gapad(G). Thus, we rewrite Brandt et al.’s [4] theorem as follows.

Theorem 2.1 (Brandt et al.). If G is a graph without isolated edges, then χg
E

(G) ∈
{χ(G), χ(G) + 1} unless G is a star, in which case χg

E
(G) = 1 = χ(G)− 1. �

In Figure 2.3, we exhibit a gap-[3]-edge-labelling of the Heawood Graph. Unless oth-
erwise stated, the notation for the labels and colours displayed in this image is used
throughout the entirety of this chapter. As an example, consider the topmost vertex v
in the image. The edges incident with v have received labels 1, 1 and 3, which induces
cπ(v) = 2.

2
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Figure 2.3: A gap-[3]-edge-labelling of the Heawood Graph. The number in each edge
corresponds to its label and the number in each vertex, to its induced colour.

We close this section defining the decision problem associated with the gap-[k]-edge-
labellings of graphs.

Gap-[k]-edge-labelling [Gkel]

Instance: A graph G = (V,E) and a parameter k.
Question: Does G admit a gap-[k]-edge-labelling?

When considering a specific value of k, we denote Gkel by replacing k with its value.
For example, we can rewrite the results by Dehghan et al. [8] as:

• G2el is NP-complete for planar bipartite graphs;

• G2el for planar bipartite graphs G with δ(G) ≥ 2 is in P; and

• Gkel is NP-complete for k ≥ 3;
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2.2 The edge-gap number for classes of graphs

In this section, we present results on the edge-gap number for some classes of graphs.
Initially, we determine χg

E
(G) for cycles, crowns and wheels. These results, along with

others presented in Chapter 3, were accepted and presented at the XXXVII Congresso da
Sociedade Brasileira de Computação - 2o Encontro de Teoria da Computação, July 2017.
Then, we investigate and establish the edge-gap number for unicyclic graphs with odd
cycles. We close the chapter determining the edge-gap number of some classes of snarks.

2.2.1 Cycles

The family of cycles is introduced in Chapter 1. To recall, cycle Cn is a 2-regular graph
with vertex set V (Cn) = {v0, v1, . . . , vn−1} and edge set E(Cn) = {v0v1, v1v2, . . . , vn−1v0}.
The length of a cycle is the size of its edge set. Theorem 2.2 establishes the edge-gap num-
ber for cycles Cn, n ≥ 4. In particular for cycle C3, which is isomorphic to K3, Dehghan et
al. [8] established that χg

E
(K3) = 4. In 2016, Brandt et al. [4], in an independent work,

also determined χg
E

(Cn).

Theorem 2.2. Let G ∼= Cn, n ≥ 4. Then, χg
E

(G) = 2 if n ≡ 0 (mod 4), and χg
E

(G) = 3,
otherwise.

Proof. Let G = Cn, n ≥ 4 and let ei = vivi+1. As stated in Chapter 1, the chromatic
number of cycles is χ(Cn) = 2 when n is even, and χ(Cn) = 3, otherwise. Therefore, by
Theorem 2.1, in order to prove the result, we have to show that: (i) G admits a gap-
[2]-edge-labelling when n ≡ 0 (mod 4); (ii) there is no gap-[2]-edge-labelling of G when
n ≡ 2 (mod 4); and (iii) the remaining cases admit a gap-[3]-edge-labelling. Operations
on the indices of the vertices are taken modulo n.

We prove (i) by showing a gap-[2]-edge-labelling of G when n ≡ 0 (mod 4). Define
labelling π of E(G) as follows: for every ei, assign π(ei) = 1 if i ≡ 0, 1 (mod 4); and
π(ei) = 2, otherwise. Define colouring cπ as usual. In order to prove that (π, cπ) is a
gap-[2]-edge-labelling of G, it suffices to show that cπ is a proper colouring of G.

Let vi and vj denote vertices with i odd and j even. Every vertex vi has ΠE(vi) = {a},
a ∈ {1, 2}. Therefore, cπ(vi) = 0. For vertices vj, we have ΠE(vj) = {1, 2} which, in turn,
induces cπ(vj) = 1. Therefore, cπ(vl) = (l + 1) mod 2 for every vertex vl ∈ V (G), and
we conclude that cπ is a proper colouring of G. Figure 2.4 exemplifies this labelling for
cycles C8 and C12.

Next, we consider the case n ≡ 2 (mod 4). Suppose G admits a gap-[2]-edge-labelling
(π, cπ). Then, since G is bipartite, we know that colours 0 and 1 alternate on the vertices
of G. Adjust notation so that cπ(vi) = i (mod 2). Observe that in order to induce
colour 0 on vertex v0, π(en−1) = π(e0) = a, for some a ∈ {1, 2}. Since cπ(v1) = 1

and E(v1) = {e0, e1}, this implies that π(e0) 6= π(e1) and, therefore, π(e1) = b, for
b ∈ {1, 2}, b 6= a. For vertex v2, we have cπ(v2) = 0 and E(v2) = {e1, e2}, which implies
π(e2) = π(e1) = b. Following the vertices in cyclic order, we observe that the sequence
(a, a, b, b) repeats itself on every group of four edges (ei−1, ei, ei+1, ei+2), for i even. As
π(e0) = a and since n ≡ 2 (mod 4), we have π(en−2) = π(en−1) = π(e0) = a which, in
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Figure 2.4: The gap-[2]-edge-labellings of cycles C8 and C12 in (a) and (b), respectively.

turn, induces cπ(vn−1) = 0. Then cπ(vn−1) = cπ(v0), which contradicts the fact that cπ
is a proper colouring of G. This contradiction is illustrated in Figure 2.5. We conclude
that G does not admit a gap-[2]-edge-labelling when n ≡ 2 (mod 4).

v0
v1

v2

v3

vi−2

vi−1

vi

vi+1
vi+2

vn−6

vn−5

vn−4

vn−3

vn−2

vn−1

. . .

...

a a

b

b

a

b

b

a

a

bb

a

a

b

b

a

a

Figure 2.5: Supposing cycle Cn admits a gap-[2]-edge-labelling when n ≡ 2 (mod 4).
Vertices coloured in white have cπ(v) = 0 and in black, cπ(v) = 1.

In order to complete the proof, it suffices to show gap-[3]-edge-labellings of G for
the remaining cases n ≡ 1, 2, 3 (mod 4). Define labelling π as follows. First, assign
π(en−1) = 3. Next, assign π(en−2) = 2 if n ≡ 1 (mod 4), and π(en−2) = 3, otherwise.
Finally, for 0 ≤ i ≤ n − 3, let π(ei) = 1 if i ≡ 0, 1 (mod 4), and π(ei) = 2, otherwise.
Define colouring cπ as usual. Figure 2.6 illustrates (π, cπ) for cycles C5, C6 and C7, cases
where n ≡ 1, 2, 3 (mod 4), respectively.

In order to prove that (π, cπ) is a gap-[3]-edge-labelling of G, it suffices to show that cπ
is a proper colouring of G. First, observe that in all cases, ΠE(v0) = {1, 3}, which induces
cπ(v0) = 2. For every 1 ≤ i ≤ n − 3, i odd, π(ei−1) = π(ei), inducing cπ(vi) = 0.
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Figure 2.6: The gap-[3]-edge-labellings of cycles C5, C6 and C7 in (a), (b) and (c), re-
spectively. Edge en−2 has been highlighted so as to show the difference between the cases
n ≡ 1 (mod 4) (in blue) and n ≡ 2, 3 (mod 4) (in red).

Alternately, for 2 ≤ j ≤ n− 3, j even, ΠE(vj) = {1, 2}, which induces cπ(vj) = 1. For the
remaining vertices, vn−2 and vn−1, we have

cπ(vn−2) =


0, if n ≡ 1 (mod 4);

1, if n ≡ 2 (mod 4);

2, if n ≡ 3 (mod 4);

and cπ(vn−1) =

{
1, if n ≡ 1 (mod 4);

0, if n ≡ 2, 3 (mod 4).

By inspection, we conclude that cπ(vn−2) 6= cπ(vn−1). Also, since cπ(v0) = 2, cπ(v0) 6=
cπ(vn−1). Now, if n is odd, then n− 3 is even and we know that cπ(vn−3) = 1. Moreover,
cπ(vn−2) = a, a ∈ {0, 2}. On the other hand, if n is even and, therefore, n ≡ 2 (mod 4),
cπ(vn−3) = 0, and cπ(vn−2) = 1. In both cases, colouring cπ has no two adjacent vertices
with the same induced colour and, thus, is a proper colouring of G.

As we have mentioned, in 2016, Brandt et al. [4] also determined χg
E

(Cn), constructing
the same labelling for cycles. The proof presented in their article uses concepts of the
local gap-k-colouring of graphs which, for graphs G with δ(G) ≥ 2, coincides with gap-
[k]-edge-labellings.

The case n ≡ 2 (mod 4) shows that the edge-gap number is not always equal to the
chromatic number of a graph. Since d(v) = 2 for every vertex in Cn, we wanted to better
understand how vertices of degree one influence the edge-gap number of graphs. For this
reason, the next class considered is the family of crown graphs, defined in the next section.

2.2.2 Crowns

A crown Rn is the graph constructed by taking cycle Cn, n copies of the complete graphK2

and identifying each vertex of the cycle with a vertex of a different copy of K2. This
construction yields a graph with 2n vertices: n vertices of degree 1; and n vertices of
degree 3. Let V (Rn) = {v0, . . . , vn−1} ∪ {u0, . . . , un−1}, where d(vi) = 3 and d(ui) = 1.
Figure 2.7 illustrates crown R8. Observe that χ(Rn) = χ(Cn) since Cn ⊆ Rn and, thus,



29

one can extend a proper vertex-colouring of cycle Cn to a vertex-colouring of Rn without
the use of any additional colours. For this family, the edge-gap number is established in
Theorem 2.3.

v2

v1
v0

v7

v6

v5
v4

v3

u2

u1

u0

u7

u6

u5

u4

u3

Figure 2.7: Crown R8.

Theorem 2.3. Let G ∼= Rn, n ≥ 3. Then, χg
E

(G) = 2 if n is even, and χg
E

(G) = 3,
otherwise.

Proof. Let G = Rn. Since χ(Rn) = χ(Cn), in order to prove the result, it suffices
to show that crowns admit a gap-[2]-edge-labelling when n is even, and a gap-[3]-edge-
labelling, otherwise. Define labelling π of E(G) as follows: π(vivi+1) = 1, 0 ≤ i < n;
π(viui) = 1 + i mod 2, 0 ≤ i ≤ n− 2; π(vn−1un−1) = χ(Rn). Define colouring cπ as usual.
These labellings are exemplified in Figure 2.8 for crowns R8 and R9. Note that π uses
label set {1, 2} when n is even, and {1, 2, 3} when n is odd. Therefore, it remains to show
that cπ is a proper colouring of G.

First, consider vertices v0, . . . , vn−2 and note that ΠE(vi) = {1, π(viui)}. Therefore,
cπ(vi) = π(viui) − 1. Since the labels of edges viui alternate between 1 and 2, with
π(v0u0) = 1, we conclude that cπ(vi) alternates between colours 0 and 1, with cπ(v0) = 0.
Furthermore, since cπ(ui) = π(viui), cπ(ui) alternates between colours 1 and 2, with
cπ(u0) = 1. We conclude that cπ(vi) 6= cπ(ui) for all 0 ≤ i ≤ n− 2. Finally, vertices vn−1
and un−1 have, respectively, ΠE(vn−1) = {1, χ(Rn)} and ΠE(un−1) = {χ(Rn)}. This, in turn,
implies cπ(vn−1) = χ(Rn)−1 and cπ(un−1) = χ(Rn). Therefore, we have cπ(vn−1) = 1 and
cπ(vu−1) = 2 when n is even, and cπ(vn−1) = 2 and cπ(vu−1) = 3, otherwise. We conclude
that cπ is a proper vertex-colouring of G.

Recall that cycles Cn, when n ≡ 2 (mod 4), do not admit a gap-[2]-edge-labelling.
Here, notice that the existence of degree one vertices in the graph enables us to properly
label this inner cycle of size n ≡ 2 (mod 4) using only labels 1 and 2. However, the
labelling is possible not only because vertices ui have d(ui) = 1, but because vertices vi
have an extra incident edge (when comparing to cycles), thus allowing the incorporation
of another label to ΠE(vi). This “extra label” is, in fact, the reason why every crown admits
a gap-[χ(Rn)]-edge-labelling, regardless of n.

Continuing the previous observations, a natural step is to consider graphs which have
universal vertices. Since the degree of the universal vertex can be arbitrarily large, it
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Figure 2.8: The gap-[χ(Rn)]-edge-labellings of crowns: R8 in (a); and R9 in (b).

brings a new perspective to our investigations that, so far, considered only graphs with
vertices of low degree. By identifying vertices ui in crown Rn, we obtain a universal
vertex. The resulting graph after this operation is the wheel graph, Wn, which is defined
in the next section.

2.2.3 Wheels

As stated in the previous section, wheel Wn, n ≥ 3, is the graph obtained by identifying
all degree-one vertices ui in crown Rn. This new vertex is called the central vertex and is
denoted by vn. Figure 2.13(a) illustrates wheel W6.

v0

v1

v2

v3

v4

v5

v6

Figure 2.9: Wheel W6 and the notation for the vertex set.

The cycle of length n in wheelWn is its rim. Observe that χ(Wn) = χ(Cn)+1 since the
universal vertex must have a colour different from any other vertex of the rim; assigning
a proper vertex-colouring of cycle Cn to the rim of Wn and a new colour to the central
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vertex yields a proper colouring of Wn. Therefore, it follows that χ(Wn) = 3 when n is
even, and χ(Wn) = 4, otherwise.

We remark that wheel W3 is isomorphic to complete graph K4, for which Brandt et
al. [4] established that χg

E
(K4) = 4. We exhibit a gap-[4]-edge-labelling of W3 in Fig-

ure 2.10. For n ≥ 4, Theorem 2.4 establishes the edge-gap number for this class.

0
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3
v3

2

2
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14

Figure 2.10: The gap-[4]-edge-labelling of W3.

Theorem 2.4. Let G ∼= Wn, n ≥ 4. Then, χg
E

(G) = χ(G).

Proof. Let G = Wn, n ≥ 4, with V (G) = {v0, . . . , vn} and vn, the central vertex. Recall
that χ(G) = 3 when n is even, and χ(G) = 4, otherwise. Therefore, by Theorem 2.1, it
suffices to show a gap-[χ(G)]-edge-labelling of G.

We begin considering n ≥ 5 and odd. We define labelling π of E(G) as follows:
π(vivi+1) = 3−i mod 2, 1 ≤ i ≤ n−3; π(vivn) = 1+i mod 2, 0 ≤ i ≤ n−3; the remaining
edges, vn−2vn−1, vn−1v0, v0v1, vn−2vn, vn−1vn, receive labels 3, 1, 1, 4, 1, respectively. Define
colouring cπ as usual. This gap-[4]-edge-labelling (π, cπ) is presented for wheelsW5 andW7

in Figure 2.11.
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Figure 2.11: The gap-[4]-edge-labellings of wheels W5 and W7 in (a) and (b), respectively.

First, observe that labelling π uses label set {1, 2, 3, 4}. Also, note that {1, 4} ⊂ ΠE(vn).
This implies that cπ(vn) = 3. Next, consider vertices vi, 1 ≤ i ≤ n − 3. Observe that
ΠE(v1) = {1, 2}, ΠE(vi) = {2, 3} when i is odd, and ΠE(vi) = {1, 2, 3}, otherwise. This
implies that cπ(vi) = 2 − i mod 2, 0 ≤ i ≤ n − 3. For the remaining vertices v0, vn−2
and vn−1, we have ΠE(v0) = {1}, ΠE(vn−1) = {3, 4} and ΠE(vn−2) = {1, 3}. This induces
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colours cπ(v0) = 0, cπ(vn−1) = 1 and cπ(vn−1) = 2, respectively. We conclude that (π, cπ)

is a gap-[4]-edge-labelling of G in this case.
It remains to consider the case where n is even, for which it suffices to show that G

admits a gap-[3]-edge-labelling. For W4, Figure 2.12 exhibits a gap-[3]-edge-labelling. By
inspection, we conclude that cπ is a proper colouring of that graph.

1

1

3

3

2

2 2

2

Figure 2.12: The gap-[3]-edge-labelling of wheel W4. Vertices in black have induced
colour 1, in orange, colour 2 and the central vertex in white, colour 0.

For n ≥ 6 and even, define labelling π as follows: π(vivi+1) = 2, 0 ≤ i ≤ n − 2;
π(vivn) = 2 − i mod 2, 0 ≤ i ≤ n − 2; π(vn−1vn) = 3. Colouring cπ is defined as usual.
Figure 2.13 illustrates the gap-[3]-edge-labelling of wheels W6 and W8.
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Figure 2.13: The gap-[3]-edge-labellings of wheels W6 and W8 in (a) and (b), respectively.

Since labelling π uses label set {1, 2, 3}, it suffices to show that cπ is a proper colouring
of G in this case. First, observe that vn−1 has ΠE(vn−1) = {2, 3}. Therefore, cπ(vn−1) = 1.
Now, for 0 ≤ i ≤ n−2 and even, note that ΠE(vi) = {2}, which implies cπ(vi) = 0. On the
other hand, for 1 ≤ i ≤ n− 3 and odd, we have ΠE(vi) = {1, 2}, which induces cπ(vi) = 1.
Finally, since central vertex vn has {1, 3} ⊂ ΠE(vn), cπ(vn) = 2. Therefore, the central
vertex has colour 2 and vertices vi in G alternate colours 0, 1 along the rim. We conclude
that cπ is a proper colouring of G, and the result follows.

As mentioned in Section 2.1, both Scheidweiler and Triesch [26] and Brandt et al. [4]
studied versions of this proper labelling for the family of trees. Inspired by their results
– and motivated by our work on cycles and crowns – we investigate the edge-gap number
for the family of unicyclic graphs, which is defined in the next section.
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2.2.4 Unicyclic graphs

A unicyclic graph is a connected simple graph G = (V,E) with |V | = |E|. Note that G
contains a single cycle. This family includes the family of cycles and crown graphs.
However, instead of having vertices of degree one adjacent to the vertices of the cycle,
which is the case of crowns, a unicyclic graph allows the existence of an entire tree rooted
at each vertex vi of the cycle. Figure 2.14 illustrates a unicyclic graph. In this example,
the cycle has red edges and its topmost vertices are roots of two nontrivial trees.

Figure 2.14: An example of a unicyclic graph.

We denote the vertices of the (single) cycle, Cp, of G by v0, . . . , vp−1. We denote Ti the
tree rooted at vi with E(Ti) ∩ E(Cp) = ∅. Now, let vi be an arbitrary vertex of cycle Cp.
A leaf of Ti is a vertex w ∈ V (Ti) such that d(w) = 1. An internal vertex of tree Ti
is a node that is neither the root nor a leaf of Ti. For every leaf wj ∈ V (Ti), wj 6= vi,
the branch B

wj
i is defined by the path vi, . . . , wj. The length of this path is denoted

by dist(Bwj
i ). Figure 2.15 illustrates this notation for a vertex vi in G. In this example,

dist(Bw1
i ) = dist(Bw4

i ) = 2, while dist(Bw2
i ) = 1 and dist(Bw3

i ) = 3.

Bw1
i Bw2

i

Bw3
i

Bw4
i

w1

w2

w4

w3

vi+1vi−1

Figure 2.15: A tree Ti from a unicyclic graph G with 4 branches.

Observe that a unicyclic graph G is bipartite if and only if cycle Cp has even size.
Therefore, by Theorem 2.1, we know that χg

E
(G) ∈ {2, 3} when p is even, and χg

E
(G) ∈

{3, 4}, otherwise. We determine the edge-gap number of unicyclic graphs with p odd in
Theorem 2.5.

Theorem 2.5. Let G be a unicyclic graph and p, the size of the cycle in G. If p is odd,
then χg

E
(G) = 3.
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Proof. Let G = (V,E) be a unicyclic graph with a cycle of odd size p. Let v0, v1, . . . , vp−1
denote the vertices of the cycle, and T0, T1, . . . , Tp−1 their respective disjoint rooted trees.
Note that if Ti is a trivial graph for every 0 ≤ i < p, then G ∼= Cp, for which the edge-gap
number is established in Theorem 2.2. Therefore, for the remainder of the proof, we can
safely assume that there exists at least one tree Ti with |V (Ti)| ≥ 2. Adjust notation so
that v0 is the root of a nontrivial tree.

In order to prove the result, it is sufficient to show that G admits a gap-[3]-edge-
labelling (π, cπ) since χ(G) = 3. Define labelling π as follows. For every vi ∈ V (Cp), let

π(vivi+1) =


3, if i = p− 1;

2, if i ≡ 0, 1 (mod 4);

1, otherwise.

If p ≡ 1 (mod 4), assign label 2 to edges v0u ∈ E(T0) and label 1 to every edge
vn−1u ∈ E(Tn−1), when they exist. Otherwise, if p ≡ 3 (mod 4), assign π(v0u) = 1 and
π(vn−1u) = 2. For the remaining edges viu ∈ E(Ti), when they exist, assign label 1
if i ≡ 3 (mod 4), and label 2, otherwise. This labelling is sketched in Figure 2.16 for
unicyclic graphs with cycles C7 and C9 as subgraphs.
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Figure 2.16: Partial labellings for cycles of unicyclic graphs: C7 in (a); and C9 in (b).
The dotted edges sketch edges viu ∈ E(Ti), that may not exist.

Define colouring cπ for the vertices of Cp as usual since all the edges incident with
vertices vi ∈ V (Cp) have already been assigned a label. Note that every vertex vi ∈ V (Cp),
1 ≤ i ≤ p − 2 and odd, has ΠE(vi) = {a}, for a ∈ {1, 2}. This induces colour cπ(vi) = 0

in these vertices. Furthermore, every vj ∈ V (Cp), 2 ≤ j ≤ p − 3 and even, has ΠE(vj) =

{1, 2}, thus, inducing colour cπ(vj) = 1. For vertex vp−1, note that ΠE(vp−1) = {1, 3} if
p ≡ 1 (mod 4) and ΠE(vp−1) = {2, 3}, otherwise. This induces colours cπ(vp−1) = 2 and
cπ(vp−1) = 1, respectively. Finally, the edges incident with vertex v0 have been labelled
such that ΠE(v0) = {2, 3} when p ≡ 1 (mod 4), and ΠE(v0) = {1, 2, 3}, otherwise, inducing



35

colours cπ(v0) = 1 and cπ(v0) = 2, respectively. Since no two adjacent vertices in the cycle
have the same induced colour, we conclude that cπ is a proper colouring of Cp ⊂ G.

Next, we assign label to trees Ti of G. For every vertex vi in Cp, Bw
i = vi, u1, u2, . . . , w

denotes the branches connecting vi and leaves w ∈ V (Ti). Also, denote u0 = vi and
udist(Bwi ) = w. We label the remaining edges of trees Ti depending on the induced colour
of vertices vi.

Case 1. cπ(vi) = 0

In this case, observe that ΠE(vi) = {a}, a ∈ {1, 2}. For every edge ujuj+1, 1 ≤ j <

dist(Bw
i ), let:

π(ujuj+1) =

{
a, if j ≡ 0, 3 (mod 4);

3, otherwise.

This labelling and its induced colouring are illustrated in figures 2.17(a) and 2.17(b)
for cases a = 1 and a = 2, respectively.
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(a) Labelling of tree Ti, when a = 1.
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(b) Labelling of tree Ti, when a = 2.

Figure 2.17: Partial labellings of trees Ti when cπ(vi) = 0. White, black, orange and
violet vertices have induced colours 0, 1, 2 and 3, respectively.

First, note that vi = u0 has its (previously defined) colour preserved since the la-
bels assigned to E(Bw

i ) do not alter set ΠE(vi). Next, consider internal vertices ui,
1 ≤ i < dist(Bw

i ). Note that ΠE(ui) = {a, 3} if i is odd. This implies that cπ(ui) = 2

if a = 1, and cπ(ui) = 1, otherwise. Now, if i is even, then ΠE(ui) = {b}, b ∈ {a, 3},
which implies that cπ(ui) = 0. Therefore, colours 3 − a and 0 alternate in the internal
vertices of every branch Bw

i , starting with cπ(u1) = 3 − a. Since a ∈ {1, 2}, 3 − a 6= 0.
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We conclude that there are no adjacent internal vertices with the same colour. Moreover,
cπ(u0) = 0 6= cπ(u1).

Next, we consider the leaves of Ti. Recall that a leaf w has its colour induced by the
label of its incident edge. Therefore, cπ(w) ∈ {3, a}. Let u be the neighbour of w. As
previously defined, cπ(u) ∈ {0, 3 − a}. This implies that cπ(w) 6= cπ(u) since a 6= 0 and
a 6= 3− a. We conclude that cπ is a proper vertex-colouring of the tree.

Case 2. cπ(vi) = 1

In this case, note that cπ(vi) is induced by ΠE(vi) = {2, a}, where a ∈ {1, 3} is the label
assigned to an edge of cycle Cp. Also, recall that every edge viu ∈ E(Ti) receives label 2.
Assign labels to every edge ujuj+1 in branch Bw

i of Ti, 1 ≤ j < dist(Bw
i ), as follows:

π(ujuj+1) =

{
2, if j ≡ 0, 1 (mod 4);

3, otherwise.

Figure 2.18 illustrates this case. Note that π(viu1) = 2 and, therefore, if u1 is
a leaf of Ti, then cπ(vi) 6= cπ(ui). Next, observe that odd-index internal vertices uj,
1 ≤ j < dist(Bw

i ), have ΠE(uj) = {a}, a ∈ {2, 3}, while when j is even, ΠE(uj) = {2, 3}.
This implies that induced colours 0 and 1 alternate along the internal vertices of every
branch Bw

i of Ti, with cπ(u1) = 0. Furthermore, since only labels 2 and 3 are assigned
to edges in Ti, cπ(w) ∈ {2, 3} for every leaf w ∈ V (Ti). We conclude that there are no
adjacent vertices in Ti with conflicting colours.
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Figure 2.18: Partial labelling of Ti when cπ(vi) = 1. Note that label a ∈ {1, 3} assigned
to the edge of Cp induces colour 1 in vi. White, black, orange and violet vertices have
induced colours 0, 1, 2 and 3, respectively.

Case 3. cπ(vi) = 2

This case only occurs on vertex vn−1 when n ≡ 1 (mod 4), and on vertex v0, when n ≡ 3

(mod 4). It is important to remark that every edge viu ∈ E(Ti) receives label 1. Once
again, we assign labels to edges ujuj+1, 1 ≤ j < dist(Bw

i ), of each branch Bw
i as follows:

π(ujuj+1) =

{
2, if j ≡ 1, 2 (mod 4);

3, otherwise.

Figure 2.19 illustrates this case. Consider vertices u1 in Ti. If u1 is a leaf, then
cπ(u1) = 1 6= cπ(vi). Otherwise, ΠE(u1) = {1, 2}, which also induces colour 1. Now,
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consider internal vertices uj, 2 ≤ j < dist(Bw
i ). If j is even, then ΠE(uj) = {a}, a ∈ {2, 3}.

This induces cπ(uj) = 0. On the other hand, if j is odd, then ΠE(uj) = {2, 3}, inducing
colour 1. We conclude that every internal vertex uj has cπ(uj) = j mod 2.

vi

a

3
1

1

1

1

1

1

2

2

2

2

2

2

2

2

2

3

3

3

3

3 2

Figure 2.19: Partial labelling of tree Ti when cπ(vi) = 2. Note that label a ∈ {1, 2},
assigned to the edge of Cp, does not influence the induced colour of vi. White, black,
orange and violet vertices have induced colours 0, 1, 2 and 3, respectively.

In order to conclude this case – and, hence, the proof – observe that the leaves have
incident edges labelled with either 2 or 3; this implies that cπ(w) ∈ {2, 3} for every leaf
w ∈ Ti. Therefore, no adjacent vertices have the same induced colour, and cπ is a proper
colouring of tree Ti in this case.

The different labellings of trees Ti in the proof of Theorem 2.5 are inspired by the gap-
[3]-edge-labellings of trees designed by Scheidweiler and Triesch [26]. In their article, they
investigate bounds of the edge-gap number for several families, including trees. Moreover,
they showed that there are trees that do not admit gap-[2]-edge-labellings by presenting
a counterexample, replicated in Figure 2.20.
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Figure 2.20: The tree presented by Scheidweiler and Triesch [26].

Let us explain Scheidweiler and Triesch’s counterexample. Suppose this graph admits
a gap-[2]-edge-labelling (π, cπ). Since every internal vertex x of the tree has d(x) ≥ 2, we
know that cπ(x) ∈ {0, 1}. Thus, we can assume, by the symmetries of the tree, that one
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end of edge uv has induced colour 0. Furthermore, we know that colours 0 and 1 alternate
in the internal vertices of the rightmost branches of figures 2.20(a) and 2.20(b).

Let cπ(v) = 0. This implies that every edge incident with v receives the same label
a ∈ {1, 2}. First, suppose a = 1, as illustrated in Figure 2.20(a). Since cπ(w1) = 1,
we know edge w1w2 is labelled with 2. This, in turn, implies that π(w2w3) = 2 since
cπ(w2) = 0. Lastly, given that cπ(w3) = 1, edge w3w4 is labelled with 1. However, since
d(w4) = 1, cπ(w4) is defined by the label of its incident edge, which received label 1. Then,
cπ(w4) = 1 = cπ(w3), which is a contradiction.

Thus, we conclude that a = 2, as can be seen in Figure 2.20(b). However, if this is the
case, note that an analogous reasoning can be applied to the branch containing vertices w5

and w6. In order to induce cπ(w5) = 1, we have π(w5w6) = 1 since π(vw5) = 2. This also
induces colour 1 on vertex w6, which is impossible. Therefore, there is no gap-[2]-edge-
labelling for this graph.

The counterexample presented by Scheidweiler and Triesch [26] shows that there are
trees that do not admit gap-[2]-edge-labellings. As an extension of Scheidweiler and
Triesch’s result, we show that there also exists bipartite unicyclic graphs which do not
admit a gap-[2]-edge-labelling. Consider unicyclic graphs G1 and G2 in Figure 2.21. Both
graphs have even cycles and, consequently, χ(G1) = χ(G2) = 2. In Figure 2.21(a), we
present a gap-[2]-edge-labelling of G1.
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b
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Figure 2.21: Two unicyclic graphs G1 and G2 in (a) and (b), respectively.

Consider graph G2 in Figure 2.21(b). Suppose this graph admits a gap-[2]-edge-
labelling. Then, since G2 is bipartite and every vertex vi in cycle Cp ⊂ G has d(vi) ≥ 2,
we know that colours 0 and 1 alternate in the vertices of the cycle. Then, one of trees
Tu, Tv has its root coloured with 0 and the other, with 1. In Figure 2.21(b), cπ(u) = 1 and
we present a sketch of the labels assigned to the edges of Tv. By inspecting the drawing,
it is possible to conclude that the same reasoning used by Scheidweiler and Triesch [26]
can be extended to this graph, which leads us to conclude that G2 does not admit a
gap-[2]-edge-labelling.

There is still work to be done regarding the gap-[k]-edge-labellings of unicyclic graphs
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with p ≡ 0 (mod 2). In particular, characterizing which unicyclic graphs with even cycles
admit a gap-[2]-edge-labelling is an interesting open problem

Problem 2.6. Determine the edge-gap number for unicyclic graphs with a cycle of even size.

We close this chapter presenting our results for gap-[k]-edge-labellings of some families
of snarks, which are defined in the following section.

2.2.5 Snarks

A snark is a bridgeless, cubic graph with chromatic index four without parallel edges or
cycles of length three. The search for such a graph was motivated by the Four-Colour
Problem, described in Chapter 1. To recall, this problem states that every planar map
admits a colouring of its regions such that no two neighbouring regions receive the same
colour. Out of the many attempts to solve this problem, P. G. Tait [28, 29] showed, in
1880, that it could be reduced to an edge-colouring problem. He remarked that if a bridge-
less cubic graph with chromatic index four was discovered, with the additional property
of being planar, then the answer to the Four-Colour Problem would be “no”. On the
other hand, a proof that every such graph is not planar would result in a positive answer.
Therefore, his work provided another way to approach the Four-Colour Problem and mo-
tivated the search for non-3-edge-colourable bridgeless cubic graphs. The first discoveries
of these graphs, however, were very sporadic and became a challenge for researchers.

In light of this, M. Gardner [12] proposed to call these graphs “snarks” in 1976. He
was inspired by the poem The Hunting of the Snark, which describes a crew’s struggled
journey in search of a fantastic, rare creature named Snark. The first snark was discovered
by Petersen in 1898 [22] and is known as the Petersen Graph. We exhibit in Figure 2.22
four different representations of the Petersen Graph, the most common of which is the
one in Figure 2.22(b).

In this section, we establish the edge-gap number for the families of Blanuša, Flower,
Goldberg and Twisted Goldberg snarks. Although the labelling presented for each of these
families is distinct, they are all based on the same idea. Each family of infinite snarks
is constructed by using subgraphs as “building blocks”, which are connected by edges.
Our technique for establishing the edge-gap number for these graphs is to assign labels
to the edges in each block and to the edges that connect them, such that the labelling of
the whole graph induces a proper colouring. This same framework was also used for the
vertex version of this labelling, which is presented in Section 3.3.6.

Blanuša Snarks

The first infinite family of snarks we present are the Blanuša Snarks. The First Blanuša
Snark, denoted by B1

1 , was discovered by Blanuša [3] in 1964. It has 18 vertices and two
of its drawings are presented in Figure 2.23. This graph is obtained from two copies of the
Petersen Graph, an observation made quite clear when observing Figure 2.23(b). Later,
a different modification in the copies of the Petersen Graph yielded the Second Blanuša
Snark, denoted by B2

1 . An illustration of this graph is presented in Figure 2.24.
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(a)

(b) (c) (d)

Figure 2.22: Representations of the Petersen Graph. In (a), the original drawing from
Petersen’s notes. In (d) is illustrated a proper 4-edge-colouring.

J. J. Watkins [30, 31] generalised the construction of First and Second Blanuša Snarks,
defining two infinite families, which are referred to as Generalised Blanuša Snarks. Let
B1 = {B1

1 , B
1
2 , B

1
3 , . . .} denote the family of Generalised First Blanuša Snarks. In what

follows, we describe the construction of graph B1
i . The construction of Second Blanuša

Snarks is described further in the section.
Let B1

0 and B be the graphs in Figures 2.25(a) and 2.25(b), respectively. We refer to
these graphs as blocks. The Generalised First Blanuša Snark, B1

i , uses a copy of B1
0 and

i ≥ 1 copies of graph B. Let Bj denoted the j-th copy of block B in B1
i . These components

are connected by, first, adding edges u0w1 and v0z1, thus connecting blocks B1
0 and B1.

Next, we connect block Bj to Bj+1 by adding edges tjwj+1 and rjzj+1, for 1 ≤ j ≤ i− 1.
Finally, edges tix0 and riy0 are added. This construction is presented for the Generalised

(a) (b)

Figure 2.23: Drawings of the First Blanuša Snark.
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Figure 2.24: Second Blanuša Snark B2
1 .

First Blanuša Snark B1
i in Figure 2.26.

When the family of Generalised First Blanuša Snarks was introduced, Watkins [30, 31]
demonstrated that the chromatic number of each graph in this family is χ(B1

i ) = 3. With
this result in mind, we present the edge-gap number for this first family in Theorem 2.7.

Theorem 2.7. Let G be a Generalised First Blanuša Snark. Then, χg
E

(G) = 3.

Proof. Let G ∼= B1
i , with B1

0 and B, the blocks used in its construction. In order to prove
the result, by Theorem 2.1, it is sufficient to show that G admits a gap-[3]-edge-labelling
since χ(G) = 3.

Define labelling π of G as follows: for block B1
0 , assign labels to the edges according to

Figure 2.27(a); and for every block Bj, 1 ≤ j ≤ i, label E(Bj) according to Figure 2.27(b).
For the edges connecting adjacent blocks, let π(v0z1) = 1 and assign label 2 to every
remaining edge. Colouring cπ is defined as usual.

In order to complete the proof, we show that cπ is a proper colouring of G. First,
consider block B1

0 , starting with vertex y0. Observe that {1, 3} ⊂ ΠE(y0) and, therefore,
cπ(y0) = 2. Next, observe that vertices x0 and u0 have ΠE(x0) = {1, 2} and ΠE(u0) = {2, 3}.

v0 u0

x0 y0

(a)

wj rj

zj tj

(b)

Figure 2.25: In (a), the first block, B1
0 , used in the construction B1

i ; and in (b), the
iterating block B.
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v0

u0

x0

y0

w1 r1

z1 t1

wi ri

zi ti

. . .

Figure 2.26: A sketch of the construction of B1
i , i ≥ 3.

This implies that cπ(x0) = cπ(u0) = 1. For vertex v0, recall that edge v0z1 receives label 1.
Therefore, ΠE(v0) = {1}, which induces cπ(v0) = 0. The remaining internal vertices of
block B1

0 have their respective induced colours exhibited in Figure 2.27(a). By inspection,
we conclude that labelling π induces a proper colouring of B1

0 .
It remains to consider the induced colouring of blocks Bj, 1 ≤ j ≤ i. We start by

analysing vertices zj and wj. Note that both vertices have incident edges which receive
labels 1 and 3. This implies that zj and wj have induced colour 2. Next, observe that
ΠE(tj) = {2} and ΠE(rj) = {1, 2}, inducing colours 0 and 1 in vertices tj and rj, respec-
tively. Furthermore, note that cπ(tj) 6= cπ(wj) and cπ(rj) 6= cπ(zj), which implies that
distinct blocks Bj do not have adjacent vertices with conflicting colours. Finally, note
that cπ(y0) 6= cπ(ri) and cπ(x0) 6= cπ(ti). Therefore, cπ is a proper colouring of G, and the
result follows. In Figure 2.28, we illustrate (π, cπ) for B1

3 .

As previously mentioned, the family of Generalised Second Blanuša Snarks B2 =

{B2
1 , B

2
2 , B

2
3 , . . .} is created by replacing block B1

0 with block B2
0 , presented in Figure 2.29.

Graph B2
i from the family of Generalised Second Blanuša Snarks is constructed by

x0
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. . .

. . .

. . .

. . .3
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(a) Labelling π of block B1
0 .
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zj tj

. . .
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. . .

1 1
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3

3

1 2

2

3 1

2
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2

2

(b) Labelling π of blocks Bj .

Figure 2.27: The labellings of blocks B1
0 and Bj. The edges that connect B1

0 and Bj to
their neighbours are represented in gray, with their respective labels. In particular, the
edge incident with zj in (b) is labelled with a = 1 when j = 1 and a = 2, otherwise. Note,
however, that this does not alter the induced colour of zj.
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Figure 2.28: The gap-[3]-edge-labelling (π, cπ) of Generalised First Blanuša Snark B1
3 .

connecting block B2
0 and i copies of block B. Once again, we denote by Bj the j-th copy

of block B. The connection is done as follows: we add edges u0w1 and v0z1 between B2
0

and B1; then, we connect Bj and Bj+1 by adding edges tjwj+1 and rjzj+1, for 1 ≤ j ≤ i−1;
finally, we connect block Bi to B2

0 with edges tix0 and riy0. A sketch of the graph obtained
by this construction is presented in Figure 2.30.

In Theorem 2.8, we establish the edge-gap number for the family of Generalised Second
Blanuša Snarks.

Theorem 2.8. Let B2 = {B2
1 , B

2
2 , . . .} be the family of Generalised Second Blanuša

Snarks. For G ∼= B2
i , χg

E
(G) = 3.

Proof. Let G be the Generalised Second Blanuša Snark B2
i . Similar to the proof of

First Blanuša Snarks, we demonstrate that G admits a gap-[3]-edge-labelling (π, cπ), thus
proving that χg

E
(G) = 3 since χ(G) = 3.

Define labelling π of G as follows. For blocks Bj, 1 ≤ j ≤ i, we assign edge-labels
exactly as we did in the case of Generalised First Blanuša Snarks. We recall this labelling
in Figure 2.31(b). For the initial block B2

0 , assign labels according to Figure 2.31(a).
Finally, let π(v0z1) = π(u0w1) = 1, and π(e) = 2 to every other edge e connecting
adjacent blocks. Define colouring cπ as usual.

In order to prove the result, we show that cπ is a proper colouring of G. First, consider
blocks Bj, 1 ≤ j ≤ i. Since the labelling of these blocks is essentially the same (note that

v0 u0

x0 y0

Figure 2.29: Block B2
0 used in the construction of Generalised Second Blanuša Snarks.
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v0

u0

x0

y0

B2
0

w1 r1

z1 t1

B1

wi ri

zi ti

Bi

. . .

. . .

Figure 2.30: The construction of Generalised Second Blanuša Snark B2
i .

{1, 3} ⊆ ΠE(wj)) as in the proof of Theorem 2.7, it follows that cπ is a proper colouring
of V (Bj). Also, since cπ(zj) 6= cπ(rj) and cπ(wj) 6= cπ(tj), we conclude that blocks Bj

and Bj+1 are connected by vertices with different induced colours.
For the remaining block B2

0 , by inspecting Figure 2.31(a), we observe that there are
no two adjacent vertices with the same induced colour. Furthermore, cπ(u0) 6= cπ(w1),
cπ(v0) 6= cπ(z1), cπ(y0) 6= cπ(ri) and cπ(x0) 6= cπ(ti). Therefore, cπ is a proper colouring
of G, which completes the proof. In Figure 2.32, we illustrate (π, cπ) for B2

2 .

The next family of snarks considered is the that of Flower Snarks, which is described
in the next section.

Flower Snarks

In 1975, R. Isaacs [17] described an infinite family of snarks named Flower Snarks, which
are defined as follows. Let T ∼= S3 be the star with vertices v, x, y, z, where v is the
central vertex. Graph T is illustrated in Figure 2.33(a). For an odd integer l, l ≥ 3,
Flower Snark Jl is constructed by using l copies of T , T0, T1, . . . , Tl−1. We denote the
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(a) Labelling π of block B2
0 .
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(b) Labelling π of blocks Bj .

Figure 2.31: The labellings of blocks B2
0 and Bj in (a) and (b), respectively.



45

1

1

1

2

2

3

3

1

11

3 2

3

1 1

1

2

21

3

3 1

3

1 1

1

2

21

3

3 1

3

1

1 2

2

2

2

Figure 2.32: The gap-[3]-edge-labelling of Second Blanuša Snark B2
2 .

vertices of each Ti as vi, xi, yi and zi. Graphs T0, . . . , Tl−1 are connected by two cycles:
C0 = {z0, z1, . . . , zl−1}, and C1 = {x0, x1, . . . , xl−1, y0, y1 . . . , yl−1}. This construction is
illustrated in Figure 2.33(b). A more common visual representation of Flower Snarks is
exemplified for J5 in Figure 2.34, which perfectly depicts why snarks in this construction
were named “flowers”.

For the family of Flower Snarks, denoted by J = {J3, J5, . . .}, we establish the edge-
gap number in Theorem 2.9.

Theorem 2.9. Let G be a Flower Snark. Then, χg
E

(G) = 3.

Proof. Let G be a Flower Snark constructed from l copies of T , as defined in the text. For
each copy of Ti, its vertex set is denoted by V (Ti) = {vi, xi, yi, zi}. In order to prove the
result, by Theorem 2.1, it suffices to show that G admits a gap-[3]-edge-labelling (π, cπ).

Similarly to the construction of Blanuša Snarks in the previous section, we assign labels
to each Ti, 0 ≤ i < l, such that colouring cπ induced in G is a proper vertex-colouring. In
the case of Flower Snarks, however, we define labellings of Ti depending on the value of i
as follows. For the edges of Ti, assign:

v

x

y

z

(a) (b)

Figure 2.33: In (a), graph T with its vertices and their names; and in (b), the construction
of Jl using l copies of T .
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T0

T1

T2

T3

T4

Figure 2.34: Flower Snark J5. Cycles C0 and C1 are highlighted in orange and red,
respectively. The bottommost edges in the image are edges x4y0 and y4x0.

π(vixi) = π(viyi) =

{
2, if i is even;

3, otherwise.
π(vizi) =


1, if i = l − 1;

2, if i is even, i 6= l − 1;

3, otherwise.

Next, assign label 1 to every edge e ∈ E(C0), that is, edges connecting vertices
ziz(i+1) mod l, 0 ≤ i < l. It remains to assign labels to edges in E(C1), that is, the cycle
defined by edges x0x1, x1x2, . . . , xl−1y0, y0y1, . . . , yl−1x0. Let π(xl−1y0) = π(yl−1x0) = 2,
and π(xixi+1) = π(yiyi+1) = 1 + (i mod 2). Define colouring cπ as usual. Observe that
this labelling produces three distinct colourings for Ti, depending on the value of i, which
are represented in Figure 2.35.

vi

xi

yi

zi

2 2

2

12

12

11

(a) i even.

vi

xi

yi

zi

3 3

3

21

21

11

(b) i odd.

vl−1

xl−1

yl−1

zl−1

2 2

1

22

22

11

(c) i = l − 1.

Figure 2.35: Labellings π of each Ti of G. White vertices have induced colour 0, black
vertices, colour 1, and orange vertices, colour 2.

In order to conclude the proof, it suffices to show that cπ is a proper colouring of G.
First, consider Tl−1 and note that ΠE(vl−1) = {1, 2}, inducing colour 1. By the definition,
both edges incident with vertices xl−1 and yl−1 in C1 receive label 2. This implies that
cπ(xl−1) = cπ(yl−1) = 0. For zl−1, we have ΠE(zl−1) = {1} since every edge in C0 is assigned
label 1. This also induces colour 0 in zl−1. Figure 2.35(c) exhibits this colouring.

Next, we consider Ti, 0 ≤ i < l − 1, starting with vertices vi. The edges incident
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with vi were labelled such that ΠE(vi) = {2 + (i mod 2)}, which induces cπ(vi) = 0. For
vertices xi and yi, note that their incident edges in C1 receive labels 1 and 2. Therefore,
ΠE(xi) = {1, 2, π(vixi)}, and an analogous reasoning holds for vertex yi. Now, since
π(vixi) = π(viyi) alternates between labels 2 and 3, with π(v0x0) = 2, we conclude that
cπ(xi) = cπ(yi) = 1 + (i mod 2) for every Ti, i < l− 1. Also, note that cπ(vi) 6= cπ(xi) and
cπ(vi) 6= cπ(yi). For the remaining vertices zi, note that ΠE(zi) = {1, π(vizi)}. Labelling π
alternates labels 2 and 3 in graphs Ti, 0 ≤ i < l− 1, with π(v0z0) = 2, which also induces
cπ(zi) = 1 + (i mod 2). The colourings for these cases are depicted in figures 2.35(a)
and 2.35(b).

In order to conclude the proof, note that cπ(xl−1) = cπ(yl−1) = cπ(zl−1) = 0 and
cπ(xi) = cπ(yi) = cπ(zi) = 1 + (i mod 2). Therefore, cycles C0 and C1 are coloured as
illustrated in Figure 2.36 and we conclude that cπ is a proper colouring of G.

C1

x0 x1 x2
. . .

xl−2 xl−1 y0 y1 y2
. . .

yl−2 yl−1

v0 v1 v2 vl−2 vl−1 v0 v1 v2 vl−2 vl−1

1 2 1 1 2 2 1 2 1 1 2

2

2 3 2 3 2 2 3 2 3 2

. . .

v0 v1 v2 vl−2 vl−1

2 3 2 3 1

1 1 1 1 1

1

C0

Figure 2.36: The induced colourings of cycles C1 (above) and C0 (below). Vertices in
white, black and orange have induced colours 0, 1 and 2, respectively.

An interesting observation is that identifying vertices v0, v1 and v2 in Flower Snark J3
produces the Petersen Graph, the smallest known snark. In fact, the labelling presented
in the proof of Theorem 2.9 is also a gap-[3]-edge-labelling of the Petersen Graph.

We remark that the labelling of Flower Snarks is different from that of Blanuša Snarks
since each adjacent block of Jl was assigned a different labelling, whereas this is not the
case for Blanuša Snarks. The next family of snarks considered, the Goldberg Snarks, uses
a labelling technique similar to that of Flower Snarks.

Goldberg and Twisted Goldberg Snarks

The family of Goldberg Snarks G = {G3, G5, . . .} was introduced in 1981 by M. K. Gold-
berg [15], who described a method for constructing graphs G with χ′(G) = 4 and maxi-
mum degree three. His technique can be used to obtain several different families of snarks
– for example, Flower Snarks Jl described in the previous section. The details of Gold-
berg’s method, however, is beyond the scope of this text. Here, we describe only the
families of Goldberg and Twisted Goldberg Snarks.
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For each l, l ≥ 5 and odd, Goldberg Snark Gl is constructed using crown Rl and l

copies of block B, represented in Figure 2.37. For every block Bj, its vertex set is denoted
by V (Bj) = {uj, yj, rj, wj, tj, vj, xj}. Here, we rename the vertex set of crown Rl as
V (Rl) = {s0, . . . , sl−1} ∪ {z0, . . . , zl−1}, with d(sj) = 3 and d(zj) = 1 for all j < l. This is
done to avoid ambiguity with vertices vj and uj from blocks Bj.

u y

r w t

v x

Figure 2.37: Block B used in the construction of the Goldberg Snark Gl.

In order to construct Gl, we cyclically connect blocks Bj and Bj+1 by adding edges
{xjvj+1, yjuj+1} for all 0 ≤ j < l. Also, we identify vertices zj and wj from crown Rl

and block Bl, respectively. A general representation of this construction is presented in
Figure 2.38. Particularly for l = 3, the construction is done by using star S3 instead of
crown R3. Goldberg Snark G3 is presented, together with a gap-[3]-edge-labelling of the
graph, in Figure 2.39.

u0 y0

r0 w0 t0

v0 x0

s0

u1 y1

r1 w1 t1

v1 x1

s1

u2 y2

r2 w2 t2

v2 x2

s2

ul−1 yl−1

rl−1 wl−1 tl−1

vl−1 xl−1

sl−1

Figure 2.38: The construction of Goldberg snark Gl, l ≥ 5.

Regarding Goldberg Snarks, some authors define the operation of twisting edges in Gl

as the removal of edges xjvj+1 and yjuj+1 from the graph and, then, adding edges xjuj+1

and yjvj+1. Figure 2.40 exemplifies this operation for edges connecting blocksBj−1 andBj.
In 2007, M. Ghebleh [14] defined the Twisted Goldberg Snark TGl, l ≥ 3 and odd,

as the graph obtained by twisting edges connecting two adjacent blocks in Goldberg
Snark Gl. The author stated that applying more twists to TGl does not produce any new
graphs. For example, consider Figure 2.41, which illustrates two pairs of twisted edges
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1

2

3

31

1

2

3

1

2

3

3

1
12

3

1

2

3
3

1
1

2

3

1

1 1

1

1

1

1

1

1

Figure 2.39: The gap-[3]-edge-labelling of G3. Vertices in white have induced colour 0, in
black, colour 1, and in orange, colour 2.

in a Goldberg Snark Gl. By renaming vertices (uj, yj, rj, tj, vj, xj) as (vj, xj, tj, rj, uj, yj),
we conclude that the graph G′ resulting from this operation is G′ ∼= Gl. In fact, Ghebleh
remarks that applying any even number of twists to Goldberg Snark Gl yields Gl itself.
Otherwise, if an odd number of twists is applied, then the resulting graph is TGl.

Twisted Goldberg Snark TG3 is defined from Goldberg Snarks G3 and, therefore, also
uses star S3 in its construction. We illustrate TG3 in Figure 2.42, together with a gap-
[3]-edge-labelling for it. Observe the twisted edges connecting the bottommost blocks in
the image.

We establish the edge-gap number for both Goldberg and Twisted Goldberg Snarks
in Theorem 2.10.

Theorem 2.10. Let G be a (Twisted) Goldberg Snark. Then, χg
E

(G) = 3.

uj−1 yj−1

rj−1 wj−1 tj−1

vj−1 xj−1

sj−1

uj yj

rj wj tj

vj xj

sj

uj+1 yj+1

rj+1 wj+1 tj+1

vj+1 xj+1

sj+1

. . .

. . . . . .

. . .

. . . . . .

Figure 2.40: A twisted edge in Goldberg Snark Gl.
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uj−1 yj−1

rj−1 wj−1 tj−1

vj−1 xj−1

sj−1

uj yj

rj wj tj

vj xj

sj

uj+1 yj+1

rj+1 wj+1 tj+1

vj+1 xj+1

sj+1

. . .

. . . . . .

. . .

. . . . . .

Figure 2.41: Two twisted edges in Goldberg Snark Gl.

Proof. Let G ∼= Gl, G′ ∼= TGl and l ≥ 3 and odd. It is well known that χ(G) = χ(G′) = 3.
Therefore, by Theorem 2.1, showing that G and G′ admit gap-[3]-edge-labellings proves
the result.

Figures 2.39 and 2.42 respectively show gap-[3]-edge-labellings for G3 and TG3. Next,
consider l ≥ 5 and odd. For every e = uv, u ∈ {xi, yi} and v ∈ {ui+1, vi+1}, assign
π(e) = 1 if i is even, and π(e) = 3, otherwise. Now, for every block Bi, assign labels
to E(Bi) according to Figure 2.43. For the remaining edges, assign labels: π(s0w0) = 3;
π(siwi) = 1 + (i mod 2), 1 ≤ i < l; and π(sis(i+1) mod l) = 1 for 0 ≤ i < l. Colouring
cπ is defined as usual. Figure 2.44 illustrates (π, cπ) for snarks G5 and TG5. In the
latter, the edges connecting blocks B3 and B4 have been twisted. We remark that both
edges connecting adjacent blocks Bj and Bj+1 always receive the same label. Therefore,
colouring cπ is induced in the same manner regardless of whether these edges are twisted.

1

1

2

33

2

1

1

1

1

2

3

3
21

1

1

1

2
3

3
2

1

1

2

2 2

1

1

1

1

1

1

Figure 2.42: The gap-[3]-vertex-labelling of Twisted Goldberg Snark TG3. Vertices filled
in white, black and orange have induced colours 0, 1 and 2, respectively.
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u0 y0

r0 w0 t0

v0 x0

..
.

1

1

2

33

2

1

1

3

1

1

1

1

(a) j = 0.

uj yj

rj wj tj

vj xj

..
.

1

1

1

22

2

1

1

2

1

1

3

3

(b) 1 ≤ j ≤ l − 2 and odd.
uj yj

rj wj tj

vj xj

..
.

3

3

2

23

2

3

3

1

3

3

1

1

(c) 2 ≤ j ≤ l − 1 and even.

Figure 2.43: Labelling π and induced colouring cπ of blocks Bi. Vertices in white, black
and orange have induced colours 0, 1 and 2, respectively.

In order to prove the result, it suffices to show that cπ is a proper vertex-colouring of
the graphs. First, consider block B0. Since l is odd, we know that every edge connect-
ing B0 to B1 and to Bl−1 receives label 1. Also, we have π(s0w0) = 3. By inspecting
Figure 2.43(a), which depicts this labelling, we conclude that cπ is a proper colouring
of V (B0). Now, for 1 ≤ i ≤ l − 2 and odd, we have π(e) = 1 for edges e connecting Bi

to Bi−1, and π(e′) = 3, connecting Bi to Bi+1. Also, π(siwi) = 2 in this case. Then, by
inspecting Figure 2.43(b), we conclude that these blocks are also properly coloured. The
same reasoning applied to blocks Bj, 2 ≤ j ≤ l− 1 and even, illustrated in Figure 2.43(c)
leads us to the conclusion that there are no conflicting internal vertices in blocks Bj

of G (G′).
Next, consider the labelling and induced colouring of crown Rl, which is sketched in

Figure 2.45. Since every edge sjs(j+1) mod l receives label 1, we have ΠE(sj) = {1, π(sjwj)}.
This implies that cπ(s0) = 2 and cπ(sj) = j mod 2 for 1 ≤ j ≤ l − 1. This is a proper
colouring of crown Rl.

Thus, it remains to prove that there are no conflicting vertices connecting adjacent
blocks in G. First, note that cπ(uj) = cπ(vj) = 0 for all blocks Bj. Also, every Bj,
0 ≤ j ≤ l−1, has cπ(xj) = cπ(yj) 6= 0. Then, every edge uv, u ∈ {xj, yj}, v ∈ {uj+1, vj+1},
connecting blocks Bj and Bj+1 has one end with induced colour 0 and the other, with
some colour c ∈ {1, 2}. Thus, we conclude that cπ is a proper vertex-colouring for G
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(b)

Figure 2.44: Gap-[3]-edge-labellings of G5 and TG5 in (a) and (b), respectively. Vertices
in white have induced colour 0, in black, colour 1, and in orange, colour 2.

and G′, and the result follows.

This completes our study of gap-[k]-edge-labellings for classes of graphs. In the next
chapter, we introduce and study the vertex variant of this labelling, which was formally
defined by A. Dehghan et al. [8] in 2013.

s0 s1 s2 s3

. . .

sl−1

w0 w1 w2 w3
wl−1

3 2 1 2 1

1 1 1 1 1

1

Figure 2.45: The labelling and induced colouring of crown Rl. White vertices have induced
colour 0, black vertices, colour 1, and orange vertices, colour 2.
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Chapter 3

Gap-[k]-vertex-labellings

In the previous chapter, we discussed the gap-[k]-edge-labelling problem, Gkel, and
established the edge-gap number, χg

E
, for some classes of graphs. The next proper labelling

problem we address also uses the concept of inducing a proper vertex-colouring in a graph
by the largest gap between labels. In this version, however, the labels are assigned to its
vertices. This proper labelling was introduced by A. Dehghan et al. in 2013 [8], under
the name vertex-labelling by gap.

We mention in Chapter 2 that the notation used in the literature for proper labellings
of graphs is often misleading. Therefore, as we did for gap-[k]-edge-labellings, we rename
Dehghan et al.’s labelling as a gap-[k]-vertex-labelling of a graph G. It is defined as an
assignment of labels to the vertices (rather than to the edges) of a graph G such that the
colour of every vertex v is computed as the maximum difference among the labels of its
neighbours (cases where d(v) = 0 and d(v) = 1 are treated separately and are defined in
detail below). In this chapter, we advance the computational complexity analysis of this
problem, which began with Dehghan et al. [8], and prove hardness results for problems
associated with this labelling. Also, we investigate the gap-[k]-vertex-labelling for some
classes of graphs and discuss properties of this labelling, establishing bounds for the
minimum k for which an arbitrary graph admits a gap-[k]-vertex-labelling. We remark
that an upper bound for this parameter is established in Chapter 4, where properties of
another decision problem associated with this labelling are investigated.

3.1 Preliminaries

A gap-[k]-vertex-labelling of a simple graph G = (V,E) is a proper labelling defined by
a pair (π, cπ), where π : V → {1, 2, . . . , k} is a labelling of the vertices of G and cπ is a
proper vertex-colouring of G such that, for every vertex v ∈ V , its induced colour is:

cπ(v) =


max
u∈N(v)

{π(u)} − min
u∈N(v)

{π(u)}, if d(v) ≥ 2;

π(u)u∈N(v), if d(v) = 1;

1, if d(v) = 0.

Similar to the definition of gap-[k]-edge-labellings in Chapter 2, the colour of vertices



54

v ∈ V (G) with d(v) ≥ 2 are induced by the largest difference among the labels of its
adjacent vertices. Hence, cπ(v) is induced by the maximum gap in ΠN(v). Figure 3.1
illustrates a gap-[3]-vertex-labelling of the Petersen Graph. Since both the labels and
the colours are assigned to the vertices of the graph, when necessary, we distinguish these
values by representing the label assigned to a vertex in a box next to its lower right corner.
The number inside each vertex corresponds to its induced colour. For example, vertices
v0, v7 and v9 in Figure 3.1 have labels π(v0) = 3, π(v7) = 2 and π(v9) = 1, and their
induced colours are cπ(v0) = cπ(v7) = 0 and cπ(v9) = 1. The notation used in this figure
to denote labelling π is used throughout the chapter.

0

v0

2

v1

1
v2

0
v3

2

v4
2

v5

0

v6

0

v7
1

v8

1

v9

3

1

12

1

1

2

21

1

Figure 3.1: A gap-[3]-vertex-labelling of the Petersen Graph.

Whenever a new proper labelling is introduced, it is customary to investigate the least
number k of labels that is required to properly label an arbitrary graph. For this labelling,
we define the minimum number k for which a graph G admits a gap-[k]-vertex-labelling as
the vertex-gap number of G and we denote this parameter by χg

V
(G). This is done so as to

maintain the pattern of the notation defined in Chapter 2. Once again, observe the three
components of χg

V
(G): χ indicates we are interested in a proper colouring, in this case,

of the vertices of G; the superscript g indicates we are using gaps to induce the colour of
each vertex; and, finally, the subscript V indicates we assign labels to the vertices of G.

Gap-[k]-vertex-labellings of graphs were introduced by A. Dehghan et al. [8] in 2013,
under the name vertex-labelling by gap. In their article, they prove that every tree T
admits a gap-[2]-vertex-labelling, thus establishing1 that χg

V
(T ) = 2. An example of the

labelling presented in their article is illustrated in Figure 3.2. The authors also determined
that r-regular bipartite graphs G, with r ≥ 4, have χg

V
(G) = 2. The proof of this result is

based on the fact that every k-regular k-uniform hypergraph H admits a 2-colouring when
k ≥ 4; the authors used this result to create a gap-[2]-vertex-labelling of the r-regular
bipartite graphs, r ≥ 4. Figure 3.3 illustrates a gap-[2]-vertex-labelling of a 5-regular
bipartite graph G, constructed from a 5-regular 5-uniform hypergraph H .

Although Dehghan et al. [8] established the vertex-gap number for these two families
of graphs, the focus of their article was on determining the algorithmic complexity of

1Our proof of this result is presented in Section 3.3.4, Lemma 3.14.
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Figure 3.2: A gap-[2]-vertex-labelling of a tree T .

decision problems associated with several proper labellings. For the purposes of this
work, the statement of the decision problem associated with the gap-[k]-vertex-labelling
of graphs is presented below.

Gap-[k]-vertex-labelling [Gkvl]

Instance: A graph G = (V,E) and an integer k ≥ 1.
Question: Does G admit a gap-[k]-vertex-labelling?

When considering a specific value of k, we denote Gkvl by replacing k with its
value. Dehghan et al. [8] proved that Gkvl is NP-complete for arbitrary graphs when
k ≥ 3. However, for k = 2, the problem is polynomial-time solvable for some classes of
graphs and remains NP-complete for others. The authors determined the complexity of
the following problems:

1

v0

1

v1

1

v2

1

v3

1

v4

1

v5

1

v6

1

v7

0

u0

0

u1

0

u2

0

u3

0

u4

0

u5

0

u6

0

u7

1 1 1 1 1 1 1 1

1 2 1 2 1 2 1 2

Figure 3.3: A gap-[2]-vertex-labelling of a 5-regular bipartite graph G. The corresponding
5-regular 5-uniform hypergraph H has vertex set X = {v0, . . . , v7} and hyperedge set
Y = {N(u0), . . . , N(u7)}.
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(i) G2vl is NP-complete for bipartite graphs and for planar 3-colourable graphs;

(ii) G2vl is in P for planar bipartite and for r-regular bipartite, r ≥ 4, graphs.

Dehghan et al. [8] showed that it is easy2 to solve G2vl when the given bipartite
graph is planar, whereas if the graph is not planar, the problem is NP-complete. The au-
thors remarked that planarity of graphs could be a facilitating factor. However, in 2016,
Dehghan [7] proved that deciding whether a planar bipartite graph G admits a gap-[2]-
vertex-labelling (π, cπ) such that cπ is a 2-colouring of G is also NP-complete. This result
also shows that G2vl for bipartite graphs is, in fact, a problem with interesting proper-
ties which demands further research.

Our approach to study the gap-[k]-vertex-labellings of graphs is divided into three
fronts: determining χg

V
(G) for families of graphs; establishing bounds for the vertex-gap

number of arbitrary graphs; and studying the computational complexity of G2vl for
cubic bipartite graphs.

In the first front, we investigated the vertex-gap number for the same classes addressed
in the edge version, namely cycles, crowns, wheels, unicyclic graphs and some families
of snarks. In addition, motivated by a question posed by Dehghan et al. [8], we also
considered the family of cubic bipartite graphs. For this class, we designed several labelling
techniques and algorithms, which are presented in detail in Section 3.3.5. Our findings
for these graphs led us to conjecture that, with the exception of the Heawood Graph,
χg
V

(G) = 2 for every hamiltonian cubic bipartite graph G.
The second front was to establish bounds for the vertex-gap number of arbitrary

graphs. In Section 3.3, we prove that the lower bound for χg
V

(G) is the same as the one
for the edge version. As previously stated, an upper bound for the parameter is presented
in Chapter 4, where we discuss further structural properties regarding the gap-[k]-vertex-
labelling of graphs.

Third, we investigate the computational complexity of G2vl for cubic bipartite
graphs, an approach also motivated by Dehghan et al.’s work. We know that this problem
is in NP since one can verify (in polynomial time) whether a labelling π : V (G)→ {1, 2}
induces a proper vertex-colouring of the graph. However, it is unclear if the problem is
also NP-complete. In order to obtain advances in this front, we decided to broaden our
set of instances to subcubic bipartite graphs. Upon such consideration, we proved that
G2vl for subcubic bipartite graphs remains NP-complete. To simplify, we refer to G2vl
for this class of graphs as G2vl (ScB).

Theorem 3.1. G2vl (ScB) is NP-complete. �

The proof of this result is presented in Section 3.2, where we reduce the Monochro-
matic Triangle problem to G2vl (ScB) in polynomial time. The statement of
Monochromatic Triangle [13] is presented below.

2Here, we use the term easy to indicate that there exists a polynomial-time algorithm that decides
this problem. The algorithm is described in A. Dehghan et al.’s article [8].
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Monochromatic Triangle (MT)
Instance: A graph G = (V,E).
Question: Is there a partition of E into two disjoint sets E1, E2 such that neither

G1 = (V,E1) nor G2 = (V,E2) contains a triangle?

This problem can also be stated as an edge-colouring problem, where the question
is whether G admits a colouring of its edges in two colours, namely red and blue, such
that every triangle in G has at least one blue edge and one red edge; thus, no triangle is
monochromatic. This problem was proved to be NP-complete by Burr in 1976, but this
result was only published by Garey & Johnson [13] in 1979. The Monochromatic Tri-
angle problem is closely related to a branch of mathematics known as Ramsey Theory,
which is beyond the scope of this text.

The remainder of this chapter is divided as follows. The next section presents the
proof of Theorem 3.1. In the beginning of Section 3.3, we establish a lower bound for
the vertex-gap number of arbitrary graphs. After this, still in Section 3.3, we present our
results for χg

V
for some well-known classes of graphs: cycles, crowns, wheels, unicyclic

graphs, families of cubic bipartite hamiltonian graphs and families of snarks.

3.2 G2vl (ScB) is NP-complete

We reduce an instance of the Monochromatic Triangle problem, a graph G = (V,E),
to a subcubic bipartite graph G′ = (V ′, E ′) such that G admits a 2-edge-colouring with no
monochromatic triangles if and only if the constructed graph G′ admits a gap-[2]-vertex-
labelling. The reduction is accomplished with the aid of two gadgets: a triangle gadget
and a negation gadget. The first gadget represents each triangle ti in G as a group of
vertices in G′. These vertices are labelled and coloured by a gap-[2]-vertex-labelling (π, cπ)

of G′, when one exists. The negation gadget provides further structural properties in G′.

3.2.1 Triangle gadget

The triangle gadget G4 is an auxiliary simple bipartite graph with 19 vertices, 20 edges
and is defined as follows. Let ex, ey, ez, be the edges of a triangle t of G. We abuse notation
and say that t = {ex, ey, ez}. The gadget, G4, has a vertex u that represents t in G′.
For each edge ej in t, j ∈ {x, y, z}, the gadget has two adjacent vertices vj and wj. Each
vertex vj is also adjacent to u. There is also a copy of path P12 = {q0, q1, . . . , q11} and
edges wxq0, wyq4 and wzq8. Figure 3.4(a) illustrates the triangle gadget for a triangle t
of G with edges e1, e4, e7. Since the triangle gadget does not contain any odd cycles, it is
bipartite. Also, no vertex has degree greater than 3, thus G4 is subcubic. A simplified
representation of the triangle gadget is illustrated in Figure 3.4(b), in which we omit some
of the vertices and edges so as to simplify the visualization of larger constructions further
in this section.

Property 3.2. Let G4 be a triangle gadget. If G4 admits a gap-[2]-vertex-labelling (π, cπ)

such that cπ(u) = 1, then π(q0) = π(q4) = π(q8).
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u

v1 v4 v7

w1 w4 w7

q0

q1 q2 q3

q4

q5 q6 q7

q8

q9 q10 q11

(a)

t
v1

w1

q0

v4

w4

q4

v7

w7

q8

(b)

Figure 3.4: In (a), the triangle gadget G4 for a triangle t = {e1, e4, e7}, with its vertex set
partitioned into sets A (in white) and B (in black); and in (b), its simplified representation.
The white rectangles and doubled lines connecting vertices q0, q4 and q8 omit some vertices
of path P12.

Proof. Let G4 = (V,E) be a triangle gadget representing triangle {ex, ey, ez} and sup-
pose G4 admits a gap-[2]-vertex-labelling (π, cπ). Let {A,B} be a bipartition of G4.
Note that one part, say A, comprises vertices vx, vy, vz, and every qi, i even; and the
other part, B, comprises the remaining vertices. Bipartition {A,B} is illustrated in Fig-
ure 3.4(a). Also, note that the colours of vertices in V (G4) \ q11 ∈ {0, 1} since their
degrees are greater than one. Colour of vertex q11 ∈ {1, 2}, depending on the label of q10.

Suppose cπ(u) = 1. Since every v ∈ A has d(v) ≥ 2, we conclude that these vertices
have induced colour 0. Now, consider vertex q11, for which we know that cπ(q11) = π(q10).
Let a ∈ {1, 2} be the label assigned to q10. Then, since N(q9) = {q8, q10} and cπ(q9) = 1,
we have π(q8) 6= π(q10). Thus, we conclude that π(q8) = b, b ∈ {1, 2} and b 6= a.
Following this reasoning, and analysing vertices q7, q5, q3 and q1 in sequence, we obtain
π(q0) = π(q4) = π(q8) = b and π(q2) = π(q6) = π(q10) = a, as illustrated in Figure 3.5.
This concludes the proof.

u

vx vy vz

wx wy wz

q0

q1 q2 q3

q4

q5 q6 q7

q8

q9 q10 q11

c c c c c c

c c c

c

b

a

b

a

b

a

Figure 3.5: A (partial) labelling of G4 when cπ(u) = 1, with c ∈ {1, 2}. Vertices with
induced colour 1 are filled in black, and vertices with colour 0, in white. Vertex q11 is
coloured in orange, implying cπ(q11) ∈ {1, 2}.
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Observe that no implication is made for the labels of vertices vx, vy and vz. In order
to properly label these vertices so as to induce colouring cπ, we require the use of another
gadget.

3.2.2 Negation gadget

The negation gadget G¬ is an auxiliary simple bipartite graph obtained by removing
an edge e from the Heawood Graph G, which is the cubic bipartite graph presented
in Figure 2.3, and linking two new vertices, vin and w, to the ends of e. Let V (G) =

{s0, . . . , s13} and e = s0s9. We also refer to vertex s9 as vout. This construction of G¬

yields a graph with 16 vertices and 22 edges. This gadget is illustrated in Figure 3.6(a).
The negation gadget is only used to connect vertices vi and wi that belong to trian-

gle gadgets. These two vertices are identified with vin and w from the negation gadget,
respectively. Therefore, upon performing this operation, vertices vi and wi in the corre-
sponding triangle gadgets have degree 3. Observe that the negation gadget contains no
odd-length cycles and, therefore, is bipartite. We also remark that vertices vin and vout
belong to the same part of any bipartition of G¬, as depicted in Figure 3.6(a). In order
to simplify larger images further in this section, the negation gadget is illustrated by the
symbol “¬” in a box incident with doubled lines (not to be confused with parallel edges),
linking vertices vin and vout with the box, as illustrated in 3.6(b).

Property 3.3. Let G be a subcubic bipartite graph with G¬ ⊆ G and d(vin) = d(w) = 3.
If G admits a gap-[2]-vertex-labelling and cπ(vin) = cπ(vout) = 0, then π(vin) 6= π(vout).

Proof. Let G be a graph as stated in the hypothesis and G¬ = (V,E) be a negation gadget
in G, with vertex set V = {vin, w, s0, . . . , s13}. Recall that vertex s9 is also called vout. Let
{A,B} be a bipartition of the negation gadget where one part, say A, comprises vertices
vin, vout and every si, i odd, and the other, B, consists of the remaining vertices. SupposeG
admits a gap-[2]-vertex-labelling (π, cπ). Then, since d(v) = 3, we have cπ(v) ∈ {0, 1} for
every vertex v ∈ V (G¬).

Suppose cπ(vin) = 0. Since G¬ is connected, all vertices in A have colour 0. This
implies that all vertices in B receive the same label c ∈ {1, 2}. It remains to consider

vin s0

s1

s2

s3 s4 s5 s6

s7

s8

vouts10s11s12s13 w

e

(a)
vin vout w

¬

(b)

Figure 3.6: In (a), negation gadget G¬ and its vertex set partitioned into sets A (in white)
and B (in black); and in (b), the representation of the gadget connecting vertices vin and w.
The dashed edge in (a) represents the removed edge.
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the labels of vertices in part A. Since s0 ∈ B and cπ is a proper colouring of G¬ in
colours {0, 1}, we know that cπ(s0) = 1. Recall that N(s0) = {vin, s1, s13}. Let a, b ∈
{1, 2}, a 6= b, be the possible labels. Then, we have ΠN(s0) = {a, b}.

Suppose π(s1) 6= π(s13), so that colour 1 is induced in s0 regardless of the label
assigned to vin. Without loss of generality, let π(s1) = a. Consider vertex s2, and
recall that N(s2) = {s1, s3, s11}. Since s2 ∈ B, cπ(s2) = 1, which also implies that
{π(s1), π(s3), π(s11)} = {a, b}. This opens two possibilities for the label of vertices s3
and s11.

Suppose π(s3) = b. In this case, knowing that s3, s13 ∈ N(s4) and π(s3) = π(s13) = b,
we conclude that π(s5) = a since π(s5) = b would induce cπ(s4) = 0. Figure 3.7(a)
illustrates this case. Now, since s1, s5 ∈ N(s6) and cπ(s6) = 1, a similar reasoning allows
us to conclude that π(s7) = b, as illustrated in Figure 3.7(b). Analogously, we have
π(s7) = π(s13) = b, s7, s13 ∈ N(s12) and cπ(s12) = 1, which implies π(s11) = a, as
illustrated in Figure 3.7(c). The only remaining vertex to be considered is vout. However,
if π(vout) = a, then π(vout) = π(s5) = π(s11) and, since {vout, s5, s11} = N(s10), we
have cπ(s10) = 0, which is a contradiction. Otherwise, if π(vout) = b, then, by a similar
argument, cπ(s8) = 0, which is also a contradiction. These analyses are illustrated in
Figures 3.7(a), 3.7(b) and 3.7(c).
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Figure 3.7: Case π(s1) 6= π(s13). In (a), (b), and(c), vertex s3 has been assigned label b,
which determines the assignment of labels to vertices s5, s7 and s11, respectively; and in
(d), (e) and (f), s3 has label a and the determined labels of vertices s11, s7 and s5 are
respectively illustrated. In all figures, edges and labels highlighted in orange are those
that force labels, which are highlighted in red. Also, we denote black vertices as those
with induced colour 1 and white vertices, colour 0.

Since considering π(s3) = b leads us to a contradiction, we conclude that π(s3) = a.
Then, by an analogous argument, we can determine the assignment of labels π(s11) = b,
π(s7) = a, π(s5) = b in sequence, as represented in Figures 3.7(d), 3.7(e) and 3.7(f),
respectively. Again, we have a contradiction in determining the label of vout and we
conclude that π(s1) = π(s13).
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Now, let π(s1) = π(s13) = b and, consequently, π(vin) = a. For the sake of contradic-
tion, suppose π(vin) = π(vout) and consider vertex s11, which belongs to N(s12) ∩N(s10).
We have two possible labels for s11: a or b. First, suppose π(s11) = a. Since N(s10) =

{s5, s11, vout} and π(s11) = π(vout) = a, in order to induce cπ(s10) = 1, π(s5) = b as
illustrated in Figure 3.8(a). However, π(s1) = π(s5) = b and, since N(s6) = {s1, s5, s7}
and cπ(s6) = 1, we conclude that π(s7) = a. Figure 3.8(b) illustrates this case. The only
remaining vertex to be considered is s3. However, note that if label a is assigned to s3,
then vertex s8 would be coloured with 0 since N(s8) = {s3, s7, vout} and, by our reasoning,
π(s3) = π(s7) = π(vout) = a. Otherwise, if π(s3) = b, we have π(s3) = π(s13) = π(s5) = b

which induces cπ(s4) = 0 since N(s4) = {s3, s5, s13}. Both cases contradict the fact that cπ
is a proper colouring of G¬. We conclude that π(s11) 6= a.

Thus, we can assume π(s11) = b. However, since π(s13) = π(s11), by a similar ar-
gument, label a is assigned to vertex s7. Once again, we reach a contradiction upon
determining π(s3): the assignment of label b would induce cπ(s2) = 0 and, if π(s3) = a,
then cπ(s8) = 0. Both cases contradict the fact that cπ is a proper colouring of the gadget,
as illustrated in Figure 3.8(c). We conclude that π(vin) 6= π(vout).
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Figure 3.8: Case π(vin) = π(vout). In (a) and (b), labels for vertices s5 and s7 are
determined by the established labels, while, in (c), the only determined label is s7. In
both cases, there is no label that can be assigned to vertex s3 so as to induce a proper
colouring of G¬. We denote vertices with induced colour 1 as those filled with black, and
vertices coloured with 0, in white. Forced labels are highlighted in blue.

We are ready to reduce an instance of Monochromatic Triangle, a known NP-
complete problem, to G2vl (ScB), in polynomial time. The details of the reduction
are presented in the next section.
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3.2.3 The reduction

Let G = (V,E) be an instance of MT. We construct a bipartite graph G′ = (V ′, E ′),
with d(v) ≤ 3 for every v ∈ V ′, from G in polynomial time. We prove that G admits
a 2-edge-colouring without monochromatic triangles if and only if G′ admits a gap-[2]-
vertex-labelling.

Let p be the number of (not necessarily disjoint) triangles in G. We remark that it is
possible to determine p in O(n3)-time – one needs only check every possible combination
of three distinct vertices in V , that is, p ≤

(
n
3

)
= O(n3). Let T = {t1, t2, . . . , tp} be

the set of the p triangles in G. For every triangle ti ∈ T , ti = {ex, ey, ez}, add a new
triangle gadget G4i to G′. Denote the vertices of G4i as {ui, vix, wix, viy, . . . , qi0, . . . , qi11};
observe that every edge ej of ti, j ∈ {x, y, z}, has a corresponding vertex vij. We refer
to vertices ui as triangle-vertices, to vertices vix, viy and viz, as e-vertices and to vertices
wix, wiy and wiz, as their respective correspondents. For every 1 ≤ i ≤ p − 1, connect
vertices qi11 and qi+1

0 with an edge. Also, add a copy of cycle C6 = {c0, . . . , c5} to G′ and
connect vertices q10 and c0. We exemplify this construction for a graph G in Figure 3.9(a).
This graph has p = 3 triangles: t1 = {e1, e4, e5} (violet), t2 = {e2, e3, e5} (orange) and
t3 = {e5, e6, e7} (cyan).
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Figure 3.9: In (a), a graph G with three triangles. In (b), the (initial) construction of
graph G′.
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Observe that this initial construction yields d(ui) = 3 for every triangle-vertex, and
d(vi) = d(wi) = 2 for every e-vertex and its correspondent. Also, with the exception of
d(qp11) = 1, note that, for all paths P12, d(qi0) = d(qi4) = d(qi8) = 3, and d(qj) = 2 for every
remaining vertex qj. For the attached cycle, we have d(c0) = 3, while every remaining
vertex of C6 has degree 2. Thus, this initial construction yields a graph with maximum
degree three.

We complete the construction of G′ by connecting some vertices using negation gad-
gets. Every edge ex ∈ E belongs to, at most, px ≤ p triangles in G. Let Tx ⊆ T be the set
of triangles to which edge ex belongs to in G, and let (tx1 , t

x
2 , . . . , t

x
px) be an order of the

elements of Tx. Then, following this order of Tx cyclically, connect vertices vix and wi+1
x

with a negation gadget, for every pair of consecutive triangle gadgets G4i and G4i+1. This
connection is done by identifying vix with vin and wi+1

x with w, respectively. Note that
this operation adds exactly one edge to each e-vertex vx and to its correspondent wx in
every triangle gadget, which yields d(vx) = d(wx) = 3. Since every vertex in G¬ has
degree three, our construction of G′ yields a subcubic graph. Also, observe that the
connections between triangle gadgets and negation gadgets do not create any odd-length
cycles. Therefore, G′ is also bipartite. Figure 3.10 exemplifies this reduction process for
a graph G, depicting the resulting subcubic bipartite graph G′.

In order to prove that G2vl (ScB) is NP-complete, we prove the following statement.

Proposition 3.4. G admits an edge-colouring c : E → {red, blue} such that no triangle
is monochromatic if and only if G′ admits a gap-[2]-vertex-labelling.
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Figure 3.10: Graph G′. Observe the connections using negation gadgets exemplified by
edge e5, which belongs to all three triangles in G.

Proof. (⇒) Suppose G admits an edge colouring c : E → {red, blue} such that there
are no monochromatic triangles in G. Let {ER, EB} be a partition of E, such that ER
and EB are the sets of edges coloured with red and blue, respectively. We define a labelling
π : V → {1, 2} of G′ as follows.
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• For each triangle gadget G4i in G′, 1 ≤ i ≤ p:

– For every e-vertex vix, assign π(vix) = 2 if and only if ex ∈ EB;
– assign label 2 to vertices q2, q6, q10; and

– label the remaining vertices in G4i with 1.

Figure 3.11 illustrates this labelling for one of the triangle gadgets of G′ from Fig-
ure 3.10; note that cπ(u2) = 1.

• For each negation gadget G¬, connecting vertices vji and wki of two triangle gad-
gets G4j and G4k , label vertices (s0, . . . , s13) as illustrated in Figure 3.12:

– If π(vji ) = 1, assign labels (1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 2); and

– if π(vji ) = 2, assign labels (1, 1, 1, 2, 1, 2, 1, 2, 1, 1, 1, 1, 1, 1).

• For cycle C6, assign labels (1, 2, 1, 1, 1, 2) to vertices (c0, c1, c2, c3, c4, c5), respectively.

In order to prove that (π, cπ) is a gap-[2]-vertex-labelling of G′, it suffices to show
that cπ is a proper colouring of G′. First, consider the attached cycle and observe that
vertices c0, . . . , c5 have induced colours alternating between 1 and 0, as depicted in Fig-
ure 3.13. For the negation gadgets, by inspection of Figure 3.12, we observe that both
labellings induce a 2-colouring of every vertex si ∈ V (G¬). However, in order to deter-
mine the colours of vertices vin and w of each negation gadget, we have to analyse the
labellings of the triangle gadgets.

We start by considering paths P12 in each G4i . Except for qp11, which has induced
colour 2, every qil with odd index l, 1 ≤ l ≤ 9, has {π(qil−1), π(qil+1)} = {1, 2}; recall that
N(qil) = {qil−1, qil+1}. This implies that these vertices have cπ(qil) = 1. For vertices qi11,
with 1 ≤ i < p, their neighbourhoods comprise vertices qi10 and q

i+1
0 , which receive labels 2

and 1, respectively. Therefore, they also have induced colour 1. Finally, observe that all
vertices qil with odd l receive label 1, as well as every correspondent vertex wix. Therefore,
every even-index vertex qil has all neighbours labelled with 1, which implies that cπ(qil) = 0

for every even l. We conclude that cπ(qil) = l mod 2 for every vertex qil 6= qp11.
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Figure 3.11: In (a), a 2-edge-colouring of G without monochromatic triangles; and in (b),
the corresponding labelling of the triangle gadget G42 , constructed from triangle t2.
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Figure 3.12: The labellings of negation gadget G¬ connecting vertices vjx and wkx. In (a),
π(vjx) = 1; and in (b), π(vjx) = 2. Recall that vin is identified with vertices vjx from triangle
gadgets. Vertices with induced colour 1 are depicted in black, and with colour 0, in white.

Next, consider the e-vertices, vix, in gadgets G4i . Recall that N(vix) = {ui, wix, s0},
where s0 corresponds to a vertex in a negation gadget. Since labelling π assigned π(ui) =

π(wix) = π(s0) = 1 for all gadgets, then cπ(vix) = 0 for every e-vertex. Regarding
the triangle vertices, ui, since the triangle t = {ex, ey, ez} is not monochromatic in G,
{π(vix), π(viy), π(viz)} = {1, 2} in every G4i , which induces cπ(ui) = 1.

For the triangle gadgets, it remains to consider the induced colour of every correspon-
dent vertex wix. Recall that N(wix) = {vix, vout, qil}, where vout is a vertex from a negation
gadget, and qil is a vertex from P12, with l ≡ 0 (mod 4). For all edges ex ∈ G, the cor-
responding e-vertices in each of the px triangle gadgets G4i received label 1 if ex ∈ ER,
and 2, otherwise. Also, since we have established that cπ(vix) = 0 in every triangle gad-
get G4i , we know that π(vix) 6= π(vout) by Property 3.3. Given that every correspondent
vertex wix is adjacent to a vertex vout in a negation gadget which connects wix to some
e-vertex vjx ∈ G

4
j , we conclude that set ΠN(wix)

contains {π(vix), π(vout)} = {1, 2}. This
implies that cπ(wix) = 1 in every G4i . We conclude that cycle C6, every triangle gadget
and every negation gadget has been properly coloured, and, thus, that (π, cπ) is a gap-
[2]-vertex-labelling of G′.
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Figure 3.13: The labelling π and induced colouring cπ of cycle C6.
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(⇐) Conversely, suppose G′ admits a gap-[2]-vertex-labelling (π, cπ). We prove that
the original graph G admits a 2-edge-colouring such that G has no monochromatic tri-
angles. Recall that G′ is bipartite and let {V0, V1} be a partition of V (G′) such that, for
every vertex v ∈ V ′\{qp11}, v ∈ Vi if and only if cπ(v) = i. Since G′ is connected and every
vertex v ∈ V0 has cπ(v) = 0, it follows that all vertices in V1 are assigned the same label
c ∈ {1, 2}. Therefore, for the remaining figures in this proof, we omit the labels of the
black vertices, that is, vertices that belong to V1. This is done for the sake of clarity of
the drawings. Now, we analyse the vertices of V0.

First, consider cycle C6 attached to triangle gadget G41 and suppose c3 ∈ V1, that is,
cπ(c3) = 1. (Recall that c0 is adjacent to q10, as sketched in Figure 3.10.) Observe that this
implies that cπ(c1) = cπ(c5) = 1 because they belong to the same part as c3. Additionally,
N(c3) = {c2, c4}, which implies {π(c2), π(c4)} = {1, 2}. Observe that, by symmetry of
the cycle, we can assume, without loss of generality, that π(c2) = 1 and π(c4) = 2. This
implies that π(c0) = 2 and, considering N(c5), we conclude that π(c4) = 1. This is a
contradiction since we have already established π(c4) = 2, as illustrated in Figure 3.14(a).

We conclude that c3 6∈ V1 and, therefore, that c3 ∈ V0. We remark that {V0, V1∪{qp11}}
is a bipartition of G′: part V0 comprises all e-vertices vix and every qil with l even, for every
triangle gadget G4i , and every sj, j odd, in every negation gadget G¬; the other part, V1,
comprises every triangle-vertex ui, every correspondent vertex wix, every qil , l odd, and
every sj, with j even. We return to our analysis of cycle C6.
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c5
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(a)
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c4

c5

a
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(b)

Figure 3.14: In (a), c3 ∈ V1; and in (b), c3 ∈ V0. Black vertices have induced colour 1 and
white vertices, colour 0.

By the previous reasoning, π(c3) = a, a ∈ {1, 2}, as depicted in Figure 3.14(b).
Since N(c2) = {c1, c3}, π(c1) = b, b ∈ {1, 2} and b 6= a. If we consider vertex c4, by a
similar argument, we have π(c5) = b. Finally, since {c1, c5} ⊂ N(c0), π(c1) = π(c5) and
cπ(c0) = 1, we conclude that π(q10) = a. Recall that q10 is the first vertex in path P12 in
the first triangle gadget of G′.

Consider the first triangle gadget G41 and observe path P12 in it. Also, recall that
cπ(qil) = l mod 2, 1 ≤ l ≤ p, except, perhaps, for qp11 since d(qp11) = 1. By Property 3.2,
we know that π(q10) = π(q14) = π(q18) = a. This implies that π(q110) = b since cπ(q19) = 1.
Now, consider vertex q111. Since N(q111) = {q110, q20} and cπ(q111) = 1, π(q20) 6= π(q110) and,



67

therefore, π(q20) = a. Upon following the order of triangle gadgets, by an analogous
reasoning, we conclude that π(qil) = a for every vertex qil of triangle gadgets G4i , when
l ≡ 0 (mod 4). This conclusion can be observed in Figure 3.15.

t1 t2

. . .
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. . .

a

b

b

a

(a) Colouring cπ induced by the only possible labelling of C6.
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a

(b) Property 3.2 applied in path P12 in the first triangle gadget and the label a applied to q20 so
as to induce cπ(q111) = 1.
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(c) The (partial) labelling π of paths P12 in all triangle gadgets. Observe that cπ(q
p
11) = b. Since

b ∈ {1, 2}, cπ(qp10) 6= cπ(q
p
11).

Figure 3.15: Illustrating the labels of vertices in paths P12.

We have, thus far, established the label of every vertex in V1 and of the vertices of
cycle C6 and paths P12. It remains to consider the labels of the e-vertices vix of each G4i
and of vertices sl ∈ V0 of each negation gadget G¬. In order to do this, consider the
correspondent vertices, wix, in triangle gadgets G4i . Recall that N(wix) = {vix, vout, qil},
with l ≡ 0 (mod 4); also, the labelling of paths P12 implies that π(qil) = a for these
vertices. Therefore, every correspondent vertex is adjacent to a vertex labelled with a.
Since (π, cπ) is a gap-[2]-vertex-labelling of G′, we know that b ∈ {π(vout), π(vix)}. Now,
we take into consideration the number of triangles px to which edge ex belongs to in the
original graph G.

We recall some definitions used in the construction of G′. An edge ex belongs to px ≤ p

triangles in G, and Tx ⊆ T is the subset of triangles of G to which edge ex belongs to.
Also, (tx1 , . . . , t

x
px) is an ordering of Tx used to connect the corresponding triangle gadgets

in G′; this connection is done by identifying vertices vin and w in each negation gadget
with vertices vjx and wj+1

x , following the cyclic order of Tx.
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Consider the case where edge ex belongs to a single triangle in G, that is, px = 1.
Then, the negation gadget connects vertices vix and wix in the same triangle gadget G4i .
Since vix, vout ∈ V0, by Property 3.3, we have π(vin) 6= π(vout). Therefore, we know that
{π(vix), π(vout), π(qil)} = {1, 2}, which implies that cπ(wix) = 1. Figure 3.16 illustrates a
labelling of these vertices where vix received label a. Notice that if this were not the case,
that is, if π(vix) = b, the same result would follow since this would imply that π(vout) = a.
Thus, it remains to consider when an edge ex belongs to more than one triangle in G,
that is, px ≥ 2. In order to do this, we prove the following claim.

ti

vix

wix

qil

vout

¬
a

b

a

Figure 3.16: The (partial) labelling of the neighbours of a correspondent vertex wix in a
triangle gadget G4i of G′. Black vertices represent vertices with induced colour 1, and
white vertices, colour 0.

Claim 3.5. Let ex be an edge of G that belongs to px ≥ 2 triangles in G. Let Tx be the
order of these triangles used in the construction of G′, with txj denoting the j-th triangle
in Tx. If G4i corresponds to triangle txj rename: G4i to G4x,j, and vix, to vx,j. Then,
π(vx,j) = π(vx,j+1) for every pair of triangle gadgets G4x,j, G

4
x,j+1 representing consecutive

triangles txj , txj+1 in Tx.

Proof. Let G, G′, (π, cπ) and ex as stated in the hypothesis. Consider the px triangle
gadgets, G4x,j, which have vertices vx,j corresponding to ex. Then, every e-vertex vx,j

is connected to wx,j+1 through the use of a negation gadget, and its correspondent ver-
tex wx,j, to vx,j−1. Also, recall that: every correspondent vertex wx,j is adjacent to vertices
vout, vx,j and qx,jl , with l ≡ 0 (mod 4), and these qx,jl have been labelled with the same
a ∈ {1, 2}.

Suppose that there exist vx,j and vx,j+1 for which {π(vx,j), π(vx,j+1} = {a, b}. Adjust
notation so that π(vx,j) = b. By Property 3.3, π(vx,j) = π(vx,jin ) = b 6= π(vout) for vout
connecting vx,j and wx,j+1. Therefore, ΠN(wx,j+1) = {a}, which induces cπ(wx,j+1) = 0.
This is a contradiction since wx,j+1 ∈ V1. Figure 3.17 depicts this analysis for an arbitrary
e-vertex vx. We conclude that in a gap-[2]-vertex-labelling of G′, every e-vertex vx,j

corresponding to an edge ex ∈ E(G) has received the same label, and the result follows.

Therefore, every e-vertex vx, which corresponds to an edge ex in a triangle t of G, has
received the same label – either a or b – regardless of how many triangles it belongs to in
the original graph. Moreover, since (π, cπ) is a gap-[2]-vertex-labelling of G and cπ(vx) = 0
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. . .
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a a
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Figure 3.17: Two e-vertices vx,j and vx,j+1 labelled with b and a, respectively. The
contradiction is reached when observing the correspondent vertex wx,j+1 which, in this
labelling, would have induced colour 0.

for every e-vertex vx, we conclude that cπ(ui) = 1 for every triangle gadget G4i . This
implies that in every G4i , {π(vix), π(viy), π(viz)} = {a, b}.

Define an edge-colouring c : E → {red , blue} of G as follows. Assign colour red
to edge ex if the corresponding e-vertices vx are labelled with a; assign colour blue to
the remaining edges. We remark that no edge ex of G was assigned two colours since
Claim 3.5 ensures that every e-vertex vx received the same label in G′. Furthermore, since
{π(vix), π(viy), π(viz)} = {a, b} for every triangle gadget G4i , then, for every triangle ti of G,
{c(ex), c(ey), c(ez)} = {red , blue}. Hence, no triangle is monochromatic. This completes
the proof.

Observe that the only vertex in G′ with degree one is qp11, i.e. the last vertex of path P12

in the last triangle gadget G4p . If we remove vertices qp9, q
p
10 and q

p
11, the resulting graph G′

would have δ(G′) = 2. Moreover, note that this modification to the constructed graph
does not alter any structural properties of the gadgets. Therefore, it is possible to adapt
the demonstration of Theorem 3.1 to this new graph, which unfolds in a second result.

Corollary 3.6. G2vl remains NP-complete when restricted to bipartite graphs G with
δ(G) = 2 and ∆(G) = 3. �

Corollary 3.6 indicates that degree-one vertices seem to have no impact on the hardness
of G2vl, that is, their existence in a graph neither facilitates nor hinders the existence
of a gap-[2]-vertex-labelling. This result, however, opposes the intuition we gained upon
studying the gap-[k]-vertex-labelling of some families of graphs. For the classes we ad-
dressed, the presence of low-degree vertices seemed to facilitate the labelling. On the
other hand, in the edge-version of gap labellings, the role of degree-one vertices seems to
be in the opposite direction. For instance, deciding whether a planar bipartite graph G
with δ(G) ≥ 2 admits a gap-[2]-edge-labelling can be solved in polynomial time but if the
existence of degree-one vertices is allowed, the problem becomes NP-complete.
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3.3 The vertex-gap number, χg
V
, for classes of graphs

The gap-[k]-vertex-labelling problem is relatively new in the field of proper labellings
and, with the exception of trees and r-regular bipartite graphs, r ≥ 4, there are no known
results for the vertex-gap number, even for classic families of graphs. Therefore, in this
section, we determine this parameter for cycles, crowns, wheels, unicyclic graphs and some
families of snarks. We also present some progress in the establishment of the vertex-gap
number of cubic bipartite hamiltonian graphs.

Initially, we establish a lower bound for the vertex-gap number of arbitrary graphs.
As previously mentioned, an upper bound for this parameter is presented in Chapter 4.

Theorem 3.7. Let G be a connected simple graph. If G admits a gap-[k]-vertex-labelling,
k ∈ N, then χg

V
(G) ≥ χ(G), unless G ∼= Sn, n ≥ 2, in which case χg

V
(G) = χ(G)− 1 = 1.

Proof. Let G be a connected simple graph that admits a gap-[k]-vertex-labelling, k ∈ N.
First, consider the case G ∼= Sn, n ≥ 2. Recall that V (Sn) = {v0, v1, . . . , vn}, where vn
is the central vertex. Therefore, d(vi) = 1 for every i < n, d(vn) = n ≥ 2. Define a
labelling π of G by assigning 1 to every vertex of G and define colouring cπ as usual. This
induces cπ(vi) = π(vn) = 1 for i < n, and cπ(vn) = 0, as illustrated in Figure 3.18. We
conclude that (π, cπ) is a gap-[1]-vertex-labelling of G and, thus, χg

V
(G) = 1 = χ(G)− 1.

vn

v0

v1

v2

v3

v4

vn−1

vn−2

1

1

1

1

1

1

1

1

Figure 3.18: The gap-[1]-vertex-labelling of star Sn. The central vertex, vn, has induced
colour 0 (in white), and the remaining vertices, colour 1 (in black).

Next, consider the cases of G ∼= S0 and G ∼= S1. Graph S0 is a trivial graph, in which
case assigning 1 to its vertex induces a proper colouring of G using χ(G) = 1 labels.
For n = 1, note that G ∼= K2. Since both vertices, v0 and v1, have degree one, their
induced colours are equal to the label of their respective neighbours. By assigning label 1
to both vertices, the induced colouring is not proper. Thus, χg

V
(G) > 1 and assigning

labels 1 and 2 to v0 and v1, in any order, induces a proper colouring of G. Therefore,
χg
V

(G) = χ(G) in cases G ∼= S0 and G ∼= S1.
It remains to consider the case G � Sn. Let (π, cπ) be a gap-[χg

V
(G)]-vertex-labelling

of G and let C be the set of induced colours of cπ. Since cπ is a vertex-colouring of G, we
know that |C| ≥ χ(G).
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Case 1. There exists v ∈ V (G) such that cπ(v) ≥ χ(G).

First, suppose d(v) = 1 and let N(v) = {u}. Then, we have cπ(v) = π(u), which
implies that χg

V
(G) ≥ π(u) ≥ χ(G), and the result follows. Otherwise, that is, if d(v) ≥ 2,

then cπ(v) = π(u) − π(w), where π(u) = max{π(x) : x ∈ N(v)} and, analogously,
π(w) = min{π(x) : x ∈ N(v)}. By our hypothesis, cπ(v) ≥ χ(G) and, therefore,
π(u) ≥ χ(G) + π(w) ≥ χ(G) + 1. We conclude that χg

V
(G) ≥ χ(G).

Case 2. For every v ∈ V (G), cπ(v) < χ(G).

In this case, C = {0, 1, . . . , χ(G)− 1} since it is not possible to have a proper vertex-
colouring of G with less than χ(G) colours. Let L be the set of vertices v ∈ V (G) with
induced colour cπ(v) = χ(G)− 1.

Suppose there exists v ∈ L with d(v) ≥ 2. Then, cπ(v) = π(u) − π(w), where π(u)

and π(w) are defined as in the previous case. Since cπ(v) = χ(G) − 1 and π(w) ≥ 1, we
conclude that π(u) ≥ χ(G). Therefore, χg

V
(G) ≥ π(u) ≥ χ(G).

Now, we can assume that every vertex v ∈ L has d(v) = 1. Let G′ = G − L and
let cπ′ be the restriction of cπ to V (G′). Note that cπ′ is a proper colouring of G′ since
G′ ⊆ G. Furthermore, there is no vertex in G′ with colour χ(G) − 1. Hence, cπ′ is a
proper (χ(G)− 1)-colouring of G′.

Since G � Sn, |V (G′)| ≥ 2. Also, by hypothesis, G is connected. Moreover, G′

is obtained from G by removing only degree-one vertices, which implies that G′ is also
connected. Hence, we know that χ(G′) ≥ 2. Now, observe that colouring cπ′ can be
expanded to G using the same set of colours, assigning to each vertex v ∈ L a different
colour from that of its neighbour in G. This implies that G is (χ(G) − 1)-colourable –
a contradiction. This completes the proof.

With Theorem 3.7 established, the following corollary naturally holds.

Corollary 3.8. Let G 6∼= Sn, n ≥ 2, be a simple graph. If G admits a gap-[χ(G)]-vertex-
labelling, then χg

V
(G) = χ(G). �

In the following sections we present the results obtained from our study of the vertex-
gap number for some traditional families of graphs. Our method for determining χg

V
(G)

for these graphs was: first, verify if and when graphs belonging to the studied family admit
gap-[χ(G)]-vertex-labellings; if this approach fails, we search for properties and charac-
teristics of each family that interfere with the existence of labellings using at most χ(G)

labels. The first family of graphs presented, cycles, exemplifies the fact that the vertex-gap
number is not always equal to the chromatic number of the graph.

3.3.1 Cycles

The family of cycles is introduced in Chapter 1. It is a well known result3 that χ(Cn) = 2

when n is even, and χ(Cn) = 3, otherwise. Considering the lower bound for the vertex-
gap number, we ask whether even cycles admit a gap-[2]-vertex-labelling and odd cycles,

3The proof of this result is presented in Chapter 1, Theorem 1.2.
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a gap-[3]-vertex-labelling. The answer to the latter is negative: odd cycle C3 does not
admit a gap-[3]-vertex-labelling.

Property 3.9. Let G ∼= C3. Then, χg
V

(G) = 4.

Proof. Let G = C3 and let v0, v1 and v2 be its vertices. Suppose G admits a gap-[3]-vertex-
labelling. Since d(vi) = 2 for every vi and the set of labels is {1, 2, 3}, there is no way to
induce colour 3 in any vertex of G. Therefore, cπ : V (G)→ {0, 1, 2}, which implies that,
without loss of generality, vertices v0, v1 and v2 are coloured with 0, 1 and 2. respectively.
This configuration is illustrated in Figure 3.19(a). Observe that the only way to induce
cπ(v0) = 0 would be to assign both its neighbours the same label a ∈ {1, 2, 3}. However,
for any label b ∈ {1, 2, 3} assigned to vertex v0, we would have cπ(v1) = |a − b| and
cπ(v2) = |a− b|, contradicting the fact that cπ(v1) 6= cπ(v2) in any proper colouring of C3.
Therefore, no such gap-[3]-vertex-labelling of this cycle exists and, thus, χg

V
(C3) ≥ 4. We

conclude the proof exhibiting two gap-[4]-vertex-labellings for C3 in Figure 3.19(b).

2

v2

0

v0

1

v1

a

b

a

(a) Cycle C3 does not admit a gap-[3]-vertex-labelling.

3

2

1
2

1

4
1

3

2
1

3

4

(b) Two distinct gap-[4]-vertex-labellings of cycle C3.

Figure 3.19: The labellings of cycle C3 for k = 3 and k = 4.

For larger values of n, the vertex-gap number of Cn is established in Theorem 3.10.
Note that the result is, in fact, different from our first conjecture.

Theorem 3.10. Let G ∼= Cn, n ≥ 4. Then, χg
V

(G) = 2, if n ≡ 0 (mod 4), and χg
V

(G) = 3,
otherwise.

Proof. Let G ∼= Cn, n ≥ 4, with V (G) = {v0, v1, . . . , vn−1}. We remark that operations on
the indices of the vertices are taken modulo n. As previously stated, χ(Cn) = 2 when n is
even, and χ(Cn) = 3, otherwise. Therefore, by Corollary 3.8, in order to prove the result,
we have to show that: (i) there exists a gap-[2]-vertex-labelling of Cn when n ≡ 0 (mod 4);
(ii) if the length of the cycle is n ≡ 2 (mod 4), then there is no gap-[2]-vertex-labelling
of Cn; and (iii) Cn admits a gap-[3]-vertex-labelling for all n ≥ 4.

We prove item (i) by providing a gap-[2]-vertex-labelling of cycle Cn, when n ≡ 0

(mod 4). Define labelling π of the vertices of G as follows:
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π(vi) =

{
2, if i ≡ 0 (mod 4);

1, otherwise.

Define colouring cπ as usual. This labelling is exemplified for cycles C8 and C12 in
Figure 3.20. Consider i odd and j even such that 0 ≤ i, j < n. Observe that every
vertex vi receives label 1. Therefore, every vertex vj has ΠN(vj) = {1}, which induces
cπ(vj) = 0. Moreover, following the cyclic order of the graph starting at vertex v0, the
labels of vertices with even index alternate between 2 and 1. Furthermore, since n ≡ 0

(mod 4), every vertex vi has ΠN(vi) = {1, 2}, which induces cπ(vi) = 1. Therefore, we
conclude that cπ(vl) = l mod 2 for every vertex vl ∈ G. Consequently, (π, cπ) is a gap-[2]-
vertex-labelling of G in this case.
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Figure 3.20: The gap-[2]-vertex-labelling of cycles C8 and C12 in (a) and (b), respectively.

For item (ii), we prove that cycle Cn, n ≡ 2 (mod 4), does not admit a gap-[2]-vertex-
labelling (π, cπ). Suppose, by contradiction, it does. Since the labelling uses only labels 1
and 2 and there are no vertices of degree 1, the only induced colours of the vertices of Cn
are 0 and 1. Moreover, since Cn is bipartite, these colours alternate along the vertices of
the cycle. Adjust notation so that cπ(vl) = l mod 2, for 0 ≤ l < n.

Once again, consider i odd and j even such that 0 ≤ i, j < n. Since cπ(vj) = 0,
π(vj−1) = π(vj+1) = a, for a ∈ {1, 2}. Moreover, since N(vj) ∩ N(vj+2) = {vj+1} and
cπ(vj+2) = 0, we conclude that π(vj+3) = π(vj+1) = a. By following the cyclic order of
the vertices with even index in G, we conclude that every vertex vi has the same label
a ∈ {1, 2}. It remains to consider the labels of vertices vj.

For every vertex vi, we have ΠN(vi) = {1, 2} since cπ(vi) = 1. Once again, considering
the intersecting neighbourhoods between two consecutive vertices vi and vi+2, we conclude
that the labels of vertices with even index alternate between 1 and 2 along the cycle. This
implies that every sequence of four vertices (vi−1, vi, vi+1, vi+2), starting with some odd i,
is labelled with either (a, a, b, a) or (b, a, a, a), for {a, b} ∈ {1, 2} and a 6= b. Moreover, the
distance between any two consecutive vertices u, v ∈ V (Cn) with label b is exactly four.
Suppose sequence (a, a, b, a) starts at v0 and repeats itself along the cycle.

Since n ≡ 2 (mod 4), π(v0) = π(vn−2) = a because 0 ≡ 0 (mod 4) and n − 2 ≡ 0

(mod 4). Also, π(vn−1) = π(v1) = a. Therefore, cπ(v0) = cπ(vn−1) = 0, which contradicts
the fact that cπ is a proper colouring of G. This implication is illustrated in Figure 3.21.
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We conclude that there is no gap-[2]-vertex-labelling of Cn in this case. If the sequence is
(b, a, a, a), we reach a similar contradiction with the same reasoning.

vn−6 vn−5 vn−4 vn−3 vn−2 vn−1 v0 v1 v2 v3

. . .

vn−8 vn−7

a a b a b aa a b a a a

Figure 3.21: The gap-[2]-vertex-labelling of Cn, when n ≡ 2 (mod 4), as described in the
text. Observe the conflicting colours of vertices vn−1 and v0.

Finally, we prove item (iii) showing that when n ≥ 4, G admits a gap-[3]-vertex-
labelling. In order to do this, we prove the following (stronger) statement: if n ≥ 4,
then G admits a gap-[3]-vertex-labelling with labels (π(vn−2), π(vn−1), π(v0)) and colours
(cπ(vn−2), cπ(vn−1), cπ(v0)) being equal to one of the following alternatives:

(I) (1, 2, 1) and (1, 0, 1); or

(II) (2, 3, 2) and (2, 0, 2); or

(III) (3, 1, 3) and (1, 0, 1); or

(IV) (1, 1, 1) and (2, 0, 2).

We prove this statement by induction on n. For cycles C4 and C5, assign labels
(1, 3, 1, 2) and (1, 3, 1, 1, 2) to vertices (v0, . . . , vn−1), as illustrated in Figure 3.22. Observe
that both labellings satisfy (I). Now, suppose there exists a gap-[3]-vertex-labelling (π, cπ)

for cycle Cn, n ≥ 4, satisfying one of the above conditions. Consider cycle Cn+2, with
V (Cn+2) = {v0, v1, . . . , vn+1}. Define a new labelling π′ : V (Cn+2) → {1, 2, 3} from
labelling π, such that:

π′(vi) =


π(vi), if 0 ≤ i ≤ n− 2;

π(vn−1), if i ∈ {n− 1, n+ 1};
a, if i = n;

where a =


3, if (I) is satisfied;

1, if (II) or (III) is satisfied;

2, if (IV) is satisfied.

Define colouring cπ′ as usual. First, we show that (π′, cπ′) is a gap-[3]-vertex-labelling
of Cn+2. Let w ∈ V (Cn+2)\(N(vn−1)∪N(vn)∪N(vn+1)). SinceNCn+2(w) = NCn(w) and π′

preserves the labels from π in these vertices, we conclude that cπ′(w) = cπ(w). This implies
that for every vi, vi+1 ∈ V (Cn+2)\N(vn−1)∪N(vn)∪N(vn+1), we have cπ′(vi) 6= cπ′(vi+1).
Now consider w ∈ N(vn−1) ∪N(vn) ∪N(vn+1). We depict these vertices, their respective
labels and induced colours in Figure 3.23. By inspection, one can see that colour cπ′(w)

is different from the colour of each of its neighbours.
In order to conclude this proof, observe that new labelling (π′, cπ′) of Cn+2 satisfies

one of (I), (II), (III), (IV) after renaming the vertices of Cn+2 so that vi ← v(i+1) mod n+2.
That is:
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Figure 3.22: The gap-[3]-vertex-labelling of cycles C4 and C5, the basis of our induction.
Observe that the highlighted elements satisfy (I).

1

v1

1

v0

0

vn−1

1

vn−2

1

vn−3

Cn ⇒

1

v1

1

v0

2

vn+1

0
vn

2

vn−1

1

vn−2

1

vn−3

Cn+2

a 1

2

1a

a 1 2

3

21a

(a) Labelling π′ when π satisfies (I).
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(b) Labelling π′ when π satisfies (II).
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(c) Labelling π′ when π satisfies (III).

1

v1

2

v0

0

vn−1

2

vn−2

1

vn−3

Cn ⇒

1

v1

2

v0

1

vn+1

0
vn

1

vn−1

2

vn−2

1

vn−3

Cn+2

a 1

1

1a

a 1 1

2

11a

(d) Labelling π′ when π satisfies (IV).

Figure 3.23: Labellings for Cn+2.

(a) If Cn satisfies (I), then Cn+2 satisfies (II);

(b) If Cn satisfies (II), then Cn+2 satisfies (III);

(c) If Cn satisfies (III), then Cn+2 satisfies (IV);

(d) If Cn satisfies (IV), then Cn+2 satisfies (I).

An alternative proof for cases of n ≡ 1, 2, 3 (mod 4) of Theorem 3.10 was proposed
by a reviewer when this result was submitted to a conference in 20174. He proposed a
different labelling for these cycles, which is presented below.

4This result, along with others in this section, was accepted and presented at the 2o ETC, a conference
held in São Paulo in July, 2017.
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Alternative proof of Theorem 3.10, item (iii). Let G ∼= Cn, n ≥ 4, with vertex set V =

{v0, v1, . . . , vn−1}. For the cases where n ≡ 1, 2, 3 (mod 4), it suffices to show that G
admits a gap-[3]-vertex-labelling. Define a labelling π of G as follows. For 0 ≤ i < n,
assign

π(vi) =


3, if i = n− 1;

1, if i ≡ 0, 1, 2 (mod 4);

2, otherwise.

Figure 3.24 illustrates this labelling for cycles C9, C10 and C11. Define colouring cπ as
usual. In order to prove that (π, cπ) is a gap-[3]-vertex-labelling of G, we have to show
that cπ is, in fact, a proper colouring of G.
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(c) C11.

Figure 3.24: Examples of gap-[3]-vertex-labellings of cycles.

Observe that ΠN(v0) = {1, 3} in all cases, which induces cπ(v0) = 2. Also, for 1 ≤ i ≤
n − 3, i odd, we have ΠN(vi) = {1}, which induces cπ(vi) = 0. On the other hand, for
even i, 2 ≤ i ≤ n− 3, we have ΠN(vi) = {1, 2}, inducing cπ(vi) = 1.

In order to conclude the proof, we analyse the colours of vertices vn−2 and vn−1. For n
odd, ΠN(vn−2) = {1, 3}, which induces cπ(vn−2) = 2, while ΠN(vn−2) = {2, 3} for n ≡ 2

(mod 4), which induces cπ(vn−2) = 1. Moreover, for n ≡ 1 (mod 4), we have ΠN(vn−1) =

{1, 2} and, for n ≡ 2, 3 (mod 4), π(vn−2) = π(v0) = 1, which colours vertex vn−1 with 1
and 0, respectively. Thus, cπ is a proper colouring of G, which completes the proof.

An immediate implication of Theorem 3.10 is that the decision problem G2vl when
restricted to cycles, which are 2-regular connected graphs, can be solved (in polynomial
time) simply by knowing the order of the cycle. Therefore, the following corollary holds.

Corollary 3.11. G2vl is in P when restricted to 2-regular connected graphs. �

Although studying the gap-[k]-vertex-labelling for this family of graphs enabled us to
better understand some restrictions when trying to determine the vertex-gap number, as
in the case of n ≡ 2 (mod 4), we wanted to deepen our comprehension of having vertices
with degree one in the graph and of how the colouring induced by these vertices influences
the vertex-gap number. Recall that as a corollary of Theorem 3.1, when considering
subcubic bipartite graphs, degree-one vertices had no effect on the hardness of determining
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whether these graphs admit gap-[2]-vertex-labellings. In order to further investigate these
implications, the next class of graphs we address is the family of crown graphs.

3.3.2 Crowns

The family of crown graphs was defined in Chapter 2. To recall, a crown Rn is the graph
constructed by taking cycle Cn, n copies of the complete graph K2 and identifying each
vertex of the cycle with a vertex of a different copy of K2. This construction yields a
graph with 2n vertices: n vertices of degree 1 and n vertices of degree 3. Also, recall that
χ(Rn) = χ(Cn). Figure 3.25 presents two drawings of crown R9.

(a) (b)

Figure 3.25: Two representations of crown R9.

For this class of graphs, we establish the vertex-gap number in the following theorem.

Theorem 3.12. Let G ∼= Rn, n ≥ 3. Then, χg
V

(G) = χ(G).

Proof. Let G = Rn, with V (G) = {v0, . . . , vn−1}∪{u0, . . . , un−1}, d(vi) = 3 and d(ui) = 1,
0 ≤ i < n. By Corollary 3.8, in order to prove the result, it suffices to show that every
crown Rn admits a gap-[χ(Rn)]-vertex-labelling. Therefore, we show that crowns with
even cycles, which have χ(G) = 2, admit a gap-[2]-vertex-labelling and, the others, with
χ(G) = 3, admit a gap-[3]-vertex-labelling.

Define a labelling π of G as follows. Let π(vi) = χ(Rn), 0 ≤ i < n, and π(ui) =

1 + (i mod 2), 0 ≤ i < n− (n mod 2). If n is odd, let π(vn−1) = 3. Define colouring cπ as
usual. This assignment (π, cπ) for crowns R7 and R8 are exhibited in Figure 3.26.

Observe that every degree-one vertex is adjacent to a vertex labelled with χ(Rn);
therefore, cπ(ui) = χ(Rn) for all ui ∈ V (G). For vertices vi, which have degree three, ob-
serve that two of their neighbours, vi−1 and vi+1, are also labelled with χ(Rn). Therefore,
the colour induced in each of these vertices is cπ(vi) = χ(Rn) − π(ui). Except for vn−1,
with n odd, π alternates labels 1 and 2 along the degree-one vertices, with π(v0) = 1.
Therefore, cπ(vi) alternates between colours 2 and 1 when n is odd, and 1 and 0, when n
is even. We conclude that cπ(vi) = χ(Rn)− (1 + i mod 2) for all 0 ≤ i < n− (n mod 2).
Finally, for the case n odd, vertex un−1 was labelled with χ(Rn) = 3. Therefore, ver-
tex vn−1 was uniquely coloured with 0 when n is odd. We conclude that cπ is a proper
colouring of G, which completes the proof.
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Figure 3.26: In (a) and (b), the gap-[2]-vertex-labelling and gap-[3]-vertex-labelling of
crowns R7 and R8, respectively.

By studying crowns graphs, we better understand the effect of degree-one vertices
in the induced colouring obtained by a gap-[k]-vertex-labelling of graphs. In fact, for
the case n ≡ 2 (mod 4), the existence of these vertices enabled the graph to admit a
gap-[2]-vertex-labelling – which was impossible for cycles.

The next class of graphs considered unfolds from the study of crowns. Recall that
crownRn is obtained by identifying vertices from cycle Cn to vertices of complete graphsK2.
If we choose to identify all degree-one vertices in Rn, we obtain the wheel Wn: a graph
which has no degree-one vertices, but, on the other hand, has a universal vertex. By this
construction, the universal vertex may have arbitrarily large degree and, thus, provides
us the opportunity for studying the vertex-gap number for graphs with large degrees.

3.3.3 Wheels

The family of wheels is formally introduced in Chapter 2, but as mentioned in the previous
section, it can be obtained by identifying all degree-one vertices from crown Rn. Observe
that wheel Wn has n + 1 vertices: vertices v0, . . . , vn−1 have degree one and vertex vn,
degree n. Recall that the center of the wheel is vertex vn, and the cycle of order n,
surrounding the central vertex, is the rim. Also, χ(Wn) = χ(Cn) + 1, which implies
χ(Wn) = 3 when n is even, and χ(Wn) = 4, otherwise. Figure 3.27 exemplifies wheels of
odd and even length.

This family of graphs is the first to present some interesting properties when attempt-
ing to establish its vertex-gap number. In the edge version of this labelling, discussed in
Chapter 2, the label assigned to an edge in G only affects the two vertices incident with
that edge. Here, however, a label assigned to a vertex affects its entire neighbourhood.
Therefore, in this family, the label assigned to the universal vertex has a high impact on
the induced colours of all remaining vertices in the wheel; the assignment of a very large
(small) value would define the maximum (minimum) for all vertices in the rim, making it
difficult to properly label the graph. Moreover, as established in Theorem 3.13, wheelsW4
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(a) (b)

Figure 3.27: In (a), wheel W5; and in (b), wheel W8, which has been properly coloured
using 3 colours.

and W6 do not admit a gap-[3]-vertex-labelling, which seems to indicate that the size of
the rim also has an impact in this result. Wheel W3 does not admit a gap-[k]-vertex-
labelling for any k since it is isomorphic to complete graph K4. The non-existence of
gap-[k]-vertex-labellings is discussed in Chapter 4.

For Wn, n ≥ 4, the vertex-gap number is established in Theorem 3.13.

Figure 3.28: Wheel W3, for which there is no gap-[k]-vertex-labelling, for k ∈ N.

Theorem 3.13. Let G ∼= Wn, n ≥ 4. Then, χg
V

(G) = 3 if n ≥ 8 and even, and
χg
V

(G) = 4, otherwise.

Proof. Let G ∼= Wn, with vertex set V = {v0, v1, . . . , vn} and d(vn) = n. Recall that
χ(Wn) = 3 when n is even, and χ(Wn) = 4, otherwise. Then, by Corollary 3.8, in
order to prove the result, we show that: (i) wheels W4 and W6 do not admit a gap-[3]-
vertex-labelling; (ii) wheels Wn, n ≥ 8 and even, admit a gap-[3]-vertex-labelling; and
(iii) wheels Wn, n ≥ 4, admit a gap-[4]-vertex-labelling.

First, we prove item (i) by contradiction, starting with G ∼= W4. Suppose G admits a
gap-[3]-vertex-labelling (π, cπ). Since there is no vertex inG with degree one, we know that
colour 3 cannot be induced in any vertex of G. This implies that cπ : V (G) → {0, 1, 2}.
Since vn is adjacent to all other vertices in G, then its colour is unique. This opens three
possibilities for the colour of the central vertex, one for each colour in cπ. First, suppose
cπ(vn) = 0. This implies that all the labels of vertices in the rim of G are the same
a ∈ {1, 2, 3}. Let π(vn) = b ∈ {1, 2, 3}. If this is the case, then cπ(vi) = |a − b| for all
0 ≤ i ≤ 3, contradicting the fact that cπ is a proper colouring of G, as illustrated by
Figure 3.29(a).
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We conclude that cπ(v0) 6= 0. Consequently, we now know that colour 0 alternates
in the vertices of the rim. Adjust notation so that cπ(v0) = 0. This directly implies
that ΠN(v0) = {a}, for a ∈ {1, 2, 3}, that is, π(v1) = π(v3) = π(v4) = a. Furthermore,
observe that {v1, v3, v4} = N(v2), which implies that cπ(v2) = 0. However, consider
vertex v1, and let b, c ∈ {1, 2, 3} be the labels assigned to vertices v0 and v2, respectively,
as illustrated in Figure 3.29(b). Observe that ΠN(v1) = {a, b, c} = ΠN(v3), which implies
that cπ(v1) = cπ(v3). However, ΠN(v4) = {a, b, c} as well, which implies cπ(v4) = cπ(v1),
contradicting the fact that cπ is a proper vertex-colouring. Since we have exhausted every
possible colour for the central vertex, we conclude that there is no gap-[3]-vertex-labelling
for wheel W4.

X
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X

v1

X v2

X

v3

0

v4

a

a

a

a b

(a)

0

v0

X

v1

0 v2

X

v3

X

v4

b

a

c

a a

(b)

Figure 3.29: The hypothesis that wheel W4 admits a gap-[3]-vertex-labelling. In (a),
colour 0 is induced in the central vertex, v4. In (b), colour 0 alternates along the rim.
Both cases reach a contradiction.

By a similar reasoning, we conclude, by contradiction, that W6 does not admit a
gap-[3]-vertex-labelling. Analogously to W4, cπ(v6) 6= 0. Therefore, colours 0 and X,
X ∈ {1, 2}, alternate along the vertices of the rim. Adjust notation so that cπ(v0) =

cπ(v2) = cπ(v4) = 0 and cπ(v1) = cπ(v3) = cπ(v5) = X. Moreover, π(v1) = π(v3) =

π(v5) = π(v6) = a, a ∈ {1, 2, 3}.
Suppose, first, X = 1. In this case, cπ(v6) = 2. Therefore, {1, 3} ⊆ ΠN(v6). Moreover,

a 6∈ {1, 3} since a = 1 or a = 3 would induce a vertex with colour 2 in the rim. Therefore,
X = 2, implying cπ(v6) = 1 and {1, 3} 6⊆ ΠN(v6). We conclude that {π(v0), . . . , π(v5)} =

{1, 2} or {π(v0), . . . , π(v5)} = {2, 3}. In the first case, π(v6) = 3 and in the second case,
π(v6) = 1. In both cases, π(v6) 6= π(v1), which is a contradiction.

The main issue for wheels W4 and W6 that prevents them from admitting a gap-
[3]-vertex-labelling is, in other words, an insufficient number of vertices in the rim. For
wheels Wn, n ≥ 8 and even, however, this ceases to be a problem. We define a gap-[3]-
vertex-labelling (π, cπ) for these graphs based on the insight gained by proving item (iii).

Assign labels 2,1 alternately to vertices vi, 0 ≤ i ≤ n − 6, starting with π(v0) = 2.
For vn−3, let π(vn−3) = 3 and to the remaining vertices, namely vn−5, vn−4, vn−2, vn−1
and vn, assign label 2. This labelling is depicted for wheel W14 in Figure 3.31. Define
colouring cπ as usual.

Note that every vertex vi, i even, as well as the central vertex has been assigned
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Figure 3.30: Supposing wheel W6 admits a gap-[3]-vertex-labelling. Note that assigning
label 2 to v4 would induce colour 1 for both v3 and v5.

the same label 2. This implies that ΠN(vj) = {2} for every j odd, and, consequently,
cπ(vj) = 0. For the central vertex vn, we have ΠN(vn) = {1, 2, 3}, which induces cπ(vn) = 2.
Now, consider vertices vn−2 and vn−4, which have ΠN(vn−2) = ΠN(vn−4) = {2, 3}, inducing
colour 1. Finally, the remaining even-index vertices vi have ΠN(vi) = {1, 2}, also inducing
cπ(vi) = 1. We conclude that cπ(vn) = 2 and cπ(vi) = (i+ 1) mod 2, for every 0 ≤ i < n.
Therefore, (π, cπ) is a gap-[3]-vertex-labelling of G. This completes the proof of item (i).
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Figure 3.31: The gap-[3]-vertex-labelling of wheel W14 described in the text.

It remains to consider item (iii), where we prove that every wheel Wn, with n ≥ 4,
admits a gap-[4]-vertex-labelling. For wheel W4, assign labels (4, 1, 4, 1, 3) to vertices
(v0, v1, v2, v3, v4), and define colouring cπ as usual. By inspecting Figure 3.32, which
depicts this labelling, we observe that all adjacent vertices have distinct induced colours
and, therefore, (π, cπ) is a gap-[4]-vertex-labelling of W4. In the following, we define the
labelling for all wheels Wn, n ≥ 5.

Assign label 2 to vertices v0, v1, v2 and vn, and labels 4, 1, alternately, to the remaining
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Figure 3.32: The gap-[4]-vertex-labelling of W4 described in the text.

vertices vi, 3 ≤ i < n, starting with π(v3) = 4. Define colouring cπ as usual. This
labelling is depicted in figures 3.33(a) and 3.33(b) for wheels W9 and W10, examples
of odd and even length, respectively. Note that, for every vertex vi, 2 ≤ i < n and
even, N(vi) = {vi−1, vi+1, vn}, and we have ΠN(vi) = {2, 4}, which yields cπ(vi) = 2.
For vj, with j odd and 3 ≤ j < n, a similar analysis shows that ΠN(vj) = {1, 2}, which
implies cπ(vj) = 1. Therefore, cπ(vi) = 2 − (i mod 2) for all 2 ≤ i < n. Also, observe
that cπ(v0) = 2 − (n mod 2) since ΠN(v0) = {1, 2} when n is odd, and ΠN(v0) = {2, 4},
otherwise. Finally, we have ΠN(v1) = {2}, inducing cπ(v1) = 0, and {1, 4} ⊂ ΠN(vn),
inducing cπ(vn) = 3. We conclude that (π, cπ) is a gap-[4]-vertex-labelling of G. This
completes the proof of Theorem 3.13.

Recall that in 2013, Dehghan et al. [8] proposed a labelling for trees. With this in
mind, similar to Chapter 2, the next step of our research on gap-[k]-vertex-labellings
addresses the family of Unicyclic graphs, where we use Dehghan et al.’s labelling together
with our established labellings for cycles and crowns.
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Figure 3.33: The gap-[4]-vertex-labelling for wheels W9 and W10 in (a) and (b), respec-
tively, as described in the text.



83

3.3.4 Unicyclic graphs

The family of unicyclic graphs is defined in Section 2.2.4. Recall that this class comprises
the connected graphs G = (V,E) with |V | = |E|. Figure 3.34 illustrates a unicyclic
graph. We establish the vertex-gap number of unicyclic graphs by using the gap-[2]-
vertex-labelling of trees defined by Dehghan et al. [8]. Since their article does not present
a formal proof that χg

V
(T ) = 2 for every tree T , we demonstrate this result in Lemma 3.14.

Figure 3.34: An example of a unicyclic graph G, with |V | = |E| = 12. In red, the edges
of cycle C4 – the only one in G.

Lemma 3.14 (Dehghan et al.). Let G ∼= T be a nontrivial tree not isomorphic to a star.
Then, χg

V
(G) = 2.

Proof. Let G = (V,E) be a nontrivial rooted tree that is not a star, and let u be its root.
Since G is not a star, by Lemma 3.7, we know that χg

V
(G) ≥ χ(G). It is well-known

that χ(G) = 2 for every nontrivial tree. Therefore, it suffices to exhibit a gap-[2]-vertex-
labelling of G. Define a gap-[2]-vertex-labelling (π, cπ) of G as follows. For every vertex
v ∈ V (G)\{u}, assign

π(v) =

{
1, if dist(u, v) ≡ 0 (mod 4); and

2, otherwise.

Recall that dist(u, v) is the minimum distance between vertices u and v in G. There-
fore, every vertex at odd distance from u was labelled with 2, while vertices at even
distance alternate their labels between 1 and 2. Note that since G is a tree, vertices at
even distance of u are adjacent exclusively to vertices at odd distance and vice-versa.
Define colouring cπ as usual. Figure 3.2, presented in the beginning of this chapter and
replicated below, is an example of this labelling.

First, observe that the root of the tree has ΠN(u) = {2}, which induces cπ(u) = 0.
Next, we draw the reader’s attention to the internal vertices of G, that is, vertices v with
d(v) ≥ 2. For vertices at even distance from root u, we have ΠN(v) = {2}, while vertices at
odd distance have ΠN(v) = {1, 2}. Therefore, cπ(v) = dist(u, v) mod 2 for every internal
vertex v. It remains to consider the induced colours of the leaves of G.

Let w be an arbitrary leaf of G, adjacent to a vertex v. If dist(u,w) ≡ 0, 2 (mod 4),
then its neighbour has dist(u, v) ≡ 3, 1 (mod 4) since dist(u,w) = dist(u, v) − 1. There-
fore, π(v) = 2. Since w is a leaf, its colour is determined by the label of its neighbour, that
is, cπ(w) = 2. Furthermore, as stated in the previous paragraph, cπ(v) = 1. Similarly,
consider dist(u,w) ≡ 1, 3 (mod 4). In this case, π(v) = 1 if dist(u, v) ≡ 0 (mod 4), and
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Figure 3.35: The gap-[2]-vertex-labelling of a nontrivial tree T , as defined by Dehghan et
al. [8].

π(v) = 2, otherwise. Since cπ(v) = 0, we conclude that cπ(w) 6= cπ(v) in both cases,
and cπ is a proper colouring of G.

The labelling presented in the proof of Lemma 3.14 is used, albeit with some modifi-
cations, to establish the vertex-gap number of unicyclic graphs, which is presented in the
next theorem.

Theorem 3.15. Let G = (V,E) be a unicyclic graph and let p be the size of the cycle
in G. Then, χg

V
(G) = 2, if p is even and G � Cp, and χg

V
(G) = 3, otherwise.

Proof. Let G = (V,E) be a unicyclic graph, with v0, . . . , vp−1 denoting the vertices of
cycle Cp. Also, let T0, T1, . . . , Tp−1, be the p trees rooted at vertices v0, v1, . . . , vp−1,
respectively, as defined in Section 2.2.4. In Figure 3.36, we exemplify a unicyclic graph
with p = 7 and three nontrivial graphs T0, T1 and T4.

We remark that Ti cannot be a trivial graph for every 0 ≤ i < p since G � Cp.
Therefore, for the remainder of the proof, we can assume that there exists at least one
tree Ti with |V (Ti)| ≥ 2. By Lemma 3.7, we know that χg

V
(G) ≥ χ(G). Therefore, it

suffices to show that G admits a gap-[2]-vertex-labelling when p is even and a gap-[3]-
vertex-labelling, otherwise.

First, it is necessary to introduce a notation which is used throughout the proof. Let vi
be an arbitrary vertex of the cycle in G. Define Lji ⊂ V (Ti) as the set of vertices of Ti
that are at distance j from vi, that is, Lji = {v ∈ V (Ti) : dist(vi, v) = j}. We refer to Lji
as the j-th level of tree Ti. Figure 3.37 exhibits a tree Ti of a unicyclic graph G, rooted
at vi, highlighting its four levels. Since set L0

i contains only vertex vi, it will be omitted
in the remaining figures.

With the notation set for the levels of trees Ti, we are ready to prove that χg
V

(G) = χ(G).
First, we consider the case when p is even. Adjust notation so that v0 is the root of a
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Figure 3.36: An example of the notation defined in the text for a unicyclic graph G, with
n = 7. Observe that in this graph, tree T2 is a trivial graph, while tree T4 is nontrivial
and rooted in v4, with dT4(v4) = 3.

nontrivial tree. Define labelling π : V (G) → {1, 2} of G as follows. For every vertex
vi ∈ V (Cp), assign

π(vi) =

{
1, if i ≡ 3 (mod 4); and

2, otherwise.

Next, assign labels to the vertices in the first level of trees Ti, 0 ≤ i < p, when they
exist. For every u ∈ V (L1

i ), assign π(u) = 1 + (i mod 2). Since all vertices in the cycle
and their neighbours have been assigned labels, define colouring cπ as usual for vertices
in Cp. This partial labelling is exemplified for unicyclic graphs with p = 6 and p = 8 in
Figure 3.38.

Note that, for every vi ∈ V (Cp), i odd, ΠN(vi) = {2}, inducing cπ(vi) = 0. As for
vertices vj ∈ V (Cp), j even, we have ΠN(vj) = {1, 2}. In particular, note that v0 is
adjacent to at least one vertex labelled with 1 in T0. Therefore, cπ(vj) = 1, and we
conclude that cπ(vl) = (l + 1) mod 2, for every vl ∈ V (Cp).

Since no label has been assigned to the other vertices of trees Ti, apart from the
vertices in L1

0, it remains to label these vertices. By inspecting Figure 3.38(b), the (partial)

vi
vi+1vi−1

Li0

Li1

Li2

Li3

Figure 3.37: A tree Ti from a unicyclic graph G with four levels.
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Figure 3.38: Partial labellings of two unicyclic graphs. The gray vertices indicate vertices
in L1

i , which may or may not exist. Note that T0 is always a nontrivial tree.

gap-[2]-vertex-labelling (π, cπ) has created three possibilities for each pair (π(vi), cπ(vi)),
vi ∈ V (Cp):

(i) (π(vi), cπ(vi)) = (1, 0); or

(ii) (π(vi), cπ(vi)) = (2, 0); or

(iii) (π(vi), cπ(vi)) = (2, 1).

We continue to label the vertices in each Ti of G depending on which case, (i), (ii) or
(iii), vertex vi corresponds to.

Case 1. vi corresponds to (i).

For every u ∈ V (Ti), assign

π(u) =

{
1, if u ∈ Lji , j ≡ 0 (mod 4); and

2, otherwise.

Figure 3.39(a) illustrates the first five levels of a tree Ti in which its root, vi, satisfies
this case. First, consider an internal vertex u of tree Ti, observing that ΠN(u) = {1, 2} if j
is odd, and ΠN(u) = {2}, otherwise. This implies that cπ(u) = j mod 2 for these vertices.

The leaves w of Ti have their colours induced by the label of their neighbour, say
v ∈ N(w). Since π(v) = 2 for vertices v ∈ Lji , j ≡ 1, 2, 3 (mod 4), then cπ(w) = 2 for
leaves w ∈ Lj+1

i . Otherwise, that is, if j ≡ 0 (mod 4), then π(v) = 1, inducing cπ(w) = 1.
In this case, however, j − 1 is odd and, thus, cπ(v) = 0 since v is an internal vertex of Ti.
Therefore, there are no conflicting vertices in this case.
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Case 2. vi corresponds to item (ii).

For vertices u ∈ V (Ti), assign

π(u) =

{
1, if u ∈ Lji , j ≡ 2 (mod 4); and

2, otherwise.

Figure 3.39(b) illustrates labelling π in this case. Similar to Case 1, internal vertices
u ∈ Lji , also have ΠN(u) = {1, 2} when j is odd and ΠN(u) = {2} when j is even. Therefore,
cπ(u) = j (mod 2) for every internal node u ∈ Lji .

For the leaves w of Ti, their neighbours v ∈ N(w) have labels π(v) = 2, when j ≡ 0, 1, 3

(mod 4), which induces colour cπ(w) = 2 for leaves w ∈ Lj+1
i . Finally, when v ∈ Lji , j ≡ 2

(mod 4), vertex w has induced colour 1 while v has induced colour cπ(v) = 0. There-
fore, cπ is a proper colouring of Ti.

Case 3. vi corresponds to item (iii).

Finally, for vertices u in V (Ti) in this case, assign

π(u) =

{
1, if u ∈ Lji , j ≡ 1 (mod 4); or

2, otherwise.

This last case is illustrated in Figure 3.39(c). Here, internal vertices u ∈ Lji have
ΠN(u) = {2} when j is odd, and ΠN(u) = {1, 2}, otherwise. This labelling induces
cπ(u) = (j + 1) mod 2. For leaves w of Ti, cπ(w) = 2 when w ∈ Lj+1

i , j ≡ 0, 2, 3

(mod 4) and cπ(w) = 1, otherwise; note that in this last case, its neighbour v has colour 2.

We conclude that cπ is a proper colouring of each tree Ti of G. Consequently, (π, cπ)

is a gap-[2]-vertex-labelling of G, and the result follows for graphs with even p.

Next, we consider unicyclic graphs G with p odd. We use a similar approach to the
case p even: first, we assign labels to vertices v ∈ V (Cp) ∪ L1

p−1 that induce a proper
colouring (restricted to the cycle); then, we assign labels to the remaining vertices in each
tree Ti accordingly.

First, adjust notation so that vp−1 is the root of a nontrivial tree Tp−1. Define a
labelling π : V (G) → {1, 2, 3} as follows. If p = 3, assign labels 3, 2, 3 to vertices v0, v1
and v2, respectively. This case is illustrated in Figure 3.40. Otherwise, if p ≥ 5, assign:

π(vi) =


1, if i = 2;

2, if i ≡ 0 (mod 4) and i 6= 0;

3, if i = 0 or (i ≡ 1, 2, 3 (mod 4) and i 6= 2).

Finally, when p ≡ 3 (mod 4), assign label 1 to every vertex u ∈ L1
p−1, that is, the

first level of (the nontrivial) tree Tp−1. The other cases are defined later. This labelling
is depicted in Figure 3.41 for graphs with p = 13 and p = 15.
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Figure 3.39: The labellings of vertices in Ti for cases (i), (ii) and (iii) in (a), (b) and
(c), respectively. Vertices filled with: white have induced colour 0; black, colour 1; and
orange, colour 2.
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1
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Figure 3.40: The gap-[3]-vertex-labelling of Cp when p = 3.

Note that this partial labelling assigns labels only to the vertices of cycle Cp and to
the vertices of the first level of at most one tree, Tp−1. Now, for every other tree Ti,
0 ≤ i ≤ p − 2, if |V (Ti)| > 1, then ΠN(vi) cannot be fully determined since there are
unlabeled vertices in N(vi). However, we compute the colour of each vertex vi ∈ V (Cp)

considering only this partial labelling. With these observations, in the following analysis
of vertices vi ∈ V (Cp), when we say ΠN(vi) is equal to a set of labels, we refer to the labels
assigned only to the aforementioned vertices. Furthermore, when defining the labels of
the remaining vertices of G, we guarantee that the labels assigned to vertices in the first
level of each Ti do not alter set ΠN(vi) and, consequently, create no conflicts to the colours
of the vertices of the cycle.

In order to prove that this labelling induces a proper colouring of cycle Cp, first, we
analyse case p ≡ 1 (mod 4). Figure 3.41(a) illustrates this labelling for C13. Consider
vertices v1, v2 and v3, observing that ΠN(v1) = {1, 3}, ΠN(v2) = {3} and ΠN(v3) = {1, 2}.
This labelling induces colours cπ(v1) = 2, cπ(v2) = 0 and cπ(v3) = 1, respectively. For
vertices vi and vj, 4 ≤ i, j < p, i odd and j even, ΠN(vi) = {2, 3} and ΠN(vj) = {3}.
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Figure 3.41: The labellings of unicyclic graphs with p = 13 and p = 15 in (a) and (b),
respectively. Since 15 ≡ 3 (mod 4), vertices in the first level of T14 in (b) receive label 1
so as to induce cπ(v14) = 2. The “?” symbol means that these vertices have not yet been
labelled.
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This induces colour 1 in vertices with odd index vi and colour 0 in vj. We conclude
that, with the exception of cπ(v0) = 1 and cπ(v1) = 2, every vertex vi, 2 ≤ i < n, has
cπ(vi) = i mod 2. Therefore, cπ is a proper colouring of cycle Cp.

Next, we consider the case p ≡ 3 (mod 4). By inspecting Figure 3.40, we conclude
that cπ is a proper colouring of cycle C3, which was defined uniquely. For p ≥ 5, illustrated
in Figure 3.41(b) for C15, vertices v1, . . . , vp−2 have their colours induced in the same way
as in the case p ≡ 1 (mod 4) from the previous paragraph. Thus, it remains only to
consider vertices v0 and vp−1. Observe that ΠN(v0) = {3}, inducing cπ(v0) = 0, and
ΠN(vp−1) = {1, 3}, which induces cπ(vp−1) = 2; label 1 comes from the vertices in L1

p−1
which, in this case, is a nonempty set.

Similar to the case of p even, this labelling allows five combinations (π(vi), cπ(vi)) for
vertices vi, 0 ≤ i < p:

(i) (π(vi), cπ(vi)) = (1, 0)

(ii) (π(vi), cπ(vi)) = (2, 0)

(iii) (π(vi), cπ(vi)) = (3, 0)

(iv) (π(vi), cπ(vi)) = (3, 1)

(v) (π(vi), cπ(vi)) = (3, 2)

We remark that pairs (π(vi), cπ(vi)) in items (i) and (ii) are exactly the same as in the
case p even. Contrary to the previous case, here, when p is odd, cπ(vi) = 0 is induced by
ΠN(vi) = {3}. Then, for each u ∈ V (Ti) in items (i) and (ii), we assign

π(u) =

{
π(vi), if u ∈ Lji , j ≡ 0 (mod 4); and

3, otherwise.

Figure 3.42 illustrates labelling π and its induced colouring in these cases. Note that
internal vertices u ∈ Lji of Ti have ΠN(u) = {3} when j is even, and ΠN(u) = {3, π(vi)},
otherwise. This induces cπ(u) = 0 for internal vertices u in even levels of Ti and cπ(u) =

3− π(vi) 6= 0, in odd levels. For leaves w ∈ Lji , with N(w) = {v}, if j ≡ 0, 2, 3 (mod 4),
then π(v) = 3. Otherwise, if j ≡ 1 (mod 4), then π(v) = π(vi) 6= 0. In both cases, we
have cπ(w) 6= cπ(v) and, hence, cπ is a proper colouring of Ti.

It remains to consider items (iii), (iv) and (v), in which the label assigned to vi is 3.

Case 1. vi corresponds to item (iii).
For every u ∈ Lji , assign:

π(u) =

{
2, if u ∈ Lji , j ≡ 2 (mod 4); and

3, otherwise.

This case is illustrated in Figure 3.43(a). Similar to the proof of the previous cases,
note that internal vertices u ∈ Lji have ΠN(u) = {3} when j is even, and ΠN(u) = {2, 3},
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Figure 3.42: The labellings of Ti for items (i) and (ii), in (a) and (b), respectively. White
vertices have induced colour 0, black vertices, colour 1, orange vertices, colour 2, and
violet vertices, colour 3.

otherwise. Therefore, cπ(u) = j mod 2. For leaves w ∈ Lji of Ti, adjacent to N(w) = {v},
note that cπ(w) = π(v) ∈ {2, 3} and cπ(v) ∈ {0, 1}. Therefore, cπ(w) 6= cπ(v).

Case 2. vi corresponds to item (iv).
In this case, assign:

π(u) =

{
2, if u ∈ Lji , j ≡ 1 (mod 4); and

3, otherwise.

Case 2 is illustrated in Figure 3.43(b). In this case, leaves w of Ti, adjacent to ver-
tices v ∈ N(w), have cπ(w) = π(v) ∈ {2, 3}, while internal vertices u ∈ Lji are labelled
such that ΠN(u) = {3} when j is odd, and ΠN(u) = {2, 3}, otherwise. This induces
cπ(u) = 1 + (j mod 2) and, therefore cπ(u) ∈ {0, 1}.

Case 3. vi corresponds to item (v).
Lastly, assign:

π(u) =

{
1, if u ∈ Lji , j ≡ 1 (mod 4); and

3, otherwise.

This final case is illustrated in Figure 3.43(c). Here, internal vertices u ∈ Lji have
ΠN(u) = {3} when j is odd, and ΠN(u) = {1, 3}, otherwise. Therefore, cπ(u) = 0 when j
is odd, and cπ(u) = 2, when j is even. For the leaves w ∈ Lji of Ti, adjacent to v, when
j ≡ 0, 1, 3 (mod 4), π(w) = 3 6= cπ(v). Otherwise, that is, j ≡ 2 (mod 4), note that v is
in level j ≡ 1 (mod 4) and, therefore, has π(v) = 1. Moreover, cπ(v) = 0. This implies
that cπ(w) = π(v) 6= cπ(v).
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Figure 3.43: The labellings of vertices in Ti for cases (iii), (iv) and (v) in (a), (b) and (c),
respectively. Here, we use the same colouring scheme used in Figure 3.42.



93

With every possible case considered, we conclude that cπ is a proper vertex-colouring
of the graph. This completes the proof.

We remark that the labelling of vertices vi in unicyclic graphs is similar to the one pre-
sented for cycles Cn. Looking back at the proof of Theorem 3.10, as well as the alternative
proof for the cases of n ≡ 1, 2, 3 (mod 4), the labelling presented here for unicyclic graphs
is, to some extent, the complementary labelling of π for cycles. Although this concept
is not formally defined for gap-[k]-vertex-labellings, a complementary labelling π̄ of G is
(usually) derived from a labelling π : V (G)→ {1, . . . , k} and defined as π̄(v) = k − π(v),
for every v ∈ V (G). In many proper labellings, the complementary labelling gives some
insight to structural properties of certain labellings and, here, this concept helped our
findings of gap-[χ(G)]-vertex-labelling of unicyclic graphs.

As a continuation of this research, we questioned whether the family of Cactus graphs
admits a labelling based on our proposed labellings of unicyclic graphs. Due to time
constraints, we could not fully investigate this problem. However, in a preliminary analysis
of this class, we strongly believe that, with some modifications, it is possible to extend
our labellings of unicyclic graphs to cactus graphs, and leave this question as a problem
for future research.

Problem 3.16. Is it possible to extend our gap-[χ(G)]-vertex-labellings of unicyclic graphs G
to the family of Cactus graphs?

3.3.5 Cubic bipartite graphs

Our study of the gap-[k]-vertex-labellings of graphs was motivated by questions pro-
posed by Dehghan et al. [8] in 2013, where they ask if it is possible to determine the
computational complexity of deciding whether a cubic bipartite graph G admits a gap-
[2]-vertex-labelling. This problem is proposed in the context of gap-[2]-vertex-labellings
of r-regular bipartite graphs. The authors proved that every r-regular bipartite graph
admits a gap-[2]-vertex-labelling when r ≥ 4. In this work, we prove that this is also the
case when r = 2, which are even cycles. However, the authors claim that not all 3-regular
bipartite graphs admit gap-[2]-vertex-labellings and cite the Fano Plane as an example.
Figure 3.44 illustrates the Fano Plane and the 3-regular bipartite graph obtained from it.
This graph does not admit5 a gap-[2]-vertex-labelling.

As previously mentioned, Dehghan et al. considered the computational complexity of
deciding whether a cubic bipartite graph admits a gap-[2]-vertex-labelling. Despite several
attempts, we could not find a no instance of this problem apart from the Heawood Graph.
This led us to conjecture that every (other) cubic bipartite graph admits a gap-[2]-vertex-
labelling. In the pursuit of verifying this conjecture, we started considering the subclass
of cubic bipartite hamiltonian graphs. A hamiltonian graph is a graph that contains a
cycle C such that V (C) = V (G). Herein, all graphs considered in this section are cubic
bipartite hamiltonian graphs, and we refer to them as CBH-graphs.

Let G = (V,E) be a CBH-graph of order n and let v0, v1, . . . , vn−1 denote the vertices
of G in the order of a hamiltonian cycle C of G. This notation is used in all proofs

5The proof of this result is presented in Lemma 3.19.
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Figure 3.44: In (a), the Fano Plane H, with each hyperedge represented in a different
colour; and in (b) the Heawood Graph. This graph is obtained by representing each
hyperedge in H as a (white) vertex in G, and each vertex of H, as a (black) vertex in G.

regarding CBH-graphs. An edge e ∈ E that connects two nonadjacent vertices in C is a
chord. On the other hand, every edge vivi+1 is a cycle-edge. The reach r(e) of a chord e
is the size of the smallest path vi, . . . , vl using only cycle-edges. For example, every chord
in the graph from Figure 3.44(b) has reach 5. If every chord in a CBH-graph has the
same reach, we say the graph has homogeneous chords. For these graphs, in some cases,
we denote the reach of the chords simply by r.

We remark that every CBH-graph has two properties: the order n of the graph is
always even; and every chord of the graph has odd reach. The smallest CBH-graph is the
complete bipartite graph K3,3 and it has an important role later in this section.

Our first approach for CBH-graphs considered the results for cycles established in
Theorem 3.10. In fact, the gap-[2]-vertex-labelling of cycles Cn, n ≡ 0 (mod 4), can be
used to properly label CBH-graphs of order n ≡ 0 (mod 4) as well. Theorem 3.17 presents
this result.

Theorem 3.17. Let G be a CBH-graph of order n ≡ 0 (mod 4). Then, χg
V

(G) = 2.

Proof. Let G be the graph stated in the hypothesis. By Corollary 3.8, in order to prove
the result, it is sufficient to provide a gap-[2]-vertex-labelling of G. Define a labelling
π : V (G)→ {1, 2} as follows. For every vertex vi ∈ V , let

π(vi) =

{
2, if i ≡ 3 (mod 4); and

1, otherwise.

Define colouring cπ as usual. Note that this labelling is the same for cycles Cn, n ≡ 0

(mod 4). Every vertex with even index has received the same label 1, while labels 1 and 2
alternate along the odd-index vertices in the hamiltonian cycle. Therefore, for vertices vi,
with i odd, both their neighbours vi−1 and vi+1 received the same label. Furthermore,
vi is adjacent to some vj by chord e = vivj and, since r(e) ≡ 1 (mod 2), it follows that
j ≡ 0 (mod 2). Hence, π(vj) = 1. Therefore, ΠN(vi) = {1} for all vi, i odd, which induces
cπ(vi) = 0.
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Next, consider vertices vj, j even. Since π uses only two labels and there are no
degree-one vertices in G, the set of induced colours is {0, 1}. Therefore, in order to induce
colour 1 in any vertex v of G, it suffices to have two of its vertices labelled with 1 and 2.
Since labelling π alternates labels 1 and 2 in vertices with odd index and n ≡ 0 (mod 4),
every vertex vj, j even, has ΠN(vj) = {1, 2}. Thus, we conclude that for every vi ∈ V (G),
cπ(vi) = (i+ 1) mod 2, which completes the proof.

With Theorem 3.17 established, it remains to consider CBH-graphs of order n ≡ 2

(mod 4). It is important to remark that not all CBH-graphs have homogeneous chords.
This is exemplified in Figure 3.45, where the illustrated graph of order 14 has chords of
reach 3, 5 and 7. In fact, we prove in Theorem 3.18 that the existence of a chord e ∈ E(G)

in a CBH-graph G such that r(e) ≡ 3 (mod 4) is a sufficient condition for G, of order
n ≡ 2 (mod 4), to admit a gap-[2]-vertex-labelling.

v9 v8 v7 v6 v5

v4

v3

v2v1v0v13v12

v11

v10

Figure 3.45: A CBH-graph of order n = 14. Observe, for instance, that r(v0v11) =
r(v2v5) = 3, while r(v4v9) = 5 and r(v1v8) = 7.

Theorem 3.18. Let G be a CBH-graph of order n ≡ 2 (mod 4). If there exists a chord
e ∈ E(G) such that r(e) ≡ 3 (mod 4), then χg

V
(G) = 2.

Proof. Let G be a graph as stated in the hypothesis and e, a chord of G with reach
r(e) ≡ 3 (mod 4). Adjust notation so that e = v0vl, for l ≡ 3 (mod 4). By Corollary 3.8,
it suffices to show a gap-[2]-vertex-labelling of G.

Define a labelling π of G as follows. For every vertex vj, j even, let π(vj) = 1. Next,
assign labels 1, 2, alternately, to vertices v1, v3, . . . , vn−3, vn−1, starting with π(v1) = 1.
Define colouring cπ as usual. This labelling is exemplified in Figure 3.46.

In order to prove that (π, cπ) is a gap-[2]-vertex-labelling, we show that cπ is a proper
colouring of G. First, since every even-index vj receives label 1 and G is connected,
every vi, i odd, has ΠN(vi) = {1}, inducing cπ(vi) = 0. Next, observe that, for every vj,
2 ≤ j ≤ n − 2 and even, we have {π(vj−1), π(vj+1)} = {1, 2}, which implies cπ(vj) = 1

for these vertices. The last vertex to be considered is v0. Since l ≡ 3 (mod 4), we know
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Figure 3.46: The gap-[2]-vertex-labelling (π, cπ) of a graph G of order n ≡ 2 (mod 4).
Chord e has reach r(e) ≡ 3 (mod 4).

that vl has received label 2. Also, π(v1) = π(vn−1) = 1. Therefore, ΠN(v0) = {1, 2}, and
we conclude that cπ(v0) = 1. Thus, cπ(vl) = (l + 1) mod 2 for every vl ∈ V (G). and the
result follows.

Theorems 3.17 and 3.18 already provide a large coverage of the family of CBH-graphs.
The only graphs in this class that remain to be considered are CBH-graphs G with order
n ≡ 2 (mod 4) such that every chord e ∈ G has r(e) ≡ 1 (mod 4). In fact, Dehghan et
al.’s [8] counterexample, the Heawood Graph, is such a graph. Now, we prove that this
graph does not admit a gap-[2]-vertex-labelling.

Lemma 3.19. Let G be the Heawood Graph. Then, χg
V

(G) = 3.

Proof. Let G be the Heawood Graph. Every chord e ∈ E(G) has reach r(e) = 5, as
can be observed in Figure 3.44(b). In order to prove the result, we first show a gap-[3]-
vertex-labelling (π, cπ) of G in Figure 3.47. By inspection, one can see that cπ is a proper
vertex-colouring of G.

The proof that G does not admit a gap-[2]-vertex-labelling is by contradiction and
essentially the same as the proof of Property 3.3. It is included here for completeness.

Suppose (π, cπ) is a gap-[2]-vertex-labelling of G. Since G is bipartite, we know that
colours 0 and 1 alternate in the vertices ofG. Adjust notation so that cπ(vi) = (i+1) mod 2

v0

v1

v2

v3

v4

v5

v6v7

v8

v9

v10

v11

v12

v13

1

1

1

1

1

1

1

3

1

2

1

2

1

2

Figure 3.47: A gap-[3]-vertex-labelling (π, cπ) of the Heawood Graph. White, black and
orange vertices have induced colours 0, 1 and 2, respectively.
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and every chord e ∈ E(G) connects vertices vi and vi+5. Operations on the indices are
taken modulo n.

Since the colour of every vertex vi, i odd, is zero and G is connected, it follows that
every vertex vj, j even, receives the same label π(vj) = c ∈ {1, 2}. Thus, it remains
to determine the labels of odd-index vertices vi. Consider N(v0) = {v1, v13, v5}. Since
cπ(v0) = 1, two different vertices of N(v0) receive labels a, b ∈ {1, 2}, a 6= b. First, suppose
π(v1) = π(v13) = a and π(v5) = b. Since v1 ∈ N(v2) and cπ(v2) = 1, we consider the
labels of v3 and v10, the other vertices in N(v2).

Suppose π(v3) = b, as illustrated in Figure 3.48(a). Then, since cπ(v4) = 1, ΠN(v4) =

{a, b}. It follows that π(v9) = a. This, in turn, implies that π(v11) = b since N(v10) =

{v9, v11, v1} and π(v1) = π(v9) = a. However, note that there is no possible label for
vertex v7: if π(v7) = a, then ΠN(v8) = {a}; and if π(v7) = b, then ΠN(v6) = {b}. In both
cases, we reach a contradiction. Therefore, π(v3) 6= b, that is, π(v3) = a. Figure 3.48(b)
illustrates this case. However, a similar contradiction is reached: since π(v3) = π(v1) = a,
it follows that π(v7) = b so as to induce cπ(v2) = 1. This, in turn, implies that π(v11) = a.
Then, we have ΠN(v12) = {a}, inducing cπ(v12) = 0, which is a contradiction.

v1

v3

v5

v7

v9

v11

v13

?

a

b

ba

b

a

(a) Supposing π(v1) = π(v13) = a, and
π(v3) = b (in blue).

v1

v3

v5

v7

v9

v11

v13

a a

b

a

b

a

?

(b) Supposing π(v1) = π(v13) = π(v3) = a
(in blue).
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v7

v9

v11

v13
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a ?
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v1

v3
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v13
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a

b

a
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?

(d)

Figure 3.48: The supposed gap-[2]-vertex-labelling of the Heawood Graph. Labels of
vertices vj, j odd, have been omitted.
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Therefore, our initial hypothesis, π(v1) = π(v13), is incorrect, and we conclude, without
loss of generality, that π(v1) = a and π(v13) = b. First, suppose π(v11) = b, as depicted in
Figure 3.48(c). Since v11, v13 ∈ N(v12) and π(v11) = π(v13), it follows that π(v3) = a so
as to induce cπ(v12) = 1. This, in turn, implies that π(v7) = b since N(v2) = {v1, v3, v7}
and π(v1) = π(v3). Then, we have π(v13) = π(v7) = b and, since cπ(v8) = 1 and
v7, v13 ∈ N(v8), we conclude that π(v9) = a. However, notice that vertex v5 cannot be
properly labelled: if π(v5) = a, then ΠN(v4) = {a}; and if π(v5) = b, then ΠN(v6) = {b}.
Both cases induce colour 0 in a vertex with even index, which is a contradiction. Therefore,
π(v11) = a, as illustrated in Figure 3.48(d). By following the same line of reasoning, we
conclude (sequentially) that π(v9) = b, π(v7) = a and π(v5) = b. Then, there is no label
for vertex v3 that induces a proper colouring of G, which is also a contradiction. Thus,
the Heawood Graph does not admit a gap-[2]-vertex-labelling.

For the remainder of this section, only CBH-graphs with homogeneous chords are
considered, that is, every graph G is a CBH-graph of order n ≡ 2 (mod 4) such that
every chord e ∈ E(G) has the same reach r(e) ≡ 1 (mod 4). These graphs are denoted
by Cn,reach=r. For example, the Heawood Graph in Figure 3.44(b) is C14,reach=5 since it
has order n = 14 and reach r = 5 for every chord.

For these graphs, we propose eight different techniques that create gap-[2]-vertex-
labellings, depending on the values of n and r: Techniques T1, T2 and T3 create proper
labellings for CBH-graphs G in which the order of G can be written as a multiple of
the reach r; Techniques T4 through T7 use the fact that there are known labellings for
other CBH-graphs which can be used to create gap-[2]-vertex-labellings of graphs of even
greater order; lastly, Technique T8 uses the concept of automorphism within the family of
CBH-graphs.

Before presenting the techniques, recall that in a gap-[2]-vertex-labelling of G without
degree-one vertices, the only possible induced colours are 0 and 1. Since only labels 1
and 2 are assigned to the vertices of G, it suffices to have two (of its three neighbours)
with different labels.

Technique T1: n = 2αr

Let G ∼= Cn,reach=r. Since n = 2αr, α ∈ Z>0, following the order of the indices of the
vertices of G, partition V (G) into 2α blocks A1, B2, A3, B4, . . ., A2α−1, B2α, such that
Ai = {vi0, vi1, . . . , vir}, Bi = {ui0, ui1, . . . , uir−2} and v0 = v10. Note that |Ai| = r + 1 and
|Bi| = r − 1. Observe that, since r ≡ 1 (mod 4), we have |A| = 2 (mod 4) and |B| ≡ 0

(mod 4). Also, since n ≡ 2 (mod 4), we know that α is an odd number.
Assign label 1 to every vertex vj, j even. For blocks A, assign label 2 to the remaining

odd-index vertices, and for blocks B, assign label 1. This labelling is displayed in Fig-
ure 3.49. Define colouring cπ as usual. We prove that Technique T1 properly labels the
graph.

Since every vertex vj, j even, receives the same label, it follows that cπ(vi) = 0 for
every vertex vi ∈ V (G), i odd. Therefore, we need only consider the induced colours of
vertices vj.
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uk−1
r−2

Ak

vk0 vk1 vk2 vk3 vk4

. . .

vkr−2 vkr−1 vkr

Bk+1

uk+1
0 uk+1

1 uk+1
2 uk+1

3

. . .

uk+1
r−3 uk+1

r−2

1 1 1 1 1 1 1 12 2 2 2 1 1 1

(a) Block Ak, adjacent to Bk+1. Note that every vj , j even, in Ak is adjacent to a ui, i odd, in
Bk+1, which is labelled with 1. This induces cπ(vi) = 1 in every vi, i even.

Bk

. . .

Ak+1

. . .
2 1 1 1 1 1 1 11 1 1 2 2 2 2

(b) Block Bk, adjacent to Ak+1. Analogous to (a), every uj , j even, in Bk is adjacent to a vi, i
odd, in Ak+1, which is labelled with 2. This induces cπ(vi) = 1 in every vi, i even.

Figure 3.49: The gap-[2]-vertex-labelling (π, cπ) of Cn,reach=r as described in the text

Consider an arbitrary block Ak, as depicted in Figure 3.49(a). Given that the size
of Ak is r + 1, vertex vk0 is connected to the last vertex in Ak by chord vk0vkr . Also, recall
that vk0 is adjacent to vk1 , which is assigned label 2, and vertex uk−1r−2 , which receives label 1.
Therefore, ΠN(vk0 )

= {1, 2}, inducing cπ(vk0) = 1.
Next, we consider vertices vkj , 2 ≤ j ≤ r and even. Observe that, for every vkj , two of

its neighbours are in block Ak, namely vkj−1 and vkj+1. Thus, these vertices receive label 2.
Since every chord in G has reach r ≡ 1 (mod 4) and the size of block Ak is r+1, every vkj is
adjacent to uk+1

j−1 ∈ V (Bk+1), which has been assigned label 1. Therefore, ΠN(vkj )
= {1, 2}

for every vkj , also inducing cπ(vkj ) = 1. Figure 3.49(a) exemplifies this case.
Now, consider an arbitrary block Bk and its adjacent blocks Ak−1 and Ak+1. Recall

that |Bk| = r − 1. Therefore, every even-index vertex ukj in Bk is adjacent to vertex vk+1
j+1

in block Ak+1, which is labelled with 2, and to ukj+1, which receives label 1. Therefore
ΠN(uj) = {1, 2}, and cπ(ukj ) = 1. Therefore, π induces a proper colouring of Bk, which
can be observed in Figure 3.49(b).

Since every vertex vl ∈ V (G) has cπ(vl) = (l + 1) mod 2, we conclude that the proper
labelling (π, cπ) created by Technique T1 is, in fact, a gap-[2]-vertex-labelling of G. Con-
sidering that α is an odd number and that r ≡ 1 (mod 4) is bound by n

2
, we present in

Table 3.1 some values for n and r for which CBH-graphs Cn,reach=r admit a gap-[2]-vertex-
labelling created by Technique T1.

An example of this labelling and the block partition is presented in Figure 3.50 for
CBH-graph C54,reach=9. In this graph, blocks Ak are highlighted in red, and blocks Bk, in
blue. The labelling scheme used for blocks A and B is also used in other techniques in
this section. Thus, we define a red labelling as an assignment of alternating labels 1, 2 to
the vertices of a given block, starting with 1. For instance, blocks Ak in Technique T1 are
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r = 5 r = 9 r = 13 r = 17 r = 21 r = 25

α = 1 C10,reach=5 C18,reach=9 C26,reach=13 C34,reach=17 C42,reach=21 C50,reach=25

α = 3 C30,reach=5 C54,reach=9 C78,reach=13 C102,reach=17 C126,reach=21 C150,reach=25

α = 5 C50,reach=5 C90,reach=9 C130,reach=13 C170,reach=17 C210,reach=21 C250,reach=25

α = 7 C70,reach=5 C126,reach=9 C182,reach=13 C238,reach=17 C294,reach=21 C350,reach=25

α = 9 C90,reach=5 C162,reach=9 C234,reach=13 C306,reach=17 C378,reach=21 C450,reach=25

Table 3.1: Examples of CBH-graphs covered by Technique T1.

assigned a red labelling. Similarly, we define a blue labelling as the assignment of label 1
to every vertex in a block. This is the case for blocks Bk.

Technique T1 shows that if a red block Ai, of cardinality r+1, is adjacent to a blue block
Bi+1, of cardinality r − 1, then the induced colours in vertices of Ai alternate between 1
and 0, with cπ(vi0) = 0. Now, consider a red block A of cardinality r−1 adjacent to a blue
block B, also of cardinality r− 1. Note that all even-index vertices vi in A have (at least)
one neighbour in A and are adjacent to vertex ui+r in B. These vertices are labelled with
2 and 1, respectively. A similar reasoning applies to even index vertices of blue blocks.
Thus, although the cardinality of the red block is different, the induced colouring remains
a proper vertex-colouring of the CBH-graph. By using this slight modification, the next
technique properly labels some graphs which are not covered by Technique T1.
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Figure 3.50: The gap-[2]-vertex-labelling of C54,reach=9 obtained by Technique T1. In this
case, α = 3.
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Technique T2: n = (r + 1) + α(r − 1), α odd

Let G ∼= Cn,reach=r. In this case, we create a gap-[2]-vertex-labelling of G similarly to
Technique T1. First, partition the n vertices of G into a single red block A0, of size r+ 1,
and an odd number α of alternating blue and red blocks, each of size r−1. Define colour-
ing cπ as usual. We remark that the proof that (π, cπ) is a gap-[2]-vertex-labelling of G is
similar to that of Technique T1. An example of this labelling technique is presented in
Figure 3.51 for C42,reach=5, a graph which was not covered by Technique T1. In Table 3.2,
we present some values of n and r that are covered by Technique 2.
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Figure 3.51: The gap-[2]-vertex-labelling of graph C42,reach=5 by Technique T2. For this
graph, we have α = 9.

r = 5 r = 9 r = 13 r = 17 r = 21 r = 25

α = 1 C10,reach=5 C18,reach=9 C26,reach=13 C34,reach=17 C42,reach=21 C50,reach=25

α = 3 C18,reach=5 C34,reach=9 C50,reach=13 C66,reach=17 C82,reach=21 C98,reach=25

α = 5 C26,reach=5 C50,reach=9 C74,reach=13 C98,reach=17 C122,reach=21 C146,reach=25

α = 7 C34,reach=5 C66,reach=9 C98,reach=13 C130,reach=17 C162,reach=21 C194,reach=25

α = 9 C42,reach=5 C82,reach=9 C122,reach=13 C162,reach=17 C202,reach=21 C242,reach=25

Table 3.2: Examples of CBH-graphs covered by Technique T2.
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Another modification can be made to this labelling technique by increasing the number
of blocks of size r + 1. This modification allows us to properly label new CBH-graphs,
and we present this result in Technique T3.

Technique T3: n = β(r + 1) + α(r − 1), α, β odd

Let G ∼= Cn,reach=r. If n = β(r+ 1) +α(r− 1), we create a gap-[2]-vertex-labelling of G as
follows. Partition the n vertices of G into β+α blocks as follows: let A0, B1, . . . , Aβ−1 be
the β first blocks of size r+1, which alternate between red and blue labellings; the remain-
ing vertices are partitioned into α alternating blue and red blocks Bβ, Aβ+1, . . . , Bβ+α−1,
each of size r− 1. Once again, the partition carries the gap-[2]-vertex-labelling since it is
done considering the red and blue blocks.

We prove that Technique T3 properly labels G by induction on β. The basis case
is β = 1, that is, when G is partitioned into a single block of size (r + 1) and an odd
number α of blocks of size (r − 1). Note that this is the partition of G in Technique T2,
which has been proven to properly label CBH-graphs.

Now, suppose that (π, cπ) is a gap-[2]-vertex-labelling obtained by Technique T3 of a
CBH-graph G = Cn,reach=r, with order n = β(r + 1) + α(r − 1), α, β odd and β ≥ 1. We
consider a new CBH-graph G′ = Cn′,reach=r such that n′ = n + 2(r + 1). Note that G′

has two more blocks of size (r + 1). Hence, we can write β′ = β + 2. Also, since r ≡ 1

(mod 4), note that n′ = n+ 2(r + 1) and, therefore, n′ ≡ 2 (mod 4).
Let A0, B1, . . . , Aβ−1, Bβ, Aβ+1, . . . , Bβ+α−1 be the partition of V (G) into α+β blocks.

Recall that, by our hypothesis, this partition defines a gap-[2]-vertex-labelling of G. We
create a gap-[2]-vertex-labelling (π′, cπ′) of G′ by adding two more (r + 1)-sized blocks
between blocks Bβ+α−1 and A0. Let Aβ+α, Bβ+α+1 be these blocks.

Now, for every v ∈ V (G), define label π′(v) = π(v). Observe that all blocks Ai, Bi

from G have their respective red and blue labellings copied to labelling π′ of G′. Next,
assign a red labelling to block Aβ+α and a blue labelling to block Bβ+α+1. Then, in order
to prove that (π′, cπ′) is a gap-[2]-vertex-labelling of G, it suffices to show that cπ′ is a
proper colouring of G.

First, consider blocks B1, . . . , Aβ+α−2 and notice that their adjacent blocks remain
unchanged: red (blue) blocks in G continue to be red (blue) blocks in G′. Therefore,
since cπ′ is a proper colouring of G, restricted to these vertices, it follows that the induced
colours of vertices in these blocks in G′ remains unchanged. Thus, no adjacent vertices in
B1, . . . , Aβ+α−2 have the same induced colour.

Now, consider block Bβ+α−1 and recall that this block, in G, is adjacent to blocks
Aβ+α−2 and A0, whose sizes are (r − 1) and (r + 1), respectively. By our construction
of G, block Bβ+α−1 is now adjacent to Aβ+α−2 and to a new red block Aβ+α, which also
have sizes (r−1) and (r+1), respectively. Therefore, it follows that the colours of vertices
in Bβ+α−1 also remain unchanged.

It remains to consider blocks Aβ+α, Bβ+α+1 and A0. Note that all these blocks are
of size r + 1. Similarly to the proofs of Techniques T1 and T2, observe that when a red
(blue) block Xi, of size (r+ 1), is adjacent to two blue (red) blocks of the same size, Yi−1
and Yi+1, every vertex vi ∈ V (Xi), i even, has Π′N(vi)

= {1, 2}. Therefore, we conclude
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that cπ′ is a proper colouring of G. Therefore, Technique T3 creates a gap-[2]-vertex-
labelling. Figure 3.52 illustrates the gap-[2]-vertex-labelling obtained by Technique T3 for
CBH-graph C70,reach=9, which has β = 3 and α = 5.
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Figure 3.52: The gap-[2]-vertex-labelling of graph C70,reach=9 by Technique T3. For this
graph, β = 3 and α = 5.

In Table 3.3, we present some values for n and r which are covered by Technique T3,
depending on the values of α and β.

The three techniques presented thus far have one common factor: the division of
blocks is done as a function of r. This implies that, for large values of r, there will be
larger and larger “gaps” between the values of n covered by them. For example, consider
r = 25 and β = 3 in Table 3.3. Between two consecutive odd values of α, for example
C102,reach=25 and C150,reach=25, there are twelve CBH-graphs which Technique T3 does not
cover: C106,reach=25, C110,reach=25, . . . , C146,reach=25. With this in mind, we decided to take
a different approach. In the following techniques, we partition the vertices of G into
fixed-size blocks. Before we present these techniques, let us define a 6-block.
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β = 3
r = 5 r = 9 r = 13 r = 17 r = 21 r = 25

α = 1 C22,reach=5 C38,reach=9 C54,reach=13 C70,reach=17 C86,reach=21 C102,reach=25

α = 3 C30,reach=5 C54,reach=9 C78,reach=13 C102,reach=17 C126,reach=21 C150,reach=25

α = 5 C38,reach=5 C70,reach=9 C102,reach=13 C134,reach=17 C166,reach=21 C198,reach=25

α = 7 C46,reach=5 C86,reach=9 C126,reach=13 C166,reach=17 C206,reach=21 C246,reach=25

α = 9 C54,reach=5 C102,reach=9 C150,reach=13 C198,reach=17 C246,reach=21 C294,reach=25

β = 5
r = 5 r = 9 r = 13 r = 17 r = 21 r = 25

α = 1 C34,reach=5 C58,reach=9 C82,reach=13 C106,reach=17 C130,reach=21 C154,reach=25

α = 3 C42,reach=5 C74,reach=9 C106,reach=13 C138,reach=17 C170,reach=21 C202,reach=25

α = 5 C50,reach=5 C90,reach=9 C130,reach=13 C170,reach=17 C210,reach=21 C250,reach=25

α = 7 C58,reach=5 C106,reach=9 C154,reach=13 C202,reach=17 C250,reach=21 C298,reach=25

α = 9 C66,reach=5 C122,reach=9 C178,reach=13 C234,reach=17 C290,reach=21 C346,reach=25

Table 3.3: Examples of CBH-graphs covered by Technique T3.

Definition 3.20. Let G ∼= C6,reach=3 and let (π, cπ) be the labelling of G presented in
Figure 3.53(a). A 6-block Γ is the group of labelled vertices obtained by removing edge v0v5
and all chords of G. An illustration of Γ is presented in Figure 3.53(b).

For a 6-block Γi, let V (Γi) = {vi0, vi1, . . . , vi5} denote its vertex set; superscript i is
added to the vertex names so as to indicate which 6-block they belong to. Consider, first,
vertices vi2 and vi4. Observe that their respective neighbours vi1, vi3 and vi3, vi5 are labelled
such that ΠN(vi2)

= ΠN(vi4)
= {1, 2}. Therefore, these two vertices have induced colour 1.

v0

v5

v4

v3

v2

v1

1

1

1

2

1

1

(a)

v0 v1 v2 v3 v4 v5

1 1 1 2 1 1

(b)

Figure 3.53: In (a), graph C6,reach=3; and in (b), the 6-block.

Next, consider vertex vi0 and chord vi0vi3, removed from C6,reach=3. This chord link v3
and v0 in the original graph. This, in turn, induces cπ(v0) = 1 since π(v1) = π(v5) = 1 and
π(v3) = 2. Therefore, in order to preserve the proper vertex-colouring of Γi, it is sufficient
for vi0 to be adjacent to a vertex vj3 in some (other) 6-block Γj. Then, ΠN(vi0)

= {1, 2}
induces colour 1 in vi0 as desired. Moreover, in particular for chord e = vi0v

j
3, its reach

can be determined by r(e) = 3 + 6[(j − i) mod α]. By considering chords with reach
r = 6γ + 3, γ can be interpreted as the distance, or skip, between 6-blocks Γi and Γj

containing vertices vi0 and vj3.
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The first use of 6-blocks to create gap-[2]-vertex-labellings of CBH-graphs is presented
in Technique T4.

Technique T4: 6-blocks when n ≡ 0 (mod 6) and r = 6γ + 3.

Let G be a CBH-graph of order n = 6α. Partition V (G) into α 6-blocks Γ1,Γ2, . . . ,Γα,
with v10 = v0. Since every vl, l even, receives label 1 and G is connected, we conclude
that every vertex with odd index has induced colour 0. Thus, it remains to consider the
induced colours of even-index vertices.

First, consider the case where γ = 1, that is, every chord skips only one block. Con-
sequently, every vi0 is adjacent to vi+1

3 , as illustrated in Figure 3.54(a). Note that the
adjacencies from the original blocks are preserved and, thus, the proper colouring from
C6,reach=3 is maintained in every Γi. Therefore, this partition properly labels G. This also
happens for γ = 2, illustrated in Figure 3.54(b). In this case, vi0 is adjacent to vi+2

3 and,
consequently, chord vi0v

i+2
3 has reach 15 ≡ 3 (mod 4). However, CBH-graphs with chords

with reach r(e) ≡ 3 (mod 4) are already covered by Theorem 3.18.
Consider, now, the case γ = 3, which is illustrated in Figure 3.54(c). Once again,

colouring cπ is preserved in the graph. Moreover, every chord has reach 21 ≡ 1 (mod 4).
In fact, γ odd implies r ≡ 1 (mod 4) and Figure 3.54(d) illustrates this general case.
Note that in all cases, chord vi0v

i+γ
3 guarantees that cπ(vi0) = 1. Thus, every CBH-graph

of order n = 6α with homogeneous chords with reach r = 6γ + 3, with γ odd, can be
properly labelled by Technique T4.

In Figure 3.55, we illustrate Technique T4 for two graphs with different values of γ.
Figure 3.55(a) illustrates the case where r = 9, that is, the connection is made between
adjacent 6-blocks. On the other hand, Figure 3.55(b) exemplifies a case where r = 21

and, thus, the skip is 3.
Technique T4 covers all CBH-graphs of order n ≡ 0 (mod 6) with chords r ≡ 3

(mod 6). In Techniques T5 and T6, we continue to address graphs with chords of reach
6γ + 3, covering cases of n ≡ 2 (mod 6) and n ≡ 4 (mod 6), respectively.

Technique T5: 6-blocks when n ≡ 2 (mod 6) and r = 6γ + 3.

Let G be a CBH-graph with n = 6α + 2. Technique T5 creates a gap-[2]-vertex-labelling
(π, cπ) of G as follows. Partition the vertex set of G into α 6-blocks and a residual block Γ′

containing the remaining two vertices. We refer to this residual block Γ′ = {vn−2, vn−1}
as the tail of G, and assign a blue labelling to it – that is, π(vn−2) = π(vn−1) = 1. Finally,
we alter the labels of the last vertex in each of the γ + 1 last 6-blocks of G. Thus, for
α − γ ≤ i ≤ α, assign π(vi5) = 2. Figure 3.56 illustrates this labelling for CBH-graph
C26,reach=9. In this example, chords have reach r = 9 and, therefore, γ = 1.

In order to prove that (π, cπ) is a gap-[2]-vertex-labelling of G, it suffices to show
that cπ is a proper vertex-colouring of the graph. Consider, initially, vertices vl, l odd.
Since label 1 is assigned to every even-index vertex and G is connected, cπ(vl) = 0. It
remains to consider vertices with even index.

The label of vertices in block Γj, 1 ≤ j < α − γ, is the same of the original 6-block.
Therefore, ΠN(vj2)

= ΠN(vj4)
= {1, 2} and, thus, cπ(vj2) = cπ(vj4) = 1. Vertex vj0 is adjacent
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. . .

vi−1
4 vi−1

5 vi0 vi1 vi2 vi3 vi4 vi5 vi+1
0 vi+1

1 vi+1
2 vi+1

3 vi+1
4 vi+1

5 vi+2
0 vi+2

5

. . .

γ = 1

1 1 1 1 1 2 1 1 1 1 1 2 1 1 1 1

(a) Two adjacent 6-blocks, with the highlighted chord connecting vertices vi0 and vi+1
3 . In this

case, r = 9 and γ = 1, where γ is the skip of the chord.

. . .

vi−1
4 vi−1

5 vi0 vi1 vi2 vi3 vi4 vi5 vi+1
0 vi+1

1 vi+1
2 vi+1

3 vi+1
4 vi+1

5 vi+2
0 vi+2

1 vi+2
2 vi+2

3 vi+2
4 vi+2

5 vi+3
0 vi+3

1

. . .

γ = 2

(b) A representation of three adjacent 6-blocks. In this case, the highlighted chord has reach
r ≡ 3 (mod 4) since γ is even.

. . .

vi−1
5 vi0 vi3 vi5 vi+1

0 vi+1
5 vi+2

0 vi+2
5 vi+3

0 vi+3
3 vi+3

5 vi+4
0

. . .

γ = 3

(c) A representation of four adjacent 6-blocks. Here, the skip of a chord is γ = 3 and its reach,
r = 21 ≡ 1 (mod 4).

. . .

vi−1
5 vi0 vi3 vi5 vi+1

0 v
i+γ−1
5

. . .
v
i+γ
0 v

i+γ
3 v

i+γ
5 v

i+γ+1
0

. . .

γ ≡ 1 (mod 2)

(d) A representation of adjacent 6-blocks. When γ is odd, reach r ≡ 1 (mod 4).

Figure 3.54: The usage of 6-blocks in CBH-graphs.

to vj1, which receives label 1, and to vj+γ3 , whose label is 2. Therefore, cπ(vj0) = 1.
Next, consider block Γα−γ. Note that cπ(vα−γ0 ) = 1 and cπ(vα−γ2 ) = 1 since their

adjacencies preserve the properties of 6-blocks. Consider vα−γ4 . Note that chord vn−1vα−γ4

exists in G and, since π(vn−1) = 1 and π(vα−γ3 ) = 2, we conclude that cπ(vα−γ4 ) = 1.
Now, consider 6-block Γj, α − γ + 1 ≤ j ≤ α. Since {vj−15 , vj1} ⊆ N(vj0), π(vj−15 ) = 2

and π(vj1) = 1, we have that cπ(vj0) = 1. For vertex vj2, its neighbours in the cycle are
labelled with 1 and 2. Thus, cπ(vj2) = 1. Finally, for vj4, both its neighbours in the
cycle are labelled with 2. However, note that the chord which has vj4 as an end has vl5,
l = (j+γ) mod α as the other. Since all vertices in Γl keep their original labels, π(vl5) = 1

and we conclude that cπ(vj4) = 1.
It remains to consider vn−2. Observe that this vertex is adjacent to vn−1, which re-

ceives label 1, and vα5 , whose label is 2. Thus, cπ(vn−2) = 1 and we conclude that G is
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Figure 3.55: The gap-[2]-vertex-labelling obtained by Technique T4 of graphs (a)
C30,reach=9; and (b) C54,reach=21. The highlighted chords connect vertices vi0 and vi+γ3 ,
thus inducing cπ(vi0) = 1.
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Figure 3.56: The gap-[2]-vertex-labelling of C26,reach=9 created by Technique T5. The
modified labels in the γ + 1 last 6-blocks of G are highlighted in red.

properly labelled by Technique T5.

Thus, it remains to consider the case of CBH-graphs with chords r ≡ 3 (mod 6) of
order n ≡ 4 (mod 6). In this last case, the tail of G has 4 vertices. Technique T6 presents
a gap-[2]-vertex-labelling for these graphs, also based on the labellings of 6-blocks.

Technique T6: 6-blocks when n ≡ 4 (mod 6) and r = 6γ + 3.

Let G be a CBH-graph with n = 6α + 4. Partition V (G) into α 6-blocks and a residual
block Γ′ = {vn−4, vn−3, vn−2, vn−1}, to which we assign a red labelling. Thus, π(vn−4) =

π(vn−2) = 1 and π(vn−3) = π(vn−1) = 2. Finally, we alter the label of the second vertex, vi1,
in the γ−1 last 6-blocks of G, assigning π(vi1) = 2 in these blocks. Figure 3.57 exemplifies
this labelling for CBH-graph C58,reach=21, a case where chords have reach r = 21.

In order to prove that Technique T6 properly labels G, it suffices to show that cπ is
a proper vertex-colouring. We begin by considering vertices vl, l odd. Since π(vi) = 1

for every vi ∈ V (G) with i even, we conclude that cπ(vl) = 0, for every odd-index vertex
vl ∈ V (G).

Consider Γj, 1 ≤ j ≤ α−γ. Since the 6-block labelling is preserved, we have ΠN(vj2)
=

ΠN(vj4)
= {1, 2}, which induces colour 1 in these vertices. Vertex vj0 is adjacent to vj1 and

to vj+γ3 which receive labels 1 and 2, respectively. Therefore, cπ(vj0) = 1.
Next, consider the singular case of Γj, j = α − γ + 1. The labelling for this block

remains unchanged. Therefore, cπ(vj2) = cπ(vj4) = 1. Vertex vj0, in this block, is adjacent
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Figure 3.57: The gap-[2]-vertex-labelling of CBH-graph C58,reach=21, as created by Tech-
nique T6. Vertices highlighted in red had their labels modified from the original 6-block
labelling.

to vj1 and vn−1, whose labels are 1 and 2, respectively. Therefore, cπ(vj0) = 1 also.
Now, consider the γ−1 last 6-blocks, namely Γj, α−γ+2 ≤ j ≤ α. Note that vertices

vj0 are adjacent to vj−15 , which receive label 1, and vj1, whose label is 2. Thus, cπ(vj0) = 1.
Vertices vj4 have their neighbours in the cycle labelled with 2 and 1 which also induces
colour 1. Now, both neighbours of vj2 are labelled with 2. However, the chord which has
vj2 as an end links this vertex to v(j+γ) mod α

1 , whose label is 1. Thus, cπ(vj2) = 1.
It remains to consider vertices vn−2 and vn−4 in the residual block of G. The latter is

adjacent to vn−3, labelled with 2, and to vn−5, which belongs to 6-block Γα and, hence,
receives label 1. Thus, cπ(vn−4) = 1. Finally, since ΠN(vn−2) = {1, 2}, cπ(vn−2) = 1, and
we conclude that cπ is a proper vertex-colouring of G.

Technique T7: Self-sufficient blocks.

The previous techniques are based on the use of 6-blocks – subgraphs which were obtained
from CBH-graph C6,reach=3. In particular, in Technique T4, a gap-[2]-vertex-labelling
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(π, cπ) of C6,reach=3 is used to create the proper labelling of an infinite number of CBH-
graphs Cn′,reach=r′ , such that n′ = 6α and r = 6γ + 3. We questioned whether this
approach could be used with different values of n and r from other graphs that admit
gap-[2]-vertex-labellings.

Consider, for example, CBH-graph C10,reach=3. In this case, r ≡ 3 (mod 4) and The-
orem 3.18 establishes that this graph admits a gap-[2]-vertex-labelling. This labelling is
presented in Figure 3.58(a). For this graph in particular, chord v0v3 is responsible for
adding a vertex labelled with 2 in N(v0) so as to induce cπ(v0) = 1. All other even-index
vertices have their neighbours in the cycle labelled with 1, 2, which also induces colour 1.

Now, consider C30,reach=13. So far, none of our techniques can be applied to create a
proper labelling for this graph. However, its vertex set can be partitioned into blocks of
size 10 – a 10-block. Furthermore, every chord has its endpoints in two adjacent blocks.
Consider, for example, chord v0v13; note that r = 3 (mod 10). Then, we use the (known)
gap-[2]-vertex-labelling of C10,reach=3 to properly label C30,reach=13, as demonstrated by
Figures 3.58(b) and 3.58(c).
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v1 v2 v3 v4
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1 1
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2

2

(a)

vi0 vi1 vi2 vi3 vi4 vi5 vi6 vi7 vi8 vi9

1 1 1 1 11 112 2

(b)

1 1 1 2 1 1 1 2 1 1 1

1

1

2

1

11211111211

1

2

1

1

(c)

Figure 3.58: CBH-graph C10,reach=3 in (a); the 10-block in (b); and its use to properly
label graph C30,reach=13 in (c).

Here, we have applied the same idea of the 6-block: we use a known gap-[2]-vertex-
labelling for C10,reach=3 and create a 10-block, thus covering every CBH-graph with n′ ≡ 0

(mod 10) and r′ ≡ 3 (mod 10). Thus, each known gap-[2]-vertex-labelling of CBH-graph
Cn,reach=r can be used as a self-sufficient n-block to properly label a new CBH-graph
Cn′,reach=r′ , such that n′ = αn and r′ ≡ r (mod n).

As another example, recall that Technique T1 provides a gap-[2]-vertex-labelling of
C10,reach=5. By the same approach, we can use this labelling and, thus, properly label CBH-
graphs Cn,reach=r with n ≡ 0 (mod 10) and r ≡ 5 (mod 10). An example is presented in
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Figure 3.59: C70,reach=25 has its vertex set partitioned into self-sufficient 10-blocks, labelled
according to Figure 3.59(b); each chord now has ends in two blocks at distance γ = 2

from each other; and the labels at the ends of the chord match the labels from the original
graph C10,reach=5, presented in Figure 3.59(a). The chords in Figure 3.59(c) are coloured
to indicate the corresponding pairs of vertices, from Figure 3.59(a), in different 10-blocks
of C70,reach=25.

v0

v1 v2 v3 v4

v5

v6v7v8v9

1

1 1

1111

2 2

2

(a)

vi0 vi1 vi2 vi3 vi4 vi5 vi6 vi7 vi8 vi9

1 1 1 1 1 1 12 2 2

(b)
v0 v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11 v12 v13 v14 v15 v16 v17 v18 v19 v20 v21 v22 v23 v24

v25

v26

v27

v28

v29

v30

v31

v32

v33

v34

v35v36v37v38v39v40v41v42v43v44v45v46v47v48v49v50v51v52v53v54v55v56v57v58v59

v60

v61

v62

v63

v64

v65

v66

v67

v68

v69

1 2 1 2 1 2 1 1 1 1 1 2 1 2 1 2 1 1 1 1 1 2 1 2 1 2

1

1

1

1

1

2

1

2

1

21111121212111112121211111

2

1

2

1

2

1

1

1

1

(c)

Figure 3.59: In (a), CBH-graph C10,reach=5; in (b), the newly-created self-sufficient 10-
block; and in (c); a labelling of C70,reach=25 by Technique T7.

Some examples of CBH-graphs by this technique are presented in Table 3.4.

n-block r = 3 r = 5 r = 7

n = 10 C10α,reach=13, C10α,reach=33, ... C10α,reach=25, C10α,reach=45, ... C10α,reach=17, C10α,reach=37, ...

n = 18 C18α,reach=21, C18α,reach=57, ... C18α,reach=41, C18α,reach=77, ... C18α,reach=25, C10α,reach=61, ...

n = 22 C22α,reach=25, C22α,reach=69, ... C22α,reach=49, C22α,reach=93, ... C22α,reach=29, C22α,reach=73, ...

n = 26 C26α,reach=29, C26α,reach=81, ... C26α,reach=57, C26α,reach=109, ... C26α,reach=33, C26α,reach=85, ...

n = 30 C30α,reach=33, C30α,reach=93, ... C30α,reach=65, C30α,reach=125, ... C30α,reach=37, C30α,reach=97, ...

n-block r = 9 r = 11 r = 13

n = 18 C18α,reach=45, C18α,reach=81, ... C18α,reach=29, C18α,reach=65, ... C10α,reach=49, C18α,reach=85, ...

n = 22 C22α,reach=53, C22α,reach=97, ... C22α,reach=33, C22α,reach=77, ... C22α,reach=57, C22α,reach=101, ...

n = 26 C26α,reach=61, C26α,reach=113, ... C26α,reach=37, C26α,reach=89, ... C26α,reach=65, C26α,reach=117, ...

n = 30 C30α,reach=69, C30α,reach=129, ... C30α,reach=41, C30α,reach=103, ... C30α,reach=73, C30α,reach=131, ...

Table 3.4: Examples of CBH-graphs covered by Technique T7,
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We conclude this section with one final technique, which uses the concept of isomor-
phism within the family of CBH-graphs.

Technique T8: Isomorphism.

Our notation for CBH-graphs states that every vertex vi is named according to its or-
der in a fixed hamiltonian cycle C = (v0, v1, v2, . . . , vn−2, vn−1, v0). Consequently, ev-
ery chord e of the graph can be written as e = viv(i+r) mod n. However, some CBH-
graphs have more than one hamiltonian cycle as a subgraph. For instance, consider
G = C10,reach=3, which is illustrated in Figure 3.60(a), and recall that G has r(e) = 3

for every chord e ∈ E(G). Let us consider a different hamiltonian cycle of G defined by
C+ = (v0, v3, v4, v7, v8, v1, v2, v5, v6, v9, v0). This cycle is illustrated in Figure 3.60(b). In
the image, the orange oriented edges represent the order in which vertices appear in C+.
We say, in this case, that C+ covers these chords and edges in G.
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v1

(b)

v0

v9
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v5

v2

v1

v8

v7

v4

v3

(c)

Figure 3.60: In (a), graph G ∼= C10,reach=3; in (b), cycle C+ highlighted in orange and
chords e′, in blue; lastly, in (c), graph G′ ∼= C10,reach=5 obtained from C+.

The “+” symbol in the superscript of C+ is used to indicate that we are covering
cycle-edges of G in a “forward” manner. In order to clarify this statement, observe the
first chord in C+, i.e. v0v3. The next edge of G covered by C+ is v3v4. Thus, we move
“forward” in the indices of the vertices. Next, C+ covers chord v4v7 and, once again, moves
forward by covering edge v7v8. By continuously covering (cyclically) these forward cycle-
edges in C10,reach=3, we obtain a new CBH-graph G′, which is illustrated in Figure 3.60(c).
In this new graph, edges v0v1, v2v3, v4v5, v6v7 and v8v9 are the chords, each of which has
reach five. Therefore, G′ ∼= G is also isomorphic to C10,reach=5.

Alternately, it is also possible to obtain a different hamiltonian cycle by following cycle-
edges in a “backwards” manner. For example, consider cycle C− = (v0, v3, v2, v5, v4, v7,
v6, v9, v8, v1, v0). In this case, the chords of this new graph are v1v2, v3v4, v5v6, v7v8
and v9v0. By inspecting graph G′′ obtained from C−, it is possible to conclude that
G′′ ∼= C10,reach=3 = G.

Formally, for a CBH-graph G, we define C+ ⊂ G as the cycle obtained by following
chords and forward cycle-edges in sequential, alternating order, starting at v0. The step
of C+ is defined as s+ = r+ 1. If V (C+) = V (G), we say that C+ is a spanning subgraph
of G. Figure 3.61 sketches the construction of cycle C+ and illustrates step s+.
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. . .
vn−1 v0 v1

. . .
vr−1 vr vr+1 vr+2

. . .
v2r v2r+1 v2r+2 v2r+3

. . .

reach r reach r

s+ s+

Figure 3.61: A sketch of cycle C+ of a CBH-graph G. The orange oriented edges represent
the chords and edges of G covered by C+.

Analogously, we define C− ⊂ G as the cycle obtained by following chords and back-
wards cycle-edges in the same, sequential manner; also, we define step s− = r − 1. The
construction of cycle C− and step s− are illustrated in Figure 3.62. Herein, we continue
our discussion considering only cycle C+. We remark, however, that analogous definitions,
reasonings and results may also be obtained for C−.

. . .
vn−1 v0 v1

. . .
vr−2 vr−1 vr vr+1

. . .
v2r−2 v2r−1 v2r

. . .

reach r reach r

s− s−

Figure 3.62: A sketch of the construction of cycle C−.

In a CBH-graph G, each pair of vertices vj−1, vj, with j even, is referred to as a block
of G. If edge vj−1vj is covered by C+, we say that the block containing vertices vj−1, vj
is also covered. Now, if C+ is a spanning subgraph of G, then exactly n

2
blocks are

covered by the cycle. Since each step taken in C+ covers exactly one block in G, it follows
that we require the same number n

2
of steps to be taken. In particular, note that after

the d n
s+
e-th step, cycle C+ “passes over” the starting vertex v0 for the first time. This

only occurs when n is not a multiple of s+. In fact, if n = l · s+, for some l ∈ N, we
immediately conclude that cycle C+ is not a spanning subgraph of G. This observation
is made quite clear when inspecting Figure 3.63, which depicts cycle C+ in CBH-graph
C18,reach=5. However, there are cases where n 6= l · s+ and C+ is not a spanning subgraph
of Cn,reach=r, as exemplified by C42,reach=17.

Consider cycle C+ in a CBH-graph of order n 6= l · s+. After the first step, edges v0vr
and vrvr+1 are covered. Note that there are r−1

2
uncovered blocks between v0 and vr,

as illustrated in Figure 3.64(a). In turn, after the d n
s+
e-th step, a block containing two

vertices vj−1, vj, 2 ≤ j ≤ r − 1 and even, is now covered by C+. We remark that vj is
the first even-index vertex covered after cycle C+ “passes over” the initial vertex v0. This
case is illustrated in Figure 3.64(b).

Thus, we define the pass of C+ as p+ = (d n
s+
e · s+) mod n. Observe that p+ is the

index of vertex vj mentioned in the previous paragraph. If p+
2

and s+
2

are relatively
prime6, we are able to conclude that cycle C+ is a spanning subgraph of G. Moreover, we

6We divide pass p+ and step s+ by two so as to consider only the blocks, rather than the vertices
themselves.
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Figure 3.63: In orange, cycle C+ in graph G ∼= C18,reach=5, with V (C+) = {v0, v5, v6, v11,
v12, v17}.
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. . .
vj−2 vj−1 vj vj+1
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(b) d ns+ e-th step.
Figure 3.64: The blocks (in gray) between v0 and vs+ , and vertices vj−1 and vj covered
after the d n

s+
e-th step. The orange vertices indicate when a block is covered by C+.

observed that when this is not the case, cycle C+ does not cover every block of G and,
consequently, C+ is not a spanning subgraph of G.

We investigated this (apparent) equivalence with the aid of a computer program that
analyses cycle C+ in CBH-graphs and checks: (i) whether the cycle is a spanning subgraph
of G; and (ii) if p+

2
and s+

2
are relatively prime. For every CBH-graph of order n ≤ 1002,

our algorithm indicated that C+ is a spanning subgraph ofG if and only if gcd(s+, p+) = 2.
With these preliminary observations, we state the following conjecture.

Conjecture 3.21. Let G be a CBH-graph and C+ ⊂ G. Cycle C+ is a spanning subgraph
of G if and only if p+

2
and s+

2
are relatively prime.

We are now ready to present Technique T8, which we exemplify by analysing CBH-
graph G ∼= C46,reach=13. So far, this graph is not covered by any of the previous techniques.
Now, consider C+ in G, as illustrated in Figure 3.65(a). In this case, step s+ = 14 and
pass p+ = 10. Note that, in this case, C+ is a spanning subgraph and gcd(14, 10) = 2,
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verifying Conjecture 3.21. Furthermore, C+ spans the CBH-graph C46,reach=19, in which
chords have reach r = 19 ≡ 3 (mod 4). By Theorem 3.18, this graph admits a gap-[2]-
vertex-labelling. The new graph and its proper labelling are illustrated in Figure 3.65(b).
Then, since G′ ∼= G, we conclude that G also admits a gap-[2]-vertex-labelling.
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Figure 3.65: CBH-graphs: (a) C46,reach=13; and (b) C46,reach=19.

For CBH-graphs G, Technique T8 consists of using the hamiltonian cycle C+ ⊂ G,
when it is a spanning subgraph, to create a new CBH-graph G′. Then, we verify if G′

can be properly labelled by any of the other labelling techniques. This allows us to cover
a large variety of CBH-graphs which had not yet been addressed in our work. Some
examples of graphs for which techniques T1 through T7 are not applicable, but admit
gap-[2]-vertex-labellings by Technique T8, are presented in Table 3.5.

G C+ C− Covered by
C34,reach=13 - C34,reach=7 Theorem 3.18
C38,reach=13 C38,reach=17 C38,reach=5 Technique T2
C46,reach=13 C46,reach=19 - Theorem 3.18
C46,reach=17 C46,reach=11 C46,reach=7 Theorem 3.18
C54,reach=17 - C54,reach=19 Theorem 3.18
C58,reach=13 - C58,reach=11 Theorem 3.18
C58,reach=17 C58,reach=25 C58,reach=23 Theorem 3.18
C62,reach=13 C62,reach=17 C62,reach=9 Technique T5
C62,reach=25 C62,reach=23 C62,reach=27 Theorem 3.18
C62,reach=29 C62,reach=5 C62,reach=21 Technique T2
C66,reach=13 C66,reach=29 - Technique T7

Table 3.5: Some CBH-graphs covered by Technique T8, considering cycles C+ and C−.

To conclude this section, we present in Table 3.6 values for n and r which are covered
by one of Techniques T1 to T8. In the table, the orange cell refers to the Heawood Graph,
for which Lemma 3.19 states that there is no gap-[2]-vertex-labelling. On the other hand,
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the blue cells are CBH-graphs we know (empirically) that admit gap-[2]-vertex-labelling.
However, they are not covered by any of the techniques. Lastly, gray cells represent invalid
combinations for n and r.

Although much works still needs to be done to prove that every CBH-graph, up to
the Heawood Graph, admits a gap-[2]-vertex-labelling, our research lead us to pose the
following conjecture

Conjecture 3.22. Let G be a CBH-graph not isomorphic to C14,reach=5. Then, χg
V

(G) = 2.

To further strengthen our conjecture, we devised an Integer Linear Programming for-
mulation to find a gap-[2]-vertex-labelling of every CBH-graph of order n ≡ 2 (mod 4)

with homogeneous chords.

Integer Linear Programming

For each vertex v of a CBH-graph, we create two variables, lv and cv, that correspond
to a label and colour to be assigned to v, respectively. Our ILP formulation is presented
below.

minimize
∑

v∈V (G)

0 · cv (3.1)

subject to:

cu + cv = 1, ∀uv ∈ E(G) (3.2)

cu ≤
∑

v∈N(u)

(lv − 1), ∀u ∈ V (G) (3.3)

cu ≤ d(u)−
∑

v∈N(u)

(lv − 1), ∀u ∈ V (G) (3.4)

cu ≥ (lv − 1)− (lw − 1), ∀u ∈ V (G),∀v, w ∈ N(u), v 6= w (3.5)

cu ≥ (lw − 1)− (lv − 1), ∀u ∈ V (G),∀v, w ∈ N(u), v 6= w (3.6)

lv ∈ {1, 2} (3.7)

cv ∈ {0, 1} (3.8)

Since we are interested in a labelling with k = 2 and there are no vertices of degree
one in G, restrictions (3.7) and (3.8) follow naturally. Restriction (3.2) establishes that
no two variables for adjacent vertices u, v ∈ V (G) can be assigned colour 1. The upper
bound provided in restrictions (3.3) and (3.4) imply that the colour of a vertex is bound
both by the labels assigned to its neighbours and to its degree. Finally, the lower bounds
in restrictions (3.5) and (3.6) are used to determine the induced colour of every vertex
v ∈ V (G).

We executed this program on all CBH-graphs with homogeneous chords for n ≤ 1002.
With the exception of C14,reach=5, in all cases, the program found a gap-[2]-vertex-labelling.
We remark that many of the labelling techniques presented in the previous section were
obtained from the results provided by this program.
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r

n
10 14 18 22 26 30 34 38 42 46 50 54 58 62 66 70 74 78 82 86 90 94 98 102 106 110 114 118 122 126

5 T1 T3 T2 T3 T1 T3 T2 T3 T2 T1 T2 T3 T2 T3 T1 T3 T2 T3 T2 T1 T2 T3 T2 T3 T1 T3 T2 T3 T2
9 T1 T6 T5 T4 T2 T3 T4 T6 T2 T1 T6 T5 T2 T3 T5 T4 T2 T5 T1 T6 T2 T3 T6 T5 T2 T3 T5 T1
13 T1 T7 T8 T8 T8 T2 T3 T8 T8 T8 T7 T2 T1 T8 T7 T2 T3 T8 T7 T8 T2 T3
17 T1 T8 T8 T7 T8 T8 T8 T2 T3 T8 T8 T8 T8 T7 T2 T1 T8 T7 T8 T8
21 T1 T6 T5 T4 T6 T5 T4 T6 T5 T4 T2 T3 T4 T6 T5 T4 T6 T5 T4 T6 T2 T3
25 T1 T7 T8 T8 T7 T7 T8 T8 T8 T7 T8 T2 T3 T8 T7 T8 T8 T8 T7
29 T1 T8 T7 T8 T7 T8 T8 T7 T8 T8 T8 T7 T8 T2 T3 T8 T7
33 T1 T6 T5 T4 T6 T5 T4 T6 T5 T4 T6 T5 T4 T6 T5 T4
37 T1 T7 T8 T8 T7 T8 T8 T8 T7 T8 T8 T8
41 T1 T8 T7 T8 T8 T8 T8 T8 T7
45 T1 T6 T5 T4 T6 T5 T4 T6 T5 T4
49 T1 T8 T8 T7 T8 T8 T8 T7
53 T1 T7 T8 T8 T8 T8
57 T1 T6 T5 T4
61 T1 T7

Table 3.6: Values of n and r for which CBH-graphs Cn,reach=r admit gap-[2]-vertex-labellings.

List of Techniques

• Technique T1: n = 2αr;

• Techniques T2 and T3: n = β(r + 1) + α(r − 1), α, β odd;

• Technique T4: 6-block on n ≡ 0 (mod 6);

• Technique T5: 6-block on n ≡ 2 (mod 6);

• Technique T6: 6-block on n ≡ 4 (mod 6);

• Technique T7: n′-block.

• Technique T8: Isomorphism.
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Theorem 3.23. With the exception of C14,reach=5, every CBH-graph of order n ≤ 1002

admits a gap-[2]-vertex-labelling. �

3.3.6 Snarks

In the previous section, we approached cubic bipartite graphs motivated by the question
raised by Dehghan et al. [8]. Still motivated by the role of cubic graphs, in this section,
we investigate the vertex-gap number of snarks (which play an important role in Graph
Theory, especially in the field of Graph Colourings).

Recall the definition of snarks presented in Chapter 2. A snark is a bridgeless, cubic
graph with chromatic index four, without cycles of length two or three. We establish the
vertex-gap number for the families of Blanuša, Flower, Goldberg and Twisted Goldberg
snarks in the following subsections. Although the labelling presented for each of these
families is distinct, we use a similar technique to the one used for the edge-version, pre-
sented in Section 2.2.5. This technique consists of assigning labels to the “building blocks”
of each snark that, together, induce a proper colouring of the graph.

Blanuša snarks

The family of Generalised First Blanuša Snarks is defined in Section 2.2.5. Recall that
Generalised First Blanuša Snark B1

i uses a copy of graph B1
0 , depicted in Figure 3.66(a),

and i copies of block B, illustrated in Figure 3.66(b). A sketch of B1
i is shown in Fig-

ure 3.67. The vertex-gap number for this first family is stated in Theorem 3.24.

v0 u0

x0 y0

(a)
wi ri

zi ti

(b)

Figure 3.66: In (a), the first block B1
0 used in the construction of Blanuša snark B1

i ; and
in (b), the iterating blocks Bi.

Theorem 3.24. Let G be a Generalised First Blanuša Snark. Then, χg
V

(G) = 3.

Proof. Let G be the Generalised First Blanuša Snark B1
i , i ≥ 3 and odd. Recall that

χ(G) = 3. Then, in order to prove the result, by Corollary 3.8, it suffices to exhibit a gap-
[3]-vertex-labelling of G. First, we define a labelling π of block B1

0 and of blocks Bj, which
are presented in Figures 3.68(a) and 3.68(b), respectively. Define colouring cπ as usual.
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v0

u0

x0

y0

w1 r1

z1 t1

wi ri

zi ti

. . .

Figure 3.67: The construction of Generalised First Blanuša Snark B1
i , i ≥ 1.

Consider block B1
0 . By inspecting the unnamed vertices in Figure 3.68(a), we conclude

that their entire neighbourhood is contained in V (B1
0), that is, they are not adjacent to

any vertex in blocks Bj. Furthermore, observe that no two adjacent unnamed vertices
have the same induced colour. Now, we analyse the remaining vertices, namely x0, y0, v0
and u0.

By construction of B1
i , vertices u0, v0, x0 and y0 are adjacent to w1, z1, ti and ri,

respectively. By inspecting Figure 3.68(b), note that these last vertices receive the same
labels as the gray vertices adjacent to u0, v0, x0 and y0 in Figure 3.68(a), respectively. Fur-
thermore, by inspecting 3.68(a) considering the labels of gray vertices, we conclude that
the named vertices have induced colours different from their neighbours. Therefore, cπ is
a proper colouring of block B1

0 . Next, we consider blocks Bj, 1 ≤ j ≤ i.
An analogous reasoning can be applied for the unnamed vertices in Figure 3.68(b),

and we conclude that no two unnamed adjacent vertices in Bj have the same induced
colour. It remains to consider vertices zj, tj, wj and rj.

By construction, zj is adjacent to v0, if j = 1, and rj−1, otherwise. In both cases,

v0

u0

x0

y0

1

1

2

2

1

1

3

1

1

11

2 1

1

(a) Labelling π of block B1
0 .

wj rj

zj tj

1 2 1

3 1

1 1 21

2 1

1

(b) Labelling π of blocks Bj , 1 ≤ j ≤ i.

Figure 3.68: In (a), the first block B1
0 used in the construction of Blanuša snark B1

i ; and
in (b), the iterating blocks Bi. White, black and orange vertices have induced colours 0, 1
and 2, respectively. Gray vertices belong to adjacent blocks, which are delimited by the
dashed lines.
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these vertices are assigned label 1, represented by the gray vertex adjacent to zj in Fig-
ure 3.68(b). A similar reasoning can be applied to vertex wj: it is adjacent to u0, if j = 0

and tj−1, otherwise; both vertices receive label 2. Analogously, considering vertices tj
and rj, we conclude that these vertices are always adjacent to a vertex which receives
label 1. By inspection, we conclude that cπ is a proper colouring of each block Bj. Fur-
thermore, since the bottommost connecting vertices of each block, which have induced
colour 1, always connect with the topmost vertices of its adjacent blocks, with colours 0
or 2, there are no adjacent vertices in neighbouring blocks with the same induced colour.
Figure 3.69 illustrates this labelling and colouring for B1

3 . We conclude that (π, cπ) is a
gap-[3]-vertex-labelling of G, and the result follows.

v0

u0

x0

y0

w1 r1

z1 t1

w2 r2

z2 t2

w3 r3

z3 t3

1

1

2

2

1

1

3

1

1

1

1 2 1

3 1

1 1 2

1 2 1

3 1

1 1 2

1 2 1

3 1

1 1 2

Figure 3.69: The gap-[3]-vertex-labelling (π, cπ) of graph B1
3 .

The family of Generalised Second Blanuša Snarks is also defined in Section 2.2.5. Due
to time constraints, we did not extend the results for the Generalised Second Blanuša
Snarks. We believe, however, that minor adjustments to the labelling can be done in
order to establish the vertex-gap number for this family. Therefore, it is presented here
as a problem for future work.

Problem 3.25. Determine the vertex-gap number for the family of Generalised Second
Blanuša snarks.

Flower snarks

In Section 2.2.5, we describe the construction of Flower Snark Jl, l ≥ 3 and odd. Fig-
ure 3.70 illustrates snark Jl with its notation. The vertex-gap number for this family of
graphs is presented in Theorem 3.26.

Theorem 3.26. Let G be a Flower Snark. Then, χg
V

(G) = χ(G) = 3.
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v0

x0

y0

z0

T0

v1

x1

y1

z1

T1

v2

x2

y2

z2

T2

vl−1

xl−1

yl−1

zl−1

Tl−1

Figure 3.70: Flower Snark Jl.

Proof. Let G be a Flower Snark constructed from l copies of star Ti ∼= S3. Recall that
V (Ti) = {xi, yi, zi, vi}, where vi is the central vertex, as defined in Section 2.2.5. Also,
in the construction of Jl, every Ti is connected to Ti−1 and Ti+1 through vertices xi, yi
and zi as indicated in Figure 3.70. Since χ(G) = 3, in order to prove the result, we show
a gap-[3]-vertex-labelling (π, cπ) of G.

Let us define three labellings π of Ti, for 0 ≤ i < l, for the following cases: (i) Ti,
i ≤ l − 3 and even; (ii) Ti, i ≤ l − 2 and odd; and, finally, for (iii) Tl−1. For cases (i)
and (ii), assign label 1 to every vertex xi, yi and zi. For vertices vi, let

π(vi) =

{
3, if i even; and

2, otherwise.

For Tl−1, assign π(xl−1) = π(vl−1) = 1 and π(yl−1) = π(zl−1) = 2. The labellings in
these three cases are exhibited in Figure 3.71. Colouring cπ is defined as usual.

In the construction of a Flower snark Jl, every Ti is connected with Ti−1 and Ti+1

through vertices xi, yi and zi. These connections are represented in Figure 3.71 by the
adjacent vertices, in gray. Note that the labelling of G is such that the labellings in
Figures 3.71(a) and 3.71(b) alternate following the order of Ti, i < l − 1. Also, observe
that, with the exception of yl−1 and zl−1, every vertex xi, yi and zi has been assigned
label 1. As an example, Figure 3.72 illustrates (π, cπ) for Flower snark J7.

In order to obtain that cπ is a proper vertex-colouring of G, first, observe that
ΠN(vl−1) = {1, 2} and, therefore, cπ(vl−1) = 1. Furthermore, since Tl−1 is connected
to Tl−2 and T0, for every w ∈ {xl−1, yl−1, zl−1}, we know that ΠN(w) = {1}, inducing
colour 0 in these three vertices. In Figure 3.72, the colouring for this case is displayed
in T6.

Next, we analyse the induced colours of vertices in every Ti, 0 ≤ i ≤ l − 2. Note that
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vi

xi

yi

zi

3

1

1

1 11

a1

11

(a) i even.

vi

xi

yi

zi

2

1

1

1 11

11

a1

(b) i odd.

vl−1

xl−1

yl−1

zl−1

1

1

2

2 11

11

11

(c) i = l − 1.

Figure 3.71: The gap-[3]-vertex-labelling of graphs Ti as described in the text. The vertices
connected to xi, yi and zi in each image represent their adjacencies in Jl.

every xi, yi and zi has been labelled with 1, which implies cπ(vi) = 0 for every vi. Now,
let wi be any of vertices xi, yi and zi of even index. Observe that vi ∈ N(wi) in this case
is labelled with 3. Furthermore, all these vertices have a vertex u in their neighbourhood
such that π(u) = 1: vertices wi with 1 ≤ i ≤ l − 3 have both neighbours wi−1 and wi+1

with label 1; vertices w0 is adjacent to w1, which has received label 1; and vertices wl−2 are
adjacent to wl−3, also labelled with 1. Therefore, for all i < l−1, we have {1, 3} ⊆ ΠN(wi)

and we conclude that cπ(wi) = 2 for all three vertices xi, yi and zi. This case is represented
in Figure 3.72 by T0, T2 and T4.

A similar line of reasoning allows us to determine the colour for every wi with odd
index. First, observe that every wi is adjacent to vi which has received label 2 in π.
Similarly to the case of i even, every wi is adjacent to a vertex u with π(u) = 2. Therefore,
set {1, 2} is necessarily a subset of ΠN(wi). Moreover, label 3 is only assigned to vertices vi
with even index, which are not adjacent to any wi in this case. Therefore, we have
ΠN(wi) = {1, 2} for every wi, i odd, and we conclude that cπ(wi) = 1 for these vertices.
This case is exhibited by T1, T3 and T5 in Figure 3.72.

Since we have exhausted every labelling of Ti and concluded that there are no adjacent
vertices with the same induced colour, (π, cπ) is, in fact, a gap-[3]-vertex-labelling of G.

T0 T1 T2 T3 T4 T5 T6
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3
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Figure 3.72: The gap-[3]-vertex-labelling (π, cπ) of J7, as described in the text.
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This completes the proof.

The last classes considered are the family of Goldberg and Twisted Goldberg Snarks.

Goldberg snarks

The family of Goldberg SnarksGl, l ≥ 3 and odd, was described in Section 2.2.5. To recall,
we present in Figure 3.73(a) block B used in the construction of Gl and, in Figure 3.73(b),
a sketch of Gl.

u y

r w t

v x

(a)

u0 y0

r0 w0 t0

v0 x0

s0

u1 y1

r1 w1 t1

v1 x1

s1

u2 y2

r2 w2 t2

v2 x2

s2

ul−1 yl−1

rl−1 wl−1 tl−1

vl−1 xl−1

sl−1

(b)

Figure 3.73: In (a), block B used in the construction of Goldberg Snark Gl; and in (b),
the resulting graph obtained by using l copies of block B.

For this family, we determined the vertex-gap number, which is presented in Theo-
rem 3.27.

Theorem 3.27. Let G ∼= Gl, l ≥ 3. Then, χg
V

(G) = 3.

Proof. Let G be Goldberg Snark Gl, l ≥ 3. It is known that χ(G) = 3 for every l.
Therefore, by Corollary 3.8, it is sufficient to show a gap-[3]-vertex-labelling of G to prove
the result. First, we consider the case l = 3, which is a unique construction in the family.
The gap-[3]-vertex-labelling (π, cπ) of G3 is presented in Figure 3.74. By inspection, one
can see that cπ is a proper colouring of G, and the result follows. It remains to consider
the case l ≥ 5.
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3

2 1

1 1 1

1 2

2

1

1

1

1

1

2

2

1

1

1

1

1

2

Figure 3.74: The gap-[3]-vertex-labelling of Goldberg Snark G3. White vertices have
induced colour 0, black vertices, colour 1 and orange vertices, colour 2.

We construct a gap-[3]-vertex-labelling (π, cπ) ofGl, l ≥ 5, similarly to the construction
done for Flower snarks in the proof of Theorem 3.26. We define three labellings for
blocks Bi, 0 ≤ i < l, for the following cases: i ≤ l−2 and even; (ii) i ≤ l−2 and odd; and
(iii) i = l − 1. These three labellings are presented in Figure 3.75; items (i), (ii) and (iii)
correspond to subfigures (a), (b) and (c), respectively. An example of labelling π can be
seen in Figure 3.76 for Goldberg snark G5.

First, consider vertices si, for all i < l. Since π(si) = 1 in all cases, we have ΠN(si) =

ui yi

ri wi ti

vi xi

si

1 3

2 1 1

3 1

11 1

a 1

1 3

(a) Labelling of blocks Bi,
i ≤ l − 2 and even.

ui yi

ri wi ti

vi xi

si

1 2

1 2 1

3 1

11 1

b 1

1 3

(b) Labelling of blocks Bi,
i ≤ l − 2 and odd.

ul−1 yl−1

rl−1 wl−1 tl−1

vl−1 xl−1

sl−1

1 1

2 3 1

3 1

11 1

2 1

1 3

(c) Labelling used only for
block Bl−1.

Figure 3.75: The labellings of blocks Bi for cases (i), (ii) and (iii) in (a), (b) and (c),
respectively. Vertices yi−1 have their labels a ∈ {1, 2} and b ∈ {1, 3}, considering the
possible blocks Bi−1 connected to Bi.
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B0 B1 B2 B3 B4

1

1 3

2 1 1

3 1

1

1 2

1 2 1

3 1

1

1 3

2 1 1

3 1

1

1 2

1 2 1

3 1

1

1 1

2 3 1

3 1

Figure 3.76: The gap-[3]-vertex-labelling of Goldberg snark G5.

{1, π(wi)}. Notice that labelling π alternates labels 1,2 in wi for blocks Bi, 0 ≤ i ≤ l− 2,
and block Bl−1 has π(wl−1) = 3. We conclude that the cycle induced by vertices si is
properly coloured, as shown in Figure 3.77.

Next, we consider vertices ri, wi and ti. For i odd, we have π(ri) = π(ti) = π(si) = 1.
Since {ri, ti, si} = N(wi), we conclude that cπ(wi) = 0 for every wi with odd index. If i
is even, observe that ΠN(wi) = {1, 2} since π(ri) = 2 and π(ti) = π(si) = 1. This implies
cπ(wi) = 1. Since cπ(si) = 1 when i is odd and cπ(si) ∈ {0, 2} otherwise, there is no
conflict between the induced colours of vertices si and wi in any block Bi.

Now, consider the cycle induced by vertices ui and yi. Observe that every vertex in
N(yi) = {ui, ui+1, ti} received label 1. Therefore, cπ(yi) = 0 in all blocks Bi. As for the
induced colours of vertices ui, we have the following cases. If i is odd, block Bi is connected
to block Bi−1 which has an even index. Therefore, for all odd i, ΠN(ui) = {1, 2, 3} since
N(ui) = {yi−1, yi, ti}. This implies that cπ(ui) = 2 for all blocks with odd index. For
blocks Bi with i even, we must consider two separate cases.

Since block B0 is adjacent to Bk−1, we analyse vertex u0 separately. Observe in
Figure 3.76 that ΠN(u0) = {1, 2, 3}. This implies that cπ(u0) = 2. For every other even
index i, we have ΠN(ui) = {a, a + 1}, where a = 2 for i 6= l − 1, and a = 1, otherwise.
This last case is exemplified by block B4 in Figure 3.76.

It remains to consider the colours of vertices vi and xi. Similarly to vertices yi, observe
that N(vi) = {xi, xi−1, ti}, all of which were assigned label 1. Therefore, cπ(vi) = 0 for
all blocks Bi. For vertices xi, we have ΠN(xi) = {π(ri), 3}, which implies that cπ(xi) =

3−π(ri). Since no ri was assigned label 3, cπ(xi) 6= 0; furthermore, by inspecting blocks B0

and B1, the reader can observe that in both cases of i odd and even, cπ(ri) 6= cπ(xi).
Therefore, cπ is a proper colouring of Goldberg Snark Gk, which completes the proof.

s0 s1 s2 s3

. . .

sl−1
1 1 1 1 1

1 2 1 2 3

Figure 3.77: The (partial) labelling π and colouring cπ of the induced cycle
G[{s0, . . . , sl−1}]. Every si is adjacent to a vertex wi, each of which has its colour omitted.
Vertices si filled in white have induced colour 0, vertices in black, colour 1, and the single
orange vertex has induced colour 2.
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Twisted Goldberg snarks

The family of Twisted Goldberg Snarks is formally defined in Chapter 2. To recall, the
Twisted Goldberg Snark TGl, l ≥ 3, is obtained by twisting an odd number of edges con-
necting adjacent blocks in Goldberg Snark Gl. Figure 3.78 illustrates the twist operation.

ui−1 yi−1

ri−1 wi−1 ti−1

vi−1 xi−1

si−1

ui yi

ri wi ti

vi xi

si

ui+1 yi+1

ri+1 wi+1 ti+1

vi+1 xi+1

si+1

. . .

. . . . . .

. . .

. . . . . .

Figure 3.78: A twisted edge in Goldberg Snark Gl.

By using the same approach as the previous classes of snarks, we established the
vertex-gap number for the family of Twisted Goldberg Snarks. This result is presented in
Theorem 3.28.

Theorem 3.28. Let G ∼= TGl, l ≥ 3. Then, χg
V

(G) = 3.

Proof. Let G be the Twisted Goldberg Snark for l ≥ 3. Once more, the result follows
from establishing a gap-[3]-vertex-labelling of G. For l = 3, we consider graph TG3,
which has a unique construction. The gap-[3]-vertex-labelling of this graph is presented
in Figure 3.79.
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1 2

1 1 1

2 1

1

2

1

1

3

1

1

1

1

3

1

1

2

1

Figure 3.79: The gap-[3]-vertex-labelling of Twisted Goldberg Snark TG3. Vertices filled
in white, black and orange have induced colours 0, 1 and 2, respectively.
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ui yi

ri wi ti

vi xi

si

1 1

2 1 3

1 1

11 1

1 1

1 1

(a) Labelling of blocks Bi, i ≤ l − 2
and even.

ui yi

ri wi ti

vi xi

si

1 1

2 3 1

1 1

11 1

1 1

1 1

(b) Labelling of blocks Bi, i ≤ l − 2
and odd.

ul−1 yl−1

rl−1 wl−1 tl−1

vl−1 xl−1

sl−1

1 1

1 2 3

1 1

11 1

1 1

1 1

(c) Labelling used only for block Bl−1. Observe the twisted edges attached
to vl−1 and ul−1.

Figure 3.80: The labellings of blocks Bi for cases (i), (ii) and (iii) in (a), (b) and (c),
respectively. Observe that for Twisted Goldberg snarks, every ui, yi, vi and xi was assigned
label 1. Vertices filled in white have induced colour 0, black, colour 1, and orange, colour 2.

For l ≥ 5, the proof of this result is similar to the proofs of theorems 3.26 and 3.27. We
define the labellings for blocks Bi for three cases: (i) i ≤ l− 2 and even; (ii) i ≤ l− 2 and
odd; and (iii) i = l−1. The labelling for each case is depicted in Figure 3.80, subfigures (a),
(b) and (c), respectively. As in the proof of Goldberg Snarks, the gray vertices adjacent
to vi, xi, ui and yi represent their adjacent vertices in neighbouring blocks. Moreover,
note that all connecting vertices received label 1. By inspecting blocks Bi, we conclude
that cπ is a proper colouring of each block.

By observing all classes presented in this chapter, we strongly believe that there is a
correlation between the vertex-gap number of a graph G and its chromatic number, other
than the lower bound established in Lemma 3.7. However, despite the evidence provided
in this section, there is still no proof that the vertex-gap number of a graph can be inferred
from its chromatic number. In fact, we leave this as an open problem.

Problem 3.29. Let G be an arbitrary graph and f , a function. Is it possible to establish f
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1
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Figure 3.81: The gap-[3]-vertex-labelling of Twisted Goldberg Snark TG5. The twisted
edges are highlighted in blue. Vertices filled in white have induced colour 0, in black,
colour 1, and in orange, colour 2.

such that χg
V

(G) ≤ f(χ(G))?
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Chapter 4

Further discussions on
gap-vertex-labellings

Our research on gap-[k]-vertex-labellings, presented in the previous chapter, enabled us to
determine the vertex-gap number of some traditional classes of graphs. We pose a conjec-
ture that almost every cubic bipartite hamiltonian graph admits a gap-[2]-vertex-labelling,
and provide evidence to support this conjecture. Also, in the beginning of Section 3.3, we
establish a tight lower bound for the vertex-gap number of arbitrary graphs.

All results presented thus far regarding gap-[k]-vertex-labelling have a common factor:
they all rely on the input parameter k. To clarify: we determined the least number k
for which certain graphs admit a gap-[k]-vertex-labelling, and established a lower bound
for the least k for which a graph admits a gap-[k]-vertex-labelling. However, we have yet
to address a fundamental question regarding gap-[k]-vertex-labellings: are there graphs
which do not admit this proper labelling, regardless of k? The answer is yes.

In the article that introduced gap-[k]-vertex-labellings, Dehghan et al. [8] stated that
“a graph may lack any vertex-labelling by gap1”. However, the authors did not characterize
these graphs. Here, we make note of how strong Dehghan et al.’s statement is: for certain
graphs, there is no natural k for which the graph admits any gap-[k]-vertex-labelling. In
light of this, Dehghan et al. [8] proposed the following question:

Problem 4.1 (Dehghan et al.). Does there exist a polynomial-time algorithm to determine
whether a given graph admits a gap-[k]-vertex-labelling?

In this chapter, we present our discussions related to Dehghan et al.’s problem. We
present two families of graphs which do not admit gap-[k]-vertex-labellings in Section 4.1,
and comment on their importance for this particular problem. In Section 4.2, a new
parameter, called the gap-strength of graphs, is introduced and we present some prelimi-
nary results for it. Finally, in Section 4.3, we prove certain structural properties regarding
gap-[k]-vertex-labellings of graphs, when they exist. These properties are used to design a
brute force algorithm that decides whether a given graph admits a gap-[k]-vertex-labelling,
for some k ∈ N. This is the first known algorithm to solve Dehghan et al.’s decision prob-
lem and it executes in O(n!) time. As a corollary of these properties, we also obtain a
tight upper bound for the vertex-gap number of arbitrary graphs.

1This is the original name of gap-[k]-vertex-labellings as given by Dehghan et al. [8] in 2013.
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In the context of deciding if and when a graph admits a gap-[k]-vertex-labelling, the
value of k is, to some extent, irrelevant. Here, we are not interested in the least k, or
how large or small its value is. We merely inquire if there exists (any) k ∈ N. Hence,
for the remainder of this chapter, we refer to gap-[k]-vertex-labellings of graphs simply as
gap-vertex-labellings, omitting k.

4.1 Graphs that do not admit gap-vertex-labellings

When considering Problem 4.1, we remark that there is a significant difference when
comparing the gap-vertex-labelling version to its edge counterpart. In the edge version,
presented in Chapter 2, Tahraoui et al. [27] showed that a graph G admits a gap-[k]-edge-
labelling, for some k ≤ 2|E|−1, if and only if G does not have any connected component
isomorphic to K2. Therefore, we know how to decide whether a graph admits a gap-[k]-
edge-labelling, for some k ∈ N, in polynomial time.

The algorithm that solves this decision problem needs only check every connected
component H ⊆ G and verify if they are isomorphic to K2. If this is not the case,
then there exists a k for which G admits a gap-[k]-edge-labelling. Conversely, if there
exists a connected component H ∼= K2, then the label assigned to the (singular) edge
e = uv ∈ E(H) in any edge-labelling of G will induce the same colour in its endpoints.
Therefore, H cannot be properly labelled and, consequently, G does not admit a gap-[k]-
edge-labelling. We remark that, once again, we are not interested in establishing a value
for k. We are only interested in determining if such k exists, however large or small it
may be.

Now, let us return to the decision problem of determining whether a graph G does or
does not admit a gap-vertex-labelling, and formalize it.

Gap-vertex-labelling (Gvl)
Instance: A graph G = (V,E).
Question: Does G admit a gap-vertex-labelling?

It is now possible to restate Dehghan et al.’s problem as simply: is Gvl in P?

Many decision problems regarding labellings and colourings of graphs have been proven
to be NP-complete. For proper gap-labellings in particular, the beginning of chapters 2
and 3 list existing NP-completeness results in the literature for both the edge and the
vertex variants, respectively. Our initial assessment of Gvl led us to believe that this
problem is also NP-complete, contrary to its edge version.

Motivated by our results and discussions regarding the gap-[2]-vertex-labelling of sub-
cubic bipartite graphs, and by Dehghan et al.’s [8] statement – that there are graphs which
lack a gap-vertex-labelling– we began our research investigating which are these graphs
for which there is no gap-vertex-labelling. The first family of graphs that do not admit
any gap-vertex-labelling is the family of complete graphs Kn when n ≥ 4. Theorem 4.2
establishes this result.

Theorem 4.2. Let G ∼= Kn. Then, G admits a gap-vertex-labelling if and only if n ≤ 3.
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Proof. Let G = Kn, n ≥ 2. Complete graph K1 is a trivial graph, for which the result
naturally holds.

(⇒) For complete graphs K2 and K3, we present gap-vertex-labellings in Figure 4.1.
By inspecting the image, we conclude that the induced colouring is a proper vertex-
colouring of the graph. Therefore, complete graphs Kn, n ≤ 3, admit gap-vertex-
labellings.

2

1
2

31

K2 K3

1

2
1

24

Figure 4.1: Complete graphs K2 and K3 with their gap-vertex-labellings.

(⇐) Conversely, consider n ≥ 4, and let V = {v0, . . . , vn−1} be the vertices of G.
Suppose that G admits a gap-vertex-labelling (π, cπ). Adjust notation so that v0 is the
vertex which is assigned the largest of all labels in V and v1, the smallest. Consider
vertices v2 and v3. These vertices exist in G since n ≥ 4. Observe that v0, v1 ∈ N(v2)

and v0, v1 ∈ N(v3). This implies that, regardless of the labels assigned to v2, v3, . . . , vn−1,
both v2 and v3 have their colours induced by the same gap, that is, cπ(v2) = cπ(v3) =

π(v0)−π(v1). This is a contradiction since cπ(v2) 6= cπ(v3) in any proper vertex-colouring
of G. Therefore, cπ is not a proper colouring of G and the result follows.

By a similar line of reasoning, we were able to prove that another – albeit very re-
stricted – family of graphs also does not admit gap-vertex-labellings: a subclass of split
graphs. As defined by S. Földes and P. Hammer [10], a split graph is a graph G whose
vertex set V (G) can be partitioned into the disjoint union of a nonempty independent set
and a complete graph, i.e. a clique. We denote a partition – a split – of G into a clique W
and an independent set U by (G,W,U). If the split of G is such that W is maximal, we
say that (G,W,U) is a maximal split of G. In Figure 4.2(a), we exemplify a split graph
with W ∼= K4 and U containing 3 vertices. Notice that (G,W,U) is not a maximal split
of G since the bottommost vertex of U has degree four and, thus, W is not maximal. In
fact, the maximal split (G,W ′, U ′) of this graph is presented in Figure 4.2(b), in which
W ′ ∼= K5 and |U ′| = 2.

In a preliminary study of split graphs, we considered only those in which every vertex
u ∈ U has degree one. For these graphs, we determined when they admit a gap-vertex-
labelling. This result is presented in Theorem 4.3. Notice in the statement of the theorem
that we are considering only split graphs in which clique W has at least four vertices
since a split graph with |W | = 3 is a unicyclic graph, for which we create a gap-[3]-vertex-
labelling in Chapter 3.

Theorem 4.3. Let (G,W,U) be a maximal split graph with |W | ≥ 4 and d(u) = 1 for
every u ∈ U . Then, G admits a gap-vertex-labelling if and only if there are l ≥ |W | − 3

vertices in W with at least one neighbour in U .
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W U

(a)

W ′ U ′

(b)

Figure 4.2: In (a), a split graph (G,W,U); and in (b), a maximal split of the same
graph (G,W ′, U ′). The cliques and independent sets are highlighted in orange and blue,
respectively.

Proof. Let (G,W,U) as stated in the hypothesis and let r and s denote the sizes of
parts W and U , respectively. Adjust notation of V (G) as follows: let w0, w1, . . . , wr−1 be
the vertices of the clique; and for every wi ∈ W , let uij ∈ U denote the j-th degree-one
vertex adjacent to wi. Figure 4.3 presents a sketch of the defined notation. As examples,
note that w0 is adjacent to two vertices in U , while w1 and wr−2 are adjacent to one vertex
and wr−1, to none.

w0 w1 w2

. . .

wr−2 wr−1

u01 u02 u11 u21 u22 u2j ur−2
1

. . .

Figure 4.3: The defined notation for a maximal split graph (G,W,U).

(⇒) Suppose there are l ≥ |W | − 3 vertices in W with at least one neighbour in U .
Adjust notation so that w0, . . . , wl−1 are these vertices. Then, by our hypothesis, we know
that there are (at most) three vertices, namely wr−1, wr−2 and wr−3, with d(wi) = |W |−1.
In order to prove the result, we define a labelling π of V (G) which induces a proper
colouring cπ of the graph. For every vertex wi ∈ W , assign:
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π(wi) =


22, if i = r − 1;

20, if i = r − 2;

21, otherwise.

Finally, for every uij ∈ U , let π(uij) = 2i+3. Define colouring cπ as usual. We exemplify
this labelling2 for a split graph (G,W,U) in Figure 4.4. In this graph, W ∼= K6 and there
are l = r − 3 degree-one vertices in U adjacent to vertices wi.

31

w0

15

w1

7

w2

3

w3

2

w4

1

w5

2

u01

2

u11

2

u21

21 21 21 21 20 22

23 24 25

Figure 4.4: The gap-vertex-labelling of a maximal split graph (G,W,U).

We show that induced colouring cπ is a proper vertex-colouring of G. We start by
considering vertices uij. Recall that every vertex uij ∈ U has d(uij) = 1 and, therefore,
cπ(uij) = π(wi) = 2 for every 0 ≤ i ≤ r − 4. For vertices ur−3j , ur−2j and ur−1j , when they
exist, their induced colours are 2, 1 and 4, respectively.

Next, we consider the vertices in W . With the exception of wr−2, every vertex wi
in W is adjacent to wr−2, which received label 1. Moreover, note that π(wr−2) = 1 is
the smallest of all labels in ΠV (G). This implies that every wi, i 6= r − 2, has its colour
defined as cπ(wi) = π(v) − π(wr−2), for some v ∈ V (G) − wr−2. Now, consider the first
0 ≤ i < l vertices wi in W which are adjacent to vertices in U and recall that π(wr−1) is
the largest of all labels in ΠW . Since every vertex uij received label π(uij) > π(wr−1) = 4,
we conclude that every such wi has induced colour cπ(wi) = 2i+3 − 1.

It remains to determine the induced colour of the last r − l vertices. If they were not
considered in the previous paragraph, these vertices are wr−1, wr−2 and wr−3. Then, we
have ΠN(wr−3) = {1, 4}, ΠN(wr−2) = {2, 4}, and ΠN(wr−1) = {1, 2}, inducing cπ(wr−i) = i,
i ∈ {1, 2, 3}.

Finally, we show that there are no conflicting vertices in G. Observe that the first l
vertices wi always have an odd induced colour, whereas each of their respective neigh-
bours in U have cπ(uij) = 2. For the last r− l vertices, cπ(wr−i) 6= π(wr−i), which implies

2The reader might have noticed that this labelling assigns only powers of two to the vertices of the
graph. In Section 4.3, we elaborate on this particular decision of labels.
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cπ(wr−i) 6= cπ(ur−ij ) when ur−ij exists. Therefore, there are no conflicting vertices in G

and, consequently, cπ is a proper vertex-colouring of the graph.

(⇐) Conversely, suppose l < r − 3. Then, there are (at least) four vertices in W

whose neighbourhoods are strictly contained in W . Adjust notation so that w1, . . . , wr−l
are these vertices.

Suppose G admits a gap-vertex-labelling (π, cπ) and let wmax and wmin be the vertices
in W with the largest and smallest labels in ΠW , respectively. Consider the case where
{wmax, wmin} 6⊂ {w1, . . . , wr−l}. Then, it follows that w1, . . . , wr−l all receive the same
colour in cπ, induced by π(wmax) − π(wmin). This is a contradiction since, by hypothe-
sis, cπ is a proper vertex-colouring of G. Thus, one (or both) of wmax and wmin are in
set {w1, . . . , wr−l}. In this first moment, we consider wmax ∈ {w1, . . . , wr−l}.

Without loss of generality, let w1 = wmax. Then, if wmin 6∈ {w2, . . . , wr−l}, by a similar
reasoning, we conclude that vertices w2, . . . , wr−l have the same induced colour in cπ.
Therefore, wmin ∈ {w2, . . . , wr−l}. Once again, without loss of generality, we consider
wmin = w2. This implies that cπ(w3) = . . . = cπ(wr−l) = π(w1)− π(w2). Moreover, since
r−l ≥ 4, we know that there are at least two vertices with the same induced colour, which
is a contradiction. We remark that the same conclusion is reached when first considering
wmin ∈ {w1, . . . , wr−l}. Therefore, there is no gap-vertex-labelling (π, cπ) of G and the
result follows.

The family of split graphs has several interesting properties and is widely studied in
Graph Theory. Theorem 4.3 covers only a small subclass of this family. In fact, dur-
ing our research, we encountered several split graphs which admit gap-vertex-labellings.
For example, consider Figure 4.5. In this graph, each vertex in U has degree two. As
demonstrated in the image, this split graph admits a gap-vertex-labelling. However, if we
remove the rightmost vertex in U , the graph resulting from this operation does not admit
a gap-vertex-labelling.

15 30 62 31 60W

24 24 14U

25 22 24 23 21

20 20 26

Figure 4.5: A gap-vertex-labelling of a split graph not covered by Theorem 4.3.

There is still much work to be done regarding gap-vertex-labellings of split graphs.
In this context, it is interesting to establish another infinite family of graphs which does
not admit such a labelling. Due to time constraints, we did not characterize split graphs
that admit gap-vertex-labellings. Also, for graphs in this family which admit gap-vertex-
labellings, it would be interesting to determine their vertex-gap number. We leave these
problems open for future research.
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Problem 4.4. Characterize split graphs that do not admit gap-vertex-labellings.

Problem 4.5. Determine the vertex-gap number of split graphs.

We have successfully established that certain graphs do not admit gap-vertex-labellings.
More importantly, note that both classes considered have complete graphs of n ≥ 4 ver-
tices as subgraphs in their structure. In particular, the split graph in Figure 4.5 shows
that removing a vertex from the graph, in this case, hinders the existence of a gap-vertex-
labelling. This led us to question if, by performing operations to the structure of graphs
that do not admit gap-vertex-labellings, it would be possible to create new graphs which
do admit gap-vertex-labellings. With this in mind, Section 4.2 presents a discussion on
the gap-strength of graphs – a new parameter associated with gap-vertex-labellings.

4.2 The gap-strength of graphs

As mentioned in the previous section, another interesting problem arose from our
discussions on the gap-vertex-labellings of complete and split graphs, which we introduce
here. Consider, for example, complete graph K4 and recall the proof of Theorem 4.2. In
our demonstration, while supposing that a gap-vertex-labelling exists for this graph, we
consider two vertices that are labelled with the maximum and minimum labels in ΠV .
Let us refer to these vertices as vmax and vmin, respectively. Particularly in the case of K4,
the two remaining vertices, say u and v, are adjacent to both vmax and vmin and, more
importantly, to each other. Therefore, in the case of K4, regardless of the labels assigned
to u and v, their induced colours will (always) be cπ(u) = π(vmax)− π(vmin) = cπ(v).

However, what if we were to remove the edge between these two vertices? Then,
although their induced colours would be the same, there would be no conflicting vertices
in the graph. Thus, by removing a single edge from K4, the resulting graph becomes
gap-vertex-labelable. We illustrate this analysis in Figure 4.6.

vmax

u v

vmin vmax

u v

vmin
1 4

2 2

Figure 4.6: Graph K4 and the graph obtained by removing edge uv from K4; to the right,
a gap-[4]-vertex-labelling of the latter.

As another example, consider the graph G obtained by removing an arbitrary edge
from complete graph K5, which is depicted in Figure 4.7. Suppose G admits a gap-
vertex-labelling and let vmax be an arbitrary vertex. Now, if vmin is adjacent to vmax,
as illustrated in Figure 4.7(a), observe that the endpoints of the highlighted edges have
both vmax and vmin in their respective neighbourhoods. This implies that, regardless of the
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labels assigned to these vertices, they all have the same induced colour π(vmax)−π(vmin).
Therefore, vmax and vmin are not adjacent. This second case is illustrated in Figure 4.7(b)
and, once again, the highlighted edges indicate three vertices which have the same induced
colour. Therefore, this graph does not admit a gap-vertex-labelling, which is also the case
for complete graph K5 (see Theorem 4.2).

vmax

vmin

(a)

vmax

vmin

(b)

Figure 4.7: Graph K5 without an edge. In (a), vmax and vmin are adjacent, while this is
not the case in (b).

We conclude that removing a single edge from K5 is not sufficient to create a graph
which admits a gap-vertex-labelling. Alternately, let us remove two edges from K5. There
are two distinct graphs which can be obtained by this operation: the first is obtained by
removing a maximum matching of K5; and the other, by removing two adjacent edges.
These cases are illustrated in figures 4.8(a) and 4.8(b), respectively. Moreover, both
graphs admit gap-vertex-labellings, which are also shown in Figure 4.8.
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3 1

1

1

2

2 4

4

(a)

5

7

8 3

5

1

4

4 9

2

(b)

Figure 4.8: The graphs obtained by: (a) removing a maximal matching of K5; and (b)
removing two adjacent edges. Both graphs admit gap-vertex-labellings.

The removal of one edge from K4 was sufficient for the resulting graph to admit a
gap-vertex-labelling, as was the removal of two edges for complete graph K5. Thus, the
following question arises: what is the least number l of edges that needs to be removed
from complete graph K6 for the resulting graph to admit a gap-vertex-labelling?

By inspecting the graphs obtained by removing one and two edges from K6, we ob-
served that none of these graphs admit a gap-vertex-labelling. (Similarly to K5, this
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conclusion is reached upon analysing the possible combinations of vmax and vmin within
the possible resulting graphs.) However, by removing a perfect matching from K6, we ob-
tain the graph depicted in Figure 4.9, which does, in fact, admit a gap-[4]-vertex-labelling.

1

12

2

4 4

Figure 4.9: Graph K6 with a perfect matching removed (dashed edges), and a gap-[4]-
vertex-labelling of the resulting graph. Vertices in black, orange and violet have induced
colours 1, 2 and 3, respectively.

Before we proceed, let us formally defineG−l as the family of graphs which are obtained
by removing l edges, in any order, from G. As examples: the rightmost graph in Figure 4.6
exemplifies the (only) graph inK−14 ; while both graphs in Figure 4.8 belong toK−25 . Then,
we know that no graph in K−16 or in K−26 admits a gap-vertex-labelling, whereas there
exists a graph in K−36 (see Figure 4.9) which does. It is important to remark that this is
not the case for every graph in K−36 ; for example, the graph obtained by removing three
adjacent edges from K6 is not gap-vertex-labelable.

We were prompted, thus, with the following question: what is the least number l of
edges that must be removed from an arbitrary graph G such that there exists a gap-
vertex-labelable graph in G−l? With this problem in mind, we introduce a new parameter
associated to the gap-vertex-labelling problem. The gap-strength of a graph G is defined
as the least number l for which there exists a graph G′ ∈ G−l such that G′ admits a
gap-vertex-labelling. We denote the gap-strength of G by strgap(G).

We named this parameter using “strength” as the keyword in order to symbolize the
main structure which we believe to be in the heart of every non-gap-vertex-labelable
graph. In this sense, graph K6, for example, is sufficiently strong that the removal of
two edges is not enough to create a gap-vertex-labelable graph. Therefore, graph K6 is
relatively “stronger” than K4, for example, since we require the removal of more edges
from the former in order to create a gap-vertex-labelable graph. Similarly, by comparing
K5 and K6, we conclude that K5 is relatively “weaker”.

In the following sections, we present our findings of the gap-strength of complete
graphs, a family for which we know no graph of order n ≥ 4 admits a gap-vertex-labelling.
We begin by considering a rather restricted substructure in complete graphs; this partic-
ular case is be used to establish bounds for strgap(Kn) in Section 4.2.1. We conclude our
discussion by presenting a dynamic programming algorithm which can be used to obtain
a lower bound for the parameter in Section 4.2.2.



138

4.2.1 A restricted analysis on complete graphs

Before we present the results obtained during our investigation on the gap-strength of
complete graphs, we present a similar problem, also on complete graphs, but with certain
restrictions. This first analysis will be important for our discussions later in this section.

Let Kn be a complete graph of order n ≥ 4. Suppose we wish to remove a number l′

of edges from Kn such that the resulting graph, G, admits a gap-vertex-labelling. We do
this, however, with one restriction: in any gap-vertex-labelling of G, every vertex must be
adjacent to a vertex, vmax, which receives the largest label in ΠV (G). Note that this implies
that vmax remains a universal vertex in G, that is, no edge incident with vmax is removed
from E(G). Now, suppose G admits a gap-vertex-labelling (π, cπ) and let vmin ∈ V (G)

denote a vertex which received the smallest of all labels in ΠV (G). Then, by considering
these restrictions, observe that for every v ∈ V (G)\{vmax, vmin}, either:

(i) vmin ∈ N(v); or

(ii) vmin 6∈ N(v).

Let I and X be the subsets of V (G) which comprise vertices that satisfy cases (i)
and (ii), respectively. Thus, we have created a decomposition of Kn, which we denote by
G(X , I ). Given that we are analysing a restricted case of Kn, we will refer to G(X , I ) as a
restricted decomposition of Kn; the general decomposition is studied in Section 4.2.2. We
illustrate a sketch of this restricted decomposition in Figure 4.10 for complete graph K15.

vmax

vmin

X

I

Figure 4.10: A restricted decomposition G(X , I ) of K15. The green areas symbolize the
edges connecting vmax and vmin to vertices in sets X and/or I . The orange areas indicate
that there may be edges connecting vertices in X and I . Note that there are no edges
connecting vmin to vertices in X ; also we have omitted the edges in sets X and I .

Let x = |X | and i = |I | denote the size of each set. Thus, we are able to rewrite the
order of complete graph Kn as n = x+i+2. Also, we remark that there are n−1 different
restricted decompositions of Kn – one for each distinct combination of x and i whose sum
equals n− 2. In order to help the reader better understand this concept, consider, as an
example, complete graph K5. The n−1 = 4 possible restricted decompositions of K5 are:

1. x = 3 and i = 0;

2. x = 2 and i = 1;



139

3. x = 1 and i = 2; and

4. x = 0 and i = 3.

Suppose we decompose K5 according to item 2, that is, sets X and I have x = 2 and
i = 1 vertices, respectively. This case is illustrated in Figure 4.11. In this image, we
have assigned labels to the vertices of G such that, by the definitions of vmax and vmin,
b ≤ c, d, e ≤ a.

X

I

vmax

vmin

a

b

c

d

e

Figure 4.11: A decomposition G(X , I ) of complete graph K5, with x = 2 and i = 1.

In order to create this graph from K5, we require the removal of l′ = 2 edges, which
connect vmin to the vertices in X . The removed edges are illustrated in Figure 4.11 by
the dashed, red lines. This restricted decomposition G(X , I ) does, in fact, admit a gap-
vertex-labelling: assign3 a = 24, b = 20, c = 21 and d = 22 and e = 23. The reader
can inspect this labelling to see that the colouring induced by these labels is a proper
vertex-colouring of the graph.

Without taking into account vertices vmax and vmin, the assignment of labels c, d and e
is rather unique. In the labelling from the previous paragraph, we have c < d < e. If,
however, label e assigned to the vertex in I were to be strictly smaller than both c and d,
we would have both vertices in X with the same induced colour a− e. This implies that,
in order for this graph, with this new labelling, to admit a gap-vertex-labelling, another
edge would have to be removed – either the edge connecting the conflicting vertices in X
or one edge connecting a vertex in X to the vertex in I . If this were the case, we would
have the removal of l′ = 3.

In the context of determining the least number l′ of edges to be removed from a
complete graph, this particular labelling does not interest us. However, it proves that
we cannot simply disconsider that there may be edges removed within sets X and I , or
even between them. Then, for a decomposition G(X , I ) of complete graph Kn, n ≥ 4, let
us define: R X as the number of edges removed within set X ; R I , defined analogously for
set I ; and, finally, let R ′ be the number of edges removed between the two sets. Then, the
total number of edges l′ that are removed from complete graph Kn such that the resulting
graph G admits a gap-vertex-labelling can be written as

l′ = x+ R I + R X + R ′. (4.1)

3Here, we are using only powers of two for the labels of G. This is done in accordance with Lemma 4.12,
which is presented in Section 4.3.



140

As another example, consider the two decompositions of complete graph K7 in Fig-
ure 4.12. In subfigure (a), the sets in the decomposition have sizes x = 2 and i = 3. First,
consider set I and recall that, by definition, every vertex vi ∈ I has vmax, vmin ∈ N(vi).
This implies that every vi has the same induced colour cπ(v) = π(vmax)−π(vmin) = a− b.
If G is to admit a gap-vertex-labelling in this decomposition, then every edge connecting
vertices in I must also be removed. This directly implies that I is an independent set in
any decomposition of Kn. Consequently, the number of edges removed in I is R I =

(
i
2

)
.

vmax

vmin

x1

x2

i1

i2

i3

a

b

c

d

e

f

g

(a)

vmax

vmin

x1

x2

x3

i1

i2

a

b

c

d

e

f

g

(b)

Figure 4.12: Decomposition of K7 into sets X and I , of sizes: (a) 2 and 3; and (b) 3 and 2.

Next, consider Figure 4.12(b), which depicts a decomposition G(X , I ) of K7 in which
x = 3 and i = 2. We turn the readers attention to set X , remarking that this set contains
three vertices that are not adjacent to vmin. This implies that they have their colours
induced by π(vmax) and π(w) for some other w ∈ V (G) − vmin. Notice that in order for
this decomposition to admit a gap-vertex-labelling, we require the removal of (at least)
one other edge inside set X . We clarify this statement in the following paragraph.

Let v′min be the vertex with the smallest label in V (G) − vmin. (We remark that the
subgraph induced by these vertices is also a complete graph since all edges removed so
far were incident with vmin.) Suppose v′min ∈ I . This implies that every vertex in X has
induced colour π(vmax) − π(v′min). Then, since these vertices have conflicting colours, a
number l′′ ≥ 1 of edges must be removed from G, either within set X or between the two
sets. Conversely, suppose v′min ∈ X . In this case, observe that, by assuming c < e, d in
Figure 4.12(b), we have v′min = x1. Then, removing edge x1x2 is necessary for the graph to
be gap-vertex-labelable. In fact, by defining a = 23, b = 20, c = 21, d = e = f = g = 22,
we induce a proper vertex-colouring of the graph.

We conclude that, for this particular graph, the least number of edges removed within
set X is R X = 1 and, thus, the least number of edges removed from K7 for this decom-
position to admit a gap-vertex-labelling is l′ = 5. More importantly, we remark that by
removing edge x1x2 and considering the above labelling, every vertex vx ∈ X has its colour
induced either by:

1. cπ(vmax)− cπ(v′min), which is the case of x3; or

2. cπ(vmax)− cπ(w′), for some other w′ ∈ X + vmax − v′min.

Note that the vertices satisfying item 1 form an independent set I ′ ⊂ X , while vertices
satisfying item 2 create a new set X ′ in which every vertex is adjacent to vmax. Thus,
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if x ≥ 3, we have the exact same premise upon which a restricted decomposition of
the original graph Kn was built: a (new) complete graph of order n′ ≥ 4, which is the
subgraph induced by X + vmax, for which we require the removal of l′′ edges such that the
resulting graph is gap-vertex-labelable.

To summarize, the previous paragraphs state that in order for a decomposition G(X , I )

of a complete graph Kn, n ≥ 4, to admit a gap-vertex-labelling, if x ≥ 3, then there
exists a complete subgraph G′, induced by X + vmax, from which we also need to remove
edges. Furthermore, the removal of these edges can be done by decomposing G′ into new
subsets X ′ and I ′.

This implies that the number of edges removed from Kn to create a gap-vertex-
labelable graph G can be computed recursively. For every combination (x, i) whose sum
is x + i = n − 2, when x ≥ 3, we compute the number of edges removed in subproblem
X +vmax and take this value into account. Now, it is possible to establish a formula which
determines the least number l′(n) of edges that are required to be removed from Kn in or-
der to create a decomposition which admits a gap-vertex-labelling. Note that when n ≤ 3,
by Theorem 4.2, Kn admits a gap-vertex-labelling. This is the base for our recursion.

l′(n) =

0, if n ≤ 3;

min
x+i=n−2

{x+ i(i−1)
2

+ R X + R ′}, otherwise.
(4.2)

In our research, we focused on establishing bounds for the gap-strength of complete
graphs; the same holds for this restricted case. In the pursuit of a lower bound for l′(n),
we consider the least number of edges whose removal is mandatory in order to create a
decomposition G(X , I ). Thus, we assume that there are no edges removed between sets X
and I , that is, R ′ = 0. Then, we have

l′(n) ≥ min
x+i=n−2

{x+
i(i− 1)

2
+ l′(x+ 1)}. (4.3)

Notice that we have replaced R X , from equation (4.2), with l′(x + 1) to account for
the recursive decomposition of G′ = G[X + vmax]. With equations (4.2) and (4.3) in
mind, we designed a dynamic programming algorithm that computes a lower bound for
the least number l′(n) of edges that need to be removed from a complete graph Kn such
that the resulting graph admits a gap-vertex-labelling. The pseudocode is presented in
Algorithm 1.

Line 1 of Algorithm 1 establishes the base case n ≤ 3. For each value j ≤ n, we consider
the j−1 possible combinations of values x and i whose sum is j−2; these values represent
the sizes of sets X and I in different restricted decompositions of each Kj, respectively.
Then, in each of these restricted decompositions, it calculates the least number l′(j) of
edges required to be removed from Kj. This value is stored in the two-dimensional array
Current_Sol. When x ≥ 3, the recursive subproblem arises in set X , as discussed in the
previous paragraphs. Therefore, in Line 8, we consider the best computed solution for
the complete graph of order x+ 1. Line 11 stores the desired lower bound for each Kj in
array Restr_Solution.
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Algorithm 1 Given the order of a complete graph Kn, computes a lower bound for l′(n),
the least number of edges that must be removed to create a restricted decomposition
G(X , I ).
1: Restr_Solution[1], Restr_Solution[2], Restr_Solution[3]← 0

2: for j ← 4 to n do
3: Restr_Solution[j]←∞
4: for i← 0 to n− 2 do
5: x← j − 2− i
6: Current_Sol[j][i]← x+ i(i−1)

2

7: if x ≥ 3 then
8: Current_Sol[j][i]← Current_Sol[j][i] + Restr_Solution[x+ 1]
9: end if

10: if Current_Sol[j][i] < Restr_Solution[j] then
11: Restr_Solution[j]← Current_Sol[j][i]
12: end if
13: end for
14: end for

15: return Restr_Solution[n]

In Figure 4.13, we show the calculated results for l′(n) for each value of n < 900 in
subfigure (a), and subfigure (b) shows the value of l′(n)

n
√
n
for each n.
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(b)

Figure 4.13: Results from the execution of Algorithm 1 for Kn, n < 900.

We draw the readers attention to the graph in Figure 4.13(b), remarking that it is
possible to observe that for increasing values of n, the bound for l′(n) grows at a smaller
rate when divided by n

√
n. We use this observation to state the following conjecture.

Conjecture 4.6. Let Kn be a complete graph. Then,

strgap(Kn) ∈ Ω(n
√
n).
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By performing small modifications to Algorithm 1, we stored the sizes of sets X and I
for each value of n. This was done to observe if any patterns emerged when considering
the calculated values of x and i that lead to the desired lower bound. In the next section,
we use these observations to create restricted decompositions of complete graphs, thus
establishing an upper bound for l′(n).

An upper bound for l′(n)

In a modification of Algorithm 1, we stored the values of x and i of an optimal decom-
position of Kn in an array. In Table 4.1, we present some values obtained for the sizes of
these sets. By observing these results, we noticed a certain pattern in the decompositions
of Kn for growing values of n.

n x i n x i
4 1 1 13 8 3
5 2 1 14 9 3
6 2 2 15 9 4
7 3 2 16 10 4
8 4 2 17 11 4
9 5 2 18 12 4
10 5 3 19 13 4
11 6 3 20 14 4
12 7 3 21 14 5

Table 4.1: Sizes of sets X and I in optimal restricted decompositions of Kn.

Motivated by these observations, we designed a decomposition of Kn into sets X and I
and, more importantly, created a gap-vertex-labelling of the resulting graph. Since we
are determining the sizes of each part in the decomposition, we are able to establish an
upper bound for l′(n). This result is presented in Theorem 4.7.

Theorem 4.7. Let Kn be a complete graph. Then,

strgap(Kn) ∈ O(n
√
n).

Proof. Let Kn be a complete graph of order n ≥ 4. We create a restricted decomposi-
tion G(X , I ) of Kn by a recursive process. Each iteration j in our construction will parti-
tion the (current) vertex set of a complete graph, Vj, into sets Xj and Ij. Let vmax be an
arbitrary vertex inKn. In the first iteration j = 1, we have n1 = n and V1 = V (Kn)−vmax.
For the j-th iteration of the construction, partition Vj into:

• an arbitrary vertex vjmin;

• set Ij of size ij = b√njc; and

• set X of size xj = nj − ij − 2.
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vmax

v1min

X1

I1

(a) j = 1;n1 = 15; i1 = 3;x1 = 10.

X1
X2

vmax

v1min

v2min

I1

I2

(b) j = 2;n2 = 11; i2 = 3;x2 = 6.

X1
X2 X3 X4

vmax

v1min

v2min

v3min

v4min

I1

I2

I3

I4

(c) j = 4;n4 = 4; i4 = 1;x4 = 1.

Figure 4.14: Decomposition process for K15. Gray areas symbolize all edges connecting
vertices in different sets. Observe that no vjmin is adjacent to vertices in Vj+1.

If xj ≥ 3, define nj+1 = xj + 1, Vj+1 = Xj and continue on iteration j + 1. Otherwise,
we end our construction. In Figure 4.14 we exemplify the first, second and last iterations
of our recursive process for complete graph K15.

Next, we assign labels to each vertex of V (G) as follows. Assign: π(vmax) = 2n−1;
π(vjmin) = 2j−1 for every j ≥ 1; π(v) = 2n−2 for every v ∈ Ij, j ≥ 1. It remains to assign
labels to the vertices in Xj′ of the last iteration j′. We remark that this set has either
one or two vertices, by construction. Now, if xj′ = 1, assign label 2j

′ to that vertex.
Otherwise, there are exactly two vertices in Xj′ , and we assign labels 2j

′ and 2j
′+1 to

these vertices, in any order. Colouring cπ is defined as usual. In Figure 4.15, we exhibit
a different representation of our restricted decomposition obtained from K15. We also
show our gap-vertex-labelling (π, cπ). For this graph, our construction executes j′ = 4

iterations. In the image, vertices vj belong to set Ij and vertex vx is the singular vertex
in X4. The removed edges are displayed as red, dashed lines between vertices.

Let f ′(n) denote the number of edges removed in our construction. In order to com-
plete the proof, we have to show: that colouring cπ is a proper vertex-colouring of G;
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Induced colours
x 213 − 20 = 8.191

x 214 − 213 = 8.192

x

214 − 23 = 16.376

x

214 − 22 = 16.384x

214 − 21 = 16.382

x

214 − 20 = 16.383

Figure 4.15: Graph G obtained by our decomposition of K15, accompanied with the
gap-vertex-labelling described in the text. The value i in each box next to the vertices
corresponds to the label 2i assigned to that vertex. The induced colours are discriminated
in the table to the right of the graph.

and we removed f ′(n) ∈ O(n
√
n) edges from Kn. We start by showing the former. First,

we draw the readers attention to the labels assigned to the vertices of G. The label set
used in π is4 {20, 21, . . . , 2j

′
, 2j

′+1, 2n−2, 2n−1}, where j′ denotes the last iteration of the
recursive construction. Moreover, with the exception of 2n−2, i.e. the label assigned to
vertices v ∈ Ij, j ≥ 1, every label in the set is assigned to exactly one vertex. Now,
consider vmax and observe that, since vmax is a universal vertex, the largest and smallest
labels in ΠN(vmax) are the largest and smallest label in ΠV (G)−vmax , namely 2n−2 and 20.
We conclude that cπ(vmax) = 2n−2 − 1.

Next, we consider the vertices in each set Ij, referring to these vertices as vj. Recall
that, by construction, each Ij is an independent set. Also, every vj is adjacent to vmax,
which received label 2n−1. When j = 1, we have vmax, v

1
min ∈ N(v1), which induces

cπ(v1) = 2n−1 − 20. Hence, cπ(v1) 6= cπ(vmax). For every j ≥ 2, recall that vertices in Ij
are not adjacent to any vlmin, l < j, since Ij ∈ Xj−1. Moreover, π(vjmin) < π(vj+lmin) for all
j + l ≤ j′. Therefore, the smallest label in ΠN(vj) is the label assigned to vjmin, and we
conclude that cπ(vj) = 2n−1 − 2j−1 for every vj ∈ Ij. With the exception of j = 1, which
we mention in the beginning of the paragraph, we conclude that cπ(vj) is always an even

4We remark that label 2j
′

only belongs in this set if xj′ = 2 in part Xj′ of the last iteration j′.
Otherwise, the label set is {20, 21, . . . , 2j′ , 2n−2, 2n−1}.
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number. Therefore, cπ(vj) 6= cπ(vmax) since cπ(vmax) is always odd.
Now, consider the vertices in Xj′ . As previously stated, this set has either one or two

vertices. First, suppose |Xj′ | = 1, and let vx be the vertex in this set. By construction, vx
is adjacent to: vmax, which received label 2n−1; to every vj ∈ Ij, 1 ≤ j ≤ j′, all of which
received label 2n−2; and no other vertex. This implies that cπ(vx) = 2n−1 − 2n−2. Thus,
cπ(vx) 6= cπ(w) for every w ∈ N(vx). Conversely, suppose |Xj′| = 2, and let vx and v′x
be the two vertices in Xj′ . Also, recall that vx and v′x received labels 2j and 2j

′+1, in
any order. Without loss of generality, let π(vx) = 2j

′ . Now, since π(vx) < π(v′x) < π(w)

for every other w ∈ N(vx) and w ∈ N(v′x), it follows that cπ(vx) = 2n−1 − 2j
′+1 and

cπ(v′x) = 2n−1 − 2j
′ . This, in turn, implies that cπ(vx) 6= cπ(v′x) and, moreover, that these

induced colours do not conflict with that of the vertices in their respective neighbourhoods.
Lastly, we consider the induced colours of vertices vjmin. For every 1 ≤ j < j′, we

remark that N(vjmin) consists only of vmax and vertices vj ∈ Ij; these vertices received
labels 2n−1 and 2n−2, respectively. Then, we conclude that every vjmin has colour cπ(vjmin) =

2n−1 − 2n−2 = 2n−2. It follows that cπ(vjmin) 6= cπ(vmax). It is important to remark that
the number of iterations j′ < n − 1 and, therefore, cπ(vmin) 6= cπ(vj) for all vj ∈ Ij. We
conclude that there are no conflicting vertices in G and, consequently, that cπ is a proper
vertex-colouring of the graph.

Thus, it remains to prove that our construction removes f ′(n) ∈ O(n
√
n) from Kn.

Equivalently, we show that f ′(n) ≤ 3n
√
n, for n ∈ N. We prove this result by (strong)

induction on n. When n ≤ 3, the inequality naturally holds since f ′(n) = 0. Now, suppose
f ′(n − 1) ≤ 3(n − 1)

√
n− 1 for every n ≥ 1. Let us consider the number f ′(n) of edges

removed from Kn. By construction, we have

f ′(n) = x+

(
i

2

)
+ f ′(x+ 1)

= n− b
√
nc − 2 +

b
√
nc(b
√
nc − 1)

2
+ f ′(n− b

√
nc − 1). (4.4)

We want to prove that f ′(n) ≤ 3n
√
n. First note that n − b

√
nc − 1 < n. Then, by

our hypothesis, we know that f ′(n− b
√
nc − 1) ≤ 3(n− b

√
nc − 1)

√
n− b

√
nc − 1, and

we can rewrite equation (4.4) as

f ′(n) ≤ n− b
√
nc − 2 +

b
√
nc(b
√
nc − 1)

2
+ 3(n− b

√
nc − 1)

√
n− b

√
nc − 1.

Now, since
√
n− 1 ≤ b

√
nc ≤

√
n, we have

f ′(n) ≤ n− (b
√
nc − 1)− 1 +

b
√
nc(b
√
nc − 1)

2
+ 3(n− (b

√
nc − 1))

√
n− (b

√
nc − 1)

≤ 3

2
(n−

√
n)− 1 + 3(n−

√
n)

√
n−
√
n

≤ 3

2
(n−

√
n)− 3

√
n

√
n−
√
n+ 3n

√
n−
√
n. (4.5)

We draw the readers attention to the rightmost part of equation (4.5), remarking that
3n
√
n−
√
n ≤ 3n

√
n for n ≥ 1. Therefore, if 3

2
(n −

√
n) − 3

√
n
√
n−
√
n ≤ 0, then the
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desired result holds. For the sake of contradiction, suppose the contrary:

3

2
(n−

√
n)− 3

√
n

√
n−
√
n > 0 ⇐⇒ 3

2
(n−

√
n) > 3

√
n

√
n−
√
n

⇐⇒ n−
√
n > 2

√
n

√
n−
√
n

⇐⇒ n2 − 2n
√
n+ n > 4n(n−

√
n)

⇐⇒ 3n2 − 2n
√
n− n < 0. (4.6)

Since n ≥ 1, we can divide equation (4.6) by n, obtaining 3n − 2
√
n − 1 ≤ 0. This

inequality is only satisfied when 0 ≤ n < 1. However, since we are considering only n ≥ 1,
we conclude that

3

2
(n−

√
n)− 3

√
n

√
n−
√
n ≤ 0

3

2
(n−

√
n)− 1− 3

√
n

√
n−
√
n+ 3n

√
n−
√
n ≤ 3n

√
n

f ′(n) ≤ 3n
√
n.

This completes the proof.

4.2.2 Bounds for strgap(Kn)

We now return to analysing the gap-strength of complete graphs Kn. In the previous
section, we use restricted decompositions to remove certain edges from Kn such that the
resulting graph is gap-vertex-labelable. Here, we create a decomposition without the
restrictions in the previous section.

Let Kn be a complete graph of order n, and let G ∈ K−ln be a graph obtained by
removing l edges from Kn such that G is gap-vertex-labelable. Let (π, cπ) be a gap-
vertex-labelling of G and let vmax and vmin be two distinct arbitrary vertices in G which
received the highest and lowest labels in ΠV (G), respectively. Then, for every vertex
v ∈ V (G)\{vmax, vmin}, either:

(i) vmax, vmin ∈ N(v);

(ii) vmax ∈ N(v) and vmin 6∈ N(v); or, alternately

(iii) vmax 6∈ N(v) and vmin ∈ N(v); and, finally,

(iv) vmax, vmin 6∈ N(v).

We define sets I ,X ,Y , and Z as the subsets of V (Kn) comprising, respectively, the
vertices that satisfy cases (i), (ii), (iii) and (iv). Note that sets X and I are defined exactly
as in the previous section. Furthermore, set Y can be seen as symmetric to set X in the
sense that every vertex vx ∈ X is adjacent to vmax (and not vmin), whereas every vy ∈ Y ,
to vmin (and not vmax). This (new) decomposition of G is denoted by G(X ,Y ,Z, I ). In
Figure 4.16, we present a sketch of this decomposition.
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vmax

vmin

X

Y

ZI

Figure 4.16: The decomposition G(X ,Y ,Z, I ) of graph G, with each subset of V . The
gray areas indicate all edges connecting vertices in distinct sets.

Let i = |I |, x = |X |, y = |Y | and z = |Z| denote the size of each set in a decomposition
of G. Then, in G(X ,Y ,Z, I ), we can write the order of G as n = x+ y + z + i+ 2. Also,
observe that to obtain such a decomposition of G, it is required to remove at least: x
edges connecting vmin to vertices in X ; y edges connecting vmax to vertices in Y ; and 2z

edges connecting vertices in Z to vmax and vmin. Then, we can write l(n) as a function of
x, y, z and i as follows:

l(n) = x+ y + 2z + R ′ + R X + R Y + R Z + R I . (4.7)

Similar to the previous section, in equation (4.7), R ′ denotes the number of edges
removed between two distinct sets and R S denotes the number of edges removed inside set
S ∈ {X , . . . , I} of a decomposition of G. Thus, the gap-strength of a complete graph Kn

can be determined by the following modification to the equation:

strgap(Kn) = min
x,y,z,i∈Z≥0

{x+ y + 2z + R ′ + R X + R Y + R Z + R I}. (4.8)

It is important to remark that a decomposition of Kn in which Y and Z are empty is
equivalent to a restricted decomposition of G, for which we established an upper bound
in the previous section. Also, notice that R ′ ≥ 0. In the context of establishing lower
bounds for the gap-strength of complete graphs, we omit this value in equations herein.

Now, consider set I . Analogously to the restricted case, every vertex in vi ∈ I has
vertices vmax and vmin in N(vi). This implies that every such vi has the same induced
colour cπ(vi) = π(vmax) − π(vmin). This, in turn, implies that no two vertices in I are
adjacent and, once again, I is an independent set. Thus, the number of removed edges
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from within set I is:

R I =

(
i

2

)
=
i(i− 1)

2
. (4.9)

Next, consider set X . Every vx ∈ X is, by definition, adjacent to vmax, i.e. the vertex
which received the largest of all labels in ΠV (G). Observe that a similar reasoning can
be applied here as to that of Section 4.2.1. In the restricted decomposition of Kn, when
x ≥ 3, we required the removal of edges within set X in order for the graph to be gap-
vertex-labelable. This removal was done considering the same problem recursively within
set X . Here, a similar reasoning applies: we can recursively decompose the complete
subgraph induced by set X and vmax into sets X ′, . . . , I ′. Moreover, since no edge can be
removed connecting vertices in X to vmax, then sets Y ′ and Z′ are empty. Then, in order
to determine R X , we consider the restricted decomposition of set X and, by modifying
equation (4.7), we obtain

l(n) ≥ x+ y + 2z +
i(i− 1)

2
+ l′(x+ 1) + R Y + R Z. (4.10)

Now, regarding set Y , observe that in order to determine R Y , we can apply a symmetric
reasoning to that of set X . Every vertex vy ∈ Y is adjacent to vmin, but not vmax. Let
v′max ∈ Y be a vertex such that π(v′max) is the largest of all labels in ΠY . Supposing a gap-
vertex-labelling exists, the edges removed within Y are such that for every vy ∈ Y + vmin,
either v′max ∈ N(vy) or v′max 6∈ N(vy). By considering these cases, we create two subsets I ′

and Y ′. Moreover, if y ≥ 3, then the subgraph induced by Y + vmin is also a complete
graph of order n′ ≥ 4, which we can recursively decompose in a restricted manner. Hence,
we conclude that

R Y ≥ l′(y + 1). (4.11)

It remains to consider set Z, a set in which every vertex is not adjacent to vmax nor vmin.
Since we are considering that no edges have been removed connecting distinct sets in the
decomposition, every vertex vz has N(vz) = V (G)\{vmax, vmin}. If z ≥ 4, we have a
complete subgraph induced by the vertices in Z alone. This subgraph also requires the
removal of edges in order for G to be properly labelled. Moreover, this can be done by
decomposing the complete subgraph G[Z] into new sets X ′, . . . , I ′. Then, in the context
of establishing a lower bound for strgap(Kn), when z ≥ 4, we know that

R Z ≥ l(z). (4.12)

Applying these bounds to equation (4.10), we obtain the following recurrence:

l(n) ≥

0, if n ≤ 3;

min
x,y,z,i∈Z≥0

{x+ y + i(i−1)
2

+ l′(x+ 1) + l′(y + 1) + l(z)}, otherwise.
(4.13)

As was done in the restricted case, we designed a dynamic programming algorithm
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which calculates a lower bound for l(n); this algorithm is presented in Algorithm 2.

Algorithm 2 Given the order of a complete graph Kn and Restr_Solution, computes
a lower bound for l(n) – the least number of edges that must be removed to create a
decomposition G(X ,Y ,Z, I ).
1: Gen_Solution[1], Gen_Solution[2], Gen_Solution[3]← 0

2: for j ← 4 to n do
3: Gen_Solution[j]←∞
4: for i← 0 to n− 2 do
5: for z ← 0 to n− 2− i do
6: for y ← 0 to n− 2− i− z do
7: x→ n− 2− i− z − y
8: Cur_Sol[j][i][z][y]← x+ y + 2z + i(i−1)

2

9: if x ≥ 3 then
10: Cur_Sol[j][i][z][y]← Cur_Sol[j][i][z][y] + Restr_Solution[x+ 1]
11: end if
12: if y ≥ 3 then
13: Cur_Sol[j][i][z][y]← Cur_Sol[j][i][z][y] + Restr_Solution[y + 1]
14: end if
15: if z ≥ 4 then
16: Cur_Sol[j][i][z][y]← Cur_Sol[j][i][z][y] + Gen_Solution[z]
17: end if

18: if Cur_Sol[j][i][z][y] < Gen_Solution[j] then
19: Gen_Solution[j]← Cur_Sol[j][i][z][y]
20: end if
21: end for
22: end for
23: end for
24: end for

25: return Gen_Solution[n]

Note that Algorithm 2 uses the lower bounds for l′(n) calculated by Algorithm 1 from
the previous section. We consider that these values are stored in the array Restr_Solution.
We coded this algorithm in C++ and calculated the lower bound for l(n) for values of
n ≤ 210. The results from the execution are presented in Figure 4.17.

We draw the readers attention to subfigure (b), in which the computed value for the
lower bound of l(n) is divided by n

√
n, as was done in the restricted decomposition.

Observe that for growing values of n, the graph remains (relatively) constant. This graph
provides evidence that l(n) has asymptotic growth equal to that of n

√
n. With this in

mind, we conjecture that n
√
n is a lower bound to l(n) and, consequently, the gap-strength

of complete graphs.

Conjecture 4.8. Let Kn be a complete graph of order n ≥ 4. Then,

strgap(Kn) ∈ Ω(n
√
n).
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Figure 4.17: Results for: (a) l(n); and (b) l(n)
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Thus, we conclude our preliminary study of the gap-strength of complete graphs. For
future work, it would be interesting to determine the exact formula which calculates the
least numbers of edges l′(n) and l(n) that need to be removed from complete graph Kn

in order to obtain gap-vertex-labelable restricted and general decompositions. Also: to
investigate the gap-strength of other families of graphs which do not admit gap-vertex-
labellings, such as the subclass of split graphs presented in Section 4.1. We leave these
problems open for future research.

Problem 4.9. Determine the gap-strength of Kn as a function of n.

4.3 An algorithm for Gvl

Until this point in our work, our studies on gap-vertex-labellings revolved around discover-
ing families for which we know the least number k of labels required to create proper gap-
labellings (Chapter 3), investigating graphs which do not admit any gap-vertex-labelling
(Section 4.1), or that require a modification in their structure in order for them to be-
come gap-vertex-labelable (Section 4.2). In this final section of our work, we address a
fundamental question regarding gap-vertex-labellings, proposed by Dehghan et al. [8].

Problem 4.10 (Dehghan et al.). Does there exist a polynomial-time algorithm to deter-
mine whether a given graph admits a gap-vertex-labelling?

In Section 4.1, we named the decision problem of determining whether a given graph G
admits a gap-vertex-labelling as Gvl. Here, we determine structural properties of gap-
vertex-labellings which enable us to create an algorithm that executes in O(n!) to solve
Gvl. This is the first algorithm that solves Dehghan et al.’s decision problem. Before
we establish this result, we require the proof of the following lemma.

Lemma 4.11. Let G be a connected simple graph. Then, G admits a gap-vertex-labelling
(π, cπ) if and only if G admits a gap-vertex-labelling (π′, cπ′) such that for every pair of
distinct vertices u, v ∈ V (G), π′(u) 6= π′(v).
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Proof. Let G = (V,E) be a connected simple graph of order n and suppose G admits a
gap-vertex-labelling (π, cπ). Note that if every vertex has a distinct label in π, then the
sufficient condition naturally holds. Therefore, in order to prove the result, it suffices to
show the necessary condition.

(⇒) Adjust notation of V as {v0, . . . , vn−1}, such that π(v0) ≤ π(v1) ≤ . . . ≤ π(vn−1).
Define labelling π′ of G as follows: for every vertex vi ∈ V (G), let π′(vi) = π(vi) · 2n+ i.
Colouring cπ′ is defined as usual.

First, we prove that π′ is a labelling of G such that each vertex received a distinct
label. Suppose, for the sake of contradiction, that π′(vi) = π′(vj) for two distinct vertices
vi, vj ∈ V . Without loss of generality, we assume i < j.

π′(vi) = π′(vj)⇒ [π(vi)− π(vj)] · 2n = j − i

Since i < j, the right side of the equation is always larger than 0. However, we know
that π(vi) ≤ π(vj) by the defined notation, which implies that the left side of the equation
is always a nonnegative number. Therefore, there are no values for i and j which satisfy
the equation, and we conclude that π′ is a labelling of G in which every vertex is assigned
a distinct label. Furthermore, it is important to remark that π′ is defined as an order
preserving function of π. This means that if π′(vi) < π′(vj) for two vertices vi, vj ∈ V (G),
then π(vi) ≤ π(vj) in the first gap-vertex-labelling (π, cπ).

Next, we prove that colouring cπ′ is a proper vertex-colouring of G by contradiction.
Suppose there are two adjacent vertices vi, vj ∈ V such that cπ′(vi) = cπ′(vj). Since the
colour of a vertex is induced differently for vertices v with d(v) = 1 and d(v) ≥ 2, we
must address two cases: (i) if d(vi) ≥ 2 and d(vj) ≥ 2; and (ii) if d(vi) ≥ 2 and d(vj) = 1.
The case d(vi) = d(vj) = 1 implies that G ∼= K2, which can be inspected.

Case (i). d(vi) ≥ 2 and d(vj) ≥ 2.
Let va and vb be the neighbours of vi such that cπ′(vi) = π′(va) − π′(vb), and vx and vy,
the neighbours of vj such that cπ′(vj) = π′(vx)− π′(vy). Note that not necessarily a 6= x,
a 6= y or b 6= y. We express the equality as

cπ′(vi) = cπ′(vj)⇒ π′(va)− π′(vb) = π′(vx)− π′(vy)
⇒ (π(va)− π(vb)− π(vx) + π(vy)) · 2n = x− y − a+ b. (4.14)

Since 1 ≤ a, b, x, y ≤ n, we have |x−y−a+b| < 2n. From the left side of equation (4.14),
we consider two subcases: if |π(va) − π(vb) − π(vx) + π(vy)| ≥ 1; and if π(va) − π(vb) −
π(vx) + π(vy) = 0. In the former, we have

|(π(va)− π(vb)− π(vx) + π(vy))| ≥ 1⇒ |(π(va)− π(vb)− π(vx) + π(vy)) · 2n| ≥ 2n.

Since there are no values for a, b, x, y for which |x− y − a+ b| ≥ 2n, this case cannot
be satisfied. Therefore, the equality can only hold in the latter. However, this implies

π(va)− π(vb)− π(vx) + π(vy) = 0⇒ π(va)− π(vb) = π(vx)− π(vy). (4.15)
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Since π′ is order preserving, if va and vb are the vertices that define colour cπ′(vi),
then cπ(vi) is computed by π(va)− π(vb). An analogous reasoning holds for vj. Then, we
have π(va)− π(vb) = cπ(vi) and π(vx)− π(vy) = cπ(vj), implying that cπ(vi) = cπ(vj) by
equation (4.15). This contradicts the fact that (π, cπ) is a gap-vertex-labelling of G, and
we conclude that there are no such vertices vi and vj with the same induced colour.

Case (ii). d(vi) ≥ 2 and d(vj) = 1.
Once again, let: va and vb be the neighbours of vi such that cπ′(vi) = π′(va)−π′(vb); and,
since d(vj) = 1 and vj is adjacent to vi, vj has its colour induced by cπ′(vj) = π′(vi).

cπ′(vi) = cπ′(vj)⇒ π′(va)− π′(vb) = π′(vi)

⇒ (π(va)− π(vb)− π(vi)) · 2n = i− a+ b. (4.16)

Following the same line of reasoning as Case (i), notice that the right side of equa-
tion (4.16) is strictly smaller than 2n. Now, if |π(va) − π(vb) − π(vi)| > 1, then the left
side is strictly larger than 2n and, thus, the equation cannot be satisfied. This implies
that the equation only holds when π(va) − π(vb) − π(vi) = 0. Once again, given that π′

is order preserving, we have

π(va)− π(vb) = π(vi)⇒ cπ(vi) = cπ(vj).

This is a contradiction since cπ is a proper vertex-colouring of G. Since all cases
have been considered, we conclude that there are no two adjacent vertices vi and vj with
cπ′(vi) = cπ′(vj). Consequently, (π′, cπ′) is a gap-vertex-labelling of G in which every
vertex receives a distinct label. This completes the proof.

Observe that with Lemma 4.11 established, we can safely assume that if a graph admits
a gap-vertex-labelling, then there are exactly two vertices which received the maximum
and minimum labels. Moreover, it allows us to also assume that all labels are distinct.
Thus, we are able to prove another (stronger) result about graphs which admit gap-vertex-
labellings.

Lemma 4.12. Let G be a connected simple graph. Then, G admits a gap-vertex-labelling
(π, cπ) if and only if G admits a gap-vertex-labelling (π′, cπ′) in which all vertex labels are
distinct powers of two.

Proof. Let G be a connected simple graph of order n, and suppose G admits a gap-vertex-
labelling (π, cπ). By Lemma 4.11, we can safely assume that π(u) 6= π(v) for every pair
of distinct vertices u, v ∈ V (G). As was the case in the previous proof, the sufficient
condition naturally holds: if G admits a gap-vertex-labelling in which all vertex-labels
are distinct powers of two, then G admits a gap-vertex-labelling. Therefore, in order to
establish the result, it remains to prove the necessary condition.

(⇒) First, adjust notation of V (G) as v0, . . . , vn−1 such that π(v0) < . . . < π(vn−1).
Define a new labelling π′ of G as follows. For every v ∈ V (G), let π′(v) = 2π(v). Define
colouring cπ′ as usual. Once again, note that π′ is order preserving. In order to prove
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that (π′, cπ′) is a gap-vertex-labelling of G, we show that induced colouring cπ′ is a proper
colouring of G.

Suppose there are two adjacent vertices vi, vj ∈ V (G) such that cπ′(vi) = cπ′(vj). Sim-
ilar to the proof of Lemma 4.11, we consider two cases depending on the degrees of vi
and vj: (i) if d(vi) ≥ 2 and d(vj) ≥ 2; and (ii) if d(vi) ≥ 2 and d(vj) = 1. Once again,
case d(vi) = d(vj) = 1 implies that G ∼= K2, which can be inspected.

Case (i). d(vi) ≥ 2 and d(vj) ≥ 2.
Let va, vb ∈ N(vi) such that cπ′(vi) = π′(va) − π′(vb) and vx, vy ∈ N(vj) such that
cπ′(vj) = π′(vx)− π′(vy). Then, we have

cπ′(vi) = cπ′(vj)⇒ π′(va)− π′(vb) = π′(vx)− π′(vy)
⇒ 2π(va) − 2π(vb) = 2π(vx) − 2π(vy).

Without loss of generality, consider π(vb) ≤ π(vy) (this assumption can be made since
considering the opposite is equivalent to exchange the left and right sides of the equation,
and the same result follows). Dividing the equation by 2π(vb), which is, by hypothesis, the
smallest among all labels, we obtain

2π(va)−π(vb) − 1 = 2π(vx)−π(vb) − 2π(vy)−π(vb). (4.17)

Since π(va) > π(vb) and π(vb) ≤ π(vy) < π(vx), it follows that: 2π(va)−π(vb) > 1;
2π(vx)−π(vb) > 1; and 2π(vy)−π(vb) ≥ 1. This implies that the left side of equation (4.17) is
always an odd number and, therefore, the equation can only be satisfied if π(vy) = π(vb).
This, in turn, implies that vy = vb since all labels are distinct, and the equation is
reduced to

2π(va)−π(vb) − 1 = 2π(vx)−π(vb) − 1,

which can only be satisfied if π(va) = π(vx) and, consequently, va = vx. But if this is the
case, then vi and vj have their respective colours induced by the labels of the same two
vertices, as illustrated in Figure 4.18.

vi

va/vx

vb/vy

vj

Figure 4.18: Adjacent vertices vi and vj of graph G, and vertices va = vx and vb = vy.

Since π′ is order preserving, if π′(va) and π′(vb) define colours cπ′(vi) and cπ′(vj), it
follows that cπ(vi) and cπ(vj) are also computed as π(va)− π(vb). This, however, implies
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that cπ(vi) = cπ(vj), which is a contradiction since (π, cπ) is a gap-vertex-labelling of G.
We conclude that there are no such vertices vi, vj in G.

Case (ii). d(vi) ≥ 2 and d(vj) = 1.
Let va and vb be the neighbours of vi such that cπ′(vi) = π′(va)− π′(vb). Since d(vj) = 1,
then cπ′(vj) = π′(vi). Then, we have

cπ′(vi) = cπ′(vj)⇒ π′(va)− π′(vb) = π′(vi)

⇒ 2π(va) − 2π(vb) = 2π(vi).

Similar to Case (i), we consider π(vb) ≤ π(vi) without loss of generality. Dividing the
equation by 2π(vb), we obtain

2π(va)−π(vb) − 1 = 2π(vi)−π(vb). (4.18)

Observe that equation (4.18) cannot be satisfied when π(vi) > π(vb) since the left side
is always an odd number. Thus, π(vi) = π(vb) and, consequently, vi = vb. Note, however,
that this implies that cπ′(vi) = π(vi). Since all labels are distinct and vi 6∈ N(vi), this
case is also impossible. We conclude that (π′, cπ′) is a gap-vertex-labelling of G in which
every label is a distinct power of two.

Note that the gap-vertex-labelling created in the proof of Lemma 4.12 has no bound
for the size of the label set. In the next theorem, we establish the first bound for the
number of labels required to properly label the graph.

Theorem 4.13. If G is a gap-vertex-labelable graph, then χg
V

(G) ≤ 2n−1.

Proof. Let G = (V,E) be a simple graph and suppose G admits a gap-vertex-labelling
(π, cπ). By Lemma 4.12, we can safely assume that π(v) is a distinct power of two for
every v ∈ V . Adjust notation of the vertices of G such that for v0, v1, . . . , vn−1 we have
π(v0) < π(v1) < . . . < π(vn−1).

Define a labelling π′ of G as follows. For every vi ∈ V (G), let π′(vi) = 2i. Define
colouring cπ′ as usual. We remark that π′ is defined from the ordering of vertices obtained
by π. Evidently, the largest label value is 2n−1, which was assigned to vertex vn−1.
Therefore, in order to prove the result, it suffices to prove that (π′, cπ′) is a gap-vertex-
labelling of G.

We start by considering vertices vi ∈ V (G) with d(vi) = 1, which are adjacent to
vertices vj with d(vj) ≥ 2. Suppose, for the sake of contradiction, that cπ′(vi) = cπ′(vj),
and let va and vb be the vertices in N(vj) with the largest and smallest labels in ΠN(vj),
that is, cπ′(vj) = π′(va)− π′(vb). Then, we have

cπ′(vi) = cπ′(vj)⇒ π′(vj) = π′(va)− π′(vb)
⇒ 2j = 2a − 2b.

Similar to the reasoning in Lemma 4.12, this case can only be satisfied if j = b and
a = b + 1. Consequently, cπ′(vj) is induced by its own label π′(vj). Since all labels are
distinct, this case is impossible, and we conclude that there are no two such vertices.
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It remains to consider the case of vertices vi and vj both having degrees d(vi) ≥ 2 and
d(vj) ≥ 2. Then, similar to the proof of Lemma 4.12, we are able to conclude that if vi
and vj have conflicting induced colours in cπ′ , then their induced colours in the cπ are
also the same. Since (π, cπ) is a gap-vertex-labelling of G, this case is impossible, and we
conclude that no such vertices vi and vj exists.

Having exhausted all cases, we conclude that if a graph G admits a gap-vertex-
labelling, it is sufficient to use label set {1, 2, 4, . . . , 2n−1}. Therefore, χg

V
(G) ≤ 2n−1.

We remark that the bound in Theorem 4.13 is tight since χg
V

(K3) = 4 = 23−1. Al-
though the labellings created in the proofs of Lemma 4.11 and 4.12 had no bound for the
size of the label set, with Theorem 4.13 established, we can now design a factorial-time
algorithm to decide whether a graph G admits a gap-vertex-labelling. This algorithm
consists of assigning every possible combination of powers of two, from 20 to 2n−1, to the
vertices of G. For each assignment, we calculate the induced colours of the vertices and
verify if there are any conflicting vertices. Given that determining the induced colour of
a vertex and verifying its adjacencies (for conflicting colours) can be done in polynomial
time, the following corollary holds.

Corollary 4.14. Gvl can be solved in O(n!) time.
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Chapter 5

Conclusions

Graph Colourings and, in particular, Proper Graph Labellings are important and quite
challenging fields of study in Theoretical Computer Science. In fact, several decision
problems in this area have been proved to be NP-complete. In our work, we study the
edge and vertex variants of proper gap-labellings. This type of labelling concerns the
assignment of labels to some elements of a graph so as to induce a proper vertex-colouring,
by using the largest gap among labels from a set of labelled elements.

Initially, we study the edge-gap and the vertex-gap numbers of some families of graphs.
These are the least k ∈ N for which a graph admits a gap-[k]-edge-labelling and a gap-[k]-
vertex-labelling, respectively. Our results for these parameters are compiled in Table 5.1.
Regarding the edge-gap and vertex-gap numbers, we leave the following problems open
for future research.

First, consider unicyclic graphs with even cycles. For these graphs, we know that
χg
E

(G) ∈ {2, 3} as established by Brandt et al. [4]. In Chapter 2, we show graphs that
admit a gap-[2]-edge-labelling and, on the other hand, we also know of unicyclic graphs
for which no gap-[2]-vertex-labelling exists. These examples are presented in Figure 2.21.
In this context, it would be interesting to characterize which graphs G in this class have
χg
E

(G) = 2.

Problem 2.6. Determine the edge-gap number for unicyclic graphs with even cycles.

In Chapter 3, we establish the vertex-gap number for all unicyclic graphs, regardless
of parity. Unicyclic graphs are a subfamily of Cacti graphs. Cacti are connected simple
graphs for which any two cycles have at most one vertex in common. Therefore, it seems
that the labellings of unicyclic graphs could be used to establish the parameter for Cacti.

Problem 3.16. Is it possible to extend our gap-[χ(G)]-vertex-labelling of unicyclic graphs
G to the family of Cactus graphs?

Still for the vertex version of proper gap-labellings, we recall that we did not de-
termine χg

V
for Generalised Second Blanuša Snarks due to time constraints. However,

we believe that the vertex-gap number for this family can be determined adjusting the
labelling created for the Generalised First Blanuša family.

Problem 3.25. Determine the vertex-gap number for the family of Generalised Second
Blanuša Snarks.
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Class Edge-gap number Vertex-gap number Theorems

Cycles χg
E

(Cn) = χg
V

(Cn)


4, if n = 3;

2, if n ≡ 0 (mod 4);

3, otherwise.
2.2 and 3.10

Crowns χg
E

(Rn) = χg
V

(Rn) = χ(Rn). 2.3 and 3.12

Wheels χg
E

(Wn) =

{
4, if n = 4;

χ(Wn), otherwise.
χg
V

(Wn) =

{
3, if n ≥ 8 and even;

4, if n ≥ 5 and odd.
2.4 and 3.13

Unicyclic graphs χg
E

(G) = 3, if p is odd.
χg
E

(G) ∈ {2, 3}, otherwise [4]. χg
V

(G) =

{
2, if p is even and G 6∼= Cn, n ≡ 2 (mod 4);

3, otherwise.
2.5 and 3.15

First Blanuša Snarks χg
E

(B1
0) = χg

V
(B1

0) = 3 2.7 and 3.24

Second Blanuša Snarks open χg
V

(B2
i ) = 3 2.8

Flower Snarks χg
E

(Jl) = χg
V

(Jl) = 3. 2.9 and 3.26

Goldberg Snarks χg
E

(Gl) = χg
V

(Gl) = 3. 2.10 and 3.27

Twisted Goldberg Snarks χg
E

(TGl) = χg
V

(TGl) = 3 2.10 and 3.28

Table 5.1: Results for the edge-gap and vertex-gap numbers for classes of graphs.

In particular, for gap-[k]-vertex-labellings, we also addressed one of the problems posed
by A. Dehghan et al. [8] in 2013, namely that of finding the algorithmic complexity of
deciding whether a cubic bipartite graph admits a gap-[2]-vertex-labelling. By considering
subcubic bipartite graphs G, we proved that it is NP-complete to decide whether G admits
a gap-[2]-vertex-labelling. This result is presented in Theorem 3.1. For cubic bipartite
hamiltonian graphs, which we refer to as CBH-graphs, we devised several techniques that
properly label subfamilies of these graphs using only two labels (see Section 3.3.5). The
following theorem states our results for this family of graphs.

Theorem 5.1. Let G be a CBH-graph. Then, χg
V

(G) = 2 if:

(i) n ≡ 0 (mod 4);

(ii) n ≡ 2 (mod 4) and there exists a chord e ∈ E(G) such that r(e) ≡ 3 (mod 4);

(iii) n ≡ 2 (mod 4) and n = β(r + 1) + α(r − 1), for α, β odd;

(iv) n ≡ 2 (mod 4) and r(e) ≡ 3 (mod 6) for every chord e ∈ E(G). �

Additionally, our computational experiments on CBH-graphs with homogeneous chords,
with up to 1002 vertices, have shown that the only graph in this class without a gap-[2]-
vertex-labelling is the Heawood Graph. Therefore, we pose the following conjecture.
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Conjecture 3.22. Let G be a CBH-graph not isomorphic to C14,reach=5. Then, χg
V

(G) = 2.

One last question regarding the vertex-gap number of graphs is raised. In 2016, Brandt
et al. [4] established that the edge-gap number of arbitrary graphs is bound by χ(G) and
χ(G)+1 for every graph that is not isomorphic to star Sn, n ≥ 2. In the vertex version, all
classes of graphs we addressed also seem to have their vertex-gap number closely related
to the chromatic number of the graph. In fact, the difference between χg

V
(G) and χ(G) for

every family we approached differs in at most one. This provides evidence that it may be
possible to obtain a similar result to that of the edge-gap number, that is, the vertex-gap
number of arbitrary graphs G may be closely bounded by a function of χ(G).

Problem 3.29. Let G be an arbitrary graph and f , a function. Is it possible to establish f
such that χg

V
(G) ≤ f(χ(G))?

The second part of our work addresses the algorithmic complexity of decision problems
associated with gap-[k]-vertex-labellings of arbitrary graphs. In the edge version, we know
that deciding whether a graph G admits a gap-[k]-edge-labelling, for some k ∈ N, can
be done in polynomial time since one needs only check every connected component of G
and verify that none of them are isomorphic to K2. The complexity of the vertex-version,
however, remains unknown. In Chapter 4, we show two infinite families of graphs for
which no gap-[k]-vertex-labelling exists: complete graphs Kn, n ≥ 4, and a subfamily
of split graphs. Based on these results, we conjecture that cliques of size n ≥ 4 are at
the heart of every graph that does not admit a gap-[k]-vertex-labelling. Additionally, in
the same chapter, we prove structural properties which allow us to create an O(n!)-time
algorithm that decides whether an arbitrary graph admits a gap-vertex-labelling. As a
result of these properties, we establish a tight upper bound for the vertex-gap number
of arbitrary graphs. In addition, our work in Chapter 3 also establishes a tight lower
bound for this parameter. Combining these results, which are presented separately in
Theorems 3.7 and 4.13, we have the following corollary.

Corollary 5.2. Let G be a gap-vertex-labelable graph. Then, χ(G) ≤ χg
V

(G) ≤ 2n−1

unless G ∼= Sn, n ≥ 2, in which case χg
V

(G) = 1 = χ(G)− 1. �

We also define a new parameter associated with gap-vertex-labellings: the gap-strength
of graphs. Denoted by strgap(G), the gap-strength of a graph G is the least number l of
edges that need to be removed from G so as to obtain a new graph that is gap-vertex-
labelable. For complete graphs, we prove that strgap(Kn) ∈ O(n

√
n) and provide evidence

that strgap(Kn) ∈ Ω(n
√
n). The research on the gap-strength of graphs is still in its early

stages. An interesting continuity would be to formally establish the lower bound for
strgap(Kn) and, thus, answer the following conjecture.

Conjecture 5.3. Let Kn be the complete graph of order n. Then, strgap(Kn) ∈ Θ(n
√
n).
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