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Abstract

Vertex-distinguishing edge-colorings (vdec colorings) are a restriction of
proper edge-colorings. These special colorings require that the sets of edge
colors incident to every vertex be distinct. This is a relatively new field of
study. We present a survey of known results concerning vdec colorings. We
also define a new matrix which may be used to study vdec colorings, and
examine its properties. We find several bounds on the eigenvalues of this
matrix, as well as results concerning its determinant, and other properties.
We finish by examining related topics and open problems.
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Chapter 1

Introduction

Graph colorings are among the most often explored topics in graph the-
ory. They are particularly appealing because there are so many variations,
each of which may be useful in describing physical systems (such as com-
puter networks) or other combinatorial problems. This thesis is the result
of the author’s interest in a particular type of edge-coloring, as well as the
algebraic aspects of graph coloring. The goal of this thesis is to develop
some useful techniques and structures for the study of vertex-distinguishing
edge-colorings, and to explore their properties.

1.1 Contributions and Definitions

The main contributions of this thesis are a survey of work done on vertex-
distinguishing edge-colorings, development of matrices and related struc-
tures useful in the analysis of such colorings, and exploration of the proper-
ties and uses of these structures.

We will primarily focus on proper edge-colorings. Intuitively, a proper
edge-coloring is an assignment of colors to the edges of a graph such that no
adjacent edges share a color. Formally, we may define a proper edge-coloring
as follows.

Definition 1.1.1. Let G = (V,E) be a graph and C be a set of colors. A
proper edge-coloring π of G is a function π : E → C such that if vu, vw ∈ E
with u 6= w, then π(vu) 6= π(vw).

Throughout this thesis, every edge-coloring will be assumed to be proper,
unless otherwise specified.
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In addition, we assume that all graphs are simple undirected graphs.
Other graph-theoretic terms will be as in [13]. We will usually work with a
further restriction:

Definition 1.1.2. A vertex-distinguishing edge-colorable graph (or vdec
graph) is a (possibly disconnected) graph G with no isolated edges and at
most one isolated vertex.

Definition 1.1.2 is the standard definition of a vdec graph, and allows
disconnected graphs. However, in this thesis all vdec graphs are assumed to
be connected unless otherwise stated. In addition, a nontrivial vdec graph is
a vdec graph with at least three vertices. The reason for these restrictions
will soon become apparent.

Definition 1.1.3. Let G = (V,E) be a graph with a proper edge-coloring
π. Let v ∈ V . Then the incident color set to v, denoted S(v) is defined by
S(v) = {π(vw) : vw ∈ E}.

In other words, S(v) is the set of colors used on edges incident to v. For
clarity, we may specify a particular coloring π, using the notation Sπ(v).
Note that, because G has a proper edge-coloring, S(v) is never a multiset,
and |S(v)| = deg(v). If two vertices v and w have distinct sets S(v) and
S(w), they are said to be distinguished . For an example, see Figure 1.1.1.

'&%$ !"#v

c1

????????
c2

c3

c4

��
��

��
��
c5

c6 /.-,()*+w

c1

c2

c5

S(v) = {c1, c2, c3, c4, c5, c6} S(w) = {c1, c2, c5, c6}

Figure 1.1.1: Incident color sets

Definition 1.1.4. Let G = (V,E) be a vdec graph. A vertex-distinguishing
edge-coloring (or vdec coloring) C of G is a proper edge-coloring π of G
such that, for all pairs of distinct vertices v, w ∈ V , Sπ(v) 6= Sπ(w).

If G has an isolated edge vw, then S(v) = S(w) always, and G cannot
have a vdec coloring. Similarly, if G has two isolated vertices v, w then
S(v) = S(w) = ∅. However, every vdec graph must have a vdec coloring:
simply assign a different color to each edge. Thus vdec graphs are exactly the
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graphs which permit a vdec coloring. Figures 1.1.2 and 1.1.3 demonstrate
vdec and non-vdec colorings of some graphs.

A coloring in which each edge is assigned a different color is a maximum
coloring . A vdec coloring which uses the minimum number of edge colors
among all vdec colorings of G is called a minimum coloring , and the number
of colors required for a minimum coloring is denoted χ′

s(G).

Figure 1.1.2: Two vdec colored graphs
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Figure 1.1.3: A non-vdec colored graph (b and e are not distinguished)

We often need to refer to the number of vertices of a given degree. We
use the notation nk to denote the number of vertices of degree k in a graph.

Finally, we often need to refer to the maximum or minimum degree of the
vertices of a graph. We use ∆ and δ, respectively, to denote these quantities.
It will be assumed that ∆ refers to the graph currently under discussion,
unless this would be ambiguous. We then use ∆(G) to specify. Similarly, n
and e will always be the number of vertices and edges, respectively, of the
graph at hand.
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1.2 Terminology Used in Other Works

The terminology used to describe vdec colorings is rather inconsistent. Our
basic terminology comes from Burris and Schelp [10] who, among others,
prefer the term “vertex-distinguishing edge-coloring,” and refer to a graph
with such a coloring as a vdec graph. There is no standard term to describe
the coloring itself. The terms “Vertex-Distinguishing Proper (VDP)” and
“vdec” have been used, with capitalization as presented here. More com-
mon is “strong edge-coloring” or simply “strong coloring” to refer to the
same type of coloring. This, and the standard notation χ′ for proper edge-
colorings in turn provide the notation χ′

s. However, some papers use the
term “vertex-distinguishing index” (vdi) or χ̃′ for the same purpose. The
“observability” of a graph is equivalent to being a vdec graph, and leads to
the terminology obs(G), which is identical to χ′

s(G). “Irregular assignments”
are a similar idea which explicitly admit improper edge-colorings.

One must be careful when searching for papers on the topic of strong
edge-colorings. The term “strong edge-coloring” is also used to refer to
proper edge-colorings, as opposed to general edge-colorings which permit
adjacent edges to have the same color. Similarly, at least one paper uses
“vertex-distinguishing edge-coloring” to permit improper edge-colorings.

In this work, we will use the term “vdec” to refer both to a graph which
admits a vertex-distinguishing edge-coloring, and (more often) to refer to
the coloring itself. The specific term “vdec graph” or “vdec coloring” will
be used if there is any chance of ambiguity. We recognize the redundancy in
the term “vdec coloring,” but the extra word helps to clarify the meaning.

1.3 Outline

This thesis examines several main areas.

• Chapter 1 introduces vertex-distinguishing edge-colorings and presents
definitions.

• Chapter 2 is a survey of previous work, including basic results, impor-
tant conjectures and theorems, and techniques used in other works.

• Chapter 3 introduces the VCICM, a matrix useful in studying vdec
colorings, and examines its determinant and related properties.

• Chapter 4 examines the eigenvalues and eigenvectors of the VCICM,
and gives several tight bounds.

4



• Chapter 5 introduces some variations on the colorings examined in this
thesis, states related results, and lists some related work.

• Chapter 6 presents some conclusions and remarks on future research
directions.

5



Chapter 2

Survey of Results

The idea of a vdec coloring as we use it was first defined by Burris and
Schelp in 1997 [10]. Both Burris and Schelp have expanded on the idea in
several papers, and made the main conjectures and theorems seen in this
chapter. Several authors have continued to refine bounds and produce new
results for vdec colorings.

In this chapter, we introduce some basic results, most importantly the
value of χ′

s(G) for some standard classes of graphs. We will see some im-
portant theorems and conjectures related to χ′

s, and finish with a summary
of techniques and bounds related to these results.

2.1 Basic Results and Techniques

In their initial paper on the subject, Burris and Schelp provided values of
χ′

s for many standard classes of graphs, along with basic techniques to color
some of these graphs.

Since vdec colorings are proper edge-colorings, we deduce that χ′
s(G) ≥

∆: each edge incident to a maximum-degree vertex must have a different
color. If there are two or more vertices of degree ∆, then χ′

s(G) ≥ ∆ + 1 (if
there were only ∆ colors, then all vertices of degree ∆ would have the same
incident color sets). Often, we show that a given coloring is minimum by
showing that the coloring meets one of these lower bounds.

There are many standard classes of graphs for which exact results are
known. These are versions of Propositions 8, 9, and 10 in Burris and Schelp’s
original paper [10], presented with proofs created by the author of this thesis:

• Complete Graphs: We will consider minimum colorings of complete
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graphs in some detail, as they demonstrate some particularly useful
coloring techniques.

Let n ≥ 3. Then

χ′
s(Kn) =

{
n if n is odd
n + 1 if n is even

From above, χ′
s(Kn) ≥ n for all n. This occurs because ∆ = n − 1

for all Kn, and there are always at least two maximum-degree vertices
when n ≥ 2. We only consider Kn where n ≥ 3. There is only one
vdec coloring of K3, which is a maximum coloring. Thus, let k ≥ 3.
To color K2k−1 and K2k−2, we require the following 1-factorization of
K2k: arrange 2k−1 vertices in a cycle, and place the remaining vertex
in the center of the cycle. Each 1-factor consists of an edge from the
center vertex to one other vertex, along with all edges perpendicular
to this edge (see Figure 2.1.1).

Figure 2.1.1: A sample 1-factor

Color each 1-factor with a different color. This results in a proper
edge-coloring of K2k with 2k − 1 colors, in which all vertices have the
same color set. Now, delete one vertex v from the outside cycle. This
removes a different color from each vertex, so all pairs of vertices are
now distinguished. This colors K2k−1 with 2k − 1 colors. Because
∆ = 2k − 2 and n = 2k − 1, this must be a minimum coloring.

To color K2k−2, begin with the minimum colored K2k−1 produced
above, and remove one vertex w from the outside cycle, selected so
that v and w are adjacent in the outside cycle. This guarantees that
in these two deletion steps, we do not remove the same two colors
from two vertices. Note that this is a nontrivial fact, but requires a

7



very long explanation which would not significantly clarify this section.
Thus, all pairs of vertices are still distinguished. Since we began with
k ≥ 3, there is at least one edge of each color. We have not totally
eliminated any color from the graph, and thus this is a vdec coloring
for K2k−2 using 2k − 1 colors.

To show minimality of the above coloring, suppose there is a vdec
coloring of K2k−2 using 2k − 2 colors. For each vertex v, treat S(v)
as a label on vertex v. Then there are 2k − 2 labels, each one a set
of size 2k − 3, and each label must be distinct. There are exactly(
2k−2
2k−3

)
= 2k − 2 sets of size 2k − 3 with 2k − 2 colors. Thus there

would be exactly enough labels to label each vertex with a different
set. But, any one color ci would appear in all but one set, that is,
2k − 3 sets. Since we are coloring edges, every color must appear in
an even number of sets (twice for each edge on which it is used). But,
2k − 3 is odd, so a coloring with 2k − 2 colors is impossible. Thus
2k − 1 colors give a minimum coloring of K2k−2.

Using sets S(v) to label vertices is a useful technique later developed
by Balister, Riordan, and Schelp [6]. This will be treated in more
detail in Section 2.3.2.

• Complete Bipartite Graphs

– χ′
s(K1,n) = n: There is only one proper edge-coloring of a star,

and, for n ≥ 2, this is also a vdec coloring. Stars often provide
extremal examples related to vdec colorings.

– χ′
s(Km,n) = n + 1, where n > m > 1: Arrange the vertices

in two columns. Let our color set be C = {c1, . . . , cn+1}. We
assign colors to the edges incident to the ith vertex of degree n as
follows, listing the color for the uppermost edge first and moving
downwards. The top vertex has, in order, colors (c1, . . . , cn). The
second has (c2, . . . , cn+1). The third has (c3, . . . , cn+1, c1), and
so on, “wrapping” colors in this way. This guarantees that the
vertices of degree n are all distinguished. The vertices of degree m
have color sets {c1, c2, . . . , cm}, {c2, . . . , cm+1}, etc. Figure 2.1.2
gives an example of this coloring for K3,4.

– χ′
s(Kn,n) = n + 2, where n ≥ 2, and let (A,B) be the bipartition

of G = Kn,n. In vertex class A, consider the ith vertex. We assign
colors to the edges incident to this ith vertex from the following
set, starting at the top and moving downwards: (ci, ci+1, . . .),

8
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Figure 2.1.2: Minimum vdec coloring of K3,4

wrapping around if necessary (as above). But, assign the nth
vertex in the class the colors (cn+1, cn+2, c1, . . . , cn−2). This dis-
tinguishes all vertices in A. The ith vertex in B has an incident
color set containing exactly the same colors as the ith vertex in
A, except for one element. The last vertex in each color class is
similarly distinguished.

For Km,n and Kn,n, we have at least two vertices of maximum degree,
so χ′

s(G) ≥ n + 1. For Kn,n in particular, n + 1 colors give at most(
n+1

n

)
= n + 1 color sets, not enough to give each of the 2n vertices a

distinct set. Thus, these are minimum values of χ′
s.
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• Paths: Let n ≥ 3, and set j to be the smallest positive integer such
that

(
j
2

)
≥ n− 2. Then

χ′
s(Pn) =


j + 1, if j is odd and n = (j2 − j + 4)/2 or

j is even and n > (j2 − 2j + 6)/2
j, otherwise

• Cycles: Let n ≥ 3 and set j to be the smallest positive integer such
that

(
j
2

)
≥ n. Then

χ′
s(Cn) =

 j + 1, if j is odd and
(
j
2

)
− 2 ≤ n ≤

(
j
2

)
− 1 or

j is even and n > (j2 − 2j)/2
j, otherwise

For both Pn and Cn, the j+1 appears for parity reasons, as in coloring
K2k−2.

Note that for both Pn and Cn, we choose (approximately) the smallest
set of colors such that there are enough subsets to color each maximum-
degree vertex with a different set. This will prove to be a useful general
technique.

There are several common classes of graphs which have not been treated
in previous papers. We provide some new results, by giving exact values of
χ′

s for two more common classes of graphs.

• Triangle Graphs: The triangle graph Tn on n vertices is a set of n −
2 triangles all sharing one edge (see Figure 2.1.3 for an example).
Equivalently, it is K2,n−2 with an edge added. For n ≥ 3,

χ′
s(Tn) = n.

First note that ∆(Tn) = n − 1 and there are two maximum degree

Figure 2.1.3: T6

vertices, so n is the minimum number of colors possible. Let our colors
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be C = {c1, . . . , cn}. We will assign color sets to each vertex, and there
is a clear way to turn these into corresponding edge colors. Assign to
one vertex of degree n− 1 the set {c1, . . . , cn−1}. Assign to the other
vertex of degree n − 1 the set {c1, c3, . . . , cn}. The color sets on the
degree 2 vertices will be {c2, c3}, {c3, c4}, . . . , {cn−1, cn}.

• Wheel Graphs: The wheel graph Wn on n vertices is Cn−1 with one
additional vertex, connected to every vertex on the cycle (see Figure
2.1.4 for an example).

χ′
s(Wn) =

{
n− 1, n ≥ 5
5, n = 4

Figure 2.1.4: W6

For n ≥ 5, assign colors c1, c2, . . . , cn−1 clockwise to the edges in-
cident to the center “hub” vertex. For edges on the cycle, begin-
ning with the edge between edges colored c1 and c2, assign colors
c3, c4, . . . , cn−1, c1, c2 clockwise around the cycle. Thus the cycle ver-
tices have color sets {c1, c2, c3}, {c2, c3, c4}, . . . , {cn−1, c1, c2}. Since
∆(Wn) = n− 1 and there is only one such vertex, this must be mini-
mum. If n = 4, we have χ′

s(K4) = 5.

2.2 Some Important Results

A number of the colorings in the previous section demonstrate important
techniques and results concerning χ′

s. This section will present some results
which generalize these techniques.

A common thread among many of the minimality proofs is choosing the
smallest number of colors such that we can label all vertices with a different
set of the appropriate size. Given a vdec coloring, we can label every vertex
v with S(v), and the labels are all different. It is not necessarily true that
any labeling of the vertices of G with sets of size deg(v) corresponds to a
vdec coloring, or even a proper edge-coloring.

11



Let G be a vdec graph. Clearly, if G has a vdec coloring using j colors,
then we must have

(
j
k

)
≥ nk for δ ≤ k ≤ ∆. If not, any proper edge-coloring

with j colors must have two vertices of degree k (for some k) sharing the
same color set. As we saw for K2k, sometimes we must add an additional
color for parity reasons. This leads to a natural conjecture of Burris and
Schelp:

Conjecture 2.2.1. (Burris and Schelp [10]) Let G be a vdec graph. Let k
be the minimum integer such that

(
k
j

)
≥ nj for δ ≤ j ≤ ∆. Then χ′

s(G) = k
or k + 1.

Some sources use 1 ≤ j ≤ ∆, which is equivalent (if nj = 0, then(
k
j

)
≥ nj always). In fact, j need only range over the degree sequence of G.

This conjecture is still unproven, although it has been shown to be true for
many classes of graphs. It is true for all of the standard graphs in Section
2.1, as well as for graphs which are a disjoint union of cycles and paths [3],
graphs of large maximum degree [5], regular graphs with small components
[6], and several others. Many of these are considered in Section 2.3.

Burris and Schelp [10] made an additional conjecture about χ′
s, which

has proven more tractable:

Theorem 2.2.2. (Bazgan, Harkat-Benhamdine, and Li [7]) If G is a vdec
graph, then χ′

s(G) ≤ |V (G)|+ 1.

Theorem 2.2.2 was proved by Bazgan, Harkat-Benhamdine, and Li in
1999 [7]. Its bound on χ′

s(G) is tight in some cases. For example, χ′
s(K2k) =

2k + 1 as above. However, it is a poor approximation for many other cases.
A particular example is Kn,n, for which χ′

s(Kn,n) = n+2, which is quite far
from |V |+ 1 = 2n + 1.

Finally, Balister looked at vdec colorings of random graphs, and gave a
strong bound in his main theorem:

Theorem 2.2.3. (Balister [2]) If G is a random graph on n vertices with
edge probability p = p(n), and if pn

log n , (1−p)n
log n → ∞ as n → ∞, then the

probability that χ′
s(G) = ∆ goes to 1 as n →∞.

In other words, “almost all” graphs have χ′
s(G) = ∆.

2.3 Upper Bounds on χ′s

The results of the previous section give bounds on χ′
s for general graphs.

Many other bounds have been given, often improving on these results for
specific classes of graphs.
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The first upper bound on χ′
s to be proved was presented by Burris and

Schelp in their initial paper on vdec colorings [10]. For any vdec graph G,
this bound is:

χ′
s(G) ≤ (∆ + 1)(5 + 2max{n1/j

j }∆
j=1).

This is related to a lower bound presented in the same paper:

χ′
s(G) ≥ max{(k!nk)1/k + (k − 1)/2 : 1 ≤ k ≤ ∆}.

The proof of the upper bound relies on finding matchings of a graph and
bounding the number of different colors which must be used on each match-
ing. The lower bound comes from a counting argument based on Conjecture
2.2.1. Any graph given a vdec coloring with j colors must have

(
j
k

)
≥ nk.

Using this fact and the fact that an arithmetic mean is always at least as
large as the corresponding geometric mean, we have the bound.

The same paper presented a tighter bound for trees. For any tree T 6=
K2,

χ′
s(T ) ≤ max{n1 + 1, 6.35n

1/2
2 , 21}.

There have been many bounds related to specific classes of graphs.
Favaron, Li, and Schelp [15] presented a bound shortly after the first paper
appeared on this subject. Their main theorem applies to a graph G with
minimum degree δ ≥ 5 and maximum degree ∆ < ((2c− 1)n− 4)/3, where
c is a constant with 1

2 < c ≤ 1. If this is the case, then

χ′
s(G) ≤ dcne.

Bazgan, et. al. [8], provided an upper bound applying to any vdec graph
with n vertices and minimum degree δ(G) > n/3:

χ′
s(G) ≤ ∆ + 5.

Taczuk and Woźniak [21] have found a bound for several classes of cubic
graphs. “Ladder graphs” consist of two identical cycles Cn with correspond-
ing vertices connected by an edge. Let G be a ladder on n = 2k vertices. If
j is the smallest integer such that

(
j
3

)
≥ n, then χ′

s(G) ≤ j + 1. This satis-
fies Conjecture 2.2.1. In the same paper, the authors proved that χ′

s(pK4)
satisfies a similar bound. Note that pK4 means p disjoint copies of K4. Let
j be the smallest integer such that

(
j
3

)
≥ 4p, then χ′

s(pK4) ≤ j + 1. This
also satisfies the conjecture.

Finally, Dedó, et. al. [12] also bounded χ′
s for several cubic graphs. A

Fibonacci string is a binary string without two consecutive ones. The nth

13



Fibonacci number is exactly the number of Fibonacci strings of length n. A
Fibonacci cube Γn is a graph whose vertices are all Fibonacci strings of order
n, and vertices are adjacent if their strings differ in exactly one position.
Similarly, a Lucas string is a binary string without either two consecutive
ones, or an initial and terminal one. A Lucas cube Ln is defined similarly
to a Fibonacci cube. Then, χ′

s(Γn) = n if n ≥ 4. Similarly, χ′
s(Ln) = n if

n ≥ 2. These also satisfy Conjecture 2.2.1.
There are also many bounds for variations on χ′

s, which will be considered
in Chapter 5.

2.3.1 Line Graphs and Packing

Balister, Bollobás, and Schelp [3] provided a good upper bound on χ′
s and

some new techniques for graphs with ∆ = 2, i.e. a disjoint union of paths
and cycles. Let G be such a graph which is vdec, and choose k as small as
possible such that n1(G) ≤ k and n2(G) ≤

(
k
2

)
. Then:

k ≤ χ′
s(G) ≤ k + 5. (2.1)

The paper also gives exact values of χ′
s for unions of only paths or only

cycles, which confirm Conjecture 2.2.1.
This same paper introduces a new technique of using line graphs and

then packing paths and cycles into Kn. The line graph L(G) of a graph G
has one vertex for each edge of G. Vertices of L(G) are adjacent if their
associated edges in G are adjacent. Thus, a proper edge-coloring of G is
equivalent to a proper vertex-coloring of L(G). This is especially useful for
graphs with ∆ = 2, because L(Pn) = Pn−1 and L(Cn) = Cn.

A packing of a graph G1 into another graph G2 is a mapping from the
vertices of G1 to the vertices of G2 such that edges are preserved and the
induced map from edges to edges is an injection. In other words, we “fold”
G1 into G2 so that no two edges are folded onto each other, but several
vertices may be mapped to the same vertex.

Consider a graph G with n vertices and ∆ = 2, and a complete graph
Kn with each vertex colored a different color. Then packing L(G) into this
Kn produces a proper vertex-coloring of L(G), which in turn corresponds to
a proper edge-coloring of G. Note that the circuit and path components of
L(G) are mapped to edge-disjoint paths and circuits in Kn. If we have path
components in L(G), we additionally require that their endpoints in the
packing be distinct. Thus, the resulting edge-coloring is also vdec. Packing
results can produce bounds for χ′

s(G), such as Equation (2.1).
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While very useful when ∆ = 2, the line graphs of more complex graphs
are not as well-behaved. There may be other specific classes of graphs
with relatively simple line graphs which would yield to this method. For
example, trees have line graphs that are complete graphs connected by edges
or vertices. Thus far, no such possibilities have been examined.

2.3.2 Labeling Vertices With Sets

One method used in many of the results for standard classes of graphs
provides a starting point for another useful technique. Conjecture 2.2.1
implies that if there are enough subsets of a color set to assign every vertex
a distinct set, we can find a corresponding vdec coloring. Many of the
standard classes of graphs can be colored by such a method (especially
complete bipartite graphs, cycles, and paths). This is not guaranteed to
work in general, as some labellings may not correspond to proper edge-
colorings. Balister, Riordan, and Schelp [6] expanded this idea with a great
deal of success.

Balister, et. al. define a number of parameters for vdec graphs. Here, ⊕
is the symmetric difference operator, which produces the set of items which
appear in exactly an odd number of its operands.

• Parameter k(G) is the minimum integer k such that
(
k
j

)
≥ nj for all j

with δ ≤ j ≤ ∆. This is equivalent to the definition of k in Conjecture
2.2.1, and thus χ′

s(G) ≥ k(G).

• Parameter k′(G) is the minimum k such that, there exist distinct sets
S(v) ⊆ {1, . . . , k} with |S(v)| = deg(v), for all v ∈ V , such that
⊕vS(v) = ∅. This corresponds to the fact (used in the coloring of
K2k) that each color must appear in an even number of sets.

• Parameter k′′(G) is the minimum k such that there exist distinct sets
S(v) ⊆ {1, . . . , k} with |S(v)| = deg(v), for all v ∈ V , and with the
additional condition that all X ⊆ V have | ⊕v∈X S(v)| ≤ C, where
C is the number of edges between X and X. That is, for any subset
of vertices X, if a given color is not used an even number of times in
color sets within X, then the color must be used at least once on an
edge leaving X.

Thus we have χ′
s(G) ≥ k′′(G) ≥ k′(G) ≥ k(G). Balister, et. al. showed

that χ′
s(G) = k′′(G) for all simple vdec graphs with at most 11 vertices, and

all 3-regular graphs with at most 22 vertices. They also conjecture that this
holds in general, as follows:
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Conjecture 2.3.1. (Balister, Riordan, Schelp [6]) For any vdec graph G,
χ′

s(G) = k′′(G).

There are several results in [6] bounding values of k′ and k′′, and also
showing that k′′ ≤ k′ + 1. These results are used to show that Conjecture
2.2.1 holds for d-regular graphs with d − 2 edge-disjoint 1-factors, at most(
k
d

)
vertices, and each component Gi satisfying |V (Gi)| ≤ 3(k−1)

4(d−1) .
The idea of labeling vertices with color sets arises naturally when study-

ing vdec colorings. The method given in [6] is very promising, and provides
a likely direction for further study.
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Chapter 3

The VCICM and its
Determinant

The techniques of spectral graph theory may be applied to extract a great
deal of information about a graph from its adjacency matrix and incidence
matrix. It is natural to consider how this idea may be extended to graph
colorings. Some information about the vertex- or edge-colorability of a graph
may be obtained from the adjacency matrix, but these are not sufficient for
the additional conditions imposed by vertex-distinguishing edge-colorings.
In this chapter, we present a new matrix useful in the study of vdec colorings,
develop it using standard matrices, and examine some of its properties.
In particular, we study its determinant and give some properties of the
determinant for general colorings. We also present a variety of constructions
which affect the determinant in predictable ways.

3.1 Vertex Color Incidence Count Matrix

Our primary interest in vdec colorings is whether the sets S(v) and S(w)
are distinct for each pair of vertices v and w. Thus, a natural value to
consider is c = |S(v) ∩ S(w)|. If |S(v)| = |S(w)| = c, then v and w are not
distinguished. Yet, in all other cases, the vertices are distinguished. We can
encode this information for an entire graph into a matrix.

Definition 3.1.1. Let G = (V,E) be a graph with a proper edge-coloring.
The Vertex Color Incidence Count Matrix (VCICM) of G with given coloring
π is a matrix M with rows and columns indexed by V and

Mij = |S(i) ∩ S(j)|.
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In other words, each entry in M is the number of edge colors in common
between a pair of vertices.

A few properties of M are immediately available:

• M is symmetric: S(i) ∩ S(j) = S(j) ∩ S(i).

• M has only nonnegative integer entries.

• The diagonal elements of M give the degree sequence of G: S(i) ∩
S(i) = S(i).

In addition, we can inspect the VCICM to determine whether a given
coloring is vdec. In particular, if deg(v) = deg(w) and Mvw = deg(v),
then vertices v and w are not distinguished. This is particularly easy for
k-regular graphs, in which the first condition is always satisfied. In this case
the coloring is vdec if and only if every off-diagonal element of M is strictly
less than k.

'&%$ !"#a

=
=

=
= /.-,()*+b

'&%$ !"#c /.-,()*+d

'&%$ !"#a

=
=

=
= /.-,()*+b

'&%$ !"#c /.-,()*+d

a b c d

a 3 2 1 2
b 2 2 1 1
c 1 1 2 2
d 2 1 2 3

a b c d

a 3 2 2 3
b 2 2 2 2
c 2 2 2 2
d 3 2 2 3

Figure 3.1.1: Two proper edge-colorings of C4 with a chord

Example 3.1.2. Let G = C4 with a chord. Figure 3.1.1 shows two proper
edge-colorings of G, one vdec, one not vdec. Below each is its respective
VCICM. Note that the (d, a) entry of the second matrix (among others)
is equal to the (a, a) and (d, d) entries, and that vertices a and d are not
distinguished.

Even for non-regular graphs, we can use the idea of examining entries of
the VCICM to give a strong condition on when a coloring is vdec.

Theorem 3.1.3. Let G be any graph with a proper edge-coloring π and
VCICM M . Coloring π is vdec if and only if no two columns of M are
equal.
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Figure 3.1.2: VCICM for a non-vdec colored 3-regular graph

Proof. First, suppose π is not vdec, then there must be two vertices v, w
such that S(v) = S(w). Thus for any other vertex z 6= v, w, |S(v)∩ S(z)| =
|S(w) ∩ S(z)|. In particular, this means that columns v and w of M are
identical.

Second, suppose that two columns v and w of M , corresponding to ver-
tices a and b of G (respectively), are equal. Let v = (M1a, . . . ,Mna) and
w = (M1b, . . . ,Mnb). Note that Maa = deg a, and that Mbb = deg b. Since
the two columns are identical, we must have Mab = Maa and Mba = Mbb.
Since M is symmetric, we must also have Mab = Mba. Then, Maa = Mab =
Mba = Mbb, so deg a = deg b. Thus, Mab = S(a) ∩ S(b) = deg a = deg b.
Therefore a and b are not distinguished, and π is not vdec.

Theorem 3.1.3 lets us examine the VCICM and know exactly whether
the associated coloring is vdec or not. We will make use of it in Section
3.3, in conjunction with the determinant. To do so, we must first develop
another way to define the VCICM.
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3.1.1 Another Way to Define the VCICM

It is natural to define the VCICM as in Definition 3.1.1. However, we can
define the matrix equivalently in terms of other matrices. This method
reveals more information about the properties of the VCICM. To re-define
the VCICM, we first must define the unsigned incidence matrix:

Definition 3.1.4. Let G = (V,E) be a graph. The unsigned incidence
matrix (IM) B of G is a matrix with rows indexed by V , columns indexed
by E, and

Bve =
{

1, if vertex v is incident to edge e
0, otherwise

Second, we need a new matrix. This matrix indicates which colors are
used on which edges.

Definition 3.1.5. Let G = (V,E) be a graph with an edge-coloring using
colors C = {c1, . . . , ck}. The arc color matrix (ACM) A is a matrix with
rows indexed by E, columns indexed by C, and

Aec =
{

1, if edge e is colored with color c
0, otherwise

Example 3.1.6. The IM for the graphs in Example 3.1.2 is given by:

ab ac ad bd cd

a 1 1 1 0 0
b 1 0 0 1 0
c 0 1 0 0 1
d 0 0 1 1 1

The ACM’s for the graphs in Example 3.1.2 are given by:

— = −− · · ·
ab 0 1 0 0
ac 1 0 0 0
ad 0 0 1 0
bd 1 0 0 0
cd 0 0 0 1

— = −−
ab 0 1 0
ac 1 0 0
ad 0 0 1
bd 1 0 0
cd 0 1 0

Let G = (V,E) be a graph with a proper edge-coloring using colors
C = {c1, . . . , ck}. Let B and A be, respectively, the IM and ACM of G.
Consider the |V | × |C| matrix F = B · A. The (v, c) entry of F is the dot
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product of row v of B and column c of A. This dot product sums up the
values in column c which correspond to edges incident to vertex v. That
is, Fvc is the number of edges incident to v which are colored with color c.
Since G has a proper edge-coloring, F is a (0, 1) matrix. Thus each row of
F is a (0, 1) vector indicating which colors are used to color edges incident
to v.

Example 3.1.7. The F matrices for the graphs in Example 3.1.2 are given
by:

— = −− · · ·
a 1 1 1 0
b 1 1 0 0
c 1 0 0 1
d 1 0 1 1

— = −−
a 1 1 1
b 1 1 0
c 1 1 0
d 1 1 1

Now let M = F · F T . This will be a |V | × |V | matrix whose vw entry
is the dot product of row v of F and row w of F . Thus the dot product
v ·w is a sum in which a 1 appears for every color c such that both v and w
are incident to an edge of color c. So, Mvw is exactly the number of colors
shared between S(v) and S(w), or |S(v) ∩ S(w)|. This proves the following
result:

Lemma 3.1.8. Let G be a vdec graph with an edge-coloring π. Let A be
the ACM of G, and let B be the IM of G. Let M = BA(BA)T . Then M is
exactly equal to the VCICM of G with π.

3.2 Structure of the VCICM

The VCICM has interesting structural properties for various graphs and
colorings. For specific colorings and graphs, we may write the VCICM in
terms of other well-known matrices.

Maximum colorings will be of interest in future sections. These are
particularly interesting in terms of the VCICM, because they minimize the
entries in the matrix. Maximum coloring also often offer VCICM’s which
are much easier to analyze than other colorings. Let G be a vdec graph
with a maximum coloring. Let M be the VCICM of this graph coloring. As
always, the diagonal will be the degree sequence of G. Since every edge has
a distinct color, each vertex will share exactly one color with each adjacent
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vertex, and no colors with non-adjacent vertices. In other words,

Mvw =


deg v, if v = w
1, if vw ∈ E
0, otherwise

This is very similar to the Laplacian matrix of the graph.
The Laplacian of a graph is defined in terms of its signed incidence ma-

trix. Let G be a graph with incidence matrix B. Obtain the signed incidence
matrix C by arbitrarily changing one 1 in each column to a −1. This cor-
responds to arbitrarily directing the edges of G, giving an orientation of G.
Then the Laplacian is L = CCT , and does not depend on the orientation.
In particular, L has diagonal elements equal to the degree sequence of G,
and off-diagonal entry Mvw = −1 if vw ∈ E and 0 otherwise. Thus the
maximum colored VCICM corresponds to the Laplacian of G with positive
off-diagonal entries. In other words,

M = L + 2A,

where A is the adjacency matrix of G. However, the Laplacian may be
written as

L = D −A.

Here D is a diagonal matrix with entries equal to the degree sequence of
G. This gives us the following result, which will prove extremely useful in
Chapter 4, to find the eigenvalues of M .

Lemma 3.2.1. Let G be a graph with a maximum coloring. Fix an arbitrary
ordering of the vertices V of G. Let A be the adjacency matrix of G, and D
a diagonal matrix whose entries give the degree sequence of G (both indexed
by V in the above ordering). Let M be the VCICM of G. Then M = D+A.

Lemma 3.2.1 will be useful in Chapter 4, in finding the eigenvalues of
certain VCICM’s.

3.3 Determinant and Rank

The first major property of the VCICM which we will examine is its determi-
nant and, by extension, its rank. The determinant of the adjacency matrix
of a graph G has been found to give some structural properties of G (see [18]
and [9]). This inspires our study of the determinant of the VCICM. We find
that some properties of a proper edge-coloring are given by the determinant
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of the VCICM, and that the determinant may be explicitly obtained for
several classes of graphs.

As mentioned in Section 3.1, the VCICM is a nonnegative integer matrix.
Let G be a graph with a proper edge-coloring, VCICM M , IM B and ACM
A. We can write M = (BA)(BA)T . Let u be any real vector with entries
indexed by |V |, and consider uT Mu. We have

uT Mu = uT BA(BA)T u

= (uT BA)(uT BA)T

= ‖uT BA‖
≥ 0.

This proves the following observation:

Observation 3.3.1. Let M be the VCICM of a graph G with a proper
edge-coloring. Then M is positive semidefinite.

In consequence, det(M) ≥ 0. This also implies that all eigenvalues of M
are nonnegative, a fact which we will use extensively in the next chapter.

From Section 3.1, Theorem 3.1.3 gives us a strong condition for vdec
colorings. It would be much more useful, however, to be able to determine
if a coloring is vdec by using more standard functions. We can do so by
expressing one part of Theorem 3.1.3 in terms of the determinant. If M has
two identical columns, then detM = 0. Thus we have the following result:

Corollary 3.3.2. Let G be any graph with a proper edge-coloring and VCICM
M . If det(M) 6= 0 then the coloring of G is vdec.

In addition, if det(M) > 0 then M is positive definite, which also means
that it has no zero eigenvalues.

Unfortunately, Corollary 3.3.2 weakens Theorem 3.1.3, since the converse
is no longer necessarily true. Consider Figure 3.3.1. This graph has a vdec
coloring, but its VCICM is singular.

Theorem 3.1.3 helps us determine when a coloring is vdec, in a manner
which is easy to check by hand. Corollary 3.3.2 puts this property in terms of
the determinant, which we can more easily study using our knowledge of the
VCICM. As a result, we are interested in knowing when the determinant of
the VCICM is positive, as this guarantees a vdec coloring. By extension, we
are interested in knowing when the VCICM is singular. Unfortunately, the
VCICM may be singular for reasons other than having two identical columns,
so this makes our study less precise. However, we are also interested in the
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Figure 3.3.1: A vdec colored graph with a singular VCICM

determinant of the VCICM for theoretical purposes, and to give a more
complete description of the VCICM and its properties.

Using functions written in Mathematica, we have created vdec colorings
for a large variety of vdec graphs, and found the VCICM’s of each graph
coloring. See Section 4.5 for more details of the code generating these col-
orings. In many cases, M is singular. Some of this can be explained by
analyzing the matrix definition. We can write the VCICM M as a product
of the IM B and the ACM A in this way:

M = B(AAT BT ).

Also,
rk (XY ) ≤ min{rk X, rk Y }.

for matrices X, Y . We know that rk B = |V | − c0, where c0 is the number
of bipartite connected components of G. (See [16], pp. 175-178.) Thus if
G is bipartite, rk M ≤ rk B < |V |, so det M = 0. Similarly, if rk A < |V |
then det M = 0. This happens if fewer than |V | colors are used in the
edge-coloring.

As mentioned previously, this does not cover all cases in which G may be
vdec colored but has det M = 0. There are cases in which G is not bipartite
and at least |V | colors are used, but a linear dependence among the columns
of BA makes M singular. Unfortunately, we have not found any simple
combinatorial conditions which determine when this will happen.

We have also observed some general trends in the determinant of the
VCICM. Let G be a vdec graph, and consider the determinants of VCICM’s
M for various vdec colorings of G. Then in general:

• Colorings with fewer colors generally produce a larger determinant.
This is because fewer colors mean that each vertex (on average) shares
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more colors which each other vertex, so each entry in the VCICM is
larger.

• However, there is not a strictly monotonic relation between number of
colors and det M . There are typically many different colorings with a
fixed number of colors, each of which usually gives a different determi-
nant. It is quite possible for a coloring with k colors to have a smaller
determinant than one with k + 1 colors.

• The maximum coloring is unique, and the determinant it gives seems
to be a lower bound on the determinant given by other colorings of
the same graph.

Finally, we usually assume that all vdec graphs are connected. However,
we may treat disconnected graphs when examining the determinant of the
VCICM. Suppose a vdec graph G has several components Gi, 1 ≤ i ≤ k,
and that G is given a vdec coloring in which no color is used in two different
components. Write M(Gi) for the VCICM of Gi. Then the VCICM of G is
a block diagonal matrix with the VCICM’s of each Gi as the blocks:

M(G) =


M(G1) 0 0 0

0 M(G2) 0 0

0 0
. . . 0

0 0 0 M(Gk)


The determinant of a block diagonal matrix is the product of the deter-

minants of its blocks, so det M = (det M(G1))(detM(G2)) · · · (detM(Gk)).
Thus we may, in general, look at only individual components of a discon-
nected graph.

3.3.1 Value of det M for specific graphs and colorings

Every vdec graph has many possible colorings, so in general it is difficult to
find a simple expression for the determinant of the VCICM. However, max-
imum colorings (in which every edge of the graph has a different color) are
more manageable. We now present some of these results, and a conjecture
based on their pattern.

Let G = Ck, k ≥ 3, be given a maximum coloring. The VCICM for G
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is:

M =


2 1 0 1
1 2 1 · · · 0
0 1 2 0

...
. . . 1

1 0 0 1 2


We will show that

det M =
{

4, n is odd
0, n is even

(3.1)

The proof uses induction on n for several smaller matrices, which in turn
form the cofactor expansion of detM . We know that C2k is bipartite, so
det M = 0 always in this case. Thus we assume that G has 2k + 1 vertices.

Let M be the VCICM of C2k+1. Then M may be written as above.
Finding the determinant by cofactor expansion along the top row, we have

det M = 2


2 1 0
1 2 · · · 0

...
. . . 1

0 0 1 2

−


1 1 · · · 0
0 2 0

...
. . . 1

1 0 1 2

+


1 2 · · · 0
0 1 0

...
. . . 2

1 0 0 1


We need some notation to simplify this. Let

Xk =


2 1 0
1 2 · · · 0

...
. . . 1

0 0 1 2

 from the (1, 1)-cofactor of M

Yk =


1 1 · · · 0
0 2 0

...
. . . 1

1 0 1 2

 from the (1, 2)-cofactor of M

Zk =


1 2 · · · 0
0 1 0

...
. . . 2

1 0 0 1

 from the (1, 2k + 1)-cofactor of M

In each, the subscript k indicates that the matrix has dimensions k × k.
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Suppose M has dimensions 2k+1×2k+1. We may factor M as follows:

det M = 2det X2k − det Y2k + det Z2k.

Now, we expand each smaller matrix by cofactors. Let n be any positive
integer. To begin, detXn may be expanded along the top row. This yields

det Xn = 2det Xn−1 − det Xn−2.

Note that we have combined two steps to obtain the final term. Similarly,
det Yn may be expanded along the left column, giving

det Yn = detXn−1 + (−1)n+1.

Note that we have combined two steps to obtain the final term. This comes
from the fact that the (2k, 1)-cofactor of Y2k+1 has a single 1 in its top row.
Expanding along this, we get an upper-triangular matrix with all 1’s on the
diagonal.

Also, det Zn may be expanded along the left column, giving

det Zn = 1 + (−1)n+1Xn−1.

We will now perform several simultaneous inductions to find the determi-
nants of some of these matrices. First, det Xn = n+1. We need two matrices
as our basis cases:∣∣∣∣ 2 1

1 2

∣∣∣∣ = 3 = n + 1 and

∣∣∣∣∣∣
2 1 0
1 2 1
0 1 2

∣∣∣∣∣∣ = 4 = n + 1.

Second, detYn = n + (−1)n+1. As a basis case,∣∣∣∣ 1 1
1 2

∣∣∣∣ = 1 = n− 1.

Suppose that these hypotheses hold for all k < n. Then from the equations
above,

det Xn = 2Xn−1 −Xn−2 = 2n− (n− 1) = n + 1
det Yn = Xn−1 + (−1)n+1 = n + (−1)n+1

Thus by induction, our equations are correct. Substituting into the above
equation for detM with n = 2k + 1, we have

det M = 2n−(n−1+(−1)n)+1+(−1)n(n−1) = 2n−n+1+1+1−n+1 = 4
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Thus det M = 4 for all C2k+1.
We may find a similar result for complete graphs. Let G = Kn with a

maximum coloring. Then

det M = 4
(

n− 1
2

)
(n− 2)n−2.

This may be proved much as Equation (3.1) was proved, by expanding a
general VCICM for a maximum colored Kn by cofactors. Several inductive
arguments give the determinants of the cofactors, and thus this result.

If G = Pk, k ≥ 2 with a maximum coloring, then G is bipartite. Thus

det M = 0.

This also holds for all Km,n.
Note that all maximum colorings thus far have detM = 4k for some non-

negative integer k. This is true in general, and can be generalized somewhat
depending on properties of the coloring.

Theorem 3.3.3. Let G be a vdec graph with a proper edge-coloring and
VCICM M . Suppose that each color is used on a multiple of j ≥ 1 edges.
Then det M = 4j2k for some integer k ≥ 0.

Before we prove Theorem 3.3.3, we require several supporting lemmas.

Lemma 3.3.4. Let j ∈ Z. Let M be a square (0, 1) matrix such that the
number of ones in each row is an integer multiple of j. Then det M = kj
for some k ∈ Z.

Proof. Note that distinct rows may have different numbers of ones, as long
as each has a multiple of j ones.

Let c1, . . . , cn represent the columns of M . The determinant of M does
not change if we replace column ci with ci + cj , i 6= j. Applying this repeat-
edly, we obtain a matrix A whose first column is the sum of all columns of
M :

A = [c1 + c2 + . . . + cn, c2, · · · , cn] .

Thus
det M = detA.

However, each entry of the column c = c1 + . . . + cn must be an integer
multiple of j. This happens because the ith entry of c is the sum of the
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entries in row i of M , which is a multiple of j. Thus (c1 + . . . + cn)/j is a
vector with integer entries. Define matrix B as follows:

B =
[
1
j

(c1 + c2 + . . . + cn) , c2, · · · , cn

]
.

Note that B is still an integer matrix, so detB ∈ Z. We also know that
multiplying one column of a matrix by a scalar multiplies the determinant
by the same amount. Thus:

det M = detA = j det B.

Therefore, det M is an integer multiple of j.

Suppose we find a submatrix of a matrix M by taking only rows i1, . . . , ik

and only columns j1, . . . , jl. We will denote this l×k submatrix by M
(

i1,...,ik
j1,...,jl

)
.

The following theorem proves to be very useful in our proof:

Theorem 3.3.5. (Binet-Cauchy) Suppose that A and B are p× q and q×p
matrices, respectively, with p ≤ q. Let i1, . . . , ip be distinct indices. Then

det AB =
∑

j1<j2<···<jp

det A

(
i1, i2, . . . , ip
j1, j2, . . . , jp

)
det B

(
j1, j2, . . . , jp

i1, i2, . . . , ip

)
.

Note that, since A has p rows and B has p columns, we take all rows of
A and all columns of B. This theorem, with the above lemma, allow us to
prove Theorem 3.3.3.

Proof. (Theorem 3.3.3) We know that the VCICM M can be written as M =
F T F . Let G have n vertices, and c colors used on its edges. We may assume
that F is a n×c matrix in which n ≤ c. If not, then rk M < n, so detM = 0.
Thus, we may apply the Binet-Cauchy theorem to M . Let n be the number
of vertices in G. The determinants within the summation in the Binet-
Cauchy theorem are corresponding submatrices of F T and F . Since the
determinant of the transpose of a matrix is the same as the determinant of
the original matrix, we simplify the Binet-Cauchy theorem to the following:

det M =
∑

S: S is an n× n
submatrix of F

(det S)2. (3.2)

However, each n × n submatrix S of F has some special properties. In
particular, S is a (0, 1) square matrix whose columns are indexed by colors
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and rows are indexed by vertices. The columns represent a subset of the
colors used in G, but the rows cover every vertex. The (v, c) entry is 1
if vertex v is incident to an edge of color c, and 0 otherwise. Thus, each
column has a multiple of 2j ones: each edge is incident to two vertices, so if
j edges use color ci, then 2j vertices are incident to an edge of color ci.

By Lemma 3.3.4, |S| is a multiple of 2j, so |S|2 is a multiple of 4j2.
Thus 4j2 is a factor of every term in the summation in Equation (3.2).
Thus, det M = 4j2k for some integer k ≥ 0, as required.

As an immediate corollary, we have:

Corollary 3.3.6. For every vdec graph with a proper edge-coloring, the
VCICM M of G satisfies det M = 4k for some nonnegative integer k.

For most colorings, this is the most we can say. However, Theorem 3.3.3
also gives some more insight into the colorings for which M is singular. Since
each term of the summation in the proof of Theorem 3.3.3 is squared, the
terms are all nonnegative. Thus, the VCICM is singular only if every term
of the summation is exactly zero. Equivalently, every n× n submatrix of F
must be singular.

How may this happen? Let S be an n×n submatrix of F . The columns
of S are indexed by a subset C ′ of the colors used on G. Note that if G
is colored with more than n colors, not all colors used on G appear in C ′.
Suppose there is a vertex v of G such that S(v) ∩ C ′ = ∅. Thus, we have a
zero row, and S is singular. In addition, the columns of S may be linearly
dependent in other ways. Unfortunately, we have not found any simple
conditions which determine when this happens.

The next section gives a construction which affects the determinant of
the VCICM in a predictable way.

3.3.2 Appending Trees

We begin by showing that appending a leaf to a graph G affects the VCICM
in a predictable way. Let G be a vdec graph with a vdec coloring and
VCICM M . Create G′ from G by appending a leaf: add a new vertex w
and connect the vertex to any existing vertex v of G. Color this new edge
with some color not used in the rest of the graph. This operation does not
change the determinant of the VCICM, as proved in the following result:

Lemma 3.3.7. Let G be a nontrivial vdec graph with a vdec coloring and
VCICM M . Let G′ be G with a leaf appended. Let M ′ be the VCICM of G′.
Then G′ is vdec, the coloring of G′ is vdec, and det M = detM ′.
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Proof. Let w be the new leaf and v be the vertex of G to which it was
attached. Since G is nontrivial and vdec, G′ must have no isolated edges or
vertices. Also, edge vw uses a new color, so v is still distinguished from all
other vertices. Similarly, w must be distinguished, because no other leaves
could use its color.

By appending a leaf w to G at vertex v, the VCICM gains one row and
one column. Because the color of wv is not used elsewhere, w will share
no colors with most vertices, and exactly one color with itself and v. In
addition, the degree of vertex v is increased by one, so Mvv increases. Thus,
M ′ can be written as:

M ′ =



1 0 · · · 1 · · · 0
0
...
1
...
0

M+


,

where M+ is equal to M , except M+
vv = Mvv + 1.

We find detM ′ by expanding by cofactors along the left column. This
gives det M ′ = detM+ +(−1)1+i det N , where i is the position of row v and
N is M ′ with row v removed.

N =
[

0 · · · 1 · · · 0
[M − row v]

]
But, detN can be found by expanding along the top row, which gives us
det N = (−1)1+i−1 det C where C is M with row and column v removed,
that is, the (v, v)-cofactor of M .

We now have detM ′ = detM+ − det C. Suppose that we found det M+

by expanding along row v and det M by expanding along the same row.
The only term which differs between these two expansions is the cofactor
of (v, v). This cofactor is C in both cases, but its coefficient is exactly one
larger in detM+. So, detM ′ = detM+ − det C = detM .

This can be generalized by repeatedly appending edges of new colors, as
in the following theorem:

Theorem 3.3.8. (Appending Construction) Let G be a nontrivial vdec
graph with a vdec coloring and VCICM M . Let T be a maximum colored
tree which does not use any colors used in G. Obtain G′ by identifying one
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vertex v of G with one vertex w of T . Let M ′ be the VCICM of G′. Then
G′ is vdec, the coloring of G′ is vdec, and det M = detM ′.

Proof. Repeatedly append edges of T to G, beginning with one edge incident
to w and working outwards. At each step, we have appended a single leaf,
which keeps the determinant unchanged as in Lemma 3.3.7. Thus detM =
det M ′. Similarly, the graph remains nontrivial, and each step has a vdec
coloring, so the coloring of the final graph is also vdec, with a vdec coloring.
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Chapter 4

VCICM Eigenvalues

In Chapter 3, we introduced the VCICM and examined its determinant.
In this chapter, we continue the exploration of the VCICM’s properties by
examining its eigenvalues. We begin with some basic properties of the eigen-
values and eigenvectors of the VCICM. We also examine the link between
the VCICM and the adjacency matrix, which provides several bounds and
related results for specific graphs. After examining the values of the eigen-
values and eigenvectors for some standard graphs, we present several upper
and lower bounds on the largest eigenvalue of the VCICM.

Many of these bounds will involve the number of colors used to color
a graph. One motivation for investigating these bounds is to use them to
find bounds on χ′

s(G). The relationship of the eigenvalues of the VCICM
to some bounds on χ′

s(G) is discussed in Section 4.9. Unfortunately, our
investigation mostly fails in finding good bounds on χ′

s(G). However, we do
provide a thorough basis for future work.

We also frequently examine the eigenvalues of maximum colorings. Nat-
urally, we already know the number of colors used in these colorings. How-
ever, the VCICM’s of these colorings are often the most accessible VCICM’s.
They also admit analysis in some interesting ways, which is of theoretical
interest.

4.1 Notation

For a vdec graph G with n vertices, we denote the eigenvalues of the VCICM
as λ1 > λ2 ≥ · · · ≥ λn. (The initial strict inequality will be justified
shortly.) The degree sequence of G will be denoted d1 ≥ d2 ≥ · · · ≥ dn in
nonincreasing order, with repeated degrees included. As before, the number
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of vertices of degree k will be nk.
We will often make use of the vector consisting entirely of 1’s. We denote

this by ~1, and its dimension is n unless otherwise stated. Similarly, I is the
n × n identity matrix and J is the n × n matrix of all 1’s, unless their size
is otherwise stated.

Finally, we denote the number of edges in a graph by e = |E|. Later
bounds will use this value very often.

4.2 Basic Properties

Let G be a vdec graph with a proper edge-coloring and VCICM M . We
know that

det M = λ1λ2 · · ·λn.

Therefore, det M > 0 if and only if λi > 0 for all i. In other words, we have:

Corollary 4.2.1. If 0 is not an eigenvalue of M , then the coloring of G is
vdec.

Let G be given any proper edge-coloring. Every vertex shares at least one
color with each of its neighbors. Thus if ij is an edge of G, then Mij ≥ 1 for
every edge-coloring of G. The underlying directed graph X of M is a graph
on V containing edge ij if and only if Mij 6= 0. The underlying directed
graph of M thus contains a subgraph X which is a directed version of G.
That is, for every edge uv of G, X contains two directed arcs uv and vu.
We always assume that G is connected, so X will be strongly connected.
Such a graph is called irreducible, and thus the Perron-Frobenius Theorem
applies to M . (See [16], pp. 175-178.)

Theorem 4.2.2. (Perron-Frobenius) Suppose A is a real nonnegative n×n
matrix whose underlying directed graph X is strongly connected. Then the
largest eigenvalue λ1 of A is real and simple. If x is an eigenvector of λ1,
then no entries of x are zero, and all have the same sign.

We have several other useful properties:

• As a consequence of the Perron-Frobenius Theorem, the largest eigen-
value λ1 of M is always positive, real, and simple. Because λ1 > 0
and all entries of M are positive, all entries of the eigenvector x cor-
responding to λ1 will be strictly positive as well.
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• Since M is a real symmetric matrix, eigenvectors corresponding to dif-
ferent eigenvalues will be orthogonal. In particular, if v is the eigen-
vector corresponding to λ1, then all other eigenvectors of M will be
orthogonal to v.

• We usually assume that all vdec graphs are connected. However, we
may look at the eigenvalues of disconnected graphs easily. As with
the determinant, we can analyze disconnected graphs in terms of their
components. Let G be a vdec graph with a vdec coloring, and com-
ponents Gi, 1 ≤ i ≤ k. Suppose each color is used in at most one
component. Let M(Gi) be the VCICM of component Gi. Then as in
Section 3.2, the VCICM M of G is a block diagonal matrix consisting
of the VCICM’s of each component. If v is an eigenvector of one such
component’s VCICM, we may add an appropriate number of zeroes
to v to make it an eigenvector of M with the same eigenvalue. In
addition, each pair of eigenvectors so derived from different compo-
nents must be orthogonal: none of their nonzero elements coincide.
Similarly, two eigenvectors from the same component with different
eigenvalues will be orthogonal. Thus we have the correct number of
eigenvectors for M , so every eigenvector of M must correspond to an
eigenvector of some component. The eigenvalues of M are then exactly
the eigenvalues of its components.

Example 4.2.3. Let G1 be a minimum-colored K3, and G2 a minimum-
colored K4, using different colors for each minimum coloring. Let G be the
union of G1 and G2. The VCICM’s of these graphs are given in Figure
4.2.1.

Consider each graph individually. The eigenvalues of M(G1) are (4, 1, 1),
with corresponding eigenvectors (1, 1, 1), (−1, 0, 1), and (−1, 1, 0). The eigen-
values of M(G2) are (8, 2, 2, 0) with corresponding eigenvectors (1, 1, 1, 1),
(0,−1, 0, 1), (−1, 0, 1, 0), and (−1, 1,−1, 1).

Now, consider the graph union G = G1 ∪ G2. Thus, the eigenvalues of
M(G) are (8, 4, 2, 2, 1, 1, 0), which is the disjoint union of the eigenvalues of
each submatrix. The eigenvector corresponding to 8 is exactly the eigenvector
for M(G2) corresponding to eigenvalue 8, with zeroes added at the beginning:
(0, 0, 0, 1, 1, 1, 1). Note that we add three zeroes, and that M(G1) is 3 × 3.
Similarly, one eigenvector corresponding to 1 is (−1, 0, 1, 0, 0, 0, 0). The
other eigenvectors similarly have zeroes inserted at the beginning and end as
appropriate.
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M(G1) =

 2 1 1
1 2 1
1 1 2

 M(G2) =


3 2 1 2
2 3 2 1
1 2 3 2
2 1 2 3



M(G) =



2 1 1 0 0 0 0
1 2 1 0 0 0 0
1 1 2 0 0 0 0
0 0 0 3 2 1 2
0 0 0 2 3 2 1
0 0 0 1 2 3 2
0 0 0 2 1 2 3


Figure 4.2.1: VCICM’s for the union of a minimum colored K3 and K4

4.3 Eigenvalues and Eigenvectors of
Standard Graphs

This section contains data on the eigenvalues and eigenvectors of the VCICM’s
of various standard graphs. We present values for the maximum colorings
of all such graphs, as well as for some other colorings. Frequently, it is very
difficult to obtain exact values for the eigenvalues of the VCICM’s of color-
ings more complex than a maximum coloring. Most eigenvalue results will
be written in the form

(λ〈m1〉
1 , λ

〈m2〉
2 , . . .)

in nonincreasing order. Here, mi is the multiplicity of λi. Usually, only the
eigenvector corresponding to the largest eigenvalue will be presented.

• Complete Graphs: For a maximum coloring, the eigenvalues of Kn are
(2n− 2〈1〉, n− 2〈n−1〉). The eigenvector corresponding to 2n− 2 is ~1.

For a minimum coloring, the largest eigenvalue is λ1 = (n − 1)2 if n
is odd, and (n − 2)2 + n if n is even. In either case, the eigenvector
corresponding to λ1 is ~1.

• Complete Bipartite Graphs: For a maximum coloring, the eigenvalues
of Ki,j are (i + j〈1〉, j〈i−1〉, i〈j−1〉, 0) The eigenvector corresponding to
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i + j is (i, . . . , i, j, . . . , j) in which i appears j times, and j appears i
times.

• Cycles: For a maximum coloring, the eigenvalues of Cn are{
2 + 2 cos

(
2kπ

n

)
| k = 1, 2, . . . , n

}
The largest eigenvalue is always 4 with multiplicity 2 and eigenvector
~1. If n is even, the eigenvalue 0 has multiplicity 2. Otherwise, all
other eigenvalues have multiplicity 1. This result uses techniques from
Section 4.4, and the eigenvalues of the adjacency matrix of Cn given
in [20].

• Paths: Even the largest eigenvalue of most paths is difficult to state
in general. Using Equation (4.10) (from below), we have λ1 ≤ 2∆, so
λ1 ≤ 4. In fact, as n increases, λ1 approaches 4. The eigenvectors are
similarly unpleasant.

• Wheels: Let
k =

2n− 2
6− n +

√
n2 − 8n + 32

.

Then the largest eigenvalue of a maximum colored Wn is

λ = 5 +
1
k

with eigenvector
(1, k, . . . , k).

We will present the derivation of this eigenvalue and eigenvector. The
technique used is to guess an eigenvector, and use it to find an eigen-
value. Using Mathematica, we have seen a pattern in the largest eigen-
vector of Wn: specifically, for some value k < 1, the eigenvector ap-
pears to be (1, k, . . . , k). Supposing that this is true in general, we
will attempt to find k. Suppose v = (1, k, . . . , k) is the eigenvalue
associated with λ.

The VCICM of a maximum colored Wn has a nice structure. In gen-
eral, it is: 

n− 1 1 1 1 1 · · · 1
1 3 1 0 0 1
1 1 3 1 0 0
1 0 1 3 1 0

...
. . .

1 1 0 0 1 3


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One row has diagonal entry n − 1 and all ones following. This corre-
sponds to the “hub” of the wheel. Each other row has diagonal entry
3, a 1 in the column corresponding to the hub, and two other 1’s. We
can extract a value for k by considering the dot product of v with two
rows. First, the row corresponding to the hub:

λ = (n− 1, 1, . . . , 1) · (1, k, . . . , k)
= (n− 1) + (n− 1)k
= (n− 1)(k + 1).

Second, a generic row corresponding to a “spoke”:

λk = (1, 0, . . . , 0, 1, 3, 1) · (1, k, . . . , k)
= 1 + k + 3k + k

= 1 + 5k.

Putting these together, we have

(n− 1)(k − 1) =
1 + 5k

k
.

Solving, we find that

k =
−(n− 6)±

√
n2 − 8n + 32

2n− 2
.

We take only the positive term, as we are looking for a positive simple
eigenvalue. Substituting into our expression for λ, we find

λ = 5 +
1
k
.

Checking, this does indeed give an eigenvector and eigenvalue of M .
The eigenvalue is positive, and the associated eigenvector is entirely
positive. For a square real symmetric matrix (such as M), the largest
eigenvalue has a single (all positive) eigenvector v, and all other eigen-
vectors are orthogonal to v. Thus, all other eigenvectors must have a
0 or negative term. So, (1, k, . . . , k) must be the single eigenvalue as-
sociated with the largest eigenvalue of M . Thus λ must be the largest
eigenvalue of M .

Similarly, the largest eigenvalue for the minimum coloring of Wn given
in Section 2.1 is λ = n+8 with associated eigenvector (1, 3

n−1 , . . . , 3
n−1).

This may be found using an argument similar to the above.
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• Triangle Graphs: Let

k =
n + 2 +

√
(n + 6)(n− 2)
2

.

The largest eigenvalue for a maximum colored Tn is

λ = 2k + 2.

The associated eigenvector is

(k, k, 1, . . . , 1).

This may be found by using an argument similar to that presented for
wheel graphs.

• Hypercubes: The hypercube Qn on n = 2k vertices is a k-regular graph
which may be represented as follows: each vertex is a distinct binary
string of length k. Vertices are adjacent if their binary strings differ in
exactly one position. The eigenvalues of the adjacency matrix A are
of the form k − 2i, for i = 0, . . . , k. The multiplicity of k − 2i is

(
k
i

)
.

Using the techniques from Section 4.4, the eigenvalues of the VCICM
of a maximum colored Qn are 2k − 2i, for i = 0, . . . , k with 2k − 2i
having multiplicity

(
k
i

)
[20].

4.4 Results from the Adjacency Matrix

The adjacency matrix is the focus of much of spectral graph theory. Let
G = (V,E) be a graph. Then the adjacency matrix A of G has rows and
columns indexed by V . Entry Aij is 1 if i and j are adjacent, and 0 otherwise.

Let A be the adjacency matrix of G, and let D be a diagonal matrix
containing the degree sequence of G. The eigenvalues of D are given by the
degrees of vertices of G. From Lemma 3.2.1, we know that the VCICM of a
maximum colored graph G can be written as

M = D + A.

If D = kI (i.e. if G is regular), then the eigenvalues of M will be the sum
of the eigenvalues of D and A. To prove this, let v be an eigenvector of A
corresponding to eigenvalue α. Note that v is also an eigenvector of I, so it
is an eigenvector of kI. Then:

(A + D)v = (A + kI)v = (αv + kv) = (α + k)v.
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This allows us to use many tools from spectral graph theory to analyze the
eigenvalues of a regular maximum colored graph. This connection to the
adjacency matrix gives some insight into the structure of the VCICM, and
provides an interesting reason to study maximum colorings.

We denote the eigenvalues of A as α1 > . . . ≥ αn, in nonincreasing
order. Repeated eigenvalues will be included. Much is known about the
eigenvalues of A. We make use of many results from Godsil and Royle [16].
In particular, the largest eigenvalue of A is simple and positive.

Let G be a k-regular graph with a maximum coloring and VCICM M .
Using this notation, we can write the eigenvalues of M in terms of the
eigenvalues of A, as follows:

Lemma 4.4.1. Let G be a k-regular graph with a maximum coloring and
VCICM M . Let αi be the eigenvalues of A and λi the eigenvalues of M , all
in nonincreasing order. Then

λi = k + αi, for all 1 ≤ i ≤ n.

This gives us some simple bounds on the eigenvalues. The largest eigen-
value of A is k = ∆, so

λ1 = 2k. (4.1)

The eigenvector corresponding to this is ~1. We can also bound in the other
direction. For example, we know that λi ≥ 0, so

αi ≥ −k. (4.2)

This bound on αn is tight for some graphs, such as C4. If M is positive
definite, the inequality will be strict.

4.4.1 Strongly Regular Graphs

A strongly regular graph or SRG is a regular graph which satisfies additional
restrictions: for any pair of distinct vertices v, w, the number of common
neighbors of v and w depends only on whether v and w are adjacent. An
SRG is usually denoted by its parameters (n, k; a, c), in which n is the order
of the graph, k is the regularity, a is the number of common neighbors of
adjacent vertices, and c is the number of common neighbors of nonadjacent
vertices. SRG’s have a great deal of structure, and their eigenvalues are
completely determined by their parameters. All SRG’s have exactly three
eigenvalues. We follow the notation in [16] and denote the eigenvalues as
follows.
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k the simple largest eigenvalue

θ = (a−c)+
√

(a−c)2+4(k−c)

2 with multiplicity − (n−1)τ+k
θ−τ

τ = (a−c)−
√

(a−c)2+4(k−c)

2 with multiplicity (n−1)θ+k
θ−τ

Thus, the eigenvalues of the VCICM of a maximum colored SRG are
completely determined:

2k the simple largest eigenvalue
θ + k with multiplicity − (n−1)τ+k

θ−τ

τ + k with multiplicity (n−1)θ+k
θ−τ

Figure 4.4.1: The Petersen graph

Example 4.4.2. The Petersen graph (see Figure 4.4.1) is an SRG with
parameters (10, 3; 0, 1). The eigenvalues of its adjacency matrix are thus
3 (simple), 1 (multiplicity 5), and −2 (multiplicity 4). If it is maximum
colored, the eigenvalues of its VCICM M are 6, 4, and 1 with the same
respective multiplicities.

Other common examples of SRG’s include the line graphs of Kn and
Kn,n. Additionally, graphs arising from Latin Squares and Orthogonal Ar-
rays are strongly regular, as are incidence graphs from certain designs. Of
particular interest is the fact that only one class of SRG’s has non-integral
eigenvalues. These are exactly the Conference graphs, which occur only
when the multiplicities of τ and θ are equal. If G is an SRG but not a
Conference graph, then all of its eigenvalues are integral (See [16], Chapter
10). This transfers directly to vdec colorings of these graphs:
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Observation 4.4.3. The eigenvalues of the VCICM M of a maximum vdec
coloring of an SRG G will always be integral if the multiplicities of τ and θ
are different.

We have very detailed knowledge of the eigenvalues of SRG’s, and we
also know that the determinant of the VCICM M is zero exactly when some
eigenvalue of M is zero. Thus, it is natural to use our knowledge of SRG’s
to determine when this happens.

Lemma 4.4.4. Let G be a strongly regular vdec graph with parameters
(n, k; a, c). Let G be given a maximum coloring, and let M be the VCICM
of G. Then det M = 0 if and only if G = Kn−k−1,...,n−k−1.

Proof. Suppose G is Kn−k−1,...,n−k−1, with m vertex classes. Then G is an
SRG, with parameters (n, k;−n + 2k + 2, k). Using our equations for τ and
θ from above, one of the eigenvalues of G is 0, so det M = 0.

Now suppose detM = 0. This portion of the proof will use many iden-
tities from Godsil and Royle ([16], Chapter 10). We have some λi = 0, so
the corresponding αi = −k for the adjacency matrix A. Thus, it must be
that τ = −k is one of the eigenvalues of SRG G. We have θτ = c − k, so
θ = −(c − k)/k (we may assume that k 6= 0 or else the graph is empty).
Thus θ = 1− c/k. In addition, we have that θ + τ = a− c, so θ = a− c + k.

We know that θ must be integral unless G is a Conference graph. We
also have two expressions for θ. Equating them, we have:

1− c

k
= a− c + k

k − c = ka− kc + k2

k(1− a + c− k) = c

We also have two useful facts. First, a, c, k ≥ 0. Second, we always
have k ≥ c. This happens because k is the number of neighbors of each
vertex, and c is the number of neighbors in common with another, non-
adjacent vertex. Thus we cannot have c > k, so c−k ≤ 0. There are several
possibilities:

• Case 1: c = 0. We may assume that k 6= 0, so we must have 1− a +
c − k = 0. Then 1 = a + k − c. We also know that c − k ≤ 0, so we
have two subcases:

– Case 1a: c − k = 0. Then k = c, so a = 1. This gives θ = 0.
However, from θ + τ = a − c we have −k = 1 − k which is
impossible.
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– Case 1b: c−k < 0. Since a is nonnegative, we must have c−k =
−1, and thus a = 0. From θ = a− c + k, we get θ = 1. But then
the equation θτ = c− k gives us 1 · (−k) = −1, so k = 1. Thus G
would consist only of disconnected edges, meaning that it is not
vdec. Thus this case is also impossible.

• Case 2: c > 0. Then 1 − a + c − k > 0. We know that c − k ≤ 0, so
we must have c = k. Thus a < 1, so a = 0. This gives θ = 0.

Thus we have θ integral, in particular θ = 0. From the only case which does
not give a contradiction, we have found that the eigenvalues of our SRG are:

θ = −k, τ = 0, and k.

Thus our SRG has parameters

(n, k; 0, k).

We have a simple set of equations to find the parameters of the complement
of a graph. Using these, the complement of any graph with these parameters
has parameters

(n, k; a, c) = (n, n− k − 1;n− k − 2, n− 2k).

Note that a = k − 1. By Godsil and Royle’s Lemma 10.1.1 [16], this graph
must be isomorphic to mKn−k = mKk+1 for some m > 1. Thus the original
graph was isomorphic to a complete multipartite graph Kn−k−1,...,n−k−1 on
n vertices. Thus our result is proved for all cases.

Thus, if G is an SRG, M has zero as an eigenvalue exactly when G is a
complete multipartite graph. As a corollary, detM > 0 for all other vdec
SRG’s with maximum colorings.

4.4.2 Complements

The complement of a vdec graph may or may not be vdec. If it is, we may
give it a maximum coloring and algebraically determine the eigenvalues of
its VCICM.

The complement G of G has edges exactly where G does not have edges.
The vertices of the complement have degrees di = n−di. Thus, the VCICM
M has 0’s exactly where the original VCICM M had 1’s off-diagonal, and
vice-versa. Corresponding diagonal entries sum to n− 1. Thus we have

M + M = J + (n− 2)I.
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We can use this to characterize the eigenvalues of the VCICM of the
complement of a regular vdec graph:

Lemma 4.4.5. Let G be a k-regular vdec graph such that G is also vdec. Let
G be given a maximum coloring, and VCICM M . Let G be the complement
of G, with a maximum coloring and VCICM M . Then the eigenvalues λi of
M are exactly

λ1 = 2n− 2− λ1

and
λi = n− λn−i+1 − 2 for 2 ≤ i ≤ n− 1.

Proof. We know that M has eigenvector ~1 corresponding to λ1 = k, so let
v be another eigenvector of M with eigenvalue λ. Then v is orthogonal to
~1, and thus Jv = 0. We can write

(M + M)v = (J + (n− 2)I)v = (n− 2)v. (4.3)

Similarly,
(M + M)v = λv + Mv. (4.4)

Combining Equations (4.3) and (4.4), we have

Mv = (n− λ− 2)v.

Thus, for each eigenvalue λi of M , n−λi− 2 is an eigenvalue of M with the
same eigenvector. We could restate this as:

λi = n− λn−i+1 − 2.

This takes into account the fact that the largest eigenvalue of M will give
the smallest eigenvalue of M , and so on.

For the largest eigenvalue λ1, the associated eigenvector is ~1. Although
~1 is not orthogonal to the rows of J , we may apply the same argument. This
gives an extra n~1 term, which in turn gives:

λ1 = 2n− λ1 − 2.

If G is not regular, we can follow a similar argument to find a slightly
weaker result:

Lemma 4.4.6. Let G be any vdec graph such that G is also vdec. Let G be
given a maximum coloring, with VCICM M . Let G be the complement of
G, with a maximum coloring and VCICM M . Let θi be the eigenvalues of
M − J . Then the eigenvalues λi of M are exactly

λi = n− θn−i+1 − 2, for 1 ≤ i ≤ n.
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If G is regular, all but the largest eigenvector will be orthogonal to the
rows of J , so the eigenvalues we obtain will be the same as above.

This raises a natural question: if G is vdec, when is G vdec? Note that
this may not necessarily include only regular graphs. We must have at most
one isolated vertex in G, so there must be at most one vertex of degree n−1
in G. There must be no isolated edges, so there must be no pair of vertices
v, w in G such that vw 6∈ E(G) and deg v = deg w = n− 2.

Thus, very many of our standard graphs have vdec complements. In
particular, all of the following are vdec graphs whose complements are also
vdec:

• Cycles Cn with n ≥ 5.

• Paths Pn with n ≥ 4.

• Complete bipartite graphs Km,n with m,n ≥ 3.

• Wheels Wn with n ≥ 5.

Note that this does not depend on G being connected.
We also have some interesting bounds on the values of the eigenvalues of

the VCICM of the complement graph. For example, for a k-regular graph
whose complement is vdec, we know that λi ≥ 0, so

λi ≤ n− 2, for 2 ≤ i ≤ n− 1.

Note that this is tight for maximum colorings of Kn and Tn, among others.

4.5 A Note on Eigenvalue Plots

In the next sections, we will see many plots which demonstrate the tightness
of various bounds on the largest eigenvalue of the VCICM. This section
explains these plots, and the method used to generate them.

Figure 4.5.1 demonstrates a typical plot.
The plot represents eigenvalues of various colorings of a single graph G.

Each point on the plot represents the largest eigenvalue of the VCICM of a
particular coloring of G. The horizontal axis represents the number of colors
used in the coloring, and the vertical axis represents the largest eigenvalue of
the VCICM. Note that for a given number of colors, there are many different
colorings, and thus many different eigenvalues. The line running below (or
above) these points is the bound currently being examined.
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Figure 4.5.1: A sample eigenvalue plot

The data points correspond to different graph colorings, so we must have
a method to obtain these colorings. This may be split up into several related
functions:

Function: RandomEdgeColor
Input: A graph G, coloring size parameter 0 < s ≤ 1.

For i = 1 to |E|

(a) If edge ei may be properly colored with an existing color, ran-
domly select one such color cj .

(b) Generate a new unused color ck.
(c) Randomly select 0 ≤ r ≤ 1 with uniform distribution.

i. If cj exists and r > s, color ei with cj .
ii. Otherwise, color ei with ck.

Output: G with a proper edge-coloring.

In words, the RandomEdgeColor function colors a graph one edge at a
time. Its goal is to create a proper edge-coloring, not necessarily a vdec
coloring. At each step, it determines which colors may be used to color
the edge ei so as to maintain a proper edge-coloring. It also generates a
new, previously unused color. The parameter s determines which is used. If
s = 1, we get a maximum coloring. If s is near 0, we get a near-minimum
edge-coloring. Thus, the parameter may be used to control the number of
colors used in the coloring.
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Function: RandomVDECColor
Input: A vdec graph G, coloring size parameter 0 < s ≤ 1.

1. RandomEdgeColor G with s.

2. If the coloring of G is not vdec, go to 1.

Output: G with a vdec coloring.

The RandomVDECColor function relies on the fact that the RandomEdge-
Color function often produces vdec colorings. This function keeps trying to
color G until one coloring is vdec. The input graph must be vdec, so this
is likely to happen eventually. The larger the value of s, the faster this will
happen.

To generate plots, we wish to ensure a wide range of colorings. This
may be done by repeatedly calling RandomVDECColor with a range of s
values. This will force colorings with different numbers of colors, giving a
representative sample of the eigenvalues. This method has been used to
generate all eigenvalue plots in this thesis. Thus, each plot may be taken to
be representative of the possible vdec colorings of G. Of course, not every
possible coloring may appear on the plot.

A typical plot has 1000 data points (some may coincide). The s range is
from .05 to .95 in steps of .1, with 100 colorings per s-value. This guarantees
several near-minimum colorings, and a maximum coloring, as well as many
other colorings. Some plots will also include an upper line of data points,
which come from the “largest” possible coloring for a given number of colors.
These colorings give the VCICM with the largest average row sum, which
will prove important. These may not be vdec colorings, but they are proper
edge-colorings.

4.6 Lower Bounds in General

This section presents many lower bounds on the largest eigenvalue of the
VCICM. These bounds are tight for many graphs and colorings. Some de-
pend on specific graphs or colorings, but many work for any vdec graph
with any vdec coloring. In this and following sections, we will use λ = λ1 to
denote the largest eigenvalue. The strictly positive eigenvector associated
with λ will be denoted v, with entries (v1, . . . , vn). Unless otherwise noted,
v will be normalized, so that its largest entry is 1.

We will begin with a quick estimate of the eigenvalue. Let G be a vdec
graph with any proper edge-coloring, and let M be its VCICM. We may
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write the dot product of one row of M with v as:

λvi = Miivi +
n∑

j=1,j 6=i

Mijvj

> Miivi.

This estimate is valid because each term in the summation is at least zero.
At least one off-diagonal element is nonzero in the VCICM, thus making the
inequality strict. However, we made no assumptions about Mii. This gives
us a simple lower bound on λ:

Lower Bound 4.6.1. Let G be a vdec graph with VCICM M . Then λ > ∆.

Proof. In the VCICM, the diagonal entries are equal to the degrees of ver-
tices of G, including vertices of maximum degree. Using the above bounding
argument, we may divide by vi 6= 0 and take Mii to represent a vertex of
maximum degree. This gives the result.

We may generalize this result to any real nonnegative symmetric square
matrix M which has an entirely positive eigenvector. For example, any non-
negative symmetric matrix for which the Perron-Frobenius theorem holds
will suffice, although the inequality may not be strict. If each row has
at least one nonzero off-diagonal element, then the inequality will remain
strict. This will happen because the estimate involves removing the summa-
tion, which includes a term for each off-diagonal entry. The matrix satisfies
the Perron-Frobenius Theorem, so the entries in v will be entirely positive.
Thus, at least one term of the summation is nonzero.

In fact, we know of no graphs with λ < ∆ + 1. However, λ = ∆ + 1 is
tight. The star graph on n vertices has exactly one vdec coloring, which has
λ = ∆ + 1 and associated eigenvector (1, 1

n−1 , 1
n−1 , . . . , 1

n−1). A proof that
λ ≥ ∆ + 1 is, as yet, unknown.

Conjecture 4.6.2. Let G be a vdec graph with VCICM M . Then λ ≥ ∆+1.

4.7 Average Row Sum Lower Bounds

Our most fruitful lower bounds will come from the average row sum of the
VCICM.

Let M be a n ×m matrix. Let si be the sum of the entries in row i of
M , 1 ≤ i ≤ n. Then the average row sum of M is

a =
s1 + . . . + sn

n
.
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Each si can be written in terms of the entries of M , in this fashion:

si = Mi1 + Mi2 + . . . + Min

But, M is symmetric. If we add up all row sums of M , entry Mij will appear
twice if i 6= j, and once if i = j. Thus the average row sum may be written
as

a =
M11 + M22 + . . . + Mnn + 2(M12 + . . . + Mn−1,n)

n
. (4.5)

In examining the eigenvalues of M , it is logical to consider the dot prod-
uct of an eigenvector v of M with a row of M . This gives us an equation for
the eigenvalue λ, in terms of the entries of the matrix and the eigenvector.
We obtain n such equations, one for each row of the matrix. Adding these
equations together and simplifying, we obtain an expression giving nλ in
terms of the entries of M and v in which each diagonal entry of M will
appear once, and each off-diagonal entry will appear twice. This is similar
to the average row sum of M . This similarity gives rise to a useful bound:

Theorem 4.7.1. Let M be a real nonnegative symmetric n× n matrix for
which the Perron-Frobenius theorem holds. Let a be the average row sum of
M . Then the largest eigenvalue λ of M is simple, with positive eigenvector
v, and λ ≥ a.

Proof. Since M fits the assumptions of the Perron-Frobenius theorem, it
has a simple real largest eigenvalue λ with a strictly positive eigenvector v.
Equation 4.5 gives the average row sum written in terms of the entries of
the matrix.

Setting this aside for a moment, consider the dot product of one row of
M with v. For row i of M , we have the relation

λvi = Mi,1v1 + . . . + Mi,nvn.

Recall that M has nonnegative entries, and v has strictly positive real en-
tries. Thus we may divide by vi, giving us:

λ = Mii +
Mi1v1 + . . . + Mi,i−1vi−1 + Mi,i+1vi+1 + . . . + Minvn

vi
.

Now, add up the above equation for all rows of M . We get:

nλ = M11 + M22 + . . . + Mnn

+
M1,2v2 + . . . + M1nvn

v1
+ . . . +

Mn1v1 + . . . + Mn,n−1vn−1

vn
.
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Each Mij with i 6= j appears twice due to the symmetry of M : once with
coefficient vi

vj
and once with coefficient vj

vi
. Combining these terms, we have

Mij with coefficient
v2

i +v2
j

vivj
. Thus, we may rewrite the above sum as

nλ = M11 +M22 + . . .+Mnn +
v2
1 + v2

2

v1v2
M12 + . . .+

v2
n−1 + v2

n

vn−1vn
Mn−1,n. (4.6)

Now, note that
v2

i +v2
j

vivj
is actually twice the ratio of the arithmetic mean

and geometric mean of v2
i and v2

j . Since the geometric mean is always less
than or equal to the arithmetic mean, this ratio must be at least 1, so twice
the ratio is at least 2. Thus, we may estimate the sum in Equation (4.6) as:

nλ ≥ M11 + M22 + . . . + Mnn + 2M12 + . . . + 2Mn−1,n

or equivalently,

λ ≥ M11 + M22 + . . . + Mnn + 2M12 + . . . + 2Mn−1,n

n
. (4.7)

The right hand side of Equation (4.7) is exactly the expression for a in
Equation (4.5), so we have λ ≥ a.

In this section, we will mainly bound the average row sum of the VCICM,
using information about the associated graph and coloring. We will then
use Theorem 4.7.1 to bound the largest eigenvalue of the same VCICM’s.

Note that this theorem applies to many more matrices than the VCICM’s
of graphs. The result was inspired by the uses of average row sums in
eigenvalue interlacing arguments [16]. It also applies to the adjacency matrix
of any graph G, as used in [11]. For adjacency matrices, this tells us that the
largest eigenvalue is bounded below by the average of the degree sequence of
G, also called the “mean valency” of G. The mean valency is a well studied
use of average row sums.

Also note that
v2

i +v2
j

vivj
= 2 when vi = vj . This happens for every i, j when

v = ~1, which in turn happens only when every row of G has exactly the
same sum. Thus the bound is tight for all maximum colored regular graphs.
It is also tight for certain other colorings, such as the minimum coloring
given for Kn in Section 2.1, and for any other coloring in which the rows of
G have the same sum.

Example 4.7.2. We have two examples for the average row sum bound in
Theorem 4.7.1.
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
Figure 4.7.1: A minimum colored W4 and its VCICM

1. Let G be a minimum-colored K4 with VCICM M , as in Figure 4.2.1.
The average row sum is a = (8 + 8 + 8 + 8)/4 = 8. The largest
eigenvalue is λ = 8, so λ = a. Note that ~1 is an eigenvector for this
graph and coloring.

2. Next, let G be a minimum-colored W4 with VCICM M , as in Figure
4.7.1. The average row sum is a = (16 + 12 + 12 + 12 + 12)/5 = 12.8.
The largest eigenvalue is λ = 13, so the bound inequality is strict:
λ > a.

4.7.1 Two Simple Bounds

Theorem 4.7.1 is particularly useful, as it converts a difficult problem (find-
ing the largest eigenvalue of a matrix) into a much easier problem (bounding
the average row sum of a matrix). The VCICM has a great deal of structure,
so we may bound the average row sum very tightly. Maximum colorings in
particular make the average row sum easy to bound, because there are ex-
actly di ones in each row. A simple example of this comes from maximum
colored graphs.

Lower Bound 4.7.3. Let G be a vdec graph with any proper edge-coloring
and VCICM M . Then the average row sum a of M satisfies

a ≥ 4e

n
.
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Proof. Suppose G is maximum colored. Then the average row sum will be

a =
2(d1 + . . . + dn)

n

≥ 2(2e)
n

=
4e

n
.

Here, we use the fact that d1 + . . . + dn = 2e. If G is not maximum colored,
then each row sum will be larger, and the estimate on the average row sum
will be strict.

Using Theorem 4.7.1, we immediately bound the largest eigenvalue λ:

Corollary 4.7.4. Let G be a vdec graph with any proper edge-coloring and
VCICM M .

λ ≥ 4e

n
.

Note that every di is at least δ, so we may simplify this bound further:

Corollary 4.7.5. Let G be a vdec graph with any proper edge-coloring and
VCICM M . Then a ≥ 2δ and therefore λ ≥ 2δ.

This bound is better than λ > ∆ if the degrees of G are closely clustered.
It is tight for regular maximum colored graphs.

Example 4.7.6. (Good and bad cases for two bounds)

1. Let G = W5 with a maximum coloring. The degrees of G are relatively
close. From the bound λ > ∆, we have λ > 4. From the bound λ ≥ 2δ,
we have λ ≥ 6. The actual value of λ is λ = 1

2(9 +
√

17) ≈ 6.56. Note
that the average row sum is a = 6.4.

2. Now, let G = K1,5, the star on 6 vertices, with a maximum coloring.
From λ > ∆, we have λ > 5. From λ ≥ 2δ, we have λ ≥ 2. The actual
value of λ is λ = 6. Here the average row sum is about is a = 3.33.

Lower Bound 4.7.3 lends itself to simplification if we know the degree
sequence of a graph, or if we may estimate e easily. Thus, we may obtain
better bounds. For example:

• If G is a tree, a ≥ 4(n−1)
n = 4− 4

n .

• If G is k-regular, a ≥ 2nk
n = 2k.
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• If G is complete, a ≥ 2n(n−1)
n = 2(n− 1).

We may use Theorem 4.7.1 to obtain eigenvalue estimates from all of the
above average row sum bounds as well. These bounds are not particularly
tight, although (as usual), maximum colored regular graphs will make some
tight.

4.7.2 Simple Color Bound

Note that none of our bounds thus far depend on the number of colors
actually used in the graph. Most work for maximum vdec colorings, and
are less tight for colorings with fewer colors. We remedy this situation by
considering the number of colors actually used in a graph coloring. We
will do this by changing a graph’s coloring in a predictable manner, and
examining the corresponding change in the VCICM’s row sums.

Lemma 4.7.7. Let G be a vdec graph with proper edge-coloring π. Suppose
G has VCICM M with average row sum a. Suppose color cj is used on k
edges, and ci is used on exactly one edge. Further suppose that no edges of
color ci and cj are adjacent. Change the edge of color ci to color cj to obtain
a new coloring π′. Let the VCICM of π′ be M ′, with average row sum a′.
Then

a′ − a ≥ 8k

n
.

Proof. Let Ci = {v ∈ V : there exists e = vw ∈ E such that π(e) = ci},
and let Cj = {v ∈ V : there exists e = vw ∈ E such that π(e) = cj}.
In other words, Ci contains all vertices incident to edges using color ci in
coloring π, and Cj contains all vertices incident to edges using color cj in
coloring π. Note that the set of all edges using color cj in coloring π′ is
exactly Ci ∪ Cj . Let f = uv be the single edge of color ci in π. Then
Ci = {u, v} and u, v 6∈ Cj .

Let w ∈ Cj . We know that w 6= u, v. We also know that Sπ′(v)∩Sπ′(w)
contains exactly one more color than Sπ(v) ∩ Sπ(w), specifically color cj .
The reason is as follows: in coloring π, no vertices in Ci are incident to an
edge of color cj . However, in coloring π′, all vertices in Ci do share color
cj with every vertex of Cj , as well as all colors they formerly shared. Thus
|Sπ′(v) ∩ Sπ′(w)| = |Sπ(v) ∩ Sπ(w)|+ 1.

Thus, we obtain M ′ by adding 1 to each entry Mab of M such that a ∈ Cj

and b = u or v. We will count changed entries as follows. For the row of M
corresponding to u, we add one to each entry corresponding to an element
of Cj . There are k rows of color j in coloring π, so |Cj | = 2k. Thus, we add
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2k to the total row sum. We do similarly for the row of M corresponding
to v, thus adding a total of 4k to the total row sum, between these two
vertices. In addition, each row of M corresponding to some w ∈ Cj must
have one added to each entry corresponding to u and v, thus adding 2 total.
This adds 2 for each of 2k rows, for a total of 4k more added to the total
row sum. Thus, we add a total of 8k to the total row sum, or 8k/n to the
average row sum.

Observation 4.7.8. Let G be a vdec graph with any proper edge-coloring
π. If we begin with a maximum coloring of G, we may repeatedly change
the color of individual edges so that we obtain a coloring isomorphic to π.
In particular, we need change the color of each edge at most once: change
it to the color which it has in coloring π. Any proper edge-coloring of any
graph may be obtained by this method. This allows us to use Lemma 4.7.7
to estimate the average row sum of the VCICM of any coloring.

Example 4.7.9. Consider a maximum colored path P5:

?>=<89:;a ?>=<89:;b ___ ?>=<89:;c ?>=<89:;d ?>=<89:;e

The VCICM of this maximum colored graph is
1 1 0 0 0
1 2 1 0 0
0 1 2 1 0
0 0 1 2 1
0 0 0 1 1


Suppose we change edge de to have the same color as edge bc. Note that this
coloring is no longer vdec, but the change in the average row sum will be the
same whether the coloring is vdec or not. The new coloring is:

?>=<89:;a ?>=<89:;b ___ ?>=<89:;c ?>=<89:;d ___ ?>=<89:;e

The VCICM has eight changed entries, which are shown in bold:
1 1 0 0 0
1 2 1 1 1
0 1 2 2 1
0 1 2 2 1
0 1 1 1 1


The average row sum of the original matrix is 16/5 = 3.2, while the average
row sum of the changed matrix is 24/5 = 4.8.
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We may use Lemma 4.7.7 and Observation 4.7.8 to find the following
bound:

Lower Bound 4.7.10. (Simple color bound) Let G be a vdec graph with a
vdec coloring π using c ≤ e colors. Let M be the VCICM of G with π, and
let a be the average row sum of M . Then a ≥ 4

n(3e− 2c).

Proof. Suppose we begin with a maximum coloring of G, with edges e1, . . . , ec

colored to agree with π, such that no two of e1, . . . , ec have the same color.
Thus all colors used in π are also used in this maximum coloring. Lower
Bound 4.7.3 implies that the average row sum for this VCICM is at least
4e/n. One by one, change the colors of the remaining edges to their re-
spective colors in π. Each time we make such a change, there is already at
least one edge with that new color. By Lemma 4.7.7, the average row sum
increases by at least 8/n. We change exactly e−c edges, so the total change
in average row sum is at least (8/n)(e− c).

Thus the average row sum for the VCICM of π is at least

4e

n
+

8
n

(e− c) =
4
n

(3e− 2c),

which is as we claimed.

As usual, Theorem 4.7.1 gives us an eigenvalue bound based on Lower
Bound 4.7.10.

Corollary 4.7.11. Let G be a vdec graph with a vdec coloring π using c ≤ e
colors. Then λ ≥ 4

n(3e− 2c).

If c = e, we obtain the same bound as in Lower Bound 4.7.3. Figures
4.7.2 and 4.7.3 are plots comparing eigenvalues of many vdec colorings of
a graph G to the bound values. Further details of the generation of these
plots may be found in Section 4.5.

We see from the figures that the bound is much tighter for colorings using
more colors, than for those using fewer colors. In particular, the eigenvalues
for K9 begin a steep ascent away from the bound values as we move left from
about c = 18. This is the point at which no color is used on only one edge
any more. When this happens, we will actually be adding more than 8 to
the total row sum. For the purposes of this bound, we ignore this possibility
at the cost of loosening the bound. However, we will include it in the next
bound, to obtain a much tighter value.
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Figure 4.7.2: Simple color bound values for K9

4.7.3 Matching Color Bound

To produce a better bound, we must consider the parameter k in Lemma
4.7.7. In Lower Bound 4.7.10, we always assume k = 1, but it is often larger.
We must consider how many times an edge is changed to a color which has
already been used, and how many times it may have been used.

Our goal is to construct an auxiliary coloring π′ of G. Although we do
have a particular coloring π of G in mind, we are not trying to construct π.
Rather, we are trying to find a coloring π′ of G with c colors, whose VCICM
has the lowest average row sum among all colorings of G with c colors. By
finding the average row sum of this VCICM, we bound the average row sum
of the VCICM of G with coloring π.

Let π′ be a proper edge-coloring of G using c colors, whose VCICM has
the smallest possible average row sum. Suppose that we constructed π′ by
giving G a maximum coloring, and then changing one edge at a time to its
color in π′. We must change e−c edges: c edges begin with the correct color
(in the maximum coloring), and the rest must be changed to their color
in π′. We may determine the change in average row sum (from maximum
coloring to π′) by counting the number of times each color is used in π′. For
example, if color ci is used 3 times in π′, then one edge f already had color
ci in the maximum coloring. Using Lemma 4.7.10 with k = 1, we change
another edge g to color ci. Finally, using Lemma 4.7.10 with k = 2, we
change the final edge h to color ci. Thus, the total added to the row sum is
8 + 16 = 24. This happens regardless of when we change f and g to color
ci, or in which order.
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Figure 4.7.3: Simple color bound values for W8

Suppose that one color ci is used m+1 times in π′, while another color cj

is used m−1 times in π′. Using Lemma 4.7.10 m times with k = 1, 2, . . . ,m
respectively, the edges of color ci contribute 8 + 16 + . . . + 8m to the total
row sum, while the edges of color cj contribute 8 + 16 + . . . + 8(m − 2). If
instead we change one edge of color ci to color cj , so that both colors are on
m− 1 edges, each contributes 8 + 16 + . . . + 8(m− 1) to the total row sum.
Thus the average row sum would be 8 less. Therefore, we may assume that
all colors in π′ are used either m or m + 1 times, for some integer m.

We must determine m. The value of m comes from distributing the
colors of π′ as evenly as possible throughout the graph. To see this, we set
up a system of simultaneous equations. We wish to find m such that x colors
are used on m edges, and y colors are used on m + 1 edges. Thus we have:

mx + (m + 1)y = e

x + y = c

Solving this system, we find that m = e−y
c . But, m must be an integer. We

only have control over the choice of y. Thus, we pick the smallest integer y
such that m is an integer. Then 0 ≤ y ≤ c− 1, and so we may rewrite

m =
⌊e

c

⌋
.

Then we have
y = e− c

⌊e

c

⌋
.

As a result, we also know m + 1 and x = c− y.
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Thus, the minimum average row sum may be obtained in a coloring π′

in which x = c(be/cc + 1) − e colors are used on m = be/cc edges, and
y = e− c be/cc colors are used on be/cc+ 1 times.

/.-,()*+a 76540123b /.-,()*+c 76540123d

�
�
�

/.-,()*+e ?>=<89:;f 76540123g 76540123h



· · · a b c d e f g h · · ·
...

...
a 9 1 1 0 1 1 1 0
b 1 9 1 0 1 1 1 0
c 1 1 9 0 1 1 1 0
d · · · 0 0 0 9 0 0 0 1 · · ·
e 1 1 1 0 9 1 1 0
f 1 1 1 0 1 9 1 0
g 1 1 1 0 1 1 9 0
h 0 0 0 1 0 0 0 9
...

...



/.-,()*+a 76540123b /.-,()*+c 76540123d

/.-,()*+e ?>=<89:;f 76540123g 76540123h



· · · a b c d e f g h · · ·
...

...
a 9 1 1 1 1 1 1 1
b 1 9 1 1 1 1 1 1
c 1 1 9 1 1 1 1 1
d · · · 1 1 1 9 1 1 1 1 · · ·
e 1 1 1 1 9 1 1 1
f 1 1 1 1 1 9 1 1
g 1 1 1 1 1 1 9 1
h 1 1 1 1 1 1 1 9
...

...



Figure 4.7.4: Changing one edge to be the same color as three other edges

Example 4.7.12. Figure 4.7.4 shows the effect of changing one edge to be
the same color as three other edges. For simplicity, we show only the rele-
vant subgraph of some graph G and submatrix of the VCICM. The diagonal
entries are set at 9, although the degrees of these vertices may be arbitrary.
We also assume that none of the displayed vertices share any other colors
with each other. This could happen; the entries in each example would just
be correspondingly larger, while still differing by the same amount.

By changing edge dh to the same color as the other three edges, we add
exactly 24 to the row sum in the submatrix. Changed entries are shown in
bold. If any other edges share the new color, the row sum will increase by
more than 24. Thus, the total row sum increases by at least 24.

We may use these values to obtain the following bound:
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Lower Bound 4.7.13. (Matching color bound) Let G be a vdec graph with
any vdec coloring π using c ≤ e colors. Let M be the VCICM of G with π,
and let a be the average row sum of M . Then

a ≥ 4
n

(
e +

⌊e

c

⌋(
2e− c− c

⌊e

c

⌋))
.

Proof. We will find a coloring π′ which uses c colors, and whose VCICM
has the minimum row sum among all colorings using c colors. Based on the
argument presented above, coloring π′ will have e − c be/cc colors used on
be/cc + 1 edges, and c be/cc + c − e colors used on be/cc edges. Note that
this totals to c colors and e edges.

Using Lemma 4.7.10 repeatedly, we can find the total row sum of M ,
the VCICM of G with coloring π′. The row sum of the VCICM of G with a
maximum coloring is 4e. Thus the average row sum of M is:

a =
4e

n
+

8
n

(
e− c

⌊e

c

⌋)(
1 + 2 + . . . +

⌊e

c

⌋)
+

8
n

(
c
⌊e

c

⌋
+ c− e

)(
1 + 2 + . . . +

⌊e

c

⌋
− 1
)

Evaluating the sums of the form 1 + 2 + . . . +
⌊

e
c

⌋
and simplifying, we have:

a =
4
n

(
e + 2

(
e− c

⌊e

c

⌋) ⌊ e
c

⌋ (⌊
e
c

⌋
+ 1
)

2

+ 2
(
c
⌊e

c

⌋
+ c− e

) ⌊ e
c

⌋ (⌊
e
c

⌋
− 1
)

2

)

Simplifying further, we have:

a =
4
n

(
e +

⌊e

c

⌋((
e− c

⌊e

c

⌋)(⌊e

c

⌋
+ 1
)

+
(
c
⌊e

c

⌋
+ c− e

)(⌊e

c

⌋
− 1
)))

=
4
n

(
e +

⌊e

c

⌋((
e− c

⌊e

c

⌋)((⌊e

c

⌋
+ 1
)
−
(⌊e

c

⌋
− 1
))

+ c
(⌊e

c

⌋
− 1
)))

=
4
n

(
e +

⌊e

c

⌋(
2
(
e− c

⌊e

c

⌋)
+ c

(⌊e

c

⌋
− 1
)))

This simplifies to the final form of the bound:

λ ≥ a =
4
n

(
e +

⌊e

c

⌋(
2e− c− c

⌊e

c

⌋))
(4.8)
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At the cost of loosening the bound further, we may simplify Equation
(4.8) and remove some of the floors. In particular, the floor inside the
innermost term may be removed, maintaining the inequality, to get

a ≥ 4
n

(
e +

⌊e

c

⌋
(e− c)

)
.

We must make additional estimates to remove the other floors. However,
we may remove the floors and note that this adds at most (c − 1)/c to the
term. Thus we may replace e with e− c + 1 and simplify to obtain

a ≥ 4
n

(c− e− 1) +
4
cn

(e2 + e) (4.9)

Equation (4.9) is nice, but Equation (4.8) is tighter. Consequently, will
usually Equation (4.8).

A direct corollary of Lower Bound 4.7.13 and Theorem 4.7.1 is the fol-
lowing eigenvalue estimate:

Corollary 4.7.14. Let G be a vdec graph with any vdec coloring and VCICM
M . Then

λ ≥ 4
n

(
e +

⌊e

c

⌋(
2e− c− c

⌊e

c

⌋))
.
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Figure 4.7.5: Matching color bound values for K9

Example 4.7.15. Figure 4.7.5 shows eigenvalues for various colorings of
K9. Note that the bound line follows the sharp upward trend of the eigen-
values to the left. Each change in the slope of the bound line corresponds to
a point at which the minimum number of edges per color increases.

Figure 4.7.6 shows eigenvalues for various colorings of the complete bi-
partite graph K6,4,2. Note that the bound is less sharp for non-regular graphs,
but still follows the upward trend of eigenvalues.
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Figure 4.7.6: Matching color bound values for K6,4,2

This bound is made tighter than the previous bound by considering the
number of each color in a particular graph coloring. However, we generalize
greatly and look only at the total number of colors. The final lower bound
in this chapter will depend on the number and arrangement of colors used
in a graph, and will prove to be much tighter than previous results.

4.7.4 Color Count Lower Bound

Our previous bounds depended on only the graph in question, or the num-
ber of colors used on that graph. We will now consider a different sort of
argument, which takes into account the arrangement of each different color
in a graph. This will give the exact value of the average row sum.

We will make use of a particular decomposition of the VCICM. Consider
a particular color i used to color G. Let G[i] be the subgraph of G consisting
only of edges of color i. Since we have a proper edge-coloring of G, G[i] is
a matching of G. Consider an entry of M corresponding to two vertices
with degree at least 1 in G[i]. These two vertices will share color i. We can
think of this as adding 1 to the corresponding entry of M . Let A(i) be the
adjacency matrix of G[i]. Then we can write

M = D +
∑

i

A(i).

We must add D to obtain the correct diagonal, as adjacency matrices have
all zeroes on the diagonal. Thus, the average row sum of M is the sum of
the average row sums of each A(i), plus the average of the degrees of vertices
of G. To simplify, let A′(i) be A(i), with A′

vv = 1 if vertex v is incident to
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color i. Then
M =

∑
i

A′(i).

We will use this idea in the following theorem, which gives an exact value
for the average row sum:

Theorem 4.7.16. (Color count) Let G be a vdec graph with a proper edge-
coloring π, and VCICM M . Let a be the average row sum of M . Suppose
G is colored with colors C = {1, . . . , k}, and let ci represent the number of
edges colored with color i. Then

a =
4
n

(
c2
1 + . . . + c2

k

)
.

Proof. Consider one row of A′(i), indexed by vertex v. If v is incident to an
edge of color i, then this contributes 2ci 1’s to the total row sum of A(i).
That is, vertex v shares color i with 2ci − 1 other vertices, plus itself. Note
that we multiply by 2, because each edge consists of two vertices, and no
two edges of color i are adjacent. This is true for all 2ci vertices which are
incident to an edge of color i.

Thus, the edges of color i contribute (2ci)2 = 4c2
i to the total row sum

of A(i). There are no other nonzero entries in A(i), so the average row sum
of A(i) is 4c2

i /n. Repeating this process for all k colors, we have counted
every entry in the VCICM. Thus we deduce that the average row sum is at
least

a =
4
n

(
c2
1 + . . . + c2

k

)
.

Again, we obtain an eigenvalue estimate from Theorem 4.7.16 and The-
orem 4.7.1:

Corollary 4.7.17. (Color count bound) Let G be a vdec graph with a
proper edge-coloring and VCICM M . Suppose G is colored with colors
C = {1, . . . , k}, and let ci represent the number of edges colored with color
i. Then

λ ≥ 4
n

(
c2
1 + . . . + c2

k

)
.

If G has a maximum coloring, this bound becomes the familiar λ ≥ 4e
n .

If G has a coloring such that ~1 is an eigenvector, then the bound is tight.
In other cases, the bound is still very close to tight.
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Figure 4.7.7: Detail of color count bound values for K9

Example 4.7.18. It is difficult to demonstrate the color count bound, as
there are many different lower bounds for a given number of colors. Figure
4.9.1 (see the end of this Chapter) shows the full eigenvalue plot of K9 with
the color count bound. Figure 4.7.7 shows a detail of the eigenvalue plot for
K9. The grey, slightly larger points represent the values of the color count
bound. Note that each bound value has a “tail” of eigenvalues above it, and
that the bound is generally tighter for lower eigenvalues. In some cases,
the bound is exact, or close enough that the associated eigenvalue point is
covered by the bound point. Figure 4.7.8 shows the bound for a non-regular
graph, W8.

There are several interesting properties of the color count bound, which
we examine in the following points:

• We always have c1 + . . . + ck = e, with ci ≤ ν. Here ν is the size
of a maximum matching of G. This gives a feasibility condition for
colorings of G.

• For a given number of colors, there may be several different bound val-
ues. This depends on the distribution of colors. For example: suppose
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Figure 4.7.8: Color count bound values for W8

we have 7 edges. We may have 2 edges colored red, 2 blue, 2 green,
and 1 yellow. Then the bound is 2

7(22 + 22 + 22 + 12) = 26
7 . However,

we may instead have 3 red, 2 blue, 1 green, and 1 yellow. This gives
a bound of 2

7(23 + 22 + 12 + 12) = 4. Each of these uses the same
number of colors. This accounts for the multiple bound values in a
single vertical column of the eigenvalue plots. It also makes the bound
much tighter for some colorings.

• Similarly, different numbers of colors may still produce the same bound
value. Suppose we have 14 edges, as in W8. With 9 colors, we may
have 3 red, 2 each of blue, green, and yellow, and one each of five
different shades of grey. This gives a bound of 13. We may also have
8 colors: two each of red, green, blue, yellow, purple, and orange, and
one each of two shades of grey. This also gives a bound of 13.

• The above points illustrate a general idea: there is a minimum distance
between different bound values for the same number of colors. Suppose
we have two colorings π1, π2 of the same graph, using the same number
of colors. The smallest possible difference in arrangement of colors
between them is as follows. Change a single edge in coloring π1 to a
color already used in π1, but in such a way that the total number of
colors remains constant. Suppose that we list the number of edges of
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each color in π1. This list is (c1, . . . , ck). Then the related list for π2

may be represented as (c1, . . . , ci − 1, . . . , cj + 1, . . . , ck). The bound
values are then

b =
4
n

(c2
1 + . . . + c2

i + . . . + c2
j + . . . + c2

k)

b′ =
4
n

(c2
1 + . . . + (ci − 1)2 + . . . + (cj + 1)2 + . . . + c2

k)

Taking the difference, we have:

b′ − b =
4
n

(
(c2

1 + . . . + (ci − 1)2 + . . . + (cj + 1)2 + . . . + c2
k)

− (c2
1 + . . . + c2

i + . . . + c2
j + . . . + c2

k)
)

=
4
n

(
(ci − 1)2 + (cj + 1)2 − c2

i − c2
j

)
=

4
n

(−2ci + 1 + 2cj + 1)

=
8
n

(cj − ci + 1) .

This leaves two cases. If cj = ci − 1, the bounds are equal. However,
substituting these values into the original bounds, we see that the
distribution of colors must be exactly the same. If cj 6= ci−1, then we
have an integer multiple of 8

n between two “consecutive” bounds. An
example of this is in the previous point. Often the distance is exactly
8
n , but not always. For example, three colors with distribution (4, 2, 2)
and three colors with distribution (5, 2, 1) have bound distance 3 · 8

n .

• For a given number of colors, the smallest bound comes from the most
even distribution of colors. For example: for a graph with 5 colors, 10
edges, and 5 vertices, the smallest bound comes from distributing two
edges per color, giving 4

5(5 · 22) = 16. The largest bound comes from
coloring as many edges as possible with the same color. If we ignore
proper colorings and take a strictly algebraic view, we may have one
color on 6 edges, and each of the 4 remaining edges colored differently.
This gives a bound of 4

5(62 +4 · 12) = 32. Taking into account that we
always want proper colorings, the maximum value will be lower. We
will consider this case in Section 4.8. In general, the smallest lower
bound value becomes 4e2/nk, when each ci = e/k. The largest value
is then 4e2/n, which occurs when c1 = e and k = 1.
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4.8 Upper Bounds

Good upper bounds for λ1 = λ are difficult to obtain, compared to lower
bounds. This section contains several reasonably good bounds, as well as
some ideas for future bounds.

Let G be a vdec graph with VCICM M . The simplest bound for general
graphs comes from the observation that the eigenvector v corresponding to λ
is entirely positive. We may assume that v is normalized, so that each entry
vi satisfies 0 < vi ≤ 1 and at least one entry has vi = 1. Thus v may, at
“largest” be ~1. Consider the dot product of v with each row of M . If v = ~1,
then Mv consists of the row sums of M . Thus, λ is at most the largest row
sum of M . If M corresponds to a maximum coloring, this corresponds to

λ ≤ 2∆. (4.10)

This also allows us to bound the largest eigenvalue of any maximum colored
graph:

2δ ≤ λ ≤ 2∆.

If the graph is not regular, both inequalities are strict. In particular, a k-
regular graph has δ = k = ∆. A maximum colored non-regular graph will
have rows with different row sums, thus ~1 will not be an eigenvector. Hence,
the largest eigenvalue will be less than the maximum row sum, so λ < 2∆.
Likewise, 2δ ≤ λ comes from Corollary 4.7.5, in which we suppose that all
vertices of G have degree δ. If some vertices have degree not equal to δ, the
inequality will be strict.

For a general vdec coloring, each entry of the row corresponding to a
vertex of degree ∆ is at most ∆ − 1. (If two vertices share ∆ colors, they
must not be distinguished.) Thus,

λ ≤ ∆ + (n− 1)(∆− 1) = n∆− n + 1. (4.11)

Each of these bounds is tight for regular graphs, as we saw in Section 4.4.
As with lower bounds, we now derive some bounds based on the number of
colors used to color the graph.

4.8.1 Basic Color Bound

From the beginning of this section, we know that λ is at most the maximum
row sum. For a maximum coloring, this becomes λ ≤ 2∆. Suppose we
change one edge of a maximum coloring to another, already used, coloring.
This adds at most 2 to the maximum row sum: we may add 1 in two entries,

66



one for each end of the changed edge. Note that if no edge of this new color
is incident to the vertex corresponding to the row with largest sum, we might
not add anything at all.

If we again change one edge to an already used color, we again add at
most 2 to the maximum row sum. Thus, in the worst case, we add 2 every
time we change an edge and no more. Hence, when G is colored with c
colors, we have added at most 2(e− c) to the maximum row sum, giving us
this bound:

Upper Bound 4.8.1. (Basic Color Bound) Let G be a VDEC graph with
a proper edge-coloring and VCICM M . Then

λ ≤ 2(∆ + e− c).

Note that c ≥ ∆ always, so we may simplify this bound as

λ ≤ 2e.

Both of these apply to all edge-colorings, not just maximum-colored graphs.
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Figure 4.8.1: Basic color bound values for K9

Example 4.8.2. Figure 4.8.1 demonstrates the basic color bound for various
colorings of K9. Note that this, like the simple color bound, is linear and
does not account for the sharp upward turn of the eigenvalues to the left. It
is very close for minimum and maximum colorings, however.

Figure 4.8.2 demonstrates that this bound is considerably less tight for
non-regular graphs.
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Figure 4.8.2: Basic color bound values for W8

4.8.2 Average Row Sums, again

We would very much like to find a way to use average row sums to find upper
bounds. Ultimately, we will find that this is not as easily accessible as it is
for lower bounds. However, we will obtain some very tight upper bounds on
the average row sum of the VCICM. Let G be a vdec graph with a proper
edge-coloring. Let a be the average row sum of the VCICM M of G with
this coloring. We can write λ = λ

aa. Thus, if we can find an upper bound
on λ/a, we can bound λ from above. Unfortunately, these bounds are not
particularly good (in fact, no better than any upper bound we use for λ).
However, they do produce some interesting expressions for upper bounds,
which we will examine. They also provide an opportunity to study the ratio
λ/a, which gives a measure of the error in our previous bounds. The most
interesting results in this section will be upper bounds on the average row
sum of the VCICM.

We have many bounds for λ, and by extension, many bounds for the
average row sum a. We begin with a simple bound on λ/a, which we then
extend to much better bounds.

Lemma 4.8.3. Let G be a vdec graph with a vdec coloring. Let M be the
VCICM of G with this coloring, with largest eigenvalue λ and average row
sum a. Then

λ

a
≤ n

2
.

Proof. Using results from previous sections, we have λ ≤ 2e and a ≥ 4e
n .
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Thus we have the inequality:

λ

a
≤ 2e

4e
n

=
n

2
.

This is a poor bound in general, which is not unexpected, since our
bound depends only on n. However, the bound is very simple, and provides
a method for finding better bounds.

By estimating λ and a more tightly, we can produce a better bound. In
particular, we have the following bound:

Lemma 4.8.4. Let G be a vdec graph with a vdec coloring. Let M be the
VCICM of G with this coloring, with largest eigenvalue λ and average row
sum a. Then

λ

a
≤ cn

2e
.

Proof. We begin with the bound λ ≤ 2e from above. Similarly, we know
that a ≥ 4

cn(e2 + e − c), which is the simplified form of the matching color
bound. Thus we have

λ

a
≤ 2e

4
cn(e2 + e− c)

.

Note that e−c ≥ 0, so we may remove that term and maintain the inequality.
Thus, we have

λ

a
≤ 2e

4
cne2

≤ cn

2e
.

This improves on previous estimates, while still having a relatively simple
formulation. Note that c

e ≤ 1, with equality only when we have a maximum
coloring. Thus, this bound is much better for most minimum colorings.
Recall that the ratio λ/a indicates how close our estimates on λ and a are.
Thus, small values are best. In particular, λ

a ≥ 1 with equality in some cases.
Values near 1 show that λ is very near to a, so our eigenvalue estimates are
close to tight.

• Let G = K2k−1. The first bound gives us λ
a ≤ n

2 . For a maximum
coloring, the second bound gives us the same value. However, for a
minimum coloring, λ

a ≤ n2

n(n−1) = n
n−1 which is very close to 1. Thus

we have λ ≤ n
n−1(n−1)2 = n(n−1). The actual value of λ is (n−1)2.

• Let G be a tree. Then the second bound gives us λ
a ≤

cn
2(n−1) , which is

near c
2 , especially for large n. Here it is harder to bound a, but for a

maximum coloring we have λ ≤ 2e.
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• Let G be given a minimum coloring. We know that χ′
s(G) ≤ n + 1,

so λ ≤ n(n+1)
2e . This is of the proper order (for a random graph, e is

quadratic in terms of n), so this bound value will be near 1. If G is a
complete graph, we get λ ≤ n+1

n−1 .

In looking for upper bounds on λ = (λ/a)a, we must also bound the
average row sum a. Most bounds come from the fact that an entry of the
VCICM is bounded by the degrees of the vertices corresponding to the row
and column of the entry. Let G = (V,E) be a vdec graph with a vdec
coloring, and let v, w ∈ V . Let M be the VCICM of G. Then

Mvw ≤ max{deg(v),deg(w)}. (4.12)

If deg(v) = deg(w), then the inequality must be strict.
We may assume that the rows of M are arranged in nonincreasing order,

by the degree of the corresponding vertex. Thus M11 = d1,M22 = d2, etc.
Then in Equation (4.12), we have Mvw ≤ deg(w) (assuming that deg(w) ≤
deg(v)). We may thus bound the average row sum a, as follows:

Lemma 4.8.5. Let G be a vdec graph with a proper edge-coloring and
VCICM M . Let a be the average row sum of M . Then

a ≤ 2
n

(e + (n− 1)dn + (n− 2)dn−1 + . . . + d2) .

Proof. We begin with Equation (4.12). In the VCICM M , every off-diagonal
element in the row and column corresponding to a vertex of degree dn will be
at most dn. There are 2(n− 1) such elements. Similarly, all other elements
in a row and column corresponding to a vertex of degree dn−1 will be at
most dn−1, and there are 2(n − 2) such elements. (There are two elements
already counted for dn). Continuing in this fashion, we have:

a ≤ 2e + 2(n− 1)dn + 2(n− 2)dn−1 + . . . + 2d2

n

=
2
n

(e + (n− 1)dn + (n− 2)dn−1 + . . . + d2) .

Note that the term 2e comes from the sum of the diagonal entries, the values
of which are all known.

Lemma 4.8.5 leads to several other estimates. If G is k-regular, then
each off-diagonal entry is at most k − 1, so we have:
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Corollary 4.8.6. If G is k-regular, then the average row sum a of M sat-
isfies

a ≤ k + (k − 1)(n− 1).

Proof. From Lemma 4.8.5, we have:

a ≤ 2
n

(
nk

2
+ (k − 1)((n− 1) + (n− 2) + . . . + 1)

)
=

2
n

(
nk

2
+ (k − 1)

n(n− 1)
2

)
= k + (k − 1)(n− 1).

This bound is sometimes tight. For example, the minimum coloring
given for K2k+1 in Section 2.1 satisfies this bound with equality. In general,
colorings which are close to minimum will give average row sums closer to
this bound.

Using the estimate of Corollary 4.8.6, we can estimate λ for k-regular
graphs:

Upper Bound 4.8.7. The largest eigenvalue λ of M satisfies λ ≤ c+ c
k (k−

1)(n− 1).

Proof. From Corollary 4.8.6, we have:

λ ≤ λ

a
a

≤ cn

2e
(k + (k − 1)(n− 1))

=
cn

kn
(k + (k − 1)(n− 1))

= c +
c

k
(k − 1)(n− 1).

This bound is fairly tight for near-minimum colorings, but very poor for
near-maximum colorings. This is no surprise, as our maximum row sum
estimate does not depend on the number of colors – thus it is best for a
minimum number of colors, which produces a large row sum.

We conclude this section with a considerably better upper bound on
average row sums, which may be used with some of the bounds found in
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this section. As with lower bounds on the average row sum, we will consider
extreme colorings. That is, for a graph G and a coloring π with c colors, we
wish to find a coloring π′ of G which uses c colors, and whose VCICM has
the largest average row sum of all such colorings. Let G be a vdec graph with
a maximum coloring, and let M be the VCICM of G. As before, changing
one edge to a different previously used color ci will increase the total row
sum by 8. Thus, we add at most 8/n to the average row sum (or 8 to the
total row sum), by changing one edge. If we change another edge to ci, we
will add 16 to the total row sum, and thus 16/n to the average row sum.
Again, this is the largest change we can make.

We will continue in this fashion. Let ν be the size of a maximum match-
ing in G. Then we formulate the change in the average row sum as follows:

Lemma 4.8.8. Let G be a vdec graph with a proper edge-coloring. Suppose
G has VCICM M with average row sum a. Select a color ci which is used
on only one edge e, and change as many edges as possible to color ci, while
maintaining a proper edge-coloring. Let the VCICM of this new coloring be
M ′, with average row sum a′. Then

a′ − a ≤ 4
n

ν(ν − 1).

Proof. We know that the edges of color ci form a partial matching in G.
Thus, at most ν edges may have color ci. Before changing the colors, one
edge already had color ci, and thus we may change at most ν − 1 edges to
color ci. Any further changes would make the edge-coloring improper.

Changing one edge to color ci adds at most 8 to the total row sum.
Changing a second edge adds at most 16, and so on, always assuming that
the edges being changed had colors which were used only once. This avoids
reducing the row sum at all. Thus, changing as many edges as possible adds
at most 8 + 16 + 24 + . . . + 8(ν − 1) to the total row sum. Factoring out the
8 and collapsing the sum into a simple formula, we have the result.

Note that, similar to our work in Section 4.7.2, we are bounding the
average row sum by finding a coloring whose VCICM has the largest possible
average row sum. Repeatedly applying Lemma 4.8.8, we find the following
bound:

Lemma 4.8.9. Let G be a vdec graph with a vdec coloring. Let M be the
VCICM of G, with average row sum a. Let ν be the maximum size of a
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matching in G. Then

a ≤ 4
n

(
e +

⌊
e− c

ν − 1

⌋
(ν − 1)ν

+
(

e− c−
⌊

e− c

ν − 1

⌋
(ν − 1)

)(
e− c−

⌊
e− c

ν − 1

⌋
(ν − 1) + 1

))
.

Proof. We begin with a maximum coloring of G, which has average row sum
4e
n . Repeatedly apply Lemma 4.8.8, each time using a different edge whose
color is used only once. Each time, we add at most (4/n)ν(ν − 1) to the
total row sum. This maximizes the change in average row sum.

Each time we apply Lemma 4.8.8, ν − 1 colors are totally removed from
G. Thus, we may continue for k iterations, where k satisfies e−k(ν−1) ≥ c.
So far, we have

1
n

(
4e +

⌊
e− c

ν − 1

⌋
(4ν(ν − 1))

)
.

However, this only accounts for changing ν − 1 edges at a time. We may
have up to ν − 2 additional edges to change before arriving at the correct
number of colors. In fact, the exact number of edges we have to change is
e− c−

⌊
e−c
ν−1

⌋
(ν − 1). Thus, a preliminary form of our bound is

a ≤ 1
n

(
4e +

⌊
e− c

ν − 1

⌋
(4ν(ν − 1))

+
(

8 + 16 + . . . + 8
(

e− c−
⌊

e− c

ν − 1

⌋
(ν − 1)

)))
.

Factoring out 8’s in the third term, we see a sum of consecutive integers.
Simplifying, this gives us the final form of the bound:

a ≤ 4
n

(
e +

⌊
e− c

ν − 1

⌋
(ν − 1)ν

+
(

e− c−
⌊

e− c

ν − 1

⌋
(ν − 1)

)(
e− c−

⌊
e− c

ν − 1

⌋
(ν − 1) + 1

))
.

The coloring π′ produced in this manner must have a VCICM with a max-
imal average row sum. If some coloring π′

2 had a larger row sum, we have
several possibilities. First, some color in π′

2 may be used on at least ν + 1
edges, and thus we have an improper edge-coloring, which we do not allow.
If this is not the case, then suppose some color in π′

2 is used on fewer than
ν edges. If more than one such color exists, then the average row sum of
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the VCICM of π′
2 must be lower than the average row sum of the VCICM

of π′. If only one such color exists, then all other colors in both colorings
are used on ν edges, so the same number of edges are available to have the
final remaining color. Thus, the VCICM’s of these two colorings must have
the same average row sums.

We can find colorings which make this bound tight for almost all values
of c. It is sometimes impossible to color a graph in the manner described
above, for small values of c or graphs with few edges. This happens due
to the difficulty of repeatedly finding large matchings in such graphs. The
following example demonstrates the tightness of this bound.

10 15 20 25 30 35

Colors

30

40

50

60

a

Figure 4.8.3: Average row sum upper bound for K9

Example 4.8.10. Figures 4.8.3 and 4.8.4 show the average row sum upper
bounds for K9 and W8, respectively. Note that the bound line is tight for
most colorings. The space between the bound line arises from the fact that
the coloring algorithm does not tend to produce colorings with large induced
matchings. The bound values on the bound line arise from specially checking
for colorings of maximum average row sum. This plot compares the num-
ber of colors used to the average row sum of the VCICM, not the largest
eigenvalue (as in most previous plots).

These results now give us an upper bound on λ:
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Figure 4.8.4: Average row sum upper bound for W8

Upper Bound 4.8.11. Let G be a vdec graph with a vdec coloring and
VCICM M . Then

λ ≤ 2c

e

(
e +

⌊
e− c

ν − 1

⌋
(ν − 1)ν

+
(

e− c−
⌊

e− c

ν − 1

⌋
(ν − 1)

)(
e− c−

⌊
e− c

ν − 1

⌋
(ν − 1) + 1

))
.

Proof. The result may be obtained by combining the bound on the ratio λ
a

from Lemma 4.8.4 with the bound on the average row sum from Lemma
4.8.9.

Unfortunately, as mentioned previously, our upper bounds which use
the average row sum are not very good. Future work in this area could
produce better upper bounds based on the average row sums. In addition,
this bound depends on repeatedly finding large matchings in a graph. For
most graphs, the size of a maximum matching decreases quickly when a large
matching is removed, which makes our bound less tight. The bound could
be algorithmically improved: after coloring a group of edges, we remove all
edges of the new color from the graph, and find a maximum matching in
the resulting graph. We have implemented this algorithm, which produces
somewhat tighter bounds, especially for non-regular graphs.
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Figure 4.8.5: Eigenvalue upper bound for K9

Example 4.8.12. Figure 4.8.5 shows the upper average row sum bound on
λ. This is clearly not optimal, despite the fact that the bound on the average
row sum itself is tight.

4.9 A note on bounds for χ′s(G)

We have many lower and upper bounds on a and λ, several of which involve
c, the number of colors used to color the graph. Suppose we are given a
VCICM M for an unknown coloring. Here, we know e and n, and we can
calculate the largest eigenvalue λ for M . If we have an inequality giving a
lower bound on λ in terms of e, n, and c, we may use this to obtain an upper
bound on c = χ′

s(G) in terms of e, n and λ. Conversely, suppose that we are
given a minimum coloring of a graph G. Thus, we know e, n, and c. If we
have an inequality giving an upper bound on χ′

s(G) which uses e, n, and λ,
then we obtain a lower bound on λ which uses χ′

s(G), e, and n. Likewise,
we may find lower bounds on χ′

s(G) or upper bounds on λ.
Unfortunately, our current bounds do not produce useful bounds on χ′

s.
For example, consider the bound λ ≤ 2(∆ + e− c). Solving for c, we have

c ≤ 2∆ + 2e− λ

2
.

This bound is not good. Note that c ≤ 2e always, and we still have another
(always positive) term 2∆. This produces a bound on c which is very inexact
(usually greater than 2e). However, this bound may be useful if one is given
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the VCICM of an unknown coloring, from which one can calculate λ exactly.
If one takes the approach of finding extremal VCICM’s with the goal of
examining the c values associated with them, this bound may prove to be
useful.

We do have one bound which may be useful: the color count bound. We
solve for the terms involving ci to find:

c2
1 + . . . + c2

k ≤
nλ

4
.

The ci’s must satisfy two conditions: first, c1 + . . . + ck = e. Second, k = c,
the number of colors used to color G. This alone may provide a basis for
future bounds. We now present a looser bound based on these ideas. The
smallest value of c2

1 + . . . + c2
k comes when ci ≈ e/k for all i. Thus, we can

estimate:

k
( e

k

)2
≤ nλ

4
e2

k
≤ nλ

4
4e2

nλ
≤ k.

The above estimate gives us a lower bound on k = c, if λ is already
known. For example, given a VCICM of K6 with λ = 16, we know that
k ≥ 4 · 152/(6 · 16) = 9.375. However, we know that χ′

s(K6) = 7, so this
VCICM does not represent a minimal coloring of K6.

Suppose instead that we rewrite this bound as:

4e2

nk
≤ λ.

We know that a minimal coloring of K6 has k = 7. Thus, we have 4 ·152/(6 ·
7) = 21.4286, so the largest eigenvalue of a minimum coloring of k must be
at least 21.4286. This illustrates a general use of our bounds: if we know an
extremal value of one of χ′

s(G) or λ, we obtain an estimate on the extremal
value of the other. One may begin by finding extremal VCICM’s, whose
eigenvalues then make these bounds give extremal k values.

Unfortunately, these bounds are generally quite poor. The method we
used to obtain these bounds could lead to much better bounds, with further
work.
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Figure 4.9.1: Color count bound values for K9
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Chapter 5

Related Topics

There are some topics related to vdec colorings which, while we have not
studied them in depth, are still interesting. In particular, adjacent vdec
colorings are a well-studied subtopic of vdec colorings. We will also consider
some other uses of such colorings, and generalizations of the idea of a vdec
coloring.

5.1 Adjacent Vertex-Distinguishing
Edge-Colorings

The vdec colorings which we have studied require every pair of vertices to
be distinguished. A logical restriction is to require only adjacent vertices
to be distinguished. This is known as an adjacent vertex-distinguishing
edge-coloring, or avd coloring.

Definition 5.1.1. Let G = (V,E) be a vdec graph with a proper edge-
coloring. The coloring is called adjacent vertex-distinguishing (avd) if S(v) 6=
S(w) for all vertices v, w with vw ∈ E.

Note that a graph with more than one isolated vertex could still admit
an avd coloring, but we still must have no isolated edges. We may ignore
the isolated vertices, and assume that these graphs are vdec.

Every vdec coloring is an avd coloring, but not necessarily vice-versa.
These avd colorings have been studied in much the same way as vdec col-
orings. Since they are proper edge-colorings, we may use the VCICM to
analyze them. In fact, all bounds in the previous chapter which depend
only on G having a proper edge-coloring will hold as well for avd colorings.
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As with vdec coloring, avd colorings have been called by many names,
mostly related to other names for vdec colorings. For example, an equiva-
lent idea is that of an “adjacent strong edge-coloring,” denoted “ASEC.” In
addition, the term “neighbour-distinguishing” is used in some papers. How-
ever, this is also used to refer to improper edge-colorings in some cases. We
use the (more or less common) notation of χ′

a(G) to denote the minimum
number of colors needed to give G an avd coloring.

We begin with a few simple facts about avd colorings. Several of these
are notes or theorems from the first paper to introduce avd colorings, written
by Zhang, Liu, and Wang in [22]. In each, let G be a vdec graph.

• We always have χ′
a(G) ≥ ∆.

• If no two adjacent vertices of G have the same degree, then χ′
a(G) = ∆

(Theorem 8).

• If two vertices of maximum degree are adjacent, then χ′
a(G) ≥ ∆ + 1

(Theorem 7).

• If G has components G1, . . . , Gk, then

χ′
a(G) = max{χ′

a(G1), . . . , χ′
a(Gk)}.

As with vdec colorings, values of χ′
a are known for many standard graphs.

The techniques used to find these colorings are similar to those used for vdec
colorings, although often we may put the structure of a graph to better use:
if a graph has structure such that we can obtain a great deal of data about
the neighbors of any given vertex, this often makes it easier to find a good
avd coloring. For example:

• Cycles: For a cycle Cn,

χ′
a(Cn) =


3, if n ≡ 0 (mod 3)
4, if n 6≡ 0 (mod 3) and n 6= 5
5, if n = 5

• Complete Graphs: For a complete graph Kn,

χ′
a(Kn) =

{
n, if n is odd
n + 1, if n is even

Note that this is the same as for vdec colorings, because each pair of
vertices is adjacent.
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• Complete Bipartite Graphs:

χ′
a(Km,n) =

{
n, if n > m > 0
n + 2, if m = n and m ≥ 2

If n > m > 0, we may assign the same color sets to all vertices in one
vertex class, and similarly for the other class. If n = m, we require at
least n+1 colors, or else all vertices would have the same incident color
sets. As with vdec colorings, n + 1 colors do not give enough incident
color sets, for parity reasons. Thus, we have χ′

a(Kn,n) = n + 2, much
like χ′

s(Kn,n).

• Trees: Let T be a vdec tree. If any two vertices of maximum degree
are adjacent, then χ′

a(T ) = ∆ + 1. Otherwise, χ′
a(T ) = ∆. The proof

of this is given in [22].

As with vdec colorings, there is one main conjecture about the value of
χ′

a, and many upper bounds:

Conjecture 5.1.2. (Zhang, Liu, and Wang in [22]) Let G be a connected
vdec graph on at least 3 vertices, with G 6= C5. Then

∆ ≤ χ′
a(G) ≤ ∆ + 2.

This is in the spirit of Theorem 2.2.2. There are examples for χ′
a(G) =

∆,∆ + 1, and ∆ + 2. For example, the star graph has χ′
a(Sn) = ∆. We also

know that χ′
a(K2k+1) = 2k + 1 = ∆ + 1, and χ′

a(K2k) = 2k + 1 = ∆ + 2.
Balister, Győri, Lehel, and Schelp [4] proved several upper bounds which

support Conjecture 5.1.2. The following are Theorems 1.1 through 1.3 from
their paper:

• If G is a graph with no isolated edges and ∆ = 3, then χ′
a(G) ≤ 5.

Note that this is consistent with Conjecture 5.1.2.

• If G is a bipartite graph with no isolated edges, then χ′
a(G) ≤ ∆ + 2.

This is also consistent with Conjecture 5.1.2.

• If G is a k-chromatic graph with no isolated edges, then χ′
a(G) ≤

∆ + O(log k).

The proof for graphs with ∆ = 3 illustrates an interesting technique.
The graphs are colored with elements of the Klein IV group K = Z2 × Z2,
plus the color 5. The group elements are {0, a, b, c}, with the property that
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Figure 5.1.1: K4 colored with the Klein IV group

x+x = 0 for all x, and a+ b = c. Each vertex is then assigned a label equal
to the sum of the incident edge colors. Thus, different labels correspond to
different incident color sets. Then, the sum of labels on adjacent vertices
is examined. If the sum is zero, the adjacent vertices must have the same
label, and thus are not distinguished.

Example 5.1.3. Figure 5.1.1 shows K4 with edges colored from the Klein
IV group, plus color 5. The vertices are labeled with the sum of the colors
on their incident edges. Note that we have a proper edge-coloring, and that
the labels on adjacent vertices are distinct. Thus, we have an avd coloring.
It also happens to be a vdec coloring.

Other bounds for χ′
a include a recent bound from Hatami:

Theorem 5.1.4. (Hatami [19]) If G has no isolated edges, and ∆ > 1020,
then χ′

a(G) ≤ ∆ + 300.

This asymptotically improves on the bound χ′
a(G) ≤ ∆+O(log k). Sim-

ilarly, Greenhill and Ruciński [17] proved the following theorem:

Theorem 5.1.5. (Greenhill and Ruciński [17]) If d ≥ 4, then almost all
d-regular graphs G satisfy χ′

a(G) ≤
⌈

3d
2

⌉
.

This proves Conjecture 5.1.2 for almost all 4-regular graphs. Note that
here, as in Theorem 2.2.3, “almost all” means that, as n → ∞, the proba-
bility that a random d-regular graph on n vertices has this property tends
to 1.

Finally, Edwards, Horn̆ák, and Woźniak proved Conjecture 5.1.2 for
many bipartite graphs:

Theorem 5.1.6. (Edwards, Horn̆ák, and Woźniak [14]) Let G be a planar
bipartite graph with ∆ ≥ 12. Then χ′

a(G) ≤ ∆ + 1.
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Paper [14] also provided further generalizations and specializations of
avd and vdec colorings. In particular, it introduces the idea of an f -
distinguishing coloring, in which f(x) is a function which returns a set S(x)
of vertices. A coloring is said to be f -distinguishing if, for all x, S(x) 6= S(y)
for all y ∈ f(x). In particular, if f(x) = V \ {x}, we have an equivalent
definition of a vdec coloring. If f(x) = {y : y is a neighbor of x}, we have
an avd coloring.

5.2 Induced Colorings

One of the techniques mentioned in the previous section was to color the
edges of a graph with elements of a certain group (in this case, Klein IV),
and label each vertex with the sum of the incident edge “colors.” This idea
of an “induced coloring” has been used in several other papers to good effect.

In particular, this is used when allowing improper edge-colorings. If
the multiset of colors incident to one vertex is distinct from the multiset
of colors incident to any adjacent vertex, this is called (unfortunately) a
vertex-distinguishing edge-coloring [1]. It is in fact a variation on the avd
coloring, which allows improper colorings. Addario-Berry, et. al., used
positive integers as their edge colors, and were able to prove that every
graph with no isolated edge has such a coloring using at most 30 colors,
{1, . . . , 30}. It is also conjectured that at most 3 integer colors are needed
for any such graph.

Instead of using consecutive integers (in which two vertices may have
the same sum, but different incident color sets, if we are not careful), we
could use prime powers. For example, labeling edges with powers of two will
induce a binary number on each vertex. Thus two vertices have the same
label if and only if their incident color sets are identical.

General integer colorings have an interesting application to multigraphs.
Every simple graph must have at least two vertices of the same degree, but
this is not necessarily true for multigraphs. We may restrict the coloring
so that all pairs of vertices are distinguished. Then, we can consider the
numeric “color” on each edge to represent the number of parallel edges into
which it must be split, so that no two vertices have the same degree in the
resulting multigraph. A minimum coloring in this way will produce a graph
satisfying this condition, with the smallest possible number of edges.

Induced colorings are useful, since they turn an edge-coloring problem
into a vertex-coloring problem, in a structured way. An induced coloring
which gives a vertex-coloring will indicate if any two vertices were not dis-
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tinguished in the original coloring. If any two vertices have the same color,
they were not distinguished in the original edge-coloring. For avd colorings,
we need only look at the neighbors of each vertex.

We further generalize the idea of the vdec coloring by defining a new
type of coloring, the “adjacent edge-distinguishing vertex-coloring” (aed
coloring). Let G = (V,E) be a simple, undirected graph with a proper
vertex-coloring π. Let e = vw ∈ E. Define S(e) = {π(v), π(w)}. Then the
coloring of G is adjacent edge-distinguishing (aed) if S(e) 6= S(f) for any
adjacent edges e, f ∈ E. Since π is a proper vertex-coloring, S(e) is never a
multiset.

This relates to induced colorings in an interesting way. The induced
edge-coloring of a vertex-coloring is found in a way parallel to the induced
vertex-coloring: for each edge e, label the edge with S(e). These labels
can be seen as edge colors on G. Since the induced coloring given by any
avd coloring is proper, so too the induced edge-coloring given by any aed
coloring is an avd coloring.

Theorem 5.2.1. Let G be a vdec graph with a proper edge-coloring. If the
coloring of G is aed, then the induced edge-coloring will be avd.

Proof. Suppose otherwise. Then either the induced edge-coloring is not a
proper edge-coloring, or two adjacent vertices have the same labels.

Suppose that the induced edge-coloring is not proper. Then two adjacent
edges e, f have S(e) = S(f). We know that e = uv and f = vw share one
vertex, and that the original vertex-coloring was proper. Thus, the colors of
u and w must be the same. But then, edges e and f were not distinguished
in the original vertex-coloring.

Instead, suppose that two adjacent vertices v, w have the same labels.
First, note that deg(v) = deg(w), or else they must be distinguished. Their
labels in the original aed coloring were a, b respectively, with a 6= b. Since G
is vdec, edge vw is not isolated, so both v and w have another edge incident
to them. Since v and w have the same labels, for each edge incident to v
with a particular label, there is an edge incident to w with the same label.
Suppose that we have two edges vx and wz, respectively, which have the
same labels. Let the colors on x and z in the original aed coloring be c and
d, respectively.
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Thus, we must have {a, c} = {b, d}. We know that a 6= b, so we must
have a = d. Thus b = c. But then, edges xv and vw were not distinguished
in the original coloring, so the coloring was not aed. This is a contradiction.
Thus, the induced edge-coloring on G must be an avd coloring.

This provides interesting possibilities for analyzing avd colorings in terms
of vertex-colorings. In particular, if we can generate aed colorings, we can
automatically find avd colorings as well. Generating aed colorings with few
colors would produce avd colorings with fewer colors, as well. This is an
interesting area for future study. As aed colorings are not directly related
to the primary focus of this thesis, we will not pursue this line of thought
in this work.
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Chapter 6

Future Work and
Conclusions

Vertex-distinguishing edge-colorings and the related fields mentioned in the
previous chapter present many open problems and conjectures. While there
are many bounds on χ′

s, χ′
a, λ, and a, there are few exact results. The

VCICM presents some new possibilities for bounding these values, as well
as discovering new properties of vdec colorings.

There are many open problems in the area of vertex-distinguishing edge-
colorings. This section will enumerate some directions for future study.

• The biggest open question is Burris and Schelp’s unsolved conjecture
(here, Conjecture 2.2.1) on χ′

s. Even a bound of the form χ′
s(G) ≤ k+c

where c is a constant, perhaps depending on ∆ or n, would provide
progress.

• In a similar vein, the conjecture of Zhang, Liu, and Wang (Conjecture
5.1.2) is still open. There are some constant bounds on χ′

a, and tighter
results would also be welcome. In addition, most bounds are valid only
for graphs with very large numbers of vertices. Results for graphs with
smaller numbers of vertices would be useful.

• Theorem 3.1.3 gives a strong condition for determining if a coloring
is vdec, using the VCICM. It warrants much more study on its own.
Similarly, Corollary 3.3.3 provides some information about the deter-
minant of the VCICM, but there seems to be much more structure to
this matrix. Further information about its values would potentially be
of use.
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• Better upper bounds on the largest eigenvalue λ of the VCICM are a
useful direction for further research. Our current best bounds are not
particularly tight. In particular, it would be useful to find a bound
similar to the “color count (lower) bound,” which takes into account
not just the number of colors, but their distribution. We have some
excellent bounds, both upper and lower, on the average row sum of the
VCICM. Any bounds making use of these could potentially be very
sharp.

• It seems likely that reasonably good bounds on χ′
s could arise from

some of the eigenvalue bounds presented here. As many of these
bounds depend on the number of colors c used to color the graph,
it is possible to solve the bound inequalities for c. These bounds are
often very poor, but future work could improve that.

• Finally, as mentioned in Section 5.2, induced colorings may provide
interesting information about vdec and avd colorings. In particular, we
may find aed vertex-colorings, and look at their induced avd colorings.
We know a great deal about vertex-colorings, so this may provide
insight into the structure of avd colorings.
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