3,101 research outputs found

    Urban mobility data analysis in Montevideo, Uruguay

    Get PDF
    Transportation systems play a major role in modern urban contexts, where citizens are expected to travel in order to engage in social and economic activities. Understanding the interaction between citizens and transportation systems is crucial for policy-makers that aim to improve mobility in a city. Within the novel paradigm of smart cities, modern urban transportation systems incorporate technologies that generate huge volumes of data in real time, which can be processed to extract valuable information about the mobility of citizens. This thesis studies the public transportation system of Montevideo, Uruguay, following an urban data analysis approach. A thorough analysis of the transportation system and its usage is outlined, which combines several sources of urban data. The analyzed data includes the location of each bus of the transportation system as well as every ticket sold using smart cards during 2015, accounting for over 150 GB of raw data. Furthermore, origin-destination matrices, which describe mobility patterns in the city, are generated by processing geolocalized bus ticket sales data. For this purpose, a destination estimation algorithm is implemented following methodologies from the related literature. The computed results are compared to the ndings of a recent mobility survey, where the proposed approach arises as a viable alternative to obtain up-to-date mobility information. Finally, a visualization web application is presented, which allows conveying the aggregated information in an intuitive way to stakeholders

    Quantify resilience enhancement of UTS through exploiting connect community and internet of everything emerging technologies

    Get PDF
    This work aims at investigating and quantifying the Urban Transport System (UTS) resilience enhancement enabled by the adoption of emerging technology such as Internet of Everything (IoE) and the new trend of the Connected Community (CC). A conceptual extension of Functional Resonance Analysis Method (FRAM) and its formalization have been proposed and used to model UTS complexity. The scope is to identify the system functions and their interdependencies with a particular focus on those that have a relation and impact on people and communities. Network analysis techniques have been applied to the FRAM model to identify and estimate the most critical community-related functions. The notion of Variability Rate (VR) has been defined as the amount of output variability generated by an upstream function that can be tolerated/absorbed by a downstream function, without significantly increasing of its subsequent output variability. A fuzzy based quantification of the VR on expert judgment has been developed when quantitative data are not available. Our approach has been applied to a critical scenario (water bomb/flash flooding) considering two cases: when UTS has CC and IoE implemented or not. The results show a remarkable VR enhancement if CC and IoE are deploye

    iABACUS: A Wi-Fi-Based Automatic Bus Passenger Counting System

    Get PDF
    Since the early stages of the Internet-of-Things (IoT), one of the application scenarios that have been affected the most by this new paradigm is mobility. Smart Cities have greatly benefited from the awareness of some people’s habits to develop efficient mobility services. In particular, knowing how people use public transportation services and move throughout urban infrastructure is crucial in several areas, among which the most prominent are tourism and transportation. Indeed, especially for Public Transportation Companies (PTCs), long- and short-term planning of the transit network requires having a thorough knowledge of the flows of passengers in and out vehicles. Thanks to the ubiquitous presence of Internet connections, this knowledge can be easily enabled by sensors deployed on board of public transport vehicles. In this paper, a Wi-Fi-based Automatic Bus pAssenger CoUnting System, named iABACUS, is presented. The objective of iABACUS is to observe and analyze urban mobility by tracking passengers throughout their journey on public transportation vehicles, without the need for them to take any action. Test results proves that iABACUS efficiently detects the number of devices with an active Wi-Fi interface, with an accuracy of 100% in the static case and almost 94% in the dynamic case. In the latter case, there is a random error that only appears when two bus stops are very close to each other

    User Engagement Engine for Smart City Strategies

    Get PDF

    Detection and optimization problems with applications in smart cities

    Full text link
    This dissertation proposes solutions to a selected set of detection and optimization problems, whose applications are focused on transportation systems. The goal is to help build smarter and more efficient transportation systems, hence smarter cities. Problems with dynamics evolving in two different time-scales are considered: (1) In a fast time-scale, the dissertation considers the problem of detection, especially statistical anomaly detection in real-time. From a theoretical perspective and under Markovian assumptions, novel threshold estimators are derived for the widely used Hoeffding test. This results in a test with a much better ability to control false alarms while maintaining a high detection rate. From a practical perspective, the improved test is applied to detecting non-typical traffic jams in the Boston road network using real traffic data reported by the Waze smartphone navigation application. The detection results can alert the drivers to reroute so as to avoid the corresponding areas and provide the most urgent "targets" to the Transportation department and/or emergency services to intervene and remedy the underlying cause resulting in these jams, thus, improving transportation systems and contributing to the smart city agenda. (2) In a slower time-scale, the dissertation investigates a host of optimization problems, including estimation and adjustment of Origin-Destination (OD) demand, traffic assignment, recovery of travel cost functions, and joint recovery of travel cost functions and OD demand (joint problem). Integrating these problems leads to a data-driven predictive model which serves to diagnose/control/optimize the transportation network. To ensure good accuracy of the predictive model and increase its robustness and consistency, several novel formulations for the travel cost function recovery problem and the joint problem are proposed. A data-driven framework is proposed to evaluate the Price-of-Anarchy (PoA; a metric assessing the degree of congestion under selfish user-centric routing vs. socially-optimal system-centric routing). For the case where the PoA is larger than expected, three viable strategies are proposed to reduce it. To demonstrate the effectiveness and efficiency of the proposed approaches, case-studies are conducted on three benchmark transportation networks using synthetic data and an actual road network (from Eastern Massachusetts (EMA)) using real traffic data. Moreover, to facilitate research in the transportation community, the largest highway subnetwork of EMA has been released as a new benchmark network

    Exploring Potentials in Mobile Phone GPS Data Collection and Analysis

    Get PDF
    In order to support efficient transportation planning decisions, household travel survey data with high levels of accuracy are essential. Due to a number of issues associated with conventional household travel surveys, including high cost, low response rate, trip misreporting, and respondents’ self-reporting bias, government and private agencies are desperately searching for alternative data collection methods. Recent advancements in smart phones and Global Positioning System (GPS) technologies present new opportunities to track travelers’ trips. Considering the high penetration rate of smartphones, it seems reasonable to use smartphone data as a reliable source of individual travel diary. Many studies have applied GPS-Based data in planning and demand analysis but mobile phone GPS data has not received much attention. The Google Location History (GLH) data provide an opportunity to explore the potential of these data. This research presents a study using GLH data, including the data processing algorithm in deriving travel information and the potential applications in understanding travel patterns. The main goal of this study is to explore the potential of using cell phone GPS data to advance the understanding in mobility and travel behavior. The objectives of the study include: a) assessing the technical feasibility of using smartphones in transportation planning as a substitute of traditional household survey b) develop algorithms and procedures to derive travel information from smartphones; and c) identify applications in mobility and travel behavior studies that could take advantage of these smartphones GPS data, which would not have been possible with conventional data collection methods. This research aims to demonstrate how accurate travel information can be collected and analyzed with lower cost using smartphone GPS data and what analysis applications can be made possible with this new data source. Moreover, the framework developed in this study can provide valuable insights for others who are interested in using cell phone data. GLH data are obtained from 45 participants in a two-month period for the study. The results show great promise of using GLH data as a supplement or complement to conventional travel diary data. It shows that GLH provides sufficient high resolution data that can be used to study people’s movement without respondent burden, and potentially it can be applied to a large scale study easily. The developed algorithms in this study work well with the data. This study supports that transportation data can be collected with smartphones less expensively and more accurately than by traditional household travel survey. These data provide the opportunity to facilitate the investigation of various issues, such as less frequent long-distance travel, hourly variations in travel behavior, and daily variations in travel behavior
    corecore