18 research outputs found

    Modeling Heterogeneous Vehicle Routing Problem with Strict Time Schedule

    Get PDF
    Vehicle Routing Problem with time windows (VRPTW) is a well known combinatorial optimization problem normally to be used for obtaining the optimal set of routes used by a fleet of vehicles in logistic system. In VRPTW it is assumed that the fleet of vehicles are all homogeny. In this paper we consider a variant of the VRPTW in which the assumption of homogeny is dropped. Now the problem is called Heterogeneous VRP (HVRP). As the logistic company has so many customers, it puts a very strict restriction in time delivery for each vehicle used. Regarding to the structure of the problem we use integer programming approach to model the problem. A feasible neighbourhood method is developed to solve the model

    A Capacitated Heterogeneous Vehicle Routing Problem for Catering Service Delivery with Committed Scheduled Time

    Get PDF
    The heterogeneous vehicle routing problem (HVRP) is a well-known combinatorial optimization problem which describes a heterogeneous set of vehicles with different capacity, in which each vehicle starts from a central depot and traverses along a route in order to serve a set of customers with known geographical locations. This paper develops a model for the optimal management of service deliveries of meals of a catering company located in Medan City, Indonesia. The HVRP incorporates time windows, deliveries, fleet scheduling in the committed scheduled time planning.. The objective is to minimize the sum of the costs of travelling and elapsed time over the planning horizon. We model the problem as a linear mixed integer program and we propose a feasible neighbourhood direct search approach to solve the problem

    An evaluation of three DoE-guided meta-heuristic-based solution methods for a three-echelon sustainable distribution network

    Get PDF
    This article evaluates the efficiency of three meta-heuristic optimiser (viz. MOGA-II, MOPSO and NSGA-II)-based solution methods for designing a sustainable three-echelon distribution network. The distribution network employs a bi-objective location-routing model. Due to the mathematically NP-hard nature of the model a multi-disciplinary optimisation commercial platform, modeFRONTIER®, is adopted to utilise the solution methods. The proposed Design of Experiment (DoE)-guided solution methods are of two phased that solve the NP-hard model to attain minimal total costs and total CO2 emission from transportation. Convergence of the optimisers are tested and compared. Ranking of the realistic results are examined using Pareto frontiers and the Technique for Order Preference by Similarity to Ideal Solution approach, followed by determination of the optimal transportation routes. A case of an Irish dairy processing industry’s three-echelon logistics network is considered to validate the solution methods. The results obtained through the proposed methods provide information on open/closed distribution centres (DCs), vehicle routing patterns connecting plants to DCs, open DCs to retailers and retailers to retailers, and number of trucks required in each route to transport the products. It is found that the DoE-guided NSGA-II optimiser based solution is more efficient when compared with the DoE-guided MOGA-II and MOPSO optimiser based solution methods in solving the bi-objective NP-hard three-echelon sustainable model. This efficient solution method enable managers to structure the physical distribution network on the demand side of a logistics network, minimising total cost and total CO2 emission from transportation while satisfying all operational constraints

    A well-scalable metaheuristic for the fleet size and mix vehicle routing problem with time windows

    No full text
    This paper presents an efficient and well-scalable metaheuristic for fleet size and mix vehicle routing with time windows. The suggested solution method combines the strengths of well-known threshold accepting and guided local search metaheuristics to guide a set of four local search heuristics. The computational tests were done using the benchmarks of [Liu, F.-H., & Shen, S.-Y. (1999). The fleet size and mix vehicle routing problem with time windows. Journal of the Operational Research Society, 50(7), 721-732] and 600 new benchmark problems suggested in this paper. The results indicate that the suggested method is competitive and scales almost linearly up to instances with 1000 customers

    A simulation-optimization approach for a service-constrained multi-echelon distribution network

    Get PDF
    Academic research on (s,S) inventory policies for multi-echelon distribution networks with deterministic lead times, backordering, and fill rate constraints is limited. Inspired by a real-life Dutch food retail case we develop a simulation-optimization approach to optimize (s,S) inventory policies in such a setting. We compare the performance of a Nested Bisection Search (NBS) and a novel Scatter Search (SS) metaheuristic using 1280 instances from literature and we derive managerial implications from a real-life case. Results show that the SS outperforms the NBS on solution quality. Additionally, supply chain costs can be saved by allowing lower fill rates at upstream echelons

    Thirty years of heterogeneous vehicle routing

    No full text
    It has been around thirty years since the heterogeneous vehicle routing problem was introduced, and significant progress has since been made on this problem and its variants. The aim of this survey paper is to classify and review the literature on heterogeneous vehicle routing problems. The paper also presents a comparative analysis of the metaheuristic algorithms that have been proposed for these problems

    A Hybrid Heuristic for a Broad Class of Vehicle Routing Problems with Heterogeneous Fleet

    Full text link
    We consider a family of Rich Vehicle Routing Problems (RVRP) which have the particularity to combine a heterogeneous fleet with other attributes, such as backhauls, multiple depots, split deliveries, site dependency, open routes, duration limits, and time windows. To efficiently solve these problems, we propose a hybrid metaheuristic which combines an iterated local search with variable neighborhood descent, for solution improvement, and a set partitioning formulation, to exploit the memory of the past search. Moreover, we investigate a class of combined neighborhoods which jointly modify the sequences of visits and perform either heuristic or optimal reassignments of vehicles to routes. To the best of our knowledge, this is the first unified approach for a large class of heterogeneous fleet RVRPs, capable of solving more than 12 problem variants. The efficiency of the algorithm is evaluated on 643 well-known benchmark instances, and 71.70\% of the best known solutions are either retrieved or improved. Moreover, the proposed metaheuristic, which can be considered as a matheuristic, produces high quality solutions with low standard deviation in comparison with previous methods. Finally, we observe that the use of combined neighborhoods does not lead to significant quality gains. Contrary to intuition, the computational effort seems better spent on more intensive route optimization rather than on more intelligent and frequent fleet re-assignments
    corecore