145 research outputs found

    Acquiring Qualitative Explainable Graphs for Automated Driving Scene Interpretation

    Full text link
    The future of automated driving (AD) is rooted in the development of robust, fair and explainable artificial intelligence methods. Upon request, automated vehicles must be able to explain their decisions to the driver and the car passengers, to the pedestrians and other vulnerable road users and potentially to external auditors in case of accidents. However, nowadays, most explainable methods still rely on quantitative analysis of the AD scene representations captured by multiple sensors. This paper proposes a novel representation of AD scenes, called Qualitative eXplainable Graph (QXG), dedicated to qualitative spatiotemporal reasoning of long-term scenes. The construction of this graph exploits the recent Qualitative Constraint Acquisition paradigm. Our experimental results on NuScenes, an open real-world multi-modal dataset, show that the qualitative eXplainable graph of an AD scene composed of 40 frames can be computed in real-time and light in space storage which makes it a potentially interesting tool for improved and more trustworthy perception and control processes in AD

    Automatic Heart Sounds Segmentation based on the Correlation Coefficients Matrix for Similar Cardiac Cycles Identification

    Get PDF
    This paper proposes a novel automatic heart sounds segmentation method for deployment in heart valve defect diagnosis. The method is based on the correlation coefficients matrix, calculated between all the heart cycles for similarity identification. Firstly, fundamental heart sounds (S1 and S2) in the presence of extra gallop sounds such as S3 and/or S4 and murmurs are localized with more accuracy. Secondly, two similarity-based filtering approaches (using time and time-frequency domains, respectively) for correlated heart cycles identification are proposed and evaluated in the context of professional clinical auscultated heart sounds of adult patients. Results show the superiority of the novel time-frequency method proposed here particularly in the presence of extra gallop sounds

    A new terrestrial palaeoenvironmental record from the Bering Land Bridge and context for human dispersal

    Get PDF
    Palaeoenvironmental records from the now-submerged Bering Land Bridge (BLB) covering the Last Glacial Maximum (LGM) to the present are needed to document changing environments and connections with the dispersal of humans into North America. Moreover, terrestrially based records of environmental changes are needed in close proximity to the re-establishment of circulation between Pacific and Atlantic Oceans following the end of the last glaciation to test palaeo-climate models for the high latitudes. We present the first terrestrial temperature and hydrologic reconstructions from the LGM to the present from the BLB’s south-central margin. We find that the timing of the earliest unequivocal human dispersals into Alaska, based on archaeological evidence, corresponds with a shift to warmer/wetter conditions on the BLB between 14 700 and 13 500 years ago associated with the early Bølling/Allerød interstadial (BA). These environmental changes could have provided the impetus for eastward human dispersal at that time, from Western or central Beringia after a protracted human population standstill. Our data indicate substantial climate-induced environmental changes on the BLB since the LGM, which would potentially have had significant influences on megafaunal and human biogeography in the region. © 2018 The Authors

    Evaluating climate signal recorded in tree-ring δ¹³C and δ¹⁸O values from bulk wood and α-cellulose for six species across four sites in the northeastern US

    Get PDF
    Ajuts: National Aeronautics and Space Administration (NASA), Grant/Award Number:NNX12AK56GRationale : we evaluated the applicability of tree-ring δ¹³C and δ¹⁸O values in bulk wood - instead of the more time and lab-consuming α-cellulose δ¹³C and δ¹⁸O values, to assess climate and physiological signals across multiple sites and for six tree species along a latitudinal gradient (35°97'N to 45°20'N) of the northeastern United States. -Methods: wood cores (n = 4 per tree) were sampled from ten trees per species. Cores were cross-dated within and across trees at each site, and for the last 30 years. Seven years, including the driest on record, were selected for this study. The δ¹³C and δ¹⁸O values were measured on two of the ten trees from the bulk wood and the α-cellulose. The offsets between materials in δ¹³C and δ¹⁸O values were assessed. Correlation and multiple regression analyses were used to evaluate the strength of the climate signal across sites. Finally the relationship between δ¹³C and δ¹⁸O values in bulk wood vs α-cellulose was analyzed to assess the consistency of the interpretation, in terms of CO2 assimilation and stomatal conductance, from both materials. - Results: we found offsets of 1.1‰ and 5.6‰ between bulk and α-cellulose for δ¹³C and δ¹⁸O values, respectively, consistent with offset values reported in the literature. Bulk wood showed similar or stronger correlations to climate parameters than α-cellulose for the investigated sites. In particular, temperature and vapor pressure deficit and standard precipitation-evaporation index (SPEI) were the most visible climate signals recorded in δ¹³C and δ¹⁸O values, respectively. For most of the species, there was no relationship between δ13C and δ18O values, regardless of the wood material considered. - conclusions: extraction of α-cellulose was not necessary to detect climate signals in tree rings across the four investigated sites. Furthermore, the physiological information inferred from the dual isotope approach was similar for most of the species regardless of the material considered

    Disentangling the role of photosynthesis and stomatal conductance on rising forest water-use efficiency

    Get PDF
    Multiple lines of evidence suggest that plant water-use efficiency (WUE) -the ratio of carbon assimilation to water loss- has increased in recent decades. Although rising atmospheric CO2 has been proposed as the principal cause, the underlying physiological mechanisms are still being debated, and implications for the global water cycle remain uncertain. Here, we addressed this gap using 30-y tree ring records of carbon and oxygen isotope measurements and basal area increment from 12 species in 8 North American mature temperate forests. Our goal was to separate the contributions of enhanced photosynthesis and reduced stomatal conductance to WUE trends and to assess consistency between multiple commonly used methods for estimating WUE. Our results show that tree ring-derived estimates of increases in WUE are consistent with estimates from atmospheric measurements and predictions based on an optimal balancing of carbon gains and water costs, but are lower than those based on ecosystemscale flux observations. Although both physiological mechanisms contributed to rising WUE, enhanced photosynthesis was widespread, while reductions in stomatal conductance were modest and restricted to species that experienced moisture limitations. This finding challenges the hypothesis that rising WUE in forests is primarily the result of widespread, CO2-induced reductions in stomatal conductance

    Evapotranspiration and water use efficiency in relation to climate and canopy nitrogen in U.S. forests

    Get PDF
    Understanding relations among forest carbon (C) uptake and water use is critical for predicting forest-climate interactions. Although the basic properties of tree-water relations have long been known, our understanding of broader-scale patterns is limited by several factors including (1) incomplete understanding of drivers of change in coupled C and water fluxes and water use efficiency (WUE), (2) difficulty in reconciling WUE estimates obtained at different scales, and (3) uncertainty in how evapotranspiration (ET) and WUE vary with other important resources such as nitrogen (N). To address these issues, we examined ET, gross primary production (GPP), and WUE at 11 AmeriFlux sites across North America. Our analysis spanned leaf and ecosystem scales and included foliar δ13C, δ18O, and %N measurements; eddy covariance estimates of GPP and ET; and remotely sensed estimates of canopy %N. We used flux data to derive ecosystem WUE (WUEe) and foliar δ13C to infer intrinsic WUE. We found that GPP, ET, and WUEe scaled with canopy %N, even when environmental variables were considered, and discuss the implications of these relationships for forest-atmosphere-climate interactions. We observed opposing patterns of WUE at leaf and ecosystem scales and examined uncertainties to help explain these opposing patterns. Nevertheless, significant relationship between C isotope-derived ci/ca and GPP indicates that δ13C can be an effective predictor of forest GPP. Finally, we show that incorporating species functional traits—wood anatomy, hydraulic strategy, and foliar %N—into a conceptual model improved the interpretation of Δ13C and δ18O vis-à-vis leaf to canopy water-carbon fluxes

    Interface air-lac: les ostracodes des lacs tempérés

    No full text
    International audienc
    corecore