4,066 research outputs found

    A tight lower bound for job scheduling with cancellation

    Get PDF
    Abstract The Job Scheduling with Cancellation problem is a variation of classical scheduling problems in which jobs can be cancelled while waiting for execution. In this paper we prove a tight lower bound of 5 for the competitive ratio of any deterministic online algorithm for this problem, for the case where all jobs have the same processing time

    Survey of dynamic scheduling in manufacturing systems

    Get PDF

    Approximations and Bounds for (n, k) Fork-Join Queues: A Linear Transformation Approach

    Full text link
    Compared to basic fork-join queues, a job in (n, k) fork-join queues only needs its k out of all n sub-tasks to be finished. Since (n, k) fork-join queues are prevalent in popular distributed systems, erasure coding based cloud storages, and modern network protocols like multipath routing, estimating the sojourn time of such queues is thus critical for the performance measurement and resource plan of computer clusters. However, the estimating keeps to be a well-known open challenge for years, and only rough bounds for a limited range of load factors have been given. In this paper, we developed a closed-form linear transformation technique for jointly-identical random variables: An order statistic can be represented by a linear combination of maxima. This brand-new technique is then used to transform the sojourn time of non-purging (n, k) fork-join queues into a linear combination of the sojourn times of basic (k, k), (k+1, k+1), ..., (n, n) fork-join queues. Consequently, existing approximations for basic fork-join queues can be bridged to the approximations for non-purging (n, k) fork-join queues. The uncovered approximations are then used to improve the upper bounds for purging (n, k) fork-join queues. Simulation experiments show that this linear transformation approach is practiced well for moderate n and relatively large k.Comment: 10 page

    Local search methods for the discrete time/resource trade-off problem in project networks.

    Get PDF
    Abstract: In this paper we consider the discrete time/resource trade-off problem in project networks. Given a project network consisting of nodes (activities) and arcs (technological precedence relations specifying that an activity can only start when al of its predecessors have been completed), in which the duration of the activities is a discrete, on-increasing function of the amount of a single renewable resource committed to it, the discrete time/resource trade-off problem minimizes the project makespan subject to precedence constraints and a single renewable resource constraint. For each activity a work content is specified such that all execution modes (duration-resource pairs) for performing the activity are allowed as long as the product of the duration and the resource requirement is at least as large as the specified work content. We present a tabu search procedure which is based on subdividing the problem into a mode assignment phase and a resource-constrained project scheduling phase with fixed mode assignments. Extensive computational experience, including a comparison with other local search methods, is reported.Scheduling; Methods; Networks; Product; Assignment;
    corecore