
Online Algorithms for Dynamic
Resource Allocation Problems

Xinshang Wang

Submitted in partial fulfillment of the

requirements for the degree of

Doctor of Philosophy

in the Graduate School of Arts and Sciences

COLUMBIA UNIVERSITY

2017

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Columbia University Academic Commons

https://core.ac.uk/display/161457626?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

c©2017

Xinshang Wang

All Rights Reserved

ABSTRACT

Online Algorithms for Dynamic Resource Allocation Problems

Xinshang Wang

Dynamic resource allocation problems are everywhere. Airlines reserve flight seats for

those who purchase flight tickets. Healthcare facilities reserve appointment slots for patients

who request them. Freight carriers such as motor carriers, railroad companies, and shipping

companies pack containers with loads from specific origins to destinations.

We focus on optimizing such allocation problems where resources need to be assigned

to customers in real time. These problems are particularly difficult to solve because they

depend on random external information that unfolds gradually over time, and the number

of potential solutions is overwhelming to search through by conventional methods.

In this dissertation, we propose viable allocation algorithms for industrial use, by fully

leveraging data and technology to produce gains in efficiency, productivity, and usability of

new systems. The first chapter presents a summary of major methodologies used in modeling

and algorithm design, and how the methodologies are driven by the size of accessible data.

Chapters 2 to 5 present genuine research results of resource allocation problems that

are based on Wang and Truong (2017); Wang et al. (2015); Stein et al. (2017); Wang et al.

(2016). The algorithms and models cover problems in multiple industries, from a small clinic

that aims to better utilize its expensive medical devices, to a technology giant that needs a

cost-effective, distributed resource-allocation algorithm in order to maintain the relevance of

its advertisements to hundreds of millions of consumers.

Contents

List of Figures v

List of Tables viii

Acknowledgements xi

1 Introduction 1

1.1 Overview of Analysis Techniques . 2

1.2 Overview of Thesis Chapters . 6

2 Multi-priority Online Scheduling with Cancellations 13

2.1 Introduction . 13

2.2 Literature Review . 16

2.2.1 Appointment scheduling . 16

2.2.2 Make-to-order systems . 18

2.2.3 Machine scheduling . 19

2.2.4 Ski-rental problem and extensions . 20

i

2.2.5 Online algorithms in Operations Management 21

2.3 Model of Allocation Scheduling without Cancellations 23

2.3.1 Online algorithm and summary of main ideas 26

2.3.2 Dominance relationship between two policies 27

2.3.3 Distance Function and Comparison of Scheduling Policies 29

2.3.4 Invariance between policies in terms of the distance function 30

2.3.5 Partition of the horizon . 33

2.3.6 Proof of performance . 35

2.3.7 Generalization to Discounted Costs 39

2.3.8 Lower Bounds . 40

2.4 Model of Allocation Scheduling with Cancellations 41

2.4.1 Online algorithm and summary of main ideas 46

2.4.2 Coupling of two scheduling policies 47

2.4.3 New Cost-Accounting Scheme . 52

2.4.4 Online algorithm and proof of performance 55

2.5 Numerical Performance . 61

2.5.1 Experiments with synthetic data . 62

2.5.2 Experiments with Real Data . 67

2.6 Conclusions . 69

3 Online Advance Admission Scheduling for Services with Customer Pref-

erences 71

ii

3.1 Introduction . 71

3.2 Literature Review . 76

3.2.1 Revenue Management . 76

3.2.2 Appointment Scheduling . 78

3.2.3 Online Resource Allocation . 79

3.3 Problem Formulation . 82

3.3.1 Model . 82

3.3.2 Definition of Competitive Ratios . 83

3.4 Online Resource Allocation Algorithms . 83

3.4.1 Offline Algorithm and Its Upper Bound 84

3.4.2 Separation Algorithm and Constant Competitive Ratio 86

3.5 Capacity-Dependent Competitive Ratio . 94

3.5.1 Homogenizing time . 98

3.5.2 Bound-revealing optimization problem 99

3.5.3 A dual-feasible solution for the bound-revealing problem 101

3.5.4 Computing the bound . 121

3.6 Marginal Allocation Algorithm . 128

3.7 Asymptotic performance . 133

3.8 Upper Bound on the Competitive Ratio . 135

3.9 Overbooking . 137

3.10 Computing Algorithms . 139

3.11 Numerical Studies . 143

iii

3.11.1 Consideration for Overbooking . 151

3.11.2 Consideration for Patient Availability 154

3.12 Conclusions . 156

4 Advance Service Reservations with Heterogeneous Customers 158

4.1 Introduction . 158

4.2 Literature Review . 161

4.2.1 Adwords problems . 162

4.2.2 Dynamic knapsack problems . 162

4.3 Model and Performance Metric . 164

4.4 Upper Bound on the Competitive Ratio . 165

4.5 Upper Bound on the Optimal Offline Objective 167

4.6 Basic Online Algorithm . 169

4.7 Improving the Bound . 182

4.8 Numerical Study . 193

4.9 Conclusions . 200

5 Dynamic Optimization of Mobile Push Advertising Campaigns 202

5.1 Introduction . 202

5.1.1 Overview of Algorithms and Contributions 206

5.2 Literature Review . 209

5.3 Model Formulation . 210

5.4 Performance Measure . 212

iv

5.5 Linear-Programming Formulation and Upper Bound on OPT 213

5.6 The Reservation Algorithm . 217

5.7 Overview of Analysis of the Reservation Algorithm 222

5.8 Bound on the First Gap . 227

5.9 Bound on the Second Gap via Generalized Network Flows 230

5.9.1 Construction of a generalized flow network 232

5.9.2 Properties of optimal flows in the generalized flow network 236

5.9.3 Bounding the second gap . 242

5.10 Performance Analysis in an Asymptotic Regime 250

5.11 Big-Data scaling . 250

5.12 Implication on Smoothness of Big-Data Scaling 253

5.13 Asymptotic Regret of the Reservation Algorithm 265

5.14 Regret of the Static Algorithm . 269

5.15 Numerical Studies . 272

5.16 Conclusions . 274

Bibliography 274

v

List of Figures

2.1 Illustration of the distance function. There are 4 priority classes with waiting

costs w = (4, 3, 2, 1). By the end of period t, fΠ
t = (1, 1, 2, 1) and fΘ

t =

(0, 2, 0, 2). The figure displays all the jobs with their waiting costs marked.

Assume that φt(Π,Θ) = 2. After φt(Π,Θ) = 2 jobs with the highest priorities

are removed from fΠ
t , the remaining jobs, marked by the black box, have lower

priorities than the jobs in fΘ
t . Note that if we only removed 1 job with unit

waiting cost of 4 from fΠ
t , the remaining jobs would not be ‘dominated’ by the

jobs in fΘ
t , as there would be 3 jobs with waiting costs of at least 2 remaining

in fΠ
t , but only 2 such jobs in fΘ

t . 30

2.2 Stochastic coupling of cancellation events. After removing φt−1(Π,Θ) jobs

with the highest priorities from the state under Π, the remaining l jobs are

dominated by the jobs under Θ, in that the priority of each remaining job

under Π is at most that of the job with the same priority ranking under Θ. In

Phase 2, the cancellation events of each pair of jobs having the same priority

ranking under the two policies are coupled together. 49

vi

3.1 Average number of arrivals in a week. 145

3.2 Show probabilities of appointment slots assigned to patients who arrived on

the previous Thursday. 147

3.3 Show probabilities as functions of number of days to wait before getting service.148

4.1 Average number of arrivals in a week. 194

5.1 A toy example of sending push messages. 206

5.2 In a generalized flow network, every user i corresponds to a user node ui, and

every message j corresponds to a message node vj. T is the sink. 231

5.3 A random sample of 10, 000 user profiles, projected onto two coordinates. . . 252

5.4 Regret of the Reservation Algorithm relative to the Static Algorithm under

different values of ∆. 273

vii

List of Tables

2.1 Example of the distance function. Based on the numbers of scheduled overtime

slots dΠ
t and dΘ

t of two scheduling policies Π and Θ, respectively, the values

of the distance function φt(Π,Θ) are computed and listed in the bottom row. 29

2.2 Performance results under different values of Ct. 65

2.3 Performance results under different values of w1. 65

2.4 Performance results under different values of q1. 65

2.5 Performance results under different values of r1. 66

2.6 Performance results when w1 and w2 are both increasing. 66

2.7 Performance results when w1 is increasing and w2 is decreasing. 66

2.8 Performance results when demand is non-stationary. 66

2.9 Performance results under larger dimensions of state space. 66

2.10 Empirical performance of algorithms under different values of unit overtime

cost. 68

viii

3.1 Show probabilities for morning sessions, as a function waiting time and day

of week of the appointment. Some cells are NA because there is no patient

arrival during weekends. 148

3.2 The empirical performance of different scheduling policies. 151

3.3 The total benefit of scheduling policies relative to LP upper bound under

different values of penalty D. α = 0.75. 153

3.4 The total benefit of scheduling policies relative to LP upper bound under

different values of α. D = 3. 153

3.5 The total benefit of scheduling policies relative to LP upper bound under

different values of PA. D = 3, α = 0.7. 155

4.1 Results on adwords models. 163

4.2 Percentage of patients in different categories. 195

4.3 Performance relative to the upper bound given in (4.5.1). The length of each

session is 1 hour. 196

4.4 Performance relative to the upper bound given in (4.5.1). The length of each

session is 1.5 hours. 197

4.5 Performance relative to the upper bound given in (4.5.1). The length of each

session is 2 hours. 197

4.6 Performance relative to the upper bound given in (4.5.1). The length of each

session is 3 hours. 198

ix

4.7 Performance relative to the upper bound given in (4.5.1). The length of each

session is 4 hours. 198

4.8 Performance relative to the upper bound given in (4.5.1), when parameters

are randomly generated. 199

x

Acknowledgements

First and foremost, I would like to express my deepest gratitude to my advisor Prof.

Van-Anh Truong. She has devoted tremendous amount of time to turning me from a PhD

newbie to a mature researcher. It is an invaluable experience to work with her as she lets

me understand that research is just research, nothing else.

I would like to sincerely thank my collaborators Prof. Guillermo Gallego and Prof. Cliff

Stein, for the help with exploring new research topics together and for always adhering to

high standards. Their deep knowledge continuously encourages me to pursue my academic

journey.

My sincere appreciations also go to Prof. Donald Goldfarb, Prof. Garud Iyengar, Prof.

Jay Sethuraman, Prof. Ward Whitt, and Prof. David Yao for being great teachers on various

fundamental domains of Operations Research. It is my genuine fortune to be recognized and

inspired by Prof. Ward Whitt before joining IEOR. I am also very grateful to Prof. Vineet

Goyal, Prof. Adam Elmachtoub and Prof. Xi Chen for always being available for insightful

discussions.

I specially thank my PhD colleague Anran Li, for helping me smoothly step into new

research areas through friendly discussions and collaboration. I also thank many other PhD

friends for supporting me throughout the journey. I thank all the IEOR staff members for

sending lovely gifts to my children and for keeping the IEOR community warm and pleasant.

Last but not least, I would like to thank my parents, my wife, my daughter and my son,

for giving me a wonderful home.

Xinshang Wang

August 2, 2017

xi

To my parents, my wife and my children

xii

1

Chapter 1

Introduction

Dynamic resource allocation problems are everywhere. Airlines reserve flight seats for those

who purchase tickets. Freight carriers such as motor carriers, railroad companies, and ship-

ping companies pack containers with loads from specific origins to destinations. Healthcare

facilities reserve appointment slots for patients who request them. This dissertation focuses

on such resource allocation applications where resources need to be assigned to customers in

a dynamic environment.

Dynamic allocation problems are particularly difficult to solve because they depend on

random external information that unfolds gradually over time, and the number of potential

solutions is overwhelming to search through by conventional methods. The ability to solve

dynamic allocation problems often determines the competitive edge of modern technology-

based companies.

The research presented in this dissertation aims to design viable allocation algorithms

for industrial use. We assess all the algorithms presented using the following criteria:

2

• Analytical performance guarantees. Having a performance guarantee means that

the outcome of allocation cannot be arbitrarily bad compared with the best possible

strategy. It is only with provable performance guarantees that one can safely automate

allocation decisions, which is especially essential for Internet-based services and large-

scale systems. Section 1.1 overviews different types of performance guarantees we use

in the analysis of this dissertation.

• Empirical performance. For many resource allocation problems, simple heuristics

may work very well. Through simulations based on industrial data, we ensure that the

algorithms we have proposed, or some variants of our algorithms, outperform naive

heuristics in practice. The empirical experiments in this dissertation are based on

collaborations with Columbia University Medical Center (CUMC) and the Institute

of Data Science and Technology (IDST) at Alibaba Group. Both institutions have

provided valuable data for verifying the benefit of our allocation algorithms.

• Ease of implementation. We make sure that the types of data required by our

algorithms and models are commonly available in industry, and that the computational

cost of our algorithms is reasonable.

1.1 Overview of Analysis Techniques

In modeling resource allocation problems, the design of assumptions about dynamic elements

mostly depends on what data are available. Data that are commonly useful in resource

allocation problems include the arrivals, preferences and profiles of customers and resources

3

(i.e., agents, workers) recorded in the past. Typically, these data are used to estimate

distributional information about future events. Depending on the amount of usable data,

there are different practical requirements of designing a model. In this dissertation, we focus

on the following three important domains of model design for dynamic resource allocation

problems:

1. No (or not enough) reliable historical data. For example, at the start of a new

business, there is very little past information that can be used to predict future demands.

Another example is when demands are affected by an adversary, so that future adversarial

events have little to do with past events. In these scenarios, it is advisable not to estimate

model parameters based on historical data, and to focus on the worst-case analysis.

Mathematically, we use competitive analysis (Borodin and El-Yaniv, 2005) to evaluate

the performance of algorithms in the worst scenario. (For an example of competitive analysis

in revenue management, see Ball and Queyranne (2009).) We say that an algorithm is offline

if it knows all future information upfront. An algorithm is online if at all points in time, the

algorithm only knows past and current information.

Consider a dynamic allocation problem where the objective is to minimize total cost. Let

I be an instance that contains all the information related to the problem. Given instance I,

let ALG(I) and OFF(I) be the total cost of an online algorithm ALG and an optimal offline

algorithm OFF, respectively. In competitive analysis, the type of performance guarantee

that we analyze is called the competitive ratio. For an online algorithm ALG, its competitive

4

ratio is defined as

max
I

ALG(I)

OFF(I)
. (1.1.1)

That is, the maximum ratio between the cost achieved under the online algorithm and that

under the optimal offline algorithm. An algorithm with a competitive ratio of α is said to

be α-competitive.

Note that if the problem is to maximize revenue instead of minimizing cost, we should

replace max with min in the definition (1.1.1) of competitive ratio, in order to analyze the

minimum ratio of revenue earned by online algorithms.

In Chapter 2, we analyze the competitive ratios of online algorithms. Although the focus

of analysis is on the worst-case scenario, we show that the algorithms we propose, and their

variants, attain decent performance for average cases as well.

2. Plentiful historical data for small to medium systems. Scenarios in this domain

can be, for example, a clinic that has been running for a decade, so it is easy to estimate future

arrival rates of various types of patients. With the access to future distributional information

such as arrival rates, we can mathematically define an optimal allocation algorithm that

maximizes the expected performance for a given model. However, it is often difficult to

actually compute such an optimal algorithm due to the curse of dimensionality. Therefore, for

problems in this domain, we aim to find approximate algorithms with performance guarantees

relative to an optimal algorithm.

Mathematically, let D be the set of all model parameters, which possibly contains dis-

tributional information such as customer arrival rates. Let I be a problem instance that

5

contains all the realized information such as the actual number and times of customer ar-

rivals. We still keep the notion of online algorithms, and study online algorithms that make

dynamic decisions based on D. For revenue-maximizing problems in this domain, we define

the performance guarantee of an online algorithm ALG as

min
D

E[ALG(I)|D]

E[OPT(I)|D]
, (1.1.2)

where the expectations are taken over the problem instance I that is randomly drawn ac-

cording to the distributional information in D, and OPT(I) is the total revenue earned by

an optimal (but impossible-to-compute) online algorithm that maximizes E[OPT(I)|D].

Note that for cost-minimizing problems, we should replace the min with max in the

definition (1.1.2).

Compared with the worst-case ratio (1.1.1), the metric (1.1.2) considers the expected

performance of algorithms. As a result, the metric (1.1.2) is less conservative as it assigns

lower weights to bad cases that occur with small probabilities.

In Chapters 3 and 4, we actually relax the definition of OPT to allow any offline al-

gorithms, so as to obtain theoretically stronger guarantees. Then, we still call (1.1.2) the

(average-case) competitive ratio of ALG. Nevertheless, the purpose of studying the average-

case competitive ratio is to approximate an optimal online algorithm.

3. Plentiful historical data for large systems (a.k.a., “big data”). When ter-

abytes of data are being accumulated every day, there are two major difficulties in designing

resource allocation algorithms. First, when customer volume is huge (e.g., a billion customers

6

per day), it must not take more than a few CPU operations to compute the allocation deci-

sion for each single customer. In other words, we cannot solve a new complex problem for

each customer in real time; useful algorithms often rely heavily on precomputation, and make

allocation decisions for batches of customers. Second, allocation algorithms must be imple-

mented on distributed computing systems. This limits the scope of applicable optimization

tools.

When the size of a system grows large, relative performance ratios such as (1.1.1) and

(1.1.2) often approach 1. Thus, we focus on rate at which approximate algorithms approach

the optimal one. Mathematically, let I1, I2, I3, · · · be a sequence of problems with increasing

size. We analyze the following regret of an algorithm ALG in the asymptotic regime

lim
t→∞

(OPT(It)− ALG(It)), (1.1.3)

where OPT(It) is the performance of an optimal algorithm for the problem of size t.

In Chapter 5, we analyze the asymptotic regret of distributed algorithms that maximize

revenue for a large-scale budget allocation problem.

1.2 Overview of Thesis Chapters

First, in Chapter 2, we study a fundamental model of resource allocation in which a finite

amount of service capacity must be allocated to a stream of jobs of different priorities arriving

online. Jobs incur costs and may also cancel while waiting for service. To increase the

7

rate of service, overtime capacity can be used at a cost. This model has application in

healthcare scheduling, server applications, make-to-order manufacturing systems, general

service systems, and green computing. We present an online algorithm that minimizes the

total cost due to waiting, cancellations and overtime capacity usage. We prove that our

scheduling algorithm has cost at most twice of an optimal online algorithm. We also provide

extensive numerical experiments to test the performance of our algorithm and its variants.

Our proofs of the competitive ratios use a cost-balancing approach in conjunction with the

following new ideas:

• We construct a novel distance function which summarizes in a single number the differ-

ence between the history of the online algorithm OLN and the optimal offline algorithm

OFF. The distance function φt(OLN,OFF) has a nice physical interpretation. At any

time t, if we immediately service φt(OLN,OFF) additional jobs under the online al-

gorithm, the remaining jobs will have lower priorities than the current remaining jobs

under the offline algorithm. The distance function dynamically accounts for the differ-

ence in the number of scheduled and canceled jobs between the two algorithms.

• Depending on the sign of the distance function in each period, we partition the periods

in the planning horizon into two sets. We show that in each type of the periods, one

cost component of the online algorithm is dominated by the corresponding component

of the offline algorithm. This result naturally leads to the proof of the competitive

ratios.

• For the model with cancellations, we use stochastic coupling to compare the exoge-

8

nous cancellation events under the online and offline algorithms. When extended to

the model with cancellations, our distance function incorporates the difference in the

number of coupled cancellation events between the two algorithms.

• For the model with cancellations, we propose a new cost-accounting scheme which

transforms cancellation costs into new waiting and overtime costs. This transformation

allows the algorithms for the model without cancellations to be easily extended to

capture cancellation behaviors.

Secondly, in Chapter 3, we study web and mobile applications that are used to schedule

advance service, from medical appointments to restaurant reservations. We provide the

first general, high-fidelity model of advance admission scheduling that captures customer

preferences across different resources. We allow non-stationary arrivals and no-shows. We

model the advance admission-scheduling problem as an online weighted bipartite matching

problem with non-stationary arrivals and propose new algorithms with guarantees on the

relative performance. We propose new algorithms with performance guarantees for this class

of problems. The contributions of Chapter 3 are as follows:

• We prove the tightest known performance bound for the online matching problem

with non-stationary stochastic arrivals. Specifically, we use the definition (1.1.2) of

competitive ratio, and prove that a primitive algorithm, which we call the Separation

Algorithm, has competitive ratio that is bounded by max(1
2
, 1−

√
2
π

1√
k

+O(1
k
)), where

k is the minimum capacity of a resource. Furthermore, we show that 1
2

is the best

constant competitive ratio that can be achieved.

9

We obtain our bound by analyzing a novel bounded Poisson process. This is a Poisson

process to which we apply a sequence of reflecting barriers. The process arises in

the dual of an optimization problem that characterizes our performance bound. The

behavior of this process is very complex, with no known closed-form description. We

managed to obtain a closed-form approximate characterization of the process.

• We improve on the Separation Algorithm by devising a novel bid-price-based algorithm,

called the Marginal Allocation Algorithm, that is much more practical. First, the

Marginal Allocation Algorithm is non-randomized, therefore more stable. Second, it

is fair in the sense that it never rejects a high-priority customer but accept a low-

priority customer, assuming that their arrival times and preferences are the same. We

prove that the Marginal Allocation Algorithm has the same competitive ratio as the

Separation Algorithm. In addition, in numerical experiments, we show that it achieves

much better practical performance.

• Our model also has application in other important problems such as display-ad allo-

cation and opaque revenue management. For the display-ad allocation problem, we

give the tightest known performance bound for an algorithm, assuming non-stationary

arrivals and arbitrary mean demand. For the opaque revenue-management problem,

we are the first to study online allocation policies for model with an arbitrary number

of products and time-varying arrival rates.

• We test the empirical performance of our algorithm against several well-known heuris-

tics by using appointment-scheduling data from Columbia University Medical Center.

10

The results show that our scheduling algorithms perform the best among all tested

policies. In particular, our algorithm is 21% more effective than the actual scheduling

strategy used in the hospital system according to our performance metric.

Next, in Chapter 4, we study a resource allocation model in which a finite number of

resources must be assigned in an online manner to customers with heterogeneous resource

requirement. The system must find a feasible assignment of each customer to a resource or

must reject the customer. The aim is to maximize the total expected capacity utilization of

the resources over the horizon. This model has application in services, freight transportation,

and online advertising. We present online algorithms with bounded average-case competitive

ratios. The contributions of Chapter 4 are:

• We propose the first service reservation model with non-stationary arrivals and het-

erogeneous resource requirement. Our model generalizes Adwords problems in that we

do not make the assumption of truncated bids, small bids, or i.i.d. demand.

• For our model, we propose the first online algorithms with constant competitive ratios

defined in (1.1.2). Our algorithms are based on a smart reservation strategy. For each

resource, we pre-calculate several groups of customer types such that when packing

customers with types in each group in an arbitrary order, the resource utilization is

bounded below. Our algorithms reserve each resource for a certain group of customer

types so as to maximize the actual performance.

• We test our online algorithms as well as other simple heuristics using a real data set

11

from Columbia University Medical Center. We find that our online algorithms have

the best empirical performance in most scenarios.

Finally, in Chapter 5, we study a novel resource-allocation problem faced by Alibaba

Group. In this problem, mobile “push messages” must be sent over the course of a day

to hundreds of millions of users. Each message can be sent to any number of users, and

yields a reward when it generates a clickthrough, subject to a budget constraint on the total

reward over all users for the message. This budget represents the maximum amount that an

advertiser is willing to pay for clickthroughs for the message on a given day. Given users’

diverse preferences, the problem aims to deliver the “right messages” to the “right users” to

maximize ad revenues without overwhelming each user with too many messages. The main

contributions of Chapter 5 are highlighted as follows:

• Due to the large size of the real application, we analyze algorithms for the above

problem in an asymptotic regime. We consider a novel scaling of the problem “size,”

called big-data scaling. In this scaling, as the problem size grows, the number of users,

as well as their diversity, grow. The scaling captures the fact that individual user

information remains highly granular and distinctive even as the size of the user base

increases.

• We first analyze a simple algorithm, called the Static Algorithm, which essentially sends

out all push messages in one cycle based on a solution to a static assignment problem.

We prove that the Static Algorithm has an asymptotic regret O(
√
t), where t is the

parameter scaling the problem.

12

• We then propose a new algorithm, called the Reservation Algorithm, which adds a

single recourse opportunity by sending push messages in two cycles over the course

of a day and making use of information observed in the first cycle to adapt decisions

in the second cycle. We prove that the Reservation Algorithm has asymptotic regret

O(t1/4 log t).

• We code our algorithm using the MapReduce framework and test its performance on

a distributed computing platform. Numerical experiments on three real data sets,

each containing several hundred million users, show that our Reservation Algorithm

improves the regret of the Static Algorithm by at least 10%-50%.

13

Chapter 2

Multi-priority Online Scheduling with

Cancellations

2.1 Introduction

In many applications, a finite amount of a service resource must be allocated to a stream

of jobs arriving randomly over time. Jobs are prioritized based on certain criteria such as

profitability or urgency. When immediate service is not available, arriving jobs join a priority

queue to be served at a later time. While waiting, jobs may cancel their requests and leave

the queue randomly. A cancellation is any job that expires or leaves the system without

being processed. To increase the rate of service, overtime resources can be used at a higher

cost. The system must dynamically determine the service rate that minimizes the total cost

due to waiting, cancellations and overtime resource usage.

The above problem is central to many applications in Operations Research. For example,

14

in many service systems, make-to-order manufacturing systems, retail stores and call centers,

jobs correspond to customers arriving randomly over time. Depending on the application,

customers may be served in order of their priorities. Backlogged customers may cancel their

orders (Rubino and Ata, 2009; Blackburn, 1972), resulting in lost sales and even ‘reshelving’

costs (Martin et al., 1992). In these settings, the service rate can often be increased by

using overtime work (Dellaert and Melo, 1998; Özdamar and Yazgaç, 1997), on-call workers

(Greenhouse, 2012), or expedited procurement of parts. These strategies have the effect of

temporarily increasing the service rate at an increased variable cost. The manager needs to

dynamically determine the service policy so as to control the total system cost.

In healthcare facilities, jobs correspond to patient requests for resources such as diagnostic

devices and operating rooms. Patients are often prioritized based on their urgency and served

in order of priority (Min and Yih, 2010). Longer wait times, which result in lower quality of

care, are represented as a cost on the system. Time is often slotted. With a limited number

of time slots available each day, only a certain number of patients can be served on each

day; the remaining patients must join a waitlist (Denton et al., 2010; Ayvaz and Huh, 2010;

Gerchak et al., 1996). Patients in the waitlist may randomly cancel their requests, thus

leaving the system. Often, patients can be served using surge capacity or overtime (Patrick

et al., 2008) at an additional cost. The scheduler must select the number of patients to serve

each day, using surge capacity or overtime as needed, to minimize the total cost, including

waiting costs, lost revenue due to cancellations, and the cost of overtime work.

In the scaling of computer processing speed for minimizing energy usage (Bansal et al.,

2009a; Yao et al., 1995), jobs correspond to sequences of CPU instructions that arrive ran-

15

domly. Jobs are often prioritized and processed in order of priority. With recent technologies,

the processing speeds of CPUs can be dynamically raised at the cost of a higher rate of power

usage. Such a speed-scaling technique often helps to save more power than the simple strat-

egy of turning off a device during idle periods. The goal is to minimize the sum of some

measure of quality of service, such as job completion time and total energy consumption

(Bansal et al., 2009a).

Our model captures most, if not all, of these applications. Specifically, we consider a

discrete-time planning horizon of T periods, where T is possibly infinite. Jobs are categorized

into n ranked groups, or priority classes. Each class is associated with a waiting cost, a

cancellation probability and a cancellation cost. Jobs are either processed in the current

period or are added to a priority queue. In each period t, a number Ct of jobs of any priority

can be processed. Additional jobs can be processed at an extra variable cost.

The above scheduling problem is difficult to analyze in real applications due to the dif-

ficulty in forecasting future information. On the demand side, future arrivals are often

class-dependent and time-dependent (Huh et al., 2013), which requires an enormous amount

of data to estimate the joint distribution of demand for multiple classes. For instance, a

patient request often leads to subsequent periodic requests, resulting in the time correlation

of demand. Also, in markets of new products or services, demand is often driven by intensive

promotion campaigns, in which case future demand depends on promotional and social fac-

tors and is highly uncertain. On the supply side, processing capacities are often subject to

occasional failures such as staff absenteeism, machine breakdown (Federgruen and So, 1990)

and server crashes, which can be very hard to predict.

16

In viewing these difficulties, in this thesis chapter, we analyze the competitive ratio

of online algorithms as defined by equation (1.1.1). For the scheduling problem without

cancellations, we propose 2-competitive randomized and deterministic online algorithms. For

the scheduling problem with cancellations, we relax the assumption of the online problem by

making the ‘offline’ policy unaware of which jobs will cancel, i.e., the random cancellation

events are exogenous to both the online and offline policies. Under this definition, we propose

2-competitive online algorithms for the model with cancellations. Further, we show that the

competitive ratio of our deterministic algorithm is the best that can be achieved.

2.2 Literature Review

Our work is related to several streams of literature, including literature on appointment

scheduling, make-to-order systems, machine scheduling, rent-or-lease problems, and other

online algorithms in operations management.

2.2.1 Appointment scheduling

Our work is related to the literature on appointment scheduling, which has been studied

intensively. For comprehensive reviews of the broader area, see Guerriero and Guido (2011);

May et al. (2011); Cardoen et al. (2010) and Gupta (2007). A large part of the literature

considers intra-day scheduling. In these problems, the number of patients to be served on

each day is given or is exogenous, and the task is to set the sequence and the start time of

each appointment so as to control patient wait time and provider idle time. Another part

17

of the literature models multi-day scheduling. In these problems, the allocation of patients

to days is dynamically controlled. Some of this literature allows patients to be scheduled

into future days at the time of arrival. This paradigm is called advance scheduling. See, for

example, Truong (2015); Gocgun and Ghate (2012) and Patrick et al. (2008). In the rest of

the multi-day literature, an intermediate problem in which only the number of patients to

be scheduled to the current period is determined, and the rest of the patients are assumed to

be added to a waitlist. This paradigm is called allocation scheduling. See, for example, Huh

et al. (2013); Min and Yih (2010); Ayvaz and Huh (2010) and Gerchak et al. (1996). So far,

very few works have studied the optimal advance-scheduling policy. Recently, Truong (2015)

linked the solutions for the advance and allocation scheduling problems by showing that for

a two-class model, their optimal scheduling polices are equivalent. This result points to the

importance of allocation scheduling as a fundamental model.

Our model is an allocation-scheduling model. In allocation scheduling, past works have

used dynamic programming to explore structural properties of the optimal scheduling policy.

When there are one or two patient classes, the problem is easy to solve. For multi-class prob-

lems, some structural results are known but there is no policy with performance guarantees.

Gerchak et al. (1996) and Huh et al. (2013) study scheduling problems with two patient

classes. Patients in the emergent class require same-day service; patients in the elective class

can wait. Gerchak et al. (1996) show that the optimal scheduling policy is not a cut-off policy;

the optimal number of admissions increases in the size of waitlist. Huh et al. (2013) develop

heuristics for a correlated and dynamic environment. Min and Yih (2010) and Ayvaz and

Huh (2010) study the allocation-scheduling problem with multiple elective patient classes.

18

Min and Yih (2010) develop bounds on the optimal number of admissions. They show that

priority-based discrimination results in as much as a 30% difference in the optimal number

of admissions compared to an undiscriminated scheme. Ayvaz and Huh (2010) analyze the

structural properties of an optimal scheduling policy and study numerical performance of a

protect-constant heuristic. The heuristics presented in these works do not come with any

performance guarantees. Moreover, for the static policies that they propose, such as the

protect-constant policies, it is easy to search for the best protect-constant levels only when

the number of demand classes is small. When the number of demand classes is large, it is

much harder to search for the best set of protect-constant levels without additional structural

properties. Thus, in multi-class settings, even heuristics with good empirical performance

are hard to find.

2.2.2 Make-to-order systems

The scheduling system we consider is related to make-to-order manufacturing systems in

that processing capacity is used to service realized demand. These make-to-order systems

are usually modeled as queuing systems. In the framework of queuing systems, service

times and inter-arrival times must be stationary, independent and most often, exponentially

distributed to ensure that the model is tractable. Our approach differs from this literature

in that we do not assume any joint distribution on future arrivals and service capacities.

For reviews on admission control for make-to-order queues, see Stidham (1985) and more

recently, Carr and Duenyas (2000). Blackburn (1972) studies the optimal strategies for

turning on or off a server subject to reneging customers. Their work is related to ours in

19

that they consider the dynamic expansion of the service rate. While they only consider one

type of jobs, we allow jobs to have multiple priorities, each with a different cancellation

probability. Rubino and Ata (2009) consider a related problem in which customers can be

outsourced and have chances to renege. They propose a heuristic based on the solution to

the problem in the heavy-traffic regime.

Our model is related to the work of Keskinocak et al. (2001), who study single-server

online scheduling problems with lead-time quotation, with application to make-to-order man-

ufacturing systems. In their model, jobs can be rejected upon arrival, and waiting costs are

incurred in each period before the jobs are finished. The rejection of jobs is similar to the

use of overtime resource in our model. Our work can be seen as a multi-priority, multi-server

extension of their model, and with further considerations for job reneging. We note that in

their model, a job may span multiple periods, while in our model, every job can be finished

in a single period. However, our model easily accommodates batched arrivals. A job that

takes multiple periods to finish can be modeled as a batched arrival.

2.2.3 Machine scheduling

The class of machine and multiprocessor scheduling problems share some characteristics with

our work. However, overtime usage and job cancellations are not common in the machine-

scheduling literature. In a typical machine-scheduling problem, jobs must be assigned to

one or more machines so as to minimize a chosen objective such as the make span, the

total completion time or the total waiting time. Our model resembles a machine-scheduling

problem in which (1) jobs have unit processing times, (2) jobs can be rejected or diverted

20

after being released, (3) each job has a specific release time, which is used to define a waiting

cost, and (4) jobs may cancel randomly. However, an online version of this model has

not been considered. We refer the reader to Chen et al. (1998) and Megow et al. (2006)

for more detailed surveys of machine scheduling. Among the existing literature, the most

relevant works include Noga and Seiden (2001) and Zhang et al. (2009). Noga and Seiden

(2001) consider an online machine-scheduling problem where jobs have release times and the

objective is to minimize the total waiting cost, but the service rate cannot be dynamically

controlled. Zhang et al. (2009) study a deterministic offline scheduling problem where jobs

can be rejected.

2.2.4 Ski-rental problem and extensions

Our problem extends the classical ski-rental problem first studied by Karlin et al. (1988).

In this problem, a single job waits to be processed some time in the future, but the exact

date that the job will be processed is unknown. A waiting cost of $1 is incurred in each

period that the job has to wait. The job can also be immediately processed at an additional

cost of $B at any time. The ski-rental problem is online if the exact time that the job will

be processed is unknown and is chosen by an adversary. The optimal competitive ratio of

the ski-rental problem is 2 for deterministic algorithms (Karlin et al., 1988) and e/(e − 1)

for randomized algorithms (Karlin et al., 1990). Many variants of the ski-rental problems

that have been studied, including those with multiple renting options (Fujiwara et al., 2011;

Lotker et al., 2012), time-varying rental cost (Bienkowski, 2008), and decisions that assign

rented or bought capacity to edges in a network (Gupta et al., 2007).

21

In a variation of the ski-rental problem closest to our model, a computer system needs to

decide whether to execute a task immediately, incurring a high power-consumption cost, or

whether it should let the task wait and pay a waiting cost per unit time. These problems are

called speed-scaling problems. One group of works considers the optimization problem of

some energy related objective, subject to deadlines for job completion (Yao et al., 1995; Chan

et al., 2007; Bansal et al., 2007a, 2009b, 2011). The first theoretical study of such model

is given by Yao et al. (1995). They show that an optimal offline algorithm for any convex

power function can be computed by a greedy method. They also give an online algorithm

with constant competitive ratio when the power function is polynomial. Another group

of works considers energy usage and job waiting time (Albers and Fujiwara, 2007; Bansal

et al., 2007b, 2009a). Bansal et al. (2009a) propose an online algorithm that minimizes the

sum of fractional waiting costs and energy usage for arbitrary power functions. When there

are no cancellations, our model captures the tradeoff in Bansal et al. (2009a). However,

Bansal et al. (2009a) and most works in speed scaling consider continuous-time models. Our

model captures a discrete-time speed scaling problem in which processing speeds can only

be changed in discrete periods. Cancellation behaviors are generally not considered in the

speed-scaling literature.

2.2.5 Online algorithms in Operations Management

Our online algorithms and their performance guarantees are related to many other approx-

imation and online algorithms developed in Operations Management. Levi et al. (2007)

propose a cost-balancing technique for inventory control problems. They prove that this

22

cost-balancing algorithm is a 2-approximation. The cost-balancing technique is found to

be very adaptable and is applied in approximation algorithms for many other supply-chain

problems (see, for example, Levi et al. (2008a) and Levi et al. (2008b)). Recently, Truong

(2014) develops an approximation algorithm for the stochastic inventory control problem by

using a look-ahead optimization approach.

Ball and Queyranne (2009) consider an online version of a revenue management prob-

lem. They show that the simple protection-level policy gives the best possible competitive

ratio. The ratio depends on the level of price discounts. Wagner (2010) considers the online

economic lot-sizing problem. They model the online profit-maximizing problem as a min-

max game, and provide conditions under which the competitive ratio is bounded. Buchbinder

et al. (2013) study an online algorithm for a make-to-order variant of the joint-replenishment

problem for which they proved a competitive ratio of three. Elmachtoub and Levi (2016)

study a general class of customer-selection problems where decisions are made in two phases:

In the first phase, arriving customers with different configurations are selected in an online

manner. Then in the second phase, the cost of the service system is generated based on the

set of selected customers. They develop a framework of analysis for this class of problems

and apply it to various models.

The remainder of this thesis chapter is organized as follows.

In Section 2.3, we present our online algorithm for the scheduling model without cancella-

tions. In Section 2.3.7, we generalize our results to the case that future costs are discounted.

In Section 2.3.8, we discuss lower bounds on the competitive ratio and prove that our algo-

23

rithm is optimal. In Section 2.4, we extend the model and algorithm to capture cancellations.

Finally, in Section 2.5, we report the numerical performance of our scheduling policies.

2.3 Model of Allocation Scheduling without Cancella-

tions

In this section, we focus on a basic model without cancellation. The planning horizon has

T periods, indexed from 1 to T , where T may be infinite. There are n groups, or priority

classes. Each class i is associated with a waiting cost wi ≥ 0, which is incurred when a class

i job stays in the waitlist for one period. Let the n classes be ordered in decreasing order

of priority. We assume that the waiting costs satisfy w1 ≥ w2 ≥ · · · ≥ wn. The scheduling

policies we present in the thesis chapter do not depend on the total number n of classes, so

n can be arbitrarily large and the collection of waiting costs can even approach a continuous

distribution.

At the beginning of each period t, we observe the vector st = (st1, st2, ..., stn) representing

the total number of jobs currently in the waitlist, where sti is the number of jobs in class i.

Then, we observe the regular capacity Ct, which is the number of jobs, regardless of priority,

that can be processed by regular resource in period t. Next we observe the number of new

arrivals δt = (δt1, δt2, ..., δtn), where δti stands for the number of arrivals of class i jobs. We

have st, δt ∈ Zn+ and Ct ∈ Z+, where Z+ is the set of all non-negative integers. For an online

algorithm, Ct and δt are completely unknown until period t, while for an offline algorithm

the entire sample path {(Ct, δt)}t=1,2,...,T is known at the beginning of period 1.

24

After the new arrivals have occurred, the number of jobs in system is represented by the

vector st + δt. From among the ‖st + δt‖1 jobs in system, a scheduling policy determines

the number at ∈ Z+ of jobs to service in period t. We restrict our attention to the class of

policies that serve some number of highest-priorities jobs in each period. We will discuss the

reason for this restriction presently.

If at > Ct, we assume that the additional at−Ct jobs will be served by overtime resource

incurring a total overtime cost of (at−Ct)p, where p is the cost of using an overtime slot. If

at ≤ Ct, no overtime cost will be incurred. Define dt ≡ (at−Ct)+ as the number of overtime

slots used in period t. We normalize all cost values such that p = 1. Then the total overtime

cost in period t is just dt. The objective is the undiscounted total cost over a finite number

T of periods, namely, V Π
T =

∑T
t=1(dΠ

t +WΠ
t). We will discuss extensions to discounted-cost

models later.

It is intuitive that once the number at is decided, it is optimal to serve the at jobs with

the highest priorities. This property is proved in Ayvaz and Huh (2010) and Min and Yih

(2010) for optimal stochastic policies. The same result holds here. However, we do not

repeat the proof.

Because we only consider policies that schedule some number of highest priority jobs in

each period, two scheduling policies differ only in the timing and number of jobs drawn from

the waitlist. We introduce the following operator that extracts a certain number of jobs with

the highest priorities from a given system state st ∈ Zn+.

Definition 2.3.1. For a vector x ∈ Zn+ and a non-negative integer k, we define h(x, k) ∈ Zn+

25

as the vector that contains the k jobs with the highest priorities in x. Let hi(x, k) be the ith

element of h(x, k). Let h(x, k) = 0 for k < 0, and h(x, k) = x for k > ‖x‖1.

Since the wi’s are decreasing in i, we have for 0 ≤ k ≤ ‖x‖1,

hi(x, k) = xi, for i < i∗

hi(x, k) = 0, for i > i∗

hi∗(x, k) = k −
∑i∗−1

i=1 xi, otherwise,

where

i∗ = min{j|
j∑
i=1

xi ≥ k}.

Using this operator, we can write the number of jobs remaining in the waitlist at the end

of period t as

ft = st + δt − h(st + δt, dt + Ct).

Next, the waiting cost incurred in period t can be written as

Wt = f τt w,

where τ is the transpose operator. In the next period, the initial state of the system is

st+1 = ft.

For each policy Π, we add a superscript Π to all the state and decision variables that result

from Π. If Π is an online algorithm, the decision dΠ
t does not depend on any information

to be realized later than period t. When we present our online algorithm in Section 2.3.1,

26

the objective is the undiscounted total cost over a finite number T of periods, namely,

V Π
T =

∑T
t=1(dΠ

t + WΠ
t). We will show that our online algorithm gives a total cost which

is at most 2 times the total cost under an optimal offline algorithm for any sample path

{(Ct, δt)}t. In Section 2.3.7 we further show that the same result holds in discounted, finite

and infinite-horizon settings.

2.3.1 Online algorithm and summary of main ideas

First, we will present a online algorithm for the allocation-scheduling problem without can-

cellations. We will sketch the main ideas that go into the proof that this algorithm is

2-competitive.

Define an online algorithm OLN as follows. In each period t, OLN balances the total

cumulative waiting cost and total cumulative overtime cost by minimizing the maximum of

the two. Mathematically, let W (d) = (sOLN
t + δt − h(sOLN

t + δt, d + Ct))
τw be the waiting

cost to be incurred in period t if d overtime slots are used in t. Then dOLN
t is determined by

(recall that the unit overtime cost is p = 1)

dOLN
t = argmind max(

t−1∑
i=1

dOLN
i + d,

t−1∑
i=1

WOLN
i +W (d)). (2.3.1)

The idea of OLN is to keep these two cumulative costs as closely matched to each other as

possible.

We will prove that OLN has a competitive ratio of 2. The proof is based on a new

concept of a distance function, which summarizes the difference in state between two policies

27

in any period by a scalar. The distance function is an analytical tool. We will show that the

distance function between an online policy OLN and an optimal offline policy OFF separates

the horizon into consecutive intervals, depending on its value. Type-A intervals, where the

distance is 0, are single-period. Type-B intervals, where the distance is positive, may be

multi-period. We will show that in a type-A interval, the waiting cost of OLN is bounded

by that of OFF. In a type-B interval, the cumulative overtime cost of OLN is bounded by

that of OFF. By balancing the waiting and overtime cost, OLN ensures that the larger of

its two costs in each interval is bounded by a cost of OFF.

2.3.2 Dominance relationship between two policies

We first define a dominance relationship and prove some of its implications. A dominance

relation is a partial order between two system states such that one state is smaller than the

other if the jobs in that state have lower priorities than in the other state. This dominance

relation allows us to compare system states, thereby arriving at a bound on costs.

Definition 2.3.2. For two vectors x, x′ ∈ Zn+, we say x is dominated by x′ and write x � x′

if
l∑

i=1

xi ≤
l∑

i=1

x′i ∀l = 1, 2, .., n.

A result immediately following this definition is that, if x and x′ represent different system

states at the end of period t, and x � x′, then the total waiting cost incurred by the jobs in

x at t is no greater than that incurred by the jobs in x′.

Lemma 2.3.3. For two vectors x, x′ ∈ Zn+, if x � x′, then xτw ≤ x′τw.

28

Proof.

l∑
i=1

xi ≤
l∑

i=1

x′i ∀l = 1, 2, ..., n

=⇒
l∑

i=1

xiα ≤
l∑

i=1

x′iα ∀l = 1, 2, ..., n and ∀α > 0

=⇒
n−1∑
l=1

l∑
i=1

xi(wl − wl+1) +
n∑
i=1

xiwn ≤
n−1∑
l=1

l∑
i=1

x′i(wl − wl+1) +
n∑
i=1

x′iwn

=⇒
n∑
i=1

xiwi ≤
n∑
i=1

x′iwi.

The following lemma states two simple operations that preserve a dominance relation:

Lemma 2.3.4. Fix an integer l ≥ 0 and two vectors x, x′ ∈ Zn+ satisfying

x− h(x, l) � x′.

1. For any integer l′ ≥ 0,

x− h(x, l + l′) � x′ − h(x′, l′).

2. For any vector δ ∈ Nn
0 ,

x+ δ − h(x+ δ, l) � x′ + δ.

Proof. This lemma is easily proved by directly checking the definition of dominance relation.

29

Table 2.1: Example of the distance function. Based on the numbers of scheduled overtime
slots dΠ

t and dΘ
t of two scheduling policies Π and Θ, respectively, the values of the distance

function φt(Π,Θ) are computed and listed in the bottom row.
Period t 1 2 3 4 5 6 7 8 9
dΘ
t 0 2 0 0 0 1 0 0 1
dΠ
t 1 0 1 2 0 0 0 1 2

φt(Π,Θ) 0 2 1 0 0 1 1 0 0

2.3.3 Distance Function and Comparison of Scheduling Policies

The following distance function captures the difference in the cumulative overtime usage

between two scheduling policies.

For two scheduling policies Π and Θ, the distance function φt(Π,Θ) is defined recursively

as
φ0(Π,Θ) = 0,

φt(Π,Θ) = max{φt−1(Π,Θ)− dΠ
t + dΘ

t , 0} for t ≥ 1,

(2.3.2)

where recall that dΠ
t and dΘ

t are the numbers of overtime slots used under Π and Θ in period

t, respectively. That is, in a given period, the distance function changes by the number

overtime slots that Θ uses in excess of Π. However, its value is always kept non-negative.

Table 2.1 provides an illustrative example. It lists the number of overtime slots used in

periods from 1 to 9 on a sample path. The corresponding values of the distance function are

shown in the bottom row of the table.

The above definition of the distance function is motivated by its use in Section 2.3.4

below. The distance function is used mainly to identify periods in which one policy is

“behind” another policy (when the distance is positive) and periods in which it is “ahead”

(when the distance is 0). When a policy is ahead in a given period, it has a lower waiting cost.

30

Figure 2.1: Illustration of the distance function. There are 4 priority classes with waiting
costs w = (4, 3, 2, 1). By the end of period t, fΠ

t = (1, 1, 2, 1) and fΘ
t = (0, 2, 0, 2). The

figure displays all the jobs with their waiting costs marked. Assume that φt(Π,Θ) = 2.
After φt(Π,Θ) = 2 jobs with the highest priorities are removed from fΠ

t , the remaining
jobs, marked by the black box, have lower priorities than the jobs in fΘ

t . Note that if we
only removed 1 job with unit waiting cost of 4 from fΠ

t , the remaining jobs would not be
‘dominated’ by the jobs in fΘ

t , as there would be 3 jobs with waiting costs of at least 2
remaining in fΠ

t , but only 2 such jobs in fΘ
t .

When a policy is behind, we will show that it has used up fewer overtime slots cumulatively

over a specific interval.

2.3.4 Invariance between policies in terms of the distance function

We will establish the following direct physical interpretation of the distance function. If we

remove the number of jobs equal to the value of the function φt(Π,Θ) from state fΠ
t , the

rest of the jobs in fΠ
t will be dominated by the jobs in fΘ

t . Therefore, when the distance is

0, Π is already ahead of Θ, in the sense that its state is dominated by that of Θ. When the

distance is positive, Π is behind Θ because it needs to perform some positive number of jobs

to get ahead. Figure 2.1 illustrates this interpretation.

We formalize the above statement as an invariance between two scheduling policies that

can be stated in terms of the distance function and the dominance relation. This invariance

will help us later to compare the cost of the policies.

31

Theorem 2.3.5. For any two scheduling policies Π and Θ, we have

fΠ
t − h(fΠ

t , φt(Π,Θ)) � fΘ
t , ∀t = 1, 2, ..., T. (2.3.3)

Proof. Recall that st = ft−1, so equation (2.3.3) is equivalent to

sΠ
t − h(sΠ

t , φt−1(Π,Θ)) � sΘ
t . (2.3.4)

This equation (2.3.4) is clearly true for t = 1, as sΠ
1 = sΘ

1 is the initial state.

Suppose that (2.3.4) holds up to period t, we next prove that it is also true for period

t+ 1.

In period t, after δt new jobs arrive, according to Lemma 2.3.4 we have

sΠ
t + δt − h(sΠ

t + δt, φt−1(Π,Θ)) � sΘ
t + δt.

Then after Θ removes Ct + dΘ
t jobs, Lemma 2.3.4 gives us

sΠ
t + δt − h(sΠ

t + δt, φt−1(Π,Θ) + Ct + dΘ
t) � sΘ

t + δt − h(sΘ
t + δt, Ct + dΘ

t).

Now we let l = φt−1(Π,Θ) + dΘ
t − dΠ

t and rewrite the above equation as

sΠ
t + δt − h(sΠ

t + δt, l + Ct + dΠ
t) � fΘ

t .

32

Depending on the value of l, there are two cases:

1. If l < 0, we have

sΠ
t + δt − h(sΠ

t + δt, Ct + dΠ
t) � sΠ

t + δt − h(sΠ
t + δt, l + Ct + dΠ

t)

because the left hand side has more jobs removed from the vector sΘ
t + δt. It is easy

to check that the binary relation � is transitive, so the above equation leads to

sΠ
t + δt − h(sΠ

t + δt, Ct + dΠ
t) � fΘ

t

=⇒ fΠ
t � fΘ

t

=⇒ fΠ
t − h(fΠ

t , 0) � fΘ
t .

2. If l ≥ 0, we have

sΠ
t + δt − h(sΠ

t + δt, l + Ct + dΠ
t) = sΠ

t + δt − h(sΠ
t + δt, Ct + dΠ

t)

− h(sΠ
t + δt − h(sΠ

t + δt, Ct + dΠ
t), l)

= fΠ
t − h(fΠ

t , l)

=⇒ fΠ
t − h(fΠ

t , l) � fΘ
t .

In sum, we have

fΠ
t − h(fΠ

t ,max(l, 0)) � fΘ
t

33

=⇒ fΠ
t − h(fΠ

t , φt(Π,Θ)) � fΘ
t

=⇒ sΠ
t+1 − h(sΠ

t+1, φt(Π,Θ)) � sΘ
t+1.

Thus the theorem is proved.

The above invariance also sheds light on the asymmetry of the distance function. The

distance function φt(Π,Θ) is merely a provable lower bound on the number of jobs that

Π needs to perform to catch up to Θ. Many other lower bounds are possible. Since the

invariance is a weak inequality, not an equality, it is not reversible. That is, φt(Π,Θ) 6=

−φt(Π,Θ) because a rearrangement of terms in the invariance does not produce the opposite

inequality.

2.3.5 Partition of the horizon

The next theorem shows that the distance function separates all periods into two types,

depending on the sign of the distance function. In one case, the current waiting cost incurred

under policy Π is bounded by that under Θ. In the other case, the cumulative overtime cost

incurred under Π is bounded by that under Θ.

Theorem 2.3.6. In any period t,

1. if φt(Π,Θ) = 0, then WΠ
t ≤ WΘ

t ;

2. if φt(Π,Θ) > 0, let t0 = max{k : φk(Π,Θ) = 0, k < t}. Then

t∑
k=t0+1

dΠ
k <

t∑
k=t0+1

dΘ
k .

34

Proof. If φt(Π,Θ) = 0, we know from Theorem 2.3.5 that fΠ
t ≤ fΘ

t . Then Lemma 2.3.3 gives

WΠ
t ≤ WΘ

t .

The case φt(Π,Θ) > 0 can be proved by directly checking the definition of the distance

function.

Using Table 2.1, we illustrate the two types of periods distinguished in Theorem 2.3.6.

1. Periods in which φt(Π,Θ) = 0. These are periods t = 1, 4, 5, 8, 9 in Table 2.1. From

the first statement of Theorem 2.3.6 we know that for this type of periods, the waiting

costs under Π is bounded by the waiting costs under Θ.

2. Periods in which φt(Π,Θ) > 0. We can divide these periods into intervals of consec-

utive periods, e.g., interval [2, 3] and interval [6, 7] in Table 2.1. During each of these

intervals, the total number of overtime slots used in Π is no greater than the number

of overtime slots used in Θ. Hence, in these intervals the total overtime cost under Π

is bounded by that under Θ.

In sum, in any type of periods, one cost component of Π, either the waiting cost or the

overtime cost, is bounded by the corresponding cost of Θ. Since Θ can be any scheduling

policy including the optimal offline policy, Π will have a competitive ratio of 2 if it can

balance the two cost components evenly in an online manner.

Similar to the distance function, a potential function is a commonly used mapping from

the history of two policies to a scalar. By definition, the change in potential in each period

must satisfy a generic inequality involving the one-period costs for the two policies. These

inequalities can be simply summed to produce the competitive bound desired, if the potential

35

function also satisfies certain boundary conditions. The distance function, in contrast, is used

to identify intervals in which OLN is ahead of OFF, and intervals in which OLN is behind

OFF. In each type of interval, a cost of OLN is shown to be upper bounded by a cost of

OFF. The intervals may be multi-period. The distance function does not satisfy the generic

inequality required for potential functions. Its usage is also distinct from that of potential

functions. The sign of the distance function is used (whether positive or 0) but not its

numerical value.

2.3.6 Proof of performance

We will show that OLN has a competitive ratio of 2 by using the distance function above.

Theorem 2.3.7. For any policy Π and any sample path,

max(
t∑
i=1

dOLN
i ,

t∑
i=1

WOLN
i) ≤

t∑
i=1

(dΠ
i +WΠ

i), ∀t = 1, 2, ..., T. (2.3.5)

Proof. When t = 0 the condition (2.3.5) is trivially true. Suppose that (2.3.5) is true up to

period t− 1. We next prove that it also holds for period t.

Let gt = max(
∑t

i=1 d
OLN
i ,

∑t
i=1W

OLN
i) be the maximum of the two cumulative costs up

to period t.

• Case 1: φt−1(OLN,Π) + dΠ
t − dOLN

t < 0. We immediately have dOLN
t > 0 and

φt−1(OLN,Π) + dΠ
t − (dOLN

t − 1) ≤ 0.

36

Then from Theorem 2.3.6 we know that

W (dOLN
t − 1) ≤ WΠ

t .

In other words, even if we schedule one fewer job in period t under OLN, the resulting

waiting cost for this period is still less than or equal to WΠ
t . The decision criterion for

OLN in (2.3.1) gives us

gt ≤ gt−1 +W (dOLN
t − 1)

because otherwise using dOLN
t −1 overtime slots instead of dOLN

t in period t would reduce

the maximum component of cumulative costs. Connecting the above two equations we

get

gt ≤ gt−1 +W (dOLN
t − 1) ≤ gt−1 +WΠ

t ≤
t−1∑
i=1

(dΠ
i +WΠ

i) +WΠ
t ≤

t∑
i=1

(dΠ
i +WΠ

i),

where the third inequality follows from induction on the (t− 1)-th period.

• Case 2: φt−1(OLN,Π) + dΠ
t − dOLN

t > 0. Again let

t0 = max{k : φk(OLN,Π) = 0, k < t} (2.3.6)

be the last period in which the distance function was equal to 0. Since in this case

37

φt(OLN,Π) = φt−1(OLN,Π) + dΠ
t − dOLN

t > 0, from Theorem 2.3.6 we know that

t∑
i=t0+1

dOLN
i <

t∑
i=t0+1

dΠ
i

=⇒
t∑

i=t0+1

dOLN
i + 1 ≤

t∑
i=t0+1

dΠ
i .

On the other hand, definition (2.3.1) gives us

gt ≤ gt0 + (
t∑

i=t0+1

dOLN
i + 1)

because otherwise we could use one more overtime slot to reduce gt. Combining the

above two equations we get

gt ≤ gt0 +(
t∑

i=t0+1

dOLN
i +1) ≤ gt0 +

t∑
i=t0+1

dΠ
i ≤

t0∑
i=1

(dΠ
i +WΠ

i)+
t∑

i=t0+1

dΠ
i ≤

t∑
i=1

(dΠ
i +WΠ

i),

where the third inequality comes from induction on the t0-th period.

• Case 3a: φt−1(OLN,Π) + dΠ
t − dOLN

t = 0, gt =
∑t

i=1 d
OLN
i . Let t0 be defined as in

(2.3.6). From the definition of the distance function we know that

t∑
i=t0+1

dOLN
i =

t∑
i=t0+1

dΠ
i .

38

Then we have

gt ≤ gt0 +
t∑

i=t0+1

dOLN
i ≤

t0∑
i=1

(dΠ
i +WΠ

i) +
t∑

i=t0+1

dΠ
i ≤

t∑
i=1

(dΠ
i +WΠ

i),

where the first inequality comes from the condition for this case, namely that gt =∑t
i=1 d

OLN
i .

• Case 3b: φt−1(OLN,Π) + dΠ
t − dOLN

t = 0, gt =
∑t

i=1 W
OLN
i . From Theorem 2.3.6 we

have

WOLN
t ≤ WΠ

t

=⇒ gt ≤ gt−1 +WOLN
t ≤ gt−1 +WΠ

t ≤
t−1∑
i=1

(dΠ
i +WΠ

i) +WΠ
t ≤

t∑
i=1

(dΠ
i +WΠ

i),

where the first inequality comes from the condition for this case, namely that gt =∑t
i=1W

OLN
i .

Finally using Theorem 2.3.7 we can show that OLN is 2-competitive, by letting Π be the

optimal offline algorithm OFF.

Corollary 2.3.8. On every sample path,

T∑
i=1

(dOLN
i +WOLN

i) ≤ 2
T∑
i=1

(dOFF
i +WOFF

i).

39

Proof.

T∑
i=1

(dOLN
i +WOLN

i) ≤ 2 max(
T∑
i=1

dOLN
i ,

T∑
i=1

WOLN
i) ≤ 2

T∑
i=1

(dOFF
i +WOFF

i).

2.3.7 Generalization to Discounted Costs

Now we generalize our previous results to the case of discounted future costs. Given a

discount factor γ ∈ (0, 1), let the total discounted cost from period 1 to T be V Π
T (γ),

V Π
T (γ) =

T∑
t=1

(dΠ
t p+ φΠ

t)γt−1.

The following theorem ensures that the competitive ratio of our online algorithm is still

2 in the discounted-cost case.

Theorem 2.3.9. For any policy Π and any horizon T , where T is possibly infinite, we have

V OLN
T (γ) ≤ 2V Π

T (γ).

Proof. We already know from Corollary 2.3.8 that for any length t of the horizon and any

sample path we have

V OLN
t ≤ 2V Π

t ,

40

where V Π
t is the undiscounted cost from periods 1 to t. Then for any policy Π,

V OLN
T (γ) =

T∑
t=1

(dOLN
t p+ φOLN

t)γt−1

=
T∑
t=1

(V OLN
t − V OLN

t−1)γt−1

=
T−1∑
t=1

V OLN
t · (γt−1 − γt) + V OLN

T · γT−1

≤
T−1∑
t=1

2V Π
t · (γt−1 − γt) + 2V Π

T · γT−1

= 2V Π
T (γ).

2.3.8 Lower Bounds

We prove that our online algorithm achieves the optimal competitive ratio by reducing our

scheduling problem into a ski-rental problem, and concluding that the competitive ratios for

the ski-rental problem apply to our model.

The classical ski-rental problem, which is first studied by Karlin et al. (1988), is a sim-

plified version of our allocation-scheduling problem. In the ski-rental problem, a single job

waits to be processed some time in the future, but the exact date that the job will be pro-

cessed is unknown. A waiting cost of $1 is incurred in each period that the job has to wait.

The job can also be immediately processed at an additional cost of $B at any time. If we

know that the job has to wait at least B periods, then it is optimal to immediately process

41

the job in the current period. If the job needs to wait no more than B periods, then it is

optimal to let it wait. This ski-rental problem is online if the exact time that the job will

be processed is unknown and is chosen by an adversary. It is well known that the optimal

competitive ratio of the ski-rental problem is 2 for deterministic algorithms (Karlin et al.,

1988) and e/(e− 1) for randomized algorithms (Karlin et al., 1990).

Theorem 2.3.10. OLN is an optimal online algorithm for the allocation-scheduling model.

Proof. In our allocation scheduling model, if there is only one job in the system and we always

let Ct = 0 until some future period chosen by an adversary, then the problem reduces to the

ski-rental problem. Thus, the ski-rental problem is a subclass of the allocation-scheduling

problem. Therefore, its lower bounds on the competitive ratio also apply to the algorithms

for the allocation-scheduling problem. From this, we can conclude that our 2-competitive

deterministic algorithm has the lowest possible competitive ratio.

2.4 Model of Allocation Scheduling with Cancellations

In this section, we consider the allocation-scheduling problem with cancellations. The online

algorithm we propose in this section is adapted from the cost-balancing algorithm of the

previous section. The algorithm in this section is a deterministic one. We will only prove

the competitive ratio over an undiscounted and finite horizon, but similar to the results in

Section 2.3.7, our competitive analysis can be easily generalized to a discounted and infinite

horizon.

42

Starting from the model without cancellations, we assume that a class i job has a can-

cellation probability of qi ∈ [0, 1], and a cancellation cost of ri ≥ 0. We assume that the

cancellation cost dominates the overtime cost for each class, i.e., ri ≥ p = 1 for all i. We

further assume that the cancellation probabilities and costs are higher for higher-priority

classes, i.e., r1 ≥ r2 ≥ · · · ≥ rn, and q1 ≥ q2 ≥ · · · ≥ qn. This assumption makes sense

in most applications. In healthcare, higher priority patients have a higher need to be seen

quickly, less willingness to wait, and higher tendency to leave for other care arrangements if

they are made to wait for too long. In server applications, higher priority jobs have shorter

deadlines. In service systems, higher priority customers are more impatient to wait, and

often bring higher profits to the system which would be lost if they leave the queue.

In each period, the following events happen in sequence

1. At the beginning of period t, st = (st1, st2, ..., stn) is the total number of jobs in system,

where sti is the number of jobs of class i.

2. Each job in class i independently leaves the system with probability qi. The remaining

jobs form a state mt, mt ≤ st. The total cancellation cost incurred in period t is

Rt = (st −mt)
τr.

3. The capacity Ct and new arrivals δt are observed. The system state becomes mt + δt.

4. The scheduling decision dt for period t is made. The number of jobs remaining in the

queue is ft, ft = mt + δt − h(mt + δt, dt + Ct). The overtime cost incurred in period t

43

is dt, and the waiting cost incurred is

Wt = f τt w.

5. In the next period we have st+1 = ft.

For the competitive analysis of the online algorithm with cancellations, we assume that

an offline algorithm sees future arrivals and capacities, δt, Ct, t = 1, 2, ..., T , but does not see

which jobs will cancel. Let F = σ(δ1, δ2, ..., δT , C1, C2, ..., CT) contain the information that

an offline algorithm can see. The objective is

E[VT |F] = E[
T∑
t=1

(Rt + dt +Wt)|F],

where the expectation is taken over the random cancellation events.

Before presenting the online algorithm, it is necessary to reexamine the question of, in the

presence of job cancellations, whether it is still optimal for the offline algorithm to serve jobs

with the highest priorities first, i.e., whether we can still use the h(·, ·) operator to represent

an optimal offline scheduling decision. The following theorem ensures that this service rule

is still optimal.

Theorem 2.4.1. The optimal offline algorithm OFF always schedules jobs with the highest

priorities in each period.

Proof. As an offline algorithm, OFF knows all the arrivals and capacities upfront. However,

since the cancellation events are exogenous to offline algorithms, OFF faces a stochastic

44

setting in which jobs cancel randomly in each period. In this stochastic decision process, let

u1
t (s) be the expected cost of OFF from t to T when the system state at t is s. That is, let

u1
t (s) = E[

T∑
i=t

(ROFF
i + dOFF

i +WOFF
i)|F , st = s].

Let u2
t (s) be the cost of OFF from t to T immediately after cancellations have occurred in

period t, and when the system state at t is s,

u2
t (s) = E[dOFF

t +WOFF
t +

T∑
i=t+1

(ROFF
i + dOFF

i +WOFF
i)|F ,mt = s].

We next show by induction that for any s1 � s2,

u1
t (s1) ≤ u1

t (s2) (2.4.1)

and u2
t (s1) ≤ u2

t (s2). (2.4.2)

These two results will naturally lead to the proof of this theorem.

First, it is clear that (2.4.2) holds in the last period T , as no cancellation will ever happen

starting at that time, and hence the result reduces to the case without cancellations. Suppose

that (2.4.2) holds starting from period t. We next prove that (2.4.1) also holds for period t

and that (2.4.2) holds for period t− 1.

Let ei be the unit vector with 1 for the ith element and 0 for all other elements. Since

45

adding more jobs to the system only imposes a larger cost, we must have

u1
t (s) ≤ u1

t (s+ ei)

for any i = 1, 2, ..., n. Then to prove (2.4.1) it suffices to prove that for any i < j,

u1
t (s+ ej) ≤ u1

t (s+ ei).

For any s̃ ≤ s, let P (s, s̃) be the probability that all the jobs in s̃ remain while all the

jobs in s− s̃ cancel. Then the offline cost value can be written as

u1
t (s+ ei) =

∑
s̃≤s

P (s, s̃)
[
(s− s̃)τr + qi(ri + u2

t (s̃)) + (1− qi)u2
t (s̃+ ei)

]
,

where ri+u2
t (s̃) is the total cost value under the condition that the additional job ei cancels,

and u2
t (s̃+ ei) is the cost value under the condition that the additional job does not cancel.

By induction we know that u2
t (s̃+ ej) ≤ u2

t (s̃+ ei) if i < j. Moreover, the marginal cost

of u2
t (·) must be bounded by the overtime cost, namely,

u2
t (s̃+ ei)− u2

t (s̃) ≤ p ≤ ri

because otherwise the offline policy would service the additional job ei by overtime and

46

reduce the marginal cost to p. Then for any i < j,

u1
t (s+ ej) =

∑
s̃≤s

P (s, s̃)
[
(s− s̃)τr + qj(rj + u2

t (s̃)) + (1− qj)u2
t (s̃+ ej)

]
≤
∑
s̃≤s

P (s, s̃)
[
(s− s̃)τr + qj(ri + u2

t (s̃)) + (1− qj)u2
t (s̃+ ei)

]
≤
∑
s̃≤s

P (s, s̃)
[
(s− s̃)τr + qi(ri + u2

t (s̃)) + (1− qi)u2
t (s̃+ ei)

]
= u1

t (s+ ei).

where the last inequality follows from the fact that qi > qj and that ri + u2
t (s̃) ≥ u2

t (s̃+ ei).

Thus we have proved (2.4.1) for period t. Now it is immediately clear that the optimal

offline scheduling rule in period t − 1 always services the jobs with the highest priorities,

because (2.4.1) states that it is better to have lower priority jobs in the system at the

beginning of period t, and that the costs to serve any two jobs are the same. It also follows

that (2.4.2) holds for period t − 1, as having lower-priority jobs in system leads to lower

waiting costs and, at the same time, lower-priority jobs at the beginning of the next period.

2.4.1 Online algorithm and summary of main ideas

The extension of the online algorithm OLN that we develop in this section works similarly

to the version we presented earlier. This algorithm OLN balances the waiting cost with

and the sum of overtime costs and cancellation costs, by minimizing the maximum of the

47

cumulative cost components. Some redefinition of the costs is necessary. Therefore, we will

defer a precise description of the online algorithm until we have described this redefinition.

Two ideas are necessary in the development of a performance bound. First we need

to show that the dominance relation previously developed holds analogously under can-

cellations. In general, it needs not hold, but we will show that if cancellation events are

stochastically coupled, then the dominance relation can be preserved. Second, we need to

incorporate into our analysis a new cancellation cost. We do this by developing a new cost-

accounting scheme. In this scheme, we treat a cancellation as a job that is forced to be

served in overtime. With this change, we can apply the proof of the performance bound in

the previous section with few changes.

2.4.2 Coupling of two scheduling policies

Our goal in this section is to compare the system states under two policies Π and Θ by

redefining our distance function. Suppose that the policies start with the same initial state

and experience the same capacity Ct and arrivals δt for each period t. Since both online and

offline algorithms do not know which jobs will cancel, we can couple the cancellation events

under Π and Θ. We show that a new distance function can be defined based on a coupling

of cancellations.

Let oΠ
t = ‖sΠ

t −mΠ
t ‖1 be the total number of canceled jobs in period t for policy Π. We

48

define a new distance function φ̄(Π,Θ) for any two policies Π and Θ as follows

φ̄0(Π,Θ) = 0,

φ̄t(Π,Θ) = max{φ̄t−1(Π,Θ)− dΠ
t − oΠ

t + dΘ
t + oΘ

t , 0} for t ≥ 1.

(2.4.3)

This new distance function takes both the number of overtime slots and the number of

canceled jobs into account.

Suppose that at the beginning of period t we have

sΠ
t − h(sΠ

t , φt−1(Π,Θ)) � sΘ
t . (2.4.4)

Then we can always simulate the cancellations in period t in three phases as follows (see

Figure 2.2 for an illustration):

1. Let the φ̄t−1(Π,Θ) jobs with the highest priorities in state sΠ
t , i.e., those counted in

h(sΠ
t , φ̄t−1(Π,Θ)), make their cancellation decisions.

2. Let l = (‖sΠ
t ‖1−φ̄t−1(Π,Θ))+ be the number of remaining jobs in state sΠ

t that have not

made their cancellation decisions yet. Let U1, U2, ..., Ul be i.i.d. [0, 1] uniform random

variables. For each of the l jobs, going from the highest priority to the lowest priority,

if the ith job is in class j, let the ith job cancel if and only if qj ≥ Ui. Then, for the

l jobs with the highest priorities in state sΘ
t , let them cancel similarly, by using the

same sequence of uniform random variables U1, U2, ..., Ul (but using possibly different

cancellation probabilities). In this way we have coupled the cancellation events between

49

the l jobs with the lowest priorities under Π and the l jobs with the highest priorities

under Θ.

3. Let the other jobs in sΘ
t make their cancellation decisions.

Figure 2.2: Stochastic coupling of cancellation events. After removing φt−1(Π,Θ) jobs with
the highest priorities from the state under Π, the remaining l jobs are dominated by the jobs
under Θ, in that the priority of each remaining job under Π is at most that of the job with
the same priority ranking under Θ. In Phase 2, the cancellation events of each pair of jobs
having the same priority ranking under the two policies are coupled together.

The following theorem shows that, under the above coupling of cancellation events, the

distance function still enables us to set up a dominance relationship between Π and Θ.

Theorem 2.4.2. Suppose (2.4.4) holds in period t. After the above coupled cancellation

process, we have on every sample path,

mΠ
t − h(mΠ

t , φ̄t−1(Π,Θ)− oΠ
t + oΘ

t) � mΘ
t . (2.4.5)

In particular,

φ̄t−1(Π,Θ)− oΠ
t + oΘ

t ≥ 0. (2.4.6)

50

By the end of period t,

fΠ
t − h(fΠ

t , φ̄t−1(Π,Θ)− dΠ
t − oΠ

t + dΘ
t + oΘ

t) � fΘ
t . (2.4.7)

Proof. Recall that l = (‖sΠ
t ‖1−φ̄t−1(Π,Θ))+. Let xΠ

i and xΘ
i be the vectors of jobs considered

in the ith coupling phase under Π and Θ, respectively, for i = 1, 2, 3 (see Figure 2.2). In

particular, we have in Phase 1,

xΠ
1 = h(sΠ

t , φ̄t−1(Π,Θ)),

in Phase 2,

xΠ
2 = sΠ

t − xΠ
1 and xΘ

2 = h(sΘ
t , l),

and in Phase 3,

xΘ
3 = sΘ

t − xΘ
2 .

Let x̄Π
i and x̄Θ

i be the vectors of remaining jobs in xΠ
i and xΘ

i , respectively, after cancel-

lations have occurred. Let yΠ
i = ‖xΠ

i ‖1 − ‖x̄Π
i ‖1 and yΘ

i = ‖xΘ
i ‖1 − ‖x̄Θ

i ‖1 be the number of

canceled jobs in phase i under Π and Θ, respectively.

Under coupling, the ith job in xΠ
2 , ranked by priority, is coupled with the ith job in xΘ

2 .

According to the initial condition (2.4.4), we have xΠ
2 � xΘ

2 , i.e., the ith job in xΠ
2 has equal

or lower priority than the ith job in xΘ
2 . According to the coupling process, if the ith job in

51

xΠ
2 cancels, then the ith job in xΘ

2 cancels. So we must have

yΠ
2 ≤ yΘ

2 .

Since xΠ
2 � xΘ

2 , by removing yΘ
2 −yΠ

2 jobs with the highest priorities from x̄Π
2 , the resulting

state must be dominated by x̄Θ
2 , i.e.,

x̄Π
2 − h(x̄Π

2 , y
Θ
2 − yΠ

2) � x̄Θ
2 .

In phase 1, there are φ̄t−1(Π,Θ)− yΠ
1 jobs in x̄Π

1 . Plugging these jobs into the dominance

relation, we get

x̄Π
1 + x̄Π

2 − h(x̄Π
1 + x̄Π

2 , φ̄t−1(Π,Θ)− yΠ
1 + yΘ

2 − yΠ
2) � x̄Θ

2 .

By further adding the jobs in phase 3, we get

x̄Π
1 + x̄Π

2 − h(x̄Π
1 + x̄Π

2 , φ̄t−1(Π,Θ)− yΠ
1 + yΘ

2 − yΠ
2 + yΘ

3) � x̄Θ
2 + xΘ

3 ,

which is just (2.4.5).

To prove (2.4.6), note that φ̄t−1(Π,Θ) ≥ yΠ
1 because no more than φ̄t−1(Π,Θ) jobs can

cancel in phase 1, and yΘ
2 ≥ yΠ

2 due to the coupling process. Hence

φ̄t−1(Π,Θ)− oΠ
t + oΘ

t = φ̄t−1(Π,Θ)− yΠ
1 + yΘ

2 − yΠ
2 + yΘ

3 ≥ φ̄t−1(Π,Θ)− yΠ
1 + yΘ

2 − yΠ
2 ≥ 0,

52

proving (2.4.6).

To see that (2.4.5) and (2.4.6) lead to (2.4.7), we treat mΠ
t and mΘ

t as states in an

intermediate period, and treat φ̄t−1(Π,Θ) − oΠ
t + oΘ

t ≥ 0 as the distance function value for

the intermediate period. Then (2.4.7) follows according to Theorem 2.3.5.

Corollary 2.4.3. For any two scheduling policies Π and Θ, we have on every sample path,

fΠ
t − h(fΠ

t , φ̄t(Π,Θ)) � fΘ
t , ∀t = 1, 2, ..., T.

Proof. This statement is equivalent to equation (2.4.7), which is also the same as

sΠ
t+1 − h(sΠ

t+1, φ̄t(Π,Θ)) � sΘ
t+1.

This finishes the proof that (2.4.4) holds for all period t by induction. Therefore, (2.4.7)

holds for all period t.

In the remainder of this thesis chapter, we use the coupling of cancellations whenever

we compare two scheduling policies. We will directly use Theorem 2.4.2 and Corollary 2.4.3

without each time specifying that cancellations are coupled.

2.4.3 New Cost-Accounting Scheme

Next we present a new cost-accounting scheme. The idea of the new cost-accounting scheme

is to treat a cancellation as a job that is forced to be served in overtime, by moving around

53

some components of the cost of a cancellation. With this change, we can apply the proof of

the performance bound in Theorem 2.3.7 with few changes.

The new cost-accounting scheme separates each cancellation cost into two parts: ri − p

and p (recall that ri > p for each i). The online algorithm incorporates the two parts of the

cancellation cost into the original waiting cost and overtime cost respectively. It achieves a

competitive ratio of two by rebalancing the two components.

In the new cost-accounting scheme, let the new cancellation cost be r̃i = p = 1 for all

class i, and let the new waiting cost in period t for class i jobs be

w̃t,i =

wi + γ(ri − 1)qi for period t < T,

wi for period t = T <∞,

where γ is the discount factor. Note that the new waiting cost in the last period is different

from that in other periods. It is also easy to check that w̃t,1 ≥ w̃t,2 ≥ · · · ≥ w̃t,n, and thus

fΠ
t � fΘ

t implies w̃τt f
Π
t ≤ w̃τt f

Θ
t for all t.

Now the total waiting cost in period t is

W̃t = f τt w̃t.

And the total cost in period t can be written as

Ω̃t = (ot + dt) + W̃t.

54

The following theorem states that the new cost-accounting scheme is equivalent to the

original one.

Theorem 2.4.4. For any horizon T , where T can be infinite, the total cost for any scheduling

policy differs only by a constant between the original and new cost-accounting scheme.

Proof. Let Ωt and Ω̃t be the cost incurred in period t under the original and new cost-

accounting schemes, respectively. We have for any scheduling policy,

E[
T∑
t=1

γt−1Ωt|F]

= E[
T∑
t=1

γt−1((st −mt)
τr + dt + f τt w)|F]

= E[
T∑
t=1

γt−1((st −mt)
τ (r − 1) + ‖st −mt‖1 + dt + f τt w)|F]

= E[
T∑
t=1

γt−1((st −mt)
τ (r − 1) + ot + dt + f τt w)|F]

= E[
T∑
t=1

γt−1(E[(st −mt)
τ (r − 1)|F , st] + ot + dt + f τt w)|F]

= E[
T∑
t=1

γt−1(
n∑
i=1

stiqi(ri − 1) + ot + dt + f τt w)|F]

=
n∑
i=1

s1,iqi(ri − 1) + E[
T∑
t=2

γt−1

n∑
i=1

stiqi(ri − 1) +
T∑
t=1

γt−1(ot + dt + f τt w)|F]

=
n∑
i=1

s1,iqi(ri − 1) + E[
T−1∑
t=1

γt−1

n∑
i=1

ft,iγqi(ri − 1) +
T∑
t=1

γt−1(ot + dt + f τt w)|F]

=
n∑
i=1

s1,iqi(ri − 1) + E[
T∑
t=1

γt−1(ot + dt + f τt w̃t)|F]

=
n∑
i=1

s1iqi(ri − 1) + E[
T∑
t=1

γt−1Ω̃t|F].

55

Note that the second term on the last line is the total cost value under the new cost-

accounting scheme, and the first term is a constant that depends only on the initial state.

This theorem implies that the optimal policy remains the same under the new cost-

accounting scheme. Moreover, since the total cost value decreases by a constant
∑n

i=1 s1iqi(ri−

1) when new costs are applied, the online algorithms under the new cost-accounting scheme

are also online algorithms for the original costs, with the same competitive ratios. We next

construct the online algorithms under the new cost-accounting scheme.

2.4.4 Online algorithm and proof of performance

In the presence of cancellations, our online algorithm OLN balances the waiting cost W̃OLN
t

and the sum of overtime cost and cancellation cost by minimizing the maximum of the

cumulative cost components. Mathematically, let W (d) = (mOLN
t + δt − h(mOLN

t + δt, d +

Ct))
τ w̃t be the waiting cost to be incurred in period t if d overtime slots are used in t. Then

dOLN
t is determined by

dOLN
t = argmind max(

t∑
i=1

oOLN
i +

t−1∑
i=1

dOLN
i + d,

t−1∑
i=1

W̃OLN
i +W (d)). (2.4.8)

Theorem 2.4.5. For any policy Π and any sample path,

max(
t∑
i=1

(oOLN
i + dOLN

i),
t∑
i=1

W̃OLN
i) ≤

t∑
i=1

(oΠ
i + dΠ

i + W̃Π
i), ∀t = 1, 2, ..., T. (2.4.9)

56

Proof. The proof is similar to the proof for the deterministic algorithm without cancellations.

When t = 0 the condition (2.4.9) is trivially true. Suppose that (2.4.9) is true up to period

t− 1. We next prove that it also holds in period t.

Let gt = max(
∑t

i=1 o
OLN
i + dOLN

i),
∑t

i=1 W̃
OLN
i) be the maximum of the two cumulative

costs up to period t.

• Case 1: φ̄t−1(OLN,Π) + oΠ
t + dΠ

t − oOLN
t − dOLN

t < 0. According to Theorem 2.4.2 we

have φ̄t−1(OLN,Π) + oΠ
t − oOLN

t ≥ 0. So we must have dOLN
t > 0 and

φ̄t−1(OLN,Π) + oΠ
t + dΠ

t − oOLN
t − (dOLN

t − 1) ≤ 0,

which means that the distance function in period t will be 0 even if we schedule one

fewer overtime slot. Then according to Corollary 2.4.3 we know that

W (dOLN
t − 1) ≤ W̃Π

t .

On the other hand, the definition of OLN (2.4.8) gives us

gt ≤ gt−1 +W (dOLN
t − 1)

because otherwise using dOLN
t −1 overtime slots instead of dOLN

t in period t would reduce

the maximum component of cumulative costs. Connecting the above two equations we

57

get

gt ≤ gt−1 +W (dOLN
t −1) ≤ gt−1 +W̃Π

t ≤
t−1∑
i=1

(oΠ
i +dΠ

i +W̃Π
i)+W̃Π

t ≤
t∑
i=1

(oΠ
i +dΠ

i +W̃Π
i),

where the third inequality follows from induction on the (t− 1)th period.

• Case 2: φ̄t−1(OLN,Π) + oΠ
t + dΠ

t − oOLN
t − dOLN

t > 0. Let

t0 = max{k : φ̄k(OLN,Π) = 0, k < t} (2.4.10)

be the last period for which the distance function equals 0. According to the definition

of the new distance function we know that

t∑
i=t0+1

(oOLN
i + dOLN

i) <
t∑

i=t0+1

(oΠ
i + dΠ

i)

=⇒
t∑

i=t0+1

(oOLN
i + dOLN

i) + 1 ≤
t∑

i=t0+1

(oΠ
i + dΠ

i).

On the other hand, definition (2.4.8) gives us

gt ≤ gt0 +
t∑

i=t0+1

(oOLN
i + dOLN

i) + 1

because otherwise we could use one more overtime slot to reduce gt. Combining the

58

above two equations we get

gt ≤gt0 +
t∑

i=t0+1

(oOLN
i + dOLN

i) + 1

≤gt0 +
t∑

i=t0+1

(oΠ
i + dΠ

i)

≤
t0∑
i=1

(oΠ
i + dΠ

i + W̃Π
i) +

t∑
i=t0+1

(oΠ
i + dΠ

i)

≤
t∑
i=1

(oΠ
i + dΠ

i + W̃Π
i),

where the third inequality comes from induction on the t0-th period.

• Case 3a: φ̄t−1(OLN,Π) + oΠ
t + dΠ

t − oOLN
t − dOLN

t = 0, gt =
∑t

i=1(oOLN
i + dOLN

i). Let t0

be defined as in (2.4.10). From the definition of the distance function we know that

t∑
i=t0+1

(oOLN
i + dOLN

i) =
t∑

i=t0+1

(oΠ
i + dΠ

i).

Then we have

gt ≤ gt0+
t∑

i=t0+1

(oOLN
i +dOLN

i) ≤
t0∑
i=1

(oΠ
i +dΠ

i +W̃Π
i)+

t∑
i=t0+1

(oΠ
i +dΠ

i) ≤
t∑
i=1

(oΠ
i +dΠ

i +W̃Π
i),

where the first inequality comes from the condition of this case, namely that gt =∑t
i=1(oOLN

i + dOLN
i).

• Case 3b: φ̄t−1(OLN,Π)+oΠ
t +dΠ

t −oOLN
t −dOLN

t = 0, gt =
∑t

i=1 W̃
OLN
i . From Corollary

59

2.4.3 we have

fOLN
t � fΠ

t

=⇒ W̃OLN
t ≤ W̃Π

t

=⇒ gt ≤ gt−1 + W̃OLN
t ≤ gt−1 + W̃Π

t ≤
t−1∑
i=1

(oΠ
i +dΠ

i + W̃Π
i) + W̃Π

t ≤
t∑
i=1

(oΠ
i +dΠ

i + W̃Π
i),

where the first inequality comes from the condition of this case, namely that gt =∑t
i=1 W̃

OLN
i .

Finally using Theorem 2.4.5 we can show that OLN is 2-competitive in the new cost-

accounting scheme, by letting Π be the optimal offline algorithm OFF.

Corollary 2.4.6. On every sample path,

T∑
i=1

(oOLN
i + dOLN

i + W̃OLN
i) ≤ 2

T∑
i=1

(oOFF
i + dOFF

i + W̃OFF
i).

Proof.

T∑
i=1

(oOLN
i + dOLN

i + W̃OLN
i) ≤2 max(

T∑
i=1

(oOLN
i + dOLN

i),
T∑
i=1

W̃OLN
i)

≤2
T∑
i=1

(oOFF
i + dOFF

i + W̃OFF
i).

60

Using Theorem 2.4.4, we can establish the performance guarantee of our cost-balancing

algorithm in the original cost-accounting scheme.

Corollary 2.4.7.

E[
T∑
t=1

((sOLN
t −mOLN

t)τr + dOLN
t + wτfOLN

t)|F]

≤ 2E[
T∑
t=1

((sOFF
t −mOFF

t)τr + dOFF
t + wτfOFF

t)|F].

Proof.

E[
T∑
t=1

((sOLN
t −mOLN

t)τr + dOLN
t + wτfOLN

t)|F]

=
n∑
i=1

s1iqi(ri − 1) + E[
T∑
t=1

((oOLN
t + dOLN

t) + w̃τt f
OLN
t)|F]

≤ 2
n∑
i=1

s1iqi(ri − 1) + 2E[
T∑
t=1

((oOFF
t + dOFF

t) + w̃τt f
OFF
t)|F]

= 2E[
T∑
t=1

((sOFF
t −mOFF

t)τr + dOFF
t + wτfOFF

t)|F],

where the first and last equality follows from Theorem 2.4.4.

Similar to the result in Section 2.3.8, we can show that in the allocation-scheduling model

with cancellations, OLN has the best competitive ratio for any online algorithms.

Theorem 2.4.8. OLN is an optimal online algorithm for the allocation-scheduling model

with cancellations.

Proof. Theorem 2.3.10 implies that 2 is an upper bound of the optimal competitive ratio for

61

the model with cancellations. Thus OLN is an optimal online algorithm for the model with

cancellations.

Note that we have allowed both demand and capacity to vary in this model because

the algorithms we propose are flexible enough to deal with uncertainty on both sides. In

systems with stable or predictable capacity, there is still uncertainty on the demand side and

in the worst case, the theoretical performance guarantee remains the same. However, as the

uncertainty reduces the practical performance of our algorithms will tend to improve.

2.5 Numerical Performance

In this section we test the numerical performance of our online algorithm OLN. We vary

multiple parameters to test the sensitivity of its performance. We compare the results

against those of an optimal offline policy, an optimal stochastic policy which knows about

the distribution of future arrivals and capacities, and other heuristics. The results show that

the gap between our online algorithm and the offline algorithm is within 16% in most cases

when the total arrival rate is close to the daily capacity. The gap is larger when capacity

exceeds demand or when demand exceeds capacity by a large amount. However, in such

extreme cases certain naive policies perform very well and these policies should be used. For

example, when there is a large surplus of capacity, no overtime resource should be used.

When the number of arrivals is overwhelming, we always want to schedule as many jobs as

possible in each period.

We present two sets of experiments. In the first set of experiments, we populate the

62

problem with synthetic parameters. In the second set of experiments, we simulate the

algorithms on a real appointment-scheduling data set from Columbia University Medical

Center. We report the expected performance of our algorithm and other heuristics under a

range of parameters .

2.5.1 Experiments with synthetic data

We generate synthetic model parameters as follows. Our base test case is a two-class problem

with parameters w = (0.3, 0.1), r = (2, 1.2) and q = (0.1, 0.05). Arrivals are set to be

stationary independent Poisson random variables with mean E[δt] = (2, 3) for each period t.

Capacity is constant Ct = 5 for all periods. The planning horizon has T = 60 periods and

the discount factor is γ = 0.95. Each cost value is simulated by at least 10000 replicates.

For each test case, we report the relative performance of the following five policies:

• V OLN denotes the total cost of our online algorithm OLN.

• V OFF denotes the optimal offline cost. Recall that OFF knows which jobs will arrive in

every future period, but does not know which jobs will cancel in each period. In each

period, OFF makes an optimal dynamic decision as to how many overtime slots to use

knowing the cancellation probabilities of all jobs. OFF is computed using dynamic

programming. In the presence of cancellations, computing OFF is costly due to the

huge state space we need to store. Thus, we only report the performance of OFF when

the total number of classes is small.

• V OPT denotes the total cost of a stochastic optimal policy OPT that knows the dis-

63

tribution of future demands. OPT is computed using dynamic programming. We also

report the performance of OPT only in small test cases.

• V OLN∗ denotes the total cost of a variant OLN∗ of our cost-balancing policy. OLN∗

balances two cost components by using a different balancing ratio. An optimal balanc-

ing ratio is chosen for each test case. More precisely, for each test case, we estimate the

expected total cost of our online algorithm under various values of balancing ratios,

and use a line search method to find a balancing ratio that locally minimizes the cost.

• Vc denotes the total cost of a cutoff policy. We define a cutoff policy C(k) as follows.

C(k) performs k extra overtime slots per week. The i-th overtime slot, i = 1, . . . , k, is

always performed on the (i mod 5)− th day of the week. For each test case, we find

the optimal cutoff value k∗ and let Vc be the total cost of C(k∗).

Table 2.2 shows the test results for different values of Ct. Our online scheduling policy

OLN performs the best when demands and capacities are balanced, i.e., Ct = δ1 + δ2 = 5. It

is interesting to notice that the gap between OPT and OFF is very small when Ct is below

the total arrival rate, but increases to around 10% when Ct equals it. As mentioned earlier,

this is because it is easy to carry out a near-optimal policy when Ct exceeds or is less than

the total arrival rate by a large amount. Thus, it is most valuable and difficult to study the

case when the daily capacity Ct is close to the expected daily number of arrivals ‖δ‖1. The

result of our online policy is satisfactory in such situations. Its gap against OPT is only

around 5%.

64

Tables 2.3 to 2.5 show the results when parameters of the higher priority class are varied.

Generally all the scheduling policies we consider are not sensitive to these parameters. This

is because most often all the higher priority jobs are served by regular capacities and thus

do not affect the overtime and waiting costs. In Tables 2.6 and 2.7, the waiting costs of

both classes are varied. In these cases, the performance of all the scheduling policies change

broadly. Nevertheless, the variant OLN∗ of our online policy always outperforms the cutoff

heuristic.

In Table 2.8, we allow the arrivals to be non-stationary and test different patterns of

arrival rates. In the case of cyclic arrivals, the arrival rates are set to be (4, 7), (1, 1) and

(1, 1) for every three consecutive periods. The case of declining arrivals has rates dropping

from (3, 5) to (1, 1) linearly, whereas the case of growing rates has the reversed pattern. In

all these cases, the gap of our online policy is within 30%, and the gap of its variant OLN∗

is smaller than that of the cutoff policy by as much as 5%. Table 2.9 shows the results when

there are more priority classes. In these settings, the waiting costs are uniformly distributed

between 0.8 and 0.2, the cancellation probabilities are uniformly distributed between 0.2 and

0.05, and the cancellation costs are uniformly distributed between 8 and 1. The arrival rates

for all the classes are set to be the same with Ct = ‖δ‖1. We compare cost values against the

cutoff heuristic. Both OLN and OLN∗ outperform the cutoff policy. Moreover, the online

policy performs better when there are more priority classes.

65

Table 2.2: Performance results under different values of Ct.
Ct V OPT/V OFF V OLN/V OFF V OLN∗/V OFF Vc/V

OFF

2 101.3% 137.1% 102.3% 102.3%
3 104.2% 135.2% 106.7% 107.6%
4 108.9% 128.0% 112.8% 120.3%
5 110.5% 115.5% 115.8% 118.1%
6 102.5% 115.3% 102.6% 102.6%
7 100.2% 116.5% 100.5% 100.2%

Table 2.3: Performance results under different values of w1.
w1 V OPT/V OFF V OLN/V OFF V OLN∗/V OFF Vc/V

OFF

0.1 110.8% 115.4% 115.7% 117.6%
0.2 110.2% 115.5% 115.4% 117.4%
0.3 109.7% 115.6% 115.0% 117.3%
0.4 110.4% 115.6% 115.9% 118.5%
0.5 109.9% 115.6% 115.4% 118.5%
0.6 110.2% 115.6% 116.1% 119.2%
0.7 109.5% 115.7% 115.2% 118.9%
0.8 109.5% 115.7% 115.2% 119.5%
0.9 110.0% 115.6% 115.8% 120.5%

Table 2.4: Performance results under different values of q1.
q1 V OPT/V OFF V OLN/V OFF V OLN∗/V OFF Vc/V

OFF

0.1 110.8% 115.5% 116.1% 118.5%
0.2 109.6% 115.5% 115.0% 117.5%
0.3 110.3% 115.6% 116.0% 118.7%
0.4 109.8% 115.6% 115.5% 118.6%
0.5 110.2% 115.8% 116.1% 119.4%
0.6 109.8% 115.7% 115.6% 119.4%
0.7 109.7% 115.7% 115.5% 119.7%
0.8 110.2% 115.7% 116.1% 120.7%
0.9 110.4% 115.7% 116.5% 121.3%

66

Table 2.5: Performance results under different values of r1.
r1 V OPT/V OFF V OLN/V OFF V OLN∗/V OFF Vc/V

OFF

2 110.2% 115.6% 115.5% 117.8%
3 110.2% 115.5% 115.8% 118.2%
4 109.9% 115.7% 115.5% 118.4%
5 109.9% 115.6% 115.7% 118.8%
6 110.3% 115.6% 116.0% 119.7%
7 109.9% 115.7% 115.6% 119.8%
8 109.7% 115.6% 115.5% 120.0%

Table 2.6: Performance results when w1 and w2 are both increasing.
w1 w2 V OPT/V OFF V OLN/V OFF V OLN∗/V OFF Vc/V

OFF

0.3 0.1 110.8% 115.5% 116.2% 118.5%
0.4 0.2 116.9% 127.4% 123.2% 133.9%
0.5 0.3 119.5% 132.9% 123.2% 129.3%
0.6 0.4 118.5% 136.7% 120.2% 121.2%
0.7 0.5 114.6% 138.7% 114.7% 114.7%
0.8 0.6 110.9% 141.6% 111.0% 111.0%
0.9 0.7 107.1% 143.0% 107.2% 107.2%

Table 2.7: Performance results when w1 is increasing and w2 is decreasing.
w1 w2 V OPT/V OFF V OLN/V OFF V OLN∗/V OFF Vc/V

OFF

0.5 0.5 114.3% 138.8% 114.5% 114.7%
0.6 0.4 117.9% 136.7% 119.7% 120.6%
0.7 0.3 120.2% 132.9% 123.9% 130.0%
0.8 0.2 116.9% 127.4% 123.1% 134.3%
0.9 0.1 109.7% 115.7% 115.5% 120.2%

Table 2.8: Performance results when demand is non-stationary.
Demand Pattern V OPT/V OFF V OLN/V OFF V OLN∗/V OFF Vc/V

OFF

Cyclic 104.4% 111.7% 110.3% 111.0%
Declining 106.3% 130.2% 110.6% 115.9%
Growing 106.6% 121.5% 121.3% 121.6%

Table 2.9: Performance results under larger dimensions of state space.
Number of job classes V OLN/Vc V OLN∗/Vc

4 98.4% 91.6%
8 90.6% 88.0%

67

2.5.2 Experiments with Real Data

In this section, we test our cost balancing algorithm and other heuristics using a real data

set that contains medical information of patients who seek treatment at Columbia University

Medical Center (CUMC). The data is collected from the Congenital Heart Center at CUMC,

and includes information on all children ≤ 21 years of age undergoing cardiac surgery in the

pediatric operating rooms in 2014.

There are two types of surgeries, urgent and elective. We assume that urgent patients

have a waiting cost of w1 = 10 per day. We categorize elective patients according to their

STAT categories. Following this classification method, elective patients are divided into five

groups according to five different risk levels for mortality, with STAT Category 1 being the

lowest in risk and STAT Category 5 being the highest in risk of mortality (Society of Thoracic

Surgeons, 2016). We assume that higher-risk elective cases have higher waiting costs. This

assumption is reasonable because these cases are elective cases that can afford to wait for

some time. Among elective cases, higher risk tends to correspond to more serious health

conditions that can be remedied by surgery, thus higher health costs if delayed. Thus, we

assign the waiting costs of these categories to be (w2, w3, ..., w6) = (5, 4, 3, 2, 1). We vary the

overtime cost over a range [5, 32].

Most often, each OR can serve 2 patients on a given day during regular hours. There are

two ORs in the medical center. On Tuesdays, Wednesdays and the 1st and 3rd Mondays of

every month, two ORs are open and thus the regular capacity is 4. On Thursdays, Fridays

68

Table 2.10: Empirical performance of algorithms under different values of unit overtime cost.
Overtime Cost V OLN/Vc V OLN∗/Vc

5 162.50% 100.00%
8 148.22% 100.00%
11 136.48% 99.99%
14 126.57% 99.98%
17 118.29% 99.98%
20 110.88% 100.47%
23 104.62% 99.14%
26 98.70% 96.65%
29 93.61% 93.13%
32 89.35% 89.09%

and every 2nd and 4th Monday of every month, only one OR is open and thus the regular

capacity is 2. The regular capacity is 0 during weekends.

We estimate directly from data the arrival rates of urgent patients as a function of the

day of week. For elective patients, however, since the data record only the dates of surgery,

but not of arrival, we estimate the arrival rates based on the daily number of scheduled

surgeries, assuming that the arrival rates are constant over weekdays. We simulate a horizon

of 60 days for 1000 replicates in each test case. We do not consider cancellations in this

scenario.

We report the results in Table 2.10. We can see that OLN performs better than the

cutoff policy when the overtime cost is large, which is the case in real settings. Furthermore,

if the right balancing ratio is chosen, OLN∗ always outperforms the cutoff policy.

69

2.6 Conclusions

We study an important resource allocation model in which arriving jobs wait in a priority

queue to be allocated to resources that renew in every period. A scheduling algorithm

determines how many additional resources to purchase in each period at a higher cost in

order to reduce the length of the queue. The model generally captures the tradeoff between

reducing queue length and minimizing overtime/outsourcing cost.

We propose cost-balancing algorithms that achieve optimal competitive ratios for this

problem. Our analysis involves constructing a novel distance function which captures the

difference between the decisions made by two arbitrary algorithms in the past. By applying

the distance function φt(OLN,OFF) to an online algorithm OLN and an offline algorithm

OFF, we obtain the dynamic difference in the number of scheduled and canceled jobs be-

tween the two algorithms. This property of the distance function directly leads to the proof

competitive ratios of our cost-balancing algorithms.

It is extremely easy to implement our scheduling algorithms as their decisions only depend

on cumulative cost values in the past. We test our algorithms and their variants in the

appointment scheduling application where the goal is to minimize the sum of patient waiting

cost and total overtime cost. Although our online algorithms are designed to optimize their

performance in the worst scenario, we find that they achieve satisfactory performance for

average cases as well. Moreover, we find that one of the variants of our algorithms, which

picks the best cost-balancing ratio for each setting, has near-optimal performances for all

scenarios. The managerial implication is that, if the decision maker is able to predict the

70

correct ratio of demand and capacity in future, a simple balancing algorithm that makes no

other assumption about future events can achieve near-optimal performance.

71

Chapter 3

Online Advance Admission

Scheduling for Services with

Customer Preferences

3.1 Introduction

We study advance admission scheduling decisions in service systems. Advance admission

scheduling decisions are those that determine specific times for customers’ arrival to a facility

for service. Advance admission scheduling is used in many service industries. Airlines reserve

flight seats for those who purchase flight tickets. Restaurants reserve tables for customers

who call in advance. Healthcare facilities reserve appointment slots for patients who request

them. Advance admission scheduling enables service providers to better match capacity with

demand because they control customers’ actual arrivals to service facilities.

72

We formulate and analyze a resource-allocation model that generally captures such ad-

mission scheduling systems. Our model is essentially an online weighted bipartite matching

problem. The resources in our model, when partitioned into units, can be seen as nodes

on one side of a bipartite graph. All the customers correspond to nodes on the other side

that are arriving online. The type of each arriving customer is determined by a time-varying

distribution. Our model can be found in many applications in Operations Research. We

summarize three applications related to revenue management below.

Single-leg revenue management. A special case of our model is the classic single-leg

revenue-management problem in which all resources to be allocated are available at

the same time. Customers who bring a higher benefit correspond to higher-fare classes.

The decision is how to admit or reject customers, given the time remaining until the

flight and the current inventory of available seats.

Ad allocation. In a typical display-ad allocation problem, e-commerce companies aim at

tailoring display ads for each type of customer. Each ad, which corresponds to a unit

of a resource, is often associated with a maximum number of times to be displayed.

Knowing the arrival rates of future customers, the task is to make the most effective

matching between ads and customers.

Management of opaque products. Internet retailers such as Hotwire or Priceline often

offer a buyer an under-specified or opaque product, such as a flight ticket, with cer-

tain details such as the exact flight timing or the name of the airline withheld until

after purchase. This enables the retailer to more flexibly manage their inventory.

73

Opaque products are often sold at a discount compared to specific products, mak-

ing them attractive to wider segments of the market. These products are common

in internet advertising, tour operations, property management (Gallego et al., 2004)

and e-retailing. Customers purchase an opaque product if the declared characteristics

fit their preferences. The buyer agrees to accept any specific product that meets the

opaque description. In our model, a specific product corresponds to a node on the

right side of a bipartite graph. A unit of demand for an opaque product corresponds

to a node on the left that connects to all of the specific products contained in the

opaque product. The weight of an edge corresponds to the revenue earned by selling

the opaque product. Demands arrive randomly over time. We assume that demand

for each opaque product is exogenous and independent of the availability of other

products. This follows the traditional assumption of independent demand for revenue-

management problems. When demand occurs, a decision is made to assign a specific

product to that demand unit. Knowing the arrival rates of all demands, we want to

maximize the total expected revenue by strategically assigning specific products.

For concreteness, we explain further details of our model based on an actual appointment

scheduling problem in the healthcare context. Take the example of MyChart, a digital

admission-scheduling application developed by Epic System. Epic is an electronic medical

records company that is managing the records of millions of health care providers and more

than half of the patient population in the U.S. (Husain, 2014). Epic deploys MyChart to

perform online scheduling of appointments through internet portals. The use of applications

74

like MyChart is part of a general trend in healthcare towards providing electronic access to

service through web and mobile applications (Publication, 2015).

When a patient schedules an appointment over a web portal, MyChart first asks the

patient for the type of visit desired, whether it is for a physical exam, a consultation, a

flu shot, etc. Next, it asks for the beginning and end of the range of preferred dates. It

then shows a menu with a check box for morning and afternoon session for each day in the

preferred date range. Patients can select one or more preferred sessions. Finally, MyChart

either offers the patient one or more appointments, or states that no appointment can be

found. We can conceive of many variations over this basic interface.

Consider the following model of advance admission scheduling that captures MyChart as

an example. Consider a continuous time, finite horizon. There are multiple service providers.

Each provider offers a number of service sessions over the horizon, some in regular hours and

some in overtime. We call a session associated with a single provider a resource. There

are n resources available over the horizon. All the resources are known. Each resource

j can serve Cj customers. We call Cj the capacity of resource j. Each resource j must

be booked by time tj or it perishes at time tj. There are m customer types. Patients of

type i, i = 1, . . . ,m, arrive according to some known non-homogeneous Poisson process and

make reservations through any of the modes made available by the provider, web, phone, or

mobile. A patient of type i generates a benefit of rij when served with a unit of resource j.

We assume that the type of customer can be observed at the time that they arrive to make

an appointment, through the pattern of preferences that they indicate and any data stored

in the system on their profiles. We require that customers arriving at time t have weight 0

75

for all resources j that perish at time tj < t. The number of customer types can be kept

finite by discretizing the horizon but this number can be very large. We will discuss this

point shortly. When a customer arrives, a unit of an available resource must be assigned

to her, or she must be rejected. Each unit of a resource can be assigned to at most one

customer. We allow no-shows and the practice of overbooking to compensate for the effect

of no-shows. The objective of the problem is to allocate the resources to the customers to

maximize the expected total benefit of the allocation.

A salient feature of our model is that the resources may be perishable. This feature makes

the model especially appropriate for service applications. More specifically, each resource

may be associated with a known expiry date that falls within or beyond the horizon. The

way we capture an expiry date for a specific resource is to make that resource infeasible for

all customer types that arrive after its expiry date. That is, to capture the perishability of

resources, we equivalently force the composition of customer types that arrive over time to

change over time. For this reason, the non-stationarity of arrivals in our model is of especial

importance.

Another significant advantage of non-stationary arrivals is the ability to better capture

real applications. In real applications, demands can be highly non-stationary, changing with

the time of day, time of week, seasons and longer-term trends (Huh, Liu and Truong 2012).

Kim and Whitt (2014) have shown, for example, that call-center and hospital demands are

well-modeled by non-homogeneous Poisson processes. For a problem that essentially aims

to match demand with supply over time, capturing this non-stationarity in demand arrivals

can lead to significant improvements in performance over stationary models.

76

3.2 Literature Review

3.2.1 Revenue Management

Our work is related to the revenue-management literature. We refer to Talluri and Van Ryzin

(2004) for a comprehensive review of this literature. Traditional works in this area assume

that demands for products are exogenous and independent of the availability of other prod-

ucts (Lautenbacher and Stidham, 1999; Lee and Hersh, 1993; Littlewood, 1972). The de-

cision is whether to admit or reject a customer upon her arrival. Our model reduces to

this admission-control problem in the special case that the resources are identical and are

available at the same time.

When customers are open to purchase one among a set of different resources, our model

controls which resource to assign to each customer. Thus, our model captures the problem

of managing opaque products. Sellers of an opaque product conceal part of the products’

information from customers. Sellers have the ability to select which specific product to offer

after the purchase of opaque product. Previous works related to opaque products include

Gallego and Phillips (2004), Fay and Xie (2008), Petrick et al. (2010), Chen et al. (2010),

Lee et al. (2012), Gönsch et al. (2014) and Fay and Xie (2015). Due to the problem of large

state space, most analyses focus on models with very few product types. For systems with

many product types, some pricing and allocation heuristics are known. There is numerical

evidence that much of the benefit of opaque products can be obtained by having two or three

alternatives (Elmachtoub and Wei, 2013). However, when a retailer has a large number of

alternative products, it is unclear how to design such an opaque product. Our work is

77

the first to study online allocation policies with constant performance guarantees for the

management of an opaque product with an arbitrary number of alternatives.

Our model assumes independent demands, i.e., the demand for each product is exogenous

and independent of the availability of other products. Many recent works in revenue man-

agement consider endogenous demands, which means that customers who find their most

preferred product unavailable might turn to other products. Examples of works on depen-

dent demands include Gallego et al. (2004), Zhang and Cooper (2005), Liu and van Ryzin

(2008) and Gallego et al. (2015). One of the main characteristics of these models is that cus-

tomer preferences cannot be observed until purchase decisions are made. In such situation,

sellers only have a distributional information of customer preferences. This phenomenon

does not apply to admission scheduling systems. In these systems, customer preference can

be revealed before a unit of a resource is assigned. In MyChart, for example, the system is

able to customize the appointment to offer to each patient after knowing the patient’s profile

and availability. We assume that each customer’s preference is observed before a resource

is assigned. Knowledge of preferences gives service providers the ability to improve the

efficiency of the resource-allocation process by tailoring the service offered to each customer.

The work in this chapter is also related to the still limited literature on designing robust

policies for revenue management, which we reviewed in Section 2.2.5. In this area, the

most related work to this thesis chapter is Ball and Queyranne (2009). They analyze online

algorithms for the single-leg revenue-management problem using the definition (1.1.1) of

competitive ratio. They prove that this competitive ratio cannot be bounded by any constant

when there are arbitrarily many customer types. In our work, we focus on the average-case

78

competitive ratio (1.1.2), and show that our algorithms have such competitive ratios bounded

by a constant for any number of customer types and for a more general multi-resource model.

3.2.2 Appointment Scheduling

Our work is related to the literature on appointment scheduling, which we reviewed in detail

in Section 2.2.1. We contribute to this literature by proposing the first online scheduling

policy with performance guarantees for a very general multi-class advance-scheduling prob-

lem.

Our model captures the preferences of patients in a general way. Patient preferences

are an important consideration in most out-patient scheduling systems. In the literature

considering patient preferences, Gupta and Wang (2008) considers a single-day scheduling

model where each arriving patient picks a single slot with a particular physician, and the

clinic accepts or rejects the request. Our model can be seen as a multi-period generalization

of their work. We also characterize the theoretical performance in an online setting, whereas

they use stochastic dynamic programming as the modeling framework and develop heuristics.

Feldman et al. (2014) study how to offer sets of open appointment slots to a stream of arriving

patients over a finite horizon of multiple days, given that patients have preferences for slots

that can be captured by the multinomial logit model. Their work is strongly influenced by

assortment-planning problems. An important observation, which was first made by Gupta

and Wang (2008), is that there is a fundamental difference between many advance admission-

scheduling problems and assortment-planning problems. In admission scheduling, we can

often work with revealed preferences, whereas in assortment-planning problems, decisions

79

are made with knowledge only of a distribution of customer preferences. Working with

revealed preferences allows for a more efficient allocation of service compared to working

with opaque preferences. It also leads to more analytically tractable models.

3.2.3 Online Resource Allocation

Our work is also closely related to works on online matching problems. Traditionally, the

online bipartite matching problem studied by Karp et al. (1990) is known to have a best

competitive ratio of 0.5 for deterministic algorithms and 1− 1/e for randomized algorithms.

For the online weighted bipartite matching problem that we consider, the worst-case com-

petitive ratio cannot be bounded by any constant. Many subsequent works have tried to

improve performance ratios under relaxed definitions of competitiveness.

Specifically, three types of assumptions are commonly used. The first type of assumption

is that each demand node is independently and identically (i.i.d.) picked from a known set of

nodes. Under this assumption, Jaillet and Lu (2013); Manshadi et al. (2012); Bahmani and

Kapralov (2010); Feldman et al. (2009) propose online algorithms with competitive ratios

higher than 1− 1/e for the cardinality matching problem, in which the goal is to maximize

the total number of matched pairs. Haeupler et al. (2011) study online algorithms with

competitive ratios higher than 1 − 1/e for the weighted bipartite matching problem. Our

definition of competitive ratio is the same as theirs. Our model is also similar, but we allow a

more general arrival process of demand nodes in which the distribution of nodes can change

over time. Previous analyses depend crucially on the fact that demand nodes are i.i.d. in

order to simplify the expression for the probability that any demand node is matched to any

80

resource node. The expression becomes much more complex, and the arguments break down

in the case that demand arrivals are no longer i.i.d.

The second type of assumption is that the sequence of demand nodes is a random per-

mutation of an unknown set of nodes. This random permutation assumption has been used

in the secretary problem (Kleinberg, 2005; Babaioff et al., 2008), adword problem (Goel

and Mehta, 2008) and the bipartite matching problem (Mahdian and Yan, 2011; Karande

et al., 2011). Kesselheim et al. (2013) study the weighted bipartite matching problem with

extension to combinatorial auctions. Our work is different from all of these in that the

non-stationarity of arrivals in our model cannot be captured by the random permutation

assumption.

The third type of assumption made is that each demand node requests a very small

amount of resource. The combination of this assumption and the random-permutation as-

sumption often leads to polynomial-time approximation schemes (PTAS) for problems such

as adword (Devanur and Hayes, 2009), stochastic packing (Feldman et al., 2010), online lin-

ear programming (Agrawal et al., 2014), and packing problems (Molinaro and Ravi, 2014).

Typically, the PTAS proposed in these works use dual prices to make allocation decisions.

Under this third assumption, Devanur et al. (2011) study a resource allocation problem in

which the distribution of nodes is allowed to change over time, but still needs to follow a

requirement that the distribution at any moment induce a small enough offline objective

value. They then study the asymptotic performance of their algorithm. In our model, the

amount capacity requested by each customer is not necessarily small relative to the total

81

amount of capacity available. Therefore, the analysis in these previous works does not apply

to our problem.

In our model, the arrival rates, or the distribution of demand nodes, are allowed to

change over time. This non-stationarity poses new challenges, because it cannot be analyzed

with existing methods. At the same time, it is an essential feature in our model because it

allows us to capture the perishability of service capacity in the applications that we consider.

When a resource perishes within the horizon, the demand for that resource drops to 0. Such

a demand process must be time-varying. This important feature has received only limited

attention so far. Ciocan and Farias (2012) consider an allocation model with a very general

arrival process, but their allocation policy has performance guarantee only when the arrival

rates are uniform. In this thesis chapter, we allow arrival processes to be non-homogeneous

Poisson processes with arbitrary rates.

Our algorithms solves a linear program and uses its optimal solution to make matching

decisions. The idea of using optimal solutions to a linear program is natural and has been

used by several previous works mentioned above. For example, Feldman et al. (2009), Man-

shadi et al. (2012), Haeupler et al. (2011), and Kesselheim et al. (2013) have used similar

algorithms to obtain constant competitive ratios, albeit for different demand models.

The paper of Alaei, Hajiaghayi and Liaghat (2012) solves an online matching problem

with non-stationary arrivals in a discrete-time setting. They propose an algorithm similar

to one of our primitive algorithms, called the Separation Algorithm. They prove that this

algorithm achieves a competitive ratio of at least 1− 1√
k−3

and at most approximately 1− 1√
2πk

,

where k is the minimum capacity of a resource. Compared to Alaei, Hajiaghayi and Liaghat

82

(2012), we prove a stronger lower bound of max(1/2, 1−
√

2
πk

+O(1
k
)) on the competitive ratio

for our Separation Algorithm, using a few of the same ideas but largely different techniques,

as we will elaborate on in Section 3.5. Thus, our lower bound is more similar to their upper

bound. We also point out that the Separation Algorithm is not practical because it might

reject high-priority customers, while there are still other open resources. More importantly,

because of randomization, it might reject a high-priority customer, but accept a low-priority

customer at nearly the same time. For this reason, we propose a new “bid-pricing” algorithm,

based on the Separation Algorithm, that avoids all of the above problems. We prove that the

improved algorithm has the same theoretical performance guarantee, and has much better

computational performance as tested on real data.

3.3 Problem Formulation

3.3.1 Model

There are n resources known to be available at specific instants over a continuous horizon

[0, 1]. There are m customer types. Customers of type i randomly arrive over the horizon

according to a known non-homogeneous Poisson process with rate λi(t), for t ∈ [0, 1]. Let

Λi ≡
∫ 1

0
λi(t) dt be the expected total number of arrivals of type-i customers.

Each resource j has a capacity of Cj units. Each resource j must be booked by time tj

or it perishes at time tj.

When a customer arrives, one unit of capacity of an available resource must be assigned

to the customer, or the customer must be rejected. A customer of type i earns a benefit

83

rij if assigned to resource j. The objective is to allocate the resources to the customers to

maximize the expected total benefit from all of the allocated resources.

3.3.2 Definition of Competitive Ratios

We apply the definition (1.1.2) of competitive ratio. Let δi be the actual total number

of arrivals of type i customers. We must have E[δi] = Λi. An offline algorithm knows

δ = (δ1, δ2, ..., δm) at the beginning of the horizon. Let OPT(δ) be the optimal offline benefit

given the number of arrivals δ. Note that an optimal offline algorithm essentially solves

a maximum weighted matching problem, between the customers and resources. An online

algorithm, however, does not know the entire sample path of future arrivals, but only knows

the arrival rates λi(t), i = 1, 2, ...,m. We aim at designing online algorithms with total

benefit ALG with bounded competitive ratio E[ALG]
E[OPT(δ)]

, where the expectation is taken over

the random arrivals δ.

3.4 Online Resource Allocation Algorithms

Computing an optimal dynamic allocation policy for our problem by dynamic programming

is intractable due to the curse of dimensionality. Let cj(t) indicate the amount of resource

j that remains at time t. Let V (c(t), t) be the optimal expected total benefit to go starting

with state c(t) = (c1(t), c2(t), ..., cn(t)) and at time t.

In this section, we propose two online algorithms that approximate the total benefit

84

V (c(t), t) by a sum of single-variable functions

n∑
j=1

fj(t, cj(t)),

where fj(t, cj(t)) is a benefit function that approximates the optimal benefit that can be

obtained from resource j from time t to the end of the horizon.

The first algorithm, which we call the Separation Algorithm, separates and optimizes the

decisions for each single resource. We show that the Separation Algorithm is 0.5-competitive

using a simple and innovative Lagrangian duality approach. We will further show that if

k is the minimum capacity of any resource, then the competitive ratio of the Separation

Algorithm can be improved to max(1
2
, 1 −

√
2
πk

+ O(1
k
)). Finally, we prove that 0.5 is the

best possible constant competitive ratio for our model.

The second algorithm, which we call the Marginal Allocation Algorithm, improves on the

Separation Algorithm by converting it to a bid-price algorithm, which can be easily applied

to a real admission scheduling system.

Before presenting the two online algorithms, we first characterize an optimal offline al-

gorithm and an upper bound on the optimal offline benefit.

3.4.1 Offline Algorithm and Its Upper Bound

In the offline case, the total number of arrivals δi of each customer type i is known, and the

exact arrival time is irrelevant. Given the δi’s, the maximum offline benefit OPT(δ) is given

85

by a maximum weighted matching problem, which can be formulated as the following LP:

OPT(δ) = max
m∑
i=1

n∑
j=1

xijrij

s.t.
n∑
j=1

xij ≤ δi, for i = 1, 2, ...,m

m∑
i=1

xij ≤ 1, for j = 1, 2, ..., n

xij ≥ 0, for i = 1, 2, ...,m; j = 1, 2, ..., n.

(3.4.1)

where the decision xij is the number of type-i customers who are assigned to resource j. Let

x̄(δ) be an optimal solution to this LP. Then OPT(δ) =
∑m

i=1

∑n
j=1 rijx̄ij(δ).

We are interested in finding an upper bound on the expected optimal offline benefit

E[OPT(δ)]. We next show that LP (3.4.2), which uses E[δ] instead of δ as the total demand,

gives such an upper bound:

max
m∑
i=1

n∑
j=1

xijrij

s.t.
n∑
j=1

xij ≤ Λi, for i = 1, 2, ...,m

m∑
i=1

xij ≤ 1, for j = 1, 2, ..., n

xij ≥ 0.

(3.4.2)

Theorem 3.4.1. The optimal objective value of (3.4.2) is an upper bound on E[OPT(δ)].

Proof. Since
∑n

j=1 x̄ij(δ) ≤ δi and
∑m

i=1 x̄ij(δ) ≤ 1, we must have
∑n

j=1 E[x̄ij(δ)] ≤ E[δi] =

Λi and
∑m

i=1 E[x̄ij(δ)] ≤ 1. Thus, E[x̄ij(δ)] is a feasible solution to the LP (3.4.2). It follows

86

that the optimal objective value of (3.4.2) is an upper bound on

m∑
i=1

n∑
j=1

rijE[x̄ij(δ)] = E[OPT(δ)].

Similar techniques have been used in revenue management to prove similar results (Gallego

and Van Ryzin, 1997).

3.4.2 Separation Algorithm and Constant Competitive Ratio

The Separation Algorithm works by solving the LP (3.4.2) once, routing the customers to

the resources according to an optimal solution to the LP (3.4.2). Then, for each resource

separately, the algorithm optimally controls the admission of customers who have been routed

to that resource. Using the LP information with respect to the expected number of arrivals

(or sometimes, an estimate of the expected number of arrivals) is natural and has been

used in several previous results (for example, Feldman et al. (2009), Manshadi et al. (2012),

Haeupler et al. (2011), and Kesselheim et al. (2013)).

For the rest of this section, we assume without loss of generality that the capacity of

each resource is 1. Our bound and algorithm will be independent of the capacity. In the

next section, we shall show that the algorithm and bound can be improved as the minimum

capacity increases beyond 1.

Let x∗ be an optimal solution to the linear program (3.4.2). Whenever a customer of type

i arrives, the Separation Algorithm randomly and independently picks a candidate resource

j ∈ {1, 2, ..., n} with probability x∗ij/Λi, regardless of the availability of resources. We say

87

that this customer is routed to resource j. Then based on a further decision, the algorithm

may either assign resource j to the customer or reject the customer.

According to the Poisson thinning property, the arrival process of type-i customers who

will be routed to resource j is a non-homogeneous Poisson process with rate

λij(t) ≡ λi(t)x
∗
ij/Λi, for 0 ≤ t ≤ 1. (3.4.3)

Viewing the random routing process as exogenous, each resource j receives an indepen-

dent arrival process with split rate λij(t) from each customer type i. Then for each resource

j, the Separation Algorithm optimally controls the admission of customers who are routed

to resource j. That is, when a type-i customer is routed to resource j at time t, the al-

gorithm compares the benefit rij of this customer with the optimal expected future benefit

fj(t) that can be earned from customers who will be routed to resource j after time t. The

algorithm assigns resource j to the customer if rij is greater than fj(t). Given the split rates

λij(t)’s, the optimal expected future benefit fj(t) can be computed by solving the well-known

Hamilton-Jacobi-Bellman equation

f ′j(t) = −
m∑
i=1

λi(t)x
∗
ij/Λi · (rij − fj(t))+ (3.4.4)

with boundary condition fj(1) = 0.

We call fj(t) the benefit function of resource j. Although the HJB equation is in contin-

uous time, in practice, it can be computed by discretizing the horizon into periods. Further-

88

more, according to properties of the HJB equation, fj(t) is decreasing in t, which captures

the fact that resources are expiring over time.

Below are the detailed steps of the Separation Algorithm.

1. Solve for an optimal solution x∗ to the linear program (3.4.2).

2. For each resource j ∈ {1, 2, ..., n}, compute the benefit function fj(t) according to

(3.4.4).

3. Upon an arrival of a type-i customer at time t, randomly pick a number j ∈ {1, 2, ..., n}

with probability x∗ij/Λj. Assign resource j to the customer if resource j is still available

and rij ≥ fj(t).

The following lemma gives the total expected benefit of the Separation Algorithm.

Lemma 3.4.2. The expected total benefit of the Separation Algorithm is
∑n

j=1 fj(0) at time

0. If resource j is available at time t, the Separation Algorithm earns benefit fj(t) from

resource j in time [t, 1] in expectation.

Proof. According to the HJB equation (3.4.4), the Separation Algorithm earns fj(0) from

resource j in expectation. Therefore, the total expected benefit of the Separation Algorithm

is
∑n

j=1 fj(0).

The Separation Algorithm has the appeal that, at any time and any given state, we can

easily compute the total expected benefit of remaining resources by summing up the values of

benefit functions of all available resources. More importantly, the marginal benefit of having

89

an additional resource is exactly equal to the value of the benefit function. As a result of the

convenience of computing marginal benefit values, we can significantly improve the empirical

performance of the Separation Algorithm by converting it into a bid-price algorithm, which

we will discuss in the next section.

The following theorem states that the Separation Algorithm has constant performance

guarantee.

Theorem 3.4.3. The Separation Algorithm is 0.5-competitive.

To prove this theorem, we first analyze the competitive ratio for a single-resource benefit-

maximization problem. Specifically, we want to study the following performance ratio for

resource j.

fj(0)/
m∑
i=1

rijx
∗
ij, (3.4.5)

where
∑m

i=1 rijx
∗
ij can be seen as an upper bound on the expected optimal offline benefit for

resource j (see Theorem 3.4.1), and fj(0) is the expected benefit of the Separation Algorithm

for resource j.

In order to determine a lower bound of (3.4.5), we first normalize
∑m

i=1 rijx
∗
ij to 1, which

is helpful because all benefit values can be scaled by an arbitrary constant without affecting

performance ratios. We must then search for a lower bound on fj(0) by examining all

possible combinations of problem data, including the arrival rates (3.4.3), benefit values rij,

and all possible optimal solutions x∗ to the LP (3.4.2), subject to the normalization condition∑m
i=1 rijx

∗
ij = 1.

90

Since both x∗ and the arrival rates λi(t) can be expressed in terms of the split rates

λi(t) =
n∑
j=1

λij(t), ∀i = 1, 2, ...,m,

x∗ij =

∫ 1

0

λij(t)dt, ∀i = 1, 2, ...,m, j = 1, 2, ..., n,

we will instead examine all values of rij’s and λij(t)’s. This problem can be formulated as

follows

inf
λij(t),rij ,i=1,...,m

fj(0) (3.4.6)

s.t. f ′j(t) = −
m∑
i=1

λij(t) · (rij − fj(t))+ (3.4.7)

∫ 1

0

m∑
i=1

λij(t)dt ≤ 1 (3.4.8)

∫ 1

0

m∑
i=1

λij(t)rijdt = 1 (3.4.9)

λij(t), rij ≥ 0, i = 1, 2, ...,m (3.4.10)

f(1) = 0, (3.4.11)

In this optimization problem, the decisions are λij(t)’s and rij’s. Constraint (3.4.7) is the

dynamic programming equation (3.4.4). Constraint (3.4.8) is equivalent to the capacity

constraint in LP (3.4.2), namely
m∑
i=1

x∗ij ≤ 1,

which requires that the average number of customers who are routed to resource j is at most

91

1 (recall that the capacity of each resource is 1 and each customer requires a unit of resource

according to our model). Constraint (3.4.9) is the normalization condition
∑m

i=1 rijx
∗
ij = 1.

Theorem 3.4.4. The optimal objective value of problem (3.4.6) is at least 0.5.

Proof. Consider a fixed resource j. Define g(t) = −f ′j(t). Replacing the function (·)+ by

inequalities, we can rewrite problem (3.4.6) as

inf
g(t),λij(t),zi(t),rij ,i=1,...,m

∫ 1

0

g(t)dt (3.4.12)

s.t. g(t) =
m∑
i=1

λij(t)zi(t) (3.4.13)

g(t) ≥ 0

zi(t) ≥ rij −
∫ 1

t

g(s)ds, i = 1, 2, ...,m (3.4.14)

zi(t) ≥ 0, i = 1, 2, ...,m∫ 1

0

m∑
i=1

λij(t)dt ≤ 1

∫ 1

0

m∑
i=1

λij(t)rijdt = 1 (3.4.15)

λij(t), rij ≥ 0, i = 1, 2, ...,m.

Note that because g(t) =
∑m

i=1 λij(t)zi(t) and the objective function minimizes
∫ 1

0
g(t)dt,

we want zi(t) as small as possible. Therefore, the optimal solution must have zi(t) = (rij −∫ 1

t
g(s)ds)+.

Then, we dualize the constraints (3.4.13), (3.4.14) and (3.4.15) using their Lagrangian

92

multipliers, and obtain the following problem.

inf
g(t),λij(t),zi(t),rij ,i=1,...,m

∫ 1

0

g(t)dt+

∫ 1

0

γ(t)[g(t)−
m∑
i=1

λij(t)zi(t)]dt

+
m∑
i=1

∫ 1

0

θi(t)[rij −
∫ 1

t

g(s)ds− zi(t)]dt

+ ω(

∫ 1

0

m∑
i=1

λij(t)rijdt− 1)

s.t. g(t) ≥ 0

zi(t) ≥ 0, i = 1, 2, ...,m∫ 1

0

m∑
i=1

λij(t)dt ≤ 1

λij(t), rij ≥ 0, i = 1, 2, ...,m.

(3.4.16)

As long as θi(t) ≥ 0 for all t ∈ [0, 1] and i = 1, 2, ...,m, the optimal objective value

of problem (3.4.16) is a lower bound of (3.4.12), because every feasible solution of problem

(3.4.12) is also feasible in (3.4.16), and the objective value of every feasible solution of

problem (3.4.12) is greater than or equal to the corresponding objective value in (3.4.16).

To find a lower bound on the optimal value of (3.4.12), we will instead find a lower bound

on the optimal value of (3.4.16).

Next, we choose the following values for the dual variables.

γ(t) = −0.5,

θi(t) = 0.5λij(t), for i = 1, 2, ...,m

93

ω = −0.5,

Since the constraint of (3.4.16) requires λij(t) ≥ 0, we have θi(t) ≥ 0. Thus, when using

these values of dual variables, the optimal objective value of (3.4.16) is a lower bound of

(3.4.12), and hence also a lower bound of problem (3.4.6). Plugging in these values, the

objective function of (3.4.16) can be reduced to

∫ 1

0

g(t)dt−
∫ 1

0

0.5[g(t)−
m∑
i=1

λij(t)zi(t)]dt

+
m∑
i=1

∫ 1

0

0.5λij(t)[rij −
∫ 1

t

g(s)ds− zi(t)]dt

− 0.5(

∫ 1

0

m∑
i=1

λij(t)rijdt− 1)

= 0.5

∫ 1

0

g(t)dt− 0.5
m∑
i=1

∫ 1

0

λij(t)

(∫ 1

t

g(s)ds

)
dt+ 0.5

= 0.5

∫ 1

0

g(t)dt− 0.5
m∑
i=1

∫ 1

0

g(t)

(∫ t

0

λij(s)ds

)
dt+ 0.5

= 0.5

∫ 1

0

g(t)

(
1−

∫ t

0

m∑
i=1

λij(s)ds

)
dt+ 0.5 (3.4.17)

Since we know from the constraint of (3.4.16) that
∫ 1

0

∑m
i=1 λij(t)dt ≤ 1, we must have

1−
∫ t

0

m∑
i=1

λij(s)ds ≥ 0

for all t ≤ 1. Thus, the infimum of (3.4.17) is achieved by setting g(t) = 0. The corresponding

optimal objective value is 0.5. Therefore, 0.5 is a lower bound of problem (3.4.6).

94

Now that we have proved fj(0)/
∑m

i=1 rijx
∗
ij ≥ 0.5 for every resource j, we can readily

show the competitive ratio of the Separation Algorithm.

Proof of Theorem 3.4.3.

Since fj(0)/
∑m

i=1 rijx
∗
ij ≥ 0.5 for all j, we must have

∑n
j=1 fj(0)∑m

i=1

∑n
j=1 rijx

∗
ij

≥ 0.5.

From Theorem 3.4.1 we know that

m∑
i=1

n∑
j=1

rijx
∗
ij ≥ E[OPT(δ)],

which gives
n∑
j=1

fj(0) ≥ 0.5E[OPT(δ)].

From Lemma 3.4.2 we know that
∑n

j=1 fj(0) is the expected total benefit of the Separation

Algorithm, so this algorithm is 0.5-competitive.

3.5 Capacity-Dependent Competitive Ratio

When a resource has greater than unit capacity, the algorithm presented in the previous

section treats each unit of the resource as a separate resource, and does not exploit the

fact that these units are interchangeable. In this section, we show that we can improve the

Separation Algorithm when resources have greater than unit capacities.

95

Let Cj denote the capacity of resource j, for j = 1, 2, ..., n. We assume that all capacity

values are positive integers. The following linear program incorporates resource capacities

into LP (3.4.2).

max
m∑
i=1

n∑
j=1

xijrij

s.t.
n∑
j=1

xij ≤ Λi, for i = 1, 2, ...,m

m∑
i=1

xij ≤ Cj, for j = 1, 2, ..., n

xij ≥ 0.

(3.5.1)

Let x∗ be an optimal solution to (3.5.1). For each resource j, the following is a dynamic

program that optimally controls the admissions of the fraction x∗ij/Λi of type i customers,

for i = 1, 2, ...,m, who are routed to resource j.

f ′j(t, c) = −
m∑
i=1

λi(t)x
∗
ij/Λi · (rij − fj(t, c) + fj(t, c− 1))+, (3.5.2)

where fj(t, c) is the expected total future benefit that can be earned from resource j starting

at time t when there are c units still available. The boundary conditions are fj(1, c) = 0 and

fj(t, 0) = 0.

Let cj(t) be the remaining capacity of resource j at time t. When a customer of type i

arrives at time t and is routed to resource j, the (generalized) Separation Algorithm compares

96

rij with fj(t, cj(t))− fj(t, cj(t)− 1). It offers resource j if cj(t) ≥ 1 and

rij ≥ fj(t, cj(t))− fj(t, cj(t)− 1),

and rejects the customer otherwise.

Since the dynamic program (3.5.2) optimally integrates the decisions for all the Cj units

of resource j, the value of the new benefit function fj(t, c) must be at least the sum of benefit

functions that the original Separation Algorithm uses for each available unit of the resource.

Then by a similar argument as the proof of Theorem 3.4.3, we can easily check that the total

expected benefit of the generalized Separation Algorithm must be at least
∑n

j=1 f(0, Cj).

Therefore the algorithm is still 0.5-competitive.

More importantly, we expect that this generalized Separation Algorithm will have better

performance when the capacity values are large, due to the integrated decisions made for each

entire resource. To prove an improved bound for the case of large capacities, we focus on a

single resource j. We will prove that the Separation Algorithm achieves a better competitive

ratio for this resource. We will suppress the index j of the resource in the rest of the section

except when needed to avoid confusion.

Assume that the capacity of the resource is k. Let Vl(t) = fj(t, k − l) be the optimal

expected future benefit at time t when the remaining capacity is k− l (this notation will be

more convenient for analysis), for t ∈ [0, 1] and l = 0, 1, ..., k−1. The HJB equation defining

97

Vl(·) is

dVl(t)

dt
= −

m∑
i=1

λi(t)x
∗
ij/Λi · (rij − Vl(t) + Vl+1(t))+ = −

m∑
i=1

λij(t) · (rij − Vl(t) + Vl+1(t))+

with boundary conditions Vk(t) = 0 and Vl(1) = 0.

We are interested in the performance ratio

fj(0, k)∑m
i=1 x

∗
ijrij

=
V0(0)∫ 1

0

∑
i rijλij(t)dt

,

where
∑m

i=1 x
∗
ijrij =

∫ 1

0

∑
i rijλij(t)dt is an upper bound on the optimal expected offline

benefit. We want to find the smallest such ratio by examining all possible inputs r and λ(·).

Note that at any time t, the performance ratio can be lowered by replacing the problem

instance with one in which there is only one type of customer arrival with rate λ(t) =∑m
i=1 λij(t) and reward r(t) =

∑m
i=1 rijλij(t)∑m
i=1 λij(t)

, so that the worst-case instance has one customer

type, and time-dependent reward function r(·). This observation has also been made by

Alaei, Hajiaghayi and Liaghat (2012). Thus, to characterize the worst-case performance

ratio, we only need to bound the ratio

V0(0)∫ 1

0
r(t)λ(t)dt

, (3.5.3)

for V defined as

dVl(t)

dt
= −λ(t)(r(t)− Vl(t) + Vl+1(t))+,

98

over all reward functions r(·) and arrival rate functions λ(·) such that the second constraint

of (3.5.1) is satisfied, i.e., ∫ 1

0

λ(t)dt ≤ k.

Note that the first constraint of (3.5.1) is implicitly satisfied after we set

λ(t) =
m∑
i=1

λij(t) =
m∑
i=1

λi(t)x
∗
ij/Λi.

3.5.1 Homogenizing time

Without loss of generality, we can change the horizon length, λ(·) and r(·) as follows, while

keeping the ratio (3.5.3) unchanged:

1. If
∫ 1

0
λ(t)dt < k, we can extend the horizon to length T > 1 by adding more arrivals

with benefit 0. Thus, we can equivalently assume
∫ T

0
λ(t)dt = k.

2. Define a (virtual) time variable as

t̄ = t̄(t) ≡
∫ t

0

λ(s)ds.

Note that t̄ ∈ [0, k]. Using this new time variable, we can define new benefit functions

as

V̄i(s) = Vi(t̄
−1(s)),

99

where we interpret t̄−1(·) as the first time t that satisfies t̄(t) = s. Similarly, we can

define r̄(s) = r(t̄−1(s)). Then we can equivalently transform the HJB equation for

Vi(t) as follows

dVi(t)

dt
=
dV̄i(t̄)

dt̄

dt̄

dt
=
dV̄i(t̄)

dt̄
λ(t)

=⇒ dV̄i(t̄)

dt̄
λ(t) = −λ(t)(r(t) + Vi+1(t)− Vi(t))+ = −λ(t)(r̄(t̄) + V̄i+1(t̄)− V̄i(t̄))+

=⇒ dV̄i(t̄)

dt̄
= −(r̄(t̄) + V̄i+1(t̄)− V̄i(t̄))+, ∀t̄ ∈ [0, k]

This equation can be viewed as another HJB equation with arrival rate 1 and revenue

function r̄(·), with boundary conditions Vk(t) = 0 for t ∈ [0, k] and Vi(k) = 0 for

i = 0, 1, ..., k − 1. Furthermore, the upper bound on the expected offline benefit can

be transformed as ∫ T

0

r(t)λ(t)dt =

∫ k

0

r̄(t̄)dt̄.

In summary, we can equivalently transform the problem into one whose arrival rate is

uniformly 1 and whose time horizon is [0, k].

3.5.2 Bound-revealing optimization problem

After applying the above transformations, we can write an optimization problem that reveals

the competitive ratio as follows

min
r(t),Vi(t),i=0,1,...,k−1;t∈[0,k]

V0(0) (3.5.4)

s.t.
dVi(t)

dt
= −(r(t) + Vi+1(t)− Vi(t))+, ∀i = 0, 1, ..., k − 1; t ∈ [0, k]

100

∫ k

0

r(t)dt = 1

Vi(t) ≥ 0, ∀i = 0, 1, ..., k − 1; t ∈ [0, k]

r(t) ≥ 0.

Here the second constraint
∫ k

0
r(t)dt = 1 normalizes the upper bound on the expected

offline benefit. By using gi(t) = −dVi(t)/dt and replacing (·)+ with linear constraints, we

can write the above problem equivalently as (note that gk(t) = 0,∀t ∈ [0, k])

min
r(t),gi(t),i=0,1,...,k−1;t∈[0,k]

∫ k

0

g0(s)ds

s.t. gi(t) ≥ r(t) +

∫ k

t

gi+1(s)ds−
∫ k

t

gi(s)ds, ∀i = 0, 1, ..., k − 1; ∀t ∈ [0, k]∫ k

0

r(t)dt = 1

gi(t) ≥ 0, ∀i = 0, 1, ..., k − 1; t ∈ [0, k]

r(t) ≥ 0.

Let αi(t) be a dual variable for the first constraint, for all i = 0, 1, ..., k− 1 and t ∈ [0, k].

Let β be a dual variable for the second constraint. The dual problem is

101

max
αi(t),β

β

s.t. α0(t) +

∫ t

0

α0(s)ds ≤ 1, ∀t ∈ [0, k]

αi(t) +

∫ t

0

αi(s)ds ≤
∫ t

0

αi−1(s)ds, ∀i = 1, 2, ..., k − 1;∀t ∈ [0, k]

β ≤
k−1∑
i=0

αi(t), ∀t ∈ [0, k]

αi(t) ≥ 0.

(3.5.5)

This dual problem tries to maximize the minimum value of
∑k−1

i=0 αi(t) with respect to t.

The optimal β is a lower bound on the competitive ratio.

3.5.3 A dual-feasible solution for the bound-revealing problem

We first show that a feasible solution to the dual problem (3.5.5) can be constructed based

on a bounded Poisson process. We will use this dual feasible solution to obtain a lower bound

on the optimal value of the bound-revealing optimization problem (3.5.4). Alaei, Hajiaghayi

and Liaghat (2012) also prove their bound by working with a dual-feasible solution. However,

we construct our dual-feasible solution differently. Because our bound has to be tighter, our

analysis of this solution is also much more involved.

Let t0, t1, t2, ..., tk be a sequence of time points such that 0 = t0 < t1 < · · · < tk−1 < tk =

k.

Let {N(t)}t≥0 be a (counting) Poisson process with rate 1. We apply an upper barrier

102

to N(t) to obtain a new bounded process {R(t)}t≥0. Starting with an initial value 0 at

time t0 = 0, the barrier increases by 1 at times t1, t2, ..., tk−1. At these time points, the new

bounded process has values

R(ti) = max(i− 1, R(ti−1) +N(ti)−N(ti−1)), ∀i = 1, 2, ..., k − 1,

with R(t0) = R(0) = 0. And for t ∈ [ti, ti+1], we have

R(t) = max(i, R(ti) +N(t)−N(ti)), ∀i = 1, 2, ..., k − 1.

Eventually,

R(tk) = R(k) = max(k − 1, R(tk−1) +N(k)−N(tk−1)).

Theorem 3.5.1. There exists a feasible dual solution β∗, α∗i (t) for t ∈ [0, k], i = 0, 1, 2, ..., k−

1, such that

α∗i (t) = P (R(t) = i)β∗, ∀t ∈ [0, k], i = 0, 1, ..., k − 1,

k(1− β∗) = β∗

[
k −

k−1∑
i=0

iP (R(k) = i)

]
(3.5.6)

for the bounded Poisson process R(t) as constructed above.

Proof. Note that the distribution of {R(t)}t≥0 is determined by the time points t1, t2, ..., tk−1.

In particular, for t ∈ (ti, ti+1), the value of P (R(t) = i) is only determined by t1, t2, ..., ti.

Given any value β ∈ (0, 1), we can construct a sequence of those time points t1, t2, ..., tk−1

103

recursively based on the following condition

∫ ti+1

ti

P (R(t) = i)dt =
1

β
− 1, ∀i = 0, 1, ..., k − 2. (3.5.7)

Here ti is when the barrier is increased to position i, and is thus the first time that P (R(t) = i)

becomes positive. Given t1, t2, ..., ti, this condition sets the value for ti+1 = ti+1(β) by

requiring that the area under the function P (R(t) = i) for t ∈ [ti, ti+1] is exactly 1/β − 1.

According to the above construction, since P (R(t) = i) is a continuous function of t, the

time points t1, t2, ..., tk−1 must change continuously in β.

Furthermore, when β → 1, i.e., the area under the function P (R(t) = i) for t ∈ [ti, ti+1]

tends to 0 for each i = 0, 1, ..., k − 2, we must have ti+1 − ti → 0 for each i = 0, 1, ..., i − 2.

This implies that tk−1 → t0 = 0. On the other hand, when β → 0, we have 1/β∗ − 1→∞,

so the area under P (R(t) = i) for t ∈ [ti, ti+1] can be arbitrarily large. In other words, by

tuning the value of β, we can set tk−1 to be any value within (0, k).

Therefore, there must exist some β ∈ (0, 1) such that tk−1 satisfies

∫ tk

tk−1

P (R(t) = k − 1)dt =
1

β
− 1.

Let β∗ be such a value that satisfies this condition. Set α∗i (t) = P (R(t) = i)β∗. We next

prove that this construction of β∗ and α∗i (t), for i = 0, 1, ..., k − 1 and t ∈ [0, k], satisfies the

constraints of (3.5.5).

104

First of all, for t ≤ t1, we have

α∗0(t) +

∫ t

0

α∗0(s)ds = β∗P (R(t) = 0) +

∫ t

0

β∗P (R(s) = 0)ds

= β∗ · 1 + β∗
∫ t

0

P (R(s) = 0)ds

≤ β∗ + β∗
∫ t1

0

P (R(s) = 0)ds

= β∗ + β∗(1/β∗ − 1)

= 1.

Note that the inequality is tight when t = t1. For t > t1, since the barrier is above position

0, the value of the random process R(t), when at position 0, is randomly jumping to position

1 at (hazard) rate equal to P (R(t) = 0). Thus, we must have, for t > t1,

∂P (R(t) = 0)

∂t
= −R(t)

=⇒P (R(t) = 0)− P (R(t1) = 0) = −
∫ t

t1

P (R(s) = 0)ds

=⇒P (R(t) = 0) +

∫ t

0

P (R(s) = 0)ds = P (R(t1) = 0) +

∫ t1

0

P (R(s) = 0)ds

=⇒α∗0(t) +

∫ t

0

α∗0(s)ds = α∗0(t1) +

∫ t1

0

α∗0(s)ds = 1.

Therefore, the first constraint of (3.5.5) holds and is tight for t ≥ t1.

To prove that the second constraint also holds, we recursively look at i = 1, 2, ..., k − 1.

Recall that ti is the first time that P (R(t) = i) becomes positive. Thus for t ≤ ti we have

105

Pi(R(t) = i) = 0 and thus

α∗i (t) +

∫ t

0

α∗i (s)ds = β∗P (R(t) = i) +

∫ t

0

β∗P (R(s) = i)ds = 0.

For t ∈ [ti, ti+1], we have

α∗i (t) +

∫ t

0

α∗i (s)ds = β∗P (R(t) = i) +

∫ t

0

β∗P (R(s) = i)ds

= β∗P (R(t) = i) + β∗
∫ t

ti

P (R(s) = i)ds

≤ β∗P (R(t) = i) + β∗
∫ ti+1

ti

P (R(s) = i)ds

= β∗P (R(t) = i) + β∗(1/β∗ − 1)

= β∗P (R(t) = i) + β∗
∫ ti

ti−1

P (R(s) = i− 1)ds.

When t ∈ [ti, ti+1] and R(t) = i, the random process is actively bounded by the barrier,

so the probability P (R(t) = i), as a function of t, can only increase due to the transition from

state R(t) = i− 1 to R(t) = i. The rate at which P (R(t) = i) increases is P (R(t) = i− 1).

106

Thus, we have P (R(t) = i) =
∫ t
ti
P (R(s) = i− 1)ds, which leads to

α∗i (t) +

∫ t

0

α∗i (s)ds ≤β∗P (R(t) = i) + β∗
∫ ti

ti−1

P (R(s) = i− 1)ds

=β∗
∫ t

ti

P (R(s) = i− 1)ds+ β∗
∫ ti

ti−1

P (R(s) = i− 1)ds

=β∗
∫ t

0

P (R(s) = i− 1)ds

=

∫ t

0

α∗i−1(s)ds.

(3.5.8)

Note that the inequality is tight when t = ti+1.

For t > ti+1, the barrier is above i, so the random process R(t), if still at state R(t) = i,

is not actively bounded by the barrier. Thus the state R(t) = i is involved in two transitions:

from state i to i+ 1, and from i− 1 to i. More precisely, we have for t > ti+1,

∂P (R(t) = i)

∂t
= P (R(t) = i− 1)− P (R(t) = i)

=⇒P (R(t) = i) +

∫ t

0

P (R(s) = i)ds−
∫ t

0

P (R(s) = i− 1)ds

= 0.

=⇒ α∗i (t) +

∫ t

0

α∗i (s)ds =

∫ t

0

α∗i−1(s)ds. (3.5.9)

This proves that the second constraint of (3.5.5) holds (and is tight for t ≥ ti+1, for each

i = 1, 2, ..., k − 1, respectively). Finally, the last constraint of (3.5.5) trivially holds because∑k−1
i=0 P (R(t) = i) = 1 =⇒ β∗ =

∑k−1
i=0 α

∗
i (t).

107

To prove (3.5.6), we can deduce that

β∗
k−1∑
i=0

iP (R(k) = i)

=
k−1∑
i=0

iα∗i (k)

=
k−1∑
i=0

i

[∫ k

0

α∗i−1(s)ds−
∫ k

0

α∗i (s)ds

]
(by (3.5.9))

=
k−1∑
i=0

∫ k

0

α∗i (s)ds− k
∫ k

0

α∗k−1(s)ds (by canceling identical terms)

=

∫ k

0

(
k−1∑
i=0

α∗i (s)

)
ds− kβ∗

∫ k

0

P (R(s) = k − 1)ds

=

∫ k

0

β∗ds− kβ∗(1/β∗ − 1)

=2kβ∗ − k.

We can then easily obtain (3.5.6) by rearranging terms.

Given that β∗ and α∗ are dual-feasible, we will next attempt to bound objective β∗ by

analyzing the process R(·).

First we show that the times at which the barriers are applied are bounded by 1, 2, . . . , k−

1.

Theorem 3.5.2. The time points t1, t2, ..., tk−1 constructed in the proof of Theorem 3.5.1

satisfy ti ≤ i, for i = 1, 2, ..., k − 1.

Before proving Theorem 3.5.2, we first prove Lemmas 3.5.3 to 3.5.7, which characterize

further the behavior of the process R(t). These lemmas collectively show that when the

108

barriers are applied at regular points starting at some time of the horizon, i.e., ti = i ∀i ≥ l

for some integer l, the time spent at the barriers must be monotone decreasing in the index

i for all i ≥ l.

For ease of notation, let

Ii ≡
∫ ti+1

ti

1(R(s) = i)ds

be the total time that the bounded process R(t) stays at the barrier i during the interval

[ti, ti+1], for i = 0, 1, ..., k − 1. Note that E[Ii] =
∫ ti+1

ti
P (R(s) = i)ds. Let Pi(λ) be the

probability that a Poisson random variable with mean λ is equal to i. Let P≥i(λ) and P≤i(λ)

denote
∑∞

j=i Pj(λ) and
∑i

j=0 Pj(λ), respectively.

First, assuming that the barriers are applied at regular points 0, 1, . . . , k − 1, we can

quantify the difference in expected time spent at each barrier, given different starting points

for the process R(·),

Lemma 3.5.3. Given any l ∈ {1, 2, ..., k − 1}, if tl = l and tl+1 = l + 1, we must have

E[Il|R(l) = l − j]− E[Il|R(l) = l − j − 1] = P≥j+1(1)

for all j = 0, 1, ..., l − 1.

Proof.

E[Il|R(l) = l − j]

=

∫ l+1

l

P (R(s) = l|R(l) = l − j)ds

109

=

∫ 1

0

P≥j(s)ds.

Similarly, E[Il|R(l) = l − j − 1] =
∫ 1

0
P≥j+1(s)ds. Thus,

E[Il|R(l) = l − j]− E[Il|R(l) = l − j − 1]

=

∫ 1

0

P≥j(s)ds−
∫ 1

0

P≥j+1(s)ds

=

∫ 1

0

Pj(s)ds

=

∫ 1

0

e−s
sj

j!
ds

=
∞∑

ν=j+1

e−1 1

ν!

=P≥j+1(1).

Next, assuming that the barriers are applied at regular points 0, 1, . . . , k − 1, we can

bound differences in time spent at each barrier for successive pairs of starting points.

Lemma 3.5.4. Given any l ∈ {2, 3, ..., k − 1}, if ti = i for all i = l, l+ 1, ..., k − 1, we must

have

E[Ii|R(l) = l]− E[Ii|R(l) = l − 1] ≥ e−1(E[Ii|R(l) = l − 1]− E[Ii|R(l) = l − 2])

for all i = l, l + 1, ..., k − 1.

110

Proof. Fix any i ∈ {l, l + 1, ..., k − 1}. For ease of notation, define

∆d,j ≡ E[Ii|R(d) = d− j]− E[Ii|R(d) = d− j − 1]

to be the decrease in the expected time that R(t) stays at the barrier during [ti, ti+1], when

the state at time t = d changes from R(d) = d − j down to R(d) = d − j − 1, for all

d = l, l + 1, ..., i and j = 0, 1, ..., d− 1.

From Lemma 3.5.3 we know that ∆i,j = P≥j+1(1). Furthermore, for d < i and d ≥ l, the

value of E[Ii|R(d) = d − j] can be recursively computed by conditioning on R(d + 1), i.e.,

on the movement of the random process during time [d, d+ 1]. Precisely,

E[Ii|R(d) = d− j] =

j∑
ν=0

Pν(1)E[Ii|R(d+ 1) = d− j + ν] +
∞∑

ν=j+1

Pν(1)E[Ii|R(d+ 1) = d].

Here, for example, R(d+ 1) = d− j + ν represents the condition where the random process

R(t) moves ν steps upwards during time [d, d + 1]; R(d + 1) = d represents the condition

where the random process hits the barrier at time t = d+ 1.

Similarly,

E[Ii|R(d) = d− j − 1] =

j+1∑
ν=0

Pν(1)E[Ii|R(d+ 1) = d− j − 1 + ν] +
∞∑

ν=j+2

Pν(1)E[Ii|R(d+ 1) = d]

=

j∑
ν=0

Pν(1)E[Ii|R(d+ 1) = d− j − 1 + ν] +
∞∑

ν=j+1

Pν(1)E[Ii|R(d+ 1) = d].

111

The above two equations lead to the following recursion for ∆d,j

∆d,j = E[Ii|R(d) = d− j]− E[Ii|R(d) = d− j − 1]

=

j∑
ν=0

Pν(1)[E[Ii|R(d+ 1) = d− j + ν]− E[Ii|R(d+ 1) = d− j − 1 + ν]]

=

j∑
ν=0

Pν(1)∆d+1,j−ν+1.

(3.5.10)

Note that in order to prove the lemma, we need to show ∆l,0/∆l,1 ≥ 1/e. To this end, we

prove a stronger result by constructing a bound on ∆d,j/∆d,j+1 for all d = l, l + 1, ..., i, and

j = 0, 1, ..., d. We construct the bounds using a sequence of ‘stationary’ values ∆∗,0,∆∗,1, ...,

which are defined based on the recursion (3.5.10) and are independent of d:

∆∗,0 = 1;

∆∗,j =

j∑
ν=0

Pν(1)∆∗,j−ν+1, ∀j = 0, 1, 2, ... (3.5.11)

=⇒

∆∗,1 = e∆∗,0,

∆∗,j+1 = (e− 1)∆∗,j −
∑j

ν=2
1
ν!

∆∗,j−ν+1, ∀j ≥ 1.

(3.5.12)

We next prove that

∆d,j

∆d,j+1

≥ ∆∗,j
∆∗,j+1

(3.5.13)

using induction on d.

112

• First, we prove that (3.5.13) holds when d = i by showing that ∆i,j is decreasing in j

but ∆∗,j is increasing in j.

By Lemma 3.5.3, ∆i,j = P≥j+1(1) > P≥j+2(1) = ∆i,j+1, which means ∆i,j is decreasing

in j.

From (3.5.12) we know that ∆∗,0 = e−1∆∗,1 < ∆∗,1. Provided that ∆∗,ν ≤ ∆∗,j for all

ν ≤ j and some j ≥ 1, we can deduce from (3.5.12),

∆∗,j+1

∆∗,j
≥ e− 1−

j∑
ν=2

1

ν!
≥ e− 1−

∞∑
ν=2

1

ν!
= e− 1− (e− 2) = 1.

Thus, ∆∗,j is increasing in j, which finishes the proof that (3.5.13) holds when d = i.

• When d < i,

∆d,j∆∗,j+1 −∆d,j+1∆∗,j

=

(
j∑

ν1=0

Pν1(1)∆d+1,j−ν1+1

)(
j+1∑
ν2=0

Pν2(1)∆∗,j−ν2+2

)

−

(
j∑

ν1=0

Pν1(1)∆∗,j−ν1+1

)(
j+1∑
ν2=0

Pν2(1)∆d+1,j−ν2+2

)
(by (3.5.10) and (3.5.11))

=

(
j∑

ν1=0

Pν1(1)∆d+1,j−ν1+1

)
P0(1)∆∗,j+2 −

(
j∑

ν1=0

Pν1(1)∆∗,j−ν1+1

)
P0(1)∆d+1,j+2

+

(
j∑

ν1=0

Pν1(1)∆d+1,j−ν1+1

)(
j∑

ν2=0

Pν2+1(1)∆∗,j−ν2+1

)

−

(
j∑

ν1=0

Pν1(1)∆∗,j−ν1+1

)(
j∑

ν2=0

Pν2+1(1)∆d+1,j−ν2+1

)

=

j∑
ν1=0

Pν1(1)P0(1) (∆d+1,j−ν1+1∆∗,j+2 −∆∗,j−ν1+1∆d+1,j+2)

113

+

j∑
ν1=0

ν1−1∑
ν2=0

Pν1(1)Pν2+1(1) (∆d+1,j−ν1+1∆∗,j−ν2+1 −∆∗,j−ν1+1∆d+1,j−ν2+1)

+

j∑
ν2=0

ν2−1∑
ν1=0

Pν1(1)Pν2+1(1) (∆d+1,j−ν1+1∆∗,j−ν2+1 −∆∗,j−ν1+1∆d+1,j−ν2+1)

+

j∑
ν1=0

Pν1(1)Pν1+1(1) (∆d+1,j−ν1+1∆∗,j−ν1+1 −∆∗,j−ν1+1∆d+1,j−ν1+1)

=

j∑
ν1=0

Pν1(1)P0(1) (∆d+1,j−ν1+1∆∗,j+2 −∆∗,j−ν1+1∆d+1,j+2)

+

j∑
ν1=0

ν1−1∑
ν2=0

Pν1(1)Pν2+1(1) (∆d+1,j−ν1+1∆∗,j−ν2+1 −∆∗,j−ν1+1∆d+1,j−ν2+1)

+

j∑
ν2=0

ν2−1∑
ν1=0

Pν1(1)Pν2+1(1) (∆d+1,j−ν1+1∆∗,j−ν2+1 −∆∗,j−ν1+1∆d+1,j−ν2+1)

=

j∑
ν1=0

Pν1(1)P0(1) (∆d+1,j−ν1+1∆∗,j+2 −∆∗,j−ν1+1∆d+1,j+2) (3.5.14)

+

j∑
ν1=0

ν1−1∑
ν2=0

(Pν1(1)Pν2+1(1)− Pν2(1)Pν1+1(1)) (∆d+1,j−ν1+1∆∗,j−ν2+1 −∆∗,j−ν1+1∆d+1,j−ν2+1)

(3.5.15)

Now using induction on d+ 1, we know that for ν1 ≥ 0,

∆d+1,j−ν1+1

∆d+1,j+2

≥ ∆∗,j−ν1+1

∆∗,j+2

,

and thus (3.5.14)≥ 0. In (3.5.15), since ν1 > ν2, we can use induction on d + 1 again

to obtain

∆d+1,j−ν1+1

∆d+1,j−ν2+1

≥ ∆∗,j−ν1+1

∆∗,j−ν2+1

=⇒ ∆d+1,j−ν1+1∆∗,j−ν2+1 −∆∗,j−ν1+1∆d+1,j−ν2+1 ≥ 0.

114

Furthermore, since ν1 > ν2,

Pν1(1)Pν2+1(1)− Pν2(1)Pν1+1(1) = Pν1(1)Pν2(1)

(
1

ν2 + 1
− 1

ν1 + 1

)
≥ 0.

Thus, (3.5.15)≥ 0. In sum, we have shown ∆d,j∆∗,j+1 −∆d,j+1∆∗,j ≥ 0, which finishes

the induction proof for condition (3.5.13).

This result (3.5.13) directly leads to the statement of the Lemma

∆l,0 ≥ ∆l,1
∆∗,0
∆∗,1

= ∆l,1/e.

Using the previous result, we relax the assumption that all the barriers are applied at

regular points 0, 1, . . . , k − 1. We assume now that the barriers are applied at regular times

beyond a point. Under this condition, we show that the differences in time spent at successive

barriers are increasing with the starting point of the process.

Lemma 3.5.5. Given any l ∈ {1, 2, ..., k − 2}, if ti ≤ i for i = 1, 2, ..., l, and ti = i for

i = l + 1, l + 2, ..., k − 1, we must have

E[Ii|R(l) = l]− E[Ii+1|R(l) = l] ≥ E[Ii|R(l) = l − 1]− E[Ii+1|R(l) = l − 1]

for all i = l, l + 1, ..., k − 2.

115

Proof. Fix any i ∈ {l, l + 1, ..., k − 2}. By symmetry, we have E[Ii|R(l) = l] = E[Ii+1|R(l +

1) = l + 1] and E[Ii|R(l) = l − 1] = E[Ii+1|R(l + 1) = l].

Thus,

E[Ii|R(l) = l]− E[Ii+1|R(l) = l]− (E[Ii|R(l) = l − 1]− E[Ii+1|R(l) = l − 1])

=E[Ii+1|R(l + 1) = l + 1]− E[Ii+1|R(l + 1) = l]− (E[Ii+1|R(l) = l]− E[Ii+1|R(l) = l − 1]))

=E[Ii+1|R(l + 1) = l + 1]− E[Ii+1|R(l + 1) = l]− e−1(E[Ii+1|R(l + 1) = l]− E[Ii+1|R(l + 1) = l − 1]))

≥0,

where the last inequality follows from Lemma 3.5.4.

Next, assuming that the barriers are applied at regular points 0, 1, . . . , k − 1, we show

that the time spent by the process at each barrier is decreasing with the index of the barrier.

Lemma 3.5.6. If ti = i for all i = 1, 2, ..., k − 1, we must have E[Ii] ≥ E[Ii+1] for all

i = 1, 2, ..., k − 2.

Proof. It is obvious that for any i ≥ 1,

E[Ii|R(1) = 1] ≥ E[Ii|R(1) = 0],

because when the starting position becomes lower, it is harder for the random process R(t)

to reach the barrier at any later time. Since E[Ii|R(1) = 0] = E[Ii], and by symmetry,

E[Ii|R(1) = 1] = E[Ii−1], we have E[Ii−1] ≥ E[Ii] for all i ≥ 1.

116

Finally, we relax the requirement of Lemma 3.5.6. We require only that the barriers be

applied at regular points only after some time. We show that the time spent at the barriers

are still decreasing.

Lemma 3.5.7. Given any l ∈ {1, 2, ..., k − 2}, if ti ≤ i for i = 1, 2, ..., l, and ti = i for

i = l + 1, l + 2, ..., k − 1, we must have

E[Ii] ≥ E[Ii+1]

for all i = l, l + 1, ..., k − 2.

Proof. Given any sequence of times points t̄1 ≤ t̄2 ≤ · · · ≤ t̄l such that t̄j ≤ j, ∀j = 1, 2, ..., l,

we want to prove the lemma when tj = t̄j for j ≤ l and tj = j for j > l.

Fix any i ∈ {l, l+ 1, ..., k− 2}. Initially, set tj = j for all j = 1, 2, ..., k− 1, and we know

that E[Ii] ≥ E[Ii+1] by Lemma 3.5.6. We next prove that E[Ii] ≥ E[Ii+1] always holds when

we reduce the value of tj from j to t̄j sequentially for j = 1, 2, ..., l.

Define

I ′i =

Ii, if i > l∫ l+1

l
1(R(s) = l)ds, if i = l.

By this definition, Ii is different from I ′i only if i = l and tl < l (we create the definition of

I ′i so as to facilitate the proof for the case of i = l). Note that we always have Ii ≥ I ′i, and

in particular, Ii = I ′i when initially tj = j for all j = 1, 2, ..., l.

Consider the result of reducing tj from j to t̄j, when td = d for all d = j+1, j+2, ..., k−1.

Let R̂(t), Îi and Î ′i be the value of R(t), Ii and I ′i, respectively, before reducing tj, i.e., when

117

tj = j. Let R̄(t), Īi and Ī ′i be the new value of R(t), Ii and I ′i, respectively, after reducing tj

to t̄j.

Suppose E[Îi] ≥ E[Îi+1] holds, we next prove that E[Īi] ≥ E[Īi+1] also holds.

• When tj = j, since j ≤ l, we must have tl = l and thus E[Îi] = E[Î ′i].

• We must have P (R̄(j) = ν) = P (R̂(j) = ν) for all ν ≤ j − 2, because if R(t) ≤ j − 2,

the random process is not affected by the barrier after time tj−1.

• We must have P (R̄(j) = j − 1) ≤ P (R̂(j) = j − 1) and P (R̄(j) = j) ≥ P (R̂(j) = j)

because when tj becomes smaller, there is more time for the random process R(t) to

jump from state j − 1 up to j. Moreover,

P (R̄(j) = j)− P (R̂(j) = j) = P (R̂(j) = j − 1)− P (R̄(j) = j − 1) ≥ 0. (3.5.16)

Based on the above results, we can then deduce that (E[Īi] is defined as E[Ii] given

tj = t̄j. Similarly, E[Îi] is defined as E[Ii] given tj = j)

E[Īi]− E[Īi+1]

≥E[Ī ′i]− E[Īi+1]

=

j∑
ν=0

E[Ī ′i|R̄(j) = ν]P (R̄(j) = ν)−
j∑

ν=0

E[Īi+1|R̄(j) = ν]P (R̄(j) = ν)

=

j∑
ν=0

E[Î ′i|R̂(j) = ν]P (R̄(j) = ν)−
j∑

ν=0

E[Îi+1|R̂(j) = ν]P (R̄(j) = ν)

118

 Given R(j) = ν, reducing tj does not affect the random process after t ≥ j,

due to the memoryless property.

=

j−2∑
ν=0

E[Î ′i|R̂(j) = ν]P (R̂(j) = ν) +

j∑
ν=j−1

E[Î ′i|R̂(j) = ν]P (R̄(j) = ν)

−
j−2∑
ν=0

E[Îi+1|R̂(j) = ν]P (R̂(j) = ν)−
j∑

ν=j−1

E[Îi+1|R̂(j) = ν]P (R̄(j) = ν)

=

j∑
ν=0

E[Î ′i|R̂(j) = ν]P (R̂(j) = ν) +

j∑
ν=j−1

E[Î ′i|R̂(j) = ν](P (R̄(j) = ν)− P (R̂(j) = ν))

−
j∑

ν=0

E[Îi+1|R̂(j) = ν]P (R̂(j) = ν)−
j∑

ν=j−1

E[Îi+1|R̂(j) = ν](P (R̄(j) = ν)− P (R̂(j) = ν))

=E[Î ′i] +

j∑
ν=j−1

E[Î ′i|R̂(j) = ν](P (R̄(j) = ν)− P (R̂(j) = ν))

− E[Îi+1]−
j∑

ν=j−1

E[Îi+1|R̂(j) = ν](P (R̄(j) = ν)− P (R̂(j) = ν))

=E[Î ′i]− E[Îi+1] +

j∑
ν=j−1

(E[Î ′i|R̂(j) = ν]− E[Îi+1|R̂(j) = ν])(P (R̄(j) = ν)− P (R̂(j) = ν))

=E[Îi]− E[Îi+1] +

j∑
ν=j−1

(E[Î ′i|R̂(j) = ν]− E[Îi+1|R̂(j) = ν])(P (R̄(j) = ν)− P (R̂(j) = ν))

≥
j∑

ν=j−1

(E[Î ′i|R̂(j) = ν]− E[Îi+1|R̂(j) = ν])(P (R̄(j) = ν)− P (R̂(j) = ν))

=(P (R̄(j) = ν)− P (R̂(j) = ν))×

(E[Î ′i|R̂(j) = j]− E[Îi+1|R̂(j) = j]− E[Î ′i|R̂(j) = j − 1] + E[Îi+1|R̂(j) = j − 1]). (by (3.5.16))

Now Lemma 3.5.5 gives

E[Î ′i|R̂(j) = j]− E[Î ′i|R̂(j) = j − 1]− E[Îi+1|R̂(j) = j] + E[Îi+1|R̂(j) = j − 1] ≥ 0.

119

This proves that E[Īi] ≥ E[Īi+1]. Therefore, we always have E[Ii] ≥ E[Ii+1] when we change

tj from j to t̄j for all j = 1, 2, ..., l.

The idea of the proof of Theorem 3.5.2 is as follows. We will start by setting the barriers

at times 0, 1, . . . , k− 1. We then successively reduce the values ti, i = 0, 1, . . ., until the time

spent at each barrier is no more than 1/β − 1. By the monotonicity shown in Lemma 3.5.7,

this procedure must stop with the time spent at each barrier bounded above by 1/β − 1.

If we change the value of β, the time points t1, t2, ..., tk−1 that result from the above

procedure must change continuously in β. We simply choose β such that, when the procedure

ends, the time spent at the last barrier is 1/β − 1, which implies that the time spent at all

barriers is exactly 1/β − 1.

Proof of Theorem 3.5.2.

We give a new and more detailed construction of the same set of times points as constructed

in the proof of Theorem 3.5.1.

Fix any β ∈ (0, 1). Starting with ti = i, ∀i = 1, 2, ..., k−1, we run the following algorithm:

For i = 0, 1, ..., k − 2:

(a) If E[Ii] > 1/β − 1, reduce ti+1 such that E[Ii] = 1/β − 1.

(b) Stop if E[Ii] < 1/β − 1.

If the algorithm stops at (b) when i = l, we must have

E[I0] = E[I1] = · · · = E[Il−1] = 1/β − 1

120

and, according to Lemma 3.5.7,

1/β − 1 = E[Il−1] ≥ E[Il] ≥ · · · ≥ E[Ik−1]. (3.5.17)

On the other hand, if the algorithm never stops at (b), we must have

E[I0] = E[I1] = · · · = E[Ik−2] = 1/β − 1. (3.5.18)

If we change the value of β, the time points t1, t2, ..., tk−1 as the result of the algorithm

must change continuously in β. This implies that E[Ik−1] =
∫ k
tk−1

P (R(s) = k − 1)ds must

change continuously in β. When β is close to 0, we must have E[Ik−1] < 1/β − 1; when β is

close to 1, we must have E[Ik−1] > 1/β− 1. Therefore, there must exist a β such that, when

the algorithm ends,

E[Ik−1] = 1/β − 1.

Let β∗ be such a value.

Now the time points have met all desired conditions if (3.5.18) holds (i.e., the algorithm

never stops at (b)). If the algorithm stops at some step (b), then according to (3.5.17),

1/β∗ − 1 = E[Il−1] ≥ E[Il] ≥ · · · ≥ E[Ik−1] = 1/β∗ − 1

=⇒ E[I0] = E[I1] = · · · = E[Ik−1] = 1/β∗ − 1,

which gives all desired conditions of the time points as well.

121

Lemma 3.5.8.

β∗ =
1

2
+

1

2k

k−1∑
i=0

i α∗i (k).

Proof. Starting from Theorem 3.5.1 we can deduce that

k(1− β∗) = β∗

[
k −

k−1∑
i=0

iP (R(k) = i)

]

=⇒ 2kβ∗ = k + β∗
k−1∑
i=0

iP (R(k) = i) = k +
k−1∑
i=0

iα∗i (k)

=⇒ β∗ =
1

2
+

1

2k

k−1∑
i=0

iα∗i (k).

3.5.4 Computing the bound

First, we prove an inequality, which will be useful in computing our bound.

Lemma 3.5.9. For any x, y ∈ Z and λ ∈ [0, k] such that x ≥ y ≥ k − 1− λ, we must have

for any l = 0, 1, ..., k − 1,

l∑
i=−l

Pk−1+i−x(λ) ≤
l∑

i=−l

Pk−1+i−y(λ).

Proof. If suffices to prove the case when x = y + 1. We have

l∑
i=−l

Pk−1+i−(y+1)(λ)−
l∑

i=−l

Pk−1+i−y(λ)

122

=Pk−2−l−y(λ)− Pk−1+l−y(λ).

If k−2−l−y < 0, the lemma trivially holds because Pk−2−l−y(λ) = 0 and thus Pk−2−l−y(λ)−

Pk−1+l−y(λ) ≤ 0.

Now suppose k − 2− l − y ≥ 0. Then

Pk−2−l−y(λ)

Pk−1+l−y(λ)

=
λk−2−l−y

(k − 2− l − y)!
· (k − 1 + l − y)!

λk−1+l−y

=
1

λ2l+1

l∏
i=−l

(k − 1− y + i).

Since y ≥ k− 1− λ, we must have k− 1− y ≤ λ and (k− 1− y+ i)(k− 1− y− i) ≤ λ2.

This shows that Pk−2−l−y(λ)/Pk−1+l−y(λ) ≤ 1 and thus Pk−2−l−y(λ)− Pk−1+l−y(λ) ≤ 0.

Lemma 3.5.10. For any l = 0, 1, ..., k − 1, we have

l∑
i=−l

Pk−1+i(k) ≤ 1

β∗

l∑
i=0

α∗k−1−i(k).

Proof. Define

R(i) ≡ R(ti) +N(k)−N(ti), ∀i = 0, 1, 2, ..., k.

Note that since the bounded process R(t) is determined by N(t), the random variables R(i)’s

are also determined by N(t).

123

Since

P (R(0) = i) = P (R(t0) +N(k)−N(t0) = i) = P (N(k) = i) = Pi(k)

and

P (R(k) = i) = P (R(k) = i) = α∗i (k)/β∗,

it suffices to show that

l∑
i=−l

P (R(j−1) = k − 1 + i) ≤
l∑

i=−l

P (R(j) = k − 1 + i) (3.5.19)

for all l = 0, 1, ..., k − 1 and j = 1, 2, ..., k.

According to the definition of the bounded process R(t), if R(tj−1) +N(tj)−N(tj−1) ≤

j − 1, then R(tj) = R(tj−1) +N(tj)−N(tj−1) and thus

R(j) = R(tj) +N(k)−N(tj)

= R(tj−1) +N(tj)−N(tj−1) +N(k)−N(tj)

= R(tj−1) +N(k)−N(tj−1)

= R(j−1).

Therefore,

l∑
i=−l

P (R(j−1) = k − 1 + i|R(tj−1) +N(tj)−N(tj−1) ≤ j − 1)

124

=
l∑

i=−l

P (R(j) = k − 1 + i|R(tj−1) +N(tj)−N(tj−1) ≤ j − 1)

for all l = 0, 1, ..., k − 1 and j = 1, 2, ..., k.

Now consider the case x = R(tj−1) +N(tj)−N(tj−1) > j − 1. We must have

R(j−1) = x+N(k)−N(tj),

R(j) = j − 1 +N(k)−N(tj).

Recall that Lemma 3.5.2 gives tj ≤ j, so x > j − 1 ≥ tj − 1 = k− 1− (k− tj). We can then

apply Lemma 3.5.9 by further setting y = j − 1 and λ = k − tj and obtain (for x > j − 1)

l∑
i=−l

P (R(j−1) = k − 1 + i|R(tj−1) +N(tj)−N(tj−1) = x)

=
l∑

i=−l

P (x+N(k)−N(tj) = k − 1 + i|R(tj−1) +N(tj)−N(tj−1) = x)

=
l∑

i=−l

P (N(k)−N(tj) = k − 1 + i− x|R(tj−1) +N(tj)−N(tj−1) = x)

=
l∑

i=−l

P (N(k − tj) = k − 1 + i− x)

≤
l∑

i=−l

P (N(k − tj) = k − 1 + i− (j − 1))

=
l∑

i=−l

P (j − 1 +N(k)−N(tj) = k − 1 + i|R(tj−1) +N(tj)−N(tj−1) = x)

=
l∑

i=−l

P (R(j) = k − 1 + i|R(tj−1) +N(tj)−N(tj−1) = x)

125

In sum, we have shown (3.5.19), which proves the lemma.

Finally, we derive our bound. The bound is simply a reduction of the equation

k(1− β∗) = β∗

[
k −

k−1∑
i=0

iP (R(k) = i)

]
,

which follows from Theorem 3.5.1. β∗ is strictly greater than 0.5 for k ≥ 2. For example,

when k = 2, β∗ satisfies

3β + βe1/β−3 = 2,

from which we can obtain β∗ ≈ 0.615.

Theorem 3.5.11.

β∗ ≥ 1

1 + 1
k
[
∑∞

i=2k−1 iPi(k) + 2
∑k−1

i=1 iPk+i−1(k)]
.

Proof. Combining Lemma 3.5.8 and Lemma 3.5.10, we obtain

β∗ =
1

2
+

1

2k

k−1∑
i=0

i α∗i (k)

=
1

2
+

1

2k

k−2∑
l=0

l∑
i=0

α∗k−1−i(k)

≥1

2
+

1

2k

k−2∑
l=0

β∗
l∑

i=−l

Pk−1+i(k)

=
1

2
+
β∗

2k

[
k−2∑
l=0

0∑
i=−l

Pk−1+i(k) +
k−2∑
l=0

l∑
i=1

Pk−1+i(k)

]

=
1

2
+
β∗

2k

[
k−1∑
i=1

iPi(k) +
2k−2∑
i=k

(2k − i− 2)Pi(k)

]

126

=
1

2
+
β∗

2k

[
2k−2∑
i=1

iPi(k) +
2k−2∑
i=k

(2k − 2i− 2)Pi(k)

]

=
1

2
+
β∗

2k

[
2k−2∑
i=1

iPi(k)− 2
k−1∑
i=1

iPk−1+i(k)

]
.

=⇒ β∗ ≥ k

2k −
[∑2k−2

i=1 iPi(k)− 2
∑k−1

i=1 iPk−1+i(k)
]

=
k

k +
[
k −

∑2k−2
i=1 iPi(k)

]
+ 2

∑k−1
i=1 iPk−1+i(k)

=
k

k +
∑∞

i=2k−1 iPi(k) + 2
∑k−1

i=1 iPk−1+i(k)

=
1

1 + 1
k

[∑∞
i=2k−1 iPi(k) + 2

∑k−1
i=1 iPk−1+i(k)

]

Corollary 3.5.12. Assuming that the minimum capacity for each resource is k, the compet-

itive ratio for the Separation Algorithm is at least

β∗ ≥ 1

1 + 2
[
P≥k(k)

k
+ e−kkk

k!

] = 1−
√

2

π

1√
k

+O(
1

k
).

Proof.

∞∑
i=2k−1

iPi(k) + 2
k−1∑
i=1

iPk+i−1(k) ≤ 2
∑∞

i=1 iPk+i−1(k)

= 2
∑∞

i=1 i
kk+i−1

(k+i−1)!
e−k

= 2
[
kke−k

(k−1)!
+
∑∞

i=k Pi(k)
]
.

127

=⇒ β∗ ≥ 1

1+ 2
k

[
kke−k
(k−1)!

+
∑∞
i=k Pi(k)

]
= 1

1+2

[
e−kkk
k!

+
P≥k(k)

k

] .

By Stirling’s formula,

e−kkk

k!
=

1√
2πk

+ o(1/k).

Furthermore, since P≥k(k) ≤ 1, we have

P≥k(k)

k
= O(1/k).

Thus,

1

1 + 2
[
e−kkk

k!
+

P≥k(k)

k

] =
1

1 + 2
[

1√
2πk

+ o(1/k) +O(1/k)
] = 1−

√
2

π

1√
k

+O(1/k).

In sum, we have proved that

V0(0)∫ 1

0
r(t)λ(t)dt

≥ β∗ ≥ 1−
√

2

π

1√
k

+O(1/k).

Thus, if Cj ≥ k for all resource j,

fj(t, Cj)∑m
i=1 x

∗
ijrij

=
V0(0)∑m

i=1

∫ 1

0
rijλij(t)dt

≥ 1−
√

2

π

1√
k

+O(1/k)

128

=⇒
∑n

j=1 fj(t, Cj)∑m
i=1

∑n
j=1 x

∗
ijrij

≥ 1−
√

2

π

1√
k

+O(1/k).

This proves the competitive ratio of the Separation Algorithm.

3.6 Marginal Allocation Algorithm

The Separation Algorithm, when carried out in practice, has several problems. First, it

might route customers to unavailable resources when they can be better matched to other

resources. Second, because of the random routing, it might unfairly accept a lower-priority

customer after rejecting a higher-priority customer. In this section, we present the Marginal

Allocation Algorithm which resolves these issues by converting the Separation Algorithm into

a bid-price algorithm. We will prove that the Marginal Allocation Algorithm has theoretical

performance no worse than that of the Separation Algorithm.

The Marginal Allocation Algorithm uses the marginal benefit fj(t, cj(t))− fj(t, cj(t)− 1)

as a bid price for resource j. When a customer of type i arrives, the Marginal Allocation

Algorithm rejects the customer if rij < fj(t, cj(t))− fj(t, cj(t)− 1) for all available resource

j; otherwise, it assigns this customer to resource

argmaxj{rij − fj(t, cj(t)) + fj(t, cj(t)− 1)|j is available at time t}.

To carry out this algorithm, we only need to compute the n benefit functions at the

beginning of the horizon, thus reducing the space requirement to polynomial size. At any

129

time t, we only need to know the n benefit functions fj(t, cj(t)), for j = 1, 2, ..., n, so as to

make a decision.

The following theorem states that the Marginal Allocation Algorithm performs at least

as well as the Separation Algorithm:

Theorem 3.6.1. The expected total benefit of the Marginal Allocation Algorithm is no less

than that of the Separation Algorithm.

Proof. Let h(t, c) be the expected future benefit that can be obtained by the Marginal

Allocation Algorithm starting at time t when c = (c1, c2, ..., cn) is the vector of resources

available at t. Let f(t, c) =
∑n

j=1 fj(t, cj) be the expected future benefit that can be obtained

by the Separation Algorithm starting at time t when c is the vector of resources available at

t. We will show that

h(t, c) ≥ f(t, c) (3.6.1)

for every given state (t, c).

Define an algorithm Π(i) as follows. For the first i customers, apply the Marginal Alloca-

tion Algorithm. Afterward, for the (i+ 1)-th, (i+ 2)-th,..., customers, apply the Separation

Algorithm. Let h(i)(t, c) be the expected future benefit when algorithm Π(i) is applied start-

ing at time t with remaining inventory c, and assuming that no customers have arrived prior

to time t. We must have

h(0)(t, c) = f(t, c),

lim
i→∞

h(i)(t, c) = h(t, c).

130

The HJB equation for computing the expected benefit of algorithm Π(1) is

∂h(1)(t, c)

∂t
= −

m∑
i=1

λi(t)

(
max

j∈{1,2,...,n}
(rij − fj(t, cj) + fj(t, cj − 1))+ −∆(1)(t, c)

)
, (3.6.2)

where

∆(1)(t, c) ≡ h(1)(t, c)− f(t, c).

The boundary conditions for (3.6.2) are h(1)(1, c) = 0 (the length of the horizon is 1) and

fj(t,−1) = −∞, ∀j = 1, 2, ..., n and t ∈ [0, 1]. Note that according to the boundary condition

fj(t,−1) = −∞, the ‘bid price’ of any resource j that has no remaining inventory becomes

infinity, as fj(t, 0)− fj(t,−1) =∞.

To see why (3.6.2) is true, consider the discrete version of (3.6.2). During any small

period (t, t+ δt), one of the following three events will take place.

• No customer arrives during (t, t+ δt). Then the expected future benefit h(1)(t, c) turns

into h(1)(t+ δt, c).

• A customer of some type i arrives, but Π(1) (which applies the Marginal Allocation

Algorithm to the customer) rejects the customer. We must have

max
j∈{1,2,...,n}

(rij − fj(t+ δt, cj) + fj(t+ δt, cj − 1))+ = 0,

because rij must be smaller than the ‘bid price’ fj(t+ δt, cj)− fj(t+ δt, cj − 1) of all

131

available resources j; we must also have that h(1)(t, c) turns into f(t + δt, c), as Π(1)

turns into the Separation Algorithm.

• A customer of some type i arrives and the customer is assigned to a resource j. In this

case, the system collects benefit rij, and h(1)(t, c) turns into f(t + δt, c − ej) as Π(1)

turns into the Separation Algorithm, where ej is the unit vector with the j-th position

being 1. Note that

f(t+ δt, c− ej) = f(t+ δt, c) + fj(t+ δt, cj − 1)− fj(t+ δt, cj).

Then mathematically, we can combine the second and the third bullet points, and say

that when a customer of type i arrives, the expected future benefit h(1)(t, c) turns into

total current and future benefit

f(t+ δt, c) + max
j∈{1,2,...,n}

(rij − fj(t+ δt, cj) + fj(t+ δt, cj − 1))+ .

In sum, the recursive equation for h(1)(t, c) is

h(1)(t, c) =(1−
m∑
i=1

λi(t)δt)h
(1)(t+ δt, c)

+
m∑
i=1

λi(t)δt

(
f(t+ δt, c) + max

j∈{1,2,...,n}
(rij − fj(t+ δt, cj) + fj(t+ δt, cj − 1))+

)
.

Letting δt→ 0 leads to (3.6.2).

132

Therefore,

∂h(1)(t, c)

∂t
≤ ∂f(t, c)

∂t
+

m∑
i=1

λi(t)∆
(1)(t, c). (3.6.3)

This equation implies that, if at some time t0 we have ∆(1)(t0, c) < 0 or equivalently

h(1)(t0, c)− f(t0, c) < 0, (3.6.4)

then we must have

∂h(1)(t, c)

∂t
<
∂f(t, c)

∂t
, ∀t ∈ (t0, 1] (3.6.5)

and

h(1)(t, c) < f(t, c), ∀t ∈ (t0, 1]. (3.6.6)

However, since we know that h(1)(1, c) = f(1, c) = 0, (3.6.6) cannot be true, and thus (3.6.4)

cannot be true. Therefore, we have proved

h(1)(t, c) ≥ f(t, c), ∀t ∈ [0, 1]. (3.6.7)

Next, we show that

h(i)(t, c) ≥ h(i−1)(t, c), ∀t ∈ [0, 1] (3.6.8)

by induction on i.

Equation (3.6.7) already proves the base case i = 1. Suppose for some ī > 1, (3.6.8)

holds for all i < ī. Now we show that it also holds for i = ī. By definition, for any ī > 1,

algorithms Π(̄i) and Π(̄i−1) must allocate the first customer in the same way. Thus, Π(̄i) and

133

Π(̄i−1) earn the same benefit from the first customer, and then transit into the same state.

After that first customer, Π(̄i) continues to apply Π(̄i−1) pretending that no customer has ever

arrived, while Π(̄i−1) continues to apply Π(̄i−2). By induction, the expected future benefit of

Π(̄i−1) is at least that of Π(̄i−2). Therefore, the expected future benefit of Π(̄i) is at least that

of Π(̄i−1).

Thus, we have proved (3.6.8). It immediately follows that

h(∞)(t, c) ≥ h(0)(t, c).

3.7 Asymptotic performance

We can show that the Marginal-Allocation Algorithm is asymptotically optimal as the system

size tends to infinity. Talluri and Van Ryzin (1998) are the first to study asymptotic behavior

of bid-price control in network revenue management problems. Our proof follows theirs and

subsequent proofs of similar results. Let Cj = θC̄j, for j = 1, 2, ..., n, λi(t) = θλ̄i(t), for

i = 1, 2, ...,m, where θ is a system scaling parameter and the barred quantities are fixed.

Let x̄∗ be an optimal solution for the system (C̄, λ̄(t)), then x∗ = θx̄∗ is an optimal solution

for the system (C, λ(t)). The following theorem guarantees that the performance of the

algorithm approaches the optimal objective value of the LP (3.5.1) when θ goes to infinity.

134

Theorem 3.7.1.

lim
θ→∞

∑n
j=1 fj(0, Cj)

r′x∗
= lim

θ→∞

∑n
j=1 fj(0, θC̄j)

θr′x̄∗
= 1,

where x∗ is an optimal solution to (3.5.1).

Proof. It suffices to prove that for each j,

lim
θ→∞

fj(0, Cj)∑m
i=1 rijx

∗
ij

= lim
θ→∞

fj(0, θC̄j)

θ
∑m

i=1 rijx̄
∗
ij

= 1.

Consider the single-resource benefit-maximization problem for resource j. Let N be the

total number of customers who will come to resource j. N is a Poisson random variable with

mean

E[N] =
m∑
i=1

x∗ij = θ
m∑
i=1

x̄∗ij.

Let M = maxij rij be an upper bound on all of the benefits. A first-come, first-served

algorithm for resource j will admit min(N,Cj) customers, and obtain an expected total

benefit of at least
m∑
i=1

x∗ijrij − E[N −min(N,Cj)]M,

where x∗ijrij is the total expected benefit from all type i customers, and N −min(N,Cj) is

the number of customers who cannot fit into the Cj units of capacity.

Since the dynamic programming algorithm must perform at least as well as the first-in,

135

first-served algorithm, we have

fj(0, Cj) ≥
m∑
i=1

x∗ijrij − E[N −min(N,Cj)]M.

When θ goes to infinity, both x∗ and E[N] grow in proportion to θ. Thus,

lim
θ→∞

fj(0, Cj)∑m
i=1 rijx

∗
ij

≥ limθ→∞

∑m
i=1 x

∗
ijrij−E[N−min(N,Cj)]M∑m

i=1 rijx
∗
ij

≥ 1− limθ→∞
E[N−min(N,

∑m
i=1 x

∗
ij)]M∑m

i=1 rijx
∗
ij

≥ 1− limθ→∞
0.4
√∑m

i=1 x
∗
ijM∑m

i=1 rijx
∗
ij

= 1− limθ→∞
√
θ
θ
· 0.4
√∑m

i=1 x̄
∗
ijM∑m

i=1 rij x̄
∗
ij

= 1,

where the last inequality uses the fact that, when the mean of Poisson random variable N

is very large, E[(N − E[N])+] is bounded by 0.4
√

E[N].

3.8 Upper Bound on the Competitive Ratio

In the above analysis we have shown that 0.5 is a lower bound on the best competitive ratio.

Next, we show that 0.5 is also an upper bound on competitive ratio of any online algorithm.

That is, our algorithms achieve the best constant competitive ratio.

Theorem 3.8.1. The competitive ratio of any online algorithm is at most 0.5.

136

Proof. Consider a situation in which a single resource is available to be allocated. There are

two types of customers who want to be matched to that resource.

• Type-1 customers arrive in time [0, 0.5]. Their arrival rate is very large in the period

[0, 0.5]. In particular, Λ1 =
∫ 0.5

0
λ1(t)dt � 1, so that we can ignore the event that no

type-1 customer arrives. Their benefit for the resource is r1 = 1.

• Type-2 customers arrive in time [0.5, 1]. They have a very small arrival rate. In

particular, Λ2 =
∫ 1

0.5
λ2(t)dt� 1. Their benefit for that resource is r2 = 1/Λ2 � 1.

Since r2 � r1, the offline algorithm will allocate the resource to a type-2 customer, if there

is one. The probability that at least one type-2 customer arrives is 1 − e−Λ2 = Λ2 + o(Λ2
2).

With probability 1− o(Λ2), no type-2 customer will arrive, in which case the optimal offline

algorithm will assign a type-1 customer (there are plenty of type-1 customers) and earn

benefit r1 = 1. In sum, the expected total offline benefit is

r2(Λ2 + o(Λ2
2)) + r1(1− o(Λ2))

= 1/Λ2(Λ2 + o(Λ2
2)) + 1 · (1− o(Λ2))

= 1 + o(Λ2) + 1− o(Λ2)

= 2 + o(Λ2).

The decision of an online algorithm is whether to allocate the resource to a type-1 cus-

tomer during the first half of the horizon. If it does allocate the resource to a type-1 customer,

the online algorithm earns benefit r1 = 1. Otherwise, with probability Λ2 +o(Λ2
2) it earns r2,

137

which equals 1 + o(Λ2) in expectation. In sum, the expected benefit obtained by an online

algorithm cannot exceed 1 + o(Λ2). Thus, an upper bound of the competitive ratio is

(1 + o(Λ2))/(2 + o(Λ2)),

which tends to 0.5 in the limit as Λ2 → 0.

3.9 Overbooking

Another issue that is common to all advance admission-scheduling systems is the issue of

no-shows. When customers book in advance, events may transpire between the date of the

booking and the planned date of service that cause customers to miss their appointments.

Due to the frequent occurrence of no-shows, overbooking is commonly used in service in-

dustries. Suppose each customer has a no-show probability of pj when assigned to resource

j, and incurs a cost of Dj when being denied getting resource j. Then we can model the

overbooking strategy by expanding capacities at additional costs. Assume that the no-show

events are exogenous to both online and offline algorithm. For resource j, the kth overbooked

unit of capacity incurs an expected marginal cost of

oj(k) = Dj · (1− pj) ·

k−1∑
l=0

Cj + k − 1

l

 plj(1− pj)Cj+k−1−l

 , (3.9.1)

138

where the value in the brackets represents the probability that, among the Cj+k−1 customers

who have already booked resource j, at most k− 1 of them do not show up. The additional

1−pj in the product represents the probability that the kth overbooked customer does show

up. Note that the marginal cost oj(k) is independent of customer type, and is increasing in

k.

Assuming that the benefit rij is earned whether a customer of type i actually takes

resource j, the marginal benefit of allocating the kth overbooked unit of resource j to a type

i customer is

r̃i,j,k = rij − oj(k).

When using this benefit value r̃i,j,k, we are treating each overbooked unit of resource j

as a virtual slot to be allocated. Then, the theoretical bound of our algorithms still applies,

with r̃i,j,k being the benefit of expanded units.

Since r̃i,j,k ≤ ri,j and r̃i,j,k decreases in k, an optimal offline algorithm, when allocating

resource j, will first fill in the Cj units of regular capacity and then assign customers to those

virtual slots with lower values of k. It will not use virtual slots with non-positive marginal

benefit. Then, when b overbooked units of resource j are used under the optimal offline

algorithm by the end, the total cumulative cost

b∑
k=1

oj(k) (3.9.2)

is just the actual expected overbooking cost for resource j.

139

3.10 Computing Algorithms

In some applications, the number of customer types m can be exponentially large such that

the size of LP (3.4.2) is too large to be dealt with in practice. For example, in the display-ad

allocation problem, customers can have hundreds of different attributes (Ciocan and Farias,

2014) and thus the dimension of customer type space can be huge. In such cases, it is hard

to compute the benefit functions fj(t) by directly solving the LP (3.4.2), due to the huge

number of constraints.

In this section, we propose an alternative method that estimates the benefit functions

fj(t) by simulation, using only a subset of all customer types. The simulation algorithm

works if the average number of arrivals Λi is very small for every customer type i. (If Λi is

large for certain type i, one can randomly split the customers into multiple types, such that

the arrival rate of each type is smaller.) The algorithm requires the ability to

• Randomly select a set S of customer types. Each of the m customer types has the

same probability to be selected into S, and is independent of the selection of other

types. This can be realized by generating customer types with random attributes.

• Estimate the expected number of arrivals Λi for any given customer type i, by using

historical data and possibly certain assumptions on customer preference.

• Estimate the total arrival rate λ(t) =
∑m

i=1 λi(t) of all customers at time t. In practice,

one can often use a discrete-time horizon, and then λ(t) is just the average number of

arrivals in period t.

140

• Generate a random customer who arrives at time t. The probability that the customer

is of type i is λi(t)/λ(t), which is the probability that an actual arrival at time t belongs

to type i. This can be easily achieved by drawing arrivals from data.

The algorithm simulates the derivative of benefit function f ′j(t) in the following steps.

1. Select a random set S ⊆ {1, 2, ...,m} of customer types. Every customer type has an

equal probability to be chosen into S. Let ε = |S|/m.

2. Estimate Λi for each type i ∈ S.

3. Solve the following small LP

max
∑

i∈S
∑n

j=1 xijrij (3.10.1)

s.t.
∑n

j=1 xij ≤ Λi, for i ∈ S (3.10.2)

∑
i∈S xij ≤ ε, for j = 1, 2, ..., n (3.10.3)

xij ≥ 0. (3.10.4)

Let p = (p1, p2, ..., pn) be the optimal dual variables corresponding to the constraints

(3.10.3). Then we define a primal solution x(p) to the original LP (3.4.2) as

xij(p) = 1ij(p) · Λi,

141

where

1ij(p) =

1 if j = argmaxk{rik − pk} and rij ≥ pj,

0 otherwise.

We assume that there is no tie in determining the index k that maximizes rik − pk.

This can be achieved by adding a small perturbation to the benefit values rij (Feldman

et al., 2010; Agrawal et al., 2014).

4. Generate a number of random arrivals at time t. Let (b1, b2, ..., bm) be the vector

containing sample points of random arrivals, where bi is the number of arrival instances

for type i customers.

5. Estimate the total arrival rate λ(t) at time t.

6. Finally, f ′j(t) is estimated by

f̂ ′j(t) = − λ(t)
‖b‖1

∑m
i=1 bi · xij(p)/Λi · (rij − fj(t))+ (3.10.5)

= − λ(t)
‖b‖1

∑m
i=1 bi · 1ij(p) · (rij − fj(t))+. (3.10.6)

Note that although the summation has m elements, at most ‖b‖1 of them are non-zero.

The idea of this simulation process is that when the dual prices p are approximately optimal

for the original LP (3.4.2), the induced primal solution x(p) will also be a near-optimal

solution to the LP (3.4.2).

The following result is first given by Feldman et al. (2010). Recall that ε = |S|/m. The

result says that when the number m of customer types is large, the above sampling procedure

142

with a fixed sample size |S| yields a solution x, which is close in value to the optimal solution

x∗ with high probability, as long as the average total arrival rate and the average relative

total expected benefit of each demand type is not too large.

Theorem 3.10.1. (Feldman et al., 2010) With high probability,

m∑
i=1

n∑
j=1

rijxij(p) ≥ (1−O(ε))
m∑
i=1

n∑
j=1

rijx
∗
ij,

given

max
i,j
{ rijΛi∑

kl rklx
∗
kl

} ≤ ε

(n+ 1)(lnm+ lnn)

and

max
i
{Λi} ≤

ε3

(n+ 1)(lnm+ lnn)
.

The following theorem guarantees that, if the primal solution x(p) used to compute the

benefit functions is near-optimal, then E[f̂ ′j(t)|S] performs well when used in our algorithms,

where the expectation is taken over the random sample (b1, b2, ..., bm) of arrivals in step 4

above. According to the central limit theorem, f̂ ′j(t) converges to E[f̂ ′j(t)|S] when the sample

size ‖b‖1 tends to infinity. Thus, the number of samples ‖b‖1 should be chosen accordingly.

Theorem 3.10.2. Suppose x(p) is 1−O(ε) optimal for the LP (3.4.2). If we use E[f̂ ′j(t)|S]

as the derivative of the benefit function, our algorithms are 0.5(1−O(ε))-competitive.

Proof. Let

gj(t) ≡ −E[f̂ ′j(t)|S] =
m∑
i=1

λi(t) · 1ij(p) · (rij − f̂j(t))+.

143

When we use x(p) to route customers to resources in the Separation Algorithm, the

optimal expected benefit for resource j is just
∫ 1

t
gj(s)ds. Then we can apply Theorem 3.4.4

to resource j to get ∫ 1

0

gj(t)dt ≥ 0.5
m∑
i=1

rijxij(p),

which leads to
n∑
j=1

∫ 1

0

gj(t)dt ≥ 0.5
m∑
i=1

n∑
j=1

rijxij(p).

Thus,
n∑
j=1

∫ 1

0

gj(t)dt ≥ 0.5
m∑
i=1

n∑
j=1

rijxij(p) ≥ 0.5(1−O(ε))
m∑
i=1

n∑
j=1

rijx
∗
ij.

This proves that our algorithms are 0.5(1−O(ε))-competitive.

3.11 Numerical Studies

We compare our Marginal Allocation Algorithm against the outcome of the actual scheduling

practices used in the Division of Clinical Genetics within the Department of Pediatrics at

Columbia University Medical Center (CUMC). One of our collaborators at CUMC oversees

appointment scheduling practice at the medical center. We estimate our model parame-

ters, including patient preferences, arrival rates and hospital processing capacities, by using

historical appointment-scheduling data from the outpatient clinics. We also test the perfor-

mance of our algorithm against some simple heuristics. We find that our Marginal Allocation

144

Algorithm performs the best among all heuristics considered, and is 21% more efficient than

current practice, according to our performance metric, which we will explain below.

Specifically, we used data from the Division of Clinical Genetics at CUMC. Clinical Ge-

netics is a field of medicine where adults are assessed for the risk of having offsprings with

heritable conditions and children are assessed for genetic disorders. Geneticists use physical

exams, chromosome testing and DNA analysis to diagnose patients suspected of having ge-

netic abnormalities. The data we used contain more than 9000 appointment entries recorded

in the year 2013. Each entry in the data records information about one appointment. The

entry includes the date that the patient makes the appointment, the exact time of the ap-

pointment, whether the patient eventually showed up to the original appointment, canceled

the appointment some time later, or missed the appointment. Canceled appointment slots

are offered to new patients when possible.

The average number of patients who arrive to make appointments on each day is shown

in Figure 3.1. During the week, there tend to be more patients who initiate requests for

appointments on Thursday and Friday than on Monday and Tuesday. The actual arrival

(of requests) pattern is highly non-stationary, as the average number of arrivals on Friday is

about twice that on other days. Our Marginal Allocation Algorithm gracefully handles this

inherent non-stationarity.

We assume that there are two sessions on each day, a morning and an afternoon session.

Each session on each day corresponds to a resource in our model. About 98% appointments

were scheduled into sessions on Monday through Thursday. We ignore the 2% of appoint-

ments scheduled into other sessions because there are insufficient data to perform accurate

145

analysis for these sessions. In other words, we set the capacity of sessions on Friday, Satur-

day and Sunday to be 0. The capacity of sessions from Monday to Thursday are set based

on the actual number of appointments made on these days, which is about 23 appointments

per session. We will vary the capacity values in some of our experiments.

Figure 3.1: Average number of arrivals in a week.

In this numerical experiment we do not model rescheduling, and treat each rescheduled

appointment as an independent request. We also do not model the reuse of canceled appoint-

ment slots. Canceled slots are reused in practice, resulting in more efficient use of capacity.

In this way, our algorithm are at a disadvantage compared to actual practice because it has

less capacity at its disposal.

We assume that the higher the probability that a patient will show up for a session,

the more preferred the session is. Thus, we use show probabilities as a proxy for patient

preferences for each session in a week. Specifically, we define the benefit of assigning a

146

patient who arrives in period i to a session j as

rij =

Probability that the patient arriving in period i will show up in

session j without canceling the appointment some time later or

missing the appointment eventually.

(3.11.1)

This definition of benefit value does not capture all practical concerns, but it gives a good

sense of scheduling effectiveness. The higher the measure is, the fewer no-shows and can-

cellations are likely to result, and the fewer appointments slots are potentially wasted. One

of our collaborators at CUMC oversees appointment scheduling practice at CUMC. In prac-

tice, operators try to subjectively assign appointments to accommodate patient preferences

while maintaining a high level of utilization of capacity. Thus, our definition of benefit is

compatible with the goals of the actual system.

We estimate the show probabilities as a function of 3 factors: the day of the week, the

time of day (morning/afternoon) and the number of days of wait starting from the patient’s

arrival to the actual appointment. In the first part of our experiment, we assume that

patients have identical preferences in the sense that any two patients arriving on the same

day will have the same benefit values for each open session. Thus, patients differ only in

their time of arrival.

Both of the above assumptions regarding the homogeneity of preferences and the useful-

ness of show probabilities as indicators of preferences are strong assumptions. We are aware

that the show probabilities are imperfect substitute for actual preferences. They also only

express an average measure of preference. A finer experiment would take into account ac-

147

tual preferences and variability of preferences among patients. However, we believe that our

experiment is still valuable in indicating the value of using online algorithms. In a sense, our

online algorithms are at a disadvantage compared to real practice because in practice, ap-

pointments were made taking into account actual preferences, whereas our online algorithms

”know” only the show probabilities.

Figure 3.2 illustrates the show probabilities of patients who arrive on a Thursday to make

appointments for the following week. We can see that, in general, the shorter the wait is

in days, the higher the show probability is. Figure 3.3 illustrates the show probability as a

function of number of days to wait before getting service. The show probabilities range from

as low as 27%, for appointments made more than two months into the future, to as high as

97%, for same-day visits. Table 3.1 shows more show probabilities as a function of waiting

time and day of week of the appointment.

Figure 3.2: Show probabilities of appointment slots assigned to patients who arrived on the
previous Thursday.

We used a 12-week period from March to May in 2013 as our time horizon. An ap-

pointment reminder system was in use during this time. There are 2032 patients scheduled

148

Figure 3.3: Show probabilities as functions of number of days to wait before getting service.

Table 3.1: Show probabilities for morning sessions, as a function waiting time and day of
week of the appointment. Some cells are NA because there is no patient arrival during
weekends.

Number of days waiting
Day of Week of Appointment 0 1 2 3 4 5 6 7 8

Mon 91% NA NA 81% 85% 78% 82% 70% 69%
Tue 78% 83% NA NA 62% 70% 73% 58% 53%
Wed 97% 61% 46% NA NA 57% 65% 52% 50%
Thur 95% 67% 41% 50% NA NA 60% 58% 57%

during this horizon according to our data. We use the sample consisting of these 2032 patient

arrivals to simulate the performance of the following scheduling policies.

• The Marginal Allocation Algorithm (MAA). The arrival rates, which are inputs of the

algorithm, are estimated using our one-year data in 2013. The average number of

arrivals in each day of week has been shown earlier in Figure 3.1.

• The Marginal Allocation Algorithm with estimation error α% (MAA-α%). This algo-

rithm uses benefit values (3.11.1) that are each randomly and independently perturbed

by α%. The total benefit earned by this algorithm is computed using the unperturbed

benefit values. We include these algorithms to test the impact of our parameter esti-

mation errors on the performance comparison with actual practice.

149

• The Separation Algorithm with larger than unit capacity.

• The outcome of actual practice used in hospitals. The total benefit earned by the

actual strategy is also calculated using the benefit values defined in (3.11.1).

• The greedy policy, which always assigns a patient to the available session that is most

preferred by the patient, as indicated by the show probability of the session. It cap-

tures a naive but easily implementable policy when a scheduler is aware of patient

preferences.

• The bid-price policy, which uses the optimal dual variables of LP (3.4.2) corresponding

to the capacity constraints as the bid prices. It assigns an arriving customer to the

resource with the lowest price smaller than or equal to the revenue that the customer

brings. This heuristic is a widely used heuristic in resource-allocation problems.

In our first experiment, we do not consider overbooking and cancellations. The capacity

of each session is set to be the number of appointments made in practice. In other words,

we assume that the actual practice fully utilizes the capacity of all resources. Furthermore,

we assume that patients arriving on the same day have homogeneous benefit values.

Since we use show probability as the benefit of scheduling a patient, the total benefit that

a scheduling policy earns from the total 2032 patients is equal to the expected number of

patients, among 2032, who will show up to the original appointments. In particular, since the

show probabilities are themselves estimated based on the scheduling of the actual practice,

the total benefit earned by the actual practice is just the actual number of patients, out of

the total 2032, that showed up during the horizon.

150

For each scheduling policy, we report as its performance the ratio of total benefit to the

total number 2032 of arrivals. This ratio represents the overall percentage of patients who will

show up. Table 3.2 summarizes the performance of all scheduling policies we consider. We

can see that our Marginal Allocation Algorithm performs the best, and in particular, gives

more than 30% improvement over the actual practice, according to our performance measure.

It is noteworthy that the greedy and bid-price policies do not have performance guarantees

and can perform arbitrarily badly. In contrast, our Marginal Allocation Algorithm has not

only a provable performance guarantee, but also good empirical performance.

The strength of our Marginal Allocation Algorithm is more directly reflected in compar-

ison with the greedy policy. The greedy policy can be carried out by anyone as long as the

patient preferences are exploited. Our Marginal Allocation Algorithm, which does smart

reservation, gives 12.9% empirical improvement in scheduling efficiency over this heuristic.

Note that in this experiment, all patients have the same priority. Our Marginal Allocation

Algorithm is likely to exhibit much higher benefits when there are more patient types to

consider because it can make more intelligent tradeoffs among the types than the greedy

policy can. Remarkably, our Marginal Allocation Algorithm can be implemented as easily

as the greedy policy. In the greedy approach, the scheduler has to be given a number repre-

senting estimated patient preference for each session. In our Marginal Allocation Algorithm,

the scheduler also needs to be given only one number, namely the marginal value of benefit

function, for each session.

151

Table 3.2: The empirical performance of different scheduling policies.
Scheduling Policy Performance of scheduling policies relative to LP upper bound
Actual Strategy 67%

Greedy 81%
Bid-Price Heuristic 89%

Separation Algorithm 80%
MAA 92%

MAA-5% 91%
MAA-10% 88%
MAA-20% 83%
MAA-40% 74%

3.11.1 Consideration for Overbooking

Starting from the numerical settings in the previous section, we study the practice of over-

booking. Let Aj be the actual number of patients who are assigned to session j. We

assume that the actual strategy overbooks each session by a constant ratio, and thereby

treat Cj = αAj as the actual capacity of session j, where α ∈ [0, 1] is a scaling parameter

that we vary in the numerical experiment.

We define the no-show probability as

PNS =

Total number of no-shows
+

Total number of appointments that are canceled no more than
2 days prior to the appointment time

Total number of appointments
.

The number is 26.89% as estimated from the data for Clinical Genetics.

A common practice is to take advantage of such high no-show probability by scheduling

more patients to a session than its actual capacity can handle. Using terminology defined

in Section 3.9, we use PNS as the no-show probability for every session. We also vary the

152

no-show penalty D in our experiments in the range [2, 10]. In this way, the pair (α,D) tunes

the cost (3.9.1) of overbooking each session. The previous experiment corresponds to the

case α = 1, D =∞.

Now the total benefit of a scheduling policy is equal to the sum of all benefit values

(3.11.1), i.e., show probabilities, earned from patients less the overbooking costs (3.9.1). In

particular, we apply the function (3.9.1) of overbooking cost to the actual practice as well.

That is, in our experiment the total overbooking costs incurred under the actual practice

does not depend on the actual overbooked number of patients, but rather on the expected

costs (3.9.1) estimated a priori. The performance of each scheduling policy is reported as its

total benefit relative to the total benefit of the actual practice.

Table 3.3 summarizes the performance of scheduling policies when α = 0.75 and D ranges

from 2 to 15. Generally the performance of all policies decreases as the penalty D increases

because of the reduced benefit of overbooking.

Table 3.4 reports the performance of scheduling policies when D = 3 and α increases from

70% to 100%. The performance of all the scheduling policies reaches a limit for large values

of α. This is because when α is large, there is a large surplus of capacity associated with

low overbooking costs. In such cases, scheduling policies virtually cannot see any capacity

constraint, and thus have very good performance. Overall, for all values of α, our Marginal

Allocation Algorithm performs at least 30% better than actual practice.

153

Table 3.3: The total benefit of scheduling policies relative to LP upper bound under different
values of penalty D. α = 0.75.

D Actual Strategy Greedy Bid-Price Heuristic Separation Alg. MAA
2 70.1% 81.5% 89.0% 82.1% 93.2%
3 68.7% 80.6% 86.7% 82.0% 92.4%
4 66.8% 80.0% 86.6% 82.5% 92.3%
5 64.5% 79.5% 87.2% 82.8% 92.3%
6 62.2% 79.2% 88.7% 82.5% 92.0%
7 59.7% 78.9% 88.0% 82.6% 92.0%
8 57.1% 78.7% 88.6% 82.5% 92.0%
9 54.5% 78.2% 88.4% 82.4% 92.0%
10 51.8% 77.8% 88.4% 82.1% 91.5%

Table 3.4: The total benefit of scheduling policies relative to LP upper bound under different
values of α. D = 3.

α Actual Strategy Greedy Bid-Price Heuristic Separation Alg. MAA
70% 62.7% 77.2% 88.3% 82.9% 92.2%
75% 68.7% 80.6% 86.7% 82.0% 92.4%
80% 70.8% 83.9% 88.9% 81.8% 93.4%
85% 71.4% 88.9% 92.5% 82.6% 94.5%
90% 71.1% 91.4% 94.4% 83.3% 94.8%
95% 70.7% 92.5% 95.9% 84.6% 95.8%
100% 70.5% 93.2% 95.7% 85.7% 96.2%

154

3.11.2 Consideration for Patient Availability

In the previous numerical experiments, patients who arrive in the same periods are treated

as identical. However, in reality there is variability among patients’ availability. In this

section, we capture this variability by simulating a particular chosen patient’s availability

for a particular session of the week as being drawn from a given distribution. This experiment

tests whether more complex heterogeneous patient types affect the comparative performance

of our algorithm.

We model the heterogeneity of patient availability as follows. A patient cannot be as-

signed to a session if he is unavailable for it. Otherwise, the benefit for the session is still the

show probability as modeled in the previous sections. We assume that each patient has the

same availability pattern for every week. A patient is available for any session with prob-

ability PA, and this event is independent of the availability for other sessions in the same

week. We vary PA from 15% to 100% to test the performance of all the scheduling policies

we consider. When PA = 100%, the problem is reduced to the one in the last section, in

which a patient can be assigned to any session.

Since we model 8 sessions in a week, one in the morning and one in the afternoon from

Monday to Thursday (recall that there were very few appointments scheduled for Friday),

each patient’s availability can be represented by an 8-dimension binary vector. Then, patients

arriving in each period are further divided into 28 patient types, with ri,k,j = 0 if a patient

of type k ∈ {1, 2, ..., 28} arriving in period i is not available for session j.

We assume that the sessions offered by actual practice to patients were all available, so

155

Table 3.5: The total benefit of scheduling policies relative to LP upper bound under different
values of PA. D = 3, α = 0.7.

PA Actual Strategy Greedy Bid-Price Heuristic Separation Alg. MAA
15.00% 88.8% 89.6% 96.0% 93.1% 96.4%
20.00% 77.6% 86.0% 93.5% 90.9% 95.1%
25.00% 72.5% 83.4% 92.1% 89.5% 94.2%
30.00% 70.0% 81.5% 91.4% 88.9% 93.7%
35.00% 68.4% 80.2% 91.4% 88.5% 93.5%
40.00% 67.2% 79.3% 90.8% 87.9% 93.2%
45.00% 66.3% 78.7% 91.5% 87.6% 93.0%
50.00% 65.7% 78.2% 90.7% 86.8% 92.7%
55.00% 65.1% 77.8% 90.5% 86.0% 92.7%
60.00% 64.7% 77.6% 89.3% 85.5% 92.7%
65.00% 64.3% 77.5% 88.7% 85.0% 92.8%
70.00% 64.0% 77.5% 88.9% 84.5% 92.5%
75.00% 63.7% 77.6% 88.6% 84.0% 92.4%
80.00% 63.4% 77.6% 87.7% 83.7% 92.3%
85.00% 63.2% 77.6% 88.3% 83.5% 92.4%
90.00% 63.0% 77.5% 88.4% 83.3% 92.5%
95.00% 62.9% 77.5% 88.0% 83.1% 92.4%
100.00% 62.7% 77.2% 88.3% 82.9% 92.2%

that the total benefit of actual practice is not affected by this newly modeled feature. The

performance of each of the remaining scheduling policies is the averaged total benefit over

10, 000 runs of simulation. In each simulation we draw the same 2032 number of arrivals

from data, but we randomly generate patient availability. For PA ranging from 15% to

100%, Table 3.5 shows the performance of scheduling policies relative to the performance

of actual practice. The relative performance is better for higher values of PA, as there is

more flexibility in scheduling when patients are available to more sessions. Even when PA

is as small as 15%, our Marginal Allocation Algorithm still performs 8% better than actual

practice. The gap gradually increases to more than 40% as PA increases.

156

3.12 Conclusions

We study a resource allocation model where arriving customers are assigned to resources that

expire at given times. The reward of an assignment depends on both the type of customer and

the resource. Our model is essentially an online edge-weighted bipartite matching problem

with non-stationary arrivals.

The allocation algorithms we propose rely on solving both a linear program and a dynamic

program. First, the algorithms solve a linear program to obtain an optimal static allocation.

Then based on this static allocation, the algorithms divide the original dynamic problem

into multiple dynamic subproblems. Each subproblem contains exactly one resource, as well

as the types of demands that are assigned to the resource in the static allocation. For each

subproblem, its allocation process is essentially a single-resource Markov decision process, so

we can optimally solve it using dynamic programming. Our Marginal Allocation algorithm

uses the marginal reward values given by the dynamic programs as the bid-prices for the

corresponding resources. Upon an arrival of a customer, the algorithm allocates a resource

that maximizes the marginal reward based on these bid prices. Unlike the conventional bid-

price heuristic that uses constant bid prices, our Marginal Allocation algorithm computes

bid prices that depend on both the remaining inventory of resources and the remaining time

for allocation. In particular, our bid prices decrease in time, which captures the depreciation

of unmatched resources.

For this problem, we prove the tightest known competitive ratios defined in (1.1.2).

Specifically, we prove that our algorithms have competitive ratios bounded by max(1
2
, 1 −

157

√
2
π

1√
k

+O(1
k
)), where k is the minimum capacity of a resource. Furthermore, we show that

1
2

is the best constant competitive ratio that can be achieved.

As part of our collaboration with Columbia University Medical Center, we simulate the

empirical performance of our algorithms using a 10-year dataset from CUMC. Specifically,

we apply our allocation algorithms in the appointment scheduling problem, in which the

goal is to reduce the overall no-show probability by better matching patients to appointment

slots they prefer. We find that our algorithms perform better than simple heuristics in most

test scenarios. In particular, our Marginal Allocation algorithm is 21% more effective than

the actual scheduling strategy used in the hospital.

158

Chapter 4

Advance Service Reservations with

Heterogeneous Customers

4.1 Introduction

We study a fundamental model of resource allocation in which a finite number of resources

must be assigned in an online manner to a heterogeneous stream of customers. The customers

arrive randomly over time according to known stochastic processes. Each customer requires

a specific amount of capacity and has a specific preference for each of the resources, with

some resources being feasible for the customer and some not. The system must find a

feasible assignment of each customer to a resource or must reject the customer. The aim is

to maximize the total expected capacity utilization of the resources over the time horizon.

Compared with the model in Chapter 3, the model we study in this chapter assumes that

customers have heterogeneous capacity requirements. As we shall show, much of the effort

159

in our algorithms and their analysis is directed towards taking care of these differences in

capacity requirement.

This model has application in multiple areas, including services, online advertising, and

freight transportation. We now explain a few of the applications.

Service Reservation. In services such as healthcare, the resources can correspond to ser-

vice sessions. For example, a resource might be a Monday afternoon session from 1 to

5 PM with Dr. Smith. The customers are patients who arrive to book appointments

over time. Based on a patient’s urgency, type of visit, arrival time, and preferences,

the patient might require a specific length of visit and might be preferably assigned

only to a subset of sessions. Upon the arrival of a patient, the system has to reserve

a part of a session for the patient. This appointment decision typically takes place

immediately. If an appointment cannot be found, the system must reject the patient.

Generalized Adwords. In online advertizing, the resources correspond to advertisers. The

capacity of each resource corresponds to the budget of the corresponding advertiser.

Ad impressions arrive randomly over time. Each impression, depending on its char-

acteristics, commands a known non-negative bid from each of the advertisers. When

an impression occurs, the ad platform must allocate it to an advertiser for use. The

ad platform earns the bid, and the budget of the advertiser is depleted by the same

amount. The aim of the ad platform is to maximize the expected revenue earned. Our

model is more general than adwords models, as we allow bids to have arbitrary sizes,

whereas adwords model tend to assume that bid sizes must be very small relative to

160

the budgets, or that each bid must be truncated by the remaining budget (Mehta,

2012).

Freight Allocation. Freight carriers such as motor carriers, railroad companies, and ship-

ping companies have fleets of containers that can be deployed to move loads from

specific origins to destinations. The assignment of containers to routes are tactical

decisions that are performed on a larger time scale. Suppose that we focus on a single

route. Each container, with its specific departure and arrival time, corresponds to a

resource. Customer demands for the route arrive randomly over time. Each demand

unit has a specific size and delivery time line. As each demand unit arrives, the op-

erational decision is how to assign the demand unit to a specific container in the fleet

(Spivey and Powell, 2004). This assignment generates a quoted time of delivery for

the customer, reduces the available capacity in the container, and earns the system an

amount that can be roughly proportional to the amount of capacity consumed.

Our model captures most, if not all, of the features of the above applications. Specifically,

we consider a continuous-time planning horizon. There are m resources with known capaci-

ties. There are n customer types. Each customer type is associated with a known stochastic

arrival process. Each customer can be assigned to a known subset of the resources, and

consumes a known amount of each resource that it is assigned to. The system aims to assign

customers to resources immediately and irrevocably as they arrive in order to maximize the

total expected amount of resources used.

This model allows any non-homogeneous customer arrival processes, so it shares several

161

advantages of assuming non-stationary arrivals with the model in Chapter 3. Among those

advantages explained in Chapter 3, the most important one is that the non-stationarity of

arrivals captures the expiration of resources.

In this thesis chapter, we aim to develop near-optimal algorithms that are robust and

easy to compute. We apply the definition (1.1.2) of competitive ratio, and propose 0.321-

competitive online algorithms. Further, we show that an upper bound on the competitive

ratio of any algorithm is 1/2. Ours are the first algorithms with performance guarantees for

the advance reservation of service with heterogeneous customer needs and preferences. They

are also the first algorithms with constant competitive ratios for the adwords problem without

any assumption on the bid size and on the stationarity of the arrival process. Despite the

conservative performance characterization, we show that our algorithms perform extremely

well compared to common heuristics as demonstrated on a real data set from a large hospital

system in New York City.

4.2 Literature Review

Our model falls within the literature on online resource allocation, which we reviewed in Sec-

tion 3.2.3. In the following sub-sections, we provide more detailed reviews on two subclasses

of this literature, the Adwords problem and the dynamic knapsack problem, which are more

closely related to the model in this thesis chapter.

In addition, our work falls into the advance scheduling paradigm of the appointment

scheduling literature, which we reviewed in Section 2.2.1.

162

4.2.1 Adwords problems

Our model generalizes adwords problems. Considerable work has been done in this area. If

each bid is truncated by the remaining budget, it was shown by Mehta (2012) that a greedy

algorithm achieves a worst-case competitive ratio of 1/2 in the adversarial-demand model.

For adwords models in which demands arrive in random orders and bids are small, Goel and

Mehta (2008) prove that a greedy algorithm achieves a worst-case ratio of 1−1/e. Mirrokni,

Gharan, and Zadimoghaddam (2012) later improve this ratio to 0.76. If demands are i.i.d.,

but bids are not necessarily small, Devanur, Jain, Sivan, and Wilkens (2011) show that a

greedy algorithm achieves the worst-case ratio of 1− 1/e. Later, Devanur, Sivan, and Azar

(2012) show that under stochastic demands, if the bid to budget ratio is at most 1/d, d ≥ 2,

and if bids can be truncated, then there is an algorithm that achieves a worst-case ratio of

1− 1/
√

2πd. If the bid to budget ratios at most ε2, then the algorithm achieves a worst-case

ratio of 1 − O(ε). Finally, no algorithm can achieve a worst-case ratio that is better than

1− o(1/
√
d) when the bid to budget ratios are as large as 1/d. The main difference between

our work and this literature is that we do not make the assumption of truncated bids, small

bids, or i.i.d. demand. Furthermore, we study the ratio of expected performance between

the online and optimal offline algorithm, rather than the worst-case ratio.

4.2.2 Dynamic knapsack problems

Our problem is related to multi-constrained dynamic knapsack problems (MKP). In these

problems, a set of randomly arriving items must be packed into one or more knapsacks,

163

Table 4.1: Results on adwords models.
Reference Lower bound achieved Assumption

Our work
0.321 stochastic demand

1− 1/
√
2πd+O(1/d)

stochastic demand,
bid to budget ratio at most 1/d

Mehta (2012) 0.5 adversarial demand, truncated bids

Goel and Mehta (2008) 1− 1/e ≈ 0.63 randomly ordered demand, small bids

Mirrokni et al. (2012) 0.76 randomly ordered demand, small bids

Devanur et al. (2012) 1− 1/
√
2πd

stochastic demands,
bid to budget ratio at most 1/d,

truncated bids

Devanur et al. (2011) 1− 1/e ≈ 0.63 i.i.d. demand, truncated bids

respecting the capacity constraints of the knapsacks. The goal is to maximize the value of

the items packed. Note that our problem is different from these dynamic multi-knapsack

problems. In our problem, each customer can be satisfied using one of a subset of resources,

rather than any resource, due to preferences, urgency, priorities, etc. These feasibility con-

straints must be accounted for in the assignment decision. In contrast, a knapsack problems,

an object can be placed into any knapsack, as long as the capacity constraints are satisfied.

Dynamic-programming characterizations have been studied in the case of one knap-

sack Papastavrou, Rajagopalan, and Kleywegt (1996), Kleywegt and Papastavrou (1998);

Van Slyke and Young (2000), Lin, Lu, and Yao (2008), and Chen and Ross (2014). Some

results generalize to the MKP but these results are not sufficient to yield provable approxi-

mations (Van Slyke and Young, 2000). Many authors have studied online algorithms for the

MKP. It is shown in Marchetti-Spaccamela and Vercellis (1995) that no online algorithm for

MKP exists with a constant worst-case competitive ratio. Therefore, Marchetti-Spaccamela

and Vercellis (1995) and Lueker (1998) study algorithms with bounded additive differences

away from the offline optimal. Finally, Chakrabarty, Zhou, and Lukose (2013) design an

164

algorithm with a bounded worst-case competitive ratio, assuming that the size of each item

is very small relative to the capacity, and the value-to-size ratio of each item is upper and

lower bounded by two constants. Our model is different from the MKP model because our

resources are not interchangeable, as customer preferences for them might be different. Our

approach also differs from existing MKP approaches in that we seek to bound the ratio

of expected performance between the online and optimal offline algorithm, rather than the

worst-case ratio.

This thesis chapter is organized as follows. We specify the model and performance metric

in Section 4.3. In Section 4.4, we prove that 0.5 is an upper bound on the competitive ratio

of any online algorithm for this problem. We derive an upper bound on the optimal offline

objective in Section 4.5. In Section 4.6, we design a basic online algorithm with a competitive

ratio of 0.5(1 − 1/e) ≈ 0.316, which serves to illustrate our key ideas. In Section 4.7, we

refine the algorithm to employ resource sharing in order to obtain an improved competitive

ratio of 0.321, as well as an improved empirical performance. In Section 4.8, we compare the

empirical performance of our algorithms against two commonly used heuristics by simulating

the algorithms on appointment-scheduling data obtained from a large hospital system in New

York City.

4.3 Model and Performance Metric

We use [n] to denote the set {1, 2, . . . , n} and consider a continuous horizon [0, T]. There

are m resources and n customer types. Resource j ∈ [m] has capacity cj ∈ R+. Customers

165

of type i ∈ [n] arrive according to a non-homogeneous Poisson process with rate λi(t), for

t ∈ [0, T]. The arrival rates of all the customer types are known. When a customer arrives,

one of the m resources needs to be immediately allocated to the customer, or the customer

must be rejected. If resource j is allocated to a customer of type i, exactly uij units of

resource j must be provided. We assume that the uij ∈ [0, cj], ∀i ∈ [n] and j ∈ [m], are

known. The reward earned for the assignment of customer type i to resource j is also uij.

The objective is to maximize the total expected reward over the horizon, which equivalently

maximizes total resource utilization.

We apply the definition (1.1.2) of competitive ratio. More specifically, in this model, the

problem instance I is a sample path of customer arrivals over the entire horizon. Let ALG(I)

be the total amount of resources allocated by an online algorithm ALG. Let OPT(I) be the

total amount of resources allocated by an optimal offline algorithm OPT. We are interested

in analyzing online algorithms ALG with bounded ratio E[ALG(I)]
E[OPT(I)]

.

4.4 Upper Bound on the Competitive Ratio

In this section, we show that 0.5 is an upper bound on competitive ratio of any online

algorithm for this problem.

Proposition 4.4.1. The competitive ratio of any online algorithm is at most 0.5.

Proof. Consider an input with two customer types and a single resource. Assume that the

horizon is [0, 1]. The capacity of the resource is c1 = 1.

166

• Type-1 customers have a very large arrive rate in time [0, 0.5], but their arrival rate is

0 after time 0.5. In particular, Λ1 =
∫ 0.5

0
λ1(t)dt� 1, so that we can ignore the event

that no type-1 customer arrives. Their utilization for the single resource is u11 = ε/Λ1

for some very small value ε.

• Type-2 customers arrive in time (0.5, 1]. They have a very small arrival rate Λ2 =∫ 1

0.5
λ2(t)dt = ε. Their utilization for the resource is u21 = c1 = 1.

Since customers of type 2 request the entire resource, the offline algorithm will allocate

the resource to a type-2 customer if there is one. The probability that at least one type-2

customer arrives is 1− e−Λ2 = Λ2 + o(Λ2
2) = ε+ o(ε2). With probability 1− o(Λ2) = 1− o(ε),

no type-2 customer will arrive, in which case the optimal offline algorithm will accept as

many type-1 customers as possible. The expected total utilization of all type-1 customers is

u11 · Λ1 = ε. Suppose ε � c1 = 1. Then all type-1 customer can be accepted. In sum, the

expected amount of resource allocated by an optimal offline algorithm is

1 · (ε+ o(ε2)) + ε · (1− o(ε))

=2ε+ o(ε2).

The decision of an online algorithm is whether to accept type-1 customers during time

[0, 0.5]. If it does accept type-1 customers, the online algorithm earns u11 · Λ1 = ε in

expectation. Otherwise, with probability Λ2 + o(Λ2
2) it earns u21, which is u21(Λ2 + o(Λ2

2)) =

ε+ o(ε2) in expectation. In sum, an online algorithm cannot allocate more than ε+ o(ε2) in

167

expectation. Thus, an upper bound on the competitive ratio is

(ε+ o(ε2))/(2ε+ o(ε2)),

which tends to 0.5 in the limit as ε→ 0.

4.5 Upper Bound on the Optimal Offline Objective

We derive an upper bound on the optimal offline objective, namely E[OPT(I)]. Since

E[OPT(I)] is very hard to analyze due to its complex offline properties, we are interested in

developing an upper bound on E[OPT(I)], which is more tractable. We will later compare

the performance of our online algorithms against this upper bound, rather than directly with

E[OPT(I)].

Our upper bound can be formulated as a solution to a static LP as follows. For customers

of type i, let

Λi =

∫ T

0

λi(t)dt

be the expected total number of arrivals over the horizon. Consider a static LP (LP) that

allocates the expected demands Λi, i ∈ [n], to the capacities cj, j ∈ [m]. The decision

variable xij of the LP stands for the average number of customers of type i to be allocated

168

to resource j. The LP produces a fractional assignment.

V LP = max
xij

∑
i∈[n]

∑
j∈[m]

xijuij

s.t.
∑
i∈[n]

xijuij ≤ cj, ∀j ∈ [m]

∑
j∈[m]

xij ≤ Λi, ∀i ∈ [n].

(4.5.1)

By the linearity of assignment problems, it can be shown easily that

Proposition 4.5.1. V LP is an upper bound on E[OPT(I)].

Proof. Let ai(I) be the actual number of arrivals of type-i customers in sample path I. Let

x̃(I) be a corresponding optimal offline (fractional) assignment. Then x̃(I) must satisfy

∑
i∈[n]

x̃ij(I)uij ≤ cj, ∀j ∈ [m],

∑
j∈[m]

x̃ij(I) ≤ ai(I), ∀i ∈ [n].

Taking expectation on both sides, we obtain

∑
i∈[n]

E[x̃ij(I)]uij ≤ cj, ∀j ∈ [m],

∑
j∈[m]

E[x̃ij(I)] ≤ E[ai(I)] = Λi, ∀i ∈ [n].

These inequalities imply that E[x̃(I)] is a feasible solution to (4.5.1). Thus V LP must be an

upper bound on
∑

i∈[n],j∈[m] E[x̃ij(I)]uij, which proves the proposition.

169

4.6 Basic Online Algorithm

As a warm up, we design an online algorithm which we prove to have a competitive ratio

of at least 0.5(1 − 1/e) ≈ 0.316. This algorithm serves to illustrate the following two main

ideas, which we will later refine to obtain an improved bound.

• LP-based random routing. We make use of an optimal solution x∗ to the static LP

(4.5.1) to route customers to resources. Note that this solution assigns demand to

supply at an aggregate level, in the expected sense. Given a solution x∗, for each

arriving customer of type i ∈ [n], we randomly route the customer to each candidate

resource j ∈ [m] independently with probability x∗ij/Λi. We say a customer is routed to

resource j if resource j is chosen as a candidate resource for the customer. By random

routing, we can conclude that the arrival process of type-i customers who are routed

to resource j is a non-homogeneous Poisson process with rate λi(t)
x∗ij
Λi

, for t ∈ [0, T].

• Reservation by customer type. After the random routing stage, we make binary ad-

mission decisions about whether to commit each resource j to each customer i who is

routed to j. If the decision is ‘no’, we reject the customer. We make this admission de-

cision as follows. For each resource j, we divide the candidate customer types who will

potentially be routed to j into two sets based on utilization uij. Set Lj ⊆ [n] consists

170

of customer types of which the utilizations uij are larger than cj/2. Mathematically,

Lj = {i ∈ [n] : uij > cj/2}.

The other set Sj = [n]− Lj consists of customer types with utilization uij that are at

most cj/2.

For each resource j, our algorithm chooses one set, either Sj or Lj, whichever has

the higher expected total utilization for resource j. The algorithm exclusively reserves

resource j for customers whose types are in the chosen set. The algorithm rejects all

customer types in the complementary set. This step is meant to resolve conflict in

resource usage among different customer types by restricting use of the resource to the

most promising subset of customer types.

Large-or-Small (LS) Algorithm:

1. (Pre-processing step) Solve the LP (4.5.1). Let x∗ be an optimal solution. For each

resource j, define

UL
j ≡

∑
i∈Lj

x∗ijuij

as the amount of resource j allocated to customer types in Lj by the static LP. Similarly,

define

US
j ≡

∑
i∈Sj

x∗ijuij

as the amount of resource j allocated to customer types in Sj by the LP.

171

2. (Reservation step) Reserve the resource j for customer types in the set Lj if UL
j ≥ US

j .

Otherwise, reserve resource j for customer types in the set Sj.

3. (Random routing step) Upon an arrival of a type-i customer, randomly pick a resource

j with probability x∗ij/Λi.

4. (Admission step) If the remaining capacity of resource j is at least uij and i belongs

to the set that is reserved for j in the pre-processing step then accept the customer.

Otherwise, reject the customer.

As a consequence of the random routing process, we can separate the analysis for every

resource j ∈ [m]. Define

Uj ≡ UL
j + US

j

as the total amount of resource j allocated by the LP. We will show that in expectation, at

least

1

2

(
1− 1

e

)
Uj

units of resource j will be occupied in LS.

We will use the following technical lemma, which bounds the tail expectation of demands

following a compound Poisson distribution.

Lemma 4.6.1. Let X1, X2, X3, ... be a sequence of i.i.d. random variables that take values

from [0, β], for some given β ∈ [0, 1
l
] with l ≥ 2 being an integer. Let N be a Poisson random

172

variable. For any given α ∈ [0, 1], if

E

[
N∑
k=1

Xk

]
= α,

we must have

E

[
min

(
N∑
k=1

Xk, 1− β

)]
≥ 1− β

l − 1
E[min(N ′, l − 1)],

where N ′ is a Poisson random variable with mean α(l − 1)/(1 − β). In particular, when

l = 2,

E

[
min

(
N∑
k=1

Xk, 1− β

)]
≥ (1− β)

(
1− e−α/(1−β)

)
.

Proof. Let Z1, Z2, Z3, ..., be a sequence of i.i.d. random variables each following a uniform

distribution over [0, (1− β)/(l − 1)]. For every k = 1, 2, ..., define a function

X̃k(x) ≡ 1− β
l − 1

1(Zk < x),

where 1(·) denotes an indicator function.

Since β ∈ [0, 1/l], we must have β ≤ (1−β)/(l− 1). It is then easy to check that for any

x ∈ [0, β], we have

E[X̃k(x)] =
1− β
l − 1

· x

(1− β)/(l − 1)
= x.

Thus, we have for every k = 1, 2, ...,

E[X̃k(Xk)|Xk] = Xk.

173

According to Jensen’s inequality, we must have

min

(
N∑
k=1

Xk, 1− β

)
≥ E

[
min

(
N∑
k=1

X̃k(Xk), 1− β

)
|X1, X2, . . .

]

=⇒ E

[
min

(
N∑
k=1

Xk, 1− β

)]
≥ E

[
min

(
N∑
k=1

X̃k(Xk), 1− β

)]
.

Since X̃k(Xk) is either 0 or (1−β)/(l−1), the term
∑N

k=1 X̃k(Xk) has the same distribution

as N ′(1− β)/(l − 1) where N ′ is a Poisson random variable with mean

E[N ′] =
l − 1

1− β
E

[
N∑
k=1

X̃k(Xk)

]
=

l − 1

1− β
E

[
N∑
k=1

Xk

]
=

l − 1

1− β
α.

Therefore,

E[min(
N∑
k=1

Xk, 1− β)] ≥E

[
min

(
N∑
k=1

X̃k(Xk), 1− β

)]

=E[min(N ′(1− β)/(l − 1), 1− β)]

=
1− β
l − 1

E[min(N ′, l − 1)].

When l = 2, this equals (1− β)
(
1− e−α/(1−β)

)
.

We are now ready to prove the competitive ratio of LS. The idea is to compare the

utilization of each resource j under LS with the utilization of resource j under OPT . The

latter is given by US
j +UL

j . The former depends on the choice of the set reserved for j, either

174

Lj or Sj. With either choice, we can gauge the total expected utilization, in some cases using

Lemma 4.6.1, to obtain a lower bound. We then repeat this comparison for all resources j

to arrive at a global bound.

Theorem 4.6.2. LS is at least (1− 1/e)/2-competitive.

Proof. For each resource j ∈ [m] there are two cases.

• Case 1: UL
j ≥ US

j . Let Y L
j be the total number of customers who are routed to resource

j and whose types are in Lj. Y
L
j is a Poisson random variable with mean

µLj ≡ E[Y L
j] =

∑
i∈Lj

x∗ij.

Conditional on the value of Y L
j , the amount of resource j requested by each of the Y L

j

customers is i.i.d. and has mean

ūLj ≡
∑

i∈Lj x
∗
ijuij∑

i∈Lj x
∗
ij

=
UL
j

µLj
.

If Y L
j = 1, the expected amount of resource j taken by that only customer is just ūLj .

Thus, we get an expected reward P (Y L
j = 1)ūLj from the event Y L

j = 1.

If Y L
j > 1, only the first customer can take resource j, and all the other Y L

j − 1

customers will be rejected due to lack of remaining capacity. The expected amount of

resource taken by the first customer may not be ūLj since arrivals are non-homogeneous,

175

but must be still greater than cj/2. Thus, we get an expected reward P (Y L
j > 1)cj/2

from the event Y L
j > 1.

In sum, the expected amount of resource taken by these Y L
j customers is at least

P (Y L
j = 1)ūLj + P (Y L

j > 1)cj/2

=µLj e
−µLj ūLj +

(
1− e−µLj − µLj e−µ

L
j

)
cj/2

=UL
j e
−µLj +

(
1− e−µLj − µLj e−µ

L
j

)
cj/2. (4.6.1)

We obtain a lower bound on (4.6.1) by minimizing its value with respect to µLj . We

can deduce that

d

dµLj

[
UL
j e
−µLj +

(
1− e−µLj − µLj e−µ

L
j

)
cj/2

]
= 0

=⇒ −UL
j e
−µLj +

(
1 + e−µ

L
j − e−µLj + µLj e

−µLj
)
cj/2 = 0

=⇒ µLj = 2UL
j /cj. (4.6.2)

It is easy to check that (4.6.1) is minimized at solution (4.6.2), and the corresponding

minimum value of (4.6.1) is

UL
j e
−2ULj /cj +

(
1− e−2ULj /cj − 2UL

j /cje
−2ULj /cj

)
cj/2

=
(

1− e−2ULj /cj
)
cj/2

≥
(
1− e−Uj/cj

)
cj/2

176

≥
(
1− e−1

)
Uj/2.

The last step follows since Uj/cj ≤ 1.

• Case 2: UL
j < US

j . Let Y S
j be the total number of customers who are routed to resource

j and whose types are in Sj. Y
S
j is a Poisson random variable with mean

E[Y S
j] =

∑
i∈Sj

x∗ij.

Let W1,W2,W3, ..., be a sequence of i.i.d. random variables each having distribution

P (Wk ≤ x) =
∑
i∈Sj

1(uij ≤ x)
x∗ij∑
l∈Sj x

∗
lj

, ∀k = 1, 2,

Here each Wk can be seen as the random amount of resource j requested by one of

the Y S
j customers conditional on the value of Y S

j . Then
∑Y Sj

k=1Wk represents the total

random amount of resource j requested by all the Y S
j customers. It is easy to check

that

E

 Y Sj∑
k=1

Wk

 = US
j ≥

Uj
2

=⇒ E

 Y Sj∑
k=1

Wk

cj

 =
US
j

cj
≥ Uj

2cj
.

If
∑Y Sj

k=1Wk ≤ cj, all the Y S
j customers will be accepted, and we will get total reward∑Y Sj

k=1Wk from resource j.

177

If
∑Y Sj

k=1 Wk > cj, some of the Y S
j customers must be rejected due to lack of capacity.

But whenever a customer is rejected, the remaining available capacity of resource j

must be strictly less than 0.5cj, since Wk/cj ∈ [0, 0.5] w.p.1 for every k.

In sum, the total reward we get from resource j is at least

Y Sj∑
k=1

Wk · 1(

Y Sj∑
k=1

Wk ≤ cj) + 0.5cj · 1(

Y Sj∑
k=1

Wk > cj)

≥min(

Y Sj∑
k=1

Wk, 0.5cj).

Its expected value can be written as

E

min

 Y Sj∑
k=1

Wk,
cj
2

 = cjE

min

 Y Sj∑
k=1

Wk

cj
,
1

2

 .

We then apply Lemma 4.6.1 to obtain

E

min

 Y Sj∑
k=1

Wk

cj
,
1

2

 ≥ 1

2

(
1− e−2USj /cj

)
≥ 1

2

(
1− e−

Uj
cj

)

=⇒ E

min

 Y Sj∑
k=1

Wk

cj
,
1

2

 ≥ Uj
2cj

(
1− 1

e

)

=⇒ E

min

 Y Sj∑
k=1

Wk,
cj
2

 ≥ Uj
2

(
1− 1

e

)
.

In sum, in both cases the expected amount of resource j allocated to customers is at

least Uj(1 − 1/e)/2. Summing over every resource j ∈ [m], we can obtain the performance

178

guarantee of our algorithm

∑
j∈[m]

Uj ·
1

2

(
1− 1

e

)
= V LP · 1

2

(
1− 1

e

)
≥ E [OPT (I)] · 1

2

(
1− 1

e

)
.

As a corollary, we can obtain simple bounds on the performance of the LS algorithm in

the case that every uij is bounded away from cj. The bounds follow directly from Lemma

4.6.1.

Corollary 4.6.3. If there is some integer d ≥ 2 for which uij ≤ cj
d

for all i and j, then the

competitive ratio of LS is at least

1− e−d
∞∑
i=d

(i− d+ 1)
di−1

i!
= 1− 1√

2πd
+O(1/d).

Proof. Similar to the proof of Theorem 4.6.2, since the first case can be eliminated, the

second case remains. Let Yj be the total number of customers who are routed to resource j.

Then Yj is a Poisson random variable with mean

E[Yj] =
∑
i∈[n]

x∗ij.

Let W1,W2,W3, ..., be a sequence of i.i.d. random variables each having distribution

P (Wk ≤ x) =
∑
i∈[n]

1(uij ≤ x)
x∗ij∑
l∈[n] x

∗
lj

, ∀k = 1, 2,

179

Here each Wk can be seen as the random amount of resource j requested by one of the

Yj customers conditional on the value of Yj. Then
∑Yj

k=1Wk represents the total random

amount of resource j requested by all the Yj customers. It is easy to check that

E

 Yj∑
k=1

Wk

 = Uj.

=⇒ E

 Yj∑
k=1

Wk

cj

 =
Uj
cj
.

Since Wk/cj ∈ [0, 1/d] for every k, the expected amount of resource j taken by these Yj

customers is at least

E

min

 Yj∑
k=1

Wk, cj − cj/d

 = cjE

min

 Yj∑
k=1

Wk

cj
, 1− 1/d

 .
We then apply Lemma 4.6.1 to obtain

E

min

 Yj∑
k=1

Wk

cj
, 1− 1/d

 ≥ 1− 1/d

d− 1
E[min(N ′, d− 1)] =

1

d
E[min(N ′, d− 1)],

where N ′ is a Poisson random variable with mean Uj/cj · (d− 1)/(1− 1/d) = Uj/cj · d. Let

N be a Poisson random variable with mean E[N] = d that is independent of N ′. We have

E[N] ≥ E[N ′] since Uj/cj ≤ 1. We can further deduce that

1

d
E[min(N ′, d− 1)]

180

=
1

d

[
d−1∑
i=1

i · e−E[N ′] (E[N ′])i

i!
+
∞∑
i=d

(d− 1)e−E[N ′] (E[N ′])i

i!

]

=
1

d
E[N ′]

[
d−2∑
i=0

e−E[N ′] (E[N ′])i

i!
+

∞∑
i=d−1

d− 1

i+ 1
· e−E[N ′] (E[N ′])i

i!

]

=
1

d
E[N ′]E[min(1,

d− 1

N ′ + 1
)]

≥1

d
E[N ′]E[min(1,

d− 1

N + 1
)]

=
1

d

E[N ′]

E[N]
· E[N]E[min(1,

d− 1

N + 1
)]

=
1

d

E[N ′]

E[N]
· E[N]

[
d−2∑
i=0

e−E[N] (E[N])i

i!
+

∞∑
i=d−1

d− 1

i+ 1
· e−E[N] (E[N])i

i!

]

=
1

d

E[N ′]

E[N]
·

[
d−1∑
i=1

i · e−E[N] (E[N])i

i!
+
∞∑
i=d

(d− 1)e−E[N] (E[N])i

i!

]

=
1

d

E[N ′]

E[N]
E[min(N, d− 1)]

=
Uj
cj
· 1

d
E[min(N, d− 1)]

=
Uj
cj
· 1

d
(E[N]− E[max(N − d+ 1, 0)])

=
Uj
cj
·

(
1− e−d

∞∑
i=d

(i− d+ 1)
di−1

i!

)
.

Since Uj/cj is an upper bound on the performance of the offline policy, the competitive

ratio attained by the LS algorithm for resource j, hence overall, is 1−e−d
∑∞

i=d(i−d+1)d
i−1

i!
.

When d tends to infinity, this competitive ratio behaves as

1− e−d
∞∑
i=d

(i− d+ 1)
di−1

i!

181

=1− e−dd
d

d!
− 1

d
e−d

∞∑
i=d

di

i!

=1− 1√
2πd

+O(1/d).

For d = 2, the above bound is approximately 0.43.

Theorem 4.6.4. The competitive ratio (1− 1/e)/2 is tight for LS.

Proof. We prove the theorem by constructing a special case where the total expected reward

of LS is E[OPT (I)] · (1− 1/e)/2.

Let n = 2. Let u1j = 0.1 and u2j = 0.5 + ε for every j, for some given small ε. Let cj = 1 for

every j. The expected number of arrivals is Λ1 = 5 and Λ2 = 0.5/(0.5 + ε). We set m to be

very large such that (with probability very close to 1) each demand unit can find a distinct

resource to be assigned to. Thus we have

E[OPT (I)] = Λ1u1j + Λ2u2j = 5 · 0.1 + 0.5/(0.5 + ε) · (0.5 + ε) = 1.

On the other hand, suppose when we apply the LS algorithm, the LP solution is x∗11 = Λ1,

x∗21 = Λ2 and x∗ij = 0 for all other i, j. Then LS reserves resource 1 only for type-2 customers.

In this way, the probability that LS accepts one customer of type 2 is 1 − e−Λ2 . Thus, the

182

expected total reward of LS is

u21 · (1− e−Λ2) = (0.5 + ε) · (1− e−0.5/(0.5+ε)).

It approaches (1 − 1/e)/2 when ε tends to 0. In sum, the competitive ratio of LS tends to

(1− 1/e)/2 when ε tends to 0.

4.7 Improving the Bound

In this section, we derive an algorithm with an improved competitive ratio compared to

LS. This algorithm also groups customer types based on the utilization uij, but in a more

sophisticated way than LS. Moreover, this algorithm also relaxes the random routing step

in order to allow customers more opportunities to be assigned to resources. This strategy

of allowing greater resource sharing among customer types greatly improves the empirical

performance of the algorithm.

We will prove that the competitive ratio of the new algorithm is

r∗ = max

{
r ∈ (0, 0.5) : r ≤ max

z∈(0,0.5)
h(z, r)

}
, (4.7.1)

where

h(z, r) ≡ z −
[
z − 1

2

(
1− 1

1− 2r
· 1

e2

)]
(1− 2r)

(
1− z

1− z − r

)2(1−z)

. (4.7.2)

183

We can numerically solve (4.7.1) to find that r∗ ≈ 0.321.

For every resource j, we first divide all customer types into two sets Sj and Lj in the same

way that LS does. Then, we further partition the customers in Sj into two sets, “medium

small” and “tiny”, depending on their utilization of resource j. Let

Mj = {i ∈ Sj : uij ≥ z∗ · cj}, (4.7.3)

Tj = {i ∈ Sj : uij < z∗ · cj}, (4.7.4)

where

z∗ ≡ arg max
z∈(0,0.5)

h(z, r∗) ≈ 0.42. (4.7.5)

It is easy to check that there is only one maximizer.

Recall that Uj =
∑

i∈[n] x
∗
ijuij, U

L
j =

∑
i∈Lj x

∗
ijuij and US

j =
∑

i∈Sj x
∗
ijuij, where x∗ is

an optimal solution to the LP (4.5.1). We further define UM
j ≡

∑
i∈Mj

x∗ijuij and UT
j ≡∑

i∈Tj x
∗
ijuij analogously.

Intuitively, the load values UT
j , U

M
j , U

S
j , U

L
j serve as estimates for how much capacity of

resource j is expected to be utilized by customers of types in the sets Tj,Mj, Sj and Lj,

respectively. For a given resource j, if any of the load values dominates the others, it might

be a good strategy to reserve resource j exclusively for customers in the corresponding set.

We next categorize every resource j into one of two types based on the load values.

184

Definition 4.7.1. Resource j is a type-A resource if

US
j ≥ −0.5cj log(1− 2r∗Uj/cj)

or UT
j ≥ −(1− z∗)cj log

(
1− r∗Uj

cj(1− z∗)

)
.

Otherwise, resource j is a type-B resource.

The motivation for the above definition is as follows. If resource j is of type A, then US
j

or UT
j are relatively large compared to other load values, which implies that customers that

are routed to resource j by the LP (4.5.1) tend to have relatively small utilization uij. On

the other hand, if resource j is of type B, then UL
j is relatively larger, which implies that

customers that are routed to resource j by the LP tend to have relatively large utilization

uij.

Depending on the type of resource, we will reserve each resource wholly for a certain

set of customer types. We say that a customer of type i is admissible to resource j if this

customer can be assigned to resource j by our algorithm. The following definition defines

the reservation criteria of the algorithm.

Definition 4.7.2. A customer of type i, i ∈ [n], is admissible to resource j, j ∈ [m], if and

only if at least one of the following criteria holds:

• Resource j is of type A,

• or i ∈Mj ∪ Lj.

185

We are now ready to specify the improved algorithm.

Refined Large-or-Small Algorithm (RLS):

1. (Pre-processing step) Same as for LS.

2. (Random routing step) Same as for LS.

3. (Admission step) If a customer is admissible to resource j and there is enough remaining

capacity in j, then assign the customer to resource j.

4. (Resource-sharing step) If a customer is rejected in the Admission Step, but there is

another resource with enough remaining capacity and to which the customer is admis-

sible, then assign the customer to any such resource. Otherwise, reject the customer.

The idea of the algorithm is as follows. If a resource j is of type A, then we can bound

from above the left-over capacity of the resource, because a type-A resource tends to be

used by a sufficiently high number of customers in sets Sj and Tj. Whenever one such

customer is rejected, we know that the remaining capacity is small. Furthermore, since it

is not disadvantageous to turn away customers of other types, their utilization being higher

than those in Sj and Tj, we will admit customers of all types to a type-A resource. On the

other hand, if resource j is of type B, then customers who are admissible to the resource

have large utilization values. We can allocate a large enough amount of the resource as soon

as one such customer arrives. We do not admit customers with small utilization values to

type-B resources in order to leave enough space for customer types in Mj and Lj.

For each resource j, let Nj denote the total number of customers who are routed to

resource j in Step (2) of RLS. Note that Nj does not include customers who are assigned

186

resource j in Step (4) of RLS. Let Wj1,Wj2, ..., be a sequence of i.i.d. random variables

each having a distribution that is given by

P (Wj1 ≤ x) =
∑
i∈[n]

1(uij ≤ x)
x∗ij∑

k∈[n] x
∗
kj

.

That is, each variable Wj1 can be seen as the utilization uij of a single random customer who

is routed to resource j during the horizon. Since the probability that such a customer has

type i is
x∗ij∑

k∈[n] x
∗
kj

, Wj1 takes value uij with this probability. The following lemma gives a

lower bound on the expected amount of capacity of a type-A resource that will be allocated

by RLS.

Lemma 4.7.3. If resource j is of type-A, then the expected amount of resource j allocated

by RLS is at least

max

E

min(

Nj∑
k=1

Wjk1(Wjk ≤ 0.5cj), 0.5cj)

 ,E
min(

Nj∑
k=1

Wjk1(Wjk ≤ z∗cj), (1− z∗)cj)

 .

Proof.
∑Nj

k=1Wjk1(Wjk ≤ 0.5cj) has the same distribution as the total (random) amount of

resource j requested by customers who are routed to resource j and whose types are in Sj. If

the actual amount of resource j allocated to customers is less than
∑Nj

k=1Wjk1(Wjk ≤ 0.5cj),

it must be that at least one customer with type in Sj is rejected due to lack of remaining

capacity of resource j. In such a case, the actual amount of resource j allocated to customers

must be at least 0.5cj, because otherwise the customer with type in Sj would not have

187

been rejected. Thus, the total amount of resource j allocated by our algorithm is at least

min(
∑Nj

k=1 Wjk1(Wjk ≤ 0.5cj), 0.5cj).

A similar argument applies to customers with types in Tj.
∑Nj

k=1 Wjk1(Wjk ≤ z∗cj) has

the same distribution as the total amount of resource j requested by customers who are

routed to resource j and whose types are in Tj. If at least one of these requests is rejected,

the remaining capacity of resource j must be at most z∗cj. Thus, the total amount of resource

j allocated to customers is at least min(
∑Nj

k=1Wjk1(Wjk ≤ z∗cj), (1− z∗)cj).

The proof follows when we take expectation of the lower bounds.

Let µMj =
∑

i∈Mj
x∗ij and µLj =

∑
i∈Lj x

∗
ij be the expected number of customers who are

routed to resource j and whose types are in Mj and Lj, respectively. The following lemma

gives a lower bound on the expected amount of capacity of a type-B resource that will be

allocated by RLS.

Lemma 4.7.4. If resource j is of type B, then the expected amount of resource j allocated

to customers in RLS is at least

min{z∗cj, e−µ
M
j [UL

j e
−µLj + 0.5cj(1− e−µ

L
j − µLj e−µ

L
j)] + (1− e−µMj)z∗cj}.

Proof. If any customer is assigned to resource j in Step (4) of the algorithm, then at least

z∗cj of resource j is allocated, since every customer type i that is admissible to resource j

satisfies uij ≥ z∗cj.

If no customer is assigned to resource j by Step (4), then resource j can only be allocated

188

to customers who are directly routed to this resource, i.e. in Step (3) of RLS. We consider

three cases:

• At least one customer with type in Mj is routed to resource j. This event occurs with

probability 1− e−µMj . In such a case, we use z∗cj as the lower bound on the amount of

resource j taken by customers.

• No customer with type in Mj is routed to resource j, and exactly one customer with

type in Lj is routed to resource j. This event occurs with probability e−µ
M
j · µLj e−µ

L
j .

Conditional on this event, the expected amount of resource j taken by the only cus-

tomer with type in Lj is ∑
i∈Lj x

∗
ijuij∑

i∈Lj x
∗
ij

=
UL
j

µLj
.

• No customer with type in Mj is routed to resource j, and more than one customer with

type in Lj are routed to resource j. This event occurs with probability e−µ
M
j (1−e−µLj −

µLj e
−µLj). In this event, we use 0.5cj as the lower bound on the amount of resource j

taken by the customer in Lj, by definition of Lj.

In summary, if no customer is assigned to resource j in Step (3), the expected amount of

resource j taken by customers routed to the resource is at least

(1− e−µMj)z∗cj + e−µ
M
j · µLj e−µ

L
j ·

UL
j

µLj
+ e−µ

M
j (1− e−µLj − µLj e−µ

L
j)0.5cj

=e−µ
M
j [UL

j e
−µLj + 0.5cj(1− e−µ

L
j − µLj e−µ

L
j)] + (1− e−µMj)z∗cj.

189

We complete the proof by combining this result with the lower bound z∗cj for the case

that a customer is assigned to resource j by Step (4) of the algorithm.

We combine the previous two lemmas to prove the performance guarantee of the algo-

rithm.

Theorem 4.7.5. For each resource j, the expected amount of resource j allocated to cus-

tomers is at least r∗Uj.

Proof. First consider the case that resource j is of type A. Since
∑Nj

k=1Wjk1(Wjk ≤ 0.5cj)

and
∑Nj

k=1Wjk1(Wjk ≤ z∗cj) has compound Poisson distribution with mean

E

 Nj∑
k=1

Wjk1(Wjk ≤ 0.5cj)

 = US
j , E

 Nj∑
k=1

Wjk1(Wjk ≤ z∗cj)

 = UT
j ,

we can apply Lemma 4.6.1 to get

E

min(

Nj∑
k=1

Wjk1(Wjk ≤ 0.5cj), 0.5cj)

 =cjE

min(

Nj∑
k=1

Wjk

cj
1(Wjk ≤ 0.5cj), 0.5)

≥cj0.5

(
1− e−2USj /cj

)
,

and

E

min(

Nj∑
k=1

Wjk1(Wjk ≤ z∗cj), (1− z∗)cj)

 =cjE

min(

Nj∑
k=1

Wjk

cj
1(Wjk ≤ z∗cj), 1− z∗)

≥cj(1− z∗)

(
1− e−

UTj
cj(1−z∗)

)
.

190

Then according to Definition 4.7.1, we have by the definition of type-A resources

US
j ≥ −0.5cj log(1− 2r∗Uj/cj) =⇒ cj0.5(1− e−2USj /cj) ≥ r∗Uj,

or

UT
j ≥ −(1− z∗)cj log(1− r∗Uj

cj(1− z∗)
) =⇒ cj(1− z∗)(1− e

−
UTj

cj(1−z∗)) ≥ r∗Uj.

In sum, we have

max

E

min(

Nj∑
k=1

Wjk1(Wjk ≤ 0.5cj), 0.5cj)

 ,E
min(

Nj∑
k=1

Wjk1(Wjk ≤ z∗cj), (1− z∗)cj)

≥max

{
cj0.5(1− e−2USj /cj), cj(1− z∗)(1− e

−
UTj

cj(1−z∗))

}

≥r∗Uj.

This proves the theorem for type-A resources.

Now we consider the case that resource j is of type B. Starting from this point, we will

assume without loss of generality that cj = 1. Based on Lemma 4.7.4, we need to show

min{z∗, e−µMj [UL
j e
−µLj + 0.5(1− e−µLj − µLj e−µ

L
j)] + (1− e−µMj)z∗} ≥ r∗Uj.

191

Since z∗ > r∗ as we numerically checked, it suffices to show

e−µ
M
j

[
UL
j e
−µLj + 0.5

(
1− e−µLj − µLj e−µ

L
j

)]
+
(

1− e−µMj
)
z∗ ≥ r∗Uj

based on Lemma 4.7.4.

By examining the first and second derivatives of UL
j e
−µLj + 0.5(1− e−µLj − µLj e−µ

L
j) with

respect to µLj , it is easy to check that

e−µ
M
j

[
UL
j e
−µLj + 0.5

(
1− e−µLj − µLj e−µ

L
j

)]
+
(

1− e−µMj
)
z∗ ≥ e−µ

M
j · 0.5

(
1− e−2ULj

)
+
(

1− e−µMj
)
z∗

= z∗ − e−µMj
[
z∗ − 0.5

(
1− e−2ULj

)]
.

If z∗ < 0.5(1− e−2ULj), we must have z∗ − e−µMj [z∗ − 0.5(1− e−2ULj)] > z∗ > r∗ = r∗cj ≥

r∗Uj, which proves the theorem for this case.

Now suppose z∗ ≥ 0.5(1− e−2ULj). Since µMj =
∑

i∈Mj
x∗ij ≥

∑
i∈Mj

x∗ij · 2uij = 2UM
j , we

have

z∗ − e−µMj
[
z∗ − 0.5

(
1− e−2ULj

)]
≥z∗ − e−2UMj

[
z∗ − 0.5

(
1− e−2ULj

)]
=z∗ − e−2(USj −UTj)

[
z∗ − 0.5

(
1− e−2(Uj−USj)

)]
. (4.7.6)

It is easy to see that (4.7.6) is decreasing in UT
j . We next show that, given Uj and UT

j ,

192

(4.7.6) is also decreasing in US
j .

∂

∂US
j

[
z∗ − e−2(USj −UTj)[z∗ − 0.5(1− e−2(Uj−USj))]

]
=2e−2(USj −UTj)[z∗ − 0.5(1− e−2(Uj−USj))]− e−2(USj −UTj)e−2(Uj−USj)

=e−2(USj −UTj)(2z∗ − 1)

<0.

According to Definition 4.7.1, we must have

US
j < −0.5 log(1− 2r∗Uj) (4.7.7)

and

UT
j < −(1− z∗) log

(
1− r∗Uj

1− z∗

)
. (4.7.8)

Since (4.7.6) is decreasing in US
j and UT

j , we can plug in (4.7.7) and (4.7.8) and obtain

z∗ − e−2(USj −UTj)[z∗ − 0.5(1− e−2(Uj−USj))]

≥z∗ − e−2(−0.5 log(1−2r∗Uj)+(1−z∗) log(1−
r∗Uj
1−z∗))[z∗ − 0.5(1− e−2(Uj+0.5 log(1−2r∗Uj)))]

=z∗ −
[
z∗ − 1

2

(
1− 1

1− 2r∗Uj
· 1

e2Uj

)]
(1− 2r∗Uj)

(
1− z∗

1− z∗ − r∗Uj

)2(1−z∗)

. (4.7.9)

Since z∗ and r∗ are constants, (4.7.9) is a function of a single variable Uj. It is easy to

check that this function is increasing and concave in Uj for Uj ≤ cj = 1. Moreover, it equals

193

0 at Uj = 0. Therefore,

z∗ −
[
z∗ − 1

2

(
1− 1

1− 2r∗Uj
· 1

e2Uj

)]
(1− 2r∗Uj)

(
1− z∗

1− z∗ − r∗Uj

)2(1−z∗)

≥Uj

[
z∗ −

[
z∗ − 1

2

(
1− 1

1− 2r∗
· 1

e2

)]
(1− 2r∗)

(
1− z∗

1− z∗ − r∗

)2(1−z∗)
]

=Ujh(z∗, r∗)

=Ujr
∗.

This completes the proof for the theorem.

4.8 Numerical Study

We compare the empirical performance of our algorithms against two commonly used heuris-

tics by simulating the algorithms on appointment-scheduling data obtained from a large

hospital system in New York City.

We obtain our data set from an Allergy department in the hospital system. The data

set contains more than 20000 appointment entries recorded in the year 2013. Each entry

in the data records information about one appointment. The entry includes the date that

the patient makes the appointment, the exact time of the appointment, whether the patient

eventually showed up to the original appointment, canceled the appointment some time later,

or missed the appointment.

The average total number of patients who arrive to make appointments on each day is

194

shown in Figure 4.1. It can be readily seen that the arrival pattern is highly non-stationary,

as the average total number of arrivals on Thursday is 60% more than that on Wednesday.

Figure 4.1: Average number of arrivals in a week.

We simulate a discrete horizon of 200 days. In each day, a random number of patients

arrive to make appointments. Each patient needs to be assigned an appointment of 15 min,

30 min, 45 min, depending on his or her condition. By medical necessity, some patients must

be assigned same-day appointments if at all. We call these patients urgent patients. Other

patients can be assigned to any day in the future. We call these patients regular patients. The

relative proportions of patients in each priority category are summarized in Table 4.2. We

impose a requirement that regular patients must be assigned an appointment that is no more

than 20-days away from the date of his or her first request for an appointment. Although

this hard deadline is not strictly enforced in reality, consideration for patient satisfaction

often impels the administration to limit as much as possible the number of days that each

patient must be made to wait. Our deadline mimics this effect.

We assume a 5-day work week. We estimate the expected number of patients arriving

195

Table 4.2: Percentage of patients in different categories.
15 min 30 min 45 min

urgent 27% 1% 0%
regular 45% 14% 9%

per day of the week as shown in Figure 4.1. We assume that each patient randomly and

independently falls into one of the six categories shown in Table 4.2.

We assume that there are multiple sessions on each day. Each session corresponds to a

resource in our model. We vary the session length among 1, 1.5, 2, 3, or 4 hours. We assume

that a patient can be assigned to any appointment within a day, as long as there is enough

service time remaining and the day falls within the deadline to serve the patient. We vary

the number of sessions that are available per day.

We test the following two algorithms

• Our basic online algorithm (LS).

• Our refined algorithm (RLS).

• A greedy heuristic (GRD) that tries to assign every patient to the most recent session

that is available and falls within his deadline.

• A heuristic (RSRV) that reserves for each category an amount of capacity that is

approximately equal to the average utilization of that category. This reservation is

nested in the sense that higher-priority patients have access to their reserved capacity,

as well as the reserved capacity of all lower-priority categories. The heuristic then

assigns patients greedily to the reserved capacity.

196

• The primal-dual algorithm (PD) given by Buchbinder et al. (2007).

For each algorithm and each test case, we simulate the total length of appointments made

during the entire 200 periods and calculate the average total length over 1000 replicates. We

report the ratio of this average number relative to the optimal objective value of the upper

bound given in (4.5.1).

Table 4.3: Performance relative to the upper bound given in (4.5.1). The length of each
session is 1 hour.

Number of sessions Scale LS RLS GRD RSRV PD
18 70.5% 68.8% 94.6% 98.4% 80.2% 97.9%
19 74.4% 68.4% 94.2% 98.4% 78.8% 97.6%
20 78.3% 68.5% 94.3% 98.1% 77.4% 97.1%
21 82.2% 68.6% 94.4% 96.2% 76.2% 96.5%
22 86.2% 69.0% 94.5% 96.1% 75.1% 95.5%
23 90.1% 69.4% 94.4% 96.0% 74.0% 94.3%
24 94.0% 69.8% 94.2% 95.5% 73.1% 92.5%
25 97.9% 70.0% 93.6% 94.5% 72.2% 90.5%
26 101.8% 70.3% 93.1% 94.3% 72.7% 90.0%
27 105.7% 70.6% 95.2% 95.6% 74.7% 91.1%
28 109.7% 70.7% 96.5% 96.4% 76.5% 92.2%
29 113.6% 70.6% 97.3% 97.1% 77.3% 93.2%
30 117.5% 70.6% 97.7% 97.6% 77.7% 94.1%
31 121.4% 70.6% 98.2% 98.0% 77.9% 94.9%
32 125.3% 70.6% 98.5% 98.3% 77.9% 96.2%
33 129.2% 70.6% 98.7% 98.5% 77.9% 97.1%

Tables 4.3 to 4.7 summarize the performance of the algorithms. The scale is the ratio of

total capacity to total demand. We make several observations:

• The refined algorithm RLS is never more than 4% worse than the upper bound on

average in each of the scenarios tested. The reservation heuristic RSRV could be as

much as 16% worse than the upper bound on average. The greedy heuristic GRD

could be as much as 8% worse than the upper bound on average.

197

Table 4.4: Performance relative to the upper bound given in (4.5.1). The length of each
session is 1.5 hours.

Number of sessions Scale LS RLS GRD RSRV PD
12 70.5% 75.6% 98.2% 98.4% 92.7% 97.9%
13 76.4% 75.5% 97.9% 98.4% 91.5% 97.4%
14 82.2% 75.9% 97.7% 96.3% 90.2% 96.7%
15 88.1% 76.3% 97.4% 96.1% 88.9% 95.7%
16 94.0% 76.8% 96.7% 95.6% 87.6% 93.9%
17 99.9% 76.9% 95.7% 93.7% 86.5% 91.5%
18 105.7% 77.4% 97.1% 95.6% 90.3% 93.6%
19 111.6% 77.4% 98.0% 96.7% 94.2% 94.9%
20 117.5% 77.4% 98.3% 97.5% 97.8% 95.7%
21 123.4% 77.5% 98.7% 98.0% 99.2% 96.4%
22 129.2% 77.5% 99.0% 98.4% 99.5% 97.0%

Table 4.5: Performance relative to the upper bound given in (4.5.1). The length of each
session is 2 hours.

Number of sessions Scale LS RLS GRD RSRV PD
9 70.5% 78.4% 99.1% 98.5% 91.1% 97.9%
10 78.3% 78.1% 99.0% 98.4% 89.2% 97.3%
11 86.2% 78.7% 98.6% 96.2% 87.2% 96.3%
12 94.0% 79.2% 97.3% 95.6% 85.4% 94.5%
13 101.8% 79.4% 96.3% 94.4% 85.3% 92.9%
14 109.7% 79.6% 98.1% 96.5% 90.2% 95.1%
15 117.5% 79.6% 98.5% 97.5% 95.1% 96.2%
16 125.3% 79.7% 99.0% 98.2% 99.4% 97.0%

• Predictably, the refined algorithm RLS dominates the basic algorithm LS. This per-

formance gain comes from better resource sharing.

• The greedy heuristic GRD also performs consistently better than the static reservation

heuristic RSRV , except when the scale is high. Most likely, the greedy heuristic

allows greater resource sharing among different customer types, which results in better

resource utilization. However, when the scale is high, there is an abundance of capacity,

so that resource sharing is less important.

198

Table 4.6: Performance relative to the upper bound given in (4.5.1). The length of each
session is 3 hours.

Number of sessions Scale LS RLS GRD RSRV PD
6 70.5% 83.6% 99.3% 98.6% 93.9% 98.0%
7 82.2% 83.7% 99.0% 96.5% 91.8% 97.0%
8 94.0% 84.2% 97.4% 95.7% 89.5% 94.8%
9 105.7% 84.5% 97.5% 95.6% 92.3% 94.7%
10 117.5% 84.7% 98.7% 97.6% 99.6% 96.5%
11 129.2% 84.7% 99.3% 98.4% 99.8% 97.3%

Table 4.7: Performance relative to the upper bound given in (4.5.1). The length of each
session is 4 hours.

Number of sessions Scale LS RLS GRD RSRV PD
5 78.3% 85.4% 99.2% 98.6% 93.7% 97.4%
6 94.0% 86.0% 97.3% 95.8% 91.1% 94.9%
7 109.7% 86.4% 98.2% 96.5% 97.0% 95.6%
8 125.3% 86.8% 99.3% 98.3% 99.8% 97.1%

• The greedy heuristic GRD tends to be good when the scale is either very large or

very small. These are situations in which it is easier to do well. When there is little

capacity, the utilization can be kept high even with a naive algorithm because there

is relative very high demand. When there is an abundance of capacity, the utilization

can be close to optimal because a high proportion of demand can be accommodated.

Therefore, an algorithm offers the most value relative to a naive heuristic when the

scale is moderate.

• Similar to GRD, the Primal-Dual algorithm performs well when the scale is either

large or small. However, its performance is slightly worse than GRD in most cases.

This might be because the Primal-Dual algorithm is specially designed to improve the

worst-case performance, whereas we report the average-case performance.

199

Table 4.8: Performance relative to the upper bound given in (4.5.1), when parameters are
randomly generated.

Number of sessions LS RLS GRD RSRV PD
Worst Setting 44.3% 68.4% 66.3% 43.7% 67.6%

Average Setting 65.2% 96.3% 95.9% 85.2% 95.9%

• The refined algorithm RLS performs significantly better than, or is very close to, the

better of the two heuristics. It performs much better than the heuristics when the

scale is moderate, which is when an algorithm offers the most value relative to a naive

heuristic.

We also test the algorithms under randomly generated settings. In Table 4.8, we report

the worst performance and the average performance of all the algorithms over 100 random

settings. The performance of algorithms in each setting is calculated by simulating 1000

replicates. Each of the 100 random settings is generated by

• uniformly generating the percentages in Table 4.2;

• uniformly picking a deadline for all regular patients between 5 and 30 days;

• uniformly setting the capacity of all resources to be between 45 and 150 minutes;

• uniformly picking a scale between 70% and 130%.

Again, our RLS algorithm consistently performs well in these test cases.

200

4.9 Conclusions

We study an online resource allocation problem where heterogeneous customers arrive at

time-varying rates and request fractional amounts of resources. Upon an arrival of a cus-

tomer, the allocation or rejection decision must be made immediately and irrevocably. The

goal is to maximize the total amount of resources allocated to all customers. The model has

applications in many areas, such as services, online advertising, and freight transportation.

An important realistic feature of our model is that we cannot partially fulfill the amount

of resource requested by a customer. As a result, our model captures the challenging task of

reserving fractional amount of a resource to high-priority customers. It is easy to see that

naive heuristics such as a first-come, first-served strategy will fail because once it allocates

ε amount of a resource, it cannot satisfy future higher-priority customers who request the

entire original resource.

Our allocation algorithms directly tackle this problem based on a simple but effective

idea. Specifically, our algorithms reserve each resource for a predetermined set of customer

types, such that packing the requests of these customer types in any arbitrary way does not

result in too much waste of the resource. We apply the definition (1.1.2) of competitive ratio

and prove that our allocation algorithm is 0.321-competitive online algorithms. Further, we

show that an upper bound on the competitive ratio of any algorithm is 1/2.

To test the empirical performance of our algorithms, we simulate them as well as other

simple allocation heuristics in an appointment scheduling application. We use an appointment-

scheduling dataset from Columbia University Medical Center. In the model used in the

201

simulation tests, the objective is to maximize the utilization of appointment sessions that

will be assigned to patients with different appointment lengths. We find that our online

algorithms have the best performance among all scheduling policies tested.

202

Chapter 5

Dynamic Optimization of Mobile

Push Advertising Campaigns

5.1 Introduction

Recent years have seen tremendous growth in the volume of sales taking place in mobile

commerce (m-commerce) markets. In these markets, customers visit online stores and pur-

chase products via mobile platforms, such as apps for iOS and Android systems. In 2015,

more than US$200 billion in sales took place via a single mobile app developed by Alibaba

Group. Alibaba is an e-commerce company that provides a third-party platform for business-

to-customer and customer-to-customer markets, among many other services. In China, the

m-commerce market share of its mobile app, which has been installed on several hundred

million devices, is rapidly displacing traditional e-commerce markets (Emarketer.com, 2016).

Given the size of its user base, the mobile app of Alibaba Group, henceforth referred to

203

simply as the app, serves as a new channel for advertising and delivering personalized rec-

ommendations. Owners of the app can choose to receive recommendations about products

that are tailored to their interests. These recommendations are sent via mobile push notifi-

cations. When a mobile push notification is sent to a user, a short message describing the

recommended product appears in the notification zone of the user’s mobile phone. The user

can either swipe the message away or click on the message to link to a new page containing

full details about the recommendation. We call the latter action a clickthrough.

Push messages are used to achieve two objectives. First, the messages are used to make

personalized recommendations about premium products selected from millions of online

stores at Alibaba Group. These recommendations prompt mobile users to visit and browse

products in the online markets, eventually generating more sales. Second, the messages are

designed to promote products for online stores that have applied to join advertising cam-

paigns organized by Alibaba Group. Such campaigns often aim at achieving a certain impact

on the user base, such as a desired number of clickthroughs that the campaign messages need

to attract. Retailers who want to advertise their products may offer to pay for clickthroughs

to their products.

Push messages are sent to hundreds of millions of mobile users every day (BusinessWire,

2016). Given such a large user base, it is challenging to manage the delivery of the “right

messages” to the “right users” without overwhelming each user with too many messages.

In this thesis chapter, we model the problem faced by Alibaba Group of how to manage

push messages over a planning period. Without loss of generality, we take a period to be a

day. The problem is a novel resource-allocation problem. In this problem, there is a set of

204

known users, each owning a mobile device on which the app is installed. There is also a set

of distinct messages. Each message can be sent to any number of users, and yields a reward

when it generates a clickthrough, subject to a budget constraint on the total reward that all

the users can generate for the message. The budget represents the maximum amount that an

advertiser is willing to pay for clickthroughs to his product or website on a given day. Since

sending too many messages to the same user would have an adverse impact on the user’s

experience, each user must receive no more than one push message per day. Over the course

of a day, push messages can be sent sequentially to different users. Once a message has

been sent to a user, we can observe after some time whether the user clicks on the message.

The observed user actions can be used to update decisions about what messages we want to

send to subsequent users, so that we can make the most use of the remaining budgets. We

aim to maximize the total reward earned from all messages sent, by adaptively determining

the sequence of users to contact, together with their corresponding messages. We do not

consider any multi-day effect.

To achieve our goal, it is necessary to learn and calibrate the clickthrough probability

that we might expect from any given message-user pair. A typical method is to construct a

mapping p(x, y) between every vector of user features x and every vector of product features

y, and then fitting this mapping to historical information, as well as to data gathered in

experiments. At Alibaba, the construction and fitting of the mapping p(·, ·) is performed as

a separate data-mining and calibration problem. Accordingly, in this thesis chapter, we take

the view that the clickthrough probabilities will be provided as inputs to our model. Thus,

we will focus on the remaining optimization problem.

205

The following simple example illustrates our problem.

Example 5.1.1. There are two messages, A and B, to be sent out to two users X and Y

(see Figure 5.1). Each message can be sent to any of the two users, but each user should

receive exactly one message. For simplicity, we assume that each message has budget of $1

and yields a reward of $1 when clicked. In other words, each message will exhaust all of its

budget on the first clickthrough. We assume that the clickthrough probabilities are given by

Figure 5.1.

Suppose that we send message B to both users X and Y. Then with probability 0.6× (1−

0.2), only X will click on message B, in which case we earn $1. With probability 0.6 × 0.2,

both users will click on message B, but since message B has a budget of only $1, we only

earn $1 even though message B receives two clickthroughs.

The optimal strategy to maximize the expected total reward is to first send message B

to user Y. Then we observe whether Y clicks on B. If Y clicks on B (with probability 0.2),

thereby exhausting the budget of message B, we next send message A to X. If Y does not

click on B, we next send message B to user X. The resulting total expected reward is 0.2 ×

0.4×$1 + 0.8×0.6×$1 = $0.56. Note that the decision for user X is a dynamic one. Which

message X will receive depends on whether Y clicks on message B.

An interesting related question is how to adaptively find the optimal sequence of users

to contact, together with their corresponding messages. However, in practice, we cannot

implement a solution that makes an adaptive decision for every single user, simply because

it would take too long to observe the actions of all users one at a time. Users might not

206

Figure 5.1: A toy example of sending push messages.

immediately notice new push messages on their mobile devices. In practice, more than half

of all user actions (either clickthrough or dismissal) can be observed within 1 hour. Most

user actions can be observed within 3 hours. Furthermore, the clickthrough rate of users

who respond after 3 hours is negligible. Given such long response time, it is only practically

possible to send out messages in a small number of batches on each day. After sending out

each batch, we must wait for several hours to observe the feedback of users who were most

recently contacted. In this way, we must take advantage of a very small number of recourse

opportunities.

5.1.1 Overview of Algorithms and Contributions

We design an algorithm to determine how to send push messages in a small number of cycles

over the course of a day. The decisions for each cycle can be based on the observed actions

of all users contacted in previous cycles in the day. In the real application, it is possible to

send hundreds of millions of messages in a single cycle.

Due to the large size of the real application, we analyze algorithms in an asymptotic

207

regime. We consider a novel scaling of the problem “size,” called big-data scaling. In this

scaling, as the problem size grows, the number of users, as well as their diversity, as charac-

terized by the number of distinct profiles of user characteristics, both grow. We study the

regret of our algorithms, which captures the revenue loss of our algorithms relative to an

optimal algorithm, when the scale is large.

We analyze the performance of two algorithms for sending push messages. The first

algorithm, which we call the Static Algorithm, does not make dynamic decisions based on

user feedback, and essentially sends out all messages in one cycle. It represents a simple

attempt to tackle this problem without utilizing user feedback. We will show that the Static

Algorithm has asymptotic regret O(
√
t). Although this regret is diminishing in the size t of

the system, we show that it is possible to further reduce the regret.

To this end, we analyze a second algorithm, which we call the Reservation Algorithm.

The Reservation Algorithm sends out messages in two cycles. We prove that by making

use of only one additional cycle, the Reservation Algorithm is able to reduce the regret to

O(t1/4 log t). In other words, the regret of the Reservation Algorithm grows much more

slowly than that of the Static Algorithm as we scale up the system size t. Further, we prove

that the difference in regret between the Static Algorithm and the Reservation Algorithm is

Ω(
√
t).

Both of algorithms that we analyze make use of a solution to a linear program that

matches the expected number of clickthroughs with the budgets of the messages. Linear

programming has been used to design algorithms for various resource-allocation problems

because optimal solutions to linear programs are often useful guides for making allocation

208

decisions (Wang, Truong and Bank 2015). In our model, an assignment of users to messages

given by a static linear program performs the following basic tradeoff. If we send a message

to too many users, we might obtain more clickthroughs than are paid for by the budget of

that message. Thus, we waste the opportunity to have these users view other messages and

bring in rewards from other sources. In other words, we lose viewing opportunities. On the

other hand, if we send the message to too few viewers, we lose the opportunity of generating

more clickthroughs. Thus we lose potential rewards.

The Reservation Algorithm performs this tradeoff by using a re-solving heuristic. To be

more specific, the algorithm sends out messages in the first cycle based on an optimal solution

to a linear program. Then after observing the clickthroughs that each message receives from

the first batch of users contacted, the algorithm re-solves a linear program that matches the

remaining budgets of the messages to the remaining users.

We test the numerical performance of the above two algorithms by simulating them on

production data provided by Alibaba. The data contains three large batches of messages that

were sent to several hundred million users in three separate days in March 2016, along with

the clickthrough probabilities for all user-message pairs, which were estimated by Alibaba.

Our computational results show that by exploiting user feedback, the Reservation Algorithm

can reduce the regret of the Static Algorithm by at least 10%-50%. This result suggests that

the idea of dynamically optimizing the allocation of push messages is highly promising.

209

5.2 Literature Review

Our problem is related to revenue-management problems, which we reviewed in Section 3.2.1,

as it aims to maximize a total expected reward that can be obtained by dynamically allo-

cating demands (users) to resources (messages). Traditional revenue-management problems

focus on situations in which demands arrive randomly and exogenously over time (Talluri

and van Ryzin, 2004). In contrast, in our model we can control the demands, or the users

to be contacted. However, our model limits the number of opportunities at which dynamic

decisions can be made. Next, we provide a more detailed review on asymptotic studies in

revenue management.

Reiman and Wang (2008) first prove that for a network revenue-management problem,

re-solving a linear program can help to reduce the total regret to o(
√
t). Their algorithm,

which only re-solves the linear program once, cannot be applied to our model as they require

observing the system state at every point in time. Recall that in our model, we can observe

the action of users, or the consequences a decision, only a small number of times due to the

long response time needed to acquire user feedback.

Jasin and Kumar (2012) also study a network revenue-management problem for which

they propose an algorithm having constant regret that is independent of the system size

t. However, their algorithm requires resolving LP, and thus observing the system state,

infinitely many times as they scale up the system size t. As a result, their algorithm cannot

be easily adapted to our setting.

Agrawal, Wang and Ye (2009) and Jasin (2015) study online resource-allocation problems

210

in the asymptotic regime. However, in their model, the distribution of demand arrivals is

unknown and exogenous. Their algorithms either have regret that is at least O(
√
t), or

require resolving linear programs too many times and therefore, are impractical for our

setting.

We remark that our problem is different from models of online customer selection (El-

machtoub and Levi, 2016, 2015). In these models, although the decision maker has the

ability to select which customers to offer resources to, the sequence of customer arrivals is

still exogenous.

5.3 Model Formulation

We now formally state our model. There are m different messages and n users. Each message

can be sent to any number of users. We make the following main assumptions:

Clickthrough probabilities. If message j ∈ {1, 2, ...,m} is sent to user i ∈ {1, 2, ..., n},

the user will click the message with known probability pij. All the pij’s are given as inputs.

For each user i, we call the vector pi = (pi1, pi2, ..., pim) consisting of clickthrough probabilities

for user i for all messages a user profile. We also call the set of all user profiles {pi}ni=1 a

user pool.

User fatigue. To limit user fatigue, each of the n users must not receive more than one

message. As mentioned earlier, we only consider a single-day problem, so this assumption is

equivalent to requiring that no more than one message must be sent to each user per day.

Reward and budget. Each message j ∈ {1, 2, ...,m} has budget of cj · rj. We call cj

211

the capacity of message j. If message j receives k clickthroughs in total, then we earn a

reward of rj min(k, cj) from message j. In this way, we view messages as resources, and the

capacity of a resource is the number of clickthroughs that will just exhaust the budget.

Special message 1. Among the m messages, message 1 is a personalized recommenda-

tion that recommends products selected from all online stores at Alibaba Group. We assume

that message 1 has infinite capacity because there is no limit as to how many additional visits

the online market can receive. The reward r1 can be interpreted as the long-term expected

marginal reward of a visit.

Other messages 2, 3, ...,m correspond to campaigns and commercial ads, and have finite

capacity values.

In practice, most users prefer products recommended by message 1 over products in

other campaign and advertising messages. The reason is that we personalize this message 1

to every user by selecting his/her favorite products from millions of online stores at Alibaba.

It is unlikely that we cannot find a product from such a huge number of stores that a user

prefers over products in other messages (except on the infrequent occasions that advertizers

offer huge discounts for their products). We formally state these conditions in the following

assumption.

Assumption 5.3.1.

c1 =∞, pi1 ≥ pij ∀i = 1, 2, ..., n, j = 1, 2, ...,m.

According to this assumption, no user will ever receive message j if rj < r1, because

212

instead of sending message j, it is more beneficial to send message 1 that has a larger

clickthrough probability and a larger reward value. Therefore, we assume that rj ≥ r1 for

all message j ∈ {2, 3, ...,m}. In other words, we assume that the marginal reward earned

from campaign and advertising messages is at least r1.

Number of cycles. The system can sequentially send messages to the n users in several

cycles throughout the day. At the beginning of each cycle, the system can observe the

clickthroughs in the previous cycle. Then the system sends messages to a subset of users

who have not received messages yet. The decision of which messages to be sent to which

users in each cycle can be adapted to the clickthroughs observed previously. An algorithm

can choose how many cycles to use. However, for the algorithm to be practically useful, the

number of cycles used should be small.

Objective. The objective is to maximize the expected total reward, where the expec-

tation is taken over random user responses (i.e., clicking or not). Mathematically, under a

policy Π, let IΠ
ij indicate whether user i clicks message j. The expected total reward V Π of

Π is

V Π = E[
m∑
j=1

rj min(
n∑
i=1

IΠ
ij , cj)].

5.4 Performance Measure

We compare the performance of our algorithms against that of an optimal algorithm OPT

by analyzing the asymptotic regret defined in (1.1.3) (with slightly different notations). As

discussed earlier, an algorithm is limited to using a few cycles if it is to be practically useful.

213

However, we relax this requirement for OPT, and allow OPT to take an unlimited number of

cycles. Then, OPT will never risk wasting opportunities by sending out too many messages

in a single cycle. Therefore, we must have

n∑
i=1

IOPT
ij ≤ cj, ∀j = 1, 2, ...,m, w.p.1, (5.4.1)

And the objective value of OPT is

V OPT =
m∑
j=1

rj ·
n∑
i=1

E[min(IOPT
ij , cj)] =

m∑
j=1

rj ·
n∑
i=1

E[IOPT
ij]. (5.4.2)

For a given problem instance, the regret of an algorithm Π is

V OPT − V Π =
m∑
j=1

rj ·
n∑
i=1

E[IOPT
ij]− E[

m∑
j=1

rj ·min(
n∑
i=1

IΠ
ij , cj)].

5.5 Linear-Programming Formulation and Upper Bound

on OPT

It is difficult to directly analyze the optimal policy OPT due to its complex dynamic proper-

ties. We are thus motivated to investigate an upper bound on V OPT that is computationally

tractable. In this section, we show that V OPT can be bounded by the optimal objective

value of a linear program, which allocates users to messages once in an expected sense. The

214

algorithms we present in subsequent sections will also be based on an optimal solution to

the same linear program.

To this end, consider the following pairs of LP’s that are dual to each other:

Primal:

V LP = max
s∈Rn+m

n∑
i=1

m∑
j=1

rjsijpij

s.t.
n∑
i=1

sijpij ≤ cj, ∀j = 1, 2, ...,m

m∑
j=1

sij = 1, ∀i = 1, 2, ..., n

sij ≥ 0, ∀i, j.

(5.5.1)

Dual:

min
γ∈Rm, η∈Rn

m∑
j=1

cjγj +
n∑
i=1

ηi

s.t. ηi ≥ (rj − γj)pij, ∀i = 1, 2, ..., n, j = 1, 2, ...,m

γj ≥ 0, ∀j = 1, 2, ...,m.

(5.5.2)

Both the primal and dual forms of the linear program have physical interpretations.

In the primal problem (5.5.1), the decision variable sij represents the fraction of user i to

be allocated to message j. For each message j, the linear program matches the expected

number of clickthroughs to the capacity cj. In the dual problem (5.5.2), the dual variable γj

corresponds to the primal constraint
∑n

i=1 sijpij ≤ cj, and ηi corresponds to
∑m

j=1 sij = 1.

Let s∗, γ∗, η∗ be a set of optimal dual variables. According to complementary slackness, if

215

s∗ij > 0, i.e., the optimal solution allocates user i to message j with positive probability, we

must have

j ∈ argmaxk=1,2,...,m{(rk − γ∗k)pik}. (5.5.3)

If we view γ∗k as a cost incurred by every clickthrough of message k, then (rk − γ∗k)pik is the

expected profit of sending message k to user i. In other words, the dual problem implies

that every user is allocated a message that maximizes the expected profit in this sense.

The following theorem shows that the expected total reward of OPT can be bounded by

the above linear program.

Theorem 5.5.1.

V OPT ≤ V LP .

Proof. Define

JΠ
ij ≡

1, if Π sends message j to user i,

0, otherwise.

Then, the objective value (5.4.2) becomes

m∑
j=1

rj ·
n∑
i=1

E[JOPTij]pij, (5.5.4)

which is the same as the objective of the linear program (5.5.1) when E[JOPT
ij] is the decision

variable.

216

Taking expectation on both sides of (5.4.1), we get

n∑
i=1

E[IOPTij] ≤ cj

=⇒
∑
i∈N

E[JOPTij] · pij ≤ cj, ∀j = 1, 2, ...,m,

which is the first constraint of the linear program.

Moreover, the model requires
∑m

j=1 J
OPT
ij = 1, which gives the second constraint of the

LP.

In sum, E[JOPTij] satisfies all the constraints of the LP, and thus the optimal objective

value of the LP is an upper bound on (5.5.4).

The Static Algorithm is a naive implementation of the LP solution. The algorithm sends

out all messages in a single cycle based on an optimal solution to the LP (5.5.1). The name

static comes from the fact that it does not adapt to user feedback.

Static Algorithm:

1. Solve the linear program (5.5.1). Let s∗ be an optimal solution.

2. In a single cycle, send message j to user i with probability s∗ij, for all i = 1, 2, ..., n,

j = 1, 2, ...,m.

We will use analyze the performance of the Static Algorithm in Section 5.14 and use that as

a basis for comparison when analyzing the performance of our Reservation Algorithm, which

we will describe in the next section.

217

5.6 The Reservation Algorithm

In this section we present the Reservation Algorithm, which refines the Static Algorithm by

adapting to user feedback. Specifically, the algorithm sends out messages in two cycles. In

the first cycle, it partially sends out messages based on s∗. This step is similar to the Static

Algorithm except that some users are reserved for the second cycle. Then based on user

feedback, the algorithm re-solves a linear program for the remainder of capacity and users.

In the second cycle, the algorithm sends messages according to an optimal solution to this

re-optimized linear program.

Core to the algorithm is the decision of which users should be reserved (i.e., should not

receive messages in the first cycle). Intuitively, if s∗ allocates user i to message j (i.e., s∗ij = 1)

but we do not send user i any message in the first cycle, we are hoping that in case message

j has its budget exhausted in the first cycle, user i can be directed to some other message

having positive remaining budget. Thus, for each message j, we want to reserve a certain

number of users who are allocated to message j according to s∗, who also have relatively

high clickthrough probabilities for other messages. These users are good candidates for

redirection, in case the budget of message j becomes exhausted after the first cycle.

The actual set of users reserved by the Reservation Algorithm is determined by a pa-

rameter ∆, which we call the reservation level. Given a problem instance, we can run the

algorithm using any value of ∆. The remaining capacity of each message that is unassigned

in the first cycle due to reservation will be roughly proportional to ∆. In theory, we will

218

show a way of choosing the parameter ∆ to ensure an upper bound on the regret of the

algorithm. In practice, we can tune ∆ to achieve the best empirical performance.

The Reservation Algorithm works as follows:

1. Solve the linear program (5.5.1) to find an optimal solution s∗ such that
∑n

i=1 ‖s∗i ‖0 ≤

n+m2, where ‖ · ‖0 stands for the number of non-zero elements in the vector. In other

words, the number of users who are simultaneously (fractionally) allocated to multiple

messages should be no more than m2. This condition is not required to implement

this algorithm in practice, but only to simplify the analysis. Our Proposition 5.6.1

guarantees that one such s∗ always exists and can be easily found by adding some

infinitesimally small noise to the coefficients pij’s of the linear program.

2. For every pair of messages j, k ∈ {1, 2, ...,m}, j 6= k, solve the following problem to

find a set Rjk that contains users who are intended for message j according to s∗, but

who will be now reserved for message k in the second cycle.

min
Rjk⊆{1,2,...,n}

∑
i∈Rjk

s∗ijpij

s.t. pikplj ≥ plkpij ∀i ∈ Rjk, l 6= Rjk

∑
i∈Rjk

s∗ijpij ≥ min(∆,
n∑
i=1

s∗ijpij).

(5.6.1)

The first constraint of this optimization problem states that the users i ∈ Rjk selected

should be those having the largest ratios of pik/pij among all users. These users are

219

deemed the most promising to be reserved for message k. The second constraint states

that either Rjk is the set of all users, or the expected number of clickthroughs that

message j is to receive from the users in Rjk, according to the allocation s∗, is at

least ∆. The objective function keeps the expected number of clickthroughs that are

reduced due to the reservation as small as possible.

Note that for some user i and message j, it is possible to have i ∈ Rjk for many different

k’s, meaning that user i is suitable to be redirected to multiple different messages in

the second cycle. Furthermore, since the objective function keeps minimal the size of

Rjk, we must have ∑
i∈Rjk

s∗ijpij ≤ ∆ + 1. (5.6.2)

3. Send message j to user i in the first cycle with probability

x
(1)
ij ≡ s∗ij · 1(i 6∈

m⋃
k=1,k 6=j

Rjk). (5.6.3)

Note that the condition i ∈ Rjk only indicates that the algorithm reserves the fraction

s∗ij of user i that is allocated to message j; if there is another fraction of user i allocated

to some other message, say j′, then user i may receive message j′ in the first cycle even

if i ∈ Rjk.

Compared to the Static Algorithm, this step reduces the expected number of click-

220

throughs that each message j will receive in the first cycle by

n∑
i=1

1(i ∈
m⋃

k=1,k 6=j

Rjk)s∗ijpij ≤
m∑

k=1,k 6=j

∑
i∈Rjk

s∗ijpij ≤ (m− 1)(∆ + 1), (5.6.4)

where the last inequality follows from (5.6.2).

4. Let Dj be the actual number of clickthroughs that message j receives in the first cycle.

Solve the following linear program that allocates the residual demands to capacities.

max
xij ,i=1,2,...,n,j=1,2,...,m

n∑
i=1

m∑
j=1

rjxijpij

s.t.
n∑
i=1

xijpij ≤ (cj −Dj)
+, ∀j = 1, 2, ...,m

m∑
j=1

xij = 1−
m∑
j=1

x
(1)
ij , ∀i = 1, 2, ..., n

xij ≥ 0, ∀i, j.

(5.6.5)

5. Let x(2) be an optimal solution to (5.6.5). In the second cycle, for any user i ∈

{1, 2, ..., n} who was not sent message in the first cycle, send message j to the user

with probability

x
(2)
ij∑m

k=1 x
(2)
ik

.

The following proposition establishes the condition that
∑n

i=1 ‖s∗i ‖0 ≤ n+m2 as required

in the Reservation Algorithm.

Proposition 5.6.1. Consider the non-trivial case where r1 > 0 and ‖pi‖1 > 0 for every

221

i ∈ {1, 2, ..., n}. If for any two users i, l ∈ {1, 2, ..., n}, i 6= l, and any two messages

j, k ∈ {1, 2, ...,m}, j 6= k, we have pikplj 6= plkpij, then any optimal solution s∗ to the linear

program (5.5.1) must satisfy
∑n

i=1 ‖s∗i ‖0 ≤ n+m2.

Proof. Suppose there is a solution s∗ that violates the proposition, i.e.,
∑n

i=1 ‖s∗i ‖0 > n+m2.

Then there are more than m2 users who are simultaneously routed to more than one message

according to s∗. Since there are

(
m

2

)
< m2 unique ways to choose unique pairs of messages,

there must exist two users i, l ∈ {1, 2, ..., n}, i 6= l, and two messages j, k ∈ {1, 2, ...,m},

j 6= k, such that s∗ij > 0, s∗ik > 0, s∗lj > 0, s∗lk > 0.

Let γ∗ be the vector of optimal dual variables to (5.5.2) that correspond to the capacity

constraints. According to (5.5.3), we must have

(rj − γ∗j)pij = (rk − γ∗k)pik ≥ (r1 − γ∗1)pi1 = r1pi1,

where the last step follows from the fact that c1 =∞ and thus γ∗1 = 0 (see Lemma 5.12.1).

Similarly, we have

(rj − γ∗j)plj = (rk − γ∗k)plk ≥ (r1 − γ∗1)pl1 = r1pl1.

Combining the above two equations, we have

(rj − γ∗j)pij · (rk − γ∗k)plk = (rk − γ∗k)pik · (rj − γ∗j)plj

222

=⇒ (rj − γ∗j)(rk − γ∗k) · pijplk = (rk − γ∗k)(rj − γ∗j) · pikplj.

Then if pikplj 6= plkpij, we must have (rj − γ∗j)(rk − γ∗k) = 0. Thus, either rj − γ∗j = 0 or

rk − γ∗k = 0, which implies r1pi1 = r1pl1 = 0. According to Assumption 5.3.1, this implies

that pi1 = 0 ⇒ ‖pi‖1 = 0. Therefore, we must have either r1 = 0 or ‖pi‖1 = 0, which is a

contradiction.

The regret of the Reservation Algorithm clearly depends on the value of ∆. In the

special case of ∆ = 0, the algorithm does not reserve any users and thus reduces to the

Static Algorithm. The Reservation Algorithm chooses ∆ as

∆ = C ·
m∑
j=2

√
cj · log

m∑
j=2

cj, (5.6.6)

where C > 0 is any small constant that we can further tune to improve the performance of

the algorithm. Note that messages 2 to m have finite capacity values (see Section 5.3), so ∆

is finite.

5.7 Overview of Analysis of the Reservation Algorithm

In this section, we outline a way to bound the regret of the Reservation Algorithm. We

prove this result by analyzing the gap between the expected total reward of this algorithm

and the upper bound on the optimal total reward given by Theorem 5.5.1.

Recall that Dj is the random number of clickthroughs that message j receives in the first

223

cycle, which is a Poisson binomial random variable with mean E[Dj] =
∑n

i=1 x
(1)
ij pij. Define

δj to be the noise in Dj

δj ≡ Dj − E[Dj] = Dj −
n∑
i=1

x
(1)
ij pij. (5.7.1)

Our analysis is based on the idea of viewing δj as a small perturbation to the capacity cj.

After the first cycle, the remaining capacity of message j is (cj−Dj)
+, which can be written

as

(cj −Dj)
+ = [(cj − δj)+ − E[Dj]]

+.

Intuitively, we view (cj − δj)+ as the perturbed capacity of message j. Then the noise δj

arises from this random capacity (cj − δj)+.

The following is the perturbed linear program in which the capacity of message j is

perturbed by δ.

V LP (δ) = max
sij ,i=1,2,...,n,j=1,2,...,m

n∑
i=1

m∑
j=1

rjsijpij

s.t.
n∑
i=1

sijpij ≤ (cj − δj)+, ∀j = 1, 2, ...,m

m∑
j=1

sij = 1, ∀i = 1, 2, ..., n

sij ≥ 0, ∀i, j.

(5.7.2)

Note that V LP (δ) is a random variable as it is a function of the random noise δ. The

224

following lemma, which will later be used in the analysis, relates our Reservation Algorithm

to the perturbed linear program.

Lemma 5.7.1. If there exists an optimal solution s(δ) to the perturbed linear program (5.7.2)

such that s(δ) ≥ x(1) component wise, then x(1) +x(2) must be an optimal solution to (5.7.2).

Proof. Suppose there exists an s(δ) such that s(δ) = x(1) +y and y ≥ 0. We can equivalently

write the constraints of (5.7.2) as

n∑
i=1

sij(δ)pij ≤ (cj − δj)+

⇐⇒
n∑
i=1

yijpij ≤ (cj − δj)+ −
n∑
i=1

x
(1)
ij pij

⇐⇒
n∑
i=1

yijpij ≤ (cj − δj −
n∑
i=1

x
(1)
ij pij)

+ (because y ≥ 0)

⇐⇒
n∑
i=1

yijpij ≤ (cj −Dj)
+.

And
m∑
j=1

sij(δ) = 1⇐⇒
m∑
j=1

yij = 1−
m∑
j=1

x
(1)
ij .

Therefore, knowing that s(δ) = x(1) + y and y ≥ 0, we can transform the problem of finding

y into the linear program (5.6.5). Thus, x(2) must be at least as good as y, from which it

follows that x(1) + x(2) is optimal for (5.7.2).

Let V RA be the expected total reward of the Reservation Algorithm. We bound the

gap between V RA and the upper bound V LP on the optimal reward by using V LP (δ) as an

225

intermediate value between the two, and by writing the gap as the sum of two smaller gaps:

V LP − V RA = (V LP − E[V LP (δ)]) + (E[V LP (δ)]− V RA).

The first gap, namely V LP − E[V LP (δ)], depends on the way in which V LP (δ) behaves

as a function of δ. It is easy to check that V LP (δ) is concave for all δ ≤ c, and the first

derivatives of V LP (δ) with respect to δ are equal to the negative of dual variables associated

with capacity constraints of (5.7.2) (Bertsimas and Tsitsiklis, 1997). Therefore, if the size of

δ is much smaller than c, we have from Jensen’s inequality that

E[V LP (δ)] ≤ V LP (E[δ]) = V LP (0) = V LP .

The gap V LP − E[V LP (δ)] is small if the first derivatives of V LP (δ), or the dual variables

of the perturbed linear program, change smoothly in δ. We will prove in Theorem 5.8.1 of

Section 5.8 that if γ(c) is a vector of optimal dual variables to the linear program (5.5.1)

when the capacity vector is c and if ek is the unit basis vector with the k-th element being

1, then provided that there exists a constant number γ̄ > 0 such that

|γj(c)− γj(c+ αek)| ≤ γ̄ (5.7.3)

for all j, k ∈ {1, 2, ...,m}, all α ∈ [0, 1] and for all c ∈ Rm
+ with c1 =∞, we have

V LP − E[V LP (δ)] ≤ m2(n+
√
n)γ̄.

226

The second gap, namely E[V LP (δ)]−V RA, is largely determined by the difference between

the assignments made by the Reservation Algorithm and the perturbed linear program. We

will show that when ‖δ‖1 is not too large compared to ∆, x(1) + x(2) will be an optimal

solution to the perturbed linear program. That is, the assignment made by the Reservation

Algorithm will be very close to the assignment for V LP (δ), and hence the total expected

reward of the Reservation Algorithm will be close to V LP (δ). We prove a condition by which

x(1) +x(2) is optimal for the perturbed linear program, by viewing our model as a generalized

network flow problem and by utilizing flow properties in the generalized network. We will

prove in Theorem 5.9.4 of Section 5.9 that

E[V LP (δ)]− V RA ≤
m∑
j=1

rj

[√
m∆ + 3m2 + nP (Ō) +

√
nP (Ō)

]
,

where O denote the event that
∑m

j=2 |δj|
rj
r1
≤ ∆.

Combining the bounds on the two gaps, we will obtain a bound on the regret of the

Reservation algorithm as

V LP − V RA ≤ m2(n+
√
n)γ̄ +

m∑
j=1

rj

[√
m∆ + 3m2 + nP (Ō) +

√
nP (Ō)

]
. (5.7.4)

Finally, in Section 5.10, we will show that this bound grows relatively slowly under an

appropriate asymptotic scaling of the problem. Part of this analysis involves showing that,

under reasonable assumptions, condition (5.7.3) holds when we reduce γ̄ while scaling up

the size of the problem.

227

5.8 Bound on the First Gap

In this section, we give a bound on the first of the two gaps described in Section 5.7, namely,

V LP − E[V LP (δ)].

Theorem 5.8.1. Let γ(c) be a vector of optimal dual variables to the linear program (5.5.1)

when the capacity vector is c. Let ek be a unit basis vector with the k-th element being 1. If

there exists a constant number γ̄ > 0 such that

|γj(c)− γj(c+ αek)| ≤ γ̄ (5.8.1)

for all j, k ∈ {1, 2, ...,m}, all α ∈ [0, 1] and for all c ∈ Rm
+ with c1 =∞, then we have

V LP − E[V LP (δ)] ≤ m2(n+
√
n)γ̄.

Proof. Fix δ. We want to find the difference between V LP = V LP (0) and V LP (δ) in terms of

the derivative of the function V LP (·). It is known that the Lagrangian multiplier γj(c) is the

marginal benefit of increasing the capacity cj of message j (Bertsimas and Tsitsiklis, 1997,

p.155-156). Thus, for any u ∈ Rm such that u ≤ c, the derivative of V LP (u) with respect to

uj is −γj(c− u).

Let c be the capacity vector given in the model. Define a vector δ(j) ∈ Rm as

δ
(j)
i =

min(ci, δi), for i ≤ j,

0, for i > j.

228

For each component j = 1, 2, ...,m, we want to integrate the derivative of V LP (·) from cj

to (cj−δj)+ while keeping other components unchanged. This can be achieved by integrating

from vector c− δ(j−1) to c− δ(j) for each component j, which can be written as

V LP (δ) = V LP +
m∑
j=1

∫ |min(cj ,δj)|

0

−γj(c− δ(j−1) − xej)
δj
|δj|

dx.

According to (5.7.3), we must have ∀u ∈ Rm such that u ≤ c,

|γj(c− u)− γj(c)| ≤ (‖u‖1 +m)γ̄, ∀j = 1, 2, ...,m.

This gives us that if δj < 0 then

∫ |min(cj ,δj)|

0

−γj(c− δ(j−1) − xej)
δj
|δj|

dx =

∫ −δj
0

γj(c− δ(j−1) − xej)dx

≥
∫ −δj

0

[
γj(c)− (‖δ(j−1) + xej‖1 +m)γ̄

]
dx

≥
∫ −δj

0

[γj(c)− (‖δ‖1 +m)γ̄] dx

= |δj| [γj(c)− (‖δ‖1 +m)γ̄] .

And if δj > 0 then

∫ |min(cj ,δj)|

0

−γj(c− δ(j−1) − xej)
δj
|δj|

dx =

∫ min(cj ,δj)

0

−γj(c− δ(j−1) − xej)dx

≥
∫ min(cj ,δj)

0

[
−γj(c)− (‖δ(j−1) + xej‖1 +m)γ̄

]
dx

≥
∫ min(cj ,δj)

0

[−γj(c)− (‖δ‖1 +m)γ̄] dx

229

= min(cj, δj) [−γj(c)− (‖δ‖1 +m)γ̄]

≥ δj [−γj(c)− (‖δ‖1 +m)γ̄] ,

where the last inequality follows from the fact that γj(c) and γ̄ are both non-negative.

In sum, we can write

∫ |min(cj ,δj)|

0

−γj(c− δ(j−1) − xej)
δj
|δj|

dx ≥ −δjγj(c)− |δj|(‖δ‖1 +m)γ̄

=⇒ V LP (δ) ≥ V LP +
m∑
j=1

[−δjγj(c)−|δj|(‖δ‖1 +m)γ̄] = V LP −
m∑
j=1

δjγj(c)− (‖δ‖2
1 +m‖δ‖1)γ̄.

Since E[δ] = 0, we then have

V LP − E[V LP (δ)] ≤
m∑
j=1

E[δj]γj(c) + (E[‖δ‖2
1] +mE[‖δ‖1])γ̄

= (E[‖δ‖2
1] +mE[‖δ‖1])γ̄.

Using Jensen’s inequality, we can obtain E[|δj|] ≤
√
V ar(δj). Thus,

E[‖δ‖1] =
m∑
j=1

E[|δj|]

≤
m∑
j=1

√
V ar(δj)

=
m∑
j=1

√√√√ n∑
i=1

x
(1)
ij pij(1− x

(1)
ij pij)

≤ m
√
n.

230

Furthermore,

E[‖δ‖2
1] =

m∑
j=1

m∑
k=1

E[|δjδk|]

≤
m∑
j=1

m∑
k=1

1

2
E[δ2

j + δ2
k]

=
m∑
j=1

m∑
k=1

1

2
(V ar(δj) + V ar(δk))

=
m∑
j=1

m∑
k=1

1

2

(
n∑
i=1

x
(1)
ij pij(1− x

(1)
ij pij) + x

(1)
ik pik(1− x

(1)
ik pik)

)
≤ m2n.

Combining the above inequalities, we get

V LP − E[V LP (δ)] ≤ m2(n+
√
n)γ̄.

The intuition for the above result is that if the dual vector γ changes smoothly as a

function of the capacity c, then the difference in value between the two LP ’s can be bounded.

5.9 Bound on the Second Gap via Generalized Net-

work Flows

In this section, we cast our static linear-programming formulation as a generalized network

flow problem (Wayne, 1999). The generalized networks corresponding to the original and

231

the perturbed linear programs are the same, except that some of the edges have different

capacity values. Based on network-flow properties, we analyze how an optimal flow, or

equivalently, an optimal assignment given by the linear program (5.5.1), changes when the

capacity values are perturbed by δ. This analysis enables us to bound the second of the two

gaps described in Section 5.7, namely the difference E[V LP (δ)]− V RA.

As a main result of this section, we show that the resulting changes made to an optimal

assignment can be bounded by the size of δ. This result will lead to a condition by which

x(1) + x(2), which is the solution used by RA (with objective value V RA), is optimal for the

perturbed linear program (with objective value E[V LP (δ)]).

Figure 5.2: In a generalized flow network, every user i corresponds to a user node ui, and
every message j corresponds to a message node vj. T is the sink.

The network-flow problem we describe next specializes the generalized network-flow prob-

lem (Wayne, 1999) to a specific graph. There will be a few minor changes that we will point

out presently.

232

5.9.1 Construction of a generalized flow network

We now construct our generalized network-flow problem. In our flow network, there is a

set U of user nodes and a set V of message nodes. Each user i ∈ {1, 2, ..., n} corresponds

to a user node ui ∈ U , and each message j ∈ {1, 2, ...,m} corresponds to a message node

vj ∈ V . There is also a sink T . Every user node ui has an initial excess e(ui) = 1. The

initial excesses at all other nodes are 0. The unit initial excess at a user node ui means that

there is a single user i to be assigned to a message.

Figure 5.2 illustrates the set E of directed edges in the generalized network. From every

user node ui ∈ U to every message node vj ∈ V , there is an edge (ui, vj) ∈ E having capacity

c(ui, vj) = ∞. From every message node vi to the sink, there is an edge (vi, T) ∈ E having

capacity c(vj, T) = cj.

A generalized pseudo-flow is a function f : E → R+ that satisfies the capacity constraints

0 ≤ f(u, v) ≤ c(u, v), ∀(u, v) ∈ E. Note that according to Assumption 5.3.1, starting from

any user node ui ∈ U , there is always a path ui → v1 → T having infinite capacity. Thus, it

is always possible to push all initial excesses at all user nodes to the sink.

In a generalized network-flow problem, flows might not be conserved along edges. Every

edge (u, v) ∈ E is associated with a gain factor µ(u, v). When a flow is sent along an edge

(u, v) ∈ E by a generalized pseudo-flow f , the size of the flow leaving from u is f(u, v), while

the size of the flow arriving at v is µ(u, v)f(u, v). In our problem, every edge (ui, vj) from a

user node ui to a message node vj has gain factor µ(ui, vj) = pij. In this way, the size of a

flow f(ui, vj) leaving ui represents the allocation sij in the linear program (5.5.1), while the

233

size of flow µ(ui, vj)f(ui, vj) = pijf(ui, vj) arriving at vj represents the expected number of

clickthroughs that message j receives from user i. Every edge (vj, T) from a message node

vj to the sink has gain factor µ(vj, T) = rj. In this way, the size of a flow f(vj, T) leaving

vj represents the total expected number of clickthroughs assigned to message j, while the

size of the flow µ(vj, T)f(vj, T) = rjf(vj, T) arriving at T represents the expected reward

earned from message j.

The excess of a node u (as opposed to the initial excess) is the difference between the

initial excess at u and the net outflow at u:

e(u)−
∑

(u,v)∈E

f(u, v) +
∑

(v,u)∈E

µ(v, u)f(v, u).

In this thesis chapter, we call a generalized pseudo-flow f a feasible flow if f has zero

excess at all nodes other than T . Consequently, every feasible flow corresponds to a feasible

solution to the linear program (5.5.1) in the following way

f(ui, vj) = sij, ∀i = 1, 2, ..., n, j = 1, 2, ...,m,

f(vj, T) =
n∑
i=1

sijpij, ∀j = 1, 2, ...,m.

The objective of our generalized network-flow problem is to find a feasible flow that

maximizes the excess at the sink, which is by definition

e(T)−
∑

(T,v)∈E f(T, v) +
∑

(v,T)∈E µ(v, T)f(v, T)

234

= 0− 0 +
∑

(v,T)∈E µ(v, T)f(v, T)

=
∑

(v,T)∈E µ(v, T)f(v, T)

=
∑m

j=1 rjf(vj, T)

=
∑m

j=1 rj
∑n

i=1 sijpij. (5.9.1)

Thus, every optimal solution s∗ to (5.5.1) must correspond to an optimal flow f ∗.

For any generalized pseudo-flow f , the residual network with respect to f is the network

Gf = (U, V, T, Ef , cf , µ, e), where Ef is the set of directed edges in the residual network

defined as

Ef = {(u, v) ∈ E : f(u, v) < c(u, v)} ∪ {(v, u) : (u, v) ∈ E, f(u, v) > 0},

and cf is the residual capacity defined for every edge in Ef in the following way. If (u, v) ∈ E,

then cf (u, v) = c(u, v)− f(u, v); otherwise, cf (u, v) = µ(v, u)f(v, u).

For every edge (u, v) ∈ Ef in the residual network, we further define its length as w(u, v) =

− log µ(u, v) if (u, v) ∈ E, and w(u, v) = log µ(v, u) if (u, v) 6∈ E. By this definition, if a flow

is pushed in the residual network along a path d1 → d2 → · · · → dk such that the excesses

at all nodes are unchanged except at d1 and dk, then the size of the flow arriving at dk is

e−[w(d1,d2)+w(d2,d3)+···+w(dk−1,dk)] (5.9.2)

times the size of the flow leaving node d1 (for a more detailed discussion, see Wayne (1999)).

235

Therefore, the flow arriving at the last node of the path is larger (smaller) than the flow

leaving from the first node if the total length of the path w(d1, d2)+w(d2, d3)+· · ·+w(dk−1, dk)

is negative (positive). In particular, if the path is a cycle, i.e., d1 is the same node as dk,

then the flow returning to d1 is greater than the flow leaving d1 if and only if the cycle is a

negative cycle, i.e., the total length of the cycle is negative. In other words, if we push a flow

along a negative cycle, we can increase the excess at one node in the cycle without changing

the excesses at all other nodes.

Previous works have studied various types of augmentations for the generalized network

flow problem. Given a generalized pseudo-flow, an augmentation modifies flow values on

a certain subset of edges in the residual network, such that the resulting flow remains a

generalized pseudo-flow. Most often, an augmentation keeps the excesses of most nodes

unchanged. In this thesis chapter we focus on two types of augmentations: augmentation

along paths and along cycles. Here a cycle can be as well seen as a path that starts and ends

at the same node. Both types of augmentations aim at increasing the excess at the sink,

thereby increasing the objective value of the solution corresponding to the resulting flow

as we showed in (5.9.1). When an augmentation is performed along a path in the residual

network from node v to the sink T , a flow is pushed along the path such that the excess at

v is reduced, the excess at T is increased, and the excess at every other node is unchanged.

If v is itself the sink, and the augmentation is performed along a cycle that covers v = T ,

then the excess at v = T increases if and only if the cycle is a negative cycle (see (5.9.2)).

236

5.9.2 Properties of optimal flows in the generalized flow network

Based on special properties of our model, the following theorem strengthens a known result

(for example, see Wayne (1999)) that when a generalized pseudo-flow has no negative cycle

in the residual network and has zero excess at all nodes other than T , then the maximum

flow is attained.

Theorem 5.9.1. In our model, a feasible flow f is optimal if and only if there is no negative

cycle in the residual network Gf .

Proof. It has been proved that when a generalized pseudo-flow has zero excess at all nodes

other than T and has no negative cycle in the residual network, the flow is optimal (for

example, see Wayne (1999)). Thus, a feasible flow f with no negative cycles in Gf must be

optimal.

To prove the other direction, suppose f is an optimal flow with a negative cycle in the

residual network. Then we can push a flow along the cycle to create a positive excess at

some user node u while keeping the excess at all other nodes unchanged. We then direct this

excess created at node u through the path u → v1 → T that has infinite capacity. In this

way, we obtain a feasible flow with a larger size of excess at the sink, which proves that the

original flow f is not optimal.

Now we consider the problem of how to modify an optimal flow when the capacity of

some message k ∈ {2, ...,m} is perturbed. Note that perturbing the capacity of message

1 has no impact as it has infinite capacity. We give algorithms that find an optimal flow

for the perturbed network by modifying a given optimal solution to the original network.

237

These algorithms are designed mainly for the purpose of providing structural results for our

model. The algorithms are not meant to be implemented. Rather, we use them to argue

certain facts about the way in which an optimal solution changes when the capacity of some

message k ∈ {2, ...,m} changes.

Let G = (U, V, T, E, c, µ, e) and Ḡ = (U, V, T, E, c̄, µ, e) be two generalized networks of

our model that differ by the capacity on a single edge (vk, T) for some given k ∈ {2, ...,m}.

Given an optimal flow f for the network G, the following algorithms find an optimal flow

for Ḡ by successively performing augmentations along shortest paths or negative cycles in

the residual network. We give a different algorithm depending on whether c̄(vk, T) is greater

than or less than c(vk, T).

Case 1. Algorithm for the case 0 ≤ c̄(vk, T) < c(vk, T):

1. Construct a generalized pseudo-flow f̄ for Ḡ as follows. Let

f̄(vk, T) = min(c̄(vk, T), f(vk, T)) (5.9.3)

for the edge (vk, T), and let f̄(u, v) = f(u, v) for all other edges (u, v) ∈ E. Since f

is optimal for G, there is no negative cycle in the residual network Gf according to

Theorem 5.9.1. It is easy to see that there is also no negative cycle in the residual

network Ḡf̄ because according to (5.9.3), the edge set of Gf must contain the edge set

of Ḡf̄ . Thus, if f̄ is feasible, then f̄ is already an optimal flow for Ḡ.

Now suppose that f̄ is not feasible. It must be that the excess at node vk is positive.

238

2. Find a shortest path from vk to T in the residual network Ḡf̄ .

3. Perform an augmentation along the shortest path such that either the excess at node

vk reaches 0 or the residual capacity of one of the edges in the path is reduced to 0.

Update the residual network Ḡf̄ .

4. Stop if f̄ becomes feasible. Otherwise, go to step 2.

It is easy to check that there will be no negative cycle generated in the residual network

throughout the algorithm, because otherwise, the previous shortest path would have passed

though the negative cycle to further reduce the total length of the path. Therefore, the

algorithm outputs an optimal flow f̄ for Ḡ.

Case 2. Algorithm for the case c̄(vk, T) > c(vk, T).

1. Start with an initial flow f̄ = f . Suppose f̄ is not optimal for Ḡ. Then since f̄

is feasible for Ḡ, there must exist some negative cycle in the residual network Ḡf̄ .

Moreover, all negative cycles in Ḡf̄ must include the edge (vk, T).

2. Find a simple cycle, i.e., a cycle that contains only distinct nodes, having the smallest

(negative) total length. This can be solved by finding a shortest path from T to vk.

3. Perform an augmentation along this shortest negative cycle to increase the excess at T

such that the residual capacity of one of the edges in the cycle is reduced to 0. Update

the residual network Ḡf̄ . After the augmentation, all negative cycles in Ḡf̄ , if there is

any, must still pass through (vk, T) because the augmentation is performed along the

shortest cycle.

239

4. Stop if there is no more negative cycles in Ḡf̄ . Otherwise, go to step 2.

This algorithm outputs an optimal flow f̄ for the network Ḡ, as f̄ is always feasible

throughout the algorithm and, by the end of the algorithm, there is no negative cycle in the

residual network.

The main structural property of our model that we want to prove is given by the following

theorem.

Theorem 5.9.2. For any two message nodes vj, vk ∈ V and vk 6= v1, when c(vk, T) changes

to c̄(vk, T) (with the capacity values of all other edges unchanged), the total size of augmenting

flows leaving vj in the above algorithm is at most |c̄(vk, T)− c(vk, T)|rk/r1.

Proof. Since the bound stated in the theorem is additive and linear in |c(vk, T)− c̄(vk, T)|,

it suffices to prove the case that the gap |c(vk, T)− c̄(vk, T)| is very small. It is easy to see

that when |c(vk, T)− c̄(vk, T)| is small enough, the network flow algorithms will perform no

more than one augmentation. Thus, we only focus on the case where the algorithms perform

only one augmentation.

For Case 1, recall that 0 ≤ c̄(vk, T) < c(vk, T). Suppose initially f̄ is not optimal for Ḡ,

i.e., f̄(vk, T) < f(vk, T). In other words, some users are originally assigned to message k,

but now have to move to other messages due to the decrease in the capacity.

Suppose that the algorithm performs exactly one augmentation along a shortest path

from vk to T . Let θj be the size of the augmenting flow that leaves node vj, ∀vj ∈ V . We

need to show that ∀vj ∈ V ,

θj ≤ θk
rk
r1

.

240

This is clearly true when j = k, as our model requires rk ≥ r1 (see Section 5.3. Note that

the theorem holds even if we allow rk < r1, in which case changing the capacity of message

k will have no affect at all).

Suppose there is some l 6= k such that θl > θk
rk
r1

. Let ui be the user node preceding vl in

the augmenting path. Then the size of the augmenting flow passing through ui is θl/pil. Let

P be the part of the augmenting path from vk to ui. According to (5.9.2), we can obtain

the total length of P from the relative size of the augmenting flow at nodes vk and ui. The

total length of P is

log
θk

θl/pil
.

Consider the cycle P → v1 → T → vk that returns to vk. This cycle must exist in the

residual network because the edges (ui, v1) and (v1, T) always have infinite capacity, and the

edge (T, vk) exists in Gf since f(vk, T) > 0. The total length of the cycle is

log
θk

θl/pil
+ w(ui, v1) + w(v1, T) + w(T, vk)

= log
θk

θl/pil
− log pi1 − log r1 + log rk

= log

(
θk
θl
· rk
r1

· pil
pi1

)
≤ log

(
θk
θl
· rk
r1

)
(by Assumption 5.3.1)

<0.

In other words, the cycle is a negative cycle. According to Theorem 5.9.1, this contradicts

the fact that f is optimal for G. Thus, we must have θj ≤ θk
rk
r1

for every vj ∈ V .

241

For Case 2, recall that c̄(vk, T) > c(vk, T). Suppose initially f̄ = f is not optimal for Ḡ.

Recall that any negative cycle in the residual network Ḡf̄ must pass through (vk, T). Again

suppose there is exactly one augmentation performed by the algorithm and let θj be the size

of the augmenting flow that leaves node vj ∈ V . Similarly, we need to prove that θj ≤ θk
rk
r1

,

∀j = 1, 2, ...,m. The case of j = k is again trivially true as we only consider the case rk ≥ r1.

Suppose there is some l 6= k such that θl > θk
rk
r1

. Let ui be the user node following vl in

the augmenting cycle. Then the size of the augmenting flow that passes through ui is θl/pil.

Furthermore, the size of the augmenting flow that leaves T is θkrk. Let P be the part of the

augmenting cycle from T to ui. According to (5.9.2), we can obtain the total length of P

from the relative size of the augmenting flow at T and ui. The total length of P is

log
θkrk
θl/pil

.

Consider the new cycle P → v1 → T which returns to T . This new cycle must exist in

the residual network because the edges (ui, v1) and (v1, T) have infinity capacity. The total

length of the new cycle is

log
θkrk
θl/pil

+ w(ui, v1) + w(v1, T)

= log
θkrk
θl/pil

− log pi1 − log r1

= log

(
θk
θl
· rk
r1

· pil
pi1

)
.

Similar to the previous argument, this total length is negative, because θl > θk
rk
r1

and accord-

242

ing to Assumption 5.3.1, pil ≤ pi1. In other words, this new cycle is also a negative cycle.

However, this new cycle does not pass through edge (vk, T), which forms a contradiction.

Thus, for Case 2 we also have θj ≤ θk
rk
r1

, ∀j = 1, 2, ...,m.

5.9.3 Bounding the second gap

Now we consider how the optimal flow for the perturbed system relates to the assignment

made by the Reservation Algorithm.

When the capacity of each message k is perturbed by δk, we apply Theorem 5.9.2 to each

message k = 2, 3, ...,m by setting c̄(vk, T) = (ck − δk)+ (message 1 has infinite capacity and

thus perturbing it has no impact). Then the total size of augmenting flows leaving every

message node vj due to the perturbation δ, summed over all m messages, is at most

m∑
k=2

|δk|rk/r1. (5.9.4)

Finally, we prove Theorem 5.9.3 by showing that if (5.9.4) is smaller than ∆, then the

assignment x(1) +x(2) of the Reservation Algorithm is optimal for the perturbed system. The

proof relates the Reservation Algorithm to the network-flow algorithms above, by showing

that the shortest augmenting paths or cycles will pass only through user nodes ui that have

the smallest ratios of pij/pik for some messages j, k. Such users are just the ones reserved by

the Reservation Algorithm. To be more specific, the length of the augmenting path or cycle

243

that goes through nodes vj → ui → vk is

w(vj, ui) + w(ui, vk) = log
pij
pik
.

Since the augmenting paths and cycles seek the shortest length, they will only pass through

user nodes i that have the smallest values of pij/pik. We will show that such users i are

reserved in the set Rjk. Thus augmenting flows will not affect the assignment x(1), which

leads to the conclusion that x(1) is compatible with the optimal assignment for the perturbed

system.

Theorem 5.9.3. If
∑m

j=2 |δj|
rj
r1
≤ ∆, then x(1) + x(2) is an optimal solution to the perturbed

linear program (5.7.2).

Proof. Starting with an optimal flow f for the unperturbed network, as defined by the

optimal solution s∗ to the LP (5.5.1), we apply the network-flow algorithms above to obtain

an optimal flow f̄ for the perturbed network, as defined by the solution of (5.7.2). According

to Lemma 5.7.1, it suffices to show that if
∑m

j=2 |δj|
rj
r1
≤ ∆, we must have f̄(ui, vj) ≥ x

(1)
ij

for all ui ∈ U and vj ∈ V .

By the definition (5.6.3) of x(1), we must have s∗ ≥ x(1) and thus initially f(ui, vj) ≥ x
(1)
ij

for all ui ∈ U and vj ∈ V . Note that for any edge (ui, vj), the only way to reduce its flow

value is to send an augmenting flow that passes (vj, ui) in the residual graph. We claim that

if
∑m

j=2 |δj|
rj
r1
≤ ∆, no augmenting flow will ever pass through any edge (vj, ui) such that

x
(1)
ij > 0. This claim implies that for any x

(1)
ij > 0, the flow value on (ui, vj) can only increase

244

during the network flow algorithm, which proves that eventually f̄(ui, vj) ≥ f(ui, vj) ≥ x
(1)
ij

for any x
(1)
ij > 0.

To see the claim, suppose that at some step during augmentation, the augmenting flow

passes through (vj, ui) for some vj ∈ V and ui ∈ U . The node following ui in the augmenting

flow must be another message node vk ∈ V . The total length of vj → ui → vk is

w(vj, ui) + w(ui, vk) = log pij − log pik = log
pij
pik
.

Since the augmenting path or cycle has the shortest length, user i must have the smallest

value of plj/plk among all users l such that (vj, ul) exists in the residual network right before

the augmentation is performed. Recall that in the Reservation algorithm, we defined a set

Rjk of users l who have the smallest values of the ratio plj/plk. Therefore, if any user in Rjk

has a flow going to vj right before the augmentation is performed, we must have i ∈ Rjk and

thus x
(1)
ij = 0. When there is a tie in determining a user having the smallest ratio, we assume

without loss of generality that the network-flow algorithms first chooses for augmentation a

user from the set Rjk.

Initially, according to Step 2 of the Reservation algorithm, the total size of flow that vj

receives from the users in Rjk according to the solution s∗ is at least ∆ (or else all users

are in Rjk). Then if
∑m

j=2 |δj|
rj
r1
≤ ∆, we know by Theorem 5.9.2 that the total amount of

augmenting flows leaving vj is no more than ∆. Thus, the flows that vj receives from users

in Rjk can be reduced by at most ∆ throughout the network flow algorithms, which implies

245

that at any augmentation step of the network flow algorithms, at least one user in Rjk has

a flow going to vj. Combined with the argument above, this proves the claim.

Next, the gap between the total expected reward V RA of the Reservation Algorithm

and the optimal objective value of the perturbed linear program is given by the following

theorem.

Theorem 5.9.4. Let O denote the event that
∑m

j=2 |δj|
rj
r1
≤ ∆. We have

E[V LP (δ)]− V RA ≤
m∑
j=1

rj

[√
m∆ + 3m2 + nP (Ō) +

√
nP (Ō)

]
,

where the expectation is taken with respect to δ, and Ō is the complement of O.

Proof. Let D
(2)
j be the number of clickthroughs that message j receives in the second cycle.

The total expected reward of the Reservation Algorithm is

V RA =
m∑
j=1

rjE[min(cj, Dj +D
(2)
j)]

=
m∑
j=1

rjE[δj + min(cj − δj, Dj − δj +D
(2)
j)]

=
m∑
j=1

rjE[min(cj − δj, Dj − δj +D
(2)
j)]

=
m∑
j=1

rjE[min(cj − δj,E[Dj] +D
(2)
j)]

=
m∑
j=1

rjE[min(cj − δj,
n∑
i=1

x
(1)
ij pij +D

(2)
j)]. (5.9.5)

Here we interpret cj − δj as the perturbed capacity of message j, and
∑n

i=1 x
(1)
ij pij +D

(2)
j as

246

the ‘actual’ number of clickthroughs that message j receives in both two cycles. In other

words, we view δ as an exogenous noise that arises in the capacity values.

According to Theorem 5.9.3, x(1) +x(2) is an optimal solution to the perturbed linear pro-

gram conditional on O. Then the expected objective value of the perturbed linear program

can be written as

E[V LP (δ)] = E[V LP (δ)|O]P (O) + E[V LP (δ)|Ō]P (Ō)

= E[
m∑
j=1

rj

n∑
i=1

(x
(1)
ij + x

(2)
ij)pij|O]P (O) + E[V LP (δ)|Ō]P (Ō)

≤ E[
m∑
j=1

rj

n∑
i=1

(x
(1)
ij + x

(2)
ij)pij|O]P (O) + n · max

j=1,2,...,m
rj · P (Ō). (5.9.6)

Here the last inequality follows from the fact that n ·maxj=1,2,...,m rj is an upper bound on

the total reward value of any allocation.

Conditional on O, the constraint of the perturbed linear program gives

n∑
i=1

(x
(1)
ij + x

(2)
ij)pij ≤ (cj − δj)+,∀j = 1, 2, ...,m.

This implies that, if
∑n

i=1 x
(1)
ij pij > 0, we must have cj > δj. On the other hand, if∑n

i=1 x
(1)
ij pij = 0, we must have Dj = 0 =⇒ δj = 0. In sum, conditional on the event

O, we always have cj ≥ δj, and thus

n∑
i=1

(x
(1)
ij + x

(2)
ij)pij ≤ cj − δj,∀j = 1, 2, ...,m. (5.9.7)

247

Define

δ
(2)
j ≡ D

(2)
j −

n∑
i=1

x
(2)
ij pij.

Combining (5.9.5) and (5.9.6), we get

E[V LP (δ)]− V RA

≤E[
m∑
j=1

rj

n∑
i=1

(x
(1)
ij + x

(2)
ij)pij|O]P (O) + n · max

j=1,2,...,m
rj · P (Ō)

−
m∑
j=1

rjE[min(cj − δj,
n∑
i=1

x
(1)
ij pij +D

(2)
j)]

≤E[
m∑
j=1

rj

n∑
i=1

(x
(1)
ij + x

(2)
ij)pij|O]P (O) + n · max

j=1,2,...,m
rj · P (Ō)

−
m∑
j=1

rjE[min(cj − δj,
n∑
i=1

x
(1)
ij pij +D

(2)
j)|O]P (O)

=
m∑
j=1

rjE[
n∑
i=1

(x
(1)
ij + x

(2)
ij)pij −min(cj − δj,

n∑
i=1

x
(1)
ij pij +D

(2)
j)|O]P (O) + n max

j=1,2,...,m
rjP (Ō)

=
m∑
j=1

rjE[
n∑
i=1

(x
(1)
ij + x

(2)
ij)pij −min(cj − δj,

n∑
i=1

(x
(1)
ij + x

(2)
ij)pij + δ

(2)
j)|O]P (O) + n max

j=1,2,...,m
rjP (Ō),

where δ
(2)
j = D

(2)
j −

∑n
i=1 x

(2)
ij pij. We apply the identity a −min(b, a + c) ≤ max(0,−c) for

any a ≤ b to the above equation and continue to deduce that

m∑
j=1

rjE[
n∑
i=1

(x
(1)
ij + x

(2)
ij)pij −min(cj − δj,

n∑
i=1

(x
(1)
ij + x

(2)
ij)pij + δ

(2)
j)|O]P (O) + n max

j=1,2,...,m
rjP (Ō)

≤
m∑
j=1

rjE[max(0,−δ(2)
j)|O]P (O) + n max

j=1,2,...,m
rjP (Ō) because of (5.9.7)

≤
m∑
j=1

rjE[max(0,−δ(2)
j)] + n max

j=1,2,...,m
rjP (Ō)

248

≤
m∑
j=1

rjE[|δ(2)
j |] + n max

j=1,2,...,m
rjP (Ō). (5.9.8)

For any user i who satisfies ‖s∗i ‖0 = 1, where s∗ is an optimal solution to the LP (5.5.1),

we must have either ‖x(1)
i ‖1 = 1 or ‖x(2)

i ‖1 = 1. That is, we know for sure in which cycle this

user will receive a message. Then according to the condition
∑n

i=1 ‖s∗i ‖0 ≤ n+m2 required

in Step 1 of the Reservation Algorithm, there are at most m2 users i that satisfy ‖s∗i ‖0 > 1.

This implies that at most m2 users i have 0 < ‖x(2)
i ‖1 < 1 (i.e., each of these users has

positive probabilities to both receive and not receive a message in the first cycle).

Let U (2) be the set of users who are sent messages in the second cycle. Then there are

at most m2 users who have positive probabilities to be either in or not in U (2). Thus,

E[|δ(2)
j |] =E[|D(2)

j −
n∑
i=1

x
(2)
ij pij|]

≤E[|D(2)
j −

∑
i∈U(2)

x
(2)
ij

‖x(2)
i ‖1

pij|] + E[|
∑
i∈U(2)

x
(2)
ij

‖x(2)
i ‖1

pij −
n∑
i=1

x
(2)
ij pij|] by the triangle inequality

≤E[|D(2)
j −

∑
i∈U(2)

x
(2)
ij

‖x(2)
i ‖1

pij|] +m2 since at most m2 users i have 0 < ‖x(2)
i ‖1 < 1

≤

√√√√√E

D(2)
j −

∑
i∈U(2)

x
(2)
ij

‖x(2)
i ‖1

pij

2+m2 by Jensen’s inequality

=

√√√√√E

 ∑
i∈U(2)

x
(2)
ij

‖x(2)
i ‖1

pij

(
1−

x
(2)
ij

‖x(2)
i ‖1

pij

)+m2 by the variance of binary variables

≤

√√√√E

[
n∑
i=1

x
(2)
ij pij

(
1− x(2)

ij pij

)]
+ 2m2 since at most m2 users i have 0 < ‖x(2)

i ‖1 < 1

249

≤

√√√√E

[
n∑
i=1

x
(2)
ij pij

]
+ 2m2. (5.9.9)

By Theorem 5.9.3, conditional onO,
∑n

i=1(x
(1)
ij +x

(2)
ij)pij and

∑n
i=1 s

∗
ijpij stand for the amount

of the capacity of message j allocated to users in the perturbed and original linear programs,

respectively. In the generalized residual network, an increment in the expected number of

clickthroughs that message j receives corresponds to an augmenting flow that passes through

the edge (vj, T). According to Theorem 5.9.2, the total increase in the expected number of

clickthroughs that message j receives due to the perturbation δ must be no more than∑m
k=2 |δk|

rk
r1

. In other words, conditional on O,

E[
n∑
i=1

(x
(1)
ij + x

(2)
ij)pij −

n∑
i=1

s∗ijpij|O] ≤
m∑
k=2

|δk|
rk
r1

≤ ∆, ∀j = 1, 2, ...,m.

=⇒ E[
n∑
i=1

x
(2)
ij pij|O] ≤ ∆ + E[

n∑
i=1

s∗ijpij −
n∑
i=1

x
(1)
ij pij|O]

= ∆ + E[
n∑
i=1

s∗ijpij1(i ∈
m⋃

k=1,k 6=j

Rjk)|O]

≤ ∆ + (m− 1)(∆ + 1)

= m∆ +m− 1,

where the last inequality follows from (5.6.4). From this, we can deduce that

E[
n∑
i=1

x
(2)
ij pij] ≤ E[

n∑
i=1

x
(2)
ij pij|O]P (O) + nP (Ō)

250

≤ m∆ +m− 1 + nP (Ō).

Combining this result with (5.9.8) and (5.9.9), we can deduce that

E[V LP (δ)]− V RA ≤
m∑
j=1

rj

√√√√E

[
n∑
i=1

x
(2)
ij pij

]
+ 2m2

+ n max
j=1,2,...,m

rjP (Ō)

≤
m∑
j=1

rj

[√
m∆ +m− 1 + nP (Ō) + 2m2

]
+ n max

j=1,2,...,m
rjP (Ō)

≤
m∑
j=1

rj

[√
m∆ + 3m2 + nP (Ō) +

√
nP (Ō)

]
.

5.10 Performance Analysis in an Asymptotic Regime

Due to the huge number of users and large capacity values involved in the real problem, we

are interested in studying the regret in the asymptotic regime. That is, we will quantify the

rate at which the regret grows as we scale up the size of the system.

5.11 Big-Data scaling

Define a series of problems with increasing sizes as follows. In the problem of size t, for

t = 1, 2, ...,∞, the number of users is n = t · n̄, and the capacity of message j is cj =

t · c̄j,∀j = 1, 2, ...,m, for some fixed c̄ and n̄. The number m of distinct messages and the

251

reward rj of each message j are fixed for all t. We require that Assumption 5.3.1 always

holds.

A naive way of scaling n users is to replicate the same set of users t times. However, as

we increase the size of the user pool, we also increase its diversity. In reality, it is extremely

rare that two active users have identical profiles because the profiles are learned based on

users’ personal history. A user’s history includes, for example, the types of products viewed,

purchased and put in the shopping cart over the past 3, 7, 30 days, the operating system

of his or her mobile phone, and the type of products sent to the user via push notification

over the past several days. Given such high granularity of user histories, it is unlikely that

any two active users would have identical profiles. Thus, we can think of the profiles of all

n = tn̄ users as samples drawn from some continuous distribution. As we scale up t, we are

drawing more sample points from this continuous distribution. We called this type of scaling

big-data scaling.

Hitherto, we have viewed the user pools as fixed. From this point onwards, we will begin

to view user pools as random. Formally, let pti = (pti1, p
t
i2, ..., p

t
im) denote the (random) profile

of user i in the problem of size t. According to Assumption 5.3.1, pti takes values in the region

P = {y ∈ [0, p̄]m : y1 ≥ yj,∀j = 2, 3, ...,m} (5.11.1)

for some constant p̄. By default, we take p̄ = 1. All of our proofs extend to the case that

0 < p̄ < 1.

Assumption 5.11.1 (Big-Data Scaling). Every pti is independently drawn from a continuous

252

Figure 5.3: A random sample of 10, 000 user profiles, projected onto two coordinates.

distribution with density f(·) having domain P. Furthermore, the density f(·) has upper and

lower bounds

0 < f ≤ f(y) ≤ f̄ , ∀y ∈ P .

This assumption can be justified by empirical evidence. We verified that in the real

dataset, less than 2% of active users have profiles that collide with those of other users. In

Figure 5.3, we illustrate the density f(·) by plotting the estimated click-through probabilities

for more than 10, 000 users randomly drawn from the real dataset.

Based on big-data scaling, we will analyze the rate at which the regret V OPT
t −V Π

t grows

as a function of the scaling parameter t. Here, V Π
t and V OPT

t denote the expected total

reward of the t-th problem under algorithms Π and OPT, respectively, conditional upon the

random user pools for problem t.

Note that as functions of the random user pools for the respective problems, {V Π
t } and

{V OPT
t } are sequences of random variables. Thus, our bound on the regret will be a prob-

253

abilistic bound. More precisely, in Theorem 5.13.1 of Section 5.13, we will show that with

probability 1, the regret V OPT
t − V RA

t of the Reservation Algorithm is O(t1/4 log t).

5.12 Implication on Smoothness of Big-Data Scaling

In this section, we show how big-data scaling leads to a smoothness property for the op-

timal dual variables to (5.5.2). We will use this property to establish condition (5.7.3).

This condition will help us to prove our asymptotic bound on the regret of the Reservation

Algorithm.

Let γ be a vector of dual variables for problem (5.5.2). This vector γ must satisfy several

conditions for it to be dual-optimal, as stated in the following lemma.

Lemma 5.12.1. If γ∗ is an optimal dual solution to (5.5.2), we must have

γ∗ ∈ G ≡ {γ ∈ Rm : 0 ≤ γj ≤ rj − r1, ∀j = 1, 2, ...,m}.

Proof. First, the assumption c1 =∞ implies that γ1 = 0.

Second, the assumption pij ≤ pi1,∀j = 2, ...,m, implies that we always have γj ≤ rj − r1.

This is because, according to (5.5.3), as long as γj is greater than rj − r1, no user will ever

be assigned to message j because it is always better to assign users to message 1:

γj ≥ rj − r1 =⇒ rj − γj ≤ r1 =⇒ pij(rj − γj) ≤ pi1r1, ∀i = 1, 2, ..., n.

In sum, the set of valid vectors of optimal dual variables γ is included in the region G.

254

Now for each problem of size t, let ct(γ) be a vector of capacity values for which γ is a

vector of optimal dual variables to the problem (5.5.2) (with c being replaced by ct(γ)). It

is easy to check that for any γ ∈ G, one such vector ct(γ) can always be found by allocating

users to messages j = 2, 3, ...,m according to the rule (5.5.3), i.e.,

ctj(γ) =
n∑
i=1

ptij1[j = arg max
k

(rk − γk)ptik]

=
n∑
i=1

ptij1[(rj − γj)ptij − (rk − γk)ptik ≥ 0 ∀ k = 1, . . . ,m], ∀j = 2, 3, ...,m.

Note that we have ignored the events that (rj − γj)ptij − (rk − γk)ptik = 0, i.e., a user can be

assigned to different messages without affecting dual feasibility, as these events occur with

probability 0 for a given γ.

Furthermore, we should set ct1(γ) = ∞ according to Assumption 5.3.1. Constructed in

this way, ct(γ) is a random vector, as it is a function of pt1, . . . , p
t
n.

As a main result in this section, we will prove that with probability 1, for all sufficiently

large t’s, the total expected number of clickthroughs, conditional on the random pool of

users, moved from one message to another is at least 1 when γ changes to β or vice versa,

whenever γ, β ∈ G with ‖γ − β‖∞ ≥ t−3/4.

Theorem 5.12.2. There exists a finite positive random integer t0 such that, with probability

255

1, for all t > t0 and for any vectors of dual variables γ, β ∈ G with ‖γ − β‖∞ ≥ t−3/4,

m∑
j=2

|ctj(γ)− ctj(β)| > 1.

The proof of Theorem 5.12.2 relies on a geometric analysis of the space P of user profiles.

Let us define in P the sub-polytope

Aj(γ) = {p ∈ P | (rj − γj)pj − (rk − γk)pk ≥ 0 ∀k = 1, . . . ,m}.

Then for j = 2, 3, ...,m, ctj(γ) can be expressed equivalently as

ctj(γ) =
n∑
i=1

ptij1[pti ∈ Aj(γ)].

In other words, the capacity ctj(γ) of message j is the sum of clickthrough probabilities

contributed by users whose profiles fall inside the polytope Aj(γ).

Consider two different vectors of dual variables γ, β ∈ G. If we change the dual variables

from γ to β, the users i who were assigned to message j under γ, but who are now moved

to other messages under β, must satisfy

pti ∈ Aj(γ) \ Aj(β).

For problem t, the total expected number of clickthroughs, conditional on the random pool

256

of users, moved away from message j is

n∑
i=1

ptij1[pti ∈ Aj(γ) \ Aj(β)]. (5.12.1)

It is easy to check that the expectation (over all randomly drawn user profiles) of (5.12.1) is

E

[
n∑
i=1

ptij1[pti ∈ Aj(γ) \ Aj(β)]

]
= nE

[
ptij1[pti ∈ Aj(γ) \ Aj(β)]

]
= n

∫
Aj(γ)\Aj(β)

xj ~dx.

The following lemma bounds the expected number of clickthroughs moved from one

message to another when γ changes to β.

Lemma 5.12.3. Given any two different vectors of dual variables γ, β ∈ G such that βl < γl

for some index l, we must have

∫
A1(γ)\A1(β)

x1
~dx ≥ 1

m+ 1

(
r1

rl − γl
− r1

rl − βl

) m∏
j=2,j 6=l

r1

rj − γj
.

Proof. We must have l 6= 1 because β1 = γ1 = 0.

Define a vector θ ∈ G to be θj = γj, ∀j 6= l, and θl = βl. Next, we will prove the lemma

by showing

∫
A1(γ)\A1(β)

x1
~dx ≥

∫
A1(γ)\A1(θ)

x1
~dx ≥ 1

m+ 1

(
r1

rl − γl
− r1

rl − βl

) m∏
j=2,j 6=l

r1

rj − γj
.

257

Any x ∈ A1(θ) must satisfy

x1r1 ≥ xj(rj − θj), ∀j = 2, 3, ...,m

=⇒ x1r1 ≥ xj(rj − γj), ∀j = 2, 3, ...,m,

which implies that

A1(θ) ⊆ A1(γ). (5.12.2)

Furthermore, since γ and θ only differ by the l-th component, for any x ∈ A1(γ) \A1(θ)

we must have

x1r1 < xl(rl − θl) =⇒ x1r1 < xl(rl − βl),

which implies that

A1(γ) \ A1(θ) ⊆ A1(γ) \ A1(β). (5.12.3)

Then (5.12.2) and (5.12.3) give us

∫
A1(γ)\A1(β)

x1
~dx ≥

∫
A1(γ)\A1(θ)

x1
~dx

=

∫
A1(γ)

x1
~dx−

∫
A1(θ)∩A1(γ)

x1
~dx

=

∫
A1(γ)

x1
~dx−

∫
A1(θ)

x1
~dx.

258

Recall that

Aj(γ) = {p ∈ P | (rj − γj)pj − (rk − γk)pk ≥ 0 ∀k = 1, . . . ,m}

and γ1 = 0. Therefore, the above integrals can be expressed in closed form as

∫
A1(γ)

x1
~dx =

∫ 1

0

x1

(∫ x1r1
r2−γ2

0

dx2

)(∫ x1r1
r3−γ3

0

dx3

)
· · ·

(∫ x1r1
rm−γm

0

dxm

)
dx1

=

∫ 1

0

x1

m∏
j=2

x1r1

rj − γj
dx1

=

∫ 1

0

xm1 dx1 ·
m∏
j=2

r1

rj − γj

=
1

m+ 1

m∏
j=2

r1

rj − γj
.

Thus,

∫
A1(γ)\A1(β)

x1
~dx ≥ 1

m+ 1

m∏
j=2

r1

rj − γj
− 1

m+ 1

m∏
j=2

r1

rj − θj

=
1

m+ 1

(
r1

rl − γl
− r1

rl − βl

) m∏
j=2,j 6=l

r1

rj − γj
.

For each message j = 2, 3, ...,m, Define a number of increments ntj as

ntj ≡ b
rj

0.5t−3/4
c.

259

Define a discretization of the real line in ntj increments as follows. Let gtj0 = 0, and let

gtj1, ..., g
t
jnj

be such that gtjk = gtj,k−1 + 0.5t−3/4 for k = 1, 2, ..., ntj.

Let ek denote the unit vector with the k-th element being one. Define regions Stjk ⊆

P , j = 2, 3, ...,m, k = 1, 2, ..., nj, in the user profile space as the difference between successive

polytopes A1(gtjk−1ej) and A1(gtjkej).

Stjk ≡ A1(gtjkej) \ A1(gtjk−1ej).

The sets Stjk, which we call cells, j = 1, . . . ,m, k = 1, . . . , ntj, t = 1, 2, . . . are a way to divide

up the space of user profiles into countably many fixed regions.

The following lemma establishes that there is at least one cell Stlk in the difference of

polytopes A1(γ) \ A1(β), for any pair of vectors γ and β in G such that γl ≥ βl + t−3/4.

Lemma 5.12.4. Fix t. For any two dual vectors γ, β ∈ G such that

γl ≥ βl + t−3/4

for some l ∈ {2, 3, ...,m}, there must exist some k ∈ {1, 2, ..., ntl} such that

Stlk ⊆ A1(γ) \ A1(β).

Proof. Since γl ≥ βl + t−3/4 and ntl ≤
rl

0.5t−3/4 , there must exist a k such that βl ≤ gtl,k−1 <

gtlk ≤ γl.

260

For any x ∈ A1(gtlkel), by definition we have x1r1 ≥ xl(rl − gtlk) and x1r1 ≥ xjrj for all

j 6= l, j = 2, 3, ...,m, which gives

x1r1 ≥ xl(rl − gtlk) ≥ xl(rl − γl)

and

x1r1 ≥ xjrj ≥ xj(rj − γj) ∀j 6= l, j = 2, 3, ...,m.

This implies that x ∈ A1(γ). It follows that A1(gtlkel) ⊆ A1(γ).

Next, for any x ∈ A1(gtlkel) ∩ A1(β), we must have x1r1 ≥ xl(rl − βl) ≥ xl(rl − gtl,k−1)

and x1r1 ≥ xjrj for all j 6= l, j = 2, 3, ...,m. This implies x ∈ A1(gtl,k−1el). It follows that

A1(gtlkel) ∩ A1(β) ⊆ A1(gtl,k−1el).

In sum, we conclude that A1(gtlkel) \ A1(gtl,k−1el) ⊆ A1(γ) \ A1(β).

Lemma 5.12.5. Let E tlk denote the event that

r1

maxj=1,2,...,m rj
·

n∑
i=1

pti11[pti ∈ Stlk] > 1.

There exist constants C1 and t∗ such that

P (E tlk) ≤ e
maxj=1,2,...,m rj

r1 ·
(

1− C1

t3/4

)tn̄

for all l = 2, . . . ,m, t ≥ t∗, and k = 1, . . . , ntl.

261

Proof. Recall that

Stlk ≡ A1(gtlkel) \ A1(gtlk−1el).

Let γ = gtlkel and β = gtlk−1el. Note that

∫
A1(γ)\A1(β)

x1
~dx ≥ 1

m+ 1

(
r1

rl − γl
− r1

rl − βl

) m∏
j=2,j 6=l

r1

rj − γj

≥ 1

m+ 1

(
r1

rl − γl
− r1

rl − (γl − 0.5t−3/4)

) m∏
j=2,j 6=l

r1

rj − γj

=
1

m+ 1

(
r1

rl − γl
− r1

rl − γl + 0.5t−3/4

) m∏
j=2,j 6=l

r1

rj − γj

=
1

m+ 1

(
0.5r1t

−3/4

(rl − γl)(rl − γl + 0.5t−3/4)

) m∏
j=2,j 6=l

r1

rj − γj

≥ 1

m+ 1

(
0.5t−3/4

r1 + 0.5t−3/4

) m∏
j=2,j 6=l

r1

rj − γj

≥ 1

m+ 1

(
0.5t−3/4

r1 + 0.5t−3/4

)
=

1

m+ 1

(
1

2t3/4r1 + 1

)
≥ Ct−3/4

for all t ≥ t∗, for some constant C and t∗. Above, the first inequality follows from Lemma

5.12.3; the second inequality from βl = γl − 0.5t−3/4; the third inequality from γl ≥ rl − r1;

and the fourth inequality from γj ≥ rj − r1 for all j > 1.

Next, using Chernoff’s bound, we have for all t ≥ t∗,

P (
r1

maxj=1,2,...,m rj
·

n∑
i=1

pti11[pti ∈ A1(γ) \ A1(β)] ≤ 1)

262

≤e
maxj=1,2,...,m rj

r1 ·
(
E[e−p

t
i11[pti∈A1(γ)\A1(β)]]

)n
.

Further, it is easy to check that for any x ∈ [0, 1], we have e−x ≤ 1− (1− e−1)x. Thus,

E[e−p
t
i11[pti∈A1(γ)\A1(β)]] ≤E[1− (1− e−1)pti11[pti ∈ A1(γ) \ A1(β)]]

=1− (1− e−1)E[pti11[pti ∈ A1(γ) \ A1(β)]]

=1− (1− e−1)

∫
A1(γ)\A1(β)

x1f(~x) ~dx

≤1− (1− e−1)f

∫
A1(γ)\A1(β)

x1
~dx

≤1− (1− e−1)fCt−3/4.

It follows that

P (
r1

maxj=1,2,...,m rj
·

n∑
i=1

pti11[pti ∈ A1(γ) \ A1(β)] ≤ 1)

≤e
maxj=1,2,...,m rj

r1 ·
(
1− (1− e−1)fCt−3/4

)n
=e

maxj=1,2,...,m rj
r1 ·

(
1− (1− e−1)fCt−3/4

)tn̄
=e

maxj=1,2,...,m rj
r1 ·

(
1− C1

t3/4

)tn̄

for C1 = (1− e−1)fC and for t ≥ t∗.

Proof of Theorem 5.12.2. We have shown in Theorem 5.9.2 that when γ changes to β, the

expected number of clickthroughs (5.12.1) (conditional on the random pool of users) leaving

263

message j can be bounded using the change in the capacity values as follows:

n∑
i=1

ptij1[pti ∈ Aj(γ) \ Aj(β)] ≤
m∑
k=2

|ctk(γ)− ctk(β)|rk/r1.

Note that in the above bound we do not consider the change made to the capacity of message

1, because message 1 has infinite capacity and thus any finite change made to this capacity

value has no impact on the assignment of users. The above bound leads to

m∑
j=2

|ctj(γ)− ctj(β)| ≥ r1

maxj=1,2,...,m rj
·

n∑
i=1

pti11[pti ∈ A1(γ) \ A1(β)]. (5.12.4)

Therefore, it suffices to show that with probability one,

r1

maxj=1,2,...,m rj
·

n∑
i=1

pti11[pti ∈ A1(γ) \ A1(β)] > 1

for all sufficiently large t and all γ, β ∈ G with γl ≥ βl + t−3/4 for some index l.

Based on Lemma 5.12.4, to prove the theorem, we just need to prove that there exists a

finite random number t0 such that E tjk holds for all t ≥ t0, j = 2, 3, ...,m, k = 1, 2, ..., ntj. By

the Borel-Cantelli Lemma, it suffices to show that

∞∑
t=1

P

(
∩mj=2 ∩

ntj
k=1 E tjk

)
<∞.

264

Indeed,

P

(
∩mj=2 ∩

ntj
k=1 E tjk

)
= 1− P

(
∩mj=2 ∩

ntj
k=1 E

t
jk

)
≤ 1−

m∏
j=2

ntj∏
k=1

P
(
E tjk
)

(because the events E tjk’s are positively correlated)

= 1−
m∏
j=2

ntj∏
k=1

(1− P (E tjk))

≤ 1−
m∏
j=2

ntj∏
k=1

[
1− e

maxj=1,2,...,m rj
r1 ·

(
1− C1t

−3/4
)tn̄]

(by Lemma 5.12.5)

≤ 1−
[
1− e

maxj=1,2,...,m rj
r1 ·

(
1− C1t

−3/4
)tn̄]C2t3/4

for an appropriately defined constant C2. That the events E tjk’s are positively correlated

can be explained by the fact that E tjk’s are independent if the corresponding sets Stjk do not

overlap. On the other hand, they contain a common set of profiles if they do overlap.

We can check that when t→∞,

(
1− C1t

−3/4
)tn̄

= e−C1n̄t1/4+o(1)

=⇒
[
1− e

maxj=1,2,...,m rj
r1 ·

(
1− C1t

−3/4
)tn̄]C2t3/4

=

[
1− e

maxj=1,2,...,m rj
r1

eC1n̄t1/4+o(1)

]C2t3/4

= exp
(
−C2t

3/4 · e
maxj=1,2,...,m rj

r1 · e−C1n̄t1/4 + o(e−C1n̄t1/4)
)

= 1− C2t
3/4 · e

maxj=1,2,...,m rj
r1 · e−C1n̄t1/4 + o(e−C1n̄t1/4)

265

=⇒1−
[
1− e

maxj=1,2,...,m rj
r1 ·

(
1− C1t

−3/4
)tn̄]C2t3/4

=C2t
3/4 · e

maxj=1,2,...,m rj
r1 · e−C1n̄t1/4 + o(e−C1n̄t1/4).

This proves that
∞∑
t=1

P

(
∩mj=2 ∩

ntj
k=1 E tjk

)
<∞.

5.13 Asymptotic Regret of the Reservation Algorithm

In this section we will bound the regret V LP
t − V RA

t in a probabilistic sense, in the big-data

scaling regime.

Recall that we choose the reservation level for a system of size t as (see (5.6.6))

∆(t) ≡ C ·
m∑
j=2

√
cj · log

m∑
j=2

cj = C ·
m∑
j=2

√
tc̄j · log

m∑
j=2

tc̄j. (5.13.1)

Here, C > 0 is fixed for all t. Recall that m is constant for all system size t, but n = t · n̄, and

cj = t · c̄j, ∀j = 1, 2, ...,m. For the instance of size t, let V LP
t denote the optimal objective

value of the linear program (5.5.1), and let γt(c) be a vector of its optimal dual variables

when the capacity vector is c; let V RA
t denote the expected total reward of the Reservation

Algorithm for size t (conditional on the random pool of users); let δt be the noise defined as

in (5.7.1), and let Ot denote the event that
∑m

j=2 |δtj|
rj
r1
≤ ∆(t).

266

Theorem 5.13.1. Suppose that for each problem t, the reservation level used in RA is ∆(t).

Then the regret of RA is O(t1/4 log t) with probability 1.

Proof. First, we claim that with probability 1, there exists a finite random integer t0 such

that for all t > t0, condition (5.7.3) holds when γ̄ is set to be γ̄t ≡ t−3/4 in the problem of

size t.

Let t0 be the random variable in Theorem 5.12.2. Suppose (5.7.3) does not hold for some

t > t0, i.e., with positive probability, for some t > t0, we can find c, α, j, and k, such that

|γtj(c)− γtj(c+ αek)| > t−3/4.

Then Theorem 5.12.2 implies that ‖c− (c + αek)‖1 > 1 =⇒ ‖αek‖1 > 1, which is a contra-

diction.

Therefore, (5.7.3) holds for t > t0 when γ̄t = t−3/4. It follows that Theorem 5.8.1 holds

with probability 1 for t > t0. Let Ut ≡ σ(pt1, p
t
2, ..., p

t
n) denote the random user pool for

problem t. Then the regret (5.7.4) of the algorithm becomes, for t > t0,

V LP
t − V RA

t ≤
m∑
j=1

rj

[√
m∆(t) + 3m2 + nP (Ōt|Ut) +

√
nP (Ōt|Ut)

]
+m2(n+

√
n)t−3/4.

Since

∆(t) = C ·
m∑
j=2

√
tc̄j · log

m∑
j=2

tc̄j = O(
√
t log t),

267

we have
m∑
j=1

rj
√
m∆(t) = O(t1/4 log t).

Furthermore,

m2(n+
√
n)t−3/4 = O(t1/4).

Define

V ar(δtj|Ut) ≡ E[(δtj)
2|Ut]− (E[δtj|Ut])2

as the variance of δtj given Ut as input. According to the central limit theorem, when

the standard deviation of δtj becomes large, δtj/
√
V ar(δtj|Ut) approaches a standard normal

distribution. Furthermore, since

V ar(δtj|Ut) =
n∑
i=1

pijx
(1)
ij (1− pijx(1)

ij) ≤
n∑
i=1

pijx
(1)
ij ≤ cj = c̄jt,

we must have, according to the central limit theorem,

P

(|δtj|√
c̄jt

> C̄ log t

∣∣∣∣Ut) = O(P (|Zt| > C̄ log t))

for any constant C̄ > 0 and for a sequence Z1, Z2, Z3, ... of i.i.d. standard normal random

variables. It is easy to check that

P (|Zt| > C̄ log t) = 2 · 1√
2π

∫ ∞
C̄ log t

e−x
2/2dx

<
2√
2π

∫ ∞
C̄ log t

x

C̄ log t
e−x

2/2dx

268

=
2√
2π

1

C̄ log t
e−(C̄ log t)2/2

= o(1/t),

from which we can deduce that

P

(|δtj|√
c̄jt

> C̄ log t

∣∣∣∣Ut) = o(1/t)

=⇒ P

(|δtj|√
c̄jt
· rj
r1

>
rj
r1

C̄ log t

∣∣∣∣Ut) = o(1/t)

=⇒ P

(
m∑
j=2

|δtj|√
c̄jt

rj
r1

>
m∑
j=2

rj
r1

C̄ log t

∣∣∣∣Ut
)
≤

m∑
j=2

P

(|δtj|√
c̄jt
· rj
r1

>
rj
r1

C̄ log t

∣∣∣∣Ut) = o(1/t)

=⇒ P

(
m∑
j=2

|δtj|
rj
r1

>

(
max

j=2,...,m

√
c̄j

) m∑
j=2

rj
r1

C̄
√
t log t

∣∣∣∣Ut
)

= o(1/t).

Then by choosing an appropriate value of C̄, we can easily obtain

(
max

j=2,...,m

√
c̄j

) m∑
j=2

rj
r1

C̄
√
t log t = ∆(t),

and hence,

P (Ōt|Ut) = P (
m∑
j=2

|δtj|
rj
r1

> ∆(t)|Ut) = o(1/t).

Thus, nP (Ōt|Ut) = tn̄P (Ōt|Ut) = o(1).

In sum, V LP
t − V RA

t = O(t1/4 log t) with probability 1. This proves the theorem because

V LP
t is an upper bound on V OPT

t .

269

5.14 Regret of the Static Algorithm

In this section, we analyze the regret of the Static Algorithm and compare it to that of the

Reservation Algorithm.

Under the Static Algorithm, the random number of clickthroughs that message j ∈

{1, 2, ...,m} receives has mean

bj ≡
n∑
i=1

s∗ijpij ≤ cj (5.14.1)

and standard deviation

σj ≡

√√√√ n∑
i=1

s∗ijpij(1− s∗ijpij) ≤
√
bj ≤

√
cj. (5.14.2)

Since σj is the size of noise in the random number of clickthroughs that message j

receives under this algorithm, we can expect that the regret of this algorithm grows as

O(σj) = O(
√
cj) = O(

√
t). The following theorem shows that O(

√
t) is an upper bound on

the regret of the Static Algorithm. Later, we will further show that O(
√
t) is a tight bound.

Theorem 5.14.1. The regret of the Static Algorithm is O(
√
t) almost surely.

Proof. We first focus on the analysis of a single problem of size t and suppress t in notation.

Fix the set of user profiles. Let V Static be the expected total reward of the static algorithm.

We have

V OPT − V Static ≤ V LP − V Static

270

=
m∑
j=1

rj[bj − E[min(cj,
n∑
i=1

IStaticij)]]

=
m∑
j=2

rj[bj − E[min(cj,
n∑
i=1

IStaticij)]]

=
m∑
j=2

rjE[max(bj − cj, bj −
n∑
i=1

IStaticij)]]

≤
m∑
j=2

rjE[max(0, bj −
n∑
i=1

IStaticij)]]

=
m∑
j=2

rjE[|bj −
n∑
i=1

IStaticij |]

≤
m∑
j=2

rjσj

≤
m∑
j=2

rj
√
cj.

In the asymptotic regime, since cj = t · c̄j, we have almost surely,

V OPT
t − V Static

t ≤
m∑
j=2

rj
√
cj = O(

√
t).

Finally, we prove a lower bound on the performance of the Static Algorithm with respect

to V LP
t . This result provides a worst-case lower bound on V RA

t − V Static
t .

Theorem 5.14.2. There exist problem instances in which almost surely,

V RA
t − V Static

t = Ω(
√
t).

271

Proof. Again let Ut denote the random user pool for problem t. Fix some message j ∈

{2, 3, ...,m}. Conditional on Ut, let Kt be the number of clickthroughs that message j

receives under the Static Algorithm.

Assume that p̄ = 0.5 in (5.11.1), i.e., all clickthrough probabilities are less than 0.5. Also

assume that the capacity of each message j ≥ 2 is fully allocated to users by the linear

program (5.5.1) almost surely for all t. This condition can be ensured by having small

capacities for all messages j ≥ 2. Then we have for all large t, E[Kt|Ut] = c̄jt. It is easy to

see that we must have, conditional upon the random user pools,

V LP
t − V Static

t ≥ rjE[max(0, c̄jt−Kt)|Ut] = rjE[max(0,E[Kt]−Kt)|Ut]

with probability 1 for each t. Furthermore, let V ar(Kt|Ut) = E[K2
t |Ut]− (E[Kt|Ut])2 denote

the variance of Kt given input Ut. We must have

√
V ar(Kt|Ut) =

√√√√ n∑
i=1

s∗ijpij(1− s∗ijpij) ≥

√√√√ n∑
i=1

s∗ijpij0.5 =
√

E[Kt|Ut]0.5 =
√
c̄jt0.5 = Ω(

√
t).

When t is large, Kt/
√
V ar(Kt|Ut) approaches a normal random variable with standard

deviation 1 almost surely. Thus, we must have almost surely

E[max(0,E[Kt]−Kt)|Ut] = Ω(
√
V ar(Kt|Ut)) = Ω(

√
t)

=⇒ V LP
t − V Static

t = Ω(
√
t).

272

In the proof of Theorem 5.13.1, we have proved V LP
t − V RA

t = o(
√
t). This leads to

V RA
t − V Static

t = Ω(
√
t).

5.15 Numerical Studies

We test the performance of the Reservation Algorithm and the Static Algorithm by simu-

lating their total reward values using real data of clickthrough probabilities.

We use three different data-sets. Each data set contains a set of messages that were

sent to several hundred million users on a certain day in March 2016, and the estimated

clickthrough probabilities between all the users and messages for that day.

We implement the algorithms on a distributed computing system using the MapReduce

framework. The linear program used in the algorithms is solved by smoothing the dual

problem (5.5.2) and then using a descent method. We refer the reader to Zhong et al. (2015)

for a similar distributed algorithm for solving an LP. Problem (5.6.1) in the second step of

the Reservation Algorithm is solved by using a binary search to find an appropriate ratio ω

such that pik/pij ≥ ω for every i ∈ Rjk.

The expected total reward for both algorithms are simulated based on clickthrough prob-

abilities provided by Alibaba. We vary the reservation level ∆ used in the Reservation Al-

gorithm over a range. For each test case, we report the relative regret of the two algorithms

as

α ≡ V LP − V RA

V LP − V Static
.

273

Note that since

V LP − V RA

V LP − V Static
≥ V OPT − V RA

V OPT − V Static
,

the ratios we report overestimate the actual regret of the Reservation Algorithm compared

to that of the Static Algorithm. That is, if compared against V OPT instead of V LP , the

actual performance of the Reservation Algorithm will be better than the results reported.

Figure 5.4 summarizes our test results. The actual performance of the Reservation Algorithm

highly depends on the types of products sent out on each day. Among the 3 test cases, our

Reservation Algorithm improves the total regret of the Static Algorithm by at least 10%

and as much as 50%. Thus, implementing the Reservation Algorithm is very promising in

improving the overall benefit earned from this mobile-based recommendation system.

Figure 5.4: Regret of the Reservation Algorithm relative to the Static Algorithm under
different values of ∆.

274

5.16 Conclusions

We study a budget allocation problem faced by Alibaba Group. Unlike traditional e-

commerce problems where ads can only be displayed when customers open up websites,

the system in this problem can proactively send out ads or campaign information to users

of mobile devices.

This resource allocation problem involves hundreds of millions of users. As a result,

useful allocation algorithms must be distributed and written in the MapReduce framework.

The allocation algorithms we propose rely on existing methods for solving large-scale lin-

ear programming problems. But more importantly, our algorithms are novel examples of

implementing Operations Research techniques, such as resource reservation and re-solving

heuristics, on a cloud computing platform.

In our analysis, we first prove that a conventional LP-based algorithm has asymptotic

regret O(
√
t), where t is the size of the system. We improve upon this regret by proposing

a new algorithm, called the Reservation Algorithm, that sends out ads and campaign infor-

mation in two cycles over a day, and updates decisions for the second cycle based on the

information observed in the first cycle.

We test the numerical performance of the algorithms by simulating them on terabytes of

production data provided by Alibaba. We find that our Reservation algorithm improves the

regret of the standard LP-based algorithm by 10%-50%.

Bibliography

Agrawal, Shipra, Zizhuo Wang, Yinyu Ye. 2014. A dynamic near-optimal algorithm for
online linear programming. Operations Research 62(4) 876–890.

Alaei, Saeed, Mohammad T Hajiaghayi, Vahid Liaghat. 2012. Online prophet-inequality
matching with applications to ad allocation. Proceedings of the 13th ACM Conference on
Electronic Commerce. ACM, 18–35.

Albers, Susanne, Hiroshi Fujiwara. 2007. Energy-efficient algorithms for flow time minimiza-
tion. ACM Transactions on Algorithms (TALG) 3(4) 49.

Ayvaz, Nur, Woonghee Tim Huh. 2010. Allocation of hospital capacity to multiple types of
patients. Journal of Revenue & Pricing Management 9(5) 386–398.

Babaioff, Moshe, Nicole Immorlica, David Kempe, Robert Kleinberg. 2008. Online auctions
and generalized secretary problems. SIGecom Exch. 7(2) 7:1–7:11.

Bahmani, Bahman, Michael Kapralov. 2010. Improved bounds for online stochastic match-
ing. Proceedings of the 18th Annual European Conference on Algorithms: Part I . ESA’10,
Springer-Verlag, Berlin, Heidelberg, 170–181.

Ball, Michael O, Maurice Queyranne. 2009. Toward robust revenue management: Competi-
tive analysis of online booking. Operations Research 57(4) 950–963.

Bansal, Nikhil, DavidP. Bunde, Ho-Leung Chan, Kirk Pruhs. 2011. Average rate speed
scaling. Algorithmica 60(4) 877–889.

Bansal, Nikhil, Ho-Leung Chan, Kirk Pruhs. 2009a. Speed scaling with an arbitrary power
function. Proceedings of the twentieth annual ACM-SIAM symposium on discrete algo-
rithms . Society for Industrial and Applied Mathematics, 693–701.

Bansal, Nikhil, Ho-Leung Chan, Kirk Pruhs, Dmitriy Katz. 2009b. Improved bounds for
speed scaling in devices obeying the cube-root rule. Automata, Languages and Program-
ming . Springer, 144–155.

Bansal, Nikhil, Tracy Kimbrel, Kirk Pruhs. 2007a. Speed scaling to manage energy and
temperature. J. ACM 54(1) 3:1–3:39.

275

276

Bansal, Nikhil, Kirk Pruhs, Cliff Stein. 2007b. Speed scaling for weighted flow time. Pro-
ceedings of the Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms . SODA
’07, Society for Industrial and Applied Mathematics, Philadelphia, PA, USA, 805–813.

Bertsimas, Dimitris, John Tsitsiklis. 1997. Introduction to Linear Optimization. 1st ed.
Athena Scientific.

Bienkowski, M. 2008. Ski rental problem with dynamic pricing. Institute Of Computer
Science, University Of Wroclaw, Report 3(08).

Blackburn, Joseph D. 1972. Optimal control of a single-server queue with balking and
reneging. Management Science 19(3) 297–313.

Borodin, Allan, Ran El-Yaniv. 2005. Online computation and competitive analysis . Cam-
bridge University Press.

Buchbinder, Niv, Kamal Jain, Joseph Seffi Naor. 2007. Online primal-dual algorithms for
maximizing ad-auctions revenue. Algorithms–ESA 2007 . Springer, 253–264.

Buchbinder, Niv, Tracy Kimbrel, Retsef Levi, Konstantin Makarychev, Maxim Sviridenko.
2013. Online make-to-order joint replenishment model: Primal-dual competitive algo-
rithms. Operations Research 61(4) 1014–1029.

BusinessWire. 2016. Alibaba group announces june quarter 2016 results.
http://www.businesswire.com/news/home/20160811005428/en.

Cardoen, Brecht, Erik Demeulemeester, Jeroen Beliën. 2010. Operating room planning and
scheduling: A literature review. European Journal of Operational Research 201(3) 921–
932.

Carr, Scott, Izak Duenyas. 2000. Optimal admission control and sequencing in a make-to-
stock/make-to-order production system. Operations Research 48(5) 709–720.

Chakrabarty, Deeparnab, Yunhong Zhou, Rajan Lukose. 2013. Online knapsack problems.
Workshop on internet and network economics (WINE).

Chan, Ho-Leung, Wun-Tat Chan, Tak-Wah Lam, Lap-Kei Lee, Kin-Sum Mak, Prudence WH
Wong. 2007. Energy efficient online deadline scheduling. Proceedings of the eighteenth
annual ACM-SIAM symposium on Discrete algorithms . Society for Industrial and Applied
Mathematics, 795–804.

Chen, B., Chris N. Potts, Gerhard J. Woeginger. 1998. A Review of Machine Scheduling:
Complexity, Algorithms and Approximability . Kluwer Academic Publishers.

Chen, Kai, Sheldon M Ross. 2014. An adaptive stochastic knapsack problem. European
Journal of Operational Research 239(3) 625–635.

277

Chen, Shaoxiang, Guillermo Gallego, Michael Z.F. Li, Bing Lin. 2010. Optimal seat al-
location for two-flight problems with a flexible demand segment. European Journal of
Operational Research 201(3) 897 – 908.

Ciocan, Dragos Florin, Vivek Farias. 2012. Model predictive control for dynamic resource
allocation. Mathematics of Operations Research 37(3) 501–525.

Ciocan, Dragos Florin, Vivek Farias. 2014. Fast demand learning for ad-display allocation.

Dellaert, N.P., M.T. Melo. 1998. Make-to-order policies for a stochastic lot-sizing prob-
lem using overtime. International Journal of Production Economics 5657(0) 79 – 97.
Production Economics: The Link Between Technology And Management.

Denton, Brian T., Andrew J. Miller, Hari J. Balasubramanian, Todd R. Huschka. 2010.
Optimal allocation of surgery blocks to operating rooms under uncertainty. Operations
Research 58(4-part-1) 802–816.

Devanur, Nikhil R, Thomas P Hayes. 2009. The adwords problem: online keyword match-
ing with budgeted bidders under random permutations. Proceedings of the 10th ACM
conference on Electronic commerce. ACM, 71–78.

Devanur, Nikhil R, Kamal Jain, Balasubramanian Sivan, Christopher A Wilkens. 2011. Near
optimal online algorithms and fast approximation algorithms for resource allocation prob-
lems. Proceedings of the 12th ACM conference on Electronic commerce. ACM, 29–38.

Devanur, Nikhil R, Balasubramanian Sivan, Yossi Azar. 2012. Asymptotically optimal al-
gorithm for stochastic adwords. Proceedings of the 13th ACM Conference on Electronic
Commerce. ACM, 388–404.

Elmachtoub, Adam, Yehua Wei. 2013. Retailing with opaque products. Unpublished
manuscript.

Elmachtoub, Adam N., Retsef Levi. 2015. From cost sharing mechanisms to online selection
problems. Mathematics of Operations Research 40(3) 542–557.

Elmachtoub, Adam N., Retsef Levi. 2016. Supply chain management with online customer
selection. Operations Research 64(2) 458–473.

Emarketer.com. 2016. E-commerce turns into m-commerce in china.
http://www.emarketer.com/Article/Ecommerce-Turns-Mcommerce-China/1013736.

Fay, Scott, Jinhong Xie. 2008. Probabilistic goods: A creative way of selling products and
services. Marketing Science 27(4) 674–690.

Fay, Scott, Jinhong Xie. 2015. Timing of product allocation: Using probabilistic selling to
enhance inventory management. Management Science 61(2) 474–484.

278

Federgruen, Awi, Kut C So. 1990. Optimal maintenance policies for single-server queueing
systems subject to breakdowns. Operations Research 38(2) 330–343.

Feldman, Jacob, Nan Liu, Huseyin Topaloglu, Serhan Ziya. 2014. Appointment scheduling
under patient preference and no-show behavior. Operations Research 62(4) 794–811.

Feldman, Jon, Monika Henzinger, Nitish Korula, Vahab S Mirrokni, Cliff Stein. 2010. Online
stochastic packing applied to display ad allocation. Algorithms–ESA 2010 . Springer, 182–
194.

Feldman, Jon, Aranyak Mehta, Vahab Mirrokni, S Muthukrishnan. 2009. Online stochastic
matching: Beating 1-1/e. Foundations of Computer Science, 2009. FOCS’09. 50th Annual
IEEE Symposium on. IEEE, 117–126.

Fujiwara, Hiroshi, Takuma Kitano, Toshihiro Fujito. 2011. On the best possible competitive
ratio for multislope ski rental. Algorithms and Computation. Springer, 544–553.

Gallego, G., G. Van Ryzin. 1997. A multiproduct dynamic pricing problem and its applica-
tions to network yield management. Operations Research 45(1) 24–41.

Gallego, Guillermo, Garud Iyengar, R Phillips, Abha Dubey. 2004. Managing flexible prod-
ucts on a network. Unpublished.

Gallego, Guillermo, Robert Phillips. 2004. Revenue management of flexible products. Man-
ufacturing & Service Operations Management 6(4) 321–337.

Gallego, Guillermo, Richard Ratliff, Sergey Shebalov. 2015. A general attraction model
and sales-based linear program for network revenue management under customer choice.
Operations Research 63(1) 212–232.

Gerchak, Yigal, Diwakar Gupta, Mordechai Henig. 1996. Reservation planning for elective
surgery under uncertain demand for emergency surgery. Management Science 42(3) pp.
321–334.

Gocgun, Yasin, Archis Ghate. 2012. Lagrangian relaxation and constraint generation for
allocation and advanced scheduling. Computers & Operations Research 39(10) 2323–
2336.

Goel, Gagan, Aranyak Mehta. 2008. Online budgeted matching in random input models with
applications to adwords. Proceedings of the nineteenth annual ACM-SIAM symposium on
Discrete algorithms . Society for Industrial and Applied Mathematics, 982–991.

Gönsch, Jochen, Sebastian Koch, Claudius Steinhardt. 2014. Revenue management with
flexible products: The value of flexibility and its incorporation into dlp-based approaches.
International Journal of Production Economics 153(0) 280 – 294.

Greenhouse, Steven. 2012. A part-time life, as hours shrink and shift. The New York Times
.

279

Guerriero, Francesca, Rosita Guido. 2011. Operational research in the management of the
operating theatre: a survey. Health care management science 14(1) 89–114.

Gupta, Anupam, Amit Kumar, Tim Roughgarden, et al. 2007. Approximation via cost
sharing: Simpler and better approximation algorithms for network design. Journal of the
ACM (JACM) 54(3) 11.

Gupta, D. 2007. Surgical suites’ operations management. Production and Operations Man-
agement 16(6) 689–700.

Gupta, Diwakar, Lei Wang. 2008. Revenue management for a primary-care clinic in the
presence of patient choice. Operations Research 56(3) 576–592.

Haeupler, Bernhard, Vahab S Mirrokni, Morteza Zadimoghaddam. 2011. Online stochas-
tic weighted matching: Improved approximation algorithms. Internet and Network Eco-
nomics . Springer, 170–181.

Huh, Woonghee Tim, Nan Liu, Van-Anh Truong. 2013. Multiresource allocation scheduling
in dynamic environments. Manufacturing & Service Operations Management 15(2) 280–
291.

Husain, Iltifat. 2014. Epic updates mychart app to sync with apple health, huge for mobile
health. http://www.imedicalapps.com/2014/10/epic-updates-mychart

-app-apple-health/.

Jaillet, Patrick, Xin Lu. 2013. Online stochastic matching: New algorithms with better
bounds. Mathematics of Operations Research 39(3) 624–646.

Jasin, Stefanus. 2015. Performance of an lp-based control for revenue management with
unknown demand parameters. Operations Research 63(4) 909–915.

Jasin, Stefanus, Sunil Kumar. 2012. A re-solving heuristic with bounded revenue loss for
network revenue management with customer choice. Mathematics of Operations Research
37(2) 313–345.

Karande, Chinmay, Aranyak Mehta, Pushkar Tripathi. 2011. Online bipartite matching with
unknown distributions. Proceedings of the forty-third annual ACM symposium on Theory
of computing . ACM, 587–596.

Karlin, Anna R., Mark S. Manasse, Lyle A. McGeoch, Susan Owicki. 1990. Competitive
randomized algorithms for non-uniform problems. Proceedings of the First Annual ACM-
SIAM Symposium on Discrete Algorithms . SODA ’90, Society for Industrial and Applied
Mathematics, Philadelphia, PA, USA, 301–309.

Karlin, Anna R, Mark S Manasse, Larry Rudolph, Daniel D Sleator. 1988. Competitive
snoopy caching. Algorithmica 3(1-4) 79–119.

280

Karp, R. M., U. V. Vazirani, V. V. Vazirani. 1990. An optimal algorithm for on-line bipar-
tite matching. Proceedings of the Twenty-second Annual ACM Symposium on Theory of
Computing . STOC ’90, 352–358.

Keskinocak, Pinar, R. Ravi, Sridhar Tayur. 2001. Scheduling and reliable lead-time quotation
for orders with availability intervals and lead-time sensitive revenues. Management Science
47(2) 264–279.

Kesselheim, Thomas, Klaus Radke, Andreas Tönnis, Berthold Vöcking. 2013. Algorithms –
ESA 2013: 21st Annual European Symposium, Sophia Antipolis, France, September 2-4,
2013. Proceedings , chap. An Optimal Online Algorithm for Weighted Bipartite Matching
and Extensions to Combinatorial Auctions. Springer Berlin Heidelberg, Berlin, Heidelberg,
589–600.

Kim, Song-Hee, Ward Whitt. 2014. Are call center and hospital arrivals well modeled by
nonhomogeneous poisson processes? Manufacturing & Service Operations Management
16(3) 464–480.

Kleinberg, Robert. 2005. A multiple-choice secretary algorithm with applications to online
auctions. Proceedings of the Sixteenth Annual ACM-SIAM Symposium on Discrete Al-
gorithms . SODA ’05, Society for Industrial and Applied Mathematics, Philadelphia, PA,
USA, 630–631.

Kleywegt, Anton J, Jason D Papastavrou. 1998. The dynamic and stochastic knapsack
problem. Operations Research 46(1) 17–35.

Lautenbacher, Conrad J., Shaler Stidham, Jr. 1999. The underlying markov decision process
in the single-leg airline yield-management problem. Transportation Science 33(2) 136–146.

Lee, Misuk, Alexandre Khelifa, Laurie A. Garrow, Michel Bierlaire, David Post. 2012. An
analysis of destination choice for opaque airline products using multidimensional binary
logit models. Transportation Research Part A: Policy and Practice 46(10) 1641 – 1653.

Lee, Tak C., Marvin Hersh. 1993. A model for dynamic airline seat inventory control with
multiple seat bookings. Transportation Science 27(3) 252–265.

Levi, R., R. O. Roundy, D. B. Shmoys, V. A. Truong. 2008a. Approximation algorithms for
capacitated stochastic inventory control models. Operations Research 56(5) 1184–1199.

Levi, Retsef, Ganesh Janakiraman, Mahesh Nagarajan. 2008b. A 2-approximation algorithm
for stochastic inventory control models with lost sales. Mathematics of Operations Research
33(2) 351–374.

Levi, Retsef, Martin Pál, Robin Roundy, David B. Shmoys. 2007. Approximation algorithms
for stochastic inventory control models. Mathematics of Operations Research 32(2) 284–
302.

281

Lin, Grace Y, Yingdong Lu, David D Yao. 2008. The stochastic knapsack revisited: Switch-
over policies and dynamic pricing. Operations Research 56(4) 945–957.

Littlewood, Ken. 1972. Forecasting and control of passenger bookings. Proceedings of the
12th AGIFORS Symposium, October .

Liu, Q., G. van Ryzin. 2008. On the choice-based linear programming model for network
revenue management. Manufacturing & Service Operations Management 10(2) 288.

Lotker, Zvi, Boaz Patt-Shamir, Dror Rawitz. 2012. Rent, lease, or buy: Randomized algo-
rithms for multislope ski rental. SIAM Journal on Discrete Mathematics 26(2) 718–736.

Lueker, George S. 1998. Average-case analysis of off-line and on-line knapsack problems.
Journal of Algorithms 29(2) 277–305.

Mahdian, Mohammad, Qiqi Yan. 2011. Online bipartite matching with random arrivals:
an approach based on strongly factor-revealing lps. Proceedings of the forty-third annual
ACM symposium on Theory of computing . ACM, 597–606.

Manshadi, Vahideh H, Shayan Oveis Gharan, Amin Saberi. 2012. Online stochastic matching:
Online actions based on offline statistics. Mathematics of Operations Research 37(4) 559–
573.

Marchetti-Spaccamela, Alberto, Carlo Vercellis. 1995. Stochastic on-line knapsack problems.
Mathematical Programming 68(1-3) 73–104.

Martin, G. E., Joyce L. Grahn, Lyn D. Pankoff, Laurence A. Madeo. 1992. A mechanism for
reducing small-business customer waiting-line dissatisfaction. Managerial and Decision
Economics 13(4) 353–361.

May, Jerrold H, William E Spangler, David P Strum, Luis G Vargas. 2011. The surgical
scheduling problem: Current research and future opportunities. Production and Operations
Management 20(3) 392–405.

Megow, Nicole, Marc Uetz, Tjark Vredeveld. 2006. Models and algorithms for stochastic
online scheduling. Mathematics of Operations Research 31(3) 513–525.

Mehta, Aranyak. 2012. Online matching and ad allocation. Theoretical Computer Science
8(4) 265–368.

Min, Daiki, Yuehwern Yih. 2010. An elective surgery scheduling problem considering patient
priority. Computers & Operations Research 37(6) 1091 – 1099.

Mirrokni, Vahab S, Shayan Oveis Gharan, Morteza Zadimoghaddam. 2012. Simultaneous
approximations for adversarial and stochastic online budgeted allocation. Proceedings of
the twenty-third annual ACM-SIAM symposium on Discrete Algorithms . SIAM, 1690–
1701.

282

Molinaro, Marco, R. Ravi. 2014. The geometry of online packing linear programs. Mathe-
matics of Operations Research 39(1) 46–59.

Noga, John, Steven S. Seiden. 2001. An optimal online algorithm for scheduling two machines
with release times. Theoretical Computer Science 268(1) 133 – 143. On-line Algorithms
’98.

Özdamar, Linet, Tülin Yazgaç. 1997. Capacity driven due date settings in make-to-order
production systems. International Journal of Production Economics 49(1) 29 – 44.

Papastavrou, Jason D, Srikanth Rajagopalan, Anton J Kleywegt. 1996. The dynamic and
stochastic knapsack problem with deadlines. Management Science 42(12) 1706–1718.

Patrick, Jonathan, Martin L. Puterman, Maurice Queyranne. 2008. Dynamic multipriority
patient scheduling for a diagnostic resource. Operations Research 56(6) 1507–1525.

Petrick, Anita, Jochen Gnsch, Claudius Steinhardt, Robert Klein. 2010. Dynamic control
mechanisms for revenue management with flexible products. Computers & Operations
Research 37(11) 2027 – 2039. Metaheuristics for Logistics and Vehicle Routing.

Publication, TechnologyAdvice Research. 2015. What digital services to patients want the
most. http://research.technologyadvice.com/trends-in-patient-engagement.

Reiman, Martin I., Qiong Wang. 2008. An asymptotically optimal policy for a quantity-
based network revenue management problem. Mathematics of Operations Research 33(2)
257–282.

Rubino, Melanie, Bar Ata. 2009. Dynamic control of a make-to-order, parallel-server system
with cancellations. Operations Research 57(1) 94–108.

Society of Thoracic Surgeons. 2016. Explanation of sts chsd mortality risk model.
http://www.sts.org/quality-research-patient-safety/sts-public-reporting

-online/explanation-of-sts-chsd-mortality-risk-model.

Spivey, Michael Z, Warren B Powell. 2004. The dynamic assignment problem. Transportation
Science 38(4) 399–419.

Stein, Clifford, Van-Anh Truong, Xinshang Wang. 2017. Advance service reservations with
heterogeneous customers. Working paper.

Stidham, Jr., S. 1985. Optimal control of admission to a queueing system. Automatic
Control, IEEE Transactions on 30(8) 705–713.

Talluri, K., G. Van Ryzin. 1998. An analysis of bid-price controls for network revenue
management. Management Science 44(11) 1577–1593.

Talluri, K., G. Van Ryzin. 2004. Revenue management under a general discrete choice model
of consumer behavior. Management Science 50(1) 15–33.

283

Talluri, Kalyan T., Garrett J. van Ryzin. 2004. The Theory and Practice of Revenue Man-
agement . Springer.

Truong, Van-Anh. 2014. Approximation algorithm for the stochastic multiperiod inventory
problem via a look-ahead optimization approach. Mathematics of Operations Research .

Truong, Van-Anh. 2015. Optimal advance scheduling. Management Science 61(7) 1584–
1597.

Van Slyke, Richard, Yi Young. 2000. Finite horizon stochastic knapsacks with applications
to yield management. Operations Research 48(1) 155–172.

Wagner, Michael R. 2010. Fully distribution-free profit maximization: The inventory man-
agement case. Mathematics of Operations Research 35(4) 728–741.

Wang, Xinshang, Van-Anh Truong. 2017. Multi-priority online scheduling with cancellations.
Operations Research . Forthcoming.

Wang, Xinshang, Van-Anh Truong, David Bank. 2015. Online advance admission scheduling
for services, with customer preferences. Working paper.

Wang, Xinshang, Van-Anh Truong, Shenghuo Zhu, Qiong Zhang. 2016. Dynamic optimiza-
tion of mobile push campaigns. Working paper.

Wayne, Kevin Daniel. 1999. Generalized maximum flow algorithms. Ph.D. thesis, Cornell
University, Ithaca, NY.

Yao, Frances, Alan Demers, Scott Shenker. 1995. A scheduling model for reduced cpu energy.
Foundations of Computer Science, 1995. Proceedings., 36th Annual Symposium on. IEEE,
374–382.

Zhang, Dan, William L. Cooper. 2005. Revenue management for parallel flights with
customer-choice behavior. Operations Research 53(3) 415–431.

Zhang, Liqi, Lingfa Lu, Jinjiang Yuan. 2009. Single machine scheduling with release dates
and rejection. European Journal of Operational Research 198(3) 975 – 978.

Zhong, Wenliang, Rong Jin, Cheng Yang, Xiaowei Yan, Qi Zhang, Qiang Li. 2015. Stock
constrained recommendation in tmall. Proceedings of the 21th ACM SIGKDD Interna-
tional Conference on Knowledge Discovery and Data Mining . KDD ’15, ACM, New York,
NY, USA, 2287–2296.

