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In this paper we consider the discrete time/resource trade-off problem in project networks. 

Given a project network consisting of nodes (activities) and arcs (technological precedence 

relations specifying that an activity can only start when all of its predecessors have been 

completed), in which the duration of the activities is a discrete, non-increasing function of the 

amount of a single renewable resource committed to it, the discrete time/resource trade-off 

problem minimizes the project makespan subject to precedence constraints and a single 

renewable resource constraint. For each activity a work content is specified such that all 

execution modes (duration - resource requirement pairs) for performing the activity are allowed 

as long as the product of the duration and the resource requirement is at least as large as the 

specified work content. We present a tabu search procedure which is based on subdividing the 

problem into a mode assignment phase and a resource-constrained project scheduling phase with 

fixed mode assignments. Extensive computational experience, including a comparison with other 

local search methods, is reported. 

KEYWORDS 

Project scheduling, Time/resource trade-offs, Local search, Tabu search, Branch-and-bound 
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1. Introduction 

The resource-constrained project scheduling problem (RCPSP) involves the nonpreemptive 

scheduling of project activities subject to finish-start precedence constraints and renewable 

resource constraints in order to minimize the project duration. Numerous exact and suboptimal 

procedures have been developed (for recent reviews see Herroelen and Demeulemeester, 1995 and 

Ozdamar and Ulusoy, 1995). In the RCPSP each activity has a single execution mode: both the 

activity duration and its requirements for a set of renewable resource types are assumed to be 

fixed. Herroelen (1972) and Elmaghraby (1977) were the first authors to deal with discrete time­

resource trade-offs and, correspondingly, multiple ways for executing the project activities. 

In practice it often occurs that only one renewable resource type is available (e.g. labor) in 

constant amount throughout the project. For each activity a work content (e.g. amount of man­

days) is specified. A set of allowable execution modes can then be specified for each activity, each 

characterized by a fixed duration (e.g. days) and a constant resource requirement (e.g. units/day), 

the product of which is at least equal to the activity's specified work content. 

In the discrete time / resource trade-off problem (DTRTP) discussed in this paper, the 

duration of an activity is a discrete, non-increasing function of the amount of a single renewable 

resource committed to it. Given the specified work content Wi for activity i, 1::;; i ::;; n, all Mi 

efficient execution modes for its execution are determined based on time/resource trade-offs. 

Activity i when performed in mode m, 1::;; m ::;; Mi , has a duration dim and requires a constant 

amount rim of the renewable resource type, during each period it is in progress, such that rimdim is 

at least equal to and as close as possible to Wi' A mode is called efficient if there is no other mode 

with equal or smaller duration and smaller resource requirement or with equal or smaller 

resource requirement and smaller duration. Without loss of generality, we assume that the modes 

of each activity are sorted in the order of non-decreasing duration. The single renewable resource 

type has a constant per period availability a. We assume that the dummy start node 1 and the 

dummy end node n have a single execution mode with zero duration and zero resource 

requirement. The objective is to schedule each activity in one of its execution modes, subject to 

both the finish-start precedence constraint and the renewable resource constraint, under the 

objective of minimizing the project makespan. Introducing the decision variables 

. -11, if activity i is performed in mode m and started at time t 
Xunt -

0, otherwise 

the DTRTP can be formulated as follows: 
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[4] 

[5] 

with ei Cl) the earliest (latest) start time of activity i based on the modes with the smallest 

duration, T an upper bound on the project duration and E the set of precedence relations. The 

objective function [1] corresponds to minimizing the project makespan. Constraints [2] ensure 

that each activity is assigned exactly one mode and exactly one start time. Constraints [3] denote 

the precedence constraints. Constraints [4] secure that the per-period availability of the 

renewable resource is met. Constraints [5] force the decision variables to assume binary values. 

In this paper we present several local search methods for solving the DTRTP. The remainder 

of the paper is organized as follows. A review of the literature is given in Section 2. Section 3 

describes the basic methodology used by the various local search methods. The solution logic of a 

new tabu search method is presented in Section 4. Computational experience is presented in 

Section 5, while section 6 is reserved for overall conclusions and suggestions for future research. 

2. Review of the literature 

To the best of our knowledge, the literature on the DTRTP as defined in this paper is 

virtually void. Research efforts have been concentrated on two related problems. The discrete 

time / cost trade-off problem (DTCTP) studies time/cost trade-offs for a single nonrenewable 

resource type (De et aI., 1995). In the DTCTP the duration of each activity is a discrete, 

nonincreasing function of the amount of a single nonrenewable resource committed to it. The 

DTCTP is studied under three different objectives: the minimization of the project duration under 

fixed resource availability, the minimization of the total resource consumption to achieve a target 

project completion time, and the construction of the efficient time/resource profile over the 

feasible project durations. The problem is known to be strongly NP-hard (see De et aI., 1992). 

Optimal procedures and computational experience have been presented by Demeulemeester et ai. 

(1996). 
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The DTRTP is also a subproblem of the multi-mode resource-constrained project scheduling 

problem (MRCPSP), which includes time/resource and resource/resource trade-offs, multiple 

renewable, nonrenewable and doubly-constrained resource types and a variety of objective 

functions. As a generalization of the RCPSP, the MRCPSP is NP-hard (Kolisch, 1995). Optimal 

procedures have been presented by Talbot (1982), Patterson et al. (1989,1990), Speranza and 

Vercellis (1993), Sprecher (1994), Sprecher et al. (1994), Sprecher and Drexl (1996a,b) and Ahn 

and Erengii<; (1995). All of them use implicit enumeration with branch-and-bound. 

Talbot (1982) presents a two-phase solution approach based on his enumeration scheme for 

the RCPSP. In the first phase activities, modes and renewable resources are sorted in order to 

speed up the enumeration procedure applied in phase two. In phase two a subset of the feasible 

schedules is exhaustively searched for the schedule with the smallest makespan. Patterson et al. 

(1989) refine Talbot's procedure by introducing a precedence tree which allows for the systematic 

enumeration of mode assignments and start times. Sprecher (1994) subsequently restructured 

and improved the procedure by adding dominance and bounding rules. He performed a 

computational experiment on a set of 536 multi-mode test problems (with 10 activities, three 

modes per activity, two renewable and two nonrenewable resource types) which were generated 

using the problem generator ProGen developed by Kolisch et al. (1995). The results indicate his 

algorithm to speed up the algorithm of Patterson et al. (1989,1990) by a factor of approximately 

one hundred. Nudtasomboon and Randhawa (1997) offer a zero-one integer programming model 

and slight modifications of the Talbot algorithm to cope with preemption and renewable and 

nonrenewable resources under various single and multiple time related, cost related and resource 

levelling objectives. limited computational results are obtained on nine data 'sets and a small 

warehouse construction rpoject. 

Sprecher et al. (1994) have extended the optimal branch-and-bound procedure of 

Demeulemeester and Herroelen (1992) to the MRCPSP by fixing the mode of the eligible activities 

by selecting a mode alternative before putting them in progress and by using the concept of 

minimal delaying alternatives to resolve resource conflicts. Computational results on the same 

536 problems used by Sprecher (1994) indicate that the new algorithm is approximately four 

times faster than Sprecher's. Sprecher and Drexl (1996a) have revised and restructured the 

Sprecher (1994) procedure through the incorporation of two preprocessing bounding rules and 

seven dynamic bounding rules. They report encouraging computational results on an extensive 

set of problems with up to 20 non-dummy activities, up to 5 execution modes and up to 5 

renewable and 3 nonrenewable resource types. 

Speranza and Vercellis (1993) proposed a depth-first branch-and-bound procedure which 

enumerates the set of tight schedules and which uses a precedence-based lower bound. A schedule 

is called tight if it does not contain an activity the finish time of which can be reduced without 

violating the constraints or changing the completion time or mode of the remaining activities. If 

there exists an optimal schedule for the MRCPSP, then there exists an optimal tight schedule. 
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Hence, an algorithm that enumerates all tight schedules will find an optimal solution. It has been 

shown by Hartmann and Sprecher (1993), however, that the algorithm developed by Speranza 

and Vercellis (1993) - by excluding from the search space non-tight partial schedules - may miss 

the optimal solution. 

Ahn and Erengiig (1995) study the MRCPSP with the added assumption that within each 

mode, an activity duration may be crashed. The objective then is to determine the resource 

requirements, the amount of crashing implemented and the start time of each project activity so 

that the project cost is minimized. Computational results on 16 data sets generated using ProGen 

indicate the algorithm to outperform an adaptation of Sprecher's code. 

Heuristic solution procedures for the MRCPSP have been developed by Talbot (1982), Drexl 

and Grunewald (1993), Slowinski et aL (1994), Boctor (1993, 1996, 1997), Ozdamar and Ulusoy 

(1994), Kolisch (1995), Yang and Patterson (1995), Ahn and Erengiig (1996) and Sung and Lim 

(1997). Talbot (1982) recommends the use of a truncated version of his exact enumeration 

procedure. Drexl and Grunewald (1993) present a regret-based biased random sampling approach 

based on a joint use of a serial scheduling scheme and the shortest processing time rule. Kolisch 

(1995) compared his multi-mode heuristic (MMH) to the heuristics of Talbot (1982), Drexl and 

Grunewald (1993), Boctor (1993) and the truncated method of Sprecher (1994) and reached the 

conclusion that MMH outperforms every other heuristic except the truncated branch-and-bound 

procedure. Boctor (1996) presents a new heuristic which schedules the activity-mode combination 

that has the best value of a chosen evaluation criterion and which outperforms the heuristics 

presented in Boctor (1993) on 240 randomly generated test problems. Ozdamar and Ulusoy (1994) 

present a constraint-based heuristic with an exponential time complexity. 

Simulated annealing has been tried by Slowinski et aL (1994), Yang and Patterson (1995) 

and Boctor (1997). Boctor (1997) concludes that the simulated annealing algorithm outperforms 

the heuristics presented in Boctor (1993, 1996) on the 240 problem set. Slowinski et aL (1994) 

discuss a decision support system which uses three kinds of heuristics (parallel priority rules, 

simulated annealing and a truncated branch-and-bound) and report computational results on an 

hypothetical agricultural project. Yang and Patterson (1995) conclude that simulated annealing 

outperforms the backtracking algorithm of Patterson et aL (1989, 1990), in that it obtains the 

smallest mean project duration with less computational effort. Sung and Lim (1997) have 

developed a branch-and-bound procedure using two lower bounds which is incorporated within a 

two-phase heuristic method. 

Despite the fact that excellent results have been reported using tabu search on (generalized) 

job shop scheduling problems (Vaessens, 1995; Vaessens et aL, 1996), efforts to develop tabu 

search procedures for the RCPSP are rather sparse (lcmeli and Erengiig, 1994; Pinson et aL, 

1994; Lee and Kim, 1996) and have not yet been reported for the DTRTP. In the next section we 

describe the global solution logic of several local search heuristics for the DTRTP. A detailed 

description of a new tabu search procedure is given in Section 4. 



6 

3. Local search methods 

3.1. Basic methodology 

The local search methodology presented in this paper divides the DTRTP into two distinct 

phases: a mode assignment phase and a resource-constrained project scheduling phase with fixed 

mode assignments. The mode assignment phase assigns to each activity i a specific execution 

mode m i (i.e. a specific duration and corresponding resource requirement). A mode assignment is 

an n-tuple ].I = (ml'm 2 , .•. ,mn ), which yields a resource-constrained project scheduling problem, 

which is subsequently solved in the resource-constrained project scheduling phase. 

3.2. Truncated complete enumeration 

Enumerating all possible mode assignments and solving each corresponding RCPSP instance 

to optimality leads to the optimal solution of the DTRTP. However, such an approach proves 

intractable because of the enormous amount of possible mode assignments (O(M n ), where M 

denotes the maximum number of modes that can be assigned to each activity). Computational 

experience with a truncated complete enumeration procedure in which each RCPSP instance is 

solved by a truncated branch-and-bound procedure will be given in section 5.2.1. 

3.3. Improvement procedures 

The local search methods we develop start with an initial mode assignment ].I = (ml'm2, ••. ,mn ) 

and compute an upper bound on the project makespan using a fast heuristic for the RCPSP. An 

improvement procedure is then initiated which evaluates a number of new mode assignments in 

the neighbourhood of].I (all mode assignments ~k in which exactly one activity is assigned another 

mode) and selects one of them for further exploration. This process continues until some 

termination criterion is satisfied. 

The evaluation of each move could be accomplished by optimally solving the corresponding 

RCPSP. However, when the number of activities grows large, no guarantee can be given that the 

RCPSP can be solved in a reasonable amount of time. Therefore, we use a truncated version of the 

RCPSP procedure of Demeulemeester and Herroelen (1997a) as a fast heuristic for solving the 

RCPSP. The procedure, which is an enhanced version of the original code presented in 

Demeulemeester and Herroelen (1992), is truncated after a very small amount of time has 

elapsed (namely when 100 backtracking steps have been performed, which requires, on the 

average, less than 0.01 seconds). Another possibility would be to truncate the procedure after a 

first feasible solution has been obtained. Upon finding the best mode assignment, it may be 

beneficial to run a near-optimal RCPSP heuristic, or, if possible, an optimal procedure to further 
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improve on the obtained heuristic solution. We again use the RCPSP procedure of 

Demeulemeester and Herroelen (1997a), which, if truncated after 1 second of CPU-time, provides 

high quality, near-optimal solutions. 

3.3.1. Steepest descent 

Given an initial mode assignment ll, a steepest descent method (also referred to as best-fit or 

best improvement method) evaluates all mode assignments in the neighbourhood of II and selects 

the one with the smallest project makespan. Then again the neighbourhood is determined and the 

best possible mode assignment selected. The steepest descent procedure terminates when no 

improving mode assignment can be found. Computational results are presented in section 5.2.6. 

3.3.2. Fastest descent 

A fastest descent algorithm (also referred to as a first-fit or first improvement procedure) 

differs from a steepest descent procedure in that the first improving mode assignment 

encountered is chosen. This will result in a faster descent at the expense of perhaps missing 

better mode assignments and steeper paths of descent at each iteration. Computational results 

are reported in section 5.2.4. 

3.3.3. Iterated descent 

Both steepest descent and fastest descent algorithms can be extended with a random restart 

procedure which randomly generates initial mode assignments upon which the procedure is 

restarted. Since these types of local search methods are known to be highly sensitive to the initial 

solution (mode assignment), incorporating random restarts will undoubtedly produce superior 

results. Results with an iterated fastest descent procedure are reported in section 5.2.5, while 

section 5.2.7 reports on results obtained with an iterated steepest descent procedure. 

3.3.4. Tabu search 

Improvement procedures such as steepest or fastest descent only accept alterations which 

result in an improvement of the incumbent solution. As a consequence, a major drawback is their 

tendency to being trapped in a local optimum. To overcome this disadvantage we will develop a 

tabu search (TS) procedure which behaves like a steepest descent procedure but which also allows 

for non-improving moves and a temporary deterioration of the objective function if no improving 

moves can be found. Then it will select the least deteriorating move (steepest descent I mildest 

ascent). Consequently, additional mechanisms are needed in order to prevent cycling between a 

number of solutions. The main principles of tabu search and the proposed procedure for the 

DTRTP will be presented in section 4. Computational results are reported in section 5.2.8. 
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3.3.5. Randomized search 

Another way of crossing boundaries of local optimality is provided by biased random 

sampling or by simulated annealing. For the DTRTP they behave as follows. Given an initial 

mode assignment Jl, both methods randomly generate a new mode assignment (possibly restricted 

to the neighbourhood of Jl) which is enforced or discarded based on the associated value of the 

objective function. Improving moves are immediately enforced. Non-improving moves are 

accepted with a probability that decreases with the deterioration with respect to the incumbent 

solution. In the case of simulated annealing, the probability of accepting a deteriorating move also 

decreases as a function of a control parameter referred to as the temperature T, which guides the 

procedure by establishing the trade-off between a high probability of being trapped in a local 

optimum and a high probability of leaving a region of interest or, more specifically, the region of 

the global optimum. T is set relatively high in the initial phase of the procedure and, as the 

procedure proceeds, T is lowered in a systematic manner (often using a geometric cooling schedule 

of the form T new = a Told with a < 1) such that the procedure becomes less erratic and further 

explores smaller regions of the solution space to a greater extent. 

Tabu search and the randomized procedures share the tendency to overcome local optimality 

by also accepting non-improving moves. The main difference between the two, however, is that 

tabu search actively employs so-called flexible memory (in the short, medium and long term) to 

guide the search process into promising regions and to avoid cycling whereas randomized 

procedures are memoryless in which promising regions are probed and cycling is avoided by 

introducing randomization. 

We have chosen not to implement randomized procedures for the DTRTP. This decision was 

motivated by the excellent results that have been reported using tabu search on various types of 

scheduling problems such as the job shop scheduling problem (Vaessens et aI., 1996), and by 

various research results which indicate tabu search to outperform randomized procedures such as 

simulated annealing, both in solution quality and required computational effort (Pinson et aI., 

1994; Dell'Amico and Trubian, 1993). As a benchmark, however, Section 5.2.2 reports on the 

computational results obtained with a random procedure which randomly generates a number of 

mode assignments and solves the corresponding RCPSP using a truncated version of the 

procedure of Demeulemeester and Herroelen (1997a). 

4. A tabu search procedure 

4.1. Neighbourhood 

We define the neighbourhood of a specific mode assignment J.1 as consisting of all mode 

assignments J.1k in which exactly one activity is assigned another mode. The maximum number of 
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n 

possible moves is equal to I. (Mi -1) . It is clear that using this neighbourhood structure, the 
i=l 

connectivity property holds, i.e. that there exists, for each solution, a finite sequence of moves 

leading to the global optimal solution. Another possibility to define the neighbourhood or, 

equivalently, the set of available moves given an initial mode assignment, would be to restrict the 

change of mode m i of an activity i to an 'adjacent' mode m(l or m i+l (if possible), thereby 

decreasing, respectively increasing, the duration of activity i by a small amount and increasing, 

respectively decreasing, the resource requirement of activity i correspondingly. The maximum 

number of moves to be examined would then be restricted to 2(n-2). Experimentation has revealed 

that local search procedures based on such a (more restricted) neighbourhood, although they are 

able to perform iterations much more quickly because less moves have to be evaluated, do not 

perform as well as do procedures based on the more extended neighbourhood. The main reason for 

this is that the procedures lose their aggressiveness and their ability to perform highly influential 

moves (moves that have a high impact on the structure of the solution, cf. infra) and to realize 

large improvements. 

4.2. Short term recency-based memory 

4.2.1. Tabu principle 

In order to avoid cycling tabu search employs short term memory, which excludes from 

consideration a specific number of moves which may lead to cycling. For the DTRTP several 

possibilities may be explored to prevent cycling: (a) classifY tabu those moves that reverse one of 

the recently made moves, (b) allow reversals but prohibit repetitions of earlier made moves, such 

that revisiting an earlier solution is allowed but another search path has to be chosen for leaving 

the revisited solution, and (c) prohibit moves that lead to a mode assignment which was already 

encountered in the recent past. 

Experimentation has revealed that approach (b), although effective in cycle avoidance, is 

outperformed by approach (a). Approach (c), although perfectly able to prevent revisits of earlier 

solutions, has two main disadvantages. First, comparing a set of mode assignments is of time 

complexity O(nL) , where L denotes the length of the tabu list, compared to the constant time 

required by approach (a). Second, preventing earlier encountered solutions from being revisited is 

not synonymous to preventing cycling between a number of solutions. Sometimes it is 

advantageous that earlier visited solutions are revisited, in the hope that another search path out 

of that solution may be taken. Constructs developed to diversify the search (see section 4.6.2) will 

ensure that no indefinite cycling will occur, even if previously visited solutions are revisited. 

An approach which partially eliminates the computational disadvantage of approach (c) is to 

use some kind of hashing function to either speed-up finding the relevant information in the tabu 



10 

list using pointer structures (computational complexity O(nL') where L' is, in general, much 

smaller than L) or to compress the information in the tabu list itself. If we transform each mode 

assignment into a single number h using some kind of hashing function, the computational 

complexity is reduced to O(L). However, the cost of using such a hashing function is that due to 

the loss of information, some moves may be classified tabu although they do not lead to a revisit of 

an earlier encountered solution. Experiments revealed that this approach for solving the DTRTP 

is outperformed by approach (a). Since the number of moves that have to be evaluated at each 

iteration can be relatively large, it is important that the evaluation can be done very quickly. 

Hence, we opt for approach (a). 

4.2.2. Using move attributes 

Although we refer to moves being classified as tabu, we have to distinguish between moves 

and attributes of a move. A move can consist of several attributes (so-called from- and to­

attributes) such that either the from-attributes or the to-attributes (or both) can be classified 

tabu. It is more effective to focus on from-attributes and to-attributes (and declaring attributes of 

moves tabu), than focusing on order pairs of attributes (complete moves). 

If a move contains an attribute that is tabu, we declare it tabu. A move is defined as a change 

from mi == x to mi == Y (x *" y), where m i denotes the mode assigned to activity i. Therefore, a 

reversal of such a move can be defined as a change from mi == Y to mi == x which consequently 

can be classified tabu. However, prohibiting such reversals will not prevent cycling because a 

move from mi == Y to mi == Z (z *" x) followed by a move from mi == z to mi == x will not be 

prevented. Therefore, it is advisable to view the move from mi == x to mi == Y (x *" y) as being 

comprised of the from-attribute mi == x and the to-attribute mi == Y (x *" y). Then, cycling is 

excluded by prohibiting the to-attribute of a future move to be equal to the from-attribute of a 

previous move. Thus, after a move from mi == x to mi == Y (x *" y ) we prevent a move from mi == Z 

to mi == x for arbitrary values of z (z *" x ), instead of restricting z to being equal to y. 

Actually, a change from mi == x to mi == Y (x * y) is comprised of two different attribute 

changes: changing mi == x to mi *" x, and changing mi *" Y to mi == Y . Consequently, it is possible 

to (a) prohibit a move from mi *" x to mi == x, or (b) to prohibit a move from mi == Y to mi *" Y . 

We prefer option (a) because it is less restrictive. Indeed, option (b) is more restrictive in that it 

corresponds to fixing the mode assigned to activity i (mi == Y ) for a number of iterations. The fact 

that a less restrictive way of classifying moves tabu is more effective than a more restrictive way 

has already been observed by Glover (1990b), who states that "when tabu restrictions are based 

on a single type move attribute, it is generally preferable to select an attribute whose tabu status 

less rigidly restricts the choice of available moves". 
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4.3. Tabu list management 

The length of the tabu list defines the time span during which moves retain their tabu 

status. A long tabu list decreases the probability of revisiting a previously examined mode 

assignment. However, it may also forbid a number of moves which would not have led to cycling 

at all, eventually causing the procedure to get stuck in a local optimum of poor quality. 

Both static and dynamic tabu list management procedures have been described in the 

.literature. A static tabu list has a specific constant length, such as 7 (a 'magical' number which 

has proven to be very effective in many TS applications) or .[;; (advisable in situations when the 

tabu list length should vary with the problem dimension). Dynamic aspects include randomly 

varying the tabu list length in a specific interval, decreasing the tabu list length systematically, 

introducing moving gaps in the tabu list (parts of the tabu list are inactivated periodically) or 

making the tabu status of a move dependent on the state of the solution process (as in the 

cancellation sequence method or the reverse elimination method; see Glover, 1990a; Dammeyer 

and Voss, 1993). We use a tabu list which varies randomly in the interval [.[;;,3.[;;] and which 

initially contains 2.[;; moves. Each time a specific number of iterations is performed without 

improving the best known solution, the tabu list length is either decreased or increased by one 

unit (if possible), or remains the same (each with the same probability). 

Note that, although we speak in terms of tabu lists, we are actually enforcing tabu 

restrictions based on time thresholds, i.e. when the current iteration is higher than the iteration 

in which the move was classified tabu plus a specific - possibly variable - threshold value. 

4.4. Aspiration criteria 

Aspiration criteria are introduced to determine which tabu restrictions should be overridden, 

thereby removing the tabu status of certain moves. The purpose is to identify and again make 

available those moves that can lead to an overall improvement of the objective function or that 

can never lead to cycling and can therefore be released of their tabu status. We have chosen not to 

completely revoke the tabu status of such improving moves, but to transform them into a so-called 

pending tabu status (Glover and Laguna, 1993), which means that the move is eligible for 

selection if no other non-tabu improving move exists. Several aspiration criteria have been 

suggested in the literature (Glover and Laguna, 1993). 

4.4.1. Aspiration by default 

A conflict occurs when at some point in the search process no admissible moves are available 

for selection, i.e. when all possible moves are classified tabu. If such a conflict occurs the 

procedure will terminate unless some action is undertaken to revoke the tabu status of some 



12 

moves. We remove the oldest entries from the tabu list until the list is empty or an admissible 

move exists. In some cases where the length of the tabu list is too long (such that every possible 

move is classified tabu), aspiration by default will automatically decrease the tabu list length. 

4.4.2. Aspiration by objective 

If a move that is classified tabu would lead to the best solution obtained so far, the tabu 

status is overridden and the corresponding move is selected. Obviously, when a new upper bound 

on the project makespan is found, we are certain that we are not revisiting an earlier examined 

solution. This aspiration criterion is known as global aspiration by objective. Regional (or local) 

aspiration by objective extends this reasoning to the best solution obtained so far in specific 

regions of the solution space. If a move that is classified tabu would lead to the best possible 

solution obtained so far with a specific mode assigned to a specific activity, we override the tabu 

status of that move. Therefore, we store for each activity-mode combination the best possible 

solution that has been obtained so far in which that activity has been given that specific mode. 

4.4.3. Aspiration by influence 

Moves can be classified according to their influence, i.e. their impact (induced degree of 

change) on the structure of the incumbent solution. For example, a move that changes the mode 

(d. ,r. ) of an activity i with work content W.=40 from (4,10) to (5,8) will probably have a smaller 
lm Lm L 

impact on the corresponding schedule than a move to mode (10,4). Accordingly, we define the 

influence of a move as the absolute value of the difference between the current duration of an 

activity and its duration in the new mode assignment. Although such influential moves are often 

not very attractive because they lead to a substantial increase in the project makespan, they 

should be favoured from time to time in order to overcome local optimality and explore diverse 

regions of the solution space. If many moves of small influence have already been made and none 

of them is able to improve the best known solution so far, it is advisable to select a highly 

influential move after which a series of low-influence moves may again lead to a new local 

(hopefully global) optimum. Therefore, we will favour highly influential moves when a series of 

low-influence moves did not lead to a better solution. After such a high-influence move is chosen, 

the low-influence moves may again be tolerated until they show negligible gain opportunities. We 

revoke the tabu status of moves of rather low influence, provided that between the time (iteration) 

the move has been classified tabu and the current time (iteration), a move of higher influence has 

been chosen. Theoretically, aspiration by influence may lead to cycling. If this happens, other 

strategies such as diversification (see section 4.6.2) will be required to prevent indefinite cycling. 

We also favour influential moves by making them more attractive in the move selection 

process. Moves are selected based on the associated upper bound on the project makespan. 

Influential moves are given a bonus that further increases their attractiveness. In order to obtain 
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the right balance between moves that improve the makespan of the incumbent solution and 

highly influential moves, we use a move influence weight of 1110. This means that (a) when two 

moves with the same project makespan are under consideration, the move with highest influence 

is preferred, and that (b) a difference in influence of magnitude 10 has the same weight as one 

unit difference in project makespan. We will only take into account the influence of moves when 

there are no moves that lead to a reduction in the makespan of the incumbent solution. 

4.4.4. Aspiration by search direction 

In some cases, a revisit of an earlier examined solution is not necessarily bad, because 

another search path leading out of that solution might be chosen (thereby preventing cycling). 

Aspiration by search direction provides a mechanism for preventing that, upon a revisit, the same 

path out of that solution will be chosen. Therefore, we store for each move whether it was 

improving or not. If the current (tabu) move is an improving move and if the most recent move 

out of the new (tabu) mode assignment was also an improving move, the tabu status of the 

current move is revoked, thereby making it possible that the earlier examined solution is 

revisited. In this way, we revisit the local optimum examined before but we now choose another 

(non-improving) path leading out of that local optimum. 

4.4.5. Aspiration by strong admissibility 

A move is labelled strongly admissible if it is eligible to be selected and does not rely on any 

aspiration criterion to qualify for admissibility, or if it would lead to the best solution obtained so 

far (Glover, 1990b). If such a strongly admissible move was made prior to the most recent 

iteration during which a non-improving move has been made, we revoke the tabu status of every 

improving move. In doing so, we make sure that the search proceeds to a local optimum, even if 

reaching a local optimum would require moves that would normally be classified tabu. 

4.5. Termination criteria 

The procedure is terminated when (a) 10,000 iterations are performed, or (b) 1,000 iterations 

are performed without improving the best known solution (this number is deemed to be sufficient 

for the procedure to have either reached the global optimum or to have converged to and being 

stuck in a local optimum), or (c) the time limit of 100 seconds is exceeded, or (d) a solution is 

encountered with a makespan equal to a known lower bound. The lower bound lb used for these 

calculations is the maximum of a critical path-based lower bound lbo and a resource-based lower 

bound lb r . The critical path-based lower bound lbo is obtained by calculating the critical path in 

the activity network where each activity is assigned its shortest feasible mode, taking into 
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account the resource availability a. The resource-based lower bound lb r is computed as 

lb, = r [t, Wi ]1 a l where r x l denotes the smallest integer equal to or larger than x. If for a 

, Mi , 
specific activity i, Wi = min{dimrim} exceeds W., we can use Wi for computing lb rather than W. 

m=l I r I 

itself (Wi' - Wi is called the redundant work content). 

4.6. Medium and long term frequency-based memory 

4.6.1. Frequency information 

The core of all TS procedures is a steepest descent I mildest ascent procedure supplemented 

with recency-based memory in the form of a tabu list to prevent cycling. Although this basic 

scheme, supplemented with appropriate aspiration criteria, may already outperform pure descent 

procedures, another component is necessary that typically operates on a somewhat longer time 

horizon to ensure that the search process examines solutions throughout the entire solution space 

(diversification) and that promising regions ofthe solution space (good local optima) are examined 

more thoroughly (intensification). This component can be supplied by using frequency-based 

memory. Essentially, frequency-based memory stores information about the frequency that a 

specific solution characteristic (attribute) occurs over all generated solutions or about the 

frequency that a move with a specific attribute has occurred. For instance, we can store (a) the 

number of generated solutions in which a specific activity was executed in a specific mode, (b) the 

number of times a move occurred in which an arbitrary new mode was reassigned to a specific 

activity, or (c) the number of times a specific mode was assigned to a specific activity. Option (a) 

represents a residence frequency, because it reports on the frequency of specific generated 

solutions, whereas options (b) and (c) represent transition frequencies, since they report on the 

frequency of specific moves. Although in many cases, residence frequencies are more suited to act 

as a frequency-based memory, both types of frequency-based memories can be used in unison to 

achieve a better performance. 

4.6.2. Diversification 

Although the tabu list prevents the procedure from cycling between a number of solutions, it 

cannot prevent the search process from being restricted to a small region of the entire solution 

space. Furthermore, it may be advantageous to examine large parts of the solution space rather 

than intensively searching in a restricted part. Therefore, we will use frequency-based memory to 

detect whether the search space has been confined to a small region of the entire solution space, 
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and use that information to guide the procedure into new unexplored regions. Diversification can 

be accomplished in two ways, using transition or residence frequency information. 

4.6.2.1. Transition frequencies 

A first possibility is to adapt the attractiveness of the moves under consideration by 

including a frequency-based component which makes moves containing frequently encountered 

attributes less attractive than moves which contain rarely encountered attributes. In the 

proposed TS procedure we use a transition frequency-based memory that stores ~, the frequency 

that a new mode was assigned to activity i. Moves concerning activities with small ~ are favoured 

against moves pertaining to activities with large ~. This is accomplished by adding a penalty term 

to the move selection criterion. 

The diversifying influence on the move selection process is restricted to those occasions when 

no admissible moves exist that lead to a reduction in the makespan of the incumbent solution. In 

that case we penalize non-improving moves by assigning a larger penalty to moves with greater 

frequency counts. The reason for applying this restricted form of diversification is to preserve the 

aggressiveness (greediness) of the search, which is an essential characteristic of well-designed TS 

algorithms. A weight will have to be determined to trade-off between a smaller project makespan 

and a smaller frequency count. We use a weight of 113, which means that a unit difference in 

project makespan has the same weight in the move selection process as a frequency count of 3. 

Note that this penalty function ensures that, even when the tabu list cannot prevent a previously 

encountered solution from being visited again, no indefinite cycling will occur, because the 

penalty values of the activities participating in this cycle will grow until another activity will be 

chosen for mode reassignment and another search path that leads away from the current solution 

is selected and the cycle is broken. 

4.6.2.2. Residence frequencies 

A second possibility of applying frequency-based memory for the purpose of diversification, is 

to divide the search process in different (possibly reoccurring) phases, which will diversify or 

intensify the search. After an initial data collection phase in which the required data for 

computing the frequencies is stored, a diversification phase can be started in which the procedure 

will be guided into unexplored regions of the search space. This call be accomplished through the 

use of residence frequencies which store information about the frequency that an activity was 

assigned a specific mode. If the frequencies indicate that for a specific activity only a small subset 

of all possible modes have been assigned to that activity, the search space is restricted by 

excluding those moves that assign one of these modes to that activity. 



16 

Consequently, a threshold value will have to be determined which defines which frequency 

counts should be considered as being significantly different from a uniform distribution. A 

straightforward threshold value would be the relative frequency of a specific activity-mode 

combination that have resulted when all modes for that activity were selected uniformly 

multiplied by a certain factor. Naturally, such threshold values should depend on the number of 

modes allowed for each activity. We have designed the following threshold value for 

diversification: 1.2 + Ml5. This means that, for instance, when 4 modes are allowed, the relative 

frequency should be higher than 2 times its 'normal' value before the diversification procedure 

penalizes the activity-mode combination by classifying it as tabu for the time of the diversification 

phase. 

The use of such residence frequencies is facilitated if we express them as a percentage by 

dividing the respective frequencies by the total number of iterations performed during the data 

collection phase. Mter such a diversification phase, all frequency-based memory is erased and a 

new data collection is initiated. 

4.6.3. Intensification 

Diversification phases should be alternated with intensification phases, in which the search 

is concentrated on a specific region of the solution space and promising regions are explored more 

intensively. This can also be accomplished through the use of frequency-based memory which 

stores the number of times a specific mode was assigned to each activity. When a high frequency 

count for a specific activity-mode combination is combined with a small associated project 

makespan, it may be advantageous to 'fix' the mode assignment of that activity to one mode or a 

small subset of all possible modes. 

The intensification procedure examines all residence frequencies of the previously saved high 

quality local optima (defined as having an upper bound on the project makespan equal to the 

current best solution) and detects which activities have been assigned a specific mode or a small 

subset of all possible modes in each or a large number of these solutions. Then, the search space is 

restricted by limiting the possible modes for each activity to that small subset. This type of 

intensification strategy is often referred to as reinforcement by restriction (Glover and Laguna, 

1993), because intensification is achieved by narrowing the realm of possible moves to those ones 

that promise high quality local optima instead of guiding the search process by using penalty and 

incentive functions. An advantage of reinforcement by restriction over penalty/incentive 

approaches is that the restriction of the search space leads to a significant speedup of each 

iteration, since the number of admissible moves will be substantially reduced. Note that 

reinforcement by restriction. is not limited to intensification strategies only. The diversification 

strategy based on residence frequencies described in section 4.6.2.2. was also based on 

reinforcement by' restriction, albeit to diversify the search (often referred to as selective 

diversification) rather than intensify it. 
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As was the case for diversification, a threshold value will have to be determined to decide 

when a relative frequency can be regarded as being significantly different from a uniform 

distribution. Since reinforcement by restriction ought to restrict the realm of available moves as 

much as possible, the threshold value will have to be higher than for diversification. We have 

chosen the following threshold value: 0.8 + Ml2. This means that, for instance, when 4 modes are 

allowed, the relative frequency should be higher than 2.8 times its 'normal' value before the 

intensification phase limits the available moves to such moves exceeding the threshold value. 

4.6.4. Combined diversification and intensification 

Some constructs, although based on frequency-based memory, cannot be classified as 

performing the function of diversification and intensification, because they perform both functions 

simultaneously. One such construct is the concept of solutions evaluated but not visited (Glover 

and Laguna, 1993). Often, the choice between a number of moves is arbitrary because they have 

the same upper bound on the project makespan. We store the number of times an improving move 

was not selected although its associated project makespan was equal to the makespan of the 

selected mode assignment. If after a number of iterations (data collection phase), for a specific 

activity, a move (mode assignment) receives a high such frequency count although it has a low 

frequency count in the solutions that actually have been visited, the search space is restricted to 

those modes for that activity (reinforcement by restriction), thereby serving the goals of both 

intensification and diversification. 

4.6.5. Phases 

The total search time will be divided into several phases. We have chosen the following 

structure, which is truncated if one of the termination criteria applies: 

PHASE 1. Proceed without intensification or diversification until 100 iterations have been made 

without improving the best known solution. Set x equal to the number of the current iteration. 

PHASE 2. Until iteration x+50: data collection for intensification 

PF ... ASE 3. Until iteration x+ 100: intensification 

PHASE 4. Until iterationx+150: data collection for diversification 

PHASE 5. Until iterationx+200: diversification 

PHASE 6. Until iteration x+250: data collection for combined intensification and diversification 

PHASE 7. Until iteration x+300: combined intensification and diversification 

PHASE 8. Until iterationx+350: data collection for diversification 

PHASE 9. Until iterationx+400: diversification 

PHASE 10. Go to PHASE 2. 

Each time the best known solution is improved upon, all frequency information is erased, the 

iteration counter x is reset to the current iteration and the procedure continues with PHASE 1. 
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5. Computational experience 

The procedures have been programmed in Microsoft Visual C++ 2.0 under Windows NT for 

use on a Digital Venturis Pentium-60 personal computer with 16 Mb of internal memory. The 

codes itself require at most 120 kb and the data structures use at most 1.3 Mb of internal 

memory, which allows the procedures to be used on computer platforms with very little available 

memory. 

5.1. Benchmark problem set 

Schwindt (1995) extended ProGen, the problem generator for the RCPSP developed by 

Kolisch et al. (1995), to ProGenimax which can randomly generate instances of various types of 

generalized resource-constrained project scheduling problems. We used ProGenimax to generate 

150 networks using the control parameters given in Table 1. For each combination of control 

parameter values, 10 problem instances have been generated. The indication [x,y] means that the 

value is randomly generated in the interval [x,y] , whereas x; y; z means that three settings for 

that parameter were used in a full factorial experiment. Every activity is then randomly assigned 

a work content between 10 and 100. Several versions of each problem instance are solved using a 

different restriction of the number of modes allowed (denoted M, varying from 1 to 6 and one in 

which the number of modes is unlimited) and a different setting for the resource availability a 

(equal to 10, 20, 30, 40 and 50). The parameters used in the full factorial experiment are given in 

Table 2. A total of 5,250 problem instances results. 

Table 1. The parameter settings of the benchmark problem set 

Control parameter 

number of activities 

activity work content 

number of initial and terminal activities 

maximal number of predecessors and successors 

as' 

Value 

10; 15; 20; 25;30 

[10,100] 

[2,5] 

3 

0.25; 0.50; 0.75 

Table 2. The parameter settings of the full factorial experiment 

Control parameter 

number of activities 

as 

a 

M 

Value 

10; 15;20;25;30 

0.25; 0.50; 0.75 

10; 20;30;40;50 

1; 2; 3; 4; 5; 6; unlimited 

I Schwindt (1996) uses an estimator for the restrictiveness (Thesen, 1977) as a network complexity measure. However, 
De Reyck (1995) has shown that this measure is identical to the order strength (Mastor, 1970), the flexibility ratio (Dar­
EI, 1973) and the density (Kao and Queyranne, 1982). We will use order strength when referring to this measure. 
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When a restriction is imposed on the number of modes, it is enforced as follows. The 

procedure first generates the mode with duration dim = max{ l ~ J f; l} and resource 

requirement rim = r ~ l ' where Lx J denotes the highest integer number equal to or smaller than 

x and r xl denotes the smallest integer number equal to or higher than x. This mode is typically 

situated somewhere in the 'middle' of the realm of available modes. Then, the procedure generates 

a mode with a duration equal to dim - 1 and a corresponding resource requirement. 

Consequently, the mode with duration dim + 1 is generated. This mode generation process 

continues (alternatively decreasing resp. increasing the activity duration) until the desired 

number of modes is reached or no modes are left. Naturally, other criteria to restrict the number 

of modes can be used, such as eliminating modes that are not allowed due to technological or 

other constraints. 

When the number of modes is unlimited, the actual number of modes per activity i depends 

on the work content Wi and the resource availability a. Table 3 indicates for each value for the 

resource availability a, the global average number of modes for all corresponding problem 

instances and their theoretical minimum and maximum. For the complete problem set, the global 

average number of modes when there is no restriction on their number equals 11.82. When the 

number of modes for each activity is restricted to 1, 2, 3, 4, 5 or 6, the actual number of modes for 

each activity is exactly equal to that number, except when a=10 and ri=11, which only allows for 5 

feasible efficient modes (dim,rim), namely (2,6), (3,4), (4,3), (6,2) and (11,1). 

Table 3. Average number of modes 

a = 10 a = 20 a = 30 a=40 a = 50 

global average number of modes 8.84 11.60 12.49 12.92 13.26 

theoretical minimum number of modes 5 6 6 6 6 

theoretical maximum number of modes 10 15 16 17 18 

5.2. Computational results 

5.2.1. A truncated complete enumeration procedure 

The complete enumeration procedure enumerates all possible activity-mode combinations 

and evaluates each resulting RCPSP instance using a fast heuristic procedure. A global time limit 

of 100 seconds is imposed. The best results (shown in Tables 4 through 10) are obtained by 

running the RCPSP procedure of Demeulemeester and Herroelen (1997a) for a very short time 

(until 100 backtracking steps have been performed, which requires, on the average, less than 0.01 
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seconds) and by enumerating the activity-mode combinations starting from the modes with the 

smallest duration. Finally, the RCPSP instance which corresponds to the best mode assignment 

encountered so far is further investigated using the procedure of Demeulemeester and Herroelen 

(1997a) with a time limit of 1 second. Table 4 denotes the average and maximal deviation with 

respect to the best known solution for each problem instance, which is obtained using all 

procedures presented in this paper (4,929 (±94%) of those solutions are known to be optimal). In 

Table 5 the number of times the best known solution is obtained is shown. In Table 6 the average 

deviation of the heuristic solutions with respect to the lower bound lb are given. Table 7 indicates 

the number of problems solved to optimality. Solutions are known to be optimal when they have a 

makespan equal to the lower bound lb or when all possible solutions have been enumerated. Table 

8 reports the average number of RCPSP instances solved, whereas Table 9 indicates the average 

required CPU-time. 

Table 4. Truncated complete enumeration: average deviation from best solution 

1 mode 2 modes 3 modes 4 modes 5 modes 6 modes unlimited 

n = 10 0.00% 0.00% 0.00% 0.05% 0.35% 1.44% 3.35% 

n = 15 0.00% 0.00% 0.79% 3.41% 3.95% 4.62% 6.79% 

n = 20 0.00% 0.31% 1.28% 4.01% 4.51% 4.92% 6.82% 

n = 25 0.00% 1.28% 2.50% 6.52% 6.91% 6.88% 8.10% 

n = 30 0.00% 1.75% 2.69% 6.34% 7.02% 7.05% 8.47% 

Table 5. Truncated complete enumeration: number of times best solution is obtained 

1 mode 2 modes 3 modes 4 modes 5 modes 6 modes unlimited 

n = 10 150 150 150 149 134 98 52 

n = 15 150 150 129 99 89 63 5 

n = 20 150 140 106 93 84 61 4 

n = 25 150 117 92 77 77 47 0 

n = 30 149 97 88 85 79 51 0 

Table 6. Truncated complete enumeration: average deviation from lb 

1 mode 2 modes 3 modes 4 modes 5 modes 6 modes unlimited 

n = 10 5.42% 3.27% 2.25% 2.44% 2.25% 3.60% 6.49% 

n = 15 3.96% 2.55% 2.67% 5.42% 5.53% 6.29% 10.48% 

n = 20 3.39% 2.48% 2.80% 5.96% 5.99% 6.68% 10.81% 

n = 25 4.04% 3.79% 4.41% 8.39% 8.28% 8.37% 12.00% 

n = 30 3.82% 4.32% 4.67% 8.58% 8.76% 9.18% 13.41% 



Table 7. Truncated complete enumeration: number of problems solved to optimality 

1 mode 2 modes 3 modes 4 modes 5 modes 6 modes unlimited 

n = 10 150 83 90 80 84 62 20 

n = 15 150 90 92 80 80 58 0 

n = 20 150 94 93 81 80 59 0 

n = 25 150 84 83 75 76 46 0 

n = 30 149 84 83 76 77 50 0 

Table 9. Truncated complete enumeration: average number of RCPSP instances solved 

1 mode 2 modes 3 modes 4 modes 5 modes 6 modes unlimited 

n = 10 1 466 24,107 503,411 1,865,430 2,698,000 5,055,088 

n = 15 1 13,400 869,831 756,340 820,282 1,473,462 3,323,424 

n = 20 1 244,974 543,339 523,337 580,677 1,013,794 2,271,647 

n = 25 1 341,138 365,540 281,593 274,180 613,974 754,581 

n = 30 1 261,113 302,929 289,860 267,145 459,602 760,187 

Table 8. Truncated complete enumeration: average CPU-time (seconds) 

1 mode 2 modes 3 modes 4 modes 5 modes 6 modes unlimited 

n = 10 0,00 0,06 1,42 20,57 47,02 60,91 88,98 

n = 15 0,00 2,66 40,01 46,67 46,68 61,36 100,01 

n = 20 0,00 32,24 38,24 46,24 46,70 60,93 100,02 

n = 25 0,02 44,16 45,02 50,28 49,83 70,21 100,05 

n = 30 0,02 44,06 44,73 49,40 48,74 66,80 100,09 

Table 10. Truncated complete enumeration: summary 

Average deviation from the best known solution 

Maximum deviation from the best known solution 

Number of times the best known solution is obtained 

Average deviation from lb 

Maximum deviation from lb 

Problems solved to optimality 

Average number of RCPSP instances solved 

Average CPU-time (in seconds) 

5.2.2. A random procedure 

Global summary 

3.20% 

43.18% 

3,315 (±63%) 

5.79% 

48.84% 

2709 (±52%) 

787,224 

44.40 

Unlimited number of modes 

6.70% 

24.00% 

61 (±8%) 

10.64% 

33.33% 

20 (±3%) 

2,432,985 

97.83 
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For use as a benchmark we have also tested a fully randomized procedure, in which a 

number of random mode assignments are generated and the corresponding RCPSP instances 

solved for a very short time (100 backtracking steps). The procedure continues until 100 seconds 
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have elapsed or until a solution equal to lb is encountered. Then, a final intensification phase is 

initiated in which the RCPSP based on the best mode assignment is solved with a time limit of 1 

second. The results are given in Tables 11 through 17. 

Table 11. Random procedure: average deviation from best solution 

1 mode 2 modes 3 modes 4 modes 5 modes 6 modes unlimited 

n = 10 0.00% 0.00% 0.00% 0.62% 0.40% 0.90% 7.43% 

n = 15 0.00% 0.01% 0.32% 2.04% 2.37% 4.95% 19.95% 

n = 20 0.00% 0.49% 1.17% 5.07% 5.34% 8.28% 31.49% 

n = 25 0.00% 0.62% 2.21% 5.87% 8.14% 11.62% 32.69% 

n = 30 0.00% 1.31% 3.26% 7.54% 10.07% 14.64% 45.36% 

Table 12. Random procedure: number of times best solution is obtained 

1 mode 2 modes 3 modes 4 modes 5 modes 6 modes unlimited 

n = 10 150 150 150 119 128 111 13 

n = 15 150 149 118 53 51 7 0 

n = 20 150 95 70 4 6 3 0 

n = 25 150 85 39 4 1 0 0 

n = 30 149 47 7 0 0 0 0 

Table 13. Random procedure: average deviation from lb 

1 mode 2 modes 3 modes 4 modes 5 modes 6 modes unlimited 

n = 10 5.42% 3.27% 2.25% 3.03% 2.30% 3.04% 10.80% 

n = 15 3.96% 2.56% 2.19% 3.98% 3.88% 6.58% 24.35% 

n = 20 3.39% 2.67% 2.69% 6.97% 6.76% 10.01% 36.81% 

n = 25 4.04% 3.10% 4.10% 7.65% 9.43% 13.09% 37.86% 

n = 30 3.82% 3.84% 5.23% 9.66% 11.72% 16.79% 52.27% 

Table 14. Random procedure: number of problems solved to optimality 

1 mode 2 modes 3 modes 4 modes 5 modes 6 modes unlimited 

n = 10 150 83 90 74 82 64 7 

n = 15 150 90 92 52 49 6 0 

n = 20 150 78 69 4 6 3 0 

n = 25 150 73 39 4 1 0 0 

n = 30 149 45 7 0 0 0 0 



Table 15. Random procedure: average number of RCPSP instances solved 

1 mode 2 modes 3 modes 4 modes 5 modes 6 modes unlimited 

n = 10 1 352,913 389,634 559,937 566,193 796,851 1,452,940 

n = 15 1 265,278 352,813 671,535 809,707 1,110,983 1,280,826 

n = 20 1 321,401 523,093 918,648 933,751 952,433 1,090,505 

n = 25 1 269,490 599,221 724,857 768,135 729,823 920,483 

n = 30 1 406,657 690,497 668,518 685,720 659,328 838,681 

Table 16. Random procedure: average CPU-time (seconds) 

1 mode 2 modes 3 modes 4 modes 5 modes 6 modes unlimited 

n = 10 0.00 44.67 40.10 50.95 48.22 62.23 96.90 

n = 15 0.00 40.04 41.22 66.94 75.81 97.85 100.00 

n = 20 0.00 48.16 61.46 97.35 96.45 98.59 100.00 

n = 25 0.02 52.00 80.79 97.48 99.76 100.02 100.01 

n = 30 0.02 70.65 97.54 100.02 100.03 100.03 100.02 

Table 17. Random procedure: summary 

Average deviation from the best known solution 

Maximum deviation from the best known solution 

Number of times the best known solution is obtained 

Average deviation from lb 

Maximum deviation from lb 

Problems solved to optimality 

Average number of RCPSP instances solved 

Average CPU-time (in seconds) 

5.2.3. A branch-and-bound procedure 

Global surrimary 

6.69% 

186.67% 

2,159 (±41%) 

9.41% 

186.67% 

1767 (±34%) 

608,882 

67.58 

Unlimited number of modes 

27.38% 

186.67% 

13 (±2%) 

32.42% 

186.67% 

7 (±1%) 

1,116,687 

99.39 
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In Demeulemeester et al. (1997) we present a branch-and-bound procedure for the DTRTP 

based on the concept of activity-mode combinations, i.e. subsets of activities executed in a specific 

mode. At each decision point t (corresponding to the completion time of one or more activities) the 

branch-and-bound procedure evaluates the feasible partial schedules PSt (which correspond to 

nodes in the search tree) obtained by enumerating all feasible maximal activity-mode 

combinations. Activity-mode combinations are feasible if the activities can be executed in parallel 

in the specified mode without resulting in a resource constraint violation. They are maximal 

when no other activity can be added in one of its modes without causing a resource conflict. Each 

activity-mode combination is evaluated by computing a critical path-based and a resource-based 

lower bound. The one with the smallest lower bound is selected for further branching. 
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Backtracking occurs when a schedule is completed or when a branch is to be fathomed by the 

lower bound calculations or by one of the proposed dominance rules. The procedure stops with the 

optimal solution upon backtracking to level 0 in the search tree. 

The procedure uses several dominance rules, some of which are extensions of rules originally 

developed for the RCPSP. At a certain decision point certain maximal activity-mode combinations 

may be discarded, namely those in which an activity can be performed in a mode with shorter 

duration (and its completion time reduced) without causing a resource conflict at that decision 

point or affecting the start times or modes of the other activities, such that the activity then 

terminates the earliest among all activities in progress. These so-called non-tight activity-mode 

combinations can be eliminated since they will never lead to a superior solution than when 

branching from the partial schedule in which a faster mode is chosen for that activity. However, 

not all non-tight partial schedules (in which at least one arbitrary activity can be put in a faster 

mode without causing a resource conflict or affecting the completion times of the other activities) 

can be eliminated from further consideration, because this may lead to missing optimal solution, 

as was shown to be the case in the procedure of Speranza and Vercellis (1993) by Hartmann and 

Sprecher (1993). 

The single-mode left-shift rule dominates partial schedules (nodes) for which an activity can 

be scheduled in the same mode with an earlier completion time. The multi-mode left-shift rule 

dominates partial schedules for which an activity can be scheduled in another mode with an 

earlier completion time. The mode reduction rule dominates partial schedules for which an 

activity can be scheduled in a shorter mode with the same completion time. The multi-mode cutset 

dominance rule dominates partial schedules which contain the same set of activities as previously 

generated (and saved) partial schedules but in which the activities in progress do not finish 

earlier and, if they were also in progress in the earlier encountered partial schedule, use more (or 

at least as many) resource units. 

At each decision point t the extended precedence-based lower bound lb~xt is computed as 

follows: lb~xt = max{rp.ax{Xi},rp.ax{min{Xil,si2}}} , where S denotes the set of scheduled 
L'lS LES 

activities, xi is computed as the next decision point t' plus the remaining critical path length of the 

unscheduled eligible activity i in its shortest mode, XiI is computed as the start time of the 

scheduled activity i plus the remaining critical path length based on the chosen duration of 

scheduled activity i and X i2 is calculated as the next decision point t' plus the remaining critical 

path length of the scheduled activity i based on minimal durations. The resource-based lower 

bound lbr is computed as the ratio of the sum of the activity work contents and the resource 

availability, rounded to the next higher integer and updated for resource-period availability 
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losses, lb, ~ r (t, Wi } a l where r x l denoles the smallest mleger equal to or larger than x. 

These losses may be due to unused (lost) resource-period availabilities on one hand and the 

redundant work content resulting from the fact that the product of the activity duration and the 

corresponding resource requirement exceeds the specified work content Wi' The lower bound lb 

used in the branch-and-bound procedure is then obtained as max{lbgxt ,lbr }. The depth-first 

branching rule branches from the tight activity-mode combinations with smallest lower bound 

first. The smallest resource-period availability losses and the latest next decision point are used 

as tie-breaking rules. 

In order to compare the performance of the branch-and-bound procedure with the local 

search methods, we have recompiled it for use on a Digital Venturis Pentium-60 personal 

computer with 16 Mb of internal memory. As for all procedures researched in this paper, a time 

limit of 100 seconds is imposed. However, sometimes the branch-and-bound procedure is unable 

to find a feasible solution within the given time limit. Then it is allowed to continue until a first 

feasible solution has been found. The fact that a first feasible solution is sometimes only 

encountered after considerable computational effort is due to the inherent complexity of the 

DTRTP and the nature of the search process. Although the procedure is of the depth-first type, it 

often examines thousands of maximal activity-mode combinations (nodes) at each level of the 

search tree. For one specific problem instance 167,524 nodes were examined before encountering 

a first feasible solution. The CPU-time required for evaluating those nodes equals 1,567 seconds, 

which is the maximum CPU-time required by the branch-and-bound procedure. 

Table 18. Branch-and-bound: average deviation from best solution 

1 mode 2 modes 3 modes 4 modes 5 modes 6 modes unlimited 

n = 10 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,33% 

n = 15 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,70% 

n = 20 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,29% 

n = 25 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 1,22% 

n = 30 0,00% 0,00% 0,00% 0,00% 0,01% 0,04% 1,50% 

Table 19. Branch-and-bound: number oftimes best solution is obtained 

1 mode 2 modes 3 modes 4 modes 5 modes 6 modes unlimited 

n = 10 150 150 150 150 150 150 145 

n = 15 150 150 150 150 150 150 139 

n = 20 150 150 150 150 150 150 140 

n = 25 150 150 150 150 150 150 123 

n = 30 150 150 150 150 149 147 98 



Table 20. Branch-and-bound: average deviation from lb 

1 mode 2 modes 3 modes 4 modes 5 modes 6 modes unlimited 

n = 10 5.42% 3.27% 2.25% 2.39% 1.89% 2.13% 3.38% 

n = 15 3.96% 2.55% 1.85% 1.88% 1.45% 1.55% 4.18% 

n = 20 3.39% 2.16% 1.48% 1.80% 1.34% 1.59% 4.02% 

n = 25 4.04% 2.44% 1.83% 1.66% 1.20% 1.33% 4.88% 

n = 30 3.82% 2.47% 1.88% 1.97% 1.52% 1.94% 6.10% 

Table 21. Branch-and-bound: number of problems solved to optimality 

1 mode 2 modes 3 modes 4 modes 5 modes 6 modes unlimited 

n = 10 150 150 150 150 150 150 144 

n = 15 150 150 150 150 150 150 128 

n = 20 150 150 150 150 150 150 100 

n = 25 150 150 150 150 149 146 48 

n = 30 150 150 150 148 146 133 30 

Table 22. Branch-and-bound: average CPU-time (seconds) 

1 mode 2 modes 3 modes 4 modes 5 modes 6 modes unlimited 

n = 10 0.00 0.00 0.01 0.01 0.02 0.10 11.49 

n = 15 0.00 0.01 0.01 0.02 0.04 0.08 28.61 

n = 20 0.01 0.04 0.05 0.09 0.21 1.38 50.37 

n = 25 0.06 0.13 0.72 0.77 2.75 6.64 102.01 

n = 30 0.06 0.17 0.77 2.36 5.18 15.51 111.21 

Table 23. Branch-and-bound: summary 

Average deviation from the best known solution 

Maximum deviation from the best known solution 

Number of times the best known solution is obtained 

Average deviation from lb 

Maximum deviation from lb 

Problems solved to optimality 

Average CPU-time (in seconds) 

5.2.4. Fastest descent 

Global summary 

0.12% 

21.05% 

5,141 (±98%) 

2.60% 

42.86% 

4922 (±94%) 

9.74 

Unlimited number of modes 

0.81% 

21.05% 

645 (86%) 

4.51% 

27.78% 

450 (60%) 

60.74 
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Tables 24 through 30 show the results for a fastest descent algorithm in which the initial 

mode assignment is determined by assigning to each activity its mode with smallest duration 

(which resulted in the best performance). Again, each RCPSP instance is solved for a very short 

time (loa backtracking steps). Allowing more time per RCPSP instance does not improve the 
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performance of the fastest descent algorithm significantly. In the final intensification phase the 

RCPSP instance resulting from the best mode assignment is solved with a time limit of 1 second. 

Table 24. Fastest descent: average deviation from best solution 

1 mode 2 modes 3 modes 4 modes 5 modes 6 modes unlimited 

n = 10 0.00% 1.22% 1.42% 2.97% 2.88% 4.25% 6.81% 

n = 15 0.00% 1.15% 1.27% 2.66% 2.70% 4.30% 6.54% 

n = 20 0.00% 0.92% 0.98% 1.98% 2.24% 3.30% 6.07% 

n = 25 0.00% 0.83% 1.07% 2.30% 2.48% 4.11% 6.00% 

n = 30 0.00% 1.15% 1.21% 2.48% 2.27% 4.03% 5.45% 

Table 25. Fastest descent: number of times best solution is obtained 

1 mode 2 modes 3 modes 4 modes 5 modes 6 modes unlimited 

n = 10 150 117 108 86 82 68 15 

n = 15 150 112 103 90 82 61 6 

n = 20 150 109 96 87 81 68 6 

n = 25 150 97 89 77 74 51 0 

n = 30 149 98 90 83 77 57 1 

Table 26. Fastest descent: average deviation from lb 

1 mode 2 modes 3 modes 4 modes 5 modes 6 modes unlimited 

n = 10 5.42% 4.58% 3.73% 5.48% 4.85% 6.51% 10.02% 

n = 15 3.96% 3.77% 3.17% 4.66% 4.25% 5.97% 10.19% 

n = 20 3.39% 3.13% 2.50% 3.86% 3.64% 5.00% 10.01% 

n = 25 4.04% 3.33% 2.94% 4.04% 3.74% 5.54% 9.81% 

n = 30 3.82% 3.69% 3.13% 4.56% 4.07% 6.05% 10.23% 

Table 27. Fastest descent: number of problems solved to optimality 

1 mode 2 modes 3 modes 4 modes 5 modes 6 modes unlimited 

n = 10 150 79 81 68 69 52 1 

n = 15 150 87 88 80 80 54 0 

n = 20 150 91 91 81 81 65 2 

n = 25 150 84 85 74 74 49 0 

n = 30 149 84 84 77 76 55 1 



Table 28. Fastest descent: average number of RCPSP instances solved 

1 mode 2 modes 3 modes 4 modes 5 modes 6 modes unlimited 

n = 10 

n = 15 

n = 20 

n = 25 

n = 30 

1 

1 

1 

1 

1 

13 

21 

27 

36 

44 

28 

42 

57 

75 

94 

44 

66 

89 

118 

139 

61 

88 

124 

165 

205 

81 

123 

169 

225 

285 

158 

276 

406 

521 

658 

Table 29. Fastest descent: average CPU-time (seconds) 

1 mode 2 modes 3 modes 4 modes 5 modes 

n = 10 0.00 0.00 0.01 0.01 0.02 

n = 15 0.00 0.01 0.03 0.04 0.07 

n = 20 0.00 0.17 0.20 0.61 0.49 

n = 25 0.03 0.40 0.51 2.20 2.37 

n = 30 0.03 0.63 1.29 3.97 3.73 

Table 30. Fastest descent: summary 

Average deviation from the best known solution 

Maximum deviation from the best known solution 

Number of times the best known solution is obtained 

Average deviation from lb 

Maximum deviation from lb 

Problems solved to optimality 

Average number of RCPSP instances solved 

Average CPU-time (in seconds) 

5.2.5. Fastest iterated descent 

Global summary 

2.49% 

27.78% 

2,920 (±56%) 

5.05% 

50.00% 

2642 (±50%) 

127 

1.01 

6 modes unlimited 

0.01 0.02 

0.06 0.09 

0.34 0.64 

2.19 2.37 

4.28 8.37 

Unlimited number of modes 

6.17% 

16.67% 

28 (±4%) 

10.05% 

28.57% 

4 (±1%) 

404 

2.30 
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Tables 31 through 37 indicate the results for a fastest descent algorithm with random 

restarts. Unless restricted by the time limit of 100 seconds, 1,000 mode assignments are 

determined randomly, after which the fastest descent procedure is initiated. Each RCPSP 

instance is solved until 100 backtracking steps have been performed. A final intensification step 

with a time limit of 1 second is used for further examining the best mode assignment. As was to 

be expected, equipping a fastest descent procedure with random restarts significantly increases 

the quality of the obtained solutions, at the expense of increased computational requirements. 
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Table 31. Fastest iterated descent: average deviation from best solution 

1 mode 2 modes 3 modes 4 modes 5 rriodes 6 modes unlimited 

n= 10 0.00% 0.00% 0.09% 0.41% 0.33% 0.30% 1.07% 

n = 15 0.00% 0.02% 0.21% 0.61% 0.69% 0.59% 1.65% 

n = 20 0.00% 0.09% 0.40% 0.80% 0.93% 1.03% 2.21% 

n= 25 0.00% 0.22% 0.68% 1.41% 1.55% 1.58% 3.19% 

n = 30 0.00% 0.37% 0.77% 1.44% 1.70% 1.90% 3.22% 

Table 32. Fastest iterated descent: number of times best solution is obtained 

1 mode 2 modes 3 modes 4 modes 5 modes 6 modes unlimited 

n= 10 150 150 141 125 126 136 109 

n = 15 150 147 128 116 111 109 67 

n = 20 150 138 119 104 106 87 43 

n= 25 150 119 101 84 83 69 16 

n = 30 149 105 101 87 89 70 11 

Table 33. Fastest iterated descent: average deviation from lb 

1 mode 2 modes 3 modes 4 modes 5 modes 6 modes unlimited 

n = 10 5.42% 3.27% 2.35% 2.81% 2.22% 2.43% 4.13% 

n = 15 3.96% 2.57% 2.08% 2.51% 2.16% 2.15% 5.13% 

n =20 3.39% 2.25% 1.90% 2.63% 2.29% 2.65% 5.99% 

n = 25 4.04% 2.67% 2.54% 3.13% 2.79% 2.94% 6.89% 

n= 30 3.82% 2.87% 2.69% 3.46% 3.25% 3.84% 7.89% 

Table 34. Fastest iterated descent: number of problems solved to optimality 

1 mode 2 modes 3 modes 4 modes 5 modes 6 modes unlimited 

n = 10 150 83 90 80 86 75 42 

n = 15 150 90 92 85 85 72 5 

n = 20 150 93 101 88 89 76 2 

n= 25 150 85 88 79 79 63 0 

n = 30 149 89 90 80 83 60 0 

Table 35. Fastest iterated descent: average number of RCPSP instances solved 

1 mode 2 modes 3 modes 4 modes 5 modes 6 modes unlimited 

n = 10 1 8,373 16,166 29,680 38,579 58,340 207,638 

n = 15 1 11,773 23,674 40,817 55,676 81,508 388,840 

n= 20 1 13,697 23,670 44,849 53,826 71,155 357,870 

n = 25 1 17,642 33,097 45,566 48,932 66,676 174,467 

n = 30 1 19,085 36,938 48,235 46,211 69,336 163,781 
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Table 36. Fastest iterated descent: average CPU-time (seconds) 

1 mode 2 modes 3 modes 4 modes 5 modes 6 modes unlimited 

n = 10 0.00 3.06 4.49 5.84 7.10 9.95 19.82 

n = 15 0.00 7.69 10.03 15.63 20.62 31.65 70.64 

n = 20 0.00 11.91 13.67 25.23 32.00 41.42 89.81 

n = 25 0.02 21.48 28.83 41.18 43.71 54.89 100.00 

n = 30 0.02 23.31 31.25 44.27 43.83 56.54 99.16 

Table 37. Fastest iterated descent: summary 

Global summary Unlimited number of modes 

Average deviation from the best known solution 

Maximum deviation from the best known solution 

Number of times the best known solution is obtained 

Average deviation from lb 

Maximum deviation from lb 

Problems solved to optimality 

Average number of RCPSP instances solved 

Average CPU-time (in seconds) 

5.2.6. Steepest descent 

0.84% 

10.00% 

3,746 (±71%) 

3.35% 

42.86% 

2879 (±55%) 

65,603 

28.83 

2.27% 

10.00% 

246 (±33%) 

6.01% 

16.67% 

49 (±7%) 

258,519 

75.89 

Tables 38 through 44 denote the results for a steepest descent algorithm in which the initial 

mode assignment is determined by assigning to each activity its mode with smallest duration. 

Each RCPSP instance is solved until 100 backtracking steps have been performed. Contrary to 

expectations, the overall quality of the solutions obtained with steepest descent do not 

significantly differ from the those obtained using a fastest descent approach. On the average, 

steepest descent is only slightly superior, both in the number of problems solved to optimality and 

in the deviations with respect to lb and the best known solution. Only for an unlimited amount of 

modes steepest descent is distinctly superior. We have also extended the steepest descent 

algorithm with several tie-breaking rules, which decide which move has to be selected when 

several moves have equal associated upper bounds on the project makespan (instead of choosing 

one arbitrarily). The tie-breakers we examined included selecting mode assignments in which the 

new activity-mode combination has the smallest redundant work content (diri - Wi) and 

selecting modes which have a large impact on the structure of the solution (measured by the 

influence of a move as defined in section 4.4.3). Such tie-breaking rules, however, do not seem to 

lead to a superior performance. 
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Table 38. Steepest descent: average deviation from best solution 

1 mode 2 modes 3 modes 4 modes 5 modes 6 modes unlimited 

n = 10 0.00% 1.45% 1.38% 2.95% 2.70% 4.18% 6.25% 

n = 15 0.00% 1.56% 1.20% 3.05% 2.79% 4.14% 6.10% 

n = 20 0.00% 1.06% 0.87% 2.27% 2.21% 3.37% 5.70% 

n = 25 0.00% 0.89% 1.02% 2.62% 2.50% 3.79% 5.60% 

n = 30 0.00% 1.47% 1.16% 2.61% 2.53% 3.80% 5.11% 

Table 39. Steepest descent: number of times best solution is obtained 

1 mode 2 modes 3 modes 4 modes 5 modes 6 modes unlimited 

n = 10 150 117 112 86 83 72 17 

n = 15 150 111 106 92 82 63 6 

n = 20 150 111 100 87 82 73 6 

n = 25 150 103 91 78 77 57 0 

n = 30 149 100 94 86 78 61 3 

Table 40. Steepest descent: average deviation from lb 

1 mode 2 modes 3 modes 4 modes 5 modes 6 modes unlimited 

n = 10 5.42% 4.84% 3.69% 5.46% 4.66% 6.43% 9.46% 

n = 15 3.96% 4.21% 3.09% 5.06% 4.34% 5.81% 9.73% 

n= 20 3.39% 3.28% 2.38% 4.16% 3.61% 5.08% 9.62% 

n = 25 4.04% 3.39% 2.89% 4.37% 3.76% 5.21% 9.40% 

n = 30 3.82% 4.03% 3.09% 4.70% 4.13% 5.82% 9.88% 

Table 41. Steepest descent: number of problems solved to optimality 

1 mode 2 modes 3 modes 4 modes 5 modes 6 modes unlimited 

n = 10 150 82 82 68 69 55 2 

n = 15 150 88 90 80 80 57 0 

n = 20 150 91 97 81 82 70 2 

n = 25 150 84 85 75 76 54 0 

n = 30 149 87 88 77 77 57 2 

Table 42. Steepest descent: average number of RCPSP instances solved 

1 mode 2 modes 3 modes 4 modes 5 modes 6 modes unlimited 

n = 10 1 14 31 59 79 98 182 

n = 15 1 23 51 98 127 169 374 

n = 20 1 32 72 149 195 253 598 

n = 25 1 48 98 232 293 396 896 

n = 30' 1 57 133 295 383 505 1,193 
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Table 43. Steepest descent: average CPU-time (seconds) 

1 mode 2 modes 3 modes 4 modes 5 modes 6 modes unlimited 

n = 10 0.00 0.00 0.01 0.02 0.02 0.02 0.03 

n = 15 0.00 0.02 0.03 0.08 0.08 0.07 0.12 

n = 20 0.00 0.20 0.31 1.47 1.43 0.62 0.94 

n = 25 0.03 0.51 0.78 6.34 5.40 4.02 3.47 

n = 30 0.03 1.28 2.66 7.51 8.55 5.45 8.47 

Table 44. Steepest descent: summary 

Global summary Unlimited number of modes 

Average deviation from the best known solution 

Maximum deviation from the best known solution 

Number oftimes the best known solution is obtained 

Average deviation from lb 

Maximum deviation from lb 

Problems solved to optimality 

Average number of RCPSP instances solved 

Average CPU-time (in seconds) 

5.2.7. Steepest iterated descent 

2.47% 

27.78% 

2,983 (±57%) 

5.03% 

50.00% 

2687 (±51%) 

204 

1.71 

5.75% 

19.05% 

32 (±4%) 

9.62% 

28.57% 

6 (±1%) 

649 

2.60 

Tables 45 through 51 indicate the results for a steepest descent algorithm with random 

restarts. Unless restricted by the time limit of 100 seconds, 1,000 random restarts are performed. 

Each RCPSP instance is solved until 100 backtracking steps have been performed. A final 

intensification step with a time limit of 1 second is used for further examining the best mode 

assignment. Again, equipping a steepest descent procedure with random restarts significantly 

increases the quality of the obtained solutions. Surprisingly however, the slight advantage of 

steepest descent versus fastest descent disappears when random restarts are introduced. In fact, 

iterated fastest descent performs significantly better than iterated steepest descent. The main 

reason for this is the fact that a fastest descent approach requires much less time to perform each 

iteration, thereby making it possible to perform more iterations and random restarts. Notice, 

however, that the total amount of RCPSP instances evaluated is substantially higher using a 

steepest descent approach. The number of iterations, however, is much less because using a 

fastest descent approach an iteration requires solving much less RCPSP instances. 
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Table 45. Steepest iterated descent: average deviation from best solution 

1 mode 2 modes 3 modes 4 modes 5 modes 6 modes unlimited 

n = 10 0.00% 0.00% 0.05% 0.29% 0.30% 0.15% 0.84% 

n = 15 0.00% 0.01% 0.23% 0.62% 0.80% 0.58% 1.70% 

n = 20 0.00% 0.08% 0.43% 0.80% 1.03% 1.14% 2.49% 

n = 25 0.00% 0.20% 0.85% 1.79% 1.93% 2.09% 3.83% 

n = 30 0.00% 0.37% 0.97% 1.76% 1.98% 2.36% 4.23% 

Table 46. Steepest iterated descent: number oftimes best solution is obtained 

1 mode 2 modes 3 modes 4 modes 5 modes 6 modes unlimited 

n = 10 150 150 145 131 129 143 116 

n = 15 150 148 126 112 106 108 64 

n = 20 150 139 115 105 101 85 35 

n = 25 150 121 95 77 76 60 8 

n = 30 149 106 98 83 83 66 4 

Table 47. Steepest iterated descent: average deviation from lb 

1 mode 2 modes 3 modes 4 modes 5 modes 6 modes unlimited 

n = 10 5.42% 3.27% 2.30% 2.69% 2.19% 2.28% 3.90% 

n = 15 3.96% 2.57% 2.09% 2.52% 2.27% 2.15% 5.17% 

n = 20 3.39% 2.24% 1.93% 2.63% 2.39% 2.76% 6.28% 

n = 25 4.04% 2.65% 2.72% 3.51% 3.17% 3.46% 7.55% 

n = 30 3.82% 2.86% 2.89% 3.80% 3.55% 4.32% 8.94% 

Table 48. Steepest iterated descent: number of problems solved to optimality 

1 mode 2 modes 3 modes 4 modes 5 modes 6 modes unlimited 

n = 10 150 83 90 81 85 78 44 

n = 15 150 90 92 83 84 72 5 

n = 20 150 93 101 88 89 76 2 

n = 25 150 85 85 74 73 58 0 

n = 30 149 89 88 79 81 58 0 

Table 49. Steepest iterated descent: average number of RCPSP instances solved 

1 mode 2 modes 3 modes 4 modes 5 modes 6 modes unlimited 

n = 10 1 11,349 29,731 58,003 76,420 109,567 433,934 

n = 15 1 21,151 60,613 109,901 136,040 186,227 1,016,542 

n= 20 1 30,925 74,990 112,324 121,544 166,949 1,054,419 

n= 25 1 43,685 76,719 95,687 122,442 168,947 484,645 

n = 30' 1 48,114 78,001 95,037 123,286 222,499 522,723 



Table 50. Steepest iterated descent: average CPU-time (seconds) 

1 mode 2 modes 3 modes 4 modes 5 modes 6 modes unlimited 

n = 10 0.00 3.59 6.61 8.96 11.59 14.63 25.79 

n = 15 0.00 10.12 16.80 28.20 33.40 41.78 83.68 

n = 20 0.00 16.49 27.41 38.20 37.89 46.23 97.24 

n = 25 0.02 30.48 37.86 46.71 46.40 56.22 100.20 

n~ 30 0.02 35.97 39.57 46.72 45.95 59.47 100.30 

Table 51. Steepest iterated descent: summary 

Average deviation from the best known solution 

Maximum deviation from the best known solution 

Number of times the best known solution is obtained 

Average deviation from lb 

Maximum deviation from lb 

Problems solved to optimality 

Average number of RCPSP instances solved 

Average CPU-time (in seconds) 

5.2.8. Tabu search 

Global summary 

0.97% 

10.00% 

3,684 (±70%) 

3.48% 

42.86% 

2855 (±54%) 

168,355 

34.13 

Unlimited number of modes 

2.62% 

10.00% 

227 (30%) 

6.37% 

16.67% 

51 (±7%) 

702,453 

81.44 
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Tables 52 through 58 indicate the results obtained with the TS procedure. The initial mode 

assignment is determined by assigning to each activity the mode with duration 

max{ l,JW; J, r:i l}, where Lx J denotes the highest integer number equal to or smaller than x 

and r xl denotes the smallest integer number equal to or higher than x. The reason for choosing 

this mode instead of the mode with the smallest duration is the fact that it is situated somewhere 

in the middle of all available modes, thereby opening up possibilities for both increasing and 

decreasing the duration of the activities. 

In general, using the modes with the smallest associated duration will cause local search 

procedures to get stuck in local optima rather quickly. Often, the inevitable increase in the 

duration of an activity will cause an equivalent increase in the project duration. However, these 

local optima are often already of high quality. That is why for the descent algorithms described 

above, using these modes led to the best performance, and why, in other types of multiple mode 

resource-constrained project scheduling problems, the heuristics in which for each activity the 

shortest duration is selected led to a superior performance than when any other mode is chosen 

(see, for instance, Boctor, 1996). For the TS procedure, the initial solution does not have a 

significant impact on the quality of the obtained solutions. When the shortest modes are selected 

for the initial mode assignment, the overall average deviations from the best known solution and 
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lower bound are 0.29% (vs. 0.27%) and 2.78% (vs. 2.76%), respectively. The number of problems 

solved to (verified) optimality equals 2932 (vs. 2933). Each RCPSP instance is solved until 100 

backtracking steps have been performed. A final intensification step with a time limit of 1 second 

is used for further examining the best mode assignment. 

Table 52. Tabu search: deviation from best solution 

1 mode 2 modes 3 modes 4 modes 5 modes 6 modes unlimited 

n = 10 0.00% 0.00% 0.00% 0.03% 0.01% 0.09% 0.19% 

n = 15 0.00% 0.00% 0.00% 0.05% 0.05% 0.13% 0.73% 

n = 20 0.00% 0.02% 0.01% 0.07% 0.20% 0.34% 1.21% 

n = 25 0.00% 0.05% 0.06% 0.22% 0.40% 0.73% 1.70% 

n = 30 0.00% 0.08% 0.09% 0.18% 0.35% 0.78% 1.83% 

Table 53. Tabu search: number of times best solution is obtained 

1 mode 2 modes 3 modes 4 modes 5 modes 6 modes unlimited 

n = 10 150 150 150 149 149 145 141 

n = 15 150 150 150 147 146 137 108 

n = 20 150 148 149 144 133 117 73 

n = 25 150 145 145 133 107 87 46 

n = 30 150 141 139 127 107 83 36 

Table 54. Tabu search: average deviation from lb 

1 mode 2 modes 3 modes 4 modes 5 modes 6 modes unlimited 

n = 10 5.42% 3.27% 2.25% 2.42% 1.90% 2.22% 3.25% 

n = 15 3.96% 2.55% 1.85% 1.93% 1.50% 1.69% 4.18% 

n = 20 3.39% 2.18% 1.49% 1.87% 1.54% 1.94% 4.96% 

n = 25 4.04% 2.50% 1.89% 1.89% 1.61% 2.07% 5.35% 

n= 30 3.82% 2.56% 1.98% 2.16% 1.87% 2.69% 6.43% 

Table 55. Tabu search: number of problems solved to optimality 

1 mode 2 modes 3 modes 4 modes 5 modes 6 modes unlimited 

n = 10 150 83 90 80 86 79 62 

n = 15 150 90 92 87 90 81 13 

n = 20 150 93 101 88 89 76 2 

n = 25 150 85 88 79 80 64 0 

n = 30 149 89 91 81 83 60 2 



Table 56. Tabu search: average number of RCPSP instances solved 

1 mode 2 modes 3 modes 4 modes 5 modes 6 modes unlimited 

n = 10 1 7,153 11,935 21,682 27,411 39,795 84,513 

n = 15 1 9,124 17,005 28,563 36,989 48,811 156,065 

n = 20 1 10,672 17,275 30,575 35,951 42,696 121,475 

n = 25 1 13,305 21,257 29,903 29,185 32,594 63,726 

n = 30 1 14,445 24,505 33,596 26,998 33,394 53,376 

Table 57. Tabu search: average CPU-time (seconds) 

1 mode 2 modes 3 modes 4 modes 5 modes 

n = 10 0,00 3,97 6,00 8,77 10,99 

n = 15 0,00 8,39 11,80 16,31 21,49 

n = 20 0,00 13,50 14,91 26,30 34,49 

n = 25 0,02 23,66 32,05 43,04 46,89 

n = 30 0,02 23,86 32,40 45,14 46,47 

Table 58. Tabu search: summary 

Average deviation from the best known solution 

Maximum deviation from the best known solution 

Number of times the best known solution is obtained 

Average deviation from lb 

Maximum deviation from lb 

Problems solved to optimality 

Average number of RCPSP instances solved 

Average CPU-time (in seconds) 

Global summary 

0.27% 

8.33% 

4,532 (±86%) 

2.76% 

42.86% 

2933 (±56%) 

32,114 

31.39 

6 modes unlimited 

16,66 28,89 

34,46 82,81 

46,25 98,77 

59,00 100,46 

61,57 99,40 

Unlimited number of modes 

1.13% 

8.33% 

404 (±54%) 

4.83% 

16.67% 

79 (±11%) 

95,831 

82.07 

5.2.9. Effect oftabu list management, aspiration criteria, intensification and diversification 

36 

Tables 59 and 60 indicate the performance of the TS procedure starting from a steepest 

descent / mildest ascent procedure based on recency-based memory (tabu list) only, up to the full­

fledged TS procedure including a randomly varying tabu list length, all proposed aspiration 

criteria, intensification and diversification strategies and an extended final intensification step. 

The extended final intensification phase consists of solving all RCPSP instances corresponding to 

the mode assignments that led to the minimal value for the project makespan (instead of using 

only the first one encountered in executing the procedure) to near-optimality using the procedure 

of Demeulemeester and Herroelen (1997a) for 1 second. A maximum of 1,000 such mode 

assignments is imposed. In order to prevent that one single mode assignment is stored (and 
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n 

investigated) several times, we use a hashing function of the form h = rem(L Pimi, Pi+1) , where 
i=l 

rem(y,x) denotes the remainder of the division of y by x and Pi denotes the ith prime number 

(starting from 3), to determine which mode assignments have to be saved. If upon finding a mode 

assignment with a minimal value for the project makespan the associated hashing value has 

already been encountered before, the mode assignment is not withheld because of the risk that it 

has already been saved earlier. 

Table 59. Impact of various components of the TS procedure 

Basic TS Variable Aspiration Intensifi- Diversifi- Solutions Extended 

procedure tabu list criteria cation cation evaluated final 

length but not intensifi-

visited cation 

Avg. dey. from best sol. 1.35% 1.02% 0.61% 0.52% 0.28% 0.27% 0.28% 

Max. dey. from best sol. 100.00% 100.00% 129.63% 129.63% 7.14% 8.33% 8.33% 

Best solution 3,522 (±67%) 3,776 (±72%) 4,112 (±78%) 4,375 (±83%) 4,514 (±86%) 4,532 (±86%) 4,525 (±86%) 

Avg. dey. from lb 3.86% 3.52% 3.11% 3.01% 2.77% 2.76% 2.77% 

Max. dey. from lb 107.69% 107.69% 138.46% 138.46% 42.86% 42.86% 42.86% 

Optimal 2406 (±46%) 2521 (±48%) 2613 (±50%) 2858 (±54%) 2932 (±56%) 2933 (±56%) 2936 (±56%) 

Avg. RCPSPs solved 39,489 38,790 38,303 30,562 31,956 32,114 31,911 

Avg. CPU-time 34.35 ·34.34 34.64 31.67 30.81 31.39 31.14 

Table 60. Impact of various components ofthe TS procedure for unlimited number of modes 

Basic TS Variable Aspiration Intensifi- Diversifi- Solutions Extended 

procedure tabu list criteria cation cation evaluated final 

length but not intensification 

visited 

Avg. dey. from best sol. 3.53% 2.71% 2.11% 2.00% 1.17% 1.13% 1.20% 

Max. dey. from best so!. 100.00% 100.00% 129.63% 129.63% 7.14% 8.33% 8.33% 

Best solution 284 (±38%) 344 (±46%) 439 (±59%) 444 (±59%) 395 (±53%) 404 (±54%) 389 (±52%) 

Avg. dey. from lb 7.32% 6.47% 5.85% 5.73% 4.87% 4.83% 4.90% 

Max. dey. from lb 107.69% 107.69% 138.46% 138.46% 16.67% 16.67% 16.67% 

Optimal 53 (±7%) 71 (±9%) 80 (±ll%) 75 (10%) 76 (±lO%) 79 (±ll%) 75 (10%) 

Avg. RCPSPs solved 105,556 105,233 102,820 86,862 97,397 95,831 95,928 

Avg. CPU-time 83.44 83.79 84.17 80.12 81.40 82.07 81.84 

Clearly, all proposed extensions to the basic TS procedure (except the extended final 

intensification) enhance the global performance of the algorithm. The basic TS procedure based 

on recency-based memory (tabu list) only, although significantly superior to single-pass pure 
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descent methods, is not able to outperform iterated descent methods. Only the introduction of 

aspiration criteria allows the TS procedure to outperform all other local search procedures. This 

result is conform with many similar results from the literature, in which rather simple TS 

procedures based on tabu lists and aspiration criteria only already outperform pure descent 

procedures. 

However, the maximum deviations with respect to the lower bound and the best known 

solution are much worse. Equipping a TS procedure with aspiration criteria may sometimes cause 

the algorithm to quickly get stuck in local optima of poor quality. Especially aspiration by 

influence or aspiration by strong admissibility, which do not guarantee that cycling will not occur, 

may lead to a premature termination of the procedure. That is why only after including a 

diversification strategy, the maximum deviations (which will prevent indefinite cycling through 

the use of penalties in the move evaluation) are reduced to an acceptable level. The maximum 

deviations of pure descent methods (without random restarts) are considerably better than when 

using a steepest descent / mildest descent approach without diversification, mainly because the 

initial solution is different (based on the modes with the smallest associated duration), which 

leads to relatively good initial local optima out of which, however, the pure descent procedure 

seldom escapes. Starting pure descent methods with the initial solution used for the tabu search 

leads to substantially worse results (even worse than the basic TS procedure without any 

enhancements). 

The required computational effort does not increase when either aspiration criteria or 

intensification and diversification strategies are introduced. Extending the TS procedure with an 

extended final intensification phase does not lead to a significantly superior performance (mainly 

because of the increased computational effort per iteration which leads to less iterations within 

the given time limit). When there is no limit on the number of modes extended final 

intensification even leads to slightly worse results because then, the extra required computational 

effort for storing the local optima is highest. Therefore, we chose to only store the first best 

solution obtained so far and to run a near-optimal RCPSP procedure only for that problem 

instance. 

5.2.10. Effect of problem characteristics 

Fig. 1 shows the effect of as on the computational complexity of the DTRTP represented by 

the average deviation of the solutions obtained by the TS procedure with respect to the best 

known solution. Although the deviation with respect to a lower bound can be used for comparing 

the performance of different algorithms on a problem set or on specific subsets of that problem 

set, it should never be used for investigating the impact of certain problem characteristics on the 

problem complexity, since these problem characteristics may have an impact on the lower bound 

itself rather than on the computational complexity of the problem. Therefore, we have opted for 

the deviation with respect to the best known solution. Similar observations can be made for the 
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number of problems solved to optimality. As is clear from Fig. 1, OS has a negative impact on the 

DTRTP complexity: the higher OS, the easier the corresponding DTRTP instance, regardless of 

the number of modes. 
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Fig. 2 shows the effect of the resource availability a on the computational complexity of the 

DTRTP. The resource availability does not seem to have a monotonous impact on the DTRTP 

complexity. On the contrary, a kind of bell-shaped curve seems to result: when a increases, the 

average deviations increase up to a certain point after which they decrease again. Only when the 

number of modes is high enough (namely 6), the resource availability has a negative impact on 

the DTRTP complexity (because probably the top of the bell-shaped curve occurs for small values 

of a). We did not include the results for an unlimited number of modes since then, the resource 

availability has a substantial impact on the number of modes (as given in Table 3), thereby 

polluting the real effect of a on the DTRTP complexity. 

5.2.11. Restricting the number of modes 

Table 61 reports the average deviation from the best known solution, where the best known 

solution for each problem instance is defined as the best solution encountered using all the local 

search algorithms with an unlimited allowed number of modes. Therefore, Table 61 indicates how 

a restriction on the number of modes influences the quality of the obtained solutions relative to 

the absence of such a restriction. The very high deviations indicate that is not wise to restrict the 

number of allowed modes a priori without there being a justifiable reason. Specific modes may be 

excluded from consideration if they represent unrealistic modes (e.g. a duration of 100 with 

resource requirement 1) or if executing the activity using the proposed mode is not feasible 

(dictated by the actual conditions). However, limiting the number of modes in order to decrease 

the computational complexity may have a drastic impact on the quality of the obtained solutions. 

As Table 62 indicates, the average deviation from the best known solution due to a restriction of 

the number of modes increases when the resource availability increases. When the resource 

availability is high, "extreme" modes with a very small duration, which can only be obtained 

when there is no limit on the number of modes, become very important in finding the optimal 

schedule. Highly resource-constrained projects do not suffer as much from a restriction on the 

number of modes. 

Table 61. Restriction of number of modes: average deviation from best known solution 

1 mode 2 modes 3 modes 4 modes 5 modes 6 modes unlimited 

n = 10 78.52% 55.27% 54.09% 34.61% 34.03% 17.96% 0.19% 

n = 15 91.42% 65.66% 64.78% 42.28% 41.79% 22.64% 0.73% 

n = 20 102.53% 75.84% 74.99% 51.04% 50.66% 30.11% 1.21% 

n = 25 85.06% 60.03% 59.32% 37.80% 37.48% 20.03% 1.70% 

n = 30 93.40% 67.27% 66.55% 43.55% 43.21% 24.09% 1.83% 
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Table 62. Restriction of number of modes: average deviation from best known solution 

1 mode 2 modes 3 modes 4 modes 5 modes 6 modes unlimited 

a = 10 17.46% 7.69% 6.27% 3.96% 2.72% 1.42% 1.29% 

a = 20 31.33% 16.90% 14.41% 6.16% 5.45% 2.52% 1.04% 

a = 30 79.61% 53.98% 53.63% 30.11% 29.99% 11.91% 1.18% 

a= 40 134.56% 100.03% 99.94% 65.89% 65.84% 35.32% 1.22% 

a = 50 187.98% 145.48% 145.48% 103.17% 103.17% 63.65% 0.95% 

5.2.12. Summary 

Tables 63 and 64 summarize the results for all local search procedures. Table 63 reports the 

global averages over all problem instances, whereas Table 64 only indicates the results when the 

number of modes is unlimited. The proposed TS procedure clearly outperforms all other local 

search methods by a large margin. For more than 99% of all problem instances (5200 out of 

5250), tabu search is able to match or improve upon the best solution obtained with all other local 

search procedures. The truncated complete enumeration procedure performs very badly, even 

worse than the fastest and steepest descent methods without random restarts. The random 

procedure, although based on generating hundreds of thousands of mode assignments (and 

sometimes more than 1 million!), performs the worst. Therefore, based on this evidence, it is 

dangerous to only use random solutions as a benchmark, even when a very large number of such 

random solutions are considered. The relative difference in pe~formance between iterated descent 

procedures and tabu search is in line with the results obtained by Mooney and Rardin (1992), who 

developed local search procedures for task assignment problems under resource constraints. They 

conclude that, although iterated descent procedures obtain high diversification levels as a result 

of the restarting procedure, they perform rather poorly compared to a TS procedure. Therefore, 

diversification appears to be a necessary but not a sufficient condition for obtaining high-quality 

solutions. 

The results for the branch-and-bound procedure are quite promising when compared to the 

local search methods. Not only the number of problems solved to optimality but also the quality of 

the obtained heuristic solutions are significantly higher when compared to all other procedures. 

There are, however, three drawbacks. First, the maximum deviations from the best known 

solution and the lower bound are worse than for the TS procedure (and the iterated descent 

methods), which is mainly due to the fact that the branch-and-bound procedure is sometimes 

truncated upon finding a first feasible solution, which cannot always be guaranteed to be of high 

quality. Second, the memory requirements of the branch-and-bound procedure are much higher 

(some 15 Mb versus 1.3 Mb for the local search algorithms). Third, a feasible solution cannot 

always be guaranteed after a small CPU-time limit. Sometimes more than 1500 seconds are 

needed for finding a first feasible solution, whereas the local search procedures can be truncated 

already after a few seconds of running time. However, it is clear that the branch-and-bound 
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procedure is a viable alternative for solving the DTRTP, even for fairly large problems with up to 

30 activities and 15 modes per activity. 

Table 63. Global summary 

Truncated Random Fastest Steepest Fastest Steepest Tabu search Branch-and-

complete procedure descent descent iterated iterated bound 

enumeration descent descent 

Avg. dey. from best sol. 3.20% 6.69% 2.49% 2.47% 0.84% 0.97% 0.27% 0.12% 

Max. dey. from best sol. 43.18% 186.67% 27.78% 27.78% 10.00% 10.00% 8.33% 21.05% 

Best solution 3,315 (±63%) 2,159 (±41 %) 2,920 (±56%) 2,983 (±57%) 3,746 (±71%) 3,684 (±70%) 4,532 (±86%) 5,141 (±98%) 

Avg. dey. from lb 5.79% 9.41% 5.05% 5.03% 3.35% 3.48% 2.76% 2.60% 

Max. dey. from lb 48.84% 186.67% 50.00% 50.00% 42.86% 42.86% 42.86% 42.86% 

Optimal 2709 (±52%) 1767 (±34%) 2642 (±50%) 2687 (±51%) 2879 (±55%) 2855 (±54%) 2933 (±56%) 4922 (±94%) 

Avg. RCPSPs solved 787,224 608,882 127 204 65,603 168,355 32,114 

Avg. CPU-time 44.40 67.58 1.01 1.71 28.83 34.13 31.39 

Table 64. Summary for unlimited number of modes 

Truncated Random Fastest Steepest Fastest Steepest Tabu Branch-

complete procedure descent descent iterated iterated search and-bound 

enumeration descent descent 

Avg. dey. from best sol. 6.70% 27.38% 6.17% 5.75% 2.27% 2.62% 1.13% 0.81% 

Max. dey. from best sol. 24.00% 186.67% 16.67% 19.05% 10.00% 10.00% 8.33% 21.05% 

Best solution 61 (±8%) 13 (±2%) 28 (±4%) 32 (±4%) 246 (±33%) 227 (30%) 404 (±54%) 645 (86%) 

Avg. dey. from lb 10.64% 32.42% 10.05% 9.62% 6.01% 6.37% 4.83% 4.51% 

Max. dey. from lb 33.33% 186.67% 28.57% 28.57% 16.67% 16.67% 16.67% 27.78% 

Optimal 20 (±3%) 7 (±1%) 4 (±1%) 6 (±1%) 49 (±7%) 51 (±7%) 79 (±11%) 450 (60%) 

Avg. RCPSPs solved 2,432,985 1,116,687 404 649 258,519 702,453 95,831 

Avg. CPU-time 97.83 99.39 2.30 2.60 75.89 81.44 82.07 60.74 

6. Conclusions and suggestions for future research 

In this paper we present a tabu search (TS) procedure for the discrete time/resource trade-off 

problem in project networks. The TS procedure is based on subdividing the problem into a mode 

assignment phase and a resource-constrained project scheduling phase with fixed mode 

assignments. The computational results indicate that the TS procedure clearly outperforms other 

local search methods such as iterated descent, truncated complete enumeration or a random 

approach. In more than 99% of all problem instances the TS procedure is able to find the best 

solution obtained by all local search procedures. Even a rather simple TS procedure based on 

recency-based memory and aspiration criteria only already outperforms other local search 

methods. Equipping the TS procedure with intensification and diversification strategies 

9.74 
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substantially improves its performance. The branch-and-bound procedure developed by 

Demeulemeester et al. (1997) is capable of solving many of the test problems to optimality within 

an acceptable amount of time. A truncated version is able to outperform all local search methods 

presented in this paper. However, the branch-and-bound procedure sometimes requires relatively 

high computation times and memory, even for just finding a feasible solution. 

A major advantage of TS versus more rigid procedures of the branch-and-bound type is its 

flexibility and versatility in the· sense that it can easily be adapted to other assumptions and 

different problem types. One possible extension would be the application of a similar TS 

procedure to the MRCPSP. The major difference between the DTRTP and the MRCPSP is the fact 

that the mode assignment problem becomes NP-hard when there are at least two nonrenewable 

resource types. Therefore, finding a feasible solution for the MRCPSP or, equivalently, a feasible 

solution for the mode assignment phase in the TS procedure may become a very difficult task. 

Another possible extension would be to include other than zero-lag finish-start precedence 

relations, leading to the DTRTP with precedence diagramming (minimal start-start, start-finish, 

finish-start Or finish-finish precedence relations) or with generalized precedence relations 

(minimal and maximal start-start, start-finish, finish-start or finish-finish precedence relations). 

This extension would require the use of a procedure for the GRCPSP (Demeulemeester and 

Herroelen, 1997b) or the RCPSP-GPR (De Reyck and Herroelen, 1997) for evaluating each mode 

assignment. Finally, the proposed TS procedure can be adapted for other regular and non-regular 

objective . functions such as minimizing project costs, optimizing due-date performance and 

maximizing the net present value of the project given positive or negative cash flows associated 

with the activities. Basically, only the move evaluation phase and the lower bound calculations 

have to be modified. These problem types definitely constitute areas for future research. 
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