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Abstract

The Job Scheduling with Cancellation problem is a variation of classical scheduling problems in which jobs can be c
while waiting for execution. In this paper we prove a tight lower bound of 5 for the competitive ratio of any deterministic
algorithm for this problem, for the case where all jobs have the same processing time.
 2005 Elsevier B.V. All rights reserved.
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1. Introduction

The Job Scheduling with Cancellation problem (J
Cancellation) is first put forward by Chan et al. [2
A sequence of jobs arrive at arbitrary time for sched
ing on a single machine. The jobs have differ
processing times, profits and deadlines. A job is
known until it arrives, and the processing time, de
line and profit are known when it arrives. At each tim
only one job can be scheduled. When a job is be
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processed, it can be preempted and restarted later
the beginning. Furthermore, there is also a sequenc
cancel requestsarriving at arbitrary time. A cancel re
quest specifies a released job to be cancelled. If a
is being processed or is completed, a cancel reques
the job will be ignored, otherwise the job will be ca
celled. The objective is to maximize the total profit
satisfied jobs (i.e., those completed before their de
lines). A real-life example for JS-Cancellation is th
printing jobs on a printer can be cancelled when t
are waiting.

To gauge the quality of the schedules produced
an on-line algorithm, the competitive ratio analysis
is often used. Given an inputI (a set of jobs) and a
algorithmA, we denote bySA(I) andS∗(I ) the sched-
ules produced byA and by an optimal offline algorithm
on I , respectively. The competitive ratio of algorith
A is defined asrA = supI

|S∗(I )|
|SA(I)| , where|S| denotes the

total profit of completed jobs in the scheduleS.
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In [2] a 5-competitive algorithm for JS-Cancellatio
is given for the case where all jobs have the sa
processing time. In this short note we show that w
all jobs have the same processing time, no determ
tic online algorithm for JS-Cancellation is better th
5-competitive, thus giving a matching lower bound.

2. Lower bound of JS-Cancellation

For a jobJ , denote bya(J ), p(J ) andd(J ) its ar-
rival time, processing time and deadline, respectiv
Without loss of generality, letp(J ) = 1, which means
each job is one unit in length.

Theorem 2.1. In the case that all jobs have the sam
processing time, no deterministic online algorithm
JS-Cancellation is better than5-competitive.

Proof. The main idea of our proof is similar to that
Theorem 4.4 of Woeginger’s paper [4], which give
lower bound for an interval scheduling problem. Fir
we state an important lemma that is proved in [4].

Lemma 1 [4]. For 2 < α < 4, let S(α) be a strictly in-
creasing sequence of positive numbers〈v1, v2, . . .〉 sat-
isfying the inequalityvi+2 � (α −1)vi+1−∑i

j=1 vj for
everyi � 0. ThenS(α) is finite.

Define job sets SET(vmin, vmax, d, δ) = {j1, . . . , jq}
with the following two properties:

(p1) The profitsv(ji) satisfy v(j1) = vmin, v(jq) =
vmax, andv(ji) < v(ji+1) � v(ji) + δ for 1 � i �
q − 1;

(p2) The jobs ji in SET satisfy that 0< a(j1) <

a(j2) < · · · < a(jq) < d < a(j1) + 1.

In the following, we setα = 4−ε/2 where 0< ε < 1
is an arbitrary constant. We will show how the optim
algorithm, denoted by OPT, acts according to the beh
ior of a deterministic online algorithm, denoted by
We will introduce a listL(ε) of jobs, such that OPT ca
force A to behave poorly onL(ε) and to have a wors
case ratio of at least 5− ε. OPT proceeds in sever
steps. In every step, some SET(∗,∗,∗,∗) is fed to A. In
SET(∗,∗,∗,∗), all the jobs have indefinite deadline
The exact structure of SET(∗,∗,∗,∗) depends on th
action of A during the preceding steps. After a fin
number of steps, the schedule constructed by A
have profit a factor of approximatelyα + 1 = 5 − ε/2
away from that of the optimum schedule.
Let δ < ε/4 andδi = δ/2i such that
∑∞

i=0 δi = 2δ.
The exact value ofδ will be determined later.

In the first step, a SET(µ,αµ,1, δ) is released wher
µ is any positive number. If A processes the first
with profit µ, then OPT processes the last job with pr
αµ, and no more jobs arrive. Immediately after OPT
gins to serve the last job, there comes cancel reques
cancel all the jobs except the first one. So A can o
gain a profit ofµ. OPT first finishes the last job wit
profitαµ and then processes the first job due to its ind
inite deadline, so that OPT can gain a profit of(α + 1)µ

in total, which makes A lose. Otherwise, if A proces
some jobJ1 with profit v1 > µ, then OPT processe
the job arriving just beforeJ1 which has profit at leas
v1 − δ. Denote this job asJ ′

1. OPT also issues canc
requests for all jobs exceptJ1. Let d1 denote the differ-
ence between the completion times ofJ1 andJ ′

1. Define
w1 = (α − 1)v1. Go to the next step.

In the second step, a shifted copy of SET(v1,w1,

d1, δ1) is released, in which all jobs arrive after the co
pletion time ofJ ′

1 but before the completion time ofJ1.
Hence, when the new set of jobs arrives, OPT has
ishedJ ′

1 but A has not finishedJ1 yet. In the following
we discuss three selections A may choose.

(S1) A does not interruptJ1. Then no more set o
jobs arrive and after OPT begins to process
last job in the new set with profitw1, there ar-
rive cancel requests to cancel all the jobs
SET(v1,w1, d1, δ1). Then A can only finishJ1
and gain a profit ofv1. OPT can first processJ ′

1 in
the first set, then the last job with profitw1 in the
second set, and finallyJ1 (note that it is never can
celed), so that the total profit OPT gains is at le
(v1−δ)+w1+v1 = (α+1)v1−δ. By settingδ <

εv1/2, A loses again. So when SET(v1,w1, d1, δ1)

releases, A is forced to interruptJ1.
(S2) A chooses the first job in the new set with profitv1.

Then OPT acts the same as that in (S1) and a
OPT begins to serve the job with profitw1, there
arrive cancel requests to cancel all the jobs exc
the first one in SET(v1,w1, d1, δ1). Then A only
gainsv1, and OPT can gain(α + 1)v1 − δ. A loses
again. Since both A and OPT gain the same p
its as that in (S1), respectively, we will ignore th
case in subsequent steps.

(S3) A chooses some jobJ2 in the new set with profi
v2 > v1. Let J ′

2 be the job arriving just beforeJ2
which has profit at leastv2 − δ1. Then a cance
request arrives to cancel jobJ1. Furthermore, im-
mediately after OPT starts processingJ ′

2, there
arrive cancel requests for all jobs in the seco
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set exceptJ2. Denote the difference of the com
pletion times ofJ2 and J ′

2 by d2, and define
w2 = (α − 1)v2 − v1. Go on to the next step i
which a SET(v2,w2, d2, δ2) is released.

This is repeated over and over again. In step(i + 1),
i � 1, there is a shifted copy of SET(vi,wi, di, δi) in
which all jobs arrive after OPT finishesJ ′

i but before
A finishesJi . The last job has profitwi = (α − 1)vi −∑i−1

j=1 vj .
A may select action (S1) or (S3). If A selects (S

i.e., it does not interruptJi , then it can gain onlyvi and
OPT can gain total profit

∑i
j=1(vj − δj−1)+wi + vi =

(α + 1)vi − ∑i−1
j=0 δj > (α + 1)vi − 2δ, then A loses

when δ is sufficiently small. So, A is forced to sele
(S3), i.e., it abortsJi and selects a new jobJi+1 with
profit vi+1. Define the job arriving just beforeJi+1 as
J ′

i+1 with profit at leastvi+1−δi . Then the numberwi+1
is determined according to the equation

wi+1 = max

{
(α − 1)vi+1 −

i∑
j=1

vj , vi+1

}
. (1)

Move to the next step(i + 2) with SET(vi+1,wi+1,

di+1, δi+1), in which all the new set of jobs arrive aft
the completion time ofJ ′

i+1 but before the completio
time ofJi+1.

In the beginning, we havevi+1 < vi+2 < wi+1 =
(α − 1)vi+1 − ∑i

j=1 vj . But according to Lemma 1, a
ter a finite number of steps the numbervi+2 must be
greater than(α − 1)vi+1 − ∑i

j=1 vj , and thenwi+2 =
vi+2 must hold due to Eq. (1). In the following ste
(i +3), there arrives a SET(vi+2,wi+2, di+2, δi+2) with
only two jobsJi+3 andJ ′

i+3, wherea(Ji+3) = a(J ′
i+3),

vi+2 = wi+2 � (α − 1)vi+2 − ∑i+1
j=1 vj , anda(Ji+3) is

later than the completion time ofJ ′
i+2 but earlier than

the completion time ofJi+2. Similarly, A has to abor
Ji+2 and selectsJi+3 (or if A selectsJ ′

i+3 the analysis is
the same). OPT processesJ ′

i+3 first, and after OPT be
ginsJ ′

i+3 there arrives a cancel request to cancelJ ′
i+3.

So A only finishesJi+3 and gains profitvi+2. OPT can
processJi+3 after it finishesJ ′

i+3, then OPT gains a to
tal profit at least

i+2∑
j=1

(vj − δj−1) + wi+2 + vi+2

�
i+2∑
j=1

(vj − δj−1) + (α − 1)vi+2 −
i+1∑
j=1

vj + vi+2

> (α + 1)vi+2 − 2δ

� (5− ε)vi+2
as long asδ � εvi+2/4. Thus, OPT can gain total a pro
5− ε times what A gains. �
3. Concluding remarks

In this paper we give an optimal lower bound for t
JS-Cancellation problem. In fact, JS-Cancellation is
troduced in Chan et al.’s paper [2] as a reduction to g
better upper bounds for an online broadcast schedu
problem [3,2]. In this problem, clients request for pag
stored in a server. Requests arrive online and eac
associated with a deadline. When the server broadc
a page, all requests to the same page that have ar
will receive the content of the page simultaneously. T
server is allowed to abort the current page it is bro
casting before its completion and start a new one.
aborted page can later be broadcasted again from
beginning. The goal is to maximize the total weigh
throughput, i.e., the total weighted lengths of all sa
fied requests. A 5-competitive algorithm for broadc
scheduling follows from the 5-competitive algorith
for JS-Cancellation. Our optimal lower bound for J
Cancellation shows that it is impossible to further i
prove the upper bound of broadcast scheduling using
JS-Cancellation approach, and new ideas are requ
In [5] a new 4.56-competitive algorithm for broadca
scheduling is given, which considers the deadlines
requests in addition to their weights.

In fact JS-Cancellation is, in a sense, a job schedu
problem with variable (or unknown) deadlines. Our
sult shows that JS-Cancellation is provably harder t
broadcast scheduling: without knowledge of deadlin
any algorithm has to be at least 5-competitive, wh
with this information a 4.56-competitive algorithm e
ists.
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