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Abstract

We develop an online mechanism for the allocation of an expiring resource to a dy-
namic agent population. Each agent has a non-increasing marginal valuation function for
the resource, and an upper limit on the number of units that can be allocated in any
period. We propose two versions on a truthful allocation mechanism. Each modifies the
decisions of a greedy online assignment algorithm by sometimes cancelling an allocation of
resources. One version makes this modification immediately upon an allocation decision
while a second waits until the point at which an agent departs the market. Adopting a
prior-free framework, we show that the second approach has better worst-case allocative
efficiency and is more scalable. On the other hand, the first approach (with immediate
cancellation) may be easier in practice because it does not need to reclaim units previ-
ously allocated. We consider an application to recharging plug-in hybrid electric vehicles
(PHEVs). Using data from a real-world trial of PHEVs in the UK, we demonstrate higher
system performance than a fixed price system, performance comparable with a standard,
but non-truthful scheduling heuristic, and the ability to support 50% more vehicles at the
same fuel cost than a simple randomized policy.

1. Introduction

Designing mechanisms for allocating scarce resources to self-interested agents is a central
research topic in artificial intelligence (Sandholm, 2002; Engel & Wellman, 2010). The
aim of this work is to devise mechanisms that satisfy certain desirable properties, such
as truthfulness and efficiency. Many settings where such mechanisms can be applied are
characterised by dynamic supply and demand, i.e., agents arrive and leave the market over
time, and the availability of supply also changes over time. This has led the field of online
mechanism design, in which agents are incentivised to report truthfully not only their value
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for a given allocation, but also the period they are available in the market (Parkes, 2007).
However, to date, most of the existing work in this field assumes that the valuations of
the agents for a certain allocation can be described by a single parameter, the so-called
single-valued domains. Existing approaches that do consider multi-valued domains rely on
access to a probabilistic model of supply and demand and the ability to compute an optimal
allocation policy, which becomes computationally infeasible for realistic settings.

To address these shortcomings, we extend the state of the art by developing a novel
model-free mechanism (i.e., which assumes no knowledge of future demand or supply) for
multi-valued demand. In particular, we consider domains with multi-unit demand and
agents with non-increasing marginal values. In such domains, the first units allocated to an
agent have a higher (or equal) marginal value for this agent compared to any subsequent
units. In the online settings we consider, resources are continuously produced and perishable,
thus the available supply must be allocated in each period. Moreover, the supply available
in each period is not known in advance, but only at the start of that period.

Examples of settings with non-increasing marginal values and perishable resources oc-
cur in many real-life settings. One such example is cloud computing, where jobs arrive
over time and perishable computational resources must be allocated to these jobs (Porter,
2004; Stein, Gerding, Rogers, Larson, & Jennings, 2011). In particular, the non-increasing
marginal value model applies naturally to large-scale data processing or optimisation with
any-time computation. In such a setting, the first unit of computation provides a solution
of a certain quality, while subsequent units allow improving this solution, up to a level
when further computation is no longer useful. Hence, the first units are more valuable, as
they already provide a good approximation of the desired solution, while subsequent units
increase this value, but by a marginally non-increasing amount. Another example is online
advertising, where impressions need to be allocated as soon as users visit a webpage (Con-
stantin, Feldman, Muthukrishnan, & Pal, 2009). The non-increasing marginal values also
applies in this setting, since additional exposure of a set of users to the same ad will likely
have a decreasing impact.

A third example, studied extensively in this paper, is the allocation of electricity for the
charging of plug-in hybrid electric vehicles (PHEVs). Similar to pure (non-hybrid) electric
vehicles (pure EVs), these vehicles can be charged directly at an electric charging point. The
difference is that PHEVs have both an electric motor and an internal combustion engine,
and are widely seen as a solution to the problem of range anxiety, i.e., fear that a car will run
out of electricity in the middle of nowhere (Eberle & von Helmolt, 2010).1 However, with
the associated increase in demand for electricity, there are significant concerns within the
electricity distribution industries regarding the widespread use of such vehicles, since the
high charging rates that PHEVs require (up to three times the maximum current demand of
a typical home) could overload local electricity distribution networks at peak times (Fairley,
2010). One approach to address this concern (e.g., adopted by the Pacific Gas and Electric
Company in California) is to introduce time-of-use pricing plans that seek to shift demand.
A more sophisticated approach that takes into account the valuations of self-interested
owners, is to design an online mechanism which schedules access dynamically in order to
prevent network overload. The assumption of decreasing marginal values is justified here

1. Practical examples of PHEVs include versions of cars such as the Toyota Prius and Honda Insight, that
can drive on petrol, but whose batteries can also be charged directly at an electrical charging point.
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because a vehicle owner is more likely to use the first units of electricity, and can always
use the combustion engine as an alternative in case she runs out of electricity (and so the
car can still be used even if it is not fully charged). Against this background, the main
contributions of our work are:

• We develop a new model-free online mechanism for settings where participating agents
have non-increasing marginal values for units of a perishable good. We adopt a greedy
algorithm coupled with a method to modify the allocation to ensure incentive com-
patibility. This involves cancelling part of the proposed allocation, and we explore
two ways of performing this cancellation: immediately, i.e., at each time step be-
fore a resource is actually allocated, or on departure of an agent from the market
(at which point we must take back allocated items). Both variants are (weakly)
dominant-strategy incentive compatible (DSIC), so that participants have no incentive
to misreport their valuations or arrival-departure dynamics.

• We analyse the worst-case performance achieved by the mechanisms relative to the
optimal offline allocation, considering both the number of units that need to remain
unallocated in order to achieve incentive compatibility and the total value of the
allocation (i.e., the allocative efficiency). The variation with on-departure cancellation
results in higher allocative efficiency, and is more tractable, but may involve additional
practical challenges. For example, in the PHEV charging domain, this occasionally
requires a vehicle’s battery to be partially discharged prior to departure.

• We evaluate the online mechanism through numerical simulations of an abstract do-
main and the PHEV charging domain, and compare the results to several benchmarks
that assume non-strategic agents, including an optimal offline solution, a scheduling
heuristic and a greedy algorithm without cancellation. The simulations of the PHEV
domain are based on real data from a large-scale trial of (pure) EVs in the UK. Valua-
tions are derived from real monetary savings, by considering factors such as fuel prices,
the distance that the owner expects to travel, and the energy efficiency of the vehi-
cle. The results establish that the mechanism outperforms a fixed-price mechanism
in terms of allocative efficiency in both domains, while performing only slightly worse
than the non-incentive compatible scheduling solutions. In addition, the mechanism
with on-departure cancellation scales easily to hundreds of agents.

We focus on allocative efficiency rather than revenue, as this is appropriate to many
domains of interest. For example, in the PHEV charging domain, it is reasonable that
the goal is to allocate capacity efficiently in order to maximise value to the user base of a
power company, given the significant constraints on charging capacity. Moreover, in many
cloud computing applications (for example, in large-scale scientific computing), the goal is
to allocate capacity to the jobs that are most urgent or important. However, if in practice
the seller wants to guarantee a a minimum revenue from each unit sold, it would be easy
to include a reserve price. If this minimum price is set the same for all units and all time
points, this would not affect the properties of our mechanism.

The remainder of this paper is organised as follows. We first discuss related work
(Section 2), before formally introducing the model (Section 3). In Section 4, we define the
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online mechanisms and study their strategic properties. Then, in Section 5, we develop the
worst-case analytical results, followed in Section 6 by a discussion of how to compute the
allocations and payments in practice. Using both real and synthetic input data, we present
the results of the experimental evaluation of our mechanisms in Section 7, and we conclude
in Section 8.

2. Related Work

In this section, we first review existing work on online mechanism design (Section 2.1), and
then provide a background to the PHEV charging application, along with an overview of
previous work that considers this problem (Section 2.2).

2.1 Online Mechanism Design

One line of work in online mechanism design aims to develop online variants of the Vickrey-
Clarke-Groves (VCG) mechanism. In this context, Parkes and Singh (2003) consider the
problem of maximising the long-term allocative efficiency of a system of self-interested agents
that arrive and depart dynamically. They model the online mechanism design problem as a
Markov decision process (MDP), whose solutions can be used to implement optimal policies
in a truth-revealing Bayes-Nash equilibrium. In related work, Gershkov and Moldovanu
(2010) examine the allocation of a set of goods to a dynamic population of randomly arriving
buyers. They consider two settings: one in which there is a common deadline for allocating
objects to all buyers, and a second one without a firm deadline, but in which buyers are
impatient, assigning higher value to items allocated sooner.

Unlike both Parkes and Singh (2003), and Gershkov and Moldovanu (2010), the mecha-
nism proposed in this paper is “model-free” (which has the advantage that no prior knowl-
edge or distribution is required about the other agents’ types or future allocations), and we
focus on the stronger concept of dominant-strategy incentive compatibility (where report-
ing truthfully is a best response regardless of what other agents are doing, even if they are
irrational). Such an approach requires fewer assumptions, and makes computing allocations
more tractable compared to VCG-like approaches. This is because VCG generally requires
the allocations to be optimal in expectation (perhaps in a constrained space of policies),
whereas, as we will show, we can use greedy heuristics.

Model-free settings are considered by Hajiaghayi et al. (2005), Parkes (2007) and Porter
(2004). The work of Porter examines the scheduling of jobs on a single machine and proposes
an incentive compatible mechanism for this setting. However, his work assumes a setting
where the results of a job are released to an agent only on completion or by the agent’s
reported deadline. While this assumption is reasonable for scheduling computational jobs
on a server, it is not suitable for our setting, since the “goods” (i.e. electricity units) must
be allocated instantly when they become available.

The work which considers an online setting most similar to the one we consider is by
Hajiaghayi et al. (2005). They study the problem of online scheduling of a single, re-usable
resource over a finite time period, in which each agent has an arrival-departure window
when they are active in the market. Agents may misreport both their valuation, as well
as their arrival and departure, subject to an assumption of “limited misreports” (i.e., no
early arrival or later departure misreports are possible). For this setting, they characterise
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truthful allocation and payment policies, and prove worst-case approximation ratios with
respect to the optimal offline allocation. A key limitation is that the mechanism proposed by
Hajiaghayi et al. concerns single-valued domains, whereas we consider a multi-unit setting
with decreasing marginal values. We show that their mechanism does not directly apply to
the multi-unit case, requiring, in some cases, additional cancellation rules to be applied to
ensure truthfulness.

Multi-unit demand is considered in the work of Lavi and Nisan (2004), who propose an
online auction model in which the mechanism is required to make decisions about each bid
as it is received. They provide a characterisation of incentive compatibility in such domains
in terms of supply curves, a concept which relates closely to our threshold mechanism
characterisation. However, in their online auctions model, the auctioneer must respond
to each bid immediately, before considering other bids. In this response, the mechanism
determines both the quantity to be sold and the price to be paid. This would not be
applicable to the setting presented in this paper, where there is a limit on the number of
perishable units that can be allocated in each time interval. Moreover, the window-based
allocation allows the prices to be determined dynamically, based on the bids observed from
the other agents until departure. In a similar vein, Babaioff, Blumrosen, and Roth (2010)
consider an online auction model where future supply is unknown, and characterise several
subclasses of truthful mechanisms. Their domain is different from ours, as bidders in their
model do not specify multi-dimensional demands and non-increasing marginal values.

Other related work on online mechanism design adapts the consensus algorithm for
online stochastic optimisation proposed by Bent and Van Hentenryck (2004) to a setting
with self-interested agents. In this context, Parkes and Duong (2007), and Constantin and
Parkes (2009) first propose the idea of modifying the decision of an algorithm by cancelling
part of the allocation in order to ensure incentive compatibility. Unlike the present paper,
the setting assumes single-valued private information and the approaches are not applicable
to agents with non-increasing marginal values. Also for single-valued settings and for the
pure EV domain, Stein, Gerding, Robu, and Jennings (2012) propose a model-based online
mechanism that assumes knowledge of future supply and uses pre-commitment to ensure
online allocations are truthful.

2.2 Electric Vehicle Charging

Multi-agent systems and AI techniques are increasingly used to address challenges in the
Smart Grid (e.g., Vytelingum, Voice, Ramchurn, Rogers, & Jennings, 2011; Robu, Kota,
Chalkiadakis, Rogers, & Jennings, 2012), and EV charging is one of the most important
application areas. Work on the automatic scheduling of EV charging typically allows indi-
vidual vehicle owners to indicate the times at which the car will be available for charging,
enabling automatic scheduling while satisfying the constraints of the distribution network.
In this vein, Clement, Haesen, and Driesen (2009) propose a centralised scheduler, which
makes optimal use of the network capacity when vehicle owners report their expected future
vehicle use to the system. Sundstrom and Binding (2012) tackle the problem of charging
multiple electric vehicles considering distribution grid constraints, formalise the underly-
ing optimisation problem and propose a novel method based on load flow to solve it. But
strategic behaviour remains possible in these approaches; e.g., an owner may indicate an
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earlier departure time or further travel distances in order to receive preferential charging.
This can result in a high cognitive load for car owners, and may lead to inefficient schedules
that are not based on actual user requirements, leading to an efficiency loss.

The potential for speculation by strategic agents has been identified as a crucial problem
in other scheduling problems, such as scheduling computational jobs on a cluster (Porter,
2004), scheduling of computation-intensive services on the cloud (Stein et al., 2011) or
market-based scheduling of loads in transportation logistics (Robu, Noot, La Poutré, & van
Schijndel, 2011). With the increase in the number of EVs requiring charging, the potential
for manipulation will become an increasingly pressing problem in PHEV scheduling as well.

Other approaches to EV scheduling include the lottery-based solution proposed by Vasir-
ani and Ossowski (2011), in which the decision of whether to charge a vehicle or not is
determined through a lottery system, designed to ensure a level of fairness in the resulting
allocation. Unlike our work, however, the authors do not use game-theoretic principles
to prove that participating vehicles have an incentive to report their preferences truthfully,
thus in their scheme agents may have an incentive to speculate. Moreover, the experimental
analysis reported by Vasirani and Ossowski does not adopt real data to derive EV driving
patterns, charging capacities or network constraints.

Other recent work investigates using grid-integrated electric vehicles (GIVs) to sell power
and storage capacity back to the grid – a concept known as vehicle-to-grid (V2G) (c.f.
Kamboj, Kempton, & Decker, 2011). That work is different from ours, as it does not study
the problem of coordinated charging of PHEVs under local network capacity constraints.
In subsequent work to the model in the present paper (which first appeared as Gerding,
Robu, Stein, Parkes, Rogers, & Jennings, 2011, and Robu, Stein, Gerding, Parkes, Rogers,
& Jennings, 2011), we study the problem of charging pure EVs, that must receive a set
amount of charge, otherwise they derive no value from the allocation (Stein et al., 2012). A
second paper studies the problem of two-sided markets, where both PHEVs and charging
stations compete to be matched (Gerding, Stein, Robu, Zhao, & Jennings, 2013). Unlike
the present model, these papers only consider single-minded bidders, and the work of Stein
et al. assumes access to a probabilistic model of the environment.

3. The Model

We consider an online mechanism design setting with discrete time steps, where in each
period, multiple indivisible units of a perishable good are being sold, and each agent requires
multiple units within a certain period. As we will show in Section 3.1, this model can also be
used for continuously available resources, such as electricity and computational resources.
In that case, an allocation decision consists of the amount of resource to be consumed by
each agent over the next period until the following time point.

For convenience, an overview of the notation is provided in Table 1. Formally, let S(t)
denote the supply available at time t. Let I(t) = {1, 2, . . .} denote the set of agents that
are in the market at time t or have already left the market. We do not assume access
to a probabilistic model of future arrivals, departures or future supply beyond the current
time period t. Agents are numbered according to their arrival time. An agent i ∈ I(t)’s
type is described by the tuple θi = 〈vi, ai, di, ri〉 ∈ Θ, where vi is the marginal valuation
vector, ai and di, with di ≥ ai, are the arrival and departure times (the earliest and latest
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times that the agent is available in the market), ri is the maximum consumption rate (i.e.,
the maximum number of units agent i can consume at any time t), and Θ is the set of
all admissible types. Upon arrival, an agent needs to report a valuation function and a
maximum consumption rate. These two aspects of an agent’s reported type are required to
remain unchanged while the agent is present, although her departure time can be modified
(it only becomes known to the mechanism on the actual departure).

Each element vi,k of valuation vi is called a marginal valuation, and represents the
agent’s willingness to pay for the kth unit of the good, given that it has acquired k−1 units.
We require:

Assumption 1. Marginal valuations are non-increasing, i.e., ∀i, k : vi,k ≥ vi,k+1.

Given this, an agent’s utility function is U(k, x, θi) = V (k, θi)−x, where x is the agent’s
payment to the mechanism, V (k, θi) =

∑k
j=1 vi,j is the total value derived given its type,

and k is the number of units allocated to this agent between its arrival and departure.

A mechanism asks agents to report their types and, based on this information, decides
on an allocation of the supply and a payment for units received. Since agents can misreport
their type, our aim is to design a mechanism that incentivises the agents to make truthful
reports. We denote the reported type by θ̂i = 〈v̂i, âi, d̂i, r̂i〉. Our results use a common
assumption in the online mechanism design literature (Hajiaghayi et al., 2005), that agents
cannot report an earlier arrival or a later departure. In addition, we assume that agents
cannot misreport a higher maximum consumption rate.

Assumption 2. Limited Misreports: Agents cannot report an earlier arrival, a later
departure, or a higher maximum consumption rate, i.e., âi ≥ ai, d̂i ≤ di, r̂i ≤ ri must hold.

In the following, reports that satisfy both Assumption 1 and Assumption 2 are said to be
admissible. Given this assumption, our aim is to develop a mechanism which is dominant-
strategy incentive compatible (DSIC), i.e., agents are best off reporting θ̂i = θi, no matter
what other agents report.

Formally, let θI = {θi|i ∈ I(t)} denote the types of all agents at time t, and θ−i =
{θj |j ∈ I(t), j 6= i} the types of all agents except i, and similarly, θ̂I and θ̂−i denote the
corresponding reported types. Note that, for brevity, we remove the dependence on t in this

notation. Furthermore, k
〈t〉
i denotes the endowment (or number of units allocated so far)

at the beginning of time t, not including the allocation at time t, and k〈t〉 = 〈k
〈t〉
1 , k

〈t〉
2 , . . .〉.

Furthermore, ki = k
〈d̂+1〉
i denotes agent i’s endowment upon its reported departure.

A mechanism is defined by an allocation policy, π
〈t〉
i (θ̂I |k

〈t〉), i ∈ I(t), which determines
the number of units allocated to agent i at time t given the current endowment, and a
payment policy, xi(θ̂−i|ki), i ∈ I(t), which calculates the total payment for the allocated
units. The allocation is made online, but the payment only needs be finalised upon the

reported departure of an agent. Note that k
〈t+1〉
i = k

〈t〉
i +π

〈t〉
i (θ̂I |k

〈t〉). We also use πi(θ̂i) =
∑d̂i

t=âi
π
〈t〉
i (θ̂I |k

〈t〉) to denote the total number of units allocated to agent i, given its reported
type.

The aim is to find a mechanism satisfying the following property:
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Definition 1. (Dominant-Strategy Incentive Compatible (DSIC)) A mechanism is DSIC if
reporting truthfully, i.e., θ̂i = θi, is a weakly dominant strategy. Formally, for all agents i,
all admissible θi, θ̂i ∈ Θ and for all θ̂−i:

V (πi(θi), θi)− xi(θ̂−i|πi(θi)) ≥ V (πi(θ̂i), θi)− xi(θ̂−i|πi(θ̂i)) (1)

3.1 Application to Plug-In Hybrid Electric Vehicle Charging

In applying the model to the PHEV charging domain, agents compete for a limited charging
capacity on behalf of their EV owners within a neighbourhood. We assume that the market
for electricity for PHEV charging is separate from that for regular household consumption.
Given this, the available supply, S(t), for charging the PHEV is the residual supply once
regular household consumption has been removed. The supply can also include electricity
from uncertain sources, such as a shared renewable generator, e.g., a shared neighbourhood
wind turbine or a solar panel installation.

In this scenario, a unit of electricity is defined as the amount of kWh when charging at
the lowest rate during that interval (e.g., if the lowest rate is 6.5 A, then for 230 V and
hourly slots, a unit is 6.5 A · 230 V · 1 h = 1.495 kWh). Charging points typically allow
for the charging to occur at different rates, and so the maximum consumption rate, ri,
refers to the maximum charging rate of the charging point given the battery. Since units
are indivisible, this means that the charging rate needs to be a multiple of the lowest rate.
For example, if an agent is allocated 2 units in a single time step, then the charging rate is
twice the lowest charging rate for that time interval. Given the focus on network capacity,
supply is assumed perishable and capacity left unused at time t cannot be allocated later.

The time between arrival, ai, and departure, di, refers to the interval where the vehicle
is available for charging (i.e., it is at home and not being used). However, if the agent
believes that it can benefit from delaying its arrival, then it can wait before plugging the
vehicle into the electricity network. Therefore, the arrival report âi is the time at which
the owner physically plugs a vehicle into the electricity network, and a misreport consists of
not plugging in on arrival. Similarly, the reported departure, d̂i, simply represents the time
when the vehicle is unplugged from the electricity network. Although arrival and departure
are modeled as part of the reported type, in practice these do not need to be communicated
in advance to the mechanism, and are simply observed as they occur, i.e., when the owner
plugs in or unplugs the vehicle.

The limited misreports assumption (Assumption 2) is reasonable in this context, since
agents cannot physically plug in the EV if it is not at home. The requirement that r̂i ≤ ri is
also natural for PHEV charging. While most electric batteries can be configured to charge
at a slower rate, charging them at a faster rate than the one allowed by the manufacturer
might destroy them.

At the time of arrival, an agent needs to report its marginal valuation vector v̂i. There
is a clear interpretation of the marginal valuation because PHEVs can always use petrol
as a substitute for electricity. The marginal value for an additional unit of charge is the
expected money saved by not having to incur the cost of petrol.2 In determining the exact
value, we also need to consider the amount of purchased electricity the owner will use in

2. Note that we implicitly assume that petrol (i.e. gasoline) is always available as a substitute, and that
there are sufficient refueling points so that the vehicle does not run out of petrol.
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v1 = 〈10, 4〉

v2 = 〈5〉

v3 = 〈2〉

S(t1) = 1 S(t2) = 1

Agent 1

Agent 2

Agent 3

Figure 1: Example showing arrivals, departures, and valuation vectors of 3 agents.

expectation. For example, if she is certain to use the first unit of electricity, her maximum
willingness to pay would be equal to the equivalent cost of petrol. As units become less likely
to be used, their expected value decreases. The value of a marginal unit is the expected
savings compared to using the petrol alternative. In Section 7 we provide a detailed analysis,
confirming the non-increasing marginal value (Assumption 1) for hybrid EVs.

4. The Online Mechanism

In this section, we first present a simple greedy allocation policy, that we show cannot be
coupled with a payment rule to provide truthfulness. Continuing, we combine it with two
variations on the idea of modifying the allocation generated by the greedy rule, and provide
a theoretical analysis of their properties.

4.1 Greedy Allocation Policy

Let the vector v̂
〈t〉
i = 〈v̂

i,k
〈t〉
i +1

, . . . , v̂
i,k

〈t〉
i +r̂i

〉 denote agent i’s reported marginal values for

the next r̂i units, given its endowment k
〈t〉
i at time t. This is the agent’s reported willingness

to pay for any units available at time t and, in what follows, we refer to vector v̂
〈t〉
i as the

active (reported) marginal valuations at time t. Furthermore, let V〈t〉 denote the multiset
of such values from all agents that are present in the market at time t, i.e., from all i ∈ I(t)
such that âi ≤ t ≤ d̂i. Next, we define a set operator max〈k〉 V to return the highest k
elements of multiset V (or, if |V| < k, to return V). Then, the greedy allocation policy is:

Definition 2 (Greedy Allocation Policy). At each time step t, allocate the S(t) units so
that every agent receives one unit of the good for each of its active marginal valuations
included in max〈S(t)〉 V

〈t〉.

We ignore issues with tie breaking throughout this paper to simplify the exposition.
We note, however, that all results presented hold when implementing either a random tie
breaking rule, or a “first come, first served” rule, that breaks ties in favour of the agent
that arrived in the market first.

To provide an example for the greedy allocation, consider the active marginal valuations
given in Table 2. In this case, the multiset of active marginal valuations consists of V〈t〉 =
〈7, 6〉 ∪ 〈10, 6, 6〉 ∪ 〈8〉 = 〈7, 6, 10, 6, 6, 8〉 (in no particular order). Then, if S(t) = 3, the
highest active marginal values it will allocate the resources to are the agents with marginal
values 10, 8, and 7. Thus, in this example, each agent will receive 1 unit.

In order to show why greedy is not always DSIC, consider the example illustrated in
Figure 1, involving 2 time steps and 3 agents. Suppose that supply is S(t) = 1 at each time
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Supply, Agents and Preferences (Section 3)

S(t) Supply of perishable units at time t

I(t) = {1, 2, ...} The set of agents who have arrived so far at time t

θi = 〈vi, ai, di, ri〉 Type of agent i

vi = 〈vi,1, vi,2, ...〉 Marginal valuation vector, where vi,k is the value for the kth unit

ai, di, ri Arrival time, departure time, and maximum consumption rate

Θ Set of all admissible types, i.e., subject to Assumptions 1 and 2

θI = {θi|i ∈ I(t)} The types of all agents i ∈ I(t)

θ−i = {θj |j ∈ I(t),

j 6= i}
The types of all agents j ∈ I(t) except i

θ̂, θ̂I , θ̂−i Reported types

V (k, θi) =
∑k

j=1 vi,j Total value given k units are allocated to i between ai and di

U(k, x, θi) =
V (k, θi)− x

Agent utility, where x is the payment to the mechanism

General Mechanisms (Section 3)

k
〈t〉
i

Agent i’s endowment at the beginning of time t

k〈t〉 = 〈k
〈t〉
1 , k

〈t〉
2 , ...〉 The endowment of all agents i ∈ I(t) at the beginning of time t

ki = k
〈d̂+1〉
i

Agent i’s endowment on reported departure

π
〈t〉
i (θ̂I |k

〈t〉)
Allocation policy, i.e., number of units allocated to i at time t
given all agents’ reports θ̂I and current endowments k〈t〉

xi(θ̂−i|ki)
Payment policy, i.e., agent i’s payment given the reported types
of other agents, and agent i’s endowment on departure.

Greedy Policy and DSIC Mechanism (Sections 4 and 4.2)

v̂
〈t〉
i =

〈v̂
i,k

〈t〉
i +1

, ..., v̂
i,k

〈t〉
i +r̂i

〉
Agent i’s reported active marginal values

V〈t〉 =
⋃

i∈I(t) v̂
〈t〉
i

Multiset of reported active marginal values (where the union op-
erator is used as a multiset operator throughout the paper)

V
〈t〉
−i

Active reported marginal values if agent i would never have been
present in the market

V
〈t〉
−i∪0 Zeros are added to this multiset to ensure that |V

〈t〉
−i∪0| ≥ S(t)

max
〈k〉
V ,min

〈k〉
V Returns the highest respectively lowest k elements of multiset V

E
〈t〉
i = min

〈ri〉

(

max
〈S(t)〉

V
〈t〉
−i∪0

) Externality imposed by agent i on others, i.e., the marginal valu-
ations of those that are missing out due to agent i being allocated
min(ri, S(t)) units at time t

p
〈t〉
i = incr





t
⋃

t′=âi

E
〈t′〉
i





Vector of marginal payments at time t, where p
〈t〉
i,k is the price that

agent i is charged for the kth unit, and the operator incr orders
elements from a multiset in increasing order

pi = p
〈d̂i〉
i

Marginal payment vector on reported departure of agent i

Table 1: Main notation with references to sections where it is first introduced.
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agent (i) r̂i v̂i k
〈t〉
i v̂

〈t〉
i

1 2 〈8, 7, 6, 5〉 1 〈7, 6〉

2 3 〈10, 6, 6, 4, 4〉 0 〈10, 6, 6〉

3 1 〈9, 8, 8, 7〉 2 〈8〉

Table 2: Example of three agents’ active marginal valuations v̂
〈t〉
i , given their marginal

valuations v̂i, endowments k
〈t〉
i , and maximum consumption rates r̂i.

step and ri = 1 for all agents i. Assuming truthful agents, greedy would then allocate both
units to agent 1, because agent 1 has the highest active marginal value at both time steps

(v̂
〈1〉
1 = 〈10〉 > v̂

〈1〉
2 = 〈5〉, and v̂

〈2〉
1 = 〈4〉 > v̂

〈2〉
3 = 〈2〉).

Now, consider the question of finding a payment policy that makes the greedy allocation
policy DSIC. How much should agent 1 pay? To answer this, note that the payment for the
unit allocated at time t = 1 has to be at least 5. Otherwise, if agent 1 were present in the
market only at time t = 1 and had a valuation v1,1 ∈ (5− ǫ, 5), it would have an incentive
to misreport v̂1,1 > 5 and still win. Similarly, the payment for the unit allocated at time
t = 2 has to be at least 2. Thus, the minimum payment of agent 1 if allocated two units is
x1(θ̂|π1 = 2) = 7.

On the other hand, how much should agent 1 pay if it were allocated only one unit
instead? We argue no more than 2. Suppose, for contradiction, that the payment were set
at some larger value x1(θ̂|π1 = 1) = 2 + ǫ (where ǫ > 0). Then if the agent’s first marginal
value v1,1 were instead 2 < v1,1 < 2 + ǫ (with remaining marginal values zero), then it
would win in period 2, but it would pay 2 + ǫ and hence have negative utility. However,
if x1(θ̂|π1 = 2) ≥ 7 and x1(θ̂|π1 = 1) ≤ 2, then agent 1 wants only one unit, not two,
as allocated by the greedy mechanism (its utility for one unit is greater than for two, as
10− 2 > 10 + 4− 7). Hence, the greedy allocation policy cannot be made DSIC by setting
payments.

The above example shows that the problem is not with a particular payment policy, but
is intrinsic to the greedy allocation policy. In particular, the problem is that the allocation
policy does not satisfy the necessary property of W-MON (Bikhchandani, Chatterji, Lavi,
Mu’alem, Nisan, & Sen, 2006):

Definition 3 (Weak Monotonicity (W-MON)). An allocation policy π, is W-MON if, for
every i ∈ I(t), θi = 〈vi, ai, di, ri〉, θ

′
i = 〈v

′
i, a

′
i, d

′
i, r

′
i〉 ∈ Θ, θ−i ∈ ΘN−1, where Θ is the set of

all types subject to non-increasing marginal valuations, the following equation holds:

V (πi(θ
′
i), θ

′
i)− V (πi(θi), θ

′
i) ≥ V (πi(θ

′
i), θi)− V (πi(θi), θi) (2)

In words, if changing an agent i’s type (while keeping the types of other agents fixed)
from a type θi to another type θ′i changes the allocation of i from πi(θi) to πi(θ

′
i), then

the resulting difference in utilities of the new and original outcomes evaluated at the new
type of agent i (denoted by function V (·, θ′i)) must be no less than this difference in utilities

185



Robu, Gerding, Stein, Parkes, Rogers & Jennings

evaluated at the original type of agent i (denoted by function V (·, θi)). Using this notion
we will now demonstrate that the greedy allocation policy is not DSIC in our setting.

Theorem 1. The greedy allocation policy is not DSIC in multi-valued domains with non-
increasing marginal valuations.

Proof. From Bikhchandani et al. (2006, Lemma 1) we know that a necessary condition for
any DSIC allocation policy is that it should satisfy W-MON (see Definition 3). If Equation 2
is true, then it can be shown that the following must hold:

if πi(θ
′
i) > πi(θi) then

πi(θ
′
i)

∑

k=πi(θi)+1

v′i,k ≥

πi(θ
′
i)

∑

k=πi(θi)+1

vi,k (3)

In words, more units should only be allocated to one type compared to another type, if
that type also has higher marginal values for those units. Consider again the example in
Figure 1, where we look at the W-MON condition for agent 1 by varying its type. We keep
the arrival and departure fixed, i.e., a′i = ai, d

′
i = di. Suppose that v′1 = 〈10, 4〉 as in the

example, but v1 = 〈4 + ǫ, 4 + ǫ〉, where 0 < ǫ < 1. Note that π1(θ
′
1) = 2, and π(θ1) = 1

(agent 1 is not allocated the unit in the first time step if its type were changed from θ′1 to
θ1). Since θ′1 is allocated an additional unit (compared to θ1), W-MON requires that θ′1
values the second unit higher or equal to θ1. However, we can see that v′1,2 < v1,2, thereby
violating Equation 3. This example demonstrates that the greedy allocation policy is not
W-MON, and therefore not DSIC.

4.2 Achieving Truthfulness Through Cancellation

Addressing the problem with W-MON, we consider two types of modifications to the al-
location decision of the greedy policy, both designed to achieve monotonicity. The first
is immediate cancellation, where units are simply left unallocated, i.e., none of the agents
receive the unit, even if there is a demand. The second is on-departure cancellation, where
units are initially allocated using the greedy approach, but then on departure of the agent,
any overallocated units are removed.3

The model with on-departure cancellation is more efficient because it generally requires
fewer cancellations, and is also more computationally efficient in calculating the payments
and allocations. However, depending on the domain, it may not always be possible to
remove units once they are allocated.

In the following, we detail the allocation policies and explain how payments are com-
puted. We then give an example that shows the difference between the two mechanisms
and, lastly, we provide an analysis of the economic properties of the mechanisms.

In defining the allocation policies, we show how we can compute an agent’s marginal
payment vector, which determines, for each additional unit, the price the agent would need
to pay for that unit. These marginal payments are then used to determine both when to
cancel an allocation, as well as an agent’s total payment for a given allocation.

3. In the PHEV setting, this corresponds to first charging the battery and later discharging any overallocated
units.
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A necessary condition for truthfulness is that payments cannot depend on an agent’s
report except on the effect it has on the allocation; e.g., see the work of Nisan, Roughgarden,

Tardos, and Vazirani (2007, Proposition 9.27). To this end, let V
〈t〉
−i denote the multiset of

the active marginal valuations of all agents in the market at time t, if agent i were removed
and the market were rerun from âi ≤ t onwards.

We cannot simply derive V
〈t〉
−i from V〈t〉 since removing agent i could affect the endow-

ments of the other agents at earlier time steps. For example, for the setting from Table 2,
both agents 1 and 3 have endowments at time t and therefore removing either of these agents
is likely to increase the endowments of the other agents, thereby changing the dynamics of

the entire market. To ensure that V
〈t〉
−i is truly independent of agent i, the market needs

to be re-run from the very point when agent i first entered the market, and this process
needs to be repeated for each agent i ∈ I(t) such that âi ≤ t ≤ d̂i, whose payments we are
computing.

In case |V
〈t〉
−i | < S(t), we furthermore add a number of zero-valued bids and refer to this

enlarged set as V
〈t〉
−i∪0, to ensure that |V

〈t〉
−i∪0| ≥ S(t). Next, similar to the operator max〈k〉,

we define the set operator min〈k〉 V to return the lowest k elements of multiset V (or, if
|V| < k, to return V). We define the externality that agent i would impose on other agents
if it won min(ri, S(t)) out of S(t) units at time t as:

E
〈t〉
i = min

〈ri〉

(

max
〈S(t)〉

V
〈t〉
−i∪0

)

Note that the cardinality of E
〈t〉
i is equal to |E

〈t〉
i | = min(ri, S(t)). Intuitively, the multiset

E
〈t〉
i contains the marginal values from other agents that would lose out if agent i were to

win ri units at time t. For example, let V
〈t〉
−1 = 〈1, 4, 5, 7, 9, 10〉 (sorted for convenience),

S(t) = 4, and r1 = 2. Then, E
〈t〉
1 = 〈5, 7〉.

If an agent were active for only a single time step, then the externality would specify the
payment for each unit. That is, using the same example, if agent 1 were allocated a single
unit by the mechanism, its payment would be 5. On the other hand, if it were allocated 2
units, its payment would be 5 + 7 = 12. The intuition here is the same as in the regular
Vickrey-Clarke-Groves (VCG) mechanism, because the total payment corresponds to the
sum of the externalities.

To compute the overall payments online, we need to combine these externalities across
all time steps in the agent’s active period up to current time t. To do this, we define an

ordered vector of marginal payments, p
〈t〉
i , as follows:

p
〈t〉
i = incr

(

⋃t
t′=âi

E
〈t′〉
i

)

,

where ‘incr’ is an operator that orders elements from a multiset in increasing order, and we
use the union symbol to denote the union of multisets (and so the same element can appear
multiple times).

Now, p
〈t〉
i,k is the price that agent i is charged for the kth unit of the good. Intuitively, this

is the minimum valuation that the agent could report for winning this unit by time t. These
prices are adjusted in each time step. In particular, since the vector is in increasing order,

187



Robu, Gerding, Stein, Parkes, Rogers & Jennings

and elements are only added as time increases, p
〈t〉
i,k either stays the same or decreases for a

given k, but can never increase. In the following, we use pi,k to denote agent i’s marginal

payment of the kth unit at time d̂i.
Given this, the decision and payment policies are defined as follows:

• Allocation Policy The decision to allocate consists of two stages:

Stage 1 At each time step t, pre-allocate using the greedy allocation policy (see
Definition 2).

Stage 2 We consider two variations of how to decide to cancel the pre-allocation:

– Immediate Cancellation (IM). Leave any unit unallocated whenever the mar-
ginal payment at time t for this unit is greater than the marginal value, i.e.,
whenever:

v̂i,k < p
〈t〉
i,k for k

〈t〉
i < k ≤ k

〈t〉
i + π

〈t〉
i

– On-Departure Cancellation (OD). For each departing agent, cancel the allo-
cation of any unit k ≤ ki where v̂i,k < pi,k.

• Payment Policy Payment always occurs on reported departure. Given that ki units
are allocated to agent i, the payment collected from i is:

xi(θ̂−i|ki) =
∑ki

k=1
pi,k (4)

In the following, we refer to our two mechanisms with immediate and on-departure
cancellation by IM and OD respectively, and the corresponding allocation policies by πim

and πod. If no distinction between the two mechanisms is made, π is used.
The payment policy mirrors the allocation policy. For example, if immediate cancellation

is used, then for each agent i and for all times t, the values of the p
〈t〉
i vector are computed

by re-running the market, in the absence of agent i using immediate cancellation, based on
the reports of the other agents. Conversely, if on-departure cancellation is used, the same
policy should be used in computing the pi prices.

4.3 Examples

To demonstrate how the two mechanisms work, we present two examples. The aim of the
first example is to show the difference between immediate and on-departure cancellation.
The second example illustrates the effect of changing the maximum consumption rates. The
example shows that in specific instances, increasing an agent’s maximum consumption rate
can actually increase the number of cancellations.

4.3.1 Example 1

The first example extends the setting shown in Figure 1 to include a third time step, t = 3.
Both agents 1 and 3 remain in the market at t = 3 (i.e., d1 = d3 = 3) and no new agents
arrive. Furthermore, S(t) = 1 in t ∈ {1, 2, 3}, and so there are now three units to be
allocated in total. As before, we suppose that ri = 1 for all agents. Table 3 shows the
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agent 1: agent 2: agent 3:
a1 = 1, d1 = 3, a2 = 1, d2 = 1, a3 = 2, d3 = 3,

v1 = 〈10, 4〉, r1 = 1 v2 = 〈5〉, r2 = 1 v3 = 〈2〉, r3 = 1

t = 1 k
〈1〉
1

= 0, v
〈1〉
1

= 〈10〉 k
〈1〉
2

= 0, v
〈1〉
2

= 〈5〉

V
〈1〉
−1

= E
〈1〉
1

= 〈5〉 V
〈1〉
−2

= E
〈1〉
2

= 〈10〉

p
〈1〉
1

= 〈5〉 p
〈1〉
2

= 〈10〉

π
im〈1〉
1

= π
od〈1〉
1

= 1 π
im〈1〉
2

= π
od〈1〉
2

= 0

t = 2 k
〈2〉
1

= 1, v
〈1〉
1

= 〈4〉 k
〈2〉
3

= 0, v
〈1〉
3

= 〈2〉

V
〈2〉
−1

= E
〈2〉
1

= 〈2〉 V
〈2〉
−3

= E
〈2〉
3

= 〈4〉

p
〈2〉
1

= 〈2, 5〉 p
〈2〉
3

= 〈4〉

π
im〈2〉
1

= 0 π
im〈2〉
3

= π
od〈2〉
3

= 0

π
od〈2〉
1

= 1

t = 3 k
〈3〉
1

= 1, v
〈1〉
1

= 〈4〉 k
〈3〉
3

= 0, v
〈1〉
3

= 〈2〉

IM V
〈3〉
−1∪0

= E
〈3〉
1

= 〈0〉 V
〈3〉
−3

= E
〈3〉
3

= 〈4〉

p
〈3〉
1

= 〈0, 2, 5〉 p
〈3〉
3

= 〈4, 4〉

π
im〈3〉
1

= 1 π
im〈3〉
3

= 0

t = 3 k
〈3〉
1

= 2, v
〈1〉
3

= 〈〉 k
〈3〉
3

= 0, v
〈1〉
3

= 〈2〉

OD V
〈3〉
−1∪0

= E
〈3〉
1

= 〈0〉 V
〈3〉
−3∪0

= E
〈3〉
3

= 〈0〉

p
〈3〉
1

= 〈0, 2, 5〉 p
〈3〉
3

= 〈0, 4〉

π
od〈3〉
1

= 0 π
od〈3〉
3

= 1

Table 3: Example run of the mechanism with 3 agents and 3 time steps for the IM and
OD mechanisms. Grey cells indicate different values for IM and OD policies.

endowments k
〈t〉
i , the active marginal valuations V

〈t〉
−i , the externalities, E

〈t〉
i , the marginal

payments p
〈t〉
i , and the allocation decisions π

〈t〉
i at different time steps.

We start by considering the allocations and payments using immediate cancellation.
At time t = 1, Stage 1 of the mechanism pre-allocates the unit to agent 1, and since

v1,1 = 10 ≥ p
〈1〉
1,1 = 5, this pre-allocation is not cancelled in the second stage. At time

t = 2, the unit again gets pre-allocated to agent 1 since its active marginal value is greater

than that of agent 3, i.e., v
〈2〉
1 = 〈4〉 > v

〈2〉
3 = 〈2〉. However, V

〈2〉
−1 = 〈2〉 is inserted at the

beginning of the p
〈2〉
1 vector, and as a result v1,2 = 4 < p

〈2〉
1,2 = 5 (at these prices, agent

1 prefers to be allocated one unit instead of two). Consequently, this pre-allocation gets
cancelled and the unit goes to neither of the agents.

At time t = 3, the active marginal value of agent 1 is still v
〈3〉
1 = 〈4〉, since its endowment

is unchanged, and since agent 1 still has the highest active marginal value, it is again pre-
allocated the unit. To calculate the marginal payment of agent 1, recall that the allocation
policy needs to be recomputed with agent 1 entirely removed from the market. In that case
agent 3 would have been allocated a unit at time t = 2, and thus at time t = 3 the active

marginal value of this agent is 0. Thus, the value of 0 is inserted in the p
〈3〉
1 vector. At

t = 3, however, now v1,2 = 4 ≥ p
〈3〉
1,2 = 2, and therefore the pre-allocation is not cancelled.

An interesting exercise is to see what happens to the marginal payment vector of agent
3 at t = 3. To calculate this, we have to remove agent 3 and rerun the market from t = 2. In
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agent1

agent2

agent3

v1 = 〈10, 8, 3〉

v2 = 〈7〉

v3 = 〈1〉

S(t1) = 2 S(t2) = 1

Figure 2: Example showing arrivals, departures, and valuation vectors of 3 agents.

this case, at time t = 2, the marginal payment vector of agent 1 becomes p
〈2〉
1 = 〈0, 5〉. Since

the marginal payment for the second unit, p
〈2〉
1,2, remains unchanged, the pre-allocation is

still cancelled! Therefore, even when agent 3 is not in the market, the second unit remains

unallocated, and agent 1’s active marginal value at t = 3 is again v
〈3〉
1 = 〈4〉, and so

V
〈3〉
−3 = 〈4〉. Given this, agent 3’s marginal payments become p

〈3〉
3 = 〈4, 4〉. Note that the

marginal payment for the first unit (4) is higher than the marginal value for this unit (2),
and this is consistent with the allocation. Otherwise, if the marginal payment had been
lower, agent 3 would have an incentive to overreport and ‘win’ the unit at t = 3.

So, in case of immediate cancellation, two out of three units are allocated to agent 1,

and that agent pays x1 = p
〈3〉
1,1 + p

〈3〉
1,2 = 0 + 2 = 2. The third unit is not allocated to any

agent. Note that this unit cannot go to agent 3, because the payment would have been

p
〈3〉
3,1 = 4, resulting in a negative utility for agent 3.

Now consider the same setting but with on-departure cancellation. The first two time
steps are as before, except that there is no cancellation at t = 2 (since this will be done on
departure if needed). This changes the endowment state of agent 1 at t = 3, and therefore

the active marginal value of agent 1 at t = 3 is equal to v
〈3〉
1 = 〈〉, and this is the same if

agent 3 is removed from the market. Therefore, the unit is pre-allocated to agent 3, and the

payment for this unit is p3,1 = p
〈3〉
3,1 = 0. The vector p

〈3〉
1 remains unchanged compared to the

immediate case. At this point, there is no longer a need to cancel one of the pre-allocations
of agent 1, since it has received k = 2 units, the same allocation as with the immediate
cancellation policy, and note that v1,2 > p1,2.

No pre-allocations are cancelled with the on-departure policy, and so this policy is more
efficient. As we will show in the remainder of the paper, the on-departure policy never
cancels more, and typically cancels fewer pre-allocations compared to the immediate one.
Still, it is possible to construct examples where, in the worst case, half of the pre-allocations
need to be cancelled, even with the on-departure policy.

Furthermore, note that some units are given away for free (i.e., the payment for these
units is zero). This is a standard problem with auctions if there is insufficient competition,
and can be trivially resolved by e.g. introducing a minimum price or reserve price for each
unit of the good. However, this will reduce efficiency since units will remain unallocated
if they fall below the reserve price. We do not consider reserve prices in this paper, but
the economic properties of the mechanism continue to hold with reserve prices, as long as
the reserve prices are the same for all time points (otherwise there could be an incentive to
misreport the arrival time).
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4.3.2 Example 2

The next example, depicted in Figure 2, again shows a setting with two time steps and three
agents, but with different preferences and now the supply in the first step is two units, and
we change the maximum consumption rate of agent 1. We consider two cases:

The maximum consumption rate of agent 1 is r1 = 1.4 In this case, at most one marginal
value is taken from each agent per time step. At time t1, marginal valuations v1,1 = 10 of
agent 1, and v2,1 = 7 of agent 2 are pre-allocated, while at time t2, marginal value v1,2 = 8
of agent 1 is pre-allocated. The prices charged to agent 1 are: p1 = 〈0, 1〉, because without
agent 1 in the market, there would be a free, spare unit at time t1 and the available unit at
t2 would sell to agent 3 for 1. No pre-allocation gets cancelled in this case, and the actual
allocation is equivalent to the optimal offline allocation.

The maximum consumption rate of agent 1 is r1 = 2. Then, at time t1, the greedy
policy described above allocates the two marginal values of agent 1: v1,2 = 10 and v1,2 = 8,
as they are both higher than v2,1 = 7, and agent 2 drops out of the market. At time t2, the
unit is again pre-allocated to agent 1 (due to the marginal value of 3 being higher than 1).
However, now the marginal payments vector required from agent 1 is p1 = 〈0, 1, 7〉, while
the marginal valuations are v1 = 〈10, 8, 3〉. Given the prices, agent 1 prefers two units to
three (because 10 + 8 − 1 > 10 + 8 + 3 − 1 − 7), so the third is cancelled. The overall
efficiency is lower, as the pre-allocation of the third available unit is now cancelled, whereas
with r1 = 1 it was allocated to agent 2. Note, however, that although the efficiency is much
lower, agent 1 has an incentive to declare its true maximum consumption rate r1 = 2 as, in
this case, its payment does not change.

4.4 Establishing Truthfulness

In this section we prove that the above mechanisms are DSIC under the assumptions of
non-increasing marginal valuations (Assumption 1) and limited misreports (Assumption 2).

In the following, we will first establish DSIC with respect to valuations only, and prove
truthful reporting of arrival and departure times separately. In more detail, we proceed in
the following 3 stages:

(i) We define the concept of a threshold policy, and show that, when coupled with an
appropriate payment policy, and given any admissible pair 〈âi, d̂i〉, if an allocation policy is
a threshold policy, then the mechanism is DSIC with respect to the valuations (Lemma 1).

(ii) We show that our allocation policy is a threshold policy (Lemma 2).

(iii) We show that if agents truthfully report their valuations, reporting âi = ai, d̂i = di,
and r̂i = ri is a weakly dominant strategy (Lemma 3).

These results are combined in Theorem 2 to show that our mechanism is DSIC.

Definition 4 (Threshold Policy). An allocation policy π is a threshold policy if, for a given
agent i with fixed 〈âi, d̂i, r̂i〉 and θ̂−i, there exists a marginally non-decreasing threshold
vector τ , independent from the report v̂i made by agent i, such that following holds: ∀k, v̂i:
πi(θ̂i, θ̂−i) ≥ k if and only if v̂i,k ≥ τk.

4. Note that the other two agents only desire one unit, so their maximum consumption rate is irrelevant in
this example.
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In other words, a threshold policy has a potentially different threshold τk for each k,
such that agent i will receive at least k units if and only if its reported valuation for the kth

item is at least τk.

A threshold policy satisfies W-MON, which is sufficient for DSIC in this domain since
we have bounded agent valuations and the domain is completely ordered, meaning that all
payoff types agree on the same weak preference ordering on all allocations (i.e., more is
always weakly better than less), and indifference to the way goods are allocated to other
agents (Bikhchandani et al., 2006). We show that our allocation policy has the thresh-
old property, and thus satisfies W-MON, and that it also handles misreports of arrivals,
departures and maximum charging rates.

Importantly, the vector τ has to be non-decreasing, i.e., τk+1 ≥ τk, and should be
independent of the reported valuation vector v̂i. Both of these properties are satisfied by
the pi vector, and we will use this to show that our mechanism is a threshold policy.

First, however, we show that a threshold policy with appropriate payments is DSIC with
respect to the valuations:

Lemma 1. Fixing admissible 〈âj , d̂j , r̂j〉 for all j ∈ I and fixing θ̂−i, if π is a threshold
policy coupled with a payment policy:

xi(θ̂i, θ̂−i) =
∑πi(θ̂i,θ̂−i)

k=1 τk,

then if vi is marginally non-increasing, reporting vi truthfully is a weakly dominant strategy.

Proof. Agent i’s utility can be rewritten as:

ui(θ̂i; θi) =
∑πi(θ̂i,θ̂−i)

k=1 (vi,k − τk)

Since τ is independent of v̂i, agent i can only potentially benefit by changing the allocation,
πi(θ̂i, θ̂−i). Since the values of τk+1 ≥ τk (non-decreasing threshold vector) and vi,k+1 ≤ vi,k
(non-increasing marginal values), by Definition 4 we have vi,k − τk ≥ 0 for any k ≤ πi(θi)
and vi,k − τk ≥ 0 for any k > πi(θi). Suppose that, by misreporting agent i is allocated

πi(θ̂i) > πi(θi), then ui(θ̂i; θi) < ui(θi; θi) since:

∑πi(θ̂i,θ̂−i)

k=πi(θi,θ̂−i)+1
(vi,k − τk) < 0

Similarly, misreporting such that πi(θ̂i, θ̂−i) < πi(θi, θ̂−i) results in ui(θ̂i; θi) < ui(θi; θi)
since:

∑πi(θi,θ̂−i)

k=πi(θ̂i,θ̂−i)+1
(vi,k − τk) ≥ 0

If misreporting has no effect on the allocation, the utility remains the same. Therefore,
there is no incentive for agent i to misreport its valuations.

Note that the greedy allocation policy is not a threshold policy. Indeed, we have shown
already that it does not satisfy W-MON. The next lemma shows that the threshold condition
holds if we cancel some allocations according to our policies, and if we set the threshold
values to τk = pi,k.
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Lemma 2. Given non-increasing marginal valuations, the allocation policy π in Section 4.2
is (for either cancellation policy) a threshold policy where τk = pi,k.

Proof. First, from the definition of vector p
〈t〉
i and pi from Section 4.2, the values of p

〈t〉
i are

independent of the reports v̂i made by agent i. This is because each of its component values

V
〈âi〉
−i , . . . ,V

〈t〉
−i are computed based only on the reports of the other agents, by first removing

agent i from the market. Note that p
〈t〉
i and pi are also affected by the reported arrival

time, departure time, and maximum consumption rate of agent i, but in this lemma we
are only concerned with truthful reporting of the agent’s valuations, and take the reported
arrival and deadline as given, and do not require these to be truthful at this point.

Second, we need to show two inequalities, thus the proof is done in two parts. Part 1:
Whenever vi,k ≥ pi,k, πi allocates at least k units to agent i. Part 2: Whenever vi,k < pi,k,
πi allocates strictly fewer than k units to agent i.

Part 1: Let vi,k ≥ pi,k. Suppose that agent i has uniform marginal values, vi,k, for the

first k units (i.e., vi,1 = vi,2 = . . . = vi,k). Note that externality E
〈t〉
i contains the marginal

values at time t that agent i will displace when winning up to ri units of the good in time
step t (that is, these marginal values will reappear in the next time step if the same agents
remain in the market). Given this, as long as agent i has fewer than k units then, in Stage
1 of the mechanism, and at each time step that agent i is in the market, it will win exactly

those units where the marginal values in E
〈t〉
i are less than vi,k, i.e. it will win all units

1 ≤ j ≤ |E
〈t〉
i | where vi,k ≥ E

〈t〉
i,j (ignoring tie breaking). Note that the externalities (and

thus the marginal payments) are calculated by removing agent i from the market from the
very first time it entered, and so do not contain any displaced marginal values. However,
even when, by winning a unit, agent i displaces the losing marginal value to a future time
step, since this value is less or equal to vi,k, it will not affect the allocations of the first k
units in future time steps for agent i since it will continue to have a higher marginal value.
Now, because pi,j ≤ pi,k for j ≤ k (by definition), there must be at least k units for which

pi,k ≥ E
〈t〉
i,j , 1 ≤ j ≤ |E

〈t〉
i | in the period âi ≤ t ≤ d̂i, and since vi,k ≥ pi,k, agent i wins at

least k units in Stage 1.

Furthermore, whenever j units are won at a particular time step, the marginal payments
for those units appear as within the first k′ + j first elements of the pt

i vector, where k′ is
the number of units won at earlier time steps (since these are the values with the the lowest
clearing payment, and they are ordered ascendingly). Because agent i wins a unit with

externality E
〈t〉
i,j in Stage 1 if and only if vi,k ≥ E

〈t〉
i,j (given uniform valuations), it follows

that vi,k = vi,j ≥ pi,j whenever it wins a unit in Stage 1. Therefore, no pre-allocations are
cancelled in Stage 2.

The above holds if agent i has uniform marginal values of vi,k for the first k units. In
fact, however, because of non-increasing valuations, we have vi,j ≥ vi,k, for all 1 ≤ j ≤ k,
and thus the allocation policy will allocate at least k units to agent i.

Part 2: Let vi,k < pi,k. First consider the on-departure cancellation case. As per the
definition of Stage 2 of the mechanism, the allocation of unit k is cancelled. However, we still
need to show that any pre-allocated units j > k are cancelled as well. Since pi,j ≥ pi,k (by
definition) and vi,j ≤ vi,k (since valuations are marginally non-increasing by assumption)
for all j > k, it follows that vi,j < pi,j for all j > k. Therefore even if Stage 1 pre-allocates
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k or more units, these will be cancelled in Stage 2, and thus strictly fewer than k units
remain.

Now consider the immediate cancellation case. Note that pi,k ≤ p
〈t〉
i,k for tk ≤ t ≤ di,

where tk is the time when the kth unit was allocated. That is, marginal payment values can

only decrease over time. Since vi,k < pi,k (by assumption) and pi,k ≤ p
〈tk〉
i,k , it follows that

vi,k ≤ p
〈tk〉
i,k . Thus it follows that vi,k < p

〈t〉
i,k for any (ai + k − 1) ≤ t ≤ di. Consider a case

where, at time tk, the kth unit is allocated in Stage 1. As a result, pre-allocation of the kth

unit will always be cancelled at time tk in Stage 2 of the allocation policy. Therefore, the
final result is an allocation of strictly fewer than k units.

By setting τk = pi,k, the payment policy in Equation 4 corresponds to the payment
policy in Lemma 1. Therefore the proposed mechanism is shown to be DSIC in valuations.

We complete the proof by showing that truthful reporting of the arrival and departure
times are also DSIC given limited misreports, now assuming truthful reporting of vi.

Lemma 3. Given limited misreports, and assuming that truthfully reporting v̂i = vi is a
dominant strategy for any given arrival,departure and maximum consumption rate reports
〈âi, d̂i, r̂i〉, then (subject to limited misreports) it is a dominant strategy to report âi = ai,
d̂i = di, and r̂i = ri.

Proof. Let p
〈âi,d̂i,r̂i〉
i denote the vector of increasingly ordered marginal clearing values (com-

puted without i), given the agent reports θ̂i = 〈vi, âi, d̂i, r̂i〉. By reporting type θ̂i, the agent

is allocated πi(θ̂i) items, and its total payment is:
∑πi(θ̂i)

j=1 p
〈âi,d̂i,r̂i〉
i,j . For each agent i, mis-

reporting from θi to θ̂i results in one of two cases:
πi(θ̂i) = πi(θi): Misreporting by agent i cannot change the values in pi, but can

only ever decrease the size of the pi vector. In particular, due to limited misreports we

have âi ≥ ai, d̂i ≤ di and r̂i ≤ ri, and thus p
〈âi,d̂i,r̂i〉
i contains a subset of the elements

from p
〈ai,di,ri〉
i . As these vectors are by definition increasingly ordered, it follows that

p
〈âi,d̂i,r̂i〉
i,j ≥ p

〈ai,di,ri〉
i,j , ∀j ≤ (d̂i − âi + 1). Since the payment consists of the first ki = k̂i

elements, this can only increase by misreporting.
πi(θ̂i) 6= πi(θi): First, we show that πi(θ̂i) > πi(θi) could never occur. Since the

threshold values remain the same, but the agent can win fewer units per time step (when
reporting a lower maximum consumption rate), and/or the number of time steps in which
allocations occur decreases (when reporting a later arrival and/or earlier deadline), Stage
1 of the mechanism can only allocate fewer or equal numbers of units. Furthermore, since

p
〈âi,d̂i,r̂i〉
i,j ≥ p

〈ai,di,ri〉
i,j , the possibility of cancelling can only increase in Stage 2. Thus, it

always holds that πi(θ̂i) ≤ πi(θi).
Now, we consider the case πi(θ̂i) < πi(θi). First, as shown for the case πi(θ̂i) = πi(θi)

above, we know that
∑πi(θ̂i)

j=1 p
〈ai,di,ri〉
i,j ≤

∑πi(θ̂i)
j=1 p

〈âi,d̂i,r̂i〉
i,k (i.e., the payment for those units

won can only increase by misreporting arrival and/or departure). Furthermore, we know
that the allocation πi(θi) is preferable to any other allocation πi(θ̂i) < πi(θi), otherwise
reporting the true valuation vector vi would not be a dominant strategy. Since the payment
for these items is potentially even higher when misreporting, the agent cannot benefit by
winning fewer items.
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Theorem 2. Given non-increasing marginal valuations and limited misreports, both the on-
departure cancellation and immediate cancellation policies with payment policy according to
Equation 4 are DSIC.

Proof. The proof of this theorem follows directly from the above lemmas. Lemmas 1 and
2 show that, for any triple of arrival/departure/consumption rate (mis)-reports, 〈âid̂i, r̂i〉,
the allocation policy is truthful in terms of the valuation vector vi, given an appropriate
payment policy. Furthermore, the payments in Equation 4 correspond to those in Lemma 2,
and therefore they truthfully implement the mechanism. Finally, Lemma 3 completes this
reasoning, by showing that, for a truthful report of valuation vector vi, agents cannot benefit
from misreporting arrivals/departures.

4.5 Implications for the PHEV Domain

Since we assume the units to be perishable, it may not always be possible to cancel units
once they are allocated. Whereas this is not a problem for immediate cancellation, since
units are never allocated to begin with, the on-departure cancellation policy requires the
battery to be partially discharged before departure of the vehicle. Although this may be
undesirable, it is in the agent’s best interest to avoid paying for these units given the design
of the mechanism, since the marginal value for these units is less than the marginal payment.
An agent could avoid discharging by unplugging before the units are discharged, but then
the agent will end up paying for these relatively expensive units. This noted, in Section 7,
in addition to comparing the IM and OD mechanisms, we also evaluate to what extent the
mechanisms would be manipulable if they were designed with the simple greedy allocation
policy, and without assuming any cancellation.

5. Theoretical Bounds on Allocative Efficiency

An important question given the online nature of the allocation is how the allocative ef-
ficiency compares to that of an optimal offline allocation, assuming full knowledge of the
future. As discussed in Sections 3 – 4.2, in our online setting, it is not possible to achieve an
optimal allocation, because agents arrive and leave the market continuously. Moreover, in a
multi-dimensional online setting, the allocation of some units needs to be cancelled in order
to maintain truthfulness. Nevertheless, the optimal offline allocation represents a useful
upper bound of what could be achieved in terms of allocative efficiency, if the preferences
and availability constraints of all agents were known in advance.

To this end, in the following, we study the theoretical worst-case performance of both
IM and OD. More precisely, for each of these policies, we consider two types of inefficiencies:

• Worst-case cancellation ratio. This is the fraction of units from those allocated to any
single agent that need to be cancelled in the worst case (and, to maintain the incentive
properties, cannot be allocated to any other agent). Formally, let I be the set of all
agents present in the market at any time point during the time interval over which
the bound is computed. Denote by πpre

i (θI) the total number of units pre-allocated
to agent i ∈ I in Stage 1 of the policy over the entire active period of this agent, and
by πcanc

i (θI) = πpre
i (θI) − πi(θI) the number of units that were cancelled in Stage 2.
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Given this, the cancellation ratio for a specific agent i is RC,i(θI) =
πcanc
i (θI)

πpre
i (θI)

. Then

we define the worst-case cancellation ratio over all agents i ∈ I and types θI ∈ Θ|I|

as:

Rmax
C = max

θI∈Θ|I|
max
i∈I

πcanc
i (θI)

πpre
i (θI)

.

• Competitive ratio of allocative efficiency. Whereas the cancellation ratio considers the
worst-case for an individual agent, the competitive ratio compares the social welfare of
our mechanism with the social welfare achieved by the optimal offline mechanism, with
full information about future arrivals. Here, social welfare is defined as the sum of the
valuations obtained by all agents (i.e., the sum of utilities excluding any payments). In
more detail, following the work of Parkes (2007), the competitive ratio for our setting
is defined as follows. Let πon

i (θI) denote the number of units allocated by our online

mechanism on departure of agent i given the types of all agents, θI ∈ Θ|I|, and πoff
i (θI)

denote the number of units allocated by the optimal offline mechanism to agent i. The

social welfare of the allocations is then defined as: V on(θI) =
∑

i∈I

∑πon
i

k=1 vi,k for the

online case, respectively V off (θI) =
∑

i∈I

∑πoff
i

k=1 vi,k for the offline case. Now, a
competitive analysis assumes the existence of an “adversary” that can choose from
a set of inputs, and in our case the adversary can choose any set of agent types
θI ∈ Θ|I|. Given this, an online mechanism is said to be c-competitive for efficiency,
if there exists a constant c ≥ 1 such that: ∀θI ∈ Θ|I| : V on(θI)

V off (θI)
≥ 1

c . We can also say

that our online mechanism is guaranteed to achieve within a fraction of 1
c of the value

of the optimal offline algorithm.

Our motivation for studying these two metrics is as follows. First, as outlined in Section
4.2, both variants of the mechanism we propose require that part of the allocation of some
agents is sometimes cancelled, in order to ensure truthfulness. It is natural to ask what is
the worst-case fraction of the number of units allocated to any agent that will need to be
cancelled, under both types of mechanisms (i.e., with immediate and on-departure cancella-
tion), for any market set-up. For the second criteria (i.e., the competitive ratio of allocative
efficiency), we follow the metric proposed by Hajiaghayi et al. (2005) and Parkes (2007) for
online domains, with the caveat that deriving this bound for the multi-dimensional case is
considerably more involved than for the single-dimensional one, due to the required cancel-
lations. In Section 5.1 we study these issues for the mechanism with immediate cancellation,
and in Section 5.2 for the mechanism with on-departure cancellation.

5.1 Worst-Case Bounds for the Mechanism with Immediate Cancellation

The following theorem shows that, when using the online mechanism with immediate can-
cellation, the worst-case cancellation ratio goes to 1 as the number of units required by a
single agent goes to infinity.

Theorem 3. Using the IM allocation policy, limn→∞Rmax
C = 1, where n is the maximum

demand.

Proof. The proof is by example. Consider the following setting consisting of an agent A
with marginal valuation vector vA = 〈v1, v2, ...vn〉, where these values are strictly decreasing,
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i.e., v1 > v2 > .... > vn. We assume that this agent arrives at time aA = 1, departs at dA,
where dA = n · (n + 1)/2, and has a maximum charging speed of rA = 1. Agent A faces a
sequence of cursory (i.e. local) agents, where each of these agents desires exactly one unit,
is present in the market for only one timestep and departs immediately afterwards. At any
one time there is exactly one of these cursory agents in the market. The valuations of these
agents are as follows. The first agent has a valuation of v1 = 〈v1 − ǫ〉, the next two agents,
i = 2 and i = 3, have valuations of vi = 〈v2 − ǫ〉, the next three agents, i ∈ {4, 5, 6}, have
valuations vi = 〈v3 − ǫ〉, the next four agents, i ∈ {7, 8, 9, 10}, vi = 〈v4 − ǫ〉, etc. Thus, in
total, there is a sequence of n · (n + 1)/2 of these agents. Here, ǫ is sufficiently small such
that v1 − ǫ > v2. As a result, agent A imposes the following externality at each timestep:
〈v1− ǫ, v2− ǫ, v2− ǫ, v3− ǫ, v3− ǫ, v3− ǫ, v4− ǫ, v4− ǫ, v4− ǫ, v4− ǫ, ...〉 (noting that, since the
cursory agents are only present in the market for a single time step, cancelling an allocation
does not affect the externality, nor the marginal payment).

The allocation for this settings then proceeds as follows. In the first time step, the unit
is pre-allocated to agent A (since v1 > v1 − ǫ) and there is no cancellation. In the second
time step, the unit is again pre-allocated to agent A (since v2 > v2 − ǫ), but at this point

the marginal payment is p
〈2〉
i = 〈v2− ǫ, v1− ǫ〉. Since the marginal value for the second unit

is less than the marginal payment for this unit, i.e., v2 < v1 − ǫ, the unit gets cancelled.
Therefore, at time t = 3, the marginal value of agent A is still v2, and the third unit also
gets allocated to the agent, and this time it is not cancelled. However, in the next two
time-steps, the units are pre-allocated and cancelled both times. To see this, note that

the marginal payment at time t = 5 is p
〈2〉
i = 〈v3 − ǫ, v3 − ǫ, v2 − ǫ, v2 − ǫ, v1 − ǫ〉. Since

v3 < p
〈2〉
i,3 = v2 − ǫ, this unit gets cancelled.

More generally, for every kth unit which is allocated and not cancelled, the marginal
value of agent A becomes vk+1, and the next k units will be first pre-allocated (since the
marginal value of the cursory agents are vk+1 − ǫ), but then subsequently cancelled (since
these all have a marginal payment of vk − ǫ). Only the (k + 1)th unit will be allocated and
not cancelled, but then the next k + 1 units will be cancelled, and so on.

As a result, all πpre
A = 1+ 2+ 3+ 4+ . . .+ n = n · (n+ 1)/2 units will be pre-allocated.

Of those units πcanc
A = 0 + 1 + 2 + 3 + . . . + (n − 1) = (n − 1) · n/2 will be cancelled, and

πA = n will remain allocated. Therefore, the ratio of number of units cancelled as n→∞
is:

RC,A = lim
n→∞

πcanc
A

πpre
A

= lim
n→∞

n2 − n

n2 + n
= lim

n→∞

n− 1

n+ 1
= 1

The above theorem shows that the worst-case result for an individual agent is un-
bounded. We can use this result (and the example constructed in the proof) to derive a
similarly negative result for the allocative efficiency (i.e., the overall efficiency of the system):

Theorem 4. For the mechanism with immediate cancellation, the competitive ratio of the
allocation efficiency is unbounded. That is, there exists no finite c, such that:

∀θI ∈ Θ|I| :
V on(θI)

V off (θI)
≥

1

c
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Proof. Generally, there are two potential sources of inefficiency w.r.t. the offline allocation:
either the units are pre-allocated and subsequently cancelled, or some units are allocated to
agents that have less utility for them than the agents who would be allocated in the offline
case. Our proof is based on the former source of inefficiency and uses the same example
given in Theorem 3.

In the example of Theorem 3 we showed that it is possible to construct an example
where, given n · (n + 1)/2 units of supply, (n − 1) · n of these are cancelled (and thus not
allocated to any agent) and n are allocated. Now, suppose that the valuations for these
units by all agents (including agent A) are between [v, v], where v/v = r is a finite constant.
Since using the optimal offline allocation all units will be allocated, the total value will be
at least: V off ≥ v · n · (n+ 1)/2. On the other hand, the online allocation using the online
allocation using immediate cancellation will have a value of at most: V on ≤ v · n.

Given this, the following holds:

lim
n→∞

V on

V off
≤ lim

n→∞

v · n

v · n · (n+ 1)/2
= lim

n→∞

2r

n+ 1
= 0

Therefore, for any constant c, it is always possible to find a counter example where the
worst-case efficiency is lower than 1/c.

Thus, there is no theoretical bound on the efficiency loss when using the immediate
cancellation allocation policy. However, the proof relies on there being an agent who is
infinitely patient, has infinite demand, and has a higher valuation than all other bidders
for each unit. In practice, such an extreme situation would never occur. To consider more
practical scenarios, therefore, in Section 7 we use simulations to investigate realistic set-
tings. After showing the worst-case bounds with immediate cancellation, in the remainder
of Section 5 we derive theoretical bounds for the on-departure cancellation mechanism.
Specifically, we will show that this mechanism provides much better bounds. In fact, the
competitive bounds for the efficiency are the same as those for single-unit demand settings,
where no cancellation occurs.

5.2 Worst-Case Bounds for the Mechanism with On-Departure Cancellation

This section is divided into two parts: in Section 5.2.1 we discuss the worst-case cancellation
ratio for a particular agent and provide a tight bound, while in Section 5.2.2 we consider
the bound on allocative efficiency for the entire market.

5.2.1 Worst-Case Cancellation Ratio

This section is organised as follows. First, we show that at most half of the units are
cancelled for any particular agent. Then we go on to show that there exist examples where
half of them are cancelled. Note that, for convenience, the following lemma is formulated
in terms of units retained instead of units cancelled.

Lemma 4. Using on-departure cancellation, suppose that an agent i is pre-allocated n units
by the departure time di, and k of these units are kept in Stage 2 (and so the mechanism
cancels n − k units). Then, for any type profile θI ∈ Θ|I|, and any agent i ∈ I, k ≥ ⌈n/2⌉
(i.e., at least half of the units are allocated).
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Proof. To prove this property, we start by deriving two inequalities which hold for any value
of k. First, since k is defined as the number of units kept, and the remaining ones (n− k)
are cancelled, it must hold that vi,k+1 < pi,k+1 (otherwise the (k + 1)th unit would not be
cancelled, contradicting the definition).

The second inequality is given by vi,k+1 ≥ pi,n−k and is less obvious. To see why this
always holds, we need an observation about how greedy allocation works. Recall that n
is the number of units pre-allocated by the greedy allocation policy. Therefore, each of
the active marginal values, vi,1, . . . , vi,n, were at some point t ∈ [ai, di] among the top S(t)
highest marginal values. Consequently, the lowest marginal value of the ones pre-allocated,
vi,n, must be greater than the marginal payment of at least one unit (otherwise it could
not have won the unit). Since the marginal payments are sorted in an increasing order,
it must therefore hold that vi,n ≥ pi,1. Similarly, for the next-lowest value, it must hold
that vi,n−1 ≥ pi,2, and so on. In general we can write vi,n−j+1 ≥ pi,j , j ∈ {1, n}. If we set
j = n− k, we get vi,k+1 ≥ pi,n−k.

Therefore, in order for the greedy policy to allocate n units and for the mechanism to
subsequently cancel the units from positions k + 1 to n (assuming k + 1 < n, otherwise
no cancelling will take place on departure of agent i), the following inequalities must be
satisfied:

{

vi,k+1 < pi,k+1

vi,k+1 ≥ pi,n−k

(5)

Given this, we now show that k ≥ ⌈n/2⌉ by contradiction. Suppose that k = ⌈n/2⌉− 1,
i.e., strictly more than ⌈n/2⌉ are cancelled. Then the above conditions become:

{

vi,⌈n/2⌉ < pi,⌈n/2⌉

vi,⌈n/2⌉ ≥ pi,n−⌈n/2⌉+1

(6)

To show the contradiction, we need to consider separately the cases where n is even and
where n is odd. If n is even, then we have n = ⌈n/2⌉ + ⌈n/2⌉, and the above system
becomes:

{

vi,⌈n/2⌉ < pi,⌈n/2⌉

vi,⌈n/2⌉ ≥ pi,⌈n/2⌉+1

(7)

This implies pi,⌈n/2⌉+1 < pi,⌈n/2⌉, but since the marginal price vector pi is weakly increasing
by definition, this leads to a contradiction. For the case where n is odd, we have that
n = ⌈n/2⌉+ ⌈n/2⌉ − 1, and the conditions become:

{

vi,⌈n/2⌉ < pi,⌈n/2⌉

vi,⌈n/2⌉ ≥ pi,⌈n/2⌉
(8)

Clearly, both equations cannot be satisfied simultaneously, leading to a contradiction.

Note that any value of k < ⌈n/2⌉ would lead to such a contradiction due to pi being
increasing, hence we necessarily have that k ≥ ⌈n/2⌉, completing the proof.

To complete our analysis, we show that this bound is tight, i.e., that there exist settings
in which half of the units allocated to an agent are cancelled.
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Lemma 5. There exist settings in which the mechanism with on-departure cancellation
cancels the allocation of ⌈n/2⌉ units, or no more than ⌈n/2⌉ units are kept, on departure of
an agent i, where n is the number of pre-allocated units.

Proof. The proof for this is done by constructing such a worst-case example. Consider a
single agent, A, who is in the market for n time periods, and has a demand for n units, where
n is even. The first n/2 marginal valuations are equal to 4, and the remaining ones are 2. For
example, for n = 8, the marginal valuation vector becomes vA = 〈4, 4, 4, 4, 2, 2, 2, 2〉. Similar
to the proof of Theorem 3, this agent is faced, in each time step, by a different, single cursory
agent, which participates only in that time step. The valuations of the first n/2 cursory
agents in the sequence is given by vi = 〈3〉, and the second half of the agents has vi = 〈1〉.
Thus, for n = 8, the marginal payment of agent A would be p−A = 〈1, 1, 1, 1, 3, 3, 3, 3〉. In
such a setting, the mechanism with on-departure cancellation would pre-allocate all units
to agent A (since vA,k = 4 > vk,1 = 3 for k ≤ n/2 and vA,k = 2 > vk,1 = 1 for k > n/2).
However, on departure of agent A, exactly half of the units allocated are cancelled (since
vA,k = 2 < p−A,k = 3 for k > n/2).

Finally, we unify the results from Lemmas 4 and 5 in the following theorem.

Theorem 5. In a setting with on-departure cancellation and non-increasing marginal val-
ues, for any number of units and agents present, the worst case cancellation-ratio for the
number of units allocated to an agent i is Rmax

C = 1
2 .

Proof. Lemma 4 shows that, regardless of set-up, no more than half of the units allocated
to any agent can be cancelled on its departure, thus Rmax

C ≤ 1
2 , regardless of the setting

(i.e., the possible input types of the agents). Lemma 5 shows there exist settings where the
cancellation ratio is exactly Rmax

C = 1
2 , completing the proof.

Note that in practice and for smaller settings, significantly fewer than half of the units
are cancelled. The worst case cancellation ratio 1/2 allocations occurs only in a very specif-
ically constructed example, and, as shown in the experimental analysis, for most realistic
distributions in our application domain, the actual performance is much better.

5.2.2 Competitive Bound on Allocative Efficiency

The previous section discusses the cancellation problem from the perspective of single
agents, not the whole market. In this section, we show that, in the case that agents have
weakly decreasing marginal values, the allocation returned by the on-departure cancellation
mechanism is 2-competitive with the optimal offline allocation. This result means that the
multi-unit demand case with on-departure cancellation is no worse in terms of worst-case
competitive bound than the single-unit demand problem discussed by Hajiaghayi et al.
(2005), and Parkes (2007), despite the fact that for a single unit demand there is no need
for cancellation to ensure incentive compatibility. Formally, we can state this through the
following theorem:

Theorem 6. The mechanism with on-departure cancellation is 2-competitive with the op-
timal offline allocation, for a setting with non-increasing marginal values.
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Proof. In order to establish a competitive bound with the optimal offline allocation, we use
a “charging argument” similar to that of Hajiaghayi et al. (2005).5 The basic idea is to
“charge” (or match) all the marginal value units of each agent that are allocated in the
offline case with another, higher-valued unit that is allocated both offline and online. This
is either the unit itself, or the higher value unit that causes it not to be allocated in the
online market. Formally, consider all units vi,p (belonging to some agent i in position p)
which are allocated both in the offline and online case. If each such unit vi,p can be charged
at most twice, once to itself, and once to a lower valued unit allocated offline but not online,
then it follows that the worst-case social welfare ratio between the the online vs. offline
allocation cannot drop below 1:2.

Now, for agents with single-unit demand (such as the case discussed by Hajiaghayi et al.,
2005), it is easy to see this property always holds, because each unit vi,p can be allocated
online at most once, thus it can displace at most one other unit vj,q. Crucially, no units are
cancelled. In a multi-unit demand setting, the argument becomes more involved, because
each unit vi,p (allocated both online and offline) can affect the online market in several ways:

• It can displace another unit vj,q that would be allocated offline, where by “displace”
we mean specifically that unit vj,q is never pre-allocated online (hence cancellation
does not apply to it).

• It can cause the cancellation of another unit vj,q. In this second case, unit vj,q is
pre-allocated, but its allocation is cancelled due to the presence of unit vi,p in the
market (meaning that its pre-allocation would not have been cancelled on departure
of agent j, if unit vi,p were not present).

The main issue that remains to be shown is that unit vi,p can only displace or cause
the cancellation of at most one other unit that would be allocated offline. Thus, it cannot
displace two or more other units that are allocated offline, but are not allocated online, due
to the presence of unit vi,p.

We show this by contradiction. Formally, suppose there are three units: vi,p, vj,q and
vk,r all allocated in the offline case (with vj,q < vi,p and vk,r < vi,p). Unit vi,p is allocated in
the online case (i.e., pre-allocated and not cancelled). Units vj,q and vk,r are not allocated
in the online case if unit vi,p is present, but are allocated online if unit vi,p is not present.
Given this set-up, there are three possible cases:

1. Neither units vj,q or vk,r are pre-allocated online when unit vi,p is present (hence, there
is no cancellation of either vj,q or vk,r).

2. Unit vj,q is never pre-allocated online, but unit vk,r is pre-allocated and its allocation
is cancelled later (i.e., on departure of agent k from the market), if unit vi,p is present.

3. Both units vj,q and vk,r are pre-allocated, but their pre-allocations are cancelled on
the departure from the market agents j, respectively k, if unit vi,p is present.

5. Here the term “charging” does not refer to electricity charging, but represents the name of a proof device
used in online mechanism design.
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In all cases, if unit vi,p is not present, both units vj,q and vk,r are pre-allocated and not can-
celled in the online case. In order to complete the proof we need to show, by contradiction,
that each of these three cases could not occur.

Case 1 is very similar to the case of single unit demand discussed by Hajiaghayi et al.
(2005), as no cancellation occurs for these units. It is relatively straightforward to see this
cannot occur, as any unit vi,p can be pre-allocated at most once (at some time t), thus it
can displace at most one other unit that would have been allocated otherwise. This can be
either the unit allocated online at time time t, if this unit is allocated online later on, the
unit which is, in turn, displaced by it.

Case 2: Suppose that vj,q (belonging to some agent j active between [aj , dj ]) is the
unit assumed not pre-allocated at all when vi,p is present, and unit vk,r is the unit that
is allocated and then cancelled. There are two subcases to consider here, which require
separate discussion.

Case 2A: First, consider that vj,q > vk,r. In this case, agent k has a lower marginal
value than that of agent j, but its value vk,r is still pre-allocated by our essentially greedy
allocation policy, while vj,q is not. This means that agent k must be more patient than
agent j, hence dj < dk, otherwise vj,q would have been pre-allocated instead.

Now, if we denote by pk the payment vector of agent k, defined as in Section 4.2. For
unit vk,r to be cancelled it must hold that vk,r < pk,r. Now, denote by p<−i>

k the vector
of marginal payments of agent k when agent i is not present in the market, and recall our
assumption that now the value vj,q is allocated. Thus, we have:

p<−i>
k = incr(pk\{vi,p} ∪ {vj,q})

where incr is the operator that orders elements in increasing order. Since vj,q > vk,r, it
follows that v<−i>

k,r < pk,r, thus the allocation of unit vk,r would still be cancelled, even
without unit vi,p.

Case 2B: For the second subcase, we consider vj,q ≤ vk,r, i.e., the value of the unit
that is displaced by agent i is lower than that the one pre-allocated and cancelled. First
note that, for this case to occur, unit vj,q but be allocated online within [ak, dk], the active
window of agent k. This is an obvious condition: if agent j is allocated online outside this
window (and is displaced there when agent i is in the market, but the displacement occurs
outside [ak, dk]), then units vj,q or vi,p cannot influence the cancellation of unit vk,r (because
each unit can be pre-allocated at most once, and in this case the pre-allocation of vi,p would
happen outside [ak, dk]).

As previously, recall the condition for unit vk,r < pk,r, required for unit vk,r to be
cancelled. Note that this means there are at least k units between [ak, dk] that are higher in
value than unit vk,r, and thus, in an offline allocation (which is our benchmark) would need
to take priority over it. In our setting, one of these units is vi,p. But even after removing
vi,p from it, vector p<−i>

k = incr(pk\{vi,p}∪{vj,q}) must contain at least k−1 values higher
than vk,r. In an offline allocation without unit vi,p, these k−1 values must be given priority,
together with at least unit vk,r. However, this means that unit vj,q cannot be allocated
offline between [ak, dk], being lower in value than vk,r. This gives a contradiction with
our initial assumption that both units vi,j and vk,r are allocated offline (as well as online)
without unit vi,p present.
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To explain this intuitively, what this means is that a unit vi,p can cause both the dis-
placement (non-allocation) of a unit vj,q and the cancellation of another one vk,r, but it’s
not possible that both of these units were high enough value to be allocated in the offline
case as well. Thus, at most one other offline-allocated unit is not allocated online because
of the presence of unit vi,p in the market.

Case 3: In this final case, both units would need to be pre-allocated and cancelled, in
the absence of value vi,p. The contradiction for this case can be shown similarly to Case 2A
from above. Considering the marginal price vectors of agents j and k without vi,p in the
market:

p<−i>
j = incr(pj\{vi,p} ∪ {vk,r})

p<−i>
k = incr(pk\{vi,p} ∪ {vj,q})

It is easy to see that, regardless whether the value vj,q or vk,r is lower, for that value
the cancellation would still occur on departure in a market without agent i, leading to a
contradiction.

To summarise, we have now exhaustively shown that the contradiction holds in all
possible cases. Thus, a unit vi,p allocated both online and offline can at most displace
(or lead to the cancellation of) one other unit allocated offline. Thus, at most two units
allocated offline can be charged to any unit allocated online, completing the proof.

6. Computational Aspects

In this section, we consider the implications of implementing the mechanisms in practice, in-
cluding the computational complexity of our algorithms. We will examine both on-departure
and immediate cancellation separately, as they differ fundamentally in their complexity.

6.1 Implementing On-Departure Cancellation

Algorithm 1 briefly outlines an implementation of our mechanism with on-departure can-
cellation (OD). Here, we assume that the first time step is denoted by t0, the second by
t1 = t0 + 1, and so on. For simplicity, we use I throughout this section to denote the
full set of all agents arriving over all time points, but we note that no algorithm explicitly
uses information about future arrivals. Initially, the algorithm sets the endowments of all
agents to 0 (line 2), as no units have been allocated. Then, for every time step t, the
algorithm first pre-allocates units using the greedy allocation policy (line 4). This can be
done in O(N ·rmax) using the well known linear-time selection algorithm described by Blum,
Floyd, Pratt, Rivest, and Tarjan (1973), where N = |I| is the total number of agents and
rmax = maxi∈I r̂i is the maximum consumption rate.

Next, the algorithm computes the marginal payments up to time step t by rerunning
the market without each active agent (line 6). In rerunning the market for a particular

agent i, it is important to note that only the pre-allocations have an effect on p
〈t〉
i — any

cancellations are irrelevant, because they do not affect the future development of the market.
Therefore, it is only necessary to compute the greedy allocation with each agent i removed,
which has a total run-time, for all active agents, in O(N2 · rmax) (assuming results from

previous time steps are re-used). Updating p
〈t〉
i with the new marginal payments can be
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Algorithm 1 Mechanism with On-Departure Cancellation (OD).

1: procedure OnDepartureMechanism(θI , S)

2: k〈t0〉 ← 〈0, 0, . . . , 0〉 ⊲ Initial endowments, k
〈t0〉
i = 0, for all i ∈ I

3: for all t ∈ {t0, t1, . . .} do
4: k〈t+1〉 ← GreedyAllocation(θI , S(t),k

〈t〉) ⊲ Run greedy allocation
5: for all i ∈ {j ∈ I|âj ≤ t ∧ d̂j ≥ t} do ⊲ Iterate through active agents

6: update p
〈t〉
i using θ−i ⊲ Run market without i

7: if d̂i = t then ⊲ If agent is departing

8: ki, pi ← k
〈t+1〉
i , p

〈t〉
i ⊲ Final pre-allocation and marginal payments

9: while vi,ki < pi,ki do
10: ki ← ki − 1 ⊲ Cancel units while necessary
11: end while
12: xi(θ−i|ki)←

∑ki
k=1 pi,k ⊲ Final payment for agent i

13: end if
14: end for
15: end for
16: end procedure

done using a simple insertion algorithm, and, noting that only the lowest |vi| payments for
each agent i need to be kept, this can be done, for all agents, in O(N · rmax · vmax), where
vmax is the maximum length of any agent’s valuation vector.

Finally, on departure, in lines 8–11, any units that have a lower valuation than their
corresponding marginal payments are cancelled, and the final payment is calculated in
line 12. This can be done in O(N · vmax) by simply iterating through the values.

In summary, the time complexity of our algorithm for the OD mechanism is O(N2 ·rmax+
N · rmax · vmax+N · vmax) for each time step. If rmax and vmax are assumed to be constant6,
this simplifies to O(N2). Generally, this means that the algorithm can be executed quickly,
even for large numbers of agents.

6.2 Implementing Immediate Cancellation

Next, we consider our mechanism with immediate cancellation (IM), as shown in Algo-
rithm 2. The key difference to the OD mechanism here is that units are potentially cancelled
at every time step that an agent is active (lines 7–9), rather than only on departure. This
small modification has a significant impact on the computational tractability of the mecha-
nism. Unlike the previous mechanism, when computing the marginal payments in line 6, the
cancellations of other agents now affect the payments. This feature was already highlighted
in the example in Section 4.3.1, where the cancellation of the second unit pre-allocated to
agent 1 causes a change in the marginal payments to agent 3. More generally, cancellations
have an immediate effect on the endowments of agents and this directly affects the active
marginal valuations V〈t〉 in subsequent time steps.

6. This is reasonable, as they are limited by technological constraints in practice. In particular, rmax is
limited by battery and infrastructure constraints, while vmax is related to the petrol savings achievable
by an EV (as will be detailed in Section 7.3.3).

204



An Online Mechanism for Multi-Unit Demand

Algorithm 2 Mechanism with Immediate Cancellation (IM).

1: procedure ImmediateMechanism(θI , S)

2: k〈t0〉 ← 〈0, 0, . . . , 0〉 ⊲ Initial endowments, k
〈t0〉
i = 0, for all i ∈ I

3: for all t ∈ {t0, t1, . . .} do
4: k〈t+1〉 ← GreedyAllocation(θI , S(t),k

〈t〉) ⊲ Run greedy allocation
5: for all i ∈ {j ∈ I|âj ≤ t ∧ d̂j ≥ t} do ⊲ Iterate through active agents

6: update p
〈t〉
i using θ−i ⊲ Run market without i

7: while v
i,k

〈t+1〉
i

< p
〈t〉

i,k
〈t+1〉
i

do

8: k
〈t+1〉
i ← k

〈t+1〉
i − 1 ⊲ Cancel units immediately

9: end while
10: if d̂i = t then ⊲ If agent is departing

11: ki, pi ← k
〈t+1〉
i , p

〈t〉
i ⊲ Final allocation and marginal payments

12: xi(θ−i|ki)←
∑ki

k=1 pi,k ⊲ Final payment for agent i
13: end if
14: end for
15: end for
16: end procedure

Now, in order to determine cancellations when rerunning the market without each active
agent i, it is necessary to again compute the marginal payments for all agents in those
markets (effectively executing the full algorithm again with θ−i). Clearly, this leads to a
recursion that potentially sees all possible subsets of agents evaluated. In the worst case,
therefore, the cancellation decisions need to be executed for every agent in every possible
subset of I, or N · 2(N−1) times.7 Simplifying and again assuming vmax and rmax to be
constant, this leads to a runtime complexity of O(N · 2N ).

A runtime that is exponential in the number of agents is clearly a problem when applying
the mechanism in realistic settings with more than a handful of agents. However, to tackle
such problems, it is possible to use a technique akin to branch-and-bound that enters the
recursion in line 6 only when necessary. We present this in the following section.

6.3 Speeding Up Immediate Cancellation Using Bounds

To obtain a faster algorithm for the IM mechanism, instead of calculating all marginal

payments p
〈t〉
i at every time step, we find and iteratively refine lower and upper bounds

for these payments. The intuition behind this approach is to choose initial bounds that
are easily calculated without resorting to recursion. If an agent’s reported valuation for a
pre-allocated unit, vi,k, lies outside the bounds, we can immediately determine whether the
unit is cancelled or not. On the other hand, if vi,k lies between the bounds, we further refine

7. In practice, this recursion only occurs over the set of agents that are active at the same time as the
agent i that is being evaluated, as previous decisions are not affected by agent i’s presence and similarly
agents arriving after d̂i have no affect on i. This means that settings with large numbers of agents may
still be tractable if there is little overlap between the active agents, but for the sake of the analysis in
this section, we assume the worst case, that all N agents are active concurrently.
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them by iteratively calculating the actual marginal payments for some of the agent’s active
time steps until the cancellation decision is unambiguous.

In more detail, we use p
↓〈t,s〉
i and p

↑〈t,s〉
i to denote the lower and upper bounds, respec-

tively, for p
〈t〉
i . Here, s indicates the level of refinement, or up to which time step the actual

marginal payments have been calculated, with âi − 1 ≤ s ≤ t. Analogous to the actual

p
〈t〉
i vector, p

↓〈t,s〉
i and p

↑〈t,s〉
i are vectors in increasing order, and they represent bounds

for p
〈t〉
i , such that p

↓〈t,s〉
i,k ≤ p

〈t〉
i,k ≤ p

↑〈t,s〉
i,k , for all k and s. As the level of refinement, s, is

increased, the bounds become tighter, eventually converging to p
〈t〉
i,k. In the following, we

describe in detail how to calculate the initial bounds (with s = âi − 1, indicating that no
actual payments have been calculated yet):

• In order to calculate the initial lower bounds, p
↓〈t,âi−1〉
i , we rerun the market without

i from âi to t using only the greedy allocation policy without cancellations. The
marginal payments in this market (as described in Section 4.2) are then used as lower

bounds. These payments are not necessarily the same as the actual payments p
〈t〉
i , as

there may be cancellations in the latter, which cause the active marginal valuations
to change in subsequent time steps. However, it can be seen easily that they indeed
represent a lower bound. Specifically, any cancellations either have no influence or
cause an increase in one or more elements in the externality vector E〈t〉 (since agents
have a lower endowment after cancellations and therefore an equal or higher value for
obtaining additional units).

• To calculate the initial upper bounds, p
↑〈t,âi−1〉
i , we now consider the actual mar-

ket including agent i from time step âi to t, calculate the externality that agent i
would impose on others for winning each available unit throughout this time inter-
val and then use these to derive upper bounds for the payments. More formally, we

define a new multiset set of valuations, V
↑〈t〉
−i∪0, which is derived by simply removing

all elements corresponding to agent i from V〈t〉 and padding it with zeroes, if nec-
essary, until its size is at least S(t). Then, we proceed in a similar manner as in
Section 4.2 by defining the externality agent i would impose on others in time step

t as E
↑〈t〉
i = min〈ri〉(max〈S(t)〉 V

↑〈t〉
−i∪0). Given this, the final vector of upper bounds is

then p
↑〈t,âi−1〉
i = incr(

⋃t
t′=âi

E
↑〈t′〉
i ).

Unlike the actual marginal payments, these upper bounds now include the effect agent
i has on the market, as it may be allocated units that would have been allocated to
others, or, through its presence, cause the cancellation of other units, which, in turn,
affect the active valuations of other agents in subsequent time steps. However, as its
only effect is to reduce the supply available to other agents, including agent i in the

market can only increase the active valuations of other agents, and therefore p
↑〈t,âi−1〉
i

is an upper bound for p
〈t〉
i .

Given these bounds, we can now quickly test if an agent’s marginal valuation vi,k for

a pre-allocated unit falls outside these bounds. If vi,k < p
↓〈t,âi−1〉
i,k , then the unit is can-

celled immediately, while if vi,k ≥ p
↑〈t,âi−1〉
i,k , it is definitely not cancelled. However, if
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Algorithm 3 Mechanism with Immediate Cancellation (IM) and Bounds.

1: procedure BoundedImmediateMechanism(θI , S)

2: k〈t0〉 ← 〈0, 0, . . . , 0〉 ⊲ Initial endowments, k
〈t0〉
i = 0, for all i ∈ I

3: for all i ∈ I do
4: si ← âi − 1 ⊲ Initial refinement of bounds
5: end for
6: for all t ∈ {t0, t1, . . .} do
7: k〈t+1〉 ← GreedyAllocation(θI , S(t),k

〈t〉) ⊲ Run greedy allocation
8: for all i ∈ {j ∈ I|âj ≤ t ∧ d̂j ≥ t} do ⊲ Iterate through active agents

9: Calculate p
↓〈t,si〉
i and p

↑〈t,si〉
i ⊲ Add initial bounds for time t

10: repeat

11: if v
i,k

〈t+1〉
i

< p
↓〈t,si〉

i,k
〈t+1〉
i

then

12: k
〈t+1〉
i ← k

〈t+1〉
i − 1 ⊲ Unit definitely cancelled

13: else if v
i,k

〈t+1〉
i

< p
↑〈t,si〉

i,k
〈t+1〉
i

then

14: si ← si + 1 ⊲ Refine bounds
15: Update p

↓〈t,si〉
i and p

↑〈t,si〉
i

16: end if
17: until v

i,k
〈t+1〉
i

≥ p
↑〈t,si〉

i,k
〈t+1〉
i

18: if d̂i = t then ⊲ If agent is departing

19: ki ← k
〈t+1〉
i ⊲ Final allocation

20: while ∃x ∈ {1, 2, . . . , ki}, p
↓〈t,si〉
i,x 6= p

↑〈t,si〉
i,x do

21: si ← si + 1 ⊲ Refine for final payments
22: end while
23: xi(θ−i|ki)←

∑ki
k=1 p

↑〈t,si〉
i,k ⊲ Final payment for agent i

24: end if
25: end for
26: end for
27: end procedure

p
↓〈t,âi−1〉
i,k ≤ vi,k < p

↑〈t,âi−1〉
i,k , then the bounds are ambiguous and need to be further refined.

We obtain these refined bounds p
↓〈t,s〉
i and p

↑〈t,s〉
i by computing the actual marginal pay-

ments up to some specified time s, after which the bounds are calculated as above. This
effectively replaces some of the initial bounds with actual marginal payments, resulting in

more accurate overall bounds. Eventually, when s = t, we have p
↓〈t,s〉
i = p

〈t〉
i = p

↑〈t,s〉
i .

More formally, the refined lower bounds are calculated as p
↓〈t,s〉
i = incr((

⋃s
t′=âi

E
〈t′〉
i ) ∪

(
⋃t

t′=âi+1 E
↓〈t′〉
i )), where E

〈t〉
i is the externality vector in the market without i, using imme-

diate cancellations (as used for actual payments), while E
↓〈t〉
i is the corresponding vector in

the market without i and without any cancellations. Similarly, the refined upper bounds

are calculated as p
↑〈t,s〉
i = incr((

⋃s
t′=âi

E
〈t′〉
i ) ∪ (

⋃t
t′=âi+1 E

↑〈t′〉
i )), where E

↑〈t〉
i is as defined

above.
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Full details for the IM mechanism using bounds are given in Algorithm 3. This keeps
track of the level of refinement for the bounds of each agent i (as si, which is initialised to
âi − 1 in line 4). Then, instead of updating the actual payments, lines 10–17 repeatedly
compare the marginal valuation of the last unit that was pre-allocated (v

i,k
〈t+1〉
i

) to the

current upper and lower bounds, refining them as necessary. Note here, that previous
calculations of the bounds can be reused, as the algorithm checks them iteratively, either
increasing t (when the next time step is calculated) or si by 1 (when the bounds are refined).
In each case, this means that only the active valuations of one additional time step have to
be added to the existing bounds. This loop repeats until the statement in line 17 becomes
true, which captures both cases when the last pre-allocated unit is definitely not cancelled
(in which case any other pre-allocated units will also not be cancelled, as their marginal
valuations will be at least as high, while their respective payments will be equal or lower),
or when all pre-allocated units in this time step are cancelled.

Finally, when an agent departs, its final allocation and payments are calculated in
lines 18–24. Here, it is now important to calculate the actual marginal payments for all
ki allocated units. This is achieved by further refining the bounds until the first ki upper
and lower bounds are equal. While this can incur further computational effort, it is not

equivalent to computing the complete p
〈t〉
i vector as in Algorithm 2. The payments only

need to be calculated for the units that are actually allocated on departure, the upper and
lower bounds may be equal without needing to compute actual payments, and importantly,
they are only required for the full set of agents and not recursively for all subsets of agents.

In practice, this algorithm with bounds significantly reduces the computational run-
time of the mechanism (typically by 99% or more throughout the experiments conducted
in Section 7), as it often avoids re-running the market with all possible subsets of agents.
However, it is important to note that the worst-case run-time is still equivalent to Algo-
rithm 2, i.e., O(N · 2N ), or exponential in the number of agents. In the best case, when no
recursion is necessary, the run-time reduces to O(N2).

7. Experimental Evaluation

In this section, we quantify the performance of our mechanisms, as compared to a number of
benchmarks, by applying them to a range of settings. While we investigated the theoretical
performance bounds of our mechanisms in Section 5, the purpose of this section is to evaluate
their performance in realistic settings.

Specifically, in Section 7.2, we consider a general setting that is easily reproducible and
show how our mechanisms perform as we vary both supply and demand for a good. Then,
in Section 7.3, we turn to the PHEV domain. For this, we first show how we can derive an
agent’s preferences based on the vehicle owner’s driving behaviour. Then, we use real data
collected during the first large-scale trial of pure electric vehicles (EVs) in the UK to show
that the same trends continue to hold in a realistic application setting. Furthermore, we look
at how the gradual introduction of fast-charging PHEVs would affect a neighbourhood with
limited electricity supply, both in terms of social welfare (which translates to the overall fuel
savings within the neighbourhood) and the financial savings of individuals. Throughout the
experiments, we also consider a simpler greedy allocation mechanism without cancellation
and quantify the potential benefits an agent would be able to achieve by misreporting in such

208



An Online Mechanism for Multi-Unit Demand

a mechanism. This demonstrates whether there is actually scope for strategic misreporting
in realistic settings and whether cancellation is needed in practice.

Before we consider the two specific settings, we briefly outline the common parameters
and benchmarks used in all experiments.

7.1 Experimental Setup

To evaluate our mechanisms, we simulate different settings where a number of agents com-
pete for a limited supply of a good that is allocated on an hourly basis over a 24-hour
period. In order to test scenarios with varying supply and demand, we sample these agents
randomly from fixed probability distributions and use a range of supply functions (these
are outlined in more detail in Sections 7.2 and 7.3). In order to ensure statistical signifi-
cance of our results, we re-sample the agents 1,000 times for each setting, and we plot 95%
confidence intervals throughout this section.

In addition to the two mechanisms proposed in this paper, with immediate cancellation
(IM) and on-departure cancellation (OD), we evaluate a number of benchmark mechanisms:

• Fixed is a fixed-price mechanism that allocates units to those agents that have a
valuation of at least a given constant p, and the price they pay for each unit is p.
When demand exceeds supply, each unit is allocated to an agent chosen uniformly at
random from the set of all agents with a sufficiently high valuation. Here, an agent
may receive multiple units, up to its maximum consumption rate, r̂i. This mechanism
is DSIC and so it constitutes a direct comparison to our mechanisms. However, to
optimise the performance of the fixed-price mechanism, p must be carefully chosen.
Thus, for each given setting, we test all possible values (in steps of £0.01) and select the
p that achieves the highest average efficiency (over 1,000 trials). Thus, when showing
the results of Fixed, this constitutes an upper bound of what could be achieved with
this mechanism.

• Random is a special case of Fixed, with p = 0. Thus, using this baseline benchmark,
units are allocated randomly and agents do not pay anything.

• Greedy is a simple greedy allocation policy, as described in Section 4. Payments
are calculated using pi prices (as for IM and OD), but there are no cancellations.
Thus, this mechanism is not truthful, but it constitutes an interesting comparison to
our mechanisms, as it allows us to quantify the loss of efficiency that is caused by
cancellations, as well as the potential benefits an agents has when misreporting in the
absence of cancellations.

• Heuristic allocates units such that a weighted combination of an agent’s valuation
and urgency (proximity to its departure time) is maximised. Here, an α ∈ [0, 1]
parameter denotes the importance of the urgency, such that α = 1 corresponds to the
well-known earliest-deadline-first heuristic in scheduling (Pinedo, 2008), while α = 0
indicates that units are always allocated to the agent with the highest valuation. This
is not a truthful mechanism and we do not impose payments here, as its primary
purpose is as a benchmark for our approach. Again, we always select the best α by
testing all values in steps of 0.01 for each setting.

209



Robu, Gerding, Stein, Parkes, Rogers & Jennings

• Optimal assumes complete knowledge of all future arrivals and supply, then allocates
units to agents to maximise the overall allocative efficiency. Clearly, this mechanism
is not possible because it assumes knowledge of the future and it is also not truthful
(again we impose no payments), but it serves as an upper bound for the efficiency
that could be achieved.

7.2 General Allocation Setting

First, we consider a general synthetic setting, in which we generate agents and the supply
function from simple distributions. The main reason for examining such a scenario before
turning to a more realistic setup is to generate results that are easily reproducible and that
are not tied to a specific application domain. In the following, we outline the distributions
from which we sample the supply and agents (Section 7.2.1), and then we discuss our results
(Section 7.2.2).

7.2.1 Synthetic Setup

In this setting, we generate the supply function S(t) by randomly drawing from the discrete
uniform distribution on {1, 2, 3, . . . , s}, where we vary s in our experiments to represent
different amounts of a good that is being produced. For each agent i, we sample its arrival
time ai from the discrete uniform distribution on {0, 1, 2, . . . , 23} and its departure time
from {ai, ai + 1, . . . , 23}. We sample its maximum consumption rate ri from {1, 2, 3, 4, 5},
and finally, we generate vi by first selecting a number of required units uniformly at ran-
dom from {1, 2, 3, . . . , 20}. Then, the first valuation vi,1 is sampled from an exponential
distribution with rate 1, and the remaining valuations are drawn uniformly at random from
the continuous interval [0, vi,1] (ordered appropriately to ensure non-increasing marginal
valuations).

7.2.2 Synthetic Results

In Figure 3, we examine the allocative efficiency of the mechanisms as we increase the num-
ber of agents competing for a limited supply of electricity. The figure shows the allocative
efficiency both of a setting with low supply (left), where s = 1, i.e., one unit is available per
time step, and of a setting with high supply (right), where s = 20, i.e., up to 20 units are
available per time step. We choose these two extreme settings to show the full spectrum of
potential supply scenarios (and focus on supply settings based on real data in Section 7.3).
Note that due to its run-time complexity, we plot IM only in the smaller setting with one
unit of supply. When supply is very high (s = 20), each agent is typically allocated a large

number of units, causing IM to require more frequent refinements of the bounds for the p
〈t〉
i

vectors and thus leading to a computational bottleneck. As the non-truthful Heuristic ap-
proach consistently achieves around 99% of the Optimal with full information when s = 1,
we do not plot it for readability, and we also use it as an approximation of the Optimal

when s = 20 (where Optimal also becomes computationally infeasible).

Several trends emerge in these results. First, when s = 1, the simple but not truthful
Greedy approach performs very well (around 99% of the Optimal). Next, we note that both
our truthful mechanisms, IM and OD also perform well, achieving around 95% and 96% of the
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Figure 3: Allocative efficiency in synthetic setting (low supply, with s = 1, on the left, and
high supply, with s = 20, on the right).

Optimal, respectively. This is slightly lower than Greedy, which indicates that about a 3–
4% loss in efficiency is incurred due to cancellations. The difference in performance between
IM and OD is as expected here, as IM can cancel more units (see Section 5); however, despite
the unfavourable worst-case performance of IM, it is surprising that the difference is not
significant in practice. Overall, the results are promising, indicating that our mechanisms
work well in these settings, because the specific conditions that cause cancellations (i.e.,
when the valuations of allocated units effectively cross over with the marginal payments)
do not occur frequently in practice.

The fixed price mechanism, Fixed, performs significantly worse than our proposed mech-
anisms, achieving only 81% – 83% of the Optimal. This is because, in order to remain
truthful, the mechanism sets a single fixed price that does not respond dynamically to
changes in supply and demand from time step to time step. This also explains why the
mechanism performs worst when there is some, but not much, competition, e.g., around
30 agents. Here, the fixed price starts to rise, to ensure agents with higher valuations are
allocated first, but there is still considerable variance in the valuations at each time step,
sometimes leaving high-value agents unallocated, while other times units are not allocated
at all. In contrast to this, both IM and OD always allocate all available units to the agents
with the highest valuations. Furthermore, it should be noted that Fixed, unlike IM and OD,
assumes a priori knowledge of the distributions from which agents are drawn. This may not
always be available in practice, which can further decrease its performance.

Finally, the Random mechanism performs worst of all, which is not surprising, as it uses
no information about the agents’ valuations at all. However, its poor performance demon-

211



Robu, Gerding, Stein, Parkes, Rogers & Jennings

0%

5%

10%

 0  50  100  150  200

Number of Agents

Proportion of Pre−Allocated Units Cancelled

OD IM

0%

5%

10%

 0  50  100  150  200

Number of Agents

 

OD

Figure 4: Proportion of initially allocated units cancelled (s = 1 on the left, and s = 20 on
the right).

strates clearly the potential perils of using poorly designed non-truthful mechanisms, where
strategically misreported valuations may have no relation to the agents’ actual valuations.

In the setting with more abundant supply, when s = 20, the same broad trends are
observed. The OD mechanism still achieves around 97% of the near-optimal Heuristic and
slightly less than Greedy, while the Fixed and Random perform significantly worse. However,
the gap in performance is smaller this time, as there is less competition and often there
are sufficient units to satisfy most of the agents. In such settings, the benefit of always
allocating to the agents with the highest valuations is generally lower. Note that while IM

was infeasible in these settings due to its high run-time complexity, OD took, on average,
less than 100ms to execute all 24 time steps in even the most complex settings with s = 20
and 200 agents.

Next, to further illustrate that actual cancellations by the IM and OD mechanisms are far
from the worst-case bounds established in Section 5, Figure 4 shows the average proportion
of pre-allocated units cancelled. This is generally low, ranging from 0% to 7%. As expected,
the OD mechanism cancels fewer units than the IM mechanism. Furthermore, there is a
general trend to cancel few units when competition is low (as there are usually sufficient

units to satisfy all agents, leading to mostly 0 valuations in the p
〈t〉
i vectors). Cancellations

then peak for medium levels of competition, after which they start to drop again slightly.

This peak can be explained by the large variations in the p
〈t〉
i vectors in these settings

and also because agents are generally allocated more units than in settings with more
competition (leading similarly to a higher variation in the valuations of an agent’s allocated
units).

In Figure 5, we next consider the potential benefits of misreporting when no cancellations
are used (as in the Greedy mechanism). We measure this by computing the utility of each
agent had on-departure cancellations been used and compare this to the actual utility gained
in the Greedy mechanism. This constitutes the best deviation a single agent could have
achieved with perfect hindsight of the actual pi prices. Here we plot the proportion of
cases where an agent can achieve any gain from misreporting (light blue), the conditional
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Figure 5: Potential gains when misreporting in the Greedy mechanism (s = 1 on the left,
and s = 20 on the right).

proportional increase in utility when a gain from misreporting exists (dark red), and the
product of the two, i.e., the overall average proportional increase in utility, including cases
where there is no gain (light red).

The results indicate that without cancellations, there are often cases where an agent can
benefit from misreporting — in up to 6–7% of all cases when s = 1 and up to 20% of cases
when s = 20. This provides a clear motivation for using incentive compatible mechanisms
in these settings. However, although individual gains can lead to an average increase in
utility of up to 15–20%, when considering the overall average utility increase (including
cases where agents do not benefit), this is only up to 1–2% and significantly less in many
specific settings. This offers some promise for settings where cancellations are infeasible,
for example because immediate cancellations are not computationally feasible in very large
settings, or because on-departure cancellations cannot practically be implemented. For
low expected gains of 1–2% or less, an agent may not wish to exert additional efforts to
strategise. Furthermore, these gains represents an upper bound of what can be achieved
with perfect foresight of the prices, which is likely to be unavailable in practice. We also
note that the expected gain from misreporting fluctuates significantly, depending on the
specific setting — similar to the cancellations, this fluctuation is caused by variations in the
pi vectors and also in the valuations of the allocated units.

To conclude this section, Figure 6 further explores the performance gap between our
proposed mechanisms and the benchmarks as supply is increased. Here, we fix the number
of agents at 50 and then vary the maximum number of available units of the good per
time step, s, from 1 to 70. Due to the complexity of this setting, we again omit Optimal
and IM from our analysis. It is clear here that the relative benefit the OD mechanism has
over the other truthful benchmarks decreases as supply is increased. This is not surprising,
as eventually all agents can be completely satisfied, even in a random allocation policy.
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Figure 6: Approximate allocative efficiency as the maximum supply per time step (s) is
increased.

However, there is still a significant benefit in using OD up to relatively high supply levels of
around s = 45, and it is never outperformed by the truthful benchmarks, while consistently
performing close to the near-optimal Heuristic (over 99% in some cases) and close to the
Greedy mechanism without cancellations. In terms of potential gains for deviations, similar
trends as discussed previously are observed and so we omit a detailed figure.

So far, we have concentrated on describing the general performance of our mechanisms
in a synthetic, easily reproducible setting. In the following, we apply it to data from a real
EV setting.

7.3 PHEV Setting

In this section, we use data from a real (pure) EV trial to simulate typical charging pat-
terns.8 Doing this allows us to verify that the trends discussed in the previous section
continue to hold in a realistic setting. Furthermore, basing our experiments on actual
PHEV characteristics enables us to quantify the actual utility of drivers in real terms (i.e.,
as a monetary gain or the fuel saved). We will also investigate whether the introduction
of faster charging speeds will lead to any benefits in the settings we consider. Such an
investigation is interesting, because fast chargers are already available for domestic settings
and allow vehicles to charge at twice the normal rate (or faster).9 However, their impact in
our settings is unclear, as they are still constrained by the overall supply of electricity.

In the following, we first present a principled approach for deriving an agent’s marginal
valuation vector and show that this approach satisfies the non-increasing marginal valuation
assumption (Section 7.3.1). We then describe the real-world data that we use for our

8. Note that, whereas the simulation is based on PHEVs, it uses real-world experimental data from pure
EVs. However, we believe it is reasonable to assume that the charging behaviour would be similar.

9. See, for example, http://www.pod-point.com/ or http://www.charging-solutions.com/.
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experiments (Section 7.3.2), followed by an outline of how this is used to sample PHEVs
(Section 7.3.3). Finally, we discuss our results (Section 7.3.4).

7.3.1 Deriving an Agent’s Marginal Valuation Vector

An important part of our overall model is a method for computing the marginal valuation
vector, vi, based on real data. To do so, we combine data about the sampled car’s actual
journey distances with a principled approach for calculating the expected economic benefit
of charging for PHEVs. In detail, we first derive a probability density function, p(m), from
the data, which describes the probability of the distance travelled to be m miles (described
in Sections 7.3.2 and 7.3.3). Given this distribution, the price of fuel (in £/litre), pp, the
internal combustion engine efficiency (in miles/litre), ep, and the efficiency of the electric
engine (in miles/kWh), ee, we can then calculate the expected utility of a certain amount
of charge (in kWh), ce, as follows:

E(u(ce)) =

∫ ∞

0

pp
ep
·m · p(m)dm−

∫ ∞

ce·ee

pp
ep
· (m− ce · ee) · p(m)dm, (9)

where the first term is the expected fuel cost without any charge, and the second term is
the expected cost with a battery charge of ce. Therefore, the utility function represents the
expected savings in terms of real money for a given battery charge (without taking the cost
of the charge into account). Given this, and a unit size (in kWh), se, it is straight-forward
to calculate the marginal valuation of the kth unit as follows:

vk = E(u(k · se))− E(u((k − 1) · se)) (10)

Recall that, in our model, we assume that valuations are marginally non-increasing. We
now show that, using the above approach, this assumption is automatically satisfied. To do
so, we need to show that Equation 9 is non-decreasing (i.e., the first derivative is positive)
and concave (i.e., the second derivative is negative). The first derivative is given by:

dE(u(ce))

dce
=

pp
ep
· ee ·

∫ ∞

ce·ee

p(m) (11)

The second derivative is given by:

d2E(u(ce))

dce2
= −

pp
ep
· ee

2 · p(ce · ee) (12)

Clearly, both conditions are satisfied, which means that the valuations are always positive
and marginally non-increasing. In what follows, we describe how we derive the experimental
settings, such as the supply function, the arrival and departure of agents, and the travel
distance probability distributions from a real-world dataset. We also provide examples of
the marginal valuation vectors using this data.

7.3.2 The CABLED Dataset

We base our experiments on data gathered by the CABLED (Coventry And Birmingham
Low Emissions Demonstration) project,10 which is the first large-scale endeavour in the

10. See http://cabled.org.uk/.
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Figure 7: Distributions of arrival and departure times for all 56 EVs in the CABLED dataset
(assigning equal weight to each EV).

UK to record and study the driving and charging behaviours of EV owners. As part of
this project, 110 EVs were loaned to the public and equipped with GPS and data loggers
to record comprehensive usage information, such as trip durations and distances, home
charging patterns and energy consumption.

From this data, we focus on the period from March to June 2011, for which we were
provided with information from 63 distinct vehicles, with a total of 13,273 journeys. For
each journey, this includes the times when the ignition was turned on and off again, the total
mileage (as derived from GPS readings that were taken every 60 seconds), as well as labels
for the starting and end location, when this was available (such as “home” or “work”).

The vehicles in the CABLED trial were charged at various locations — mostly at home,
but also at work. For the purpose of our experiments, we will assume that all charging
of the vehicles takes place at a single location. This is because our work focuses on co-
ordinating the charging of EVs within a specific neighbourhood and considering the effect
of multiple markets for electricity is beyond the scope of this work. When available, we
choose this charging location to be the one labeled “home” in the data.11 Given this, and
since we are only interested in the arrival and departure times at this charging location, as
well as the consumption patterns between visits to the charging location, we aggregate all
intermediate journeys between the departure from a charging location until the next return
to this location into a single journey.

Aggregating the data in this way and discarding vehicles without a clear charging loca-
tion results in 4,302 distinct journeys for 56 different EVs, covering a total distance travelled
of close to 72,500 miles. The overall distribution of all recorded arrival and departure times

11. Some vehicles in the dataset lack this, as they were used as shared fleet vehicles for an organisation —
in these cases, we use an appropriate alternative location label, where most of the charging took place,
or discard the vehicle when no suitable label can be identified.
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Figure 8: Example distributions of arrival and departure times for six EVs.
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Figure 9: Empirical distribution functions of distances travelled between successive visits
to home charging locations. Six example EVs and the combined summary of all
56 EVs, with equal weights assigned to all cars (in red), are shown.

at the charging location is shown in Figure 7.12 Here, almost all arrivals happen between
9am and 11pm, with a clear peak in the late afternoon and evening (4pm – 9pm). De-
partures take place throughout the day with a peak around 8am – 10am. To show how
individual driving patterns vary between the recorded cars, Figure 8 details the arrival and
departure time distributions for six individual EVs from the data set. Most of these reflect
the general trends shown in the previous figure, with arrivals generally occurring in the
evening and most departures in the morning. However, EVs 2 and 3 deviate from this
pattern. This is because those vehicles are shared fleet vehicles, which are collected and
returned to their main charging location throughout the day.

Figure 9 shows the distribution of the distances the vehicles travelled between visits to
their home charging location (red line), as well as the corresponding functions of the six
EVs from Figure 8 (interrupted lines).13 Overall, the average distance travelled is about 41
miles, while the median is around 9 miles (assigning uniform probabilities to each car type).
The six sample EVs here show significantly different typical travel distances, ranging from
an average of 4.19 miles (EV 1) to over 100 miles (EV 6).

In the following, we discuss how we use the data from the CABLED project to instantiate
our EV charging simulations.

12. As we will allocate electricity in hourly units, all arrival and departure times are here rounded up to the
next full hour.

13. Note that the distance of some journeys here exceeds the range of typical electric cars. This is because
they were charged at alternative locations during the CABLED trial, which we ignore in our experiments.
Since we focus on PHEVs in this work, in practice, the shortfall here would be made up by the combustion
engine.
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Figure 10: Number of 3 kWh units available for PHEV charging in two scenarios with
varying supply (high and low), based on a neighbourhood of 30 households.

7.3.3 Generating Experiments

For each experimental run, we simulate a small neighbourhood of 30 households with a
variable number of PHEVs over a 24-hour period, starting at 8:00 am in the morning until
8:00 am the following day. We assume that electricity is allocated in hourly time steps,
where each unit corresponds to 3 kWh (which is the approximate energy obtained through
a standard 13 A BS 1363 household socket in the UK when charging for an hour).

To obtain the supply function S(t), we first compute the overall average electricity
consumption throughout the neighbourhood (without PHEVs), based on the average con-
sumption of a single UK household during a weekday in high summer.14 Then, we assume
that overall electricity supply is limited by the capacity of the local transformer, such that
the electricity available for PHEV charging, S(t), is the difference between this capacity
(possibly including some additional safety margin) and the current overall consumption.
In more detail, we consider two possible scenarios: (1) a high supply scenario, where the
capacity limit is set such that it covers 150% of the peak consumption (at about 10:00 pm),
resulting in 615 kWh available for PHEV charging; and (2) a low supply scenario, where the
capacity limit is 80% of peak consumption, resulting in 99 kWh available for charging.15

The corresponding units available for PHEV charging in these two scenarios are shown in
Figure 10.

Furthermore, we use the specific empirical distribution of journey distances correspond-
ing to that car’s type as that car’s travel distance distribution, p(m) (for example, if the
sampled car is based on car 3, we use the dashed dark blue distribution function in Fig-
ure 9). We then use Equations 9 and 10 to derive the marginal valuations. In this case, as
the empirical distribution function is discrete, the integrals in Equation 9 are replaced by
sums over the data points. Furthermore, we will initially assume that ri is drawn uniformly

14. We used the data available at http://data.ukedc.rl.ac.uk/browse/edc/Electricity/LoadProfile/

data.
15. Local transformers are often undersized in this way since prior to PHEV use, they could cool during

overnight periods of low demand.
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at random from the discrete set ri ∈ {1, 2, 3, 4}, that is, cars can charge between one to four
units of electricity per hour (corresponding to 3 – 12 kWh).

To generate agents with a variety of marginal valuations, we note that ee and ep depend
on the specific make and type of the PHEV. To simulate this, we draw ee uniformly at
random from 2 – 4 miles/kWh and ep is drawn from 9 – 18 miles/litre. Next, we draw
the capacity of a car battery from 15 – 25 kWh. These are realistic values modelled on
the Chevrolet Volt, the first mass-produced PHEV. However, we include some variance to
account for other vehicle types. Throughout the experiments, we hold the price of petrol
constant at pp = £1.30 per litre.

Table 4 shows example valuations corresponding to the same six cars considered previ-
ously (fixing ep = 13.5 miles/litre, ee = 3 miles/kWh and the battery capacity at 20 kWh).
These highlight how longer expected journeys generally translate to higher marginal valua-
tions, but also how variable the valuations can be for an individual agent. As an example,
car 4 values the first 3 kWh of electricity at £0.67, but the seventh unit is only worth
£0.038, as it is far less likely to be used.

Car vi,1 vi,2 vi,3 vi,4 vi,5 vi,6 vi,7

1 0.340 0.136 0.001

2 0.304 0.178 0.162 0.114 0.033

3 0.481 0.157 0.073 0.062 0.035

4 0.670 0.453 0.333 0.312 0.263 0.134 0.038

5 0.727 0.620 0.582 0.540 0.498 0.445 0.445

6 0.839 0.797 0.767 0.711 0.630 0.555 0.540
...

...
...

...
...

...
...

...

Table 4: Example marginal valuations (in £).

To set up an experimental run, we then randomly generate a set of N PHEV agents,
where we vary N from 1 to 60 to simulate different levels of demand.16 For each agent i, we
first choose one of the 56 available cars uniformly at random from the CABLED dataset,
which we base that agent’s type on. Then, we randomly select one of the car’s recorded
journeys and use the time of day of the car’s arrival at the charging location as ai (at or after
8:00 am in the time window we consider). To ensure that the correlation between arrival
times and subsequent departure times in the dataset are preserved, we use the departure
time of the journey immediately following the sampled journey as di (or 10 hours after
arrival, whichever is sooner).

7.3.4 PHEV Results

First, we are interested in general trends of the mechanisms and whether these are similar to
the trends discussed in Section 7.2.2. To this end, Figure 11 shows the allocative efficiency
for all mechanisms in a setting with low supply (where it is feasible to run both the Optimal

16. Note that this is a realistic number of PHEVs within a neighbourhood served by a single distribution
transformer (Huang & Infield, 2010).
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Figure 11: Allocative efficiency in a small neighbourhood of 30 households.

and the IM mechanisms). This demonstrates the same broad trends as in our previous
synthetic setup — the OD and IMmechanisms clearly dominate the other truthful mechanism
(with IM achieving slightly worse results due to its higher cancellation rates). This, again,
is due to the ability of the mechanisms to always allocate to the agents with the highest
valuations.

However, although they still consistently achieve around 90% of the Optimal, the relative
performance of the OD and IM mechanisms here is slightly lower. This drop in performance,
also witnessed by the Heuristic and Greedy mechanism, is due to the more constrained
real-world settings, where electricity is only available in abundance at certain times (i.e.,
during the night), and where some agents are significantly less patient than others. In such
settings, it can often pay off to delay more patient agents, even if they have higher valuations,
in favour of less patient ones. Furthermore, because valuations are directly related to the
fuel costs saved by a unit of electricity, there is less variance in the real-world valuations,
causing the gap between the OD and IM mechanisms and the other truthful benchmarks to
narrow slightly. Turning to the potential gains of misreporting in this setting, Figure 12
again confirms the same patterns observed previously. The magnitude of the gains are
slightly higher here due to the different setting (reaching up to 3% in terms of overall gains
and up to 30% in the conditional case).

A key advantage of applying the mechanisms to real-world data is that it allows us to
determine the actual fuel savings agents could achieve in these settings. Thus, Figure 13
shows the average fuel savings of each agent under the various mechanisms, or, in other
words, the average amount each agent would have spent on fuel, had they not been allocated
any electricity. Initially, this is high (around £1.15), as there is little competition, but starts
dropping as more PHEV owners compete for the same amount of electricity. Of key interest
here is the horizontal separation between the different mechanisms. For a given fuel saving
per agent, our mechanism can sustain a significantly larger number of agents than the other
truthful mechanisms. For example, to save at least £0.40 per agent, Random can support
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Figure 12: Potential gains when misreporting in the Greedy mechanism in a small neigh-
bourhood of 30 households.
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Figure 13: Saving per agent per day in a small neighbourhood of 30 households.

up to 40 PHEV owners, while IM and OD achieve the same threshold for around 60 PHEV
owners (an approximately 50% improvement).

Finally, we consider in more detail how the presence of fast-charging vehicles affects
the overall neighbourhood, in terms of overall fuel savings, the occurrence of cancellations
and the utilities of individual agents. To this end, we now fix the number PHEVs at 60
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Figure 14: Social welfare when introducing fast-charging cars into a neighbourhood with
low supply (left) and high supply (right).
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Figure 15: Cancellations when introducing fast-charging cars into a neighbourhood with
low supply (left) and high supply (right).

and consider both the low and high demand settings shown in Figure 10. Due to their
computational cost, we again only test the Optimal and IM mechanisms in the setting with
low supply. To investigate the impact of fast-charging, we assume there are two agent types
— the first, normal, can charge a single unit of 3 kWh per time step, while the second,
fast, are equipped with fast chargers that can charge up to four such units per time step.
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Figure 16: Individual agent utility when introducing fast-charging cars into a neighbour-
hood with low supply (left) and high supply (right).

Throughout the experiments, we vary the number of fast-charging PHEVs (out of the total
60). Figure 14 first shows the resulting social welfare (i.e., overall fuel savings) for both
supply scenarios with low supply (left) and high supply (right). First, we note that the
trends for the two scenarios are different – when supply is low, the introduction of more
fast-charging vehicles has little effect on overall social welfare for most mechanisms, while
when supply is high, most mechanisms display increased savings. This happens because the
first scenario is highly constrained, with the low supply resulting in few occasions where an
agent could charge more than a single unit per time step. In contrast, when supply is high,
agents are often allocated multiple units, thus enabling impatient agents in particular to
achieve higher overall fuel savings.

In addition to this, it is interesting to note that our proposed mechanisms OD and IM

benefit in both settings (achieving additional fuel savings of almost two litres per day in
the low supply setting, and up to seven litres in the high supply setting). The reason
for this becomes evident when considering the proportion of units cancelled as more fast-
charging PHEVs are introduced — for both mechanisms and in both settings, the number
of units cancelled are consistently reduced by around 70–80% as all cars are replaced by
fast-charging PHEVs (shown in Figure 15). This occurs mainly because there are more

active marginal valuations at each time step to populate the p
〈t〉
i vectors, thus reducing the

number of cancellations. This also causes the gap between our mechanisms and the Greedy
mechanism to shrink, as fewer cancellations take place.

With respect to the utility of individual agents (including payments to the mechanism),
Figure 16 shows that agents in both settings always have an incentive to switch to fast-
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Figure 17: Potential gains when misreporting in the Greedy mechanism in a neighbourhood
with low supply (left) and high supply (right).

charging PHEVs (e.g., by purchasing a domestic fast charger), and this applies for both the
ODmechanism and the Greedymechanism. With low supply, the expected daily saving when
switching to a fast-charging PHEV is approximately £0.02–0.03, while with high supply,
this is around £0.20–0.25. In both cases, this benefit is the result of increasing available
supply per time step, as well as increasing the size of the price vector. Furthermore, even
if the entire population were to switch from slow charging PHEVs to fast-charging PHEVs,
individuals would, on average, achieve a higher utility. Note that the differences between the
utility in the OD and Greedy mechanisms are significantly smaller for fast-charging vehicles,
indicating that fast-charging agents can expect lower gains from misreporting when there
are no cancellations.

Figure 17 further investigates the individual gains from misreporting when there are no
cancellations. This shows an interesting trend — while initial gains are high (reaching over
8% in one setting), they decrease significantly as more fast-charging PHEVs are introduced
(to around 0.2% in the same setting). This is clearly due to the significant reduction in
cancellations that are witnessed in those settings. Furthermore, we note, by comparing OD

and Greedy in Figure 16, that the agents who can gain from misreporting tend to be only the
slow-charging ones. Overall, this is a promising result for settings where cancellations are
not feasible — by increasing the consumption rate of PHEVs (within realistic parameters
that are achievable by current technological trends), the scope and potential benefits from
strategising in a simple greedy mechanism can be reduced significantly. In this particular
example, when supply is high, a fast-charging PHEV can expect to gain less than £1 over
the course of an entire year by strategising optimally.
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8. Conclusions

The contributions in this paper are both theoretical and practical. On the theoretical
side, we propose a novel online, model-free mechanism for perishable goods where agents
have multi-unit demand and non-increasing marginal valuations. We show that, in order
to ensure dominant strategy incentive compatibility in such a setting, our mechanism oc-
casionally requires units to remain unallocated (we say their pre-allocation is cancelled),
even if there is demand for these units. We define two ways in which cancellation can be
performed: immediate, i.e., before the actual allocation, or on departure of the agent from
the market. We study the properties of these two variants, both in terms of their incentives
and allocative efficiency. Furthermore, we present algorithms for computing the payments
and allocations of both mechanisms, and analyse their computational tractability.

The on-departure cancellation mechanism has better computational tractability, and has
the same worst-case competitive bound, in terms of allocation efficiency, as the single-unit
demand case. However, this mechanism requires any cancellations to be done on departure
of an agent from the market which is not always feasible. A näıve approach to computing
payments in the mechanism with immediate cancellations requires time that is exponential
in the number of agents. To address this, we proposed a branch-and-bound algorithm that
allows payments to be computed in the immediate cancellation policy for many realistically
sized settings. Another potential problem with the immediate cancellation policy is that
there is no worst-case bound in terms of the efficiency of the allocation.

On the practical side, we show how our mechanism can be applied within the smart grid
to solve the important problem of integrating an increasing number of high-consumption
PHEVs into the electricity grid. In addition to a synthetic setting, we empirically evaluate
our mechanism using real-world data from a large-scale trial of electric vehicles in the UK.
We show that the proposed mechanism is highly robust, scalable (in particular, the on-
departure variant) and achieves better allocative efficiency than any fixed-price benchmark,
while only being slightly less efficient than an established cooperative scheduling heuristic.
Specifically, we demonstrate that our mechanism can sustain up to 50% more vehicles at the
same fuel cost than can be achieved using a simple randomised mechanism. Both variants
also consistently achieve an efficiency of around 90%, compared to a hypothetical optimal
offline solution. Given the theoretical results regarding their bounds, this is a surprising
result, suggesting that the specific conditions that cause cancellations do not often occur
in practice and that our allocation policies perform well in realistic settings. Furthermore,
we consider the introduction of fast chargers within a neighbourhood, and we show that
this leads to a significant increase in overall fuel savings and that it further reduces the
occurrence of cancellations. Finally, since on-departure cancellation requires discharging
the battery of the PHEV, we consider the the potential gains from misreporting if the units
are not cancelled (and assuming full knowledge of the types of other agents). From the
settings we considered, the average potential gain is between 1% and 8% overall, but could
go up to 30% on average when only considering those cases where misreporting is beneficial,
and could be even higher for individual cases. The gain becomes smaller as the number of
competing agents increases and, interestingly, fast-charging PHEVs have particularly low
incentives for misreporting.
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Taken together, our mechanisms represent a versatile range of tools, some of which may
be more suitable for specific scenarios than others. For example, in medium-sized settings
where allocations cannot be cancelled on departure, the IM mechanism may be the most
suitable (e.g., in the low-supply PHEV settings outlined in Section 7.3). In other settings
where on-departure cancellation is feasible, the OD mechanism leads to a higher average and
worst-case efficiency, and is also more scalable. Here, it is also important to emphasize that
on-departure cancellation only occurs when this is in the user’s best interest— thus, it is
entirely possible to achieve through an optional action. Finally, as we show in the results,
even when both IM and OD are infeasible, a mechanism without cancellations may still be
viable in some settings, and it may even be possible to significantly reduce the scope for
manipulation by adjusting some of the system parameters; e.g., by introducing fast chargers
in the PHEV setting or by increasing supply.

There are several directions for extending this work. In related work, Stein et al. (2012)
discuss an alternative model, which uses probabilistic information about future arrivals and
is designed to elicit truthful reporting from pure EVs, rather than PHEVs. That model,
however, requires knowledge about future supply and assumes single-minded bidders; i.e.,
the preferences are single-dimensional and so it is not possible to specify different values
for different amounts of charge received. In future work, we intend to explore mechanisms
that combine the benefits of both approaches.

In addition, we intend to test our mechanism using a real-world trial. As we have seen
(see Section 7.3), we can design an agent which elicits information regarding the intended use
(a probability distribution of the driving distance), and combines this with other information
such as the price of petrol and the efficiency of the vehicle, to derive the owner’s marginal
valuation vector. Such an agent can also participate in the mechanism on the owner’s behalf,
avoiding the need for the owner to understand the details of the mechanism. This is in the
spirit of the work on hidden market design (Seuken, Parkes, Horvitz, Jain, Czerwinski, &
Tan, 2012), where the aim is to design the user interface such that the user’s cognitive
load is reduced by hiding details of the underlying market. In the trial, we intend to
approach participants owning regular (non EV) cars, and install GPS trackers in these cars.
Participants will then be asked to predict their driving requirements, and their agent will
use this information, as well as learned historic driving patterns, to derive the user’s utility
function and participate in the mechanism on their behalf. Although the trial will be with
regular cars, the users will be able to see how much they would have hypothetically saved
by providing accurate (and truthful) information about their intended use.
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