143 research outputs found

    Terrain visibility optimization problems

    Get PDF
    Ankara : The Department of Industrial Engineering and the Institute of Engineering and Sciences of Bilkent University, 2001.Thesis (Master's) -- Bilkent University, 2001.Includes bibliographical references leaves 92-96The Art Gallery Problem is the problem of determining the number of observers necessary to cover an art gallery such that every point is seen by at least one observer. This problem is well known and has a linear time solution for the 2 dimensional case, but little is known about 3-D case. In this thesis, the dominance relationship between vertex guards and point guards is searched and found that a convex polyhedron can be constructed such that it can be covered by some number of point guards which is one third of the number of the vertex guards needed. A new algorithm which tests the visibility of two vertices is constructed for the discrete case. How to compute the visible region of a vertex is shown for the continuous case. Finally, several potential applications of geometric terrain visibility in geographic information systems and coverage problems related with visibility are presented.DĂĽger, Ä°brahimM.S

    On guarding real terrains: the terrain guarding and the blocking path problems

    Get PDF
    Locating a minimum number of guards on a terrain such that every point on the terrain is guarded by at least one of the guards is known as the Terrain Guarding Problem (TGP). In this paper, a realistic example of the terrain guarding problem is studied, involving the surveillance of a rugged geographical terrain by means of thermal cameras. A number of issues related to TGP are addressed with integer-programming models proposed to solve the problem. Also, a sensitivity analysis is carried out in which five fictitious terrains are created to see the effect of the resolution of the terrain, and of terrain characteristics, on coverage optimization and the required number of guards. Finally, a new problem, which is called the Blocking Path Problem (BPP), is introduced. BPP is about guarding a path on the terrain with a minimum number of guards such that the path blocks all possible infiltration routes. A discussion is provided about the relation of BPP to the Network Interdiction Problem (NIP), which has been studied extensively by the operations research community, and to the k-Barrier Coverage Problem, which has been studied under the Sensor Deployment Problem. BPP is solved via an integer-programming formulation based on a network paradigm

    Part decomposition of 3D surfaces

    Get PDF
    This dissertation describes a general algorithm that automatically decomposes realworld scenes and objects into visual parts. The input to the algorithm is a 3 D triangle mesh that approximates the surfaces of a scene or object. This geometric mesh completely specifies the shape of interest. The output of the algorithm is a set of boundary contours that dissect the mesh into parts where these parts agree with human perception. In this algorithm, shape alone defines the location of a bom1dary contour for a part. The algorithm leverages a human vision theory known as the minima rule that states that human visual perception tends to decompose shapes into parts along lines of negative curvature minima. Specifically, the minima rule governs the location of part boundaries, and as a result the algorithm is known as the Minima Rule Algorithm. Previous computer vision methods have attempted to implement this rule but have used pseudo measures of surface curvature. Thus, these prior methods are not true implementations of the rule. The Minima Rule Algorithm is a three step process that consists of curvature estimation, mesh segmentation, and quality evaluation. These steps have led to three novel algorithms known as Normal Vector Voting, Fast Marching Watersheds, and Part Saliency Metric, respectively. For each algorithm, this dissertation presents both the supporting theory and experimental results. The results demonstrate the effectiveness of the algorithm using both synthetic and real data and include comparisons with previous methods from the research literature. Finally, the dissertation concludes with a summary of the contributions to the state of the art

    Data fusion and type-2 fuzzy inference in contextual data stream monitoring

    Get PDF
    Data stream monitoring provides the basis for building intelligent context-aware applications over contextual data streams. A number of wireless sensors could be spread in a specific area and monitor contextual parameters for identifying phenomena e.g., fire or flood. A back-end system receives measurements and derives decisions for possible abnormalities related to negative effects. We propose a mechanism, which based on multivariate sensors data streams, provides real-time identification of phenomena. The proposed framework performs contextual information fusion over consensus theory for the efficient measurements aggregation while time-series prediction is adopted to result future insights on the aggregated values. The unanimous fused and predicted pieces of context are fed into a Type-2 fuzzy inference system to derive highly accurate identification of events. The Type-2 inference process offers reasoning capabilities under the uncertainty of the phenomena identification. We provide comprehensive experimental evaluation over real contextual data and report on the advantages and disadvantages of the proposed mechanism. Our mechanism is further compared with Type-1 fuzzy inference and other mechanisms to demonstrate its false alarms minimization capability

    Data Fusion and Type-2 Fuzzy Inference in Contextual Data Stream Monitoring

    Full text link

    The Coverage Problem in Video-Based Wireless Sensor Networks: A Survey

    Get PDF
    Wireless sensor networks typically consist of a great number of tiny low-cost electronic devices with limited sensing and computing capabilities which cooperatively communicate to collect some kind of information from an area of interest. When wireless nodes of such networks are equipped with a low-power camera, visual data can be retrieved, facilitating a new set of novel applications. The nature of video-based wireless sensor networks demands new algorithms and solutions, since traditional wireless sensor networks approaches are not feasible or even efficient for that specialized communication scenario. The coverage problem is a crucial issue of wireless sensor networks, requiring specific solutions when video-based sensors are employed. In this paper, it is surveyed the state of the art of this particular issue, regarding strategies, algorithms and general computational solutions. Open research areas are also discussed, envisaging promising investigation considering coverage in video-based wireless sensor networks

    Development of a GIS-based method for sensor network deployment and coverage optimization

    Get PDF
    Au cours des dernières années, les réseaux de capteurs ont été de plus en plus utilisés dans différents contextes d’application allant de la surveillance de l’environnement au suivi des objets en mouvement, au développement des villes intelligentes et aux systèmes de transport intelligent, etc. Un réseau de capteurs est généralement constitué de nombreux dispositifs sans fil déployés dans une région d'intérêt. Une question fondamentale dans un réseau de capteurs est l'optimisation de sa couverture spatiale. La complexité de l'environnement de détection avec la présence de divers obstacles empêche la couverture optimale de plusieurs zones. Par conséquent, la position du capteur affecte la façon dont une région est couverte ainsi que le coût de construction du réseau. Pour un déploiement efficace d'un réseau de capteurs, plusieurs algorithmes d'optimisation ont été développés et appliqués au cours des dernières années. La plupart de ces algorithmes reposent souvent sur des modèles de capteurs et de réseaux simplifiés. En outre, ils ne considèrent pas certaines informations spatiales de l'environnement comme les modèles numériques de terrain, les infrastructures construites humaines et la présence de divers obstacles dans le processus d'optimisation. L'objectif global de cette thèse est d'améliorer les processus de déploiement des capteurs en intégrant des informations et des connaissances géospatiales dans les algorithmes d'optimisation. Pour ce faire, trois objectifs spécifiques sont définis. Tout d'abord, un cadre conceptuel est développé pour l'intégration de l'information contextuelle dans les processus de déploiement des réseaux de capteurs. Ensuite, sur la base du cadre proposé, un algorithme d'optimisation sensible au contexte local est développé. L'approche élargie est un algorithme local générique pour le déploiement du capteur qui a la capacité de prendre en considération de l'information spatiale, temporelle et thématique dans différents contextes d'applications. Ensuite, l'analyse de l'évaluation de la précision et de la propagation d'erreurs est effectuée afin de déterminer l'impact de l'exactitude des informations contextuelles sur la méthode d'optimisation du réseau de capteurs proposée. Dans cette thèse, l'information contextuelle a été intégrée aux méthodes d'optimisation locales pour le déploiement de réseaux de capteurs. L'algorithme développé est basé sur le diagramme de Voronoï pour la modélisation et la représentation de la structure géométrique des réseaux de capteurs. Dans l'approche proposée, les capteurs change leur emplacement en fonction des informations contextuelles locales (l'environnement physique, les informations de réseau et les caractéristiques des capteurs) visant à améliorer la couverture du réseau. La méthode proposée est implémentée dans MATLAB et est testée avec plusieurs jeux de données obtenus à partir des bases de données spatiales de la ville de Québec. Les résultats obtenus à partir de différentes études de cas montrent l'efficacité de notre approche.In recent years, sensor networks have been increasingly used for different applications ranging from environmental monitoring, tracking of moving objects, development of smart cities and smart transportation system, etc. A sensor network usually consists of numerous wireless devices deployed in a region of interest. A fundamental issue in a sensor network is the optimization of its spatial coverage. The complexity of the sensing environment with the presence of diverse obstacles results in several uncovered areas. Consequently, sensor placement affects how well a region is covered by sensors as well as the cost for constructing the network. For efficient deployment of a sensor network, several optimization algorithms are developed and applied in recent years. Most of these algorithms often rely on oversimplified sensor and network models. In addition, they do not consider spatial environmental information such as terrain models, human built infrastructures, and the presence of diverse obstacles in the optimization process. The global objective of this thesis is to improve sensor deployment processes by integrating geospatial information and knowledge in optimization algorithms. To achieve this objective three specific objectives are defined. First, a conceptual framework is developed for the integration of contextual information in sensor network deployment processes. Then, a local context-aware optimization algorithm is developed based on the proposed framework. The extended approach is a generic local algorithm for sensor deployment, which accepts spatial, temporal, and thematic contextual information in different situations. Next, an accuracy assessment and error propagation analysis is conducted to determine the impact of the accuracy of contextual information on the proposed sensor network optimization method. In this thesis, the contextual information has been integrated in to the local optimization methods for sensor network deployment. The extended algorithm is developed based on point Voronoi diagram in order to represent geometrical structure of sensor networks. In the proposed approach sensors change their location based on local contextual information (physical environment, network information and sensor characteristics) aiming to enhance the network coverage. The proposed method is implemented in MATLAB and tested with several data sets obtained from Quebec City spatial database. Obtained results from different case studies show the effectiveness of our approach
    • …
    corecore