
University of Tennessee, Knoxville University of Tennessee, Knoxville

TRACE: Tennessee Research and Creative TRACE: Tennessee Research and Creative

Exchange Exchange

Doctoral Dissertations Graduate School

5-2003

Part decomposition of 3D surfaces Part decomposition of 3D surfaces

David L. Page

Follow this and additional works at: https://trace.tennessee.edu/utk_graddiss

Recommended Citation Recommended Citation
Page, David L., "Part decomposition of 3D surfaces. " PhD diss., University of Tennessee, 2003.
https://trace.tennessee.edu/utk_graddiss/5167

This Dissertation is brought to you for free and open access by the Graduate School at TRACE: Tennessee
Research and Creative Exchange. It has been accepted for inclusion in Doctoral Dissertations by an authorized
administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact
trace@utk.edu.

https://trace.tennessee.edu/
https://trace.tennessee.edu/
https://trace.tennessee.edu/utk_graddiss
https://trace.tennessee.edu/utk-grad
https://trace.tennessee.edu/utk_graddiss?utm_source=trace.tennessee.edu%2Futk_graddiss%2F5167&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:trace@utk.edu

To the Graduate Council:

I am submitting herewith a dissertation written by David L. Page entitled "Part decomposition of

3D surfaces." I have examined the final electronic copy of this dissertation for form and content

and recommend that it be accepted in partial fulfillment of the requirements for the degree of

Doctor of Philosophy, with a major in Electrical Engineering.

Mongi A. Abidi, Major Professor

We have read this dissertation and recommend its acceptance:

Accepted for the Council:

Carolyn R. Hodges

Vice Provost and Dean of the Graduate School

(Original signatures are on file with official student records.)

To the Graduate Council:
I am submitting herewith a dissertation written by David Lon Page entitled "Part Decom­
position of 3D Surfaces" . I have examined the final paper copy of this dissertation for form
and content and recommend that it be accepted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy, with a major in Electrical Engineering.

We have read this dissertation

Mongi A. Abidi, Major Professor

Vice Provost and Dea
Graduate Studies

Accept
�

fo, the Co�

�

Part Decomposition of 3D Surfaces

A Dissertation

Presented for the

Doctor of Philosophy

Degree

The University of Tennessee, Knoxville

David Lon Page

May 2003

Acknowledginents

"IF I HAVE SEEN FURTHER IT IS BY STANDING ON THE SHOULDER S OF

GIANTS" -SIR ISAAC NEWTON, 167 6

Although I do not pretend to have seen as far as Newton-if I have even seen far
at all, I do believe his quote is very apt in that many giants, not necessarily of the
scientific variety, have afforded me the opportunity to pursue a graduate degree. To
each of them, I am forever grateful.

First and foremost, I am deeply indebted to my family, especially my mother, Shirley
Page, and my brother, Dan Page. Where I am today is in no small part due to their
love and support. I also owe a special thanks to my Uncle Momo, Lon Boyd, who has
always encouraged me to "get that education."

I additionally would like to thank my advisor, Dr. Mongi Abidi. His willingness to
support my work and his guidance throughout my studies has allowed me to develop
my skills as a researcher within a supportive team environment. I thank him for that
opportunity. Also, I would like to thank, Dr. Paul Crilly. His advice and counsel over
the years have been of equal importance. To Dr. Andreas Koschan, I say thank you as
well for the many technical-and sometimes not-so technical-discussions with regard
to this research and life in general. I would further like to thank the other members of
my committee: Dr. Daniel B. Koch, Dr. Conrad Plaut, and Dr. Hairong Qi. I greatly
appreciate their time and input to this dissertation.

Within the IRIS Lab, I owe many thanks to both students and staff. Specially, I
thank Vicki Courtney-Smith for her jovial smile and helpful nature that have always
greeted any problem or deadline. Throughout my work, Justin Acuff and Tak Motoyama
have routinely worked miracles, and for that they have my heart-felt admiration. To my
fellow graduate students, I express my sincerest gratitude for the many conversations
that have had a tremendous impact on my research and myself as a person. Faysal,
Sun, Yan, Brad, Bernard, and Michael thank you so much.

Finally, I must express my appreciation to the many friends outside of my studies
who have helped to relieve the sometimes stressful solitude of graduate school. In
particular, Clint and Andrew have earned a special place in Heaven for putting up with
me as a roommate. Your friendships through both good times and hard times have
been a source of strength. To Molly and Marci, I can not say thank you enough for
the many wonderful adventures as we followed the Vols from Pasadena to Timbuktu. I

iii

am profoundly grateful for your friendships as well. I also wish to thank the Ultimate
Frisbee folks whose comaraderie each Wednesday evening has been invaluable. Last but
not least, I would like to thank Lisa whose encouragement in the final days of this work
have truly inspired me and have opened my eyes to the world beyond graduate school.

iv

Abstract

This dissertation describes a general algorithm that automatically decomposes real­
world scenes and objects into visual parts. The input to the algorithm is a 3 D triangle
mesh that approximates the surfaces of a scene or object. This geometric mesh com­
pletely specifies the shape of interest. The output of the algorithm is a set of boundary
contours that dissect the mesh into parts where these parts agree with human percep­
tion.

In this algorithm, shape alone defines the location of a bom1dary contour for a
part. The algorithm leverages a human vision theory known as the minima rule that
states that human visual perception tends to decompose shapes into parts along lines
of negative curvature minima. Specifically, the minima rule governs the location of part
boundaries, and as a result the algorithm is known as the Minima Rule Algorithm.
Previous computer vision methods have attempted to implement this rule but have
used pseudo measures of surface curvature. Thus, these prior methods are not true
implementations of the rule.

The Minima Rule Algorithm is a three step process that consists of curvature es­
timation, mesh segmentation, and quality evaluation. These steps have led to three
novel algorithms known as Normal Vector Voting, Fast Marching Watersheds, and Part
Saliency Metric, respectively. For each algorithm, this dissertation presents both the
supporting theory and experimental results. The results demonstrate the effectiveness
of the algorithm using both synthetic and real data and include comparisons with pre­
vious methods from the research literature. Finally, the dissertation concludes with a
summary of the contributions to the state of the art.

V

Contents

1 Introduction

1. 1 Applications .
1.2 Motivation
1. 3 The Minima Rule.
1 .4 State of the Art . .
1.5 Contributions . . .
1. 6 Document Organization

2 Literature Review

2. 1 Part Decomposition
2. 1. 1 Gestalt Grouping . .
2. 1.2 Definition of a Part
2. 1. 3 Primitives- Based Methods .
2. 1. 4 Boundary-Based Methods

2.2 Curvature Estimation
2.2. 1 Differential Geometry . .
2.2.2 Surface Fitting Methods .
2.2. 3 Direct Curvature Methods .
2.2.4 Curve Fitting Methods .

2. 3 Mesh Segmentation
2. 3. 1 Convex Polyhedra
2. 3 . 2 Range Images .
2. 3. 3 Surface Meshes . .

2. 4 Shape Measure
2. 4. 1 Shape Complexity
2. 4.2 Part Salience

2.5 Swnmary
3 Part Decomposition: Minima Rule Algorithm

3. 1 Mug Example
3. 2 Input and Output
3. 3 Algorithm Overview

vii

1
2
4
6
7

8
10

11
1 1
1 1
14
14
16
18
19

2 1
22
22
24
24
24

25
29

30
3 1
32
35
35
36
39

4 Curvature Estimation: Normal Vector Voting
4.1 Discrete Estimation

4.2 Algorithm Overview

4.3 Geodesic Neighborhood

4.4 Vote Collection

4.4.1 Casting Votes ..

4.4.2 Collecting Votes

4.4.3 Weighting Votes

4.5 Orientation Classification

4.6 Curvature Estimation

4. 7 Remarks

5 Mesh Segmentation: Fast Marching Watersheds
5.1 Watershed Analogy.

5.2 Algorithm Overview

5.3 Marker Set

5.3.1 Threshold Segmentation

5.3.2 Morphological Operations

5.4 Connected Components

5.5 Watershed Algorithm

5.6 Directional Height

5.7 Remarks

6 Shape Measure: Part Saliency Metric
6.1 Algorithm Overview

6.2 Part Adjacency Graph

6.2.1 Boundary Identification

6.2.2 Color Label Selection

6.3 Saliency Metric
6.3.1 Part Size

6.3.2 Part Protrusion . . .

6.3.3 Boundary Strength .

6.4 Filter and Merge Algorithm
6.5 Remarks

7 Experimental Results
7.1 Minima Rule Algorithm

7.2 Normal Vector Voting

7.2.1 Qualitative Analysis

7.2.2 Quantitative Comparison

7.2.3 Timing Performance ..

7.3 Fast Marching Watersheds ...

7.3.1 Qualitative Comparison

viii

41
4 3

4 3

4 4

48

50

50

5 1

5 2

56

57

61
6 2

6 5

66

68

69

7 2

7 3

77

78

81
84

85

86

89

90

92
95

97

98

99

101
101

103

12 0

12 3

13 2

13 5

136

. '

7.3.2 Quantitative Analysis
7 .3.3 Timing Performance

7.4 Part Saliency Metric
7.4. 1 Qualitative Analysis .
7.4.2 Quantitative Comparison
7.4 .3 Timing Performance

8 Conclusions
8. 1 Summary of Contributions
8.2 Directions for Future Research

8.2.1 Automatic Parameter Selection
8.2.2 Object Recognition . .
8.2.3 Complexity Measures
8.2.4 Exponential Map
8.2.5 Discrete Fast Marching Watersheds.
8.2.6 Visualization Applications .

8.3 Discussion with Closing Remarks
Bibliography
Vita

ix

14 3
14 7
149
149
159
164

167

168
168
168
169
1 70
1 70
17 1
1 72
1 72

174

191

.

List of Tables

4.1 Extrema values for classification constants. 54

4.2 Parameters for Normal Vector Voting Algorithm. 59

5.1 Two definitions of different foregrounds for a single threshold t. 68

5.2 Parameters for Fast Marching Watershed Algorithm. 79

6.1 Parameters for Part Saliency Metric 100

7.1 List of coding libraries used in software development 102

7.2 List of triangle meshes used in results 104

7.3 List of range scanners used for in-house mesh reconstructions 105

7.4 List of sources for triangles meshes used in results. . . 105

7.5 Part labels for distributor cap model 158

7.6 Mesh characteristics for timing performance examples 166

xi

List of Figures

1. 1 Part decomposition example for a coffee mug
1.2 Scene modeling of an industrial scene
1 . 3 Reverse engineering example of a manufactured component
1 .4 Reconstruction of a scene from multiple range images
2.1 Visual parts of a mug
2.2 Gestalt principles of organization
2. 3 Palmer line drawings
2.4 Categories of part decomposition algorithms.
2.5 Rubin faces and vase sketch
2.6 Curvature for a surface
2 . 7 Example of range image segmentation
2 .8 Flooding variant of the watershed algorithm .
2.9 Bobsled variant of watershed algorithm
2.10 Salience of parts
3.1 Sequence of photographs of actual mug .
3 .2 Sequence of renderings for scanned mug
3 . 3 Example input to Minima Rule Algorithm .
3.4 Block diagram of data generation
3.5 Example output for Minima Rule Algorithm .
3.6 Block diagram of proposed algorithm .
4.1 Normal Vector Voting illustration . . .
4.2 Block diagram of Normal Vector Voting
4 . 3 Normal Vector Voting Algorithm . .
4.4 Geodesic neighborhood examples . .
4.5 Geodesic versus ring neighborhoods.
4 .6 Normal Vector Voting geometry . . .
4. 7 Possible variations of eigen ellipsoid
4.8 Crease examples with different dihedral angles
5.1 Hill terrain along Tennessee River

xiii

2
5

5
6

12
1 3
1 3
14
17
19
25
28
29
32
36

37
38
38
39
40
44
45
46
47

49
51
53
55

63

5.2 Simple example of watershed flooding analogy .
5.3 Block diagram of Fast Marching Watersheds.
5.4 Simple example of Fast Marching Watersheds
5.5 Various mug threshold results for marker sets
5.6 Mug morphology operations on marker sets
5. 7 Connected Components Algorithm .
5 .8 Fast Marching Watershed Algorithm
5.9 Extend Boundary Procedure
5.10 Close-up view of base of mug handle
5.11 Comparison of two flooding methods

6.1 Part salience progression for mug example (I)
6.2 Part salience progression for mug example (II)
6.3 Block diagram of merge algorithm
6.4 Boundary Traversal Algorithm
6 .5 Boundary singularity example . . .
6.6 Halfedge data structure
6.7 Illustration of four-color problem for segmentation
6.8 Block diagram of the Part Saliency Metric .
6.9 Salience variation with part size
6.10 Ambiguity of part cuts
6.11 Salience variation with part protrusion . . .
6.12 Salience variation with part boundary strength

7 .1 Screen shot of user interface window
7.2 Hand crank object decomposition ..
7.3 Water neck object decomposition ..
7.4 Distributor cap object decomposition .
7.5 Disc brake object decomposition ...
7.6 Miscellaneous objects decomposition .
7.7 Industrial scene with cone and barrel decomposition
7.8 Office scene (I) decomposition .
7.9 Office scene (II) decomposition
7.10 Small bore pin decomposition
7.11 Toilet seat decomposition ...
7.12 Watering can decomposition ..
7.13 Three-legged chair decomposition .
7.14 Human left hand decomposition.
7.15 Oil pump decomposition .. .
7.16 Teapot decomposition
7.17 Human femur decomposition .
7.18 Machined object decomposition
7.19 Human molar tooth decomposition

xiv

6 4
6 6
6 7
6 9
7 1
7 4
7 4
7 5
7 5
7 6

82
83
85
87
88
88
91
93
93
94

96
98

102
106
107
108
109
110
111
111
112
113
113
114

114

115

115

116
116
117

117

7.20 Human canine tooth decomposition. 118
7.21 Industrial fan decomposition 118
7.22 Shoe sole decomposition 119
7.2 3 Michelangelo's David decomposition 119
7.24 Fandisk crease detection 121
7.25 Torus normal estimation 122
7.26 Perceptron range scanner example . 124
7.27 Curvature estimation for the fandisk model 125
7.28 Curvature estimation for the torus 126
7.29 Curvature at the edge of a fandisk 127
7.30 Synthetic surfaces with noise 129
7.31 Algorithm comparison with synthetic data with noise. 1 30
7.32 Noise comparison with synthetic data . . 1 31
7.3 3 IVP Ranger System 1 32
7.34 IVP Ranger scans of ground truth objects . . 1 3 3
7.35 Algorithm comparison with IVP Ranger data 1 34
7. 36 Performance timing. 1 35
7.37 Simple example of Fast Marching Watersheds 1 37
7.38 Comparison of segmentation algorithms for the cylinder scene . 1 38
7.39 Comparison of segmentation algorithms for the box scene . . . 1 39
7.40 Comparison of segmentation algorithms for automotive disc brake 141
7.41 Segmentation of L-Shaped hammer . 142
7.42 Segmentation of L shape 142
7.4 3 Possible part cuts for L shape 142
7.44 Potential drawback of our algorithm with chair example 144
7.45 Negative curvature plots 145
7.46 Threshold plots for variations in a 146
7.47 Effects of structuring element size for morphology processing 148
7.48 Timing performance for the mug 149
7.49 Bar graphs of part saliency metric for mug (I) . 150
7.50 Bar graphs of part saliency metric for mug (II) 151
7.51 Segmentation of distributor cap 153
7.52 Part adjacency graph for distributor cap model 154
7.53 Segmentation of distributor cap with four-color labeling 155
7.54 Bar graph for part saliency of distributor cap . . 156
7.55 Trimming bad parts from distributor cap model . 157
7.56 View a screw part for distributor cap . . . 158
7.57 Side view of distributor cap 159
7.58 Synthetic objects for saliency comparison 161
7.59 Segmentation of synthetic objects for saliency comparison 162
7.60 Comparison of part area for synthetic objects 16 3
7.61 Comparison of watershed depth for synthetic objects . . . 164

xv

7.62 Comparison of part salience for synthetic objects ...
7.63 Timing performance for various triangle mesh objects

8.1 Mug example decomposition
8.2 Examples of part boundaries that are not smooth . . .
8.3 Application of part decomposition to aid mesh simplification

xvi

165
166

167
17 1
17 3

Chapter 1

Introduction

Let us begin with a brief exercise. Take a few minutes and glance around the room.
Note objects in the room, perhaps items on your desk. Can you distinguish specific
objects? Can you visually separate them from their background? For instance can you
isolate the coffee mug on your desk from the clutter of books and papers? The answer
is--of course--yes, you can and you do so with ease.

This seemingly simple task--deceptively simple--actually requires the coordination
of millions of receptors within your eyes and billions of neurons in your brain. Photons
of light bounce throughout the room and into your eyes striking each retina. Then
rods and cones in the retina translate this light into neural signals and transmit them
along the optic nerve. The optic nerve splashes this avalanche of input across neurons
at the back of the brain-the visual cortex. These neurons fire sending ripples, like
stones tossed into a pond, out to other areas of the brain and energize millions of
neural networks. More neurons now fire igniting their own networks and again sparking
new ripples. The mind orchestrates this rippling activity into a coherent thought that
elevates to the conscious plane. The little voice in your mind replies, "There's my mug!"
The graceful elegance of this complex process is truly a marvelous wonder-a wonder
that allows you to isolate and identify the mug on your desk. Yes, all that for a mug.

Now, imagine that you are a computer vision engineer. How can you get a computer
to do the same thing--separate the mug from the clutter of books and papers? How can
you get a computer to decompose, or segment, a complex scene into simpler parts? In
a very focused context, an answer to this question is the research goal of this disserta­
tion. In particular, we have developed a novel part decomposition, or part segmentation,

algorithm for surfaces. For input, instead of neural signals from a human eye, we will
use triangle meshes generated from laser range scanners. For processing, instead of the
neural networks of your mind, we will use segmentation algorithms implemented in a
computer. Hopefully, our proposed algorithms mimic your visual perception, at least to
a certain extent.

As a simple example of part decomposition, again think of the mug on your desk.
Suppose the mug is similar to the one in Fig. 1 . 1 (a) and that we can somehow generate

1

(a) (b) (c)

Figure 1.1: Part decomposition example for a coffee mug. (a) Photograph of the original
mug. (b) A surface mesh model of the mug reconstructed from range images. (c) Part
decomposition of the mug into three parts: a cup, a handle, and a base.

a computer model of the mug as shown in Fig. l.l(b). If your perception is like most
viewers, then you decompose the mug into three or four different smaller parts. Most
viewers would agree that the mug consists of a bowl-shaped cup, a handle protruding
from the cup, and a base at the cup bottom. The color labels in Fig. 1.l(c) illustrate
this segmentation. You have mentally decomposed the mug into three simpler parts.
By extension, when we view more complex scenes such as the clutter on a desk top, we
also decompose the scene into simpler parts. This example illustrates the objective of
our research. In fact, our algorithm generated the segmentation shown.

This dissertation presents the details of our part decomposition algorithm. The
remainder of this first chapter outlines the applications for our algorithm in Sec. 1. 1
and the motivation for this research in Sec. 1.2. In Sec. 1.3, we then present the minima
rule, which is the human vision theory that serves as the foundation of our research.
To implement the minima rule, we briefly review the state of the art in Sec. 1.4. Next,
we emphasize the contributions of this dissertation in Sec. 1.5 , and we conclude with a
block diagram of our system and the document organization in Sec. 1.6 .

1.1 Applications

Segmentation, whose roots date back to the dawn of digital image processing, is an
age-old problem in computer vision. As Marr (Marr, 1982) has stated, the goal of
segmentation is to partition a data set into groups that are more meaningful. The
difficulty is that this partitioning is not well posed and the term "meaningful" is highly
subjective. Consequently, useful solutions are often ad hoc in origin. Marr points out
that segmentation is a vague all-encompassing notion that typically digresses into a
philosophical debate. In the context of image processing, he further argues that most
images are too complex and often do not contain enough information for segmentation
to succeed. Despite Marr's objections, segmentation has become a fundamental and

2

ubiquitous topic in computer vision and in image processing, specifically (Gonzalez and
Woods, 1993). The lesson to be learned from Marr however is that useful segmentation
requires a precise formulation-or better yet, a formulation with strong philosophical
support-of the segmentation goals. Such a formulation requires specific knowledge of
the application at hand. To this end, we identify our application domain in the following
paragraphs and in so doing assert our motivation for research. Additionally, as we will
see, we are not interested in the traditional image segmentation problem but in the more
general surface segmentation problem where we approximate a surface with a triangle
mesh representation.

What is our application and why does it require segmentation? Our two applications
are scene modeling and reverse engineering.

Scene modeling is the process of constructing a 3 D computer model of a real-world
scene where such models are useful in flight or driving simulators, architectural walk­
throughs, and other virtual reality applications (Burdea and Coiffet, 1994). Research
examples include urban landscapes (Frueh and Zakhor, 2001 ; Frueh and Zakhor, 2002),
in-door environments (Yu et al., 2001), architectural structures (Faber and Fisher, 2002),
industrial facilities (Johnson et al., 1995; Hebert et al., 1995), and precious art stat­
ues (Bernardini et al., 1999; Levoy et al., 2000). To illustrate, imagine a military
simulator where a tank commander is training for a mission in an urban environment
such as Mogadishu, Somalia. We could populate this simulation with cartoon-like mod­
els of buildings and roadways designed by a computer artist. To achieve convincing
realism, an artist would methodically build-up the simulation from basic shapes such
as boxes and cylinders. On the other hand, we could use the scene modeling techniques
in (Frueh and Zakhor, 2001 ; Frueh and Zakhor, 2002) to rapidly model the streets of a
specific city by driving through that city. Instead of an artist recreating a city-scape, we
reconstruct it using a scene modeling system mounted on the roof of a van. As another
example, imagine an art student in Knoxville who wishes to study the chisel patterns on
Michelangelo's statues in Italy. Although she could travel to Europe, statue modeling
such as (Levoy et al., 2000) offers a much more convenient alternative. She could simply
download a 3 D model of Michelangelo's David and use a virtual reality viewer to study
the sculpture without' ever leaving Knoxville. Creating computer models of buildings,
rooms, and statues is the goal of scene modeling.

With reverse engineering instead of visually pleasing models, the objective is ac­
curate as-built models of existing objects. Although reverse engineering is actually a
broad field that encompasses many concepts, our specific definition is the ability to
create a computer-aided design (CAD) model of a real-world part (Bernardini et al.,

1999; Motavalli et al., 1998). By contrast, forward engineering is to create a real-world
part from a CAD model. The automation of forward engineering, or computer-aided
manufacturing (CAM), has significantly impacted recent technologies in system design.
CAM has also introduced rapid prototyping into the design loop and facilitated changes
on demand after the deployment of a design (Yan and Gu, 1996). The automation of
reverse engineering, or computer-aided reverse engineering (CARE), promises to impact

3

..

the design process in a similar fashion. CARE allows electronic dissemination of as-built
parts for comparison of original designs with manufactured results. Additionally, CARE
allows construction of CAD models of existing parts when such models no longer exist
as when parts are out of production (Thompson et al. , 1999). A military example of
the potential for CARE is the Mobile Parts Hospital initiative within the U. S. Army
Tank-automotive and Armament Command. The vision for the parts hospital is an
emergency manufacturing unit for frontline deployment. Although the hospital should
ideally have access to a CAD database, CAD models for a part may not necessarily
be available such as for . vehicles that have undocumented field modifications. A CARE
scanner, however, allows even an untrained-in terms of engineering practices-soldier
to create high quality CAD models. Additionally, a CARE scanner is a valuable tool
for documenting part failures and thus creating an electronic history of the life cycle for
a part.

1 . 2 Motivation

Although scene modeling and reverse engineering may seem dissimilar, they in fact
share the common thread of surf ace reconstruction. Methods of surface reconstruc­
tion include (Hoppe et al ., 1992 ; Hoppe et al., 1994; Edelsbrunner and Miicke, 1994;
Delingette, 1994a; Curless and Levoy, 1996 ; Whitaker, 1996 ; Curless, 1997; Pulli et al.,
1997; Amenta et al., 1998; Mencl and Muller, 1998; Bernardini et al., 1999; Gopi et al.,
2 000). Surface reconstruction is a two step process where by we first acquire the geome­
try of a scene or an object and then reconstruct its topology. The geometry acquisition
is a digitization process whereby a sensor such as a coordinate measuring machine, a
touch probe, a stereo pair, or perhaps a range scanner measures the location of points
on the surfaces in a scene or on an object. Then, topology reconstruction finds the
interconnection of these points. We refer to the collection of points as a point cloud and
their interconnection as a surface mesh, or simply a mesh. Consider Figs. 1.2 and 1.3
that show examples of the process.

Notice that the meshes in Figs. 1.2(c) and 1.3(c) are single contiguous surfaces.
The meshes represent each connected object, that is to say objects that are physically
touching each other, as one ubiquitous surface. By way of analogy, we describe this
representation as a blanket model where Fig. 1.4 shows a simple illustration. Recalling
our visual exercise, grab a blanket from your bedroom and lay it over your desk. The
blanket will take the form of the desk, the books, the papers, and the mug.* Now,
suppose we can apply an epoxy to the blanket so that it hardens and thereby creates
our blanket model. We can pick up the stiffened blanket and carry it with us. We
can show it to other people . The problem is that if someone is only interested in the

• In the case of a mug, our blanket analogy does breakdown, somewhat. Consider that the blanket
can not change genus, without tearing it, to conform to the topology of the mug handle. So, we must
tear the blanket and stitch it appropriately to truly model the mug. This point may seem minor but a
reconstruction algorithm that accurately recovers topology is crucial and is an active area of research.

4

(a) (b) (c)

Figure 1.2 : Scene modeling of an industrial scene. (a) The original scene with a barrel,
cone, and blocks. (b) A point cloud derived from measurements of the scene. (c) A
mesh reconstructed from the point cloud data. Notice that the mesh models the entire
scene as a single connected surface--a blanket model.

(a) (b) (c)

Figure 1.3: Reverse engineering example of a manufactured component. (a) Render­
ing of reconstructed part. (b) A point cloud derived from measurements of the part.
(c) Underlying triangular mesh showing the blanket model.

5

(a) (b)

Figure 1 .4: Reconstruction of a scene from multiple range images. These illustrations
depict the blanket model analogy.

mug we have to give them the whole blanket . We really do not know which section of
the blanket might contain the mug. Would it not be better if we could segment the
blanket into smaller blankets-ones that are more manageable and more meaningful?
We need a mesh segmentation algorithm. We need to decompose the blanket into smaller
meaningful parts.

1 .3 The Minima Rule

The term meaningful has cropped up again, echoing back to Marr. Although we know
our applications are scene modeling and reverse engineering, we still need to identify
what type of segmentation we expect . We need to counter Marr's objections and identify
a theory to govern our segmentation. For scene modeling, we expect a segmentation
that benefits real-time visualization of the scenes. We need to chop up the blanket
so that the pieces are amenable to visualization. For reverse engineering, we expect a
segmentation that leads to a more compact description of the object and that possibly
facilitates the most grandiose of all computer vision tasks-the illusive task of object
recognition. We look to the world of cognitive psychology for help. Researchers in
human perception have identified a theory, known as the minima rule (Hoffman and
Richards, 1984) , that provides a precise formulation for segmentation. This rule defines
meaningful in terms of human visual perception. If we segment our blanket mesh using
a theory of human perception, the subsequent submeshes should naturally meet our
needs for both applications. This point will become clear later. The marriage of the
minima rule to scene modeling and reverse engineering is the primary impetus for our
research. Is this marriage out in left field, or is it an important research pursuit? In
the next section, we look at the state of the art in mesh segmentation to address this
concern and to highlight the hole that our research fills.

6

1 .4 State of the Art

Although image segmentation is a well known and thoroughly researched topic in com­
puter vision, mesh segmentation has only recently become of interest where Mangan
and Whitaker (Mangan and Whitaker, 1999) are perhaps the first to coin the term
itself. In this section, we identify the current research on this topic and highlight a few
shortcomings.

From a review of the literature, we have identified five papers that represent the
state of the art. The first three are Vincent and Soille (Vincent and Soille, 1991) , Wu
and Levine (Wu and Levine, 1997) and Mangan and Whitaker (Mangan and Whitaker,
1999) , whose methods directly address the mesh segmentation problem. The other two
are Tang and Medioni (Tang and Medioni, 1999) and Taubin (Taubin, 1995) , whose
methods address curvature estimation. As we will see, curvature estimation is an essen­
tial component of the mesh segmentation algorithm that we propose.

Wu and Levine (Wu and Levine, 1997) are perhaps the first to directly attack the
mesh segmentation problem as we have posed it. Their method uses electrical charge
distribution equations to simulate the charge density on a mesh, and they identify
segmentation boundaries as regions with the lowest charge density. This physics-based
approach may seem unusual but their results are quite nice good for certain data sets.
The strength of their algorithm is its robustness to measurement noise. The drawbacks
however are that the method does not scale well to large data sets and that simulated
charge distribution has limitations as a definition for segmentation. Wu and Levine
suggest that their approach follows the minima rule--just as we propose to do-but in
practice charge distribution does not directly relate to the rule. Additionally, the search
algorithm they have implemented has certain limitations as well. Their algorithm tends
to become trapped in local minima.

Mangan and Whitaker (Mangan and Whitaker, 1999) offer a different approach. The
major contribution of their work is that they implement the well-known watershed algo­
rithm from image processing on a mesh data structure. They reformulate the watershed
algorithm from morphological image operations to gradient-following mesh operations.
The capabilities of the watershed algorithm is a tremendous strength of their algorithm.
The basis for their segmentation is the local curvature on the mesh. In particular, con­
tours of high curvature bound areas of low curvature. They argue with heuristics that
these boundaries offer a meaningful segmentation, but Marr's warnings about meaning­
ful come to mind. From our literature review , we argue that high curvature boundaries
indeed do not form a meaningful segmentation-at least for our applications-and we
suggest that this approach is one drawback to their implementation.

Further, we suggest two other drawbacks. The first is the curvature estimation that
governs their segmentation. The estimate they use is not robust to noise and in most
cases leads to significant over segmentation. Also, since their method estimates Gaus­
sian curvature , it is not useful for the minima rule, which requires· estimation of the
principal curvatures. The second drawback is their implementation . of the watershed

7

algorithm. Although Mangan and Whitaker demonstrate nice results, they have imple­
mented a "bobsledding" version of watersheds where one initiates a segmentation with
random seed points and follows the gradients from the seeds to watershed basins. This
formulation is susceptible to local plateaus and thus requires post processing to handle
over segmentation. As a result, Mangan and Whitaker implement an ad hoc solution to
account for over segmentation, based on the depth of each watershed region.

Although Vincent and Soille (Vincent and Soille, 1991) propose a segmentation
algorithm for 2D images, they generalize their algorithm to the arbitrary connectivity
of a graph, such as a mesh. This algorithm does not appear in the review of Mangan and
Whitaker, but it does propose a fast implementation of watersheds that is important
to consider since the image processing literature devotes significant attention to this
algorithm. Their graph variation is a flooding approach to mesh segmentation and
as such has implementation advantages over Mangan and Whitaker. The downside to
their algorithm is that it requires a pre-sorting of the mesh vertices according to water
heights. As we will see, this pre-sorting is not suitable for our application of the minima
rule.

Finally, since we are interested in the minima rule, curvature is important to our
proposal as well. Unfortunately, as noted above, both curvature segmentation methods
above (Wu and Levine, 1997 ; Mangan and Whitaker, 1999) have drawbacks with regard
to their curvature estimations. Subsequently, we look to the literature for better meth­
ods. Tang and Medioni (Tang and Medioni, 1999) and Taubin (Taubin, 1995) represent
the state of the art. Tang and Medioni offer a robust algorithm that estimates the sign
of Gaussian curvature and the principal directions for noisy point clouds while Taubin
presents an algorithm that estimates both principal directions and principal curvatures
for triangle meshes. The drawback of Tang and Medioni is that they do not estimate
principal curvatures while the drawback for Taubin is that he does not handle surface
noise.

1.5 Contributions

The algorithms that we have developed extend the above state of the art. Wu and Levine
present a robust curvature estimation method with a simple segmentation algorithm
while Mangan and Whitaker present a robust segmentation algorithm with a simple
curvature estimation method. We have developed an algorithm that has both traits­
a robust curvature estimation method and a robust segmentation algorithm-and we
ground our algorithm in the theory of the minima rule.

In particular, we have developed a Minima Rule Decomposition Algorithm,
or more simply the Minima Rule Algorithm, that overcomes many of the drawbacks
with Wu and Levine and Mangan and Whitaker. (A block diagram of this algorithm
appears in Fig. 3.6.) The heart of this segmentation is two new algorithms known as
Normal Vector Voting and Fast Marching Watersheds. Normal Vector Voting is

8

• I t ,

a curvature estimation algorithm, and the Fast Marching Watersheds is a new imple­
mentation of the watershed algorithm for surface meshes. Finally, we have developed a
Part Saliency Metric that handles any over-segmentation problems that may arise.
To emphasize, this dissertation yields four contributions to the state of the art as follows.

Part Decomposition: Minima Rule Algorithm The most significant contri­
bution is the development of a computer vision algorithm that follows the human vision
theory of the minima rule. To date, no computer vision algorithm implements the min­
ima rule for 3 D surfaces. As we have noted, Wu and Levine (Wu and Levine, 1997) do
attempt an implementation, but their approach is not true to the minima rule theory
since they do not use a proper curvature estimate. The algorithm that we present in
this dissertation represents the first computer vision implementation of the minima rule
for mesh segmentation.

Curvature Estimation: Normal Vector Voting The second major contribu­
tion is the development of a robust curvature estimation algorithm known as Normal
Vector Voting (Page et al., 2 001 ; Page et al. , 2 003 f) . Although Tang and Medioni (Tang
and Medioni, 1999) and Taubin (Taubin, 1995) offer important contributions, we have
developed an algorithm that bridges the gap between these two algorithms. Our · al­
gorithm robustly estimates both principal directions and principal curvatures at the
vertices of a triangle mesh, despite measurement error in creating the mesh.

Mesh Segmentation: Fast Marching Watersheds The third contribution is
the development of a mesh segmentation algorithm inspired by the popular watershed
algorithm for image segmentation. We call our algorithm Fast Marching Watersheds.
Although Mangan and Whitaker (Mangan and Whitaker, 1999) have demonstrated the
feasibility of adapting image processing watersheds to surface meshes, their algorithm
is a "bobsledding" approach that leads to significant over segmentation and requires
handling of certain special cases. Similar to Vincent and Soille (Vincent and Soille,
1991), Fast Marching Watersheds avoids these problems by employing a "hill climbing"
approach. Unlike Vincent and Soille, our algorithm does not require the pre-sorting
step and thus does not require random access to each of the vertices in a triangle mesh.
This difference is important to our application of the minima rule since we make local
decisions about "water heights" and not global ones, as we explain in later sections.

Shape Measure: Part Saliency Metric The final contribution is a new Part
Saliency Metric, derived from a human vision theory (Hoffman and Singh, 1997). After
we decompose a scene or object into a set of parts, we create a Part Adjacency Graph to
define the relative relationship of each part. Our proposed metric assigns a value to the
visual salience, or importance, of each part and to the salience of connections between
parts. This metric enables filtering of oversegmentations that might occur where we
merge the least visually salient parts with other more salient ones.

9

1.6 Document Organization

The remainder of this dissertation documents the details of our algorithms and the
above contributions. Chapter 2 presents a survey of the literature for each contribu­
tion and also justifies our choice of the minima rule. Then, we overview the complete
algorithm for part decomposition in Chapter 3. Next, Chapter 4 documents the the­
ory that supports our Normal Vector Voting algorithm for curvature estimation. For
mesh segmentation, we present our Fast Marching Watersheds algorithm in Chapter 5 .
To handle over-segmentation issues, Chapter 6 proposes a pattern vector algorithm to
compute the salience of a part. After combining the theory from each of these chapters,
we develop our part decomposition algorithm. The results from this integration are in
Chapter 7 . These experimental results demonstrate the robust capabilities of our algo­
rithms and their successful application to a wide variety of objects and scenes. Finally,
we conclude in Chapter 8.

10

Chapter 2

Literature Review-

This chapter presents a review of the research literature. We begin with an investiga­
tion into part decomposition to establish our choice of the minima rule in Sec. 2 . 1 . This
review focuses on theories of human vision and computer vision in an effort to address
both philosophical and implementation issues. With the minima rule, curvature estima­
tion becomes important, and Sec. 2 .2 discusses this topic. In Sec. 2 . 3 , we review mesh
segmentation algorithms to identify specific computer vision implementations that may
be appropriate to the minima rule. Then, Sec. 2 .4 reviews a variety of shape measures
in order to quantify the quality of a segmentation. We conclude with a summary of the
key articles in Sec. 2 .5.

2.1 Part Decomposition

What do we mean by decomposition? When we view the mug in Fig. 1 . 1 , how do we
decompose it into simpler parts? How might a computer do so? Fig. 2 . 1 is one possible
result. The question is what governs our decision process to decompose the mug in this
manner. Does a theory of human vision exist that explains our choice?

2 . 1 . 1 Gestalt Grouping

At the turn of the century, gestalt* psychologists (Koffka, 1935; Wertheimer, 1958)
began to formulate the idea that our minds group scenes. Wertheimer (Wertheimer,
1958) formalized a set of principles known as the gestalt principles of organization,
which suggest that our mind and our perception tend to group our visual input. See
Fig. 2 .2 . Along this line of thought, Palmer (Palmer, 1977) studied observer's abilities
to recognize parts of figures. He demonstrated with simple line drawings that human

* A direct translation in English of the German word gestalt is often not adequate but. usually this word
translates as form. A better translation is organized structure. Gestalt psychologists emphasized percep­
tion in their experiments and observed the organized groupings that perception often yields (Kanizsa,
1979) .

1 1

(a) Cup (b) Handle (c) Base

Figure 2. 1: Visual parts of a mug. Visual parts that most observers see for the mug in
Fig. 1. 1.

perception tends to identify parts that follow the gestalt principles as in Fig. 2 . 3 . These
gestalt observations initiated interest into the notion that human vision groups-or
decomposes-scenes and objects into simpler parts.

As time has passed, the gestalt school has faded-for a variety of reasons-and
lost favor among cognitive psychologists. The gestalt insights, however, have focused
attention on the importance of organizational groupings of scenes in human percep­
tion. Although the gestalt principles emphasized simple lines and dots to highlight
such groupings, more recent cognitive research (Marr, 198 2; Marr and Nishihara, 19 7 8 ;
Hoffman and Richards, 198 4; Hoffman and Singh, 199 7 ; Biederman, 198 7 ; Tversky and
Hemenway, 198 4; Juttner et al. , 199 6; Rosch et al . , 19 7 6; Koenderink and van Doorn,
198 2; Palmer, 19 7 7) has emerged that addresses complex groupings in images. This
research, which parallels new developments in digital imaging, has led to a growing
consensus that decomposition of shapes into their constituent parts is fundamental to
human vision and-'-by extension-to computer vision.

Although it may seem obvious, we do see the world in terms of parts and the
early stages of our perception function primarily to identify these parts. We term
this visual process part-based decomposition, or more simply part decomposition. For
a fair assessment, we do note that some researchers such as Cave and Kosslyn (Cave
and Kosslyn, 199 3) do argue against the notion of parts, but these objections are not
predominant. Naturally, many researchers (Pentland, 198 9; Pentland, 198 7 ; Pentland,
198 6a; Biederman, 198 7 ; Biederman, 198 5; Guzman, 19 7 1; Binford, 19 7 1; Terzopoulos
et al. , 198 7 ; Brooks, 198 1; Dickinson et al . , 199 2; Siddiqi and Kimia, 199 5) in the
computer vision communityt also argue that parts are essential to computer vision

tThroughout this dissertation, we have used the terms human vision and computer vision without
strictly defining them. We do so now to avoid confusion. Human vision refers to the cognitive processes
of the human mind and the inter-relationship between our eyes and our brain that allow us to see, model,
describe, and recognize the world around us. Computer vision, on the other hand, is our attempt-often
a meager one--to simulate human vision using computer algorithms.

12

(a) Proximity.

0 0 0 0 0

x x x x x

0 0 0 0 0

x x x x x

0 0 0 0 0
(b) Similarity.

:x.
(c) Continuation. (d) Closure.

Figure 2 .2 : Gestalt principles of organization (Andreson, 1995). (a) With the principle

of proximity, we perceive four pairs of lines rather than eight separate lines, individually.
Our mind tends to group items that are closer together. (b) With the principle of

similarity, we tend to see two rows of X's and three rows of O's. Why? Why not five
columns of alternating X's and O's? Our mind seems to group elements that are alike
into common units, in this case rows. (c) With the principle of continuation, we perceive
two lines from A to B and from C to D. It seems unnatural for our mind to perceive
the lines as A to D and C to B although this grouping is just as valid. (d) With the
principle of closure, we observe one circle that occludes another. In this figure, only one
complete circle exists; the other is incomplete. Yet, we tend to believe that one circle
is sitting on top of the other one and that we indeed see two circles.

[7 I\
(a) (b) (c) (d) (e)

Figure 2. 3: Palmer line drawings. Line drawings used by Palmer (Palmer, 1977) for
studying part decomposition. (a) Original example object. (b,c) Part decomposition
of (a) that follow the gestalt principles. (d,e) Part decomposition that does not fol­
low these principles (Andreson, 1995). Note that (b,c) seem more natural while (d,e)
somehow seem unnatural.

13

Primitives-Based
Methods

/ j
Generalized
Cylinders Superquadrics

Part Decomposition

Geons Parabolic
Lines

Boundary-Based
Methods

/
Figure 2.4: Categories of part decomposition algorithms.

Minima
Rule

tasks as well. These arguments have motivated us to explore part decomposition as the
starting point for our research.

2.1 .2 Definition of a Part

Now that we are convinced that parts are important, what do we mean by a part? Is a
part a functional component such as an arm or a leg? Is it a geometrical entity such as a
box or a cylinder? Perhaps it is a perceptual feature such as a handle that protrudes from
a mug. These questions lead us to classify part decomposition algorithms based on their
notion of a part (Vaina and Zlateva, 1990; Wu and Levine, 1997 ; Hoffman and Singh,
1997). In particular, as (Hoffman and Richards, 1984; Vaina and Zlateva, 1990) suggest,
we categorize these algorithms as either primitives-based or boundary-based methods. As
an aside, both (Hoffman and Richards, 1984) _and (Vaina and Zlateva, 1990) actually
use the term primitive-based instead of primitives-based. We distinguish these terms
since primitive-based seems to imply a simple or less cultured approach when the actual
intent is that these methods employ a library of basic primitives. Also, we note that
Vaina and Zlateva offer a third classification, called axis-based. These algorithms such
as (Blum, 197 3) and (Blum and Nagel, 197 8) rely on axes of symmetry and are thus
only appropriate for objects that exhibit strong symmetry. For this reason, we do not
consider these algorithms. Fig. 2. 4 illustrates our categorization for part definitions.

2.1 .3 Primitives-Based Methods

Primitives-based methods decompose an object or a scene first by defining a set of basic
shapes-or primitives-and then by finding these shapes in the data. The predefined
primitives are volumetric models that fully specify the 3D shape of each part. They
are not points or contours. They are volumes. A primitives-based algorithm forms
an initial configuration using a set of primitives that closely models the input data.
Through an iterative search, the algorithm then scales, rotates, translates, removes,

14

adds, and possibly deforms the configuration and each primitive in it until reaching a
stopping criteria. The final set of primitives are the parts of the scene or object of
interest.

The construction of the primitives dictionary is crucial to the success of these al­
gorithms where a diverse set of shapes is important. The research literature offers an
extensive set of possible primitives, but most are derivatives to one degree or another
of the following:

• Generalized cylinders (Binford, 1 971 ; Brooks, 1 981 ; Marr and Nishihara, 1978;
Nevatia and Binford, 1 977),

• Superquadrics (Barr, 1 981 ; Pentland, 1986 b; Pentland , 1987; Pentland, 1989;
Bajcsy and Solina, 1 987), and

• Geons (Biederman, 1 985; Biederman, 1987).
Generalized cylinders are historically the first methods proposed and thus have

greatly influenced the field. Other methods have followed with most recent work fo­
cusing on superquadrics. Both generalized cylinders and superquadrics are parametric
models that are defined by a strict set of mathematical equations. A decomposition
algorithm iteratively adjusts the parameters of these equation to fit the primitives to
the input data. For the generalized cylinders, the parameters define a closed planar
contour and an axis. They form a volume by sweeping the planar contour along the
axis thereby creating a generalized cylinder. To change the shape of the cylinder, one
simply redefines the contour or warps the the sweep axis. Unfortunately, the number
of variables to specify uniquely the contour and the axis can be quite large. As a result
most practical implementations restrict the parameters to a more focused subclass.

To avoid the parameter overload problem, another solution is the superquadric
model. These primitives provide as much flexibility as generalized cylinders but with
fewer parameters. Superquadrics have greater mathematical support formalized through
Barr (Barr, 1 981), and thus are a more elegant solution. Pentland (Pentland, 1 986 b)
introduced this family of primitives to the computer vision community with significant
work following his research.

Geons are similar in spirit to both generalized cylinders and superquadrics but are
a more qualitative approach. The previous approaches have well-defined quantitative
parameters that govern the shape of the primitives. Goons use qualitative language, as
opposed to a mathematical formulation, to describe their shape. Biederman (Bieder­
man, 1 985; Biederman, 1 987) proposed goons-geometrical icons-as a set of primitives
that are defined in terms of invariant image features. Biederman notes that certain
properties of visual features remain invariant to perspective transformation through
small angles. For example, a straight line in 3 D appears straight in a 2D image and
a curved line appears curved. Only by an accident of view does a curved line appear
straight. Biederman presents four qualitative invariant features that result in a database
of 36 geon primitives. These features are edge type, symmetry, sweep variation, and

15

axis type, but he does not define these parameters using strict mathematical variables.
Subsequently, most implementations of geons use generalized cylinders or superquadrics
as the actual primitives in a computer algorithm. Geons are more of a theory of part
decomposition than an implementation.

An interesting aspect of each of the above methods is that part description is inherent
to the decomposition process. Not only do these methods yield a decomposition of a
scene into parts but they also provide either a mathematical description, in the case
of generalized cylinders and superquadrics, or a qualitative description, in the case of
geons.

2 .1 .4 Boundary-Based Methods

As a departure from the above techniques, boundary-based approaches advocate that de­
composition alone should precede description and not include it (Hoffman and Richards,
1984). Unlike primitives-based approaches, boundary-based methods attempt to decom­
pose a scene or an object by identifying the boundaries between adjacent parts instead
of matching primitives to the parts. As Hoffman and Richards (Hoffman and Richards,
1984) describe, a boundary is where we would draw a contour between parts, as if with
a felt marker. A boundary is a contour on a surface where one part ends and another
part begins. Decomposition involves · finding these contours. Thus, we do not need to
know what the parts look like, rather we only need to know where the parts intersect
each other.

So what constitutes a part boundary? This question has led to significant debate
within the human vision community, which has further led to different implementations
in the computer vision community. Koenderink and van Doorn (Koenderink and van
Doorn, 1982) kicked off this debate by proposing parabolic lines as boundaries. They
argue, as evidenced in works of art, that humans perceive 3D shapes as composed
mainly of elliptic regions with hyperbolic patches as glue between these regions. A
basic teaching tool in art for drawing human figures is to have students sketch ellipses
for faces, arms, legs, torsos, feet, and hands and then to stitch these ellipses together as
the final drawing progresses. The intersection of elliptic regions and hyperbolic patches
forms parabolic lines that Koenderink and van Dorn deem to be part boundaries. These
lines occur where the patches transition from elliptic to hyperbolic-from positive to
negative Gaussian curvature.

Hoffman and Richards (Hoffman and Richards, 1984) note a few problems with the
above boundary definition. First, parabolic lines are invariant to figure and ground
reversal. Figure and ground (Rubin, 195 8) are a common way in cognitive psychology
to distinguish the two sides of a curve in 2D and a surface in 3D. One side is figure;
the other is ground. Consider the classic sketch of (Rubin, 195 8) in Fig. 2. 5 (a) . This
sketch illustrates either two human faces that are nose to nose or just a single vase. The
image that we see depends on how our mind chooses figure and ground. The reversal
of which allows us to see the other image. Parabo}ic lines on a surface are invariant to
figure and ground reversal where these lines are the loci of points with zero Gaussian

16

(a) (b) (c)

Figure 2 .5: Rubin faces and vase sketch. Visual perception sketches illustrating how
figure and ground effect choices of parts. (a) What do you see? (b) If we choose the
white space as ground, we see two faces that are· facing nose to nose. (c) If we chose the
dark space as figure, we now see a vase. In (b) and (c) , the arrows denote the minima
rule boundaries for parts (Hoffman and Richards, 1984 ; Rubin, 1958).

curvature. Such points do not change whether we are on one side or the other of a curve
or surface. When we view Fig. 2.5(a) , however, we not only see different images with
figure and ground reversal, but also we subsequently see different parts for each image.
Hoffman and Richards voice another objection with regard to the unnatural parts that
are sometimes spawned by parabolic line boundaries or-in some instances-no parts at
all. They provide examples where experimental evidence shows that human observers
choose boundaries that differ significantly from the parabolic line boundaries.

As an alternative Hoffman and Richards (Hoffman and Richards, 1984) propose their
own definition of a boundary-the minima rule. The formal definition of this rule is as
follows:
minima rule All negative minima of the principal curvatures (along their associated

lines of curvature) form boundaries between parts (Hoffman and Singh, 1997).
As an illustration of this rule, refer to Fig. 2.5 again. In Fig. 2.5(b) , we see how one
choice of figure and ground and the minima rule lead to parts of a face. Similarly,
in Fig. 2.5(c) we see how a different choice leads to parts for a vase. Experimental
evidence (Baylis and Driver, 1995b; Baylis and Driver, 1995a; Braunstein et al. , 1989;
Driver and Baylis, 1995; Hoffman, 1983) further supports the rule.

Researchers have explored other definitions of part boundaries. For example, Hoff­
man and Singh (Hoffman and Singh, 1997) cite "deep concavities" (Marr and Nishi­
hara, 1978) , "sharp concavities" and "concave regions" (Biederman, 1987) , and "limbs
and necks" (Siddiqi and Kimia, 1995). Additionally, Fischler and Bolles (Fischler and
Bolles, 1986) propose high- curvature points as part boundaries similar to Mangan and
Whitaker 's implementation (Mangan and Whitaker, 1999). The minima rule precisely
captures and more accurately formalizes these definitions into a single concise rule, and
it overcomes the limitations of Koenderink and van Doom's parabolic lines.

17

Finally, the major strength of the minima rule with regard to our applications is
that it is computable, robust, and invariant (Hoffman and Singh, 1997) . In short, this
means that we can implement the rule as a computer algorithm and that the rule is
applicable to a wide variety of situations.

Computable implies that the theory has a mathematical foundation. As a counter
example, geons are not computable since geon theory is a qualitative and not quanti­
tative description of parts. For the minima rule, curvature is the computable measure
that we need to implement. We note however that humans do not necessarily compute
curvature directly, but rather they probably use visual cues such as shape from shading.
Regardless, the minima rule is a computable theory of part boundaries and as such is
important to practical implementation.

Another important trait of the minima rule is that it is robust to shape variability.
Consider our mug example. Mugs come in many shapes and sizes but as a general
rule mugs consist of a cup and a handle-two parts. The handles may vary from the
elaborate ornamentations on a German stein to the simple curves of a household coffee
mug. The minima rule precisely defines the boundary of the handle and cup for each
of these examples and for many more as well. The algorithm does not require a priori
information of the type of object or scene and is a general theory for any shape. This
robustness is an important characteristic for our application domains.

The third strength is the invariance of the minima rule. Although this trait mainly
applies to the 2D version of the rule for images, it has some significance to 3D surfaces.
With respect to images, invariance means that the rule survives under perspective trans­
formations. For 3D, invariance means that the rule is independent of scale and rotation
changes. A big mug and a little mug both have a handle and a cup as parts. Scale does
not change our perception of the part boundaries. An upright mug and an upside-down
mug also have the same parts. Rotation does not change the part boundaries. The
minima rule holds true for each of these situations.

For these reasons, we select the minima rule as the foundation for our decomposition
algorithm. The implementation of this rule requires the development of a curvature
estimation algorithm and a mesh segmentation algorithm. We review the literature for
these topics in the next two sections.

2 .2 Curvature Estimation

We have identified robust curvature estimation as a weakness in the current literature
with regard to triangle meshes. In particular, we have not found a method that ro­
bustly estimates both principal curvatures and principal directions, which we need for
implementing the minima rule. Our research intends to address this issue. Most re­
search in the literature addresses curvature estimation in the context of range images
with little work available for the more general problem of surface meshes. Since image
processing and mesh processing require different tools, we do not intend to address the
direct estimation of curvature from range images. Our interest instead is to address the

18

N

s

(a) (b) (c)

Figure 2 .6 : Curvature for a surface. (a) Shows a normal curvature on the surface S at
the point p. The plane Ilp contains the unit surface normal N and the unit tangent
vector T for point p. (b) The principal directions T1 and T2 form an orthonormal basis
for the infinite set of normal curvatures at p. (c) Crease discontinuity. The smooth
surfaces Si and Sj meet at crease C. At the crease, the minimum principal curvature
follows the crease and has some finite value. The maximum curvature is infinite and
orthogonal to the crease.

more general problem of curvature for a surface mesh. We refer the interested reader
to (Flynn and Jain, 1989) and (Suk and Bhandarkar, 1992) for excellent surveys into
curvature-from-range methods.

2.2 . 1 Differential Geometry

As background, we first present a brief overview of surface curvature in the important
context of differential geometry (do Carmo, 1976; O'Neill, 1997). The curvature of a
surface intrinsically describes the local shape of that surface. Consider Fig. 2 .6. The
point p lies on a smooth surface S, and we specify the orientation of S at p with the
unit- length normal N. We define S as a manifold embedded in R3 • We can now
construct a plane Ilp that contains p and N, and the intersection of Ilp with S forms a
contour a on S. For this contour, there is a unique arc parameterized by length s, a(s) ,
where a(O) = p and a'(O) = T. This parameterization has the property that T is the
unit- length tangent vector at p. With this construction, we now have a parameterized
contour on S, and thus we can find the curvature of that contour. We define the normal
curvature 1tp(T) of S at p in the direction of T as a"(O) = 1tp (T)N. The normal curvature
is for a single contour on S passing through p. This curvature 1tp (T) does not however
specify the surface curvature of S at p.

For surface curvature, we need to do a little more work since Ilp is not a unique plane.
If we rotate Ilp around N, we form a new contour on S with its own normal curvature.
We can see that we actually have an infinite set of these normal curvatures around p in
every direction. Fortunately, herein enters the elegance of surface curvature. For this
infinite set, we can construct an orthonormal basis {Ti , T2} that completely specifies the
set. The eigenvectors, along with their associated eigenvalues, of the second fundamental

19

form for S at p are a natural choice for this basis. These eigenvectors {Ti, T2} are the
principal directions of S at p and are the directions of the tangent curves with maximum
curvature K� = Kp(T1) and minimum curvature K: = Kp(T2), which are the respective
eigenvalues of the second fundamental form. These maximum and minimum curvatures
are known as the principal curvatures and lead to the following relationship for any
normal curvature at p:

(2 . 1)

where To = cos(0)T1 + sin(0)T2 and -1r � 0 < 1r is the angle to vector T1 in the tangent
plane. The principal directions along with the principal curvatures completely specify
the surface curvature of S at p, which is what we are seeking.

Combinations of the principal curvatures lead to other common definitions of surface
curvature. The first of these-and perhaps the most common-is Gaussian curvature,
which is the product of the principal curvatures K = K�K:. This definition highlights
negative surface curvature that occurs at hyperbolic patches since these patches occur
where only one principal curvature is negative. The second definition of curvature
is mean curvature. We specify mean curvature as the average sum of both principal
curvatures H = ½ (K! + K�) . Although neither Gaussian nor mean curvature specify the
orientation of curvature, they are common definitions found in the estimation literature,
as we will see in the next section. We emphasize however that we are not interested in
just the principal curvatures, which lead to the Gaussian and mean curvatures, but also
the principal directions.

Our challenge in estimating curvature is unfortunately that we are not dealing with
a completely smooth surface such as S above but rather a piecewise-smooth surface S
where we apply the definition of a piecewise smooth as in (Biermann et al., 2 000).
The surface S may for example be the union of three smooth surfaces Sj , Sk, and Sl,
manifolds embedded in R3, such that S = Sj u Sk U Sl , We assume that Sj , Sk, and
Sl are orientable manifold surf aces, possibly with piecewise-smooth boundaries (Kinsey,
1993; Biermann et al., 2 000), and that their subsequent union S also conforms to this
same definition of a surface. The subsequent piecewise-smooth surface has discontinuity
contours Cjk = Sj n Sk where two smooth surfaces join as in Fig. 2.6 (c) . Other discon­
tinuities occur at corner points Cjkl = Si n Sk n Sl where three or more surfaces join.
Both principal curvatures are singular for such corners.

Another challenge is that we are not actually working with S but rather with the
mesh M that approximates S. Recall Figs. 1. 2(c) and l. 3(c). We specify M as the
pair M = (K, V) where K defines the topology and V defines the geometry. We
assume as with S that M is an orientable triangulated manifold surface, possibly with
boundary (Kinsey, 1993) . The vertices V are samples of S such that noise may corrupt
these samples. We have the following

v = p + e . (2. 2)

20

where v E V is a specific vertex of M, p E S is a sample point on S, and e is a noise
vector that accounts for measurement, registration, and isosurface extraction error. We
can think of V as a point cloud and K as the interconnection of V to form the edges
and faces of the triangles in M.

Our review of the research literature reveals that only a few papers address the issue
of curvature estimation on triangle mesh such as M. Of those papers we have identified
three classes of techniques:

• Surface Fitting Methods (SFMs),
• Direct Curvature Methods (DCMs) , and
• Curve Fitting Methods (CFMs).

We discuss each class briefly with special emphasis on the curve fitting methods as those
offer the most promise.

2.2.2 Surface Fitting Methods

SFMs fit an analytic surface to the data of interest and then use differential geometry
to compute curvature from that function. With some modifications, we can use many
of the analytic methods for range images listed in (Flynn and Jain, 1989) and (Suk and
Bhandarkar, 1992). An interesting modification of (Flynn and Jain, 1989) for meshes
is the approach in (Sacchi et al. , 1999). Sacchi et al. fit spheres to adjacent triangles
and use the Gaussian curvature of these spheres as curvature estimates. For a vertex,
they average the curvature estimate for adjacent triangle pairs around the vertex. Most
extensions of the range methods, however, require a local parameterization of the sur­
face similar to the parameterization that an image provides for range data. Although a
surface may allow many different functional representations locally, no practical global
parameterization is useful. The approaches of (Hagen et al., 1998) and (Rossi et al.,
2000) provide possible choices for local parameterization. Also, (Rossl et al. , 2000) use
thresholds and morphological operations on a mesh to identify smoothness disconti­
nuities after estimation of curvature. Once we have a local parameterization, we can
use methods such as linear regression (Fen-ie and Levine, 1988; Flynn and Jain, 1988;
Sander and Zucker, 1986) or splines (Naik and Jain, 1988; Vemuri et al. , 1986) to esti­
mate curvature. A more recent paper (Pulla et al., 2002) uses a local fit of a biquadratic
polynomial and applies smoothing to improve the analytic estimate of curvature. In a
similar approach, Yang and Lee (Yang and Lee, 1999) locally fit parametric quadric
surfaces.

Instead of triangle meshes, some reconstruction methods generate smooth surfaces
directly. With smooth surfaces , we can directly apply differential geometry to compute
curvature. Such reconstruction methods include polynomial surface (Sapidis and Besl,

1995), splines (Eck and Hoppe, 1996) , and subdivision surfaces (Hoppe et al., 1994) , as
examples. Unfortunately, these methods form C2 continuous patches with C1 stitching

21

.

between these patches. The location of these stitches are arbitrary and may not follow
the piecewise smooth seams of the original surface. Thus, curvature along stitch junc­
tions is not straightforward. Extraordinary points of subdivision surfaces also require
special treatment for curvature estimation (Reif and Schroder, 2 000) .

2.2 .3 Direct Curvature Methods

DCMs are another class of algorithms. These algorithms use the topology and geometry
of the mesh directly to estimate curvature. Since a triangle mesh is a piecewise-flat
surface, the direct computation of local curvature is seemingly paradoxical (Mortenson,
1997) . The curvature is singular at each point on the surface--infinite at vertices and
edges and zero on triangle faces. We can, however, refer to the total curvature for
regions on these surfaces, which is not necessarily singular.

Lin and Perry (Lin and Perry, 1982) use the angle excess around each vertex to
estimate the total Gaussian curvature. Angle excess itself is well known with (Morten­
son, 1997) providing a nice discussion in the context of computer graphics and the
Gauss-Bonnett Theorem. We find another application of angle excess in series of pa­
pers (Delingette, 1994a; Delingette, 1994b; Delingette, 1997 ; Delingette, 1999). He lays
out a framework for a surface representation that he calls a simplex mesh that is a dual
to a triangle mesh. He discusses the total mean and the total Gaussian curvature for this
surface representation and shows these formulations are directly related to angle excess
for a triangle mesh. We find another angle excess approach in the discrete minimal sur­
face and straightest geodesic work of Polthier and his coauthors (Polthier and Schmies,
1998; Pinkall and Polthier, 1993). Following this line of research, Desbrun et al . (Des­
brun et al., 1999) define a curvature normal vector as a discrete definition of mean
curvature for triangle meshes. As with the angle excess methods, Desbrun et al. use
interior angles of triangles for their formulation.

With a different approach, Gourley (Gourley, 1998) presents a total pseudo cur­
vature based on the dispersion of face normals around a vertex while Mangan and
Whitaker (Mangan and Whitaker, 1999) refine this measure as the norm of a covariance
matrix for these face normals. This pseudo curvature is proportional to the magnitude
of Gaussian curvature. A novel algorithm from Wu and Levine (Wu and Levine, 1997) is
a physics-based approach where they simulate the distribution of charge density across
a mesh. They relate this charge distribution to surface curvature. This approach also
yields a pseudo curvature measure that is monotonically increasing relative to Gaussian
curvature.

2.2.4 Curve Fitting Methods

We finally consider the CFMs. With these methods, we fit a family of curves individually
around a point and then use the ensemble to estimate curvature. Martin (Martin, 1998)
proposes a method that selects vertex triples from a mesh and fits circles to those triples.
Tookey and Ball (Tookey and Ball, 1997) describe a more sophisticated method that

2 2

I I

uses five points instead of three but is only valid for data on a regular grid. Varady and
Hermann (Varady and Hermann, 1996) present an algorithm for computing principal
curvature from a collection of surface curves using a linear system. A very interesting
paper (Tang and Medioni, 1999) proposes a novel approach to infer the sign of Gaussian
curvature and compute principal directions from noisy data. This method is an evolution
of Medioni's tensor voting theory (Medioni et al. , 2 000) , which uses circular curves to
discern features from a point cloud. A recent improvement to their original paper
is (Tang and Medioni, 2 002) . From the Duplin indicatrix, Chen and Schmitt (Chen and
Schmitt, 1992) formulate a quadratic representation of curvature at each vertex and
then derive the principal curvatures using a least squares minimization of the resulting
overdetermined system. Inspired by this approach, Taubin (Taubin, 1995) developed
an algorithm that defines a symmetric matrix that has the same eigenvectors as the
principal directions and eigenvalues that are related by a fixed homogeneous linear
transformation to the principal curvatures. He estimates this matrix in discrete form
for a triangle mesh using vertex pairs that share a common edge. In the context of
surface reconstruction, Gopi et al. (Gopi et al. , 2 000) extend Taubin's algorithm beyond
adjacent vertex pairs to arbitrarily close pairs and use a different weighting scheme.
Another improvement to Taubin is (Hameiri and Shimshoni, 2 002) . We finally note the
curvature work in the context of mesh simplification in (Heckbert and Garland, 1999) .
This paper outlines the relationship of the quadric error metric (Garland and Heckbert,
1997; Lindstrom and Turk , 1998) for triangle normals to curvature.

The SFMs require the most computational effort since they typically employ op­
timization in the fitting process. This optimization does provide some robustness to
noise but does not inherently deal with discontinuities. The DCMs on the other hand
are more computationally efficient but are more susceptible to noise errors. The excep­
tion is the method of Wu and Levine (Wu and Levine, 1997) that does demonstrate
robust results. None of the DCMs, however, directly estimate the principal directions
or principal curvatures that we seek. The CFMs are the most promising of the three
classes. In particular, Tang and Medioni (Tang and Medioni, 1999) and Taubin (Taubin,
1995) offer unique contributions. Tang and Medioni's method is robust but their algo­
rithm does not estimate principal curvatures, only principal directions. They construct
a matrix--similar to Taubin-whose eigenvectors relate to the principal directions but
they do not show how the eigenvalues relate to the principal curvatures. As stated
above Taubin's algorithm does. Taubin relates the eigenvalues to the principal curva­
tures. As we will show in the next chapter, our contribution is to extend both Tang
and Medioni's and Taubin's methods with a new algorithm that employs a geodesic
neighborhood, a voting scheme, and Taubin's discrete formulation to generate robust
results. In the next section, we explore potential mesh segmentation algorithms to see
how we can implement the minima rule.

23

. '

2 .3 Mesh Segmentation

In the first section of this chapter, we reviewed several decomposition theories where we
have identified the minima rule as the primary theory for our applications. This choice
has led us to investigate curvature estimation in the previous section. We now review
the literature on mesh segmentation to see how we might implement the minima rule in
a practical system. We seek an algorithm to segment a mesh M that approximates a
manifold surface S, embedded in 3D. Recall the mesh segmentation of a mug in Figs. 1.1
and 2.1.

2.3.1 Convex Polyhedra

An active area of research that is similar to mesh segmentation is convex decomposition
in computational geometry. This problem seeks to decompose a non-convex polyhedron
into smaller convex ones. The motivation for this work is to improve computer graphics
such as rendering and shading (Chazelle et al., 1997). The seminal paper in this field is
Chazelle (Chazelle, 198 4) and his follow up articles (Chazelle and Palios, 1990; Chazelle
et al., 1997 ; Chazelle and Palios, 1997). Other researchers (Bajaj and Dey, 1992; Her­
shberger and Snoeyink, 1998; Tang et al., 2 000) have also contributed with significant
interest growing. Most of these algorithms seek to find the simpliest decomposition
possible but Lingas (Lingas, 1982) shows the minimum decomposition complexity is
NP-hard. Thus heuristics are necessary, and as a result the main focus of the research
attempts to bound the worst-case complexity of the problem. A computer vision-based
approach to convex decomposition is (Svensson and Sanniti di Baja, 2 001; Svensson and
Sanniti di Baja, 2 002). This method is less rigorous than the computational geometry
approaches above but yields nice results. A volumetric distance transform guides the
segmentation process.

Although this research fits nicely with the scene modeling goals for real-time visu­
alization, it does not address the needs of reverse engineering. The description of an
object as a collection of convex parts is not very meaningful. Additionally, these algo­
rithms assume the non-convex polyhedra are ideal models with no measurement error
corrupting them. These ideal models are common in most computer graphics applica­
tions but not computer vision ones. For practical scene modeling or reverse engineering,
measurement error degrades the quality of the mesh, and at present, convex decompo­
sition does not address the effects of this noise. The growing interest in this research,
however, does emphasize the importance of mesh segmentation to computer graphics
and thus serves as a context for our research.

2.3.2 Range Images

Another area related to the mesh segmentation problem is range image segmentation
where an example appears in Fig. 2.7. Hoover et al. (Hoover et al., 1996) survey
the traditional approaches and establish a framework for comparing these algorithms.

2 4

(a) {b)

Figure 2 . 7: Example of range image segmentation. (a) The initial range image of water
pipes with false coloring. Close surfaces are red while distant ones are blue. (b) A
segmentation of the range image based on surface discontinuities.

Suk et al. (Suk and Bhandarkar, 1992) also provide a review and present the funda­
mental groundwork for the problem itself. Some important papers are (Fan et al. , 1986 ;
Hoffman and Jain, 1987; Besl and Jain, 1988) . More recent work includes (Baccar et al. ,
1996 ; Burgiss et al. , 1998; Yang and Lee, 1999; Alrashdan et al. , 2000; Froimovich et al. ,

2002). Of these methods , the watershed segmentation of (Baccar et al. , 1996) is note­
worthy. Baccar et al. use image processing watersheds and data fusion techniques to
identify surface discontinuities. As we discuss later, we have an interest in watershed
segmentation as well. In terms of part decomposition, the algorithm of (Froimovich
et al. , 2002) demonstrates nice results. They add an additional level of complexity
beyond segmentation of range images by assigning functionality to the resulting part
decompositions.

The drawback of range image segmentation, however , is that images are not surfaces.
With a range image, one can exploit the regular row-column structure of the image and
thereby simplify algorithm development. A typical surface mesh, on the other hand,
does not offer this regular structure and to impose such a structure is often not practical.
A mesh M has arbitrary connectivity in K. Recall the parameterization discussions in
the review of curvature estimation techniques.

2.3.3 Surface Meshes

So far, we have seen that convex decomposition from computer graphics and range image
segmentation from computer vision do not address our application domain adequately.
We truly need a mesh segmentation algorithm. Since this topic is relatively new, the
literature only offers a few algorithms.

25

Two early mesh segmentation algorithms are (Falcidieno and Spagnuolo, 1992)
and (Hebert et al. , 1995) . Falcidinieno and Spagnuolo segment a mesh into similar
curvature regions of concave, convex, planar, and saddle patches. Hebert et al. com­
pute quadric surface patches for curvature estimation and then employ a region growing
method for segmentation. The region growing is a modification of (Faugeras and Hebert,
1986) that Hebert et al. have adapted for the arbitrary connectivity of a surface mesh.
Johnson et al. (Johnson et al. , 1995) demonstrate an application of this method. An­
other region growing method for CAD applications is (Sapidis and Besl, 1995) . A recent
computer vision system from Yu and Malik (Yu et al., 2 001) presents a pipeline for re­
constructing and editing scenes from range scans. The segment scene geometry into
distinct surfaces to aid other tasks such as registration.

In computer graphics, Gregory et al. (Gregory et al. , 1999) propose an interac­
tive segmentation for morphing applications that requires user selection of feature
points. Using the points as landmarks, they segment the mesh into morphing patches.
Li et al . (Li et al., 2 001) describe edge contraction and space sweeping to decompose a
mesh for collision detection during visualization. Tan et al. (Tan et al., 1999) demon­
strate decomposition results through a vertex-based simplification algorithm. Werghi
and Xiao (Werghi and Xiao, 2 002) propose a computer vision algorithm with applica­
tions in computer graphics to segment 3D scans of the human body. Their algorithm
uses posture recognition as a first index into identifying human body parts. In a reverse
engineering application, Rossl et al. (Rossl et al., 2 000) define morphological operators
such as opening and closing on the surface meshes and use these operators to segment
surface discontinuities.

As noted previously, a very successful algorithm is Wu and Levine (Wu and Levine,
1997) . Recall that they draw from the rich field of finite element analysis and implement
segmentation as a physics-based approach by simulating electrical charge distributions
over a surface mesh. Although this formulation yields a robust curvature estimate, the
mesh segmentation algorithm they propose is somewhat simplistic. Their algorithm
defines the triangle mesh as a direct connection graph. Then, they identify concave
extremum within the graph and march from these nodes to neighboring nodes with
lowest charge density. This march continues until they trace a closed contour across the
surface of the mesh. The drawback to this algorithm is that it fails when an object has
three or more parts that intersect at a common point. For such parts, a simple closed
contour topology is not sufficient. Another drawback is that the algorithm relies on
a local marching procedure that is susceptible to local minima. Under certain surface
topologies, the algorithm becomes trapped and is unable to complete a closed contour.

A second algorithm that we consider in depth is (Mangan and Whitaker, 1999) .
Again, recall that they implement the watershed algorithm from image processing to
a mesh data structure. As an improvement to their algorithm, we also note more
recent papers (Pulla, 2 001; Pulla et al., 2 002) . In image processing, the watershed
algorithm is a well known thresholding method (Castleman, 1996) . The basic idea is to
view a data set as an elevation terrain where the height of the mountains and valleys

2 6

corresponds to the maximum and minimum values of the data. Segmentation involves
figuratively pouring water over this terrain and monitoring where the catchment basins
of the terrain form. The algorithm subsequently groups areas of land with common
basins, i.e. common watersheds, as segmentation regions.

The final algorithm that we need to consider is the image processing algorithm
of Vincent and Soille (Vincent and Soille, 1991) . This algorithm is also a watershed
algorithm like Mangan and Whitaker but a different approach. In fact, the discussion
in Vincent and Soille is an excellent review of watersheds for image processing. They
conclude their paper with a section that extends their methods to graphs with arbitrary
connectivity, including a brief discussion of 3 D surfaces. Their algorithm uses two
steps. The first one sorts each pixel in an image according to water height, and then
the second step grows watershed regions by accessing this initial sorting and using a
queue to enlarge from the bottom up. More recently, Rettmann et al. (Rettmann et al.,
2000; Rettmann et al. , 2002) implement this algorithm as a true mesh segmentation for
cortical surface in medical applications.

As Vincent and Soille (Vincent and Soille, 1991) note, two different strategies are
common for implementation. The first strategy is a bottom-up approach where we form
catchment basins and flood the data with water. See Fig. 2.8. The second strategy is a
top-down approach where we descend, or bobsled, down to the catchment basins from
the slopes and ridges of the terrain. See Fig. 2.9. Both of these approaches require
an initial threshold to create what is often called the marker set. This set is critical
to the success of the algorithm since it defines the proper number of regions for the
final segmentation. The initial boundaries of this set are too small to be a complete
segmentation, but as the algorithm progresses these boundaries expand. For the flooding
approach, when two boundaries come in contact as in the left side of Fig. 2.8(b) , they
are not allowed to merge. On the right side of that same figure, notice that a new basin
has formed that has no correspondence, yet, to any other basin. As flooding continues
in Fig. 2 .8(c) , we do merge this new basin with one of the original marker basins. These
figures illustrate the importance of the marker set. As additional examples, Figs. 2.8(a)
and 2 .8(d) show two different marker sets with the corresponding final segmentations
in Figs. 2.8(c) and 2 .8(f). We see very different results.

For the bobsled approach, the problem is a little different. As before we establish a
marker set, but instead of flooding, we follow the gradients of the data to a marker set.
Unfortunately, local minima may stop our bobsled from reaching any marker regions as
in Fig. 2.9(c). Such cases require special consideration. Mangan and Whitaker (Mangan
and Whitaker, 1999) have successfully implemented the bobsled method for their mesh
segmentation algorithm. They note that the local minima problem leads to significant
over segmentation and that such results are not very useful. To address over segmen­
tation, they have developed an intricate filter-and-merge algorithm. This algorithm
looks for watersheds with relatively low "water depths" and merges such regions with
neighboring ones. Unfortunately, we suggest that this approach is an ad hoc solution
and a more robust approach is necessary. Additionally, we believe that the bottom-up

27

....

I � a'

. '

. .

(a) (b) (c)

(d) (e) (f)

Figure 2.8: Flooding variant of the watershed algorithm. The flooding variant of the
watershed algorithm is dependent on the initial choice for the marker set. (a) An initial
marker set (b-c) Progression of the segmentation. Note the merge operation between
(b) and (c) . (d) A different choice for the marker set. (e-f) The effect of this choice on
the subsequent segmentation.

28

(a) (b) (c)

Figure 2.9: Bobsled variant of watershed algorithm. We show the marker set in each
illustration. The dark arrows show the bobsled analogy where points on the data follow
the gradient of the data to the catchment basin. (a-b) A typical bobsled. (c) A local
minimum trap that requires merging to an appropriate catchment basin.

flooding approach to watersheds leads to better results. For this dissertation, we have
developed such an approach, and to handle over segmentation we use a theory of part
saliency as an alternative to the ad hoc water depth as in (Mangan and Whitaker, 1999;
Rettmann et al., 2000). In the next section, we explore the concepts of part saliency.

2 .4 Shape Measure

As stated in the last section, segmentation algorithms must handle the problem of over
segmentation. If we look at the state of the art, Mangan and Whitaker (Mangan and
Whitaker, 1999), for example, compute the depth of a watershed for each segmentation
region and then merge regions that are relatively shallow. They assume that such
regions represent areas of over segmentation. Other approaches (Wu and Levine, 1997)
merge regions with relatively small surface area, based on the size of the segmentation
region. These solutions are ad hoc and, as such, are not directly applicable to our desire
to implement the minima rule. With an implementation of the minima rule, proper
segmentation-in other words segmentation without over segmentation-yields "good"
parts. So, if we could measure the "goodness" of a part, we could simply filter bad
parts when over segmentation occurs. The question that obviously arises is how do we
measure, or even compute, part "goodness" .

An answer to the question of "goodness" is part salience (Hoffman and Singh, 1997).
Hoffman and Singh propose a human vision theory in the context of the minima rule
that defines the salience of a visual part where salience is the visual significance of a part
in terms of perception. They argue that parts help us index our cognitive memory of
shapes during visual tasks. They further suggest that the saliency of a part determines
its efficacy as an index. Efficacy relates to reaction times, error rates, confidence ratings,
and decisions of figure and ground for our visual processing (Hoffman and Singh, 1997) .
Leveraging psychophysical experiments, Hoffman and Singh propose that the salience of
a part depends on primarily three factors: relative size of the part, degree of protrusion,
and strength of part boundary. Although they give quantitative definitions of these

29

factors, their work is a human vision theory and not a computer vision algorithm. In
particular, they only give a brief discussion of part salience for 3D surfaces and instead
focus most of their attention to 2D silhouettes.

2.4.1 Shape Complexity

The challenge that our research addresses is the development of an algorithm that com­
putes Hoffman and Singh's notions of part salience for 3D meshes. Since no algorithm in
the literature implements Hoffman and Singh's definitions directly, we have broadened
our literature review to include algorithms that measure shape. Hoffman and Singh's
definitions are essentially measures to quantify the shape of a part. In the literature,
we do find a diverse array of applications from satellite imagery (Oddo, 1992) to neuron
morphology (Cesar and Costa, 1997) that require shape measures. To gain an under­
standing of these approaches and to inspire our search for a part salience measure, we
review the literature in shape measures in the following paragraphs.

To begin, King and Rossignac (King and Rossignac, 1999) present a paper that
is directly relevant to triangle mesh data sets. In their work, the authors consider
lossy mesh compression and propose a shape measure to evaluate compression methods.
Their shape factor is relative to a sphere of a given radius and measures the level of
tessellation that a certain shape requires. Toussaint (Toussaint, 1991) proposes another
measure for shape in 2D based on polygon decomposition. Toussaint argues that the
number of interior triangles from the resulting decomposition that do not share an
edge with the boundary of the polygon serves as a measure of shape. Chazelle and
lncerpi (Chazelle and lncerpi, 1984) have proposed the sinuosity as a measure where
sinuosity is the number of times that a polygon's boundary alternates between complete
spirals of opposite orientations (Toussaint, 1991) . Although polygon triangulation is
a 2D problem, convex decomposition of polyhedra is the 3D analog with examples
in (Chazelle, 1984; Hershberger and Snoeyink, 1998) as outlined in the previous section.
A downside to these algorithms and the subsequent shape measures based on them is
the computational effort required to compute the decompositions. A computationally
efficient approach to measuring shape is the polyhedra moments found in (Li, 1993) . Li
presents efficient methods for computing various degrees of moments for a polyhedron.
A more recent paper is (Osada et al., 2 002), which proposes a method of computing
shape signatures of polygonal models. The key to their algorithm is the definition of
an appropriate shape function based on a global geometric property. They suggest the
distance between two random points on a surface is one possible function.

Spatial database systems (Bryson and Mobolurin, 2 000) as related to geographic
information systems are another area of research where quantifying shape has gained in­
terest. A theoretical characterization of polygonal objects common to spatial databases
is through the fractal dimension. A notable investigation is Mandelbrot's paper (Man­
delbrot, 196 7) that applies fractal analysis to Britain's shoreline. As a shift away from
fractal dimensions, Brinkhoff (Brinkhoff et al ., 1995) proposes a pattern vector approach

30

. '

to measuring shape. Brinkhoff develops a metric based on a set of descriptive param­
eters such as notches, vibrations, and convexity. He combines these parameters in a
weighted sum to compute the complexity of the object. Bryson and Mobolurin (Bryson
and Mobolurin, 2000) further expand on these concepts.

We also find shape measures in biological shape analysis, particulary cell morphology.
An interesting paper by Cesar and Costa (Cesar and Costa, 1997) develops a multiscale
approach. In the context of neuron morphology, they formulate a normalized multiscale
bending energy description of neural cell boundaries. Bending energy, itself, is a measure
of shape where Young et al. (Young et al. , 197 4) use bending energy to characterize the
contours of biological objects. Vliet and Verbeek (van Vliet and Verbeeck, 1993) extend
bending energy definitions to 3 D data sets.

From the computer vision and image processing literature, a few key methods use in­
formation theory (Shannon, 1948) to measure shape. Oddo (Oddo, 1992) has developed
a segmentation algorithm based on global shape entropy to extract building boundaries
from aerial imagery. The entropy definitions in Oddo follow from the gray level def­
initions of entropy in (Pal and Pal, 1989). Oddo uses a region growing technique to
identify building shapes where the curvature of the region boundary defines the entropy
function. Roui-Abidi (Roui-Abidi, 1995) also uses curvature and entropy but in a dif­
ferent context. She formulates a curvature-entropy measure relative to Oddo and uses
her formulation to govern sensor placement to maximize information in sensor views.
To estimate the uncertainty in pose for multiple sensor views, Stoddart et al. (Stoddart
et al. , 1998) propose a registration index as a means of quantifying the error that one
might expect when registering a particular shape. This registration index represents
some level of shape measure. Finally, Gahli et al. (Ghali et al. , 1998) define a metric for
the amount of rotational information that an image contains and investigate rotational
information properties of Latin character sets. A more recent computer vision method
is the linear shape descriptor in (Sanniti di Baja and Svensson, 2002) , which seeks a
skeletal description of shape volumes. Another recent paper is (Athitsos and Sclaroff,
2002) that describes a method for computing protrusion of fingers in images for hand
shape classification.

2.4.2 Part Salience

Unfortunately, none of these methods are independently sufficient for a straightforward
development of Hoffman and Singh's part saliency into a computer vision algorithm.
The pattern vector formulation of Brinkhoff (Brinkhoff et al. , 1995) , however, does
offer an approach to how we might combine the three factors that Hoffman and Singh
outline while the computational techniques of (Li, 1993) and (Athitsos and Sclaroff,
2002) suggest possible methods of computing these factors . As we will see in a later
chapter, we have developed a part saliency metric that follows the theory of Hoffman
and Singh that fills this gap in the literature.

The fundamental principle of Hoffman and Singh is the relative significance of ad­
jacent parts on an object or in a scene. Their research identifies measurable quantities

31

(a) (b) (c)

Figure 2. 10: Salience of parts. These illustrations are simple examples that demonstrate
part salience. Each one shows two parts connected with a different salient feature. The
upper objects have two parts that are less salient than the parts of the lower objects .
(a) Relative size of parts determines salience. (b) Degree of protrusion. (c) Turning
angle of the cusp boundary.

relative to the parts that determines the overall salience of a part. We illustrate these
measures in Fig. 2 . 10 for simple 2D sketches. These figures demonstrate that global
properties such as the size of each part in Fig. 2 . lO(a) and the degree of protrusion in
Fig. 2. l 0(b) effect the salience. In general, a large part is more salient that a smaller one.
A part that protrudes significantly is more salient that a part that does not. Further,
these figures illustrate local properties that effect salience such as the turning angle at
a part boundary in Fig. 2 . lO(c) . Hoffman and Singh extend these ideas and present
mathematical definitions for both 2D contours and 3D surfaces. We propose to use
these salience measures as a more appropriate filter-and-merge method than the ad hoc
approaches in Mangan and Whitaker and Wu and Levine.

2 .5 Summary

This chapter has presented an extensive review of the literature for each of the topics
explored in this dissertation. We now highlight the key articles that serve as the foun­
dation for the theories and algorithms that we develop in the next chapters. Below we
delineate these articles for clarity and note how we intend to extend the state of the art.

Part Decomposition After surveying a variety of human vision theories, we have se-
lected the minima rule (Hoffman and Richards, 1984) as the most appropriate

3 2

approach for scene modeling and reverse engineering applications. Our contribu­
tion is to develop a computer vision algorithm-the Minima Rule Algorithm-that
adheres to this theory.

Curvature Estimation With the minima rule, curvature estimation becomes an im­
portant topic. We have identified tensor voting (Tang and Medioni, 2002) and
Taubin's algorithm (Taubin, 1995) as the most promising methods in the litera­
ture. We bridge the gap between these two algorithms to extend the state of the
art.

Mesh Segmentation To segment a mesh using the minima rule and a curvature es­
timation algorithm, we have found three algorithms (Vincent and Soille, 1991 ;
Wu and Levine, 1997; Mangan and Whitaker, 1999) that serve as starting points
for our development of a new mesh segmentation algorithm. In particular, our
contribution is to develop a watershed segmentation algorithm for triangle meshes
that implements the flooding model of watersheds.

Shape Measure A successful segmentation algorithm requires appropriate methods
to handle over segmentation. We have explored the literature with regard to
shape measures in an effort to measure the segmentation quality. Although we
have not find an adequate computer vision algorithm that satisfies our needs, we
have identified part saliency (Hoffman and Singh, 1997) , which is a human vision
theory, as a potential solution. Our contribution is again to develop a computer
vision algorithm for this theory, as with the minima rule.

This summary list completes the literature review. In the next chapter, we develop our
Minima Rule Algorithm that extends the above state of the art.

3 3

Chapter 3

Part Decolllposition: Minima

Rule Algorithin

The primary contribution of this dissertation is the development of the Minima Rule
Algorithm for decomposition of triangle mesh approximations of 3D objects and scenes.
In this chapter, we briefly overview this algorithm. As the previous chapter outlines , a
significant body of research is available from cognitive psychology, in particular human
perception, that seeks to understand the fundamental elements of human vision with
regard to part decomposition. From our survey of the literature, we have selected the
minima rule theory from Hoffman and Richards (Hoffman and Richards, 1984) as the
most applicable to our problem domains for scene modeling and reverse engineering.
This chapter is a short presentation of the Minima Rule Algorithm as a computer vision
system. We note that we do not discuss in detail the elements of this algorithm, here.
We delay such specifics to subsequent chapters that focus on individual components
of the system. Our goal for this chapter is to introduce the algorithm and build the
foundation for the remaining chapters.

We begin this chapter by introducing in Sec. 3 .1 a simple example the we use exten­
sively throughout the remaining chapters. This example is illustrative of the concepts
that we develop. In the next section, Sec. 3.2, we present the input and output for the
Minima Rule Algorithm. Finally, we conclude in Sec. 3.3 with a block diagram of the
complete system. This diagram shows the key components that we investigate in detail
during later chapters.

3 .1 Mug Example

Throughout our discussions, we use the same example of a coffee mug to illustrate the
various concepts of our algorithms. Photographs of the actual mug we have chosen
appear in Fig. 3. 1 . We have selected this mug for its familiarity to the reader as a
common household object and because it has certain interesting features. The first
feature is that it is entirely one color-black. So, shape is the only visual cue that a

35

I I I

(a) (b) (c)

Figure 3.1: Sequence of photographs of actual mug. This sequence shows the mug that
is used as an example throughout this dissertation.

human observer would use to decompose the mug. The second feature is its topology.
The mug has a genus one topology, which is equivalent to a torus. The handle of the
mug creates a loop the makes this a genus one surface. Although most objects have
genus zero topology, many objects we encounter with our applications do have non-zero
topologies where the mug is just one example. The third feature of the mug is that it
has clear minima rule parts. The mug basically consists of a cup, a handle, and a base.
To use this mug in our computer vision system, we have created a full computer model
of the mug as a triangle mesh using techniques from (Sun and Abidi, 200 1). Fig. 3 . 2
shows examples of this computer mesh model. This mesh is the input to our system.
The decomposition of this mesh into a cup, a handle, and a base is the output. In the
next section, we clearly specify this input and output in further detail.

3.2 Input and Output

To clarify the goal of our research, we seek to define precisely the input and output to
our Minima Rule Algorithm. We begin with an assumption about the underlying surface
that our mesh data approximates. We assume that our mesh is a discrete sampling of a
piecewise smooth surface. If we denote the piecewise smooth surface as S, then we can
denote each part r of S as Sr where we define a part in accordance with the minima
rule. Each Sr is also a piecewise smooth surface. We now formally state our problem
as follows.

Given a piecewise linear approximation M of a piecewise smooth surface S = Ur Sr

where the minima rule defines each part Sr ,

Find the corresponding mesh decomposition Mn = Ur.Mr where each Mr approxi-
mates the original visual part Sr .

The union operation U is over the set of R parts where r = 0, ... , (R- 1) . For definitions
of S and M, recall Sec. 2. 2 . 1. Note that M = (K, V) where K is the mesh topology
and V is the vertices of the mesh. An example of a mesh for a coffee mug appears in

36

(a) (b) (c)

Figure 3 .2 : Sequence of renderings for scanned mug. This sequence of images show
computer renderings of the triangle mesh that models the mug.

Fig. 3 . 3 (a). The geometry of the mesh is the point cloud V as in Fig. 3 . 3 (b) where we
have the set:

V = { vo , v1 , . . . , Vn-1} (3 . 1)
and n is the number of vertices in the mesh. The topology K defines the connectivity
of the vertices, edges, and faces of the mesh as in Fig. 3 . 3 (c). A precise definition of K
is a simplical 2-complex (Kinsey, 1993) with the following k-skeletons

vertices:
edges:
faces:

K0={0} , { 1 } , {2 } , . . . , { (n - 1) }
K1 ={0, 1 } , { 1 ,2 } , {0,2 } , . . .
K2={0, 1 , 2 } , . . .

where K = LJ�=o Kk. So, M = (K, V) approximates our real world surface S.
We use the term approximates to emphasize that measurement error often corrupts

the creation of M. Refer to Fig. 3 .4 that shows the steps to generate M from S. This
figure shows the sampling block where a laser range scanner or some other computer
vision sensor samples the real world surfaces of interest. The addition of noise error
models measurement error that might occur during the sensing process. The point
cloud V is the set of sampled points that are on or near the surface S. The reconstruction
block recovers the topology K, or in other words connects the dots, to form the triangle
mesh M.

The decomposition of M yields the segmented mesh Mn , which consists of parts Mr

where again r = 0, . . . , (R - 1). Refer to Fig. 3 .5(a). Each mesh Mr fits the same
definition of a mesh as M such that Mr = (Kr , Vr). Also, the decomposition generates
an adjacency graph G, as in Fig. 3 .5(b) , that represents the interconnection of each
part Mr to form Mn. Thus, M is the input , and A1n and G are the output to our
Minima Rule Algorithm.

37

(a) (b)

(c) (d)

Figure 3.3: Example input to Minima Rule Algorithm. We show the input mesh M

as (a) A solid rendered model, (b) A point cloud model of just the mesh vertices, and
(c) A triangle only model. (d) A zoom view of the handle in (c) .

Sample

Noise
Error

V K

Reconstruct

Figure 3.4: Block diagram of data generation. This block diagram illustrates the cre­
ation of a triangle mesh M = (K, V) from a piecewise smooth surface S.

38

(a) (b)

Figure 3.5: Example output for Minima Rule Algorithm. We show (a) the output
mesh Mn where R = 3 and (b) the output graph G.

3.3 Algorithm Overview

With the input and output defined, the block diagram in Fig. 3.6 shows the three steps
that are necessary to decompose a triangle mesh M into minima rule parts MR and
adjacency graph G. This diagram defines our system and thus our contribution to the
state of the art . The first block is the Normal Vector Voting algorithm , which estimates
the curvature at each vertex of a mesh. Curvature estimation is fundamental to the
minima rule, and Normal Vector Voting is a significant contribution to the start of the
art . We develop the theory for this algorithm in Ch. 4. The second block is the Fast
Marching Watersheds algorithm for mesh segmentation. This algorithm implements
a hill climbing definition of the classic watershed algorithm from image processing to
segment our input mesh into the minima rule parts. Ch. 5 presents the details of
this algorithm. The final block estimates the quality of the segmentation from the
watershed and attempts to improve this quality. The central theme of this block is
the Part Saliency Metric, which Ch. 6 addresses. The implementations for these three
blocks also include contributions to the state of the art, and each chapter specifically
delineates those contributions. Also, each algorithm has either two or three parameters
that a user must specify. In general, the Minima Rule Algorithm is not sensitive to
these parameters in that a user does not need to tweak each one to gain useful results .
Rather, these parameters allow the user to control each stage of the decomposition
algorithm to optimize for certain conditions. At the end of each chapter, we present a
table of the user parameters for that chapter and specify typical values. This concludes
our overview of the Minima Rule Algorithm, and we now begin a more in depth look
at Normal Vector Voting in the next chapter.

39

r - 1
I I

I Triangle I Surface_. Mesh :
I I

Normal Vector Voting
Fast

.... Marching Watersheds

I

I Part I ... Saliency I--. .,. Metric I

I

I

I Minima Rule Algorithm
I I
� -

Visual Parts

Figure 3. 6: Block diagram of the algorithm proposed. The input is a triangle mesh
representation that approximates a 3D surface. The output is a set of meshes that are
the visual parts of the original surface.

40

I I I ·I I I I

Chapter 4

Curvature Estimation: Normal

Vector Voting

Surface curvature plays a key role in tasks such as registration, segmentation, simplifi­
cation, recognition, and analysis. We find curvature in reverse engineering (Alrashdan
et al., 2 000; Yang and Lee, 1999), medical visualization (Sander and Zucker, 1986 ;
Sander and Zucker, 1990), and robot navigation (Ferrie et al., 1993) among other ap­
plications. For this dissertation, we are interested in curvature as the foundation for
our part decomposition algorithm of the minima rule. The importance of curvature is
that as a local surface feature it is invariant to rigid transformations and thus serves
as a valuable shape description. The major drawback, however, is that it follows from
the second derivative of a surface and as such is often difficult to estimate in the dis­
crete world of graphical models. Our goal is to estimate the curvature of a surface
from a dense mesh approximation of that surface and in so doing we recognize two key
challenges--surface noise and smoothness discontinuities.

First, we consider surface noise. Errors in measurement and registration manifest
themselves as noise in the geometry of the mesh. Range imaging in computer vision for
example samples the surfaces of a scene and creates point-cloud models. The precision in
estimating the position of these points is a function of the sensor mechanics, instrument
electronics, surface orientations, and reflective properties. With the variability among
these elements, measurement error is inevitable. Additionally, registration error results
from reconstruction algorithms that take multiple point clouds as input and attempt to
recover the topological relationship among those points relative to the original surface
topology. The complexity of aligning the coordinate systems of independent point clouds
is a common source of error. Beyond measurement and registration error, isosurface
extraction in medical imaging introduces another source of error. Most medical imaging
systems generate gridded volume data. Extraction algorithms sift through these grids to
create an isosurface mesh. The nature of these algorithms is such that artifacts usually
corrupt the output. Although these sources of error listed above are systematic and

41

not necessarily random, we model them as surface noise on the mesh. Filtering and
processing often minimize the effects of this noise, but they do not eliminate it entirely.

Second, we consider smoothness discontinuities. Since we assume that our meshes
approximate some unknown real-world surface, a question that we must consider is
what class of surfaces do we expect. As a practical matter, we restrict ourselves to
piecewise-smooth surfaces. This assumption implies that curvature discontinuities are
present where two or more smooth surfaces join. Since curvature is singular at such
junctions, we must account for these discontinuities. We justify our choice of piecewise­
smooth surfaces since most computer vision applications and most medical applications
assume a scene consisting of either rigid or non-rigid objects, respectively (Campbell
and Flynn, 2 001; Flynn and Jain, 1989). Alternatives might include entirely smooth
surfaces or piecewise-linear ones, which intuition suggests are not practical models of
real-world surfaces. Piecewise smooth is the most appropriate choice but for curvature
estimation requires careful consideration at creases.

In this chapter, we describe an algorithm called Normal Vector Voting that addresses
both of the above issues and robustly estimates curvature for dense triangle meshes. The
contributions of Normal Vector Voting are as follows:

• application of geodesic neighborhoods to improve curvature estimation on large
dense meshes,

• robust classification of surface orientation to account for curvature singularities at
creases and corners, and

• robust estimation of principal directions and principal curvatures to overcome
surface measurement noise.

The first is the application of geodesic operations to curvature estimation. The dense tri­
angulations of large meshes from computer vision and medical imaging enables geodesic
operations to overcome sampling noise and thus to improve the quality of estimation.
Another contribution is the crease detection scheme that allows the algorithm to des­
ignate a mesh vertex as either on a smooth surface, at a crease junction, or with no
preferred orientation. The advantage of this classification is the detection and avoidance
of curvature singularities. Finally, a third contribution is the robust estimation of both
the principal directions and principal curvatures. Previous methods have demonstrated
robust computation of the principal curvatures alone but not the directions (Tang and
Medioni, 1999) while others have demonstrated the computation of both but not in a
robust manner (Taubin, 1995). Normal Vector Voting bridges the gap between these
two algorithms.

In the following sections, we outline the Normal Vector Voting algorithm. We begin
in the next section, Sec. 4.1 with a quick overview of Taubin's formulation of curvature
estimation for triangle meshes. Then, in Sec. 4.2, we present an overview of the major
components of our algorithm. The remaining sections, Secs. 4.3- 4.6 , discuss each of the
components in detail. Finally, we close the chapter in Sec. 4. 7 with a few comments.

4 2

1

_I

' .

. -

.,

..

,.

4.1 Discrete Estimation

By way of introduction, we review the discrete formulation of curvature in accordance
with Taubin (Taubin, 1995). Taubin shows that for a point p on a smooth surface the
symmetric matrix

1
17r Bp = -2 "'p(To)T0TJd0 ,

7r -'Tr

(4. 1)

with superscript t denoting transpose and To is a column vector as defined in Sec. 2.2. 1 ,
has eigenvectors that are equivalent to the principal directions {T1 , T2} and eigenvalues
that are related by a fixed homogeneous linear transformation to the principal curvatures
as

l'i,1 = 3 bl - b2
"'� = 3 b� - br (4.2)

p p p

where b! and b� are the eigenvalues of Bp associated with T1 and T2 , respectively. The
third eigenvalue is zero and corresponds to the eigenvector equal to the surface normal
at p. For a vertex v on a discrete mesh, Tau bin approximates (4. 1) as

(4. 3)

for a finite set of directions Ti in the tangent plane of v. The weight Wi is the discrete
integration step and has the constraint L Wi = 2 1r. Taubin's algorithm computes Bv for
a vertex on a mesh and then decomposes the matrix with a Householder transformation
and a Givens rotation. The resulting eigenvectors and eigenvalues lead to the principal
directions and principal curvatures via (4 .2).

The question at hand is how do we estimate "'i and Ti in (4. 3). Taubin employs a
truncated Laurent series to approximate these values, but this approach is not robust.
Tang and Medioni (Tang and Medioni, 1999) suggest a more robust solution. Building
on these algorithms, we have developed Normal Vector Voting as a robust method
to estimate the individual "'i and Ti and thus the principal directions and principal
curvatures for a vertex on a mesh. We now take an in-depth look at this algorithm.

4.2 Algorithm Overview

Normal Vector Voting is a two-pass algorithm. For the first pass through a mesh, we
estimate the normal vector orientation for each vertex. For the second pass , we estimate
curvature. For normal vector estimation, the basic idea is to select a surface region
around a vertex. A user-specified distance bounds this region in terms of geodesic
distance from the vertex where the vertex is the center of the geodesic patch. Each
triangle in this patch---or geodesic neighborhood-votes at that center vertex in order
to estimate the orientation of that vertex. Note the simple example in Fig. 4. 1. Here,
triangle /i in the mesh neighborhood Mv of vertex v has a normal N that generates a

43

(a) (b)

Figure 4 . 1: Normal Vector Voting illustration. A triangle with normal N generates
vote Ni for the orientation of the surface at v. The circular arc follows the perceptual
continuity constraints.

normal vote Ni at v. We collect these votes in a covariance matrix and decompose this
matrix using eigen analysis. The eigenvectors and eigenvalues estimate the orientation
for v where the orientation is either a surface normal Nv , a crease tangent Tv , or a
null vector for no orientation. We illustrate this sequence of events in Fig. 4 . 2 . With a
few slight modifications, this same sequence estimates the curvature at v for the second
pass. The algorithm in Fig . 4. 3 demonstrates both passes and the equations in this
algorithm are in the following sections.

4.3 Geodesic Neighborhood

The first step in Normal Vector Voting for both the first or second pass is to find the
triangles or vertices that are close in a geodesic sense to the vertex of interest. The
geodesic neighborhood problem, which follows the discrete geodesic problem (Mitchell
et al. , 19 87) , is to find the m triangles that are within a user-specified distance of
the vertex. The key is that the distance is not the Euclidean distance but rather the
shortest geodesic distance along the surface of the mesh. As noted in the literature this
problem closely resembles the shortest path problem for . a graph, which the Dijkstra
algorithm (Dijkstra, 1959) solves. The difference is that the shortest path along the
edges and nodes of a graph is not necessarily equivalent to the shortest geodesic path
over the surface, which includes the triangle interiors and not just the edges. Kimmel
and Sethian (Kimmel and Sethian, 199 8) present an elegant algorithm, called Fast
Marching, that solves this problem in 0(m log m) time and Sun and Abidi (Sun and
Abidi, 2 001) propose a simplification that is readily adaptable to our domain. The time

4 4

� - i
Mv Vv Ev I

..----.. I

Vertex Find Face
(Vertex)

Neighbors

Vote with
Each Face
(Vertex)

Eigen
Analysis

Classify : Orientation
Vertex

(Compute
Curvature)

V
(Orientation) I

I

I

I

I Normal Vector Voting
L -

Nv ,Tv

(Curvature)

Figure 4 .2 : Block diagram of Normal Vector Voting. This block diagram shows the flow
of the Normal Vector Voting process for a single vertex. With slight modifications, the
same diagram applies for the estimation of the surface normal for a vertex and of the
surface curvature for a vertex.

complexity is important when compared to such Euclidean algorithms as k-d trees that
2 require O(m + 3 n3) time where n is the number of triangles in the whole mesh (Weiss,

1999). Also, k-d trees require additional O(n) storage space beyond the current space
required for the mesh, itself. The Kimmel and Sethian algorithm requires no additional
storage.

As a brief aside, we distinguish the Kimmel and Sethian definition of shortest
geodesics from the straightest geodesics of Polthier and Schmies (Polthier and Schmies,
1998; Polthier and Schmies, 1999). The latter insures the uniqueness of a geodesic path
on a polyhedral surface. Since we are only concerned with a neighborhood and not the
actual path, this trait is not crucial to our problem. We are interested in shortest and
not straightest geodesics.

Fig. 4 .4 shows three different sizes of geodesic neighborhoods. The smallest neigh­
borhood in this figure consists of just the immediate triangles adjacent to the vertex
of interest. We also refer to this simple patch as the umbrella neighborhood since it
figuratively resembles a collapsible rain umbrella with a canopy of triangles mounted on
its central vertex. Another common term for the umbrella is the one-ring neighborhood.
Subdivision surfaces refer to the k-ring neighborhood of a vertex where a ring is the set
of triangles within k edges of the vertex. A k-ring is a topological neighborhood defini­
tion. We will compare k-ring topological neighborhoods and geodesic ones shortly. Most
algorithms that require a neighborhood usually work with the umbrella patch. Taubin's
curvature algorithm (Taubin, 1995), for example, employs such a neighborhood. Our
research has shown-and hopefully Normal Vector Voting demonstrates-that signifi­
cant advantages arise if we enlarge beyond the umbrella neighborhood. The choice of
the neighborhood size depends on the application but in our context we identify feature
size, noise level, and sampling density as the variables that dictate this choice. These
variables have competing interests and thus tradeoffs among them exist. For example,
a mesh that contains small features requires a small neighborhood to preserve those

45

input : A triangle surface mesh M, k-geodesic boundary, and (c, r,) for crease
detection

output : Four arrays for principal curvatures and directions, Kmax , Kmin , Tmax,
Tmin

foreach vertex v in M do
Mv +- GeodesicFaceNeighbrhood (v, k) ;

initialize matrix Vv ;
foreach triangle face Ji in Mv do

Ni +- NormalVectorVote (v , Ji) ;
Wi +- ComputeWeight (v, Ji) ;

Vv +- Vv + Wi Inner Product (Ni , Ni) ;
end

(Ev , Av) +- EigenAnalysis (Vv) ;

(Ss , Sc , Sn) +- ComputeSalience (Av) ;
switch max (Ss , cSc , c'TJSn) do

case S8 surface patch Nv +- Ev , I ;
case cSc crease junction Tv +- Ev ,3 ;
case c'f/Sn no preferred orientation;

end
end

foreach vertex v in M that is a surface patch with N v do

Mv +- Geodes icVertexNeighbrhood (v, k) ;
initialize matrix K v ;
foreach vertex Vi in Mv that is a surface patch with Nvi do

Ti +- TangentVectorVote (Nv , Vi) ;

ki +- ComputeNormalCurvature (Nv , Nv,. , Ti) ;

Kv +- Kv + ki InnerProduct (Ti , �) ;
end
(Ev , Av) +- EigenAnalysis (Kv) ;

Tmax [v] +- Ev , 1 ;
Tmin [v] +- Ev ,2 ;
Kmax [v] +- 3Av,I - Av,2 ;
Kmin [v] +- 3Av,2 - Av,I i

end

Figure 4.3: Normal Vector Voting Algorithm. This algorithm is for a surface mesh data
structure. Note the algorithm is a two-pass algorithm through the vertices of the mesh.
The input values (c, r,) are actually design constants and not user variables like k. The
user adjusts k to account for noise, sampling, and features in the mesh. However, we fix
(c , r,) to detect specific crease features. The user does not need to adjust these values
for different meshes.

46

;

..

.,,. I,

(a) (b) (c)

Figure 4 .4 : Geodesic neighborhood examples. Examples of different sizes of geodesic
neighborhoods for the same vertex on a cylindrical surface mesh. (a) , (b), and (c) have
one-, three-, and five-geodesic neighborhoods, respectively.

features. If that same mesh, however, has significant noise corruption, then a large
neighborhood is necessary to smooth out the noise. Similar arguments follow for sam­
pling density. Because of these competing issues, we have defined the neighborhood
size as a user-specified parameter. The user simply specifies the geodesic distance that
bounds the neighborhood. Actually, the user specifies an integer multiple of the average
length of the triangle edges in the mesh to eliminate scaling issues. As a result we
define the k-geodesic neighborhood as the neighborhood with a geodesic boundary that
is k times the average edge length. We derive the term k-geodesic in the spirit of the
k-ring designation.

A question that arises is what is the benefit of a k-geodesic neighborhood over a
k-ring neighborhood. In particular does the computational burden to find a k-geodesic
overshadow that for a k-ring. For insight, we outline the Kimmel and Sethian's Fast
Marching algorithm. We begin at the vertex of interest and simply walk outward to
the one-ring vertices. We use the equations in (Sun and Abidi, 2001) to estimate the
shortest geodesic distance back to the center vertex from each one- ring vertex. We then
place these vertices on a heap with their distance as a key into the heap. We now walk to
the closest one by removing the top vertex from the heap-the vertex with the shortest
distance. We compute the geodesic distances for each of its one- ring vertices back to the
original center and place them on the heap. The algorithm again removes the closest
vertex from the heap and repeats. We see that this walking algorithm is very similar
to a k-ring neighborhood algorithm. The only differences are the computation of the
geodesic distance for each vertex and the priority of the walk driven by the heap. A ring
algorithm would simply prioritize the walk as a function of the current ring state where
the walk proceeds after extending the neighborhood to a complete ring. The geodesic
neighborhood algorithm walks towards the closest vertex regardless of how close or how
far that vertex is in terms of a ring.

Although this priority walking does require some additional computation, the hen-:
efits, especially for small neighborhoods, far outweigh this minor cost as the following
examples illustrate in Fig. 4 .5. For the regular triangulations that we see with range
images and isosurface algorithms, we often find a bias of a one-ring neighborhood as

47

shown in Fig. 4. 5 (a) . The thick dark circles in this figure represent k-geodesic bound­
aries while the alternating bands of white and shaded triangles represent the various
k-ring neighborhoods. Inside the first dark circle, the small one-ring neighborhood has a
bias towards the right side of the figure. A one-geodesic neighborhood, however, defined
by the first circle includes the one-ring triangles and the triangles labeled with an "A"
where we consider a triangle to be in the one-geodesic neighborhood if each of its three
vertices fall within the region bounded by the circle. These additional triangles balance
the support of the neighborhood and eliminate the unintended bias of a simple one-ring.
Similarly, the white two-ring also has a bias towards the right where the inclusion of the
"B" triangles offers a more balanced two-geodesic neighborhood. Similarly, triangula­
tions that are not quite as regular such as the one in Fig. 4.5 (b) have a bias as well since
triangle sizes and configurations have more variation. We again use the "A" and "B"
labels to illustrate the comparison. For curvature estimation our experience suggests
that the balanced support of geodesic neighborhoods are a significant benefit especially
in the context of the discrete (4.3) where adequate directional sampling around a vertex
is important.

Since Normal Vector Voting is a neighborhood-oriented operation with a geodesic
definition, we label it as a geodesic operation. We use this label in the spirit of the
so-called mask operations (Gonzalez and Woods, 1993) from image processing. With
mask operations, we analyze an image pixel in terms of its own gray level and of the
gray levels of its neighbors. We often specify the mask neighborhood as k x k where
k is the width in pixels of the mask centered at the pixel of interest. We see that our
geodesic operation is similar except we specify the k-geodesic neighborhood of interest.
We now have a geodesic neighborhood Mv , Our next step is to vote and determine the
orientation of v or curvature at v depending on if we are in the first or second pass,
respectively.

4.4 Vote Collection

For the first pass, the next block in the diagram of Fig. 4.2 involves the voting of the
triangle faces Ii E Mv at the vertex v. We must address two questions:

• How does face Ii cast a vote?

• How does vertex v collect these votes?

To answer these questions, we are inspired by Tensor Voting (Medioni et al., 2 000).
Tensor Voting is a computational framework that infers structures such as boundaries
and surfaces from unstructured, sparse, and often noisy 3D point clouds. This frame­
work employs perceptual constraints from theories of human vision and subsequent
definitions of tensor voting fields to extract structure. The implementation of tensor
voting requires a discrete voxel representation of space where input points cast votes and
voxels collect votes in the context of tensor algebra. Medioni et al. suggest a system of

48

- -,--
! . I ,- : I - -r

(a)

- • . · +--i- f -t
I i . I

,} . _ -f --'{, __ �. 1 :,;. •t L i - -
, .

l I · J - �

j. ---+:----;
,'

,
'k-:_·-· ! 11 I '

� . . - t1 ,f · i I __ • ·- - -�_,..,.__

; -tl •f :!•-� :-h�+t ·- l i ·.· I ·. i
i i

., ·1 .
.I i . -

, •'i ' ·\ I +--,--

(c)

(b)

(d)

Figure 4.5: Geodesic versus ring neighborhoods. Examples of geodesic neighborhoods
versus ring neighborhoods. The alternating rings of shaded and white triangles de­
pict the various rings. The thick circles bound geodesic neighborhoods. (a) The "A"
triangles distinguish a one-ring neighborhood from a one-geodesic neighborhood. The
"B" triangles show a similar difference for a two-ring and a two-geodesic. (b) When
triangulations are not as regular, we often see more exaggerated differences . (c,d) Tri­
angulations that exhibit the behavior depicted in (a) and (b) .

49

tensor voting fields in conjunction with coordinate frame rotations and convolution-like
operations with those fields to encode local geometric structure at each voxel. After the
voting process, they extract salient global structures such as surfaces, curves, and junc­
tions by sifting through these voxels with a level-crossing detection algorithm. Although
the application of this approach to triangle meshes is possible, we reformulate the Tensor
Voting notions and propose a more natural vector framework for triangle meshes. We use
the same perceptual continuity constraints (Andreson, 199 5) as Medioni et al. to govern
vote casting, but we define a more appropriate vector geometry instead of the tensor
voting fields. (Recall Fig. 2.2 for an illustration of perceptual constraints.) For vote col­
lection, we use a covariance matrix similar to the quadric error matrix in (Heckbert and
Garland, 1999), which has a direct relationship to the tensor algebra in Medioni et al.
Interestingly, Heckbert and Garland (Heckbert and Garland, 1999) show a relationship
between this covariance matrix-in the limit-to surface curvature. We however use
this matrix to estimate orientation and later follow Taubin's approach to estimate cur­
vature. We have found that, in the presence of surface noise, this two-step approach is
more robust than directly extracting curvature from the covariance matrix.

4.4. 1 Casting Votes

We first consider how a triangle Ji generates a normal vote Ni at vertex v. A couple
of approaches are possible. For example, one method is to set Ni at v equal to the
normal N of the plane that contains Ji as in Fig. 4 . 6 (a) , so that Ni = N. This simple
method works well with low curvature surfaces but leads to significant error as curvature
increases. With some insight, we see that an improvement to this method is to fit
a smooth curve from Ji to v and allow the normal vote to follow the curve. The
perceptual continuity constraint (Andreson, 199 5) suggests that the most appropriate
curve is a circular arc with shortest arc length. Following this argument, we construct
the geometry in Fig. 4. 6 (b) . For the shortest arc-length circle, the curve must lie
entirely in the plane Iii that contains the triangle normal N-rooted at centroid Ci of
triangle Ji-and the vertex v. We can compute 0i in the figure as

where vq = Ci - v and O � 0i � 1r. This equation leads to the normal vote
vq Ni = N + 2 cos 0i

l l vq l l

4.4.2 Collecting Votes

(4 . 4)

We next address how v collects the Ni votes from each Ji E Mv . One possibility is as
a weighted vector sum 'E wiNi. This approach is a common method for normal vector

50

NtVCi cos0i
= - llvC-£11

Nv

N N: _\

�- -- - - - - - p f;

- - - - � � \♦' · · · · · · · · · · · · · · · · · · V Nv�-- - · · · · · · · ·
vi

(a) (b) (c)

Figure 4.6 : Normal Vector Voting geometry. (a) A simple translation of N (Ni = N) .
(b) A slightly more sophisticated vote where we rotate N by (2 0i - 1r) in plane Ili .
(c) Curvature estimation geometry where Nv, ni, and 11 lie in the plane Ili and ni is
the projection of Nvi onto the plane.

estimation at vertices in a triangle mesh, typically with an umbrella neighborhood.
The limitation of this scheme is that normals with opposite orientation annihilate each
other (Nj = -Ni , Nj + Ni = 0), and we therefore lose variance information. This
situation occurs near crease and corner discontinuities in particular. As an alternative,
we represent Ni as a covariance matrix Vi = NiNf and collect votes as a weighted
matrix sum Vv with

(4 .5)

where the summation is over the Mv neighborhood. Unfortunately, the downside is that
we now lose absolute sign orientation. The covariance matrix Vi does not designate
which side of the mesh is the outside of the surface. Consider Ni = -Ni , How do
we distinguish NiNf = NiNJ? The benefit is that these votes no longer annihilate
each other. We can track the variance of the votes. This capability outweighs the
loss of the absolute sign information since the variance allows us to draw conclusions
about the relative orientation of the vertex. We will see in the next section that eigen
analysis of this variance leads to an interesting classification scheme for the vertex.
With regard to the absolute sign, we should be able to recover this information with
a simple ad hoc algorithm such as a quick averaging of the umbrella neighbors. Only
under a pathological case does such an approach fail. So we can readily overcome the
sign problem.

4.4.3 Weighting Votes

Our final issue to address is the weighting term Wi , Two factors effect this term: surface
area of h and geodesic distance, 9i, of Ci from v. Naturally, a triangle closer to v should
have a stronger vote than a triangle farther away while a larger one should also have
a stronger vote than a smaller one. We choose an exponential decay to reflect these

51

II;

notions
Wi = � exp (- Yi) Amax ak (4.6)

where ak controls the rate of decay, Ai is the area of /i , and Amax is the area of the
largest triangle in the entire mesh. In practice, the value, ak , is a function of the
maximum geodesic distance, 9m , that the user specifies as a k multiple of the average
edge length in the mesh. We define this value as

9m = 3ak = klave (4.7)

where lave is the average length of the triangle edges in the mesh. Votes beyond the
neighborhood 9m have negligible influence and can be ignored.

The above equations lead to a covariance matrix V v for each vertex v in the mesh.
This matrix represents the variance of the votes in the geodesic neighborhood Mv around v . In the next section, we use eigen analysis to investigate the orientation
of v using this variance information.

4. 5 Orientation Classification

While still in the first pass of the algorithm, the third step in Fig. 4 .2 is to decompose V v
using eigen analysis and then to classify v. Since V v is a symmetric semi-definite matrix,
eigen decomposition generates real eigenvalues A1 2 A2 2 A3 2 0 with corresponding
eigenvectors E1 , E2 , and E3 . We can visualize this eigensystem as in Fig. 4 .7(a) . The
eigenvalues, and thus the shape of the eigen ellipsoid, yield insight into the vote agree­
ment within Vv . Figs. 4 .7(b)-4 .7(d) shows three variations of the eigenvalues and how
we might interpret these variations.

In Tensor Voting, Medioni et al. (Medioni et al. , 2000) define saliency maps over
the entire voxel space with eigenvalues from their tensors. They then use an extremal
search algorithm to extract salient global structures from these map definitions. The saliency maps use the following relationships for their tensor eigenvalues:

Ss = A1 - -\2 , surface patch saliency;
Sc = A2 - A3 , crease junction saliency; and Sn = A3 , no preferred orientation saliency. (4.8)

Since we seek to classify the preferred orientation of a vertex using vector algebra as
opposed to the global structure through a voxel using tensor algebra, we take a different
approach and do not employ a search algorithm to sort through voxels . For our vector
voting, we propose the following vertex classification scheme for the eigenvalues of V v

52

-

(a) (b) (c) (d)

Figure 4.7: Possible variations of eigen ellipsoid. These ellipsoids depict possible varia­
tions in the eigenvalues. We interpret these variations of V v as the orientation saliency
of the neighborhood around v. (a) Covariance matrix V v where the eigenvalues A 1 , A2 ,
and A3 define the shape. (b) Surface patch where At is much larger than A2 , and A3 .
(c) Crease discontinuity where A 1 , and A2 are similar in value but larger than A3 .
(d) Patch with no preferred orientation where each eigenvalue is similar in value.

53

Table 4 .1 · Extrema values for classification constants.

€
0 00

'TJ

0 Surface Crease

00 No Decision Noise

at each vertex:

{
S8 : surface patch with normal Nv = E1

max{ Ss , €Sc , crJSn} = cSc : crease junction with tangent Tv = E3
c'f/Sn : no preferred orientation

(4.9)

where 0 � c < oo and 0 � rJ < oo are constants that control the relative significance
of the saliency measures. These constants are not user parameters since they are fixed
for a given system. When we design a system however we need to carefully select these
constants to balance noise tolerance and crease detection.

We demonstrate the design impact of c and 'f/ with examples. First , consider one
extreme where we design c = rJ = 0. This system always classifies a vertex as a surface
patch regardless of any corners or creases in the original piecewise-smooth surface.
Consider

This design associates a surface normal with each vertex even if the vertex is a sample
of a crease or a corner. Thus, the design does not detect curvature discontinuities. This
approach is very similar to a normal estimation algorithm that averages the triangle nor­
mals of a a one-ring neighborhood for a vertex. Another design extreme lets c, rJ -+ oo.
Such a system never classifies a vertex as a surface patch regardless of smoothness and
instead classifies each vertex as a corner. This design never assigns surface normals to
vertices. The third extreme is a design where c -+ oo and 'f/ = 0. As we might
expect, this system always classifies a vertex as a crease and associates a tangent vector
with the vertex. Although the first design may have some use, the latter two designs
have little practical use, but they do illustrate the choice of the constants (c, rJ). When
designing a system, we fix c to discriminate the types of creases that we expect in the
piecewise-smooth surfaces and rJ to discriminate the amount of surface noise that we
wish to tolerate in our sensors. Table 4.1 illustrates the extrema of the classification
constants.

54

(a) (b)

Figure 4 .8: Crease examples with different dihedral angles. These examples illustrate
different dihedral angles for creases on piecewise-smooth surfaces. The normal vec­
tors N1 and N2 are for the respective smooth patches adjacent to the crease.

For a system design, we need to decide how much noise we can tolerate and what
crease angles we need to detect. If we choose to detect small creases, we reduce the
overall robustness of the system. On the other hand, less tolerance to small creases
allows more tolerance to noise. The constant c controls these design considerations. In
our experiments, the system c = 2 offers a balanced compromise of detecting creases
and allowing variation. As a rule of thumb, we have the following equation

tan P. = /1 2 V €+1 (4 . 10)

where <P is the minimum dihedral crease angle that the system can detect. We illustrate
examples of crease angles in Fig. 4 .8. We emphasize that this angle is not for edges in
the mesh but for the creases of the original piecewise-smooth surface. So, for c = 2 ,
we detect creases in the original surface with <P � l If however that surface has
creases with ¢ < i , the system classifies vertices that are samples near these creases
as surface patches, but the benefit is robustness to noise. Following a similar example
and argument, we can see that 'T/ = 2 also offers a balance between noise and crease
detection. We can formulate the following equation

tan 'f = ✓ 1

2 TJ + 1
(4 . 1 1)

where 1/J is the angle of variation between a crease decision and a n<rpreferred-orientation
decision relative to the eigen analysis of V v from the previous section. With most
systems, we suggest c = 2 and 'T/ = 2.

With our first pass through the mesh, this classification estimates the normals for
each vertex on a surface patch and detects each vertex along a crease discontinuity.
Using this information with extensions to Taubin's algorithm, we discuss in the next

55

section how a second pass through the mesh generates estimates for the curvature at
each vertex.

4.6 Curvature Estimation

Our second pass through the mesh follows the same sequence as in the first pass. Recall
Fig. 4 . 2 . This time, however, we use the normal estimates from the previous section
to estimate the curvature at each vertex. We again use a geodesic neighborhood Mv

around each vertex but for this pass we are interested in the vertices Vi E Mv , and not
the triangles, in this neighborhood. Each vertex Vi votes at the center vertex v where we
collect the votes in a matrix Bv from Eqn. (4. 3) . We decompose this matrix with eigen
analysis and use the subsequent eigenvectors and eigenvalues to estimate the directions
T1 and T2 and principal curvatures K� and K� at v with the linear transformations in
Eqn. (4. 2) . We now specify the weights Wi , tangent directions Ti , and normal curvatures
Ki in the matrix sum of Bv .

We begin with the weights since they are the simpliest terms to define. As with the
first pass, we use the same decay function in Eqn. (4. 6) except that we remove the area
components Ai and Amax · Also, we constrain I: Wi = 21r for all the weights around v.
This constraint is necessary to maintain translation invariance among the votes. Again,
the decay function places more emphasis on votes that are closer to v than ones that
are farther away.

We use the geometry in Fig. 4 . 6(c) to define the tangent directions Ti of each vote.
The figure demonstrates that we project the vector from Vi to v into the tangent plane
of v and normalize the result. The following equation is more precise

(4. 12)

where vvi = Vi - v. This direction is for any vertex Vi in the geodesic neighborhood of
v and not just the umbrella neighbors as in Taubin's algorithm. The normal Nv is the
estimate from the previous section.

Last we consider the normal curvatures Ki - We propose a discrete definition using
the changes in turning angle {Ji and in arc length s where

(4. 13)

An important consideration is that we properly define the turning angle for the normal
curve and not just the curve connecting Vi and v. The change in the turning angle
describes the change in the normal vector as we move along the curve. To this end,
we project the normal estimate Nvi at Vi into the plane Ili that contains Nv-rooted
at v-and Vi as

(4. 14)

56

where ni is the projection and Pi = Nv x n defines the plane that contains the normal
curve. The turning angle thus becomes

(4. 15)

The sign of "'i is the same as the sign of Tfni . Finally, the change in arc length is simply
the geodesic distance between the two vertices

!ls = 9i . (4 .16)
We estimate 9i from the geodesic neighborhood algorithm discussed in Sec . 4.3. For a
vertex v , we collect the curvature votes from the equations above into the matrix Bv

of Eqn. (4.3) , and eigen decomposition leads to the principal directions T1 and T2 and
principal curvatures "'! and "'� from the relation in Eqn. (4.2) .

4.7 Remarks

We have reached our goal. After the second pass, we have an estimate for the curva­
ture at each vertex. We discuss a few caveats, however. First we only compute surface
curvature if we classify a vertex as a surface patch. If a vertex has no preferred orien­
tation, surface curvature is meaningless. A vertex on a crease on the other hand is a
little different since we can estimate the curvature in the direction of the crease. With
slight modifications of the above equations, we can generate a tangential curvature es­
timate. The other principal curvature, which is orthogonal to this one, is infinite, but
we can estimate the cusp angle across the crease as either ¢ = 2 arctan � or (1r - 2¢)
where A1 and A2 are the eigenvalues from the first pass through the mesh in Sec. 4.5.
The choice for the angle depends on the absolute sign information that our ad hoc um­
brella method resolves. We further note that our classification scheme does not enforce
crease continuity, i.e. topologically link crease vertices. If such topological connectiv­
ity is important, we suggest morphological operations (Rossl et al. , 2000) or watershed
methods (Mangan and Whitaker, 1999) . The final caveat relates to the neighborhood
definition. The neighborhood algorithm is a fast marching method that begins at the
vertex of interest v as the center and marches out to form the neighborhood Mv , For
curvature estimation as the algorithm marches outward, we check the classification of
the current vertex and only proceed if it is a surface patch. This qualification does not
allow the marching algorithm to cross crease discontinuities and thus restricts Afv to the
same smooth patch as v . This approach improves the curvature estimate since vertices
on the other side of a discontinuity do not corrupt the estimation.

In this chapter, we have noted three parameters that control the Normal Vector
Voting algorithm. As a reference, we summarize these parameters in Table 4.2. Recall
that the only real user parameter is k and the other two variables, e and r,, are more

57

cos(Llt9
i) = N!ni

llnill

system design parameters. We make this distinction as the user typically adjusts k
to increase the accuracy of the curvature estimates relative to the surface noise of a
particular mesh or to the relative size of features in the mesh. The user, on the other
hand, should probably not adjust e and 17. We should fix these variables for a particular
implementation.

This Normal Vector Voting algorithm, as presented in this chapter, serves as the
curvature estimation algorithm for the part decomposition algorithm in this dissertation.
In the next chapter, we present a mesh segmentation algorithm, which is the next step
in our development of the decomposition theory. The output of Normal Vector Voting
serves as the input for the algorithm in the next chapter.

58

Table 4.2: Parameters for Normal Vector Voting Algorithm.

Parameter Range Equation Typical Comments

Value

k, Gk O < k < oo (4.7) k = 3 The k-geodesic neighborhood ac-

counts for surface noise. This pa-

rameter is a balance between noise

robustness and feature preserva-

tion.

€ O � c < oo (4. 10) € = 2 Determines the possible creases

features that we can detect. This

variable is more of a system design

parameter than a user one.

rJ 0 � rJ < 00 (4. 1 1) rJ = 2 Determines the level of noise sup-

pression. As with e, this variable is

also a system design parameter.

59

Chapter 5

Mesh Segmentation: Fast

Marching Watersheds

A triangle mesh is simply a collection of triangles and vertices that approximate a
3D surface. Although this representation is useful for visualization on a computer,
this low-level description is often inadequate for other tasks such as object recognition,
scene understanding, and feature modeling. We, as humans, can readily observe a
3D mesh rendered on a computer screen and quickly infer higher-level descriptions
such as the handle on a mug, but to the computer, the mesh is nothing more than a
jumbled pile of triangles and vertices. A computer inherently has no higher notion of the
interrelationship of the pile. Higher-level descriptions are necessary through appropriate
data structures . One way to impose such descriptions is through mesh segmentation.

Mesh segmentation refers to the partitioning of a mesh into a set of groups or regions
that cover the mesh. We emphasize the words group and region to distinguish the two
types of segmentation. A group segmentation clusters vertices and triangles without re­
gard to their topological relationship while a region segmentation classifies topologically
connected vertices and triangles. By analogy, if we think of people as mesh vertices and
triangles, group algorithms would segment people according to characteristics such as
tall, short , skinny, blonde, and brunette while region algorithms would segment people
relative to their physical location such as city dwellers , country folks, mountaineers, and
beach bums. The term cover implies that we assign every vertex and face in the mesh to
a specific group or region. Segmentation leaves no vertex or face unlabeled, so to speak.
In this dissertation, we are interested in a region segmentation that partitions a mesh
into contiguous regions that represent visual parts, as defined by the minima rule. The
segmentation goal is essentially a change of representation that organizes a mesh in a
higher-level description that is either more meaningful or more effi.cient--or both-for
further analysis (Shapiro and Stockman, 2001) . Recall our discussion of meaningful in
Sec. 1 . 1 and thus our choice of the minima rule.

From our literature review in Sec. 2.3, three papers represent the state of the art
in mesh segmentation (Vincent and Soille, 1991 ; Wu and Levine, 1997; Mangan and

61

. I I •

Whitaker, 1999). In our review, we noted the drawbacks to (Wu and Levine, 1 997)
and (Mangan and Whitaker, 1999) and suggested that (V incent and Soille, 1991) avoids
most of these drawbacks. Vincent and Soille propose a bottom-up flooding algorithm
that we have identified as a robust algorithm for the minima rule. Unfortunately, the
actual implementation of Vincent and Soille does not allow direct application of the
minima rule. So, we seek a new flooding algorithm that is appropriate for our definition
of height. As we will see, our definition of height is a directional definition that is
necessary for proper implementation of the minima rule.

In this chapter, we describe a novel algorithm called Fast Marching Watersheds that
implements watershed flooding and as such extends the state of the art beyond (Vincent
and Soille, 1991) and more recent implementations (Rettmann et al., 2 000; Rettmann
et al., 2 002). Specifically, we highlight the contributions of our algorithm as follows:

• creation of a fast and robust hill climbing algorithm for watershed segmentation
on a triangle mesh data structure

• definition of a directional height map appropriate for the minima rule using local
principal curvatures,

• application of morphological operations to improve the initial marker set for the
above algorithm, and

• a fast implementation of connected component analysis on a triangle mesh to aid
segmentation.

We outline the chapter as follows. We begin in Sec. 5 . 1 with a brief description of the
watershed analogy to clarify the algorithm framework. Then, we present an overview
of the algorithm, including a block diagram in Sec. 5.2. Next, Sec. 5.3 discusses the
steps for generation of a marker set to initialize the algorithm, and Sec. 5.4 describes
the connected components algorithm that distinctly labels the marker set. Sec. 5.5
presents the details of the hill climbing algorithm that grows the marker set into the final
segmentation that covers the mesh. Then, we present in Sec. 5.6 the major contribution
of this chapter, the definition of height for a minima rule segmentation. The final section
is Sec. 5.7 , which concludes with a few comments and remarks.

5 .1 Watershed Analogy

Suppose we have some triangle mesh that represents a surface model of a terrain such
as the hills around the Tennessee River in Fig. 5.1. For top-down bobsledding, consider
a drop of water placed at any point on the terrain. By gravity, the water will fall along
the slope of the terrain to a valley, or in other words, the drop will slide like a bobsled
to a local minimum. The beginning point where the water was first dropped and each
of the points along its path to the valley belong to that valley's watershed, or catchment
basin. Distinct valleys form distinct watershed regions, i. e. the segmentation regions.

62

•

L •

\

• ♦

L.. •

' '.

- '

., .

(a) (b)

Figure 5. 1 : Hill terrain along Tennessee River. This triangle mesh helps us to visualize
the watershed analogy. (a) Near Knoxville, the Tennessee River winds through the hills
of this computer rendering of a mesh terrain. (b) A zoom view of the underlying mesh
from (a) .

Although this description is a nice illustration, it leads to implementation problems
such as temporary storage to track the path of the water drop, special procedures to
handle flat plateaus, and output filtering to account for oversegmentation. Subsequently,
bobsledding algorithms are typically more complex than the second formulation in the
next paragraph.

A bottom-up flooding approach avoids these implementation problems. We can
conceptually describe flooding as in (Baccar et al . , 1996) . For simplicity, consider the
one-dimensional case in Fig. 5 .2 . We first punch holes in each valley of the terrain as in
Fig. 5 .2(b). We then begin flooding the terrain as in Fig. 5 .2 (c) from below by letting
the water rise through the holes at a uniform rate. See Fig. 5 .2 (d) . When the rising
water in distinct catchment basins is about to merge, we build a dam to prevent the
merging as in Fig. 5 .2(e) . The flooding will eventually climb beyond each terrain peak
and only the tops of the dams will be visible above the water as in Fig. 5 .2 (f) . The
dam boundaries divide each watershed region and thus define our desired watershed
segmentation. Since we grow outward from each valley, we do not need to temporarily
track the water flow until reaching a valley. We inherently know from which valley a
particular water flow began. Also for plateaus, we assume the water creeps from the
edge of the plateau until meeting another water flow or sliding down the other edge of
the plateau. We thus avoid the ambiguity of deciding where a drop of water should flow
on a plateau, as in bobsledding. Finally, we handle oversegmentation with a proper
initialization procedure as discussed below.

We now return to Fig. 5 . 1 . If we follow this same procedure for this terrain , we will
have an overwhelming and useless segmentation since the terrain contains a very large
number of valleys. The resulting segmentation would be grossly oversegmented as in
bobsledding. The concept of a initial marker set helps alleviate this problem. To create

63

(a) (b) (c)

(d) (e) (f)

Figure 5. 2: Simple example of watershed flooding analogy. These simple one­
dimensional terrains illustrate the flooding analogy of the watershed algorithm. (a) The
empty terrain that we wish to segment. (b) We punch holes in the valleys of the ter­
rain. (c) Flooding through the holes begins from below. (d) The flooding continues at
a uniform rate. (e) When flood waters from distinct valleys meet, they do not merge,
but rather we build a dam between them. (f) The process continues until each segment
of the terrain is associated with a specific valley. For the case shown, we have three
valleys.

64

a marker set, we threshold the terrain to a certain elevation, and the connected segments
below that elevation become our initial valleys, i. e. our marker set. The examples in
Fig. 2 . 8 best illustrate marker sets. In this figure, we see how different marker sets lead
to different segmentations. Importantly, the final number of regions after segmentation
is equal to the initial number of regions in the marker set. So, the key to a useful
segmentation is the proper selection of a threshold to create the appropriate marker
set. We will investigate the selection of a threshold in Sec. 5 . 3. 1. A good marker set
minimizes oversegmentation. Also, a good marker set reduces computational time as
an initial threshold often segments 7 0% to 90% of the mesh. Thus, the watershed
algorithm need only operate over the remaining 3 0% to 10% of the unsegmented mesh.
This computational savings is an advantage of a marker set.

The question that we now ask is how does watershed flooding work when we no
longer have a mesh that is a terrain map. Suppose our mesh is the now familiar mug
example in Fig. 1. 1. The mug does not have peaks and valleys like the terrain mesh. In
fact, the topology of the mug, whose handle makes it a genus one surface, is very different
from the genus zero topology of the terrain map. The answer is that we must formulate
our mesh into a height map. For the terrain data, this formulation is straightforward
and obvious. We conceptualize the triangle mesh as lying in the xy-plane and the z­
coordinate serves as the height, which defines the peaks and valleys for our watersheds.
For a mesh with arbitrary topology such as the mug that freely twists and turns in
3D, we can not simply select one coordinate as the "height" . We must be a little more
imaginative in our formulation. A solution is to introduce a fourth dimension to each
vertex of the mesh. This additional dimension is a value that serves as the height of
the mesh at that vertex. What is this new fourth value? Well , the answer is dependent
on our segmentation application. For this dissertation the height value is the local
curvature at a particular vertex. For some other application, it might be the color of
the surface. A variety of different height map definitions are possible. With a height
value at each vertex, a watershed algorithm for a mesh treats the surface, regardless
of topology, as a planar surface as in the terrain case. In other words, a watershed
algorithm considers surfaces with arbitrary topology to locally appear planar with the
additional height values defining peaks and valleys. With this concept, we next define
our watershed algorithm.

5.2 Algorithm Overview

Our Fast Marching Watersheds-both the name and the algorithm--derive inspira­
tion from Fast Marching Methods (Kimmel and Sethian, 1998) for computing shortest
geodesic paths on a mesh. Kimmel and Sethian's algorithm employs a heap data struc­
ture to control the geodesic "walk" across the surface of the mesh. For our watershed
algorithm, we use a similar heap structure to control the "flooding" across the vertices
of the mesh. Unlike Kimmel and Sethian, however, our heap keys on local height val­
ues, and not cumulative geodesic distances, and it tracks the progression of regions, and

6 5

i - i
I
I

M :

I
I
I

K F F' 1
... ----. ... ------ .-----. -----. I

Curvature
Estimation Threshold Morphology

Operations
Fast

Marching

I
I

: Fast Marching Watersheds
L -- - - - - - - - - - - - - - -1

Figure 5.3: Block diagram of the Fast Marching Watersheds algorithm. The input is a
triangle mesh, and the output is the set of watershed regions.

not geodesic paths. These differences mark our contribution of extending Kimmel and
Sethian's algorithm into the wholly different application of mesh segmentation and the
formulation of a flooding-based algorithm. A block diagram of the integrated algorithm
appears in Fig. 5.3.

The input to the algorithm as shown in the figure is a triangle mesh M and height
map H for the vertices of the mesh. We specify the height map as the following set

H = {ho , . . . , hn-d (5 . 1)

where n is the number of vertices in the mesh and hi is the "height" at vertex i . We define
the actual value of hi for our minima rule algorithm in a later section. The first two
blocks in the diagram create the marker set F' to initialize the watershed algorithm.
Then, the third block uniquely labels the regions Mr' C MR' individually through a
connected component analysis where r is the specific label and R is the number of such
labels. Finally, the last block grows the Mr' marker regions into the final watershed
catchment basins Mr C MR that covers the entire mesh.

n-1
M = LJ Mr

= Mn (5.2)
r=O

such that Mr n Ms
= 0 when r I- s. Note that M = Mn where Mn simply denotes the

segmented version of M into R regions. Fig. 5.4 shows two examples for each step. We
now look in depth at each of the blocks in the following sections.

5.3 Marker Set

The first two blocks in Fig. 5.3 establish the marker set for the initialization of the
watershed algorithm. These blocks label the mesh in a binary fashion such that each
vertex of the mesh either belongs to the marker set or does not. The initial step is a
straightforward thresholding of the height map values in (5 . 1) . Then, the morphology

66

'
•

I '
J J , · I '

..

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 5.4: Simple example of Fast Marching Watersheds. These simple examples show
the progression of the steps in the Fast Marching Watersheds algorithm. (a) A 2D
planar example with the initial threshold yielding black blobs in a binary representa­
tion. (b) Morphology operators close the blobs and remove unwanted smaller regions
to establish a clean marker set. (c) Connected components uniquely labels each blob,
in this case with a specific grey scale. (d) At conclusion of marching, the whole plane
is segmented into the final regions. Since we began with three markers in (c) , we end
with three regions in (d). (e-h) Same steps as previous example except for the mug.

67

Table 5 . 1: Two definitions of different foregrounds for a single threshold t.

Threshold Threshold
Above Below

hi > t hi < t

operations in the second step clean up the threshold regions and thereby establish a
robust marker set. By robust, we mean to say a marker set that avoids significant
oversegmentation at the completion of the watershed algorithm.

5.3 . 1 Threshold Segmentation

Thresholding of gray-scale images is well known (Shapiro and Stockman, 200 1) , and
thresholding of a height map, such as H above, over a mesh is not much different.
Thresholding yields a binary map of the vertices where some vertices are-in image
processing terminology-foreground and the rest are background. So, thresholding is
a group segmentation since we do not care about the topological relationship of the
vertices . In the simplest case, we choose a single threshold value t and designate whether
the foreground is threshold above or threshold below. In other words, for threshold above
if hi > t, then vertex i is foreground. Conversely, for threshold below, if hi < t, then
vertex i is foreground. Table 5. 1 summarizes these definitions. Thresholding above
yields the foreground set

F = { Vi I hi > t } (5 . 3)

where i E { 0 , . . . , n - l} and thus Vi E V denotes a specific vertex in the mesh M =
(K, V). Recall the mesh topology is K and the geometry is the vertex set V. We have
F C V and therefore a background set FB.

(5.4)

where the operator \ denotes set difference. Obviously, the crux of thresholding is
choosing t where (Gonzalez and Woods , 199 3 ; Shapiro and Stockman, 200 1) offer a
variety of strategies.

Fortunately, for our application, the minima rule defines a clear choice for the thresh­
old, and thus complex strategies for optimal thresholds are unnecessary. With the min­
ima rule, part boundaries occur at negative minima of curvature. Thus, t = 0 is a
natural choice. If we threshold above t = 0, we can create a marker set for the parts
of an object and flood the watersheds until reaching the negative minima boundaries.
Consider Fig. 5 . 5 . In Fig. 5. 5 (a) , we again show the surface mesh for the mug. If we

68

(a) (b) (c) (d)

Figure 5.5: Various mug threshold results for marker sets. An offset from zero improves
the threshold segmenation. (a) Original mesh without thresholding. (b) A binary map
on the mug where black indicates foreground vertices F with positive curvature and
white indicates background ones Fn with negative curvature. The threshold is set
at t = 0. (c) Another binary map where we have offset the threshold to a slightly more
negative value. Observe the reduction in the size and number of white patches. (d) A
third threshold example that is even more negative but still close to zero in a relative
sense.

apply the t = 0 threshold on curvature values, we create the threshold-above map in
Fig. 5 .5(b). With an understanding of curvature, we may not necessarily have expected
this result. The small white patches on the cup of the mug are at areas where we
probably expect strictly positive curvature values. Ideally, we should only have white
background around the handle joints and bottom cusp. The problem is that slight errors
in curvature estimation have led to negative values for these small areas. * A practical
solution to minor estimation errors, such as these errors, is to offset the threshold from
zero to some moderately negative value just below zero as in Figs. 5.5(c) and 5.5(d) . If
we compare these latter figures to the previous one, we notice a reduction in the size and
quantity of erroneous white patches. We do, however, preserve as white background­
and thus not part of the marker set-the negative curvatures around the handle and
base as we desire. With a simple offset of the threshold from zero, we gain improve­
ment in the marker set. We can further improve this initial set using morphological
operations.

5.3.2 Morphological Operations

Thresholding is usually only successful under highly controlled conditions. As we found
in Ch. 4, curvature estimation is definitely not a controlled environment. In fact, the
moderate variations in thresholds for Fig. 5.5 demonstrate the sensitivity of thresholding
to curvature. To overcome this sensitivity, we suggest mathematical morphology as a

* Although we are using Normal Vector Voting from Ch. 4 for our curvature estimation, we have pur­
posefully set the voting neighborhood of that algorithm to a small value to introduce some inaccuracies
in the curvature measures. Our intent is to investigate ways to overcome such problems through our
watershed algorithm and thus to build robustness into the segmentation process itself.

69

·�-•�
, - ---:,. ('41

post-processing tool to improve the marker set. To clarify terms and notation, we
briefly review the basic operations of mathematical morphology, and refer the reader
to (Gonzalez and Woods, 2 002) for additional details. Specifically, we discuss the two
fundamental operations of dilation and erosion, which by definition lead to the more
powerful operations of opening and closing.

The language of morphology is set theory. Consider two sets A, B C JR.2.t We define
dilation as

A EB B = {P l [(B)p n A] � A} (5.5)

where .B denotes the reflection of B while the subscript p denotes shifting this reflection
by p c JR.2 . We call set B the structuring element, and typically B is a symmetric set
such that B = B. Similarly, we can define erosion in the following equation

A e B = {P I (B)
p

� A} . (5.6)

Dilation expands A with the structure of B while erosion shrinks it. With these defi­
nitions, we can buil� the definitions for opening and closing. An opening is simply an
erosion followed by a dilation.

A o B = (A e B) EB B . (5 .7)

Opening generally smoothes the contour of a shape, breaks narrow isthmuses, and elim­
inates thin protrusions. A closing is just the opposite sequence.

A • B = (A EB B) e B . (5.8)

Closing tends to smooth the contour of a shape as well but, in contrast to opening,
it generally fuses narrow breaks and long thin gulfs, eliminates small holes, and fills
gaps in the contour. The power of opening and closing is that used in conjunction with
each other, they clean the shape boundaries and interiors. Fig. 5.6 (c) is a much better
marker set than Fig. 5.6 (a).

Rossl et al. (Rossl et al., 2 000) discuss the implementation of Eqs. (5.5)-(5.8) for the
arbitrary connectivity of a triangle mesh, embedded in 3D. Since we claim no contribu­
tions with regard to this implementation, we avoid the details of that discussion. We
instead emphasize two prominent features of their implementation that one must con­
sider. First, as (Ronse, 1989) and (Roerdink, 1996) note, "mathematical morphology
is flat" , which is to say, it is unclear how to define morphology on curved smooth sur­
faces. Roerdink (Roerdink, 1994) takes a first attempt towards morphological analysis
on surfaces using techniques from differential geometry such as geodesic paths, parallel
transport and exponential maps. The difficulty in extending these concepts to triangle
meshes has led Rossl et al. to redefine the morphological operators in a limited manner

tThese sets are in 2D to simplify the definition of the morphology operators. Sets that represent
two-manifold surfaces embedded in 3D require more complicated discussion that adds little to the
understanding of the operators. So, for now, we simply use these 2D definitions.

70

(a) (b) (c)

Figure 5.6: Mug morphology operations on marker sets. Morphology operations im­
prove the marker set even when the initial threshold may not be perfect. These figures
show the progression of a common combination of morphological operations, which is a
closing followed by and opening. (a) Initial curvature threshold with t = 0 for the mug.
(b) Closing by applying dilation followed by erosion to (a) . (c) Opening by applying
erosion followed by dilation to (b) .

71

with only a disk-like structuring element. They base their structuring element on the
k-ring neighborhood about a vertex where the k ring defines the "radius" of the disk
element. This definition is a topological one and not a geodesic one as (Roerdink, 1994)
seeks. Heijmans (Heijmans, 1994) refers to such approaches as graph morphology. The
second issue regards implementation of erosion and dilation beyond a one-ring disk to a
k-ring disk. Rossl et al. state that iterative application of successive one-ring dilations
and erosions is equivalent to a simultaneous k-ring operation. The former approach
has some computational advantages over the latter, and consequently, we use a similar
approach for our implementation.

So, from Rossl et al. (Rossl et al. , 2000) , we apply an opening and a closing operation
in sequence to clean our initial threshold set F. The user must specify a single param­
eter k, the size of the disk structuring element. We choose k = 1 for most applications.
We outline our morphology operations on F to improve the marker set F' as follows:

(5 .9)

where Dk specifies the special disk element of Ross} et al. An example disk element
is D1 , which consists of the vertex Vi along with each Vj in the one-ring neighborhood
of Vi. Again, consider Fig. 5. 6. For this figure, the initial threshold is exactly zero and
thus yields the poor initial markers in Fig. 5 . 6(a) . We see in the sequence of figures how
a closing with Di , Fig 5.6(b) , and then an opening with D1 , Fig. 5. 6(c) , improves the
marker set considerably. The closing bridges the small white gaps around the cup while
the opening eliminates the small isthmuses that appear around the base as a result of
closing. The next step is to uniquely label this marker set, which we address in the next
section with connected component analysis.

5.4 Connected Components

As with morphology, connected component analysis is well-known in image process­
ing (Gonzalez and Woods , 200 2; Shapiro and Stockman, 200 1) , and Figs 5.4(b) and 5.4(c)
illustrate the idea with a simple example. The basic concept is to generate unique labels
for each connected region in the binary set F' from (5.9) and to identify the connected­
ness of each region. Two vertices Vi , Vj E F' are connected if there exists a path along
mesh edges between them consisting entirely of vertices in F'. In other words, as we
walk along the edges of the mesh from Vi to Vj we encounter vertices v0 • If each v0 E F',
then Vi is indeed connected to Vj , A connected component Mr' is the set of such vertices
that are connected to each other. Thus, we have the following relationship:

R-1

F' = LJ M/ (5. 10)
r=O

72

where Mr' is a connected region within F' and R is the total number of such regions.
The Mr' regions are disjoint and have no overlap such that

Mr' n Ms' = 0 \/ r i- s . (5. 1 1)

Note that we grow Mr' marker into the final segmentation region Mr . We present an
algorithm to find the connected components on a triangle mesh in Fig. 5.7.

We use a boolean array visited to track vertices that we have labeled. We initialize
visited for v <t F' as true and for v E F' as false , such that we avoid vertices not
in the marker set. The queue front ier tracks the boundary of a region as the labeling
extends to connected foreground vertices. Note that the inner foreach loop circulates
around the umbrella neighborhood of each vertex. This loop requires a mesh data struc­
ture in M capable of maintaining incidence information of vertices and faces (Kettner,
1999) . The algorithm complexity is linear O (n) where n is the number of vertices for M.
This algorithm is not necessarily a contribution to the state of the art, but we have not
found a connected component algorithm explicitly delineated in the literature for a tri­
angle mesh. With this algorithm, we now have our marker set uniquely labeled, and
thus we can proceed with the watershed algorithm.

5.5 Watershed Algorithm

To this point, we have specified a marker set and labeled that set into distinct catchment
basins. We now seek an algorithm to grow these catchment basins to segment the entire
mesh. The selection of a particular watershed algorithm is not straightforward and often
confusing since the image processing literature lacks thoughtful distinctions between al­
gorithm specification and implementation (Roerdink and Meijster, 2001) . Our interest
in implementing a mesh algorithm, and not an image one, further complicates mat­
ters. Roerdink and Meijster, however, attempt to bring some order-at least for image
processing-to the situation through a critical review of several watershed definitions
and the associated algorithms that follow from those definitions. From this review, we
have selected the hill climbing algorithm. Our motivation for choosing this algorithm is
that it is the simplest since we do not have to compute geodesic distances and that the
reliance on a local height computation allows us to implement the minima rule. Our
implementation of this algorithm appears in Figs. 5.8 and 5.9. This algorithm begins
with the marker set F' and grows that set until we have segmented the whole mesh.
The background becomes empty, F.fu = 0. The close-up views in Fig. 5 .10 illustrate this
sequence.

Although both algorithms are flooding methods, our hill climbing algorithm differs
slightly from the immersion algorithm of (Vincent and Soille, 1991) as Fig. 5 . 1 1 demon­
strates. The main advantage as (Roerdink and Meijster, 2001) notes is the algorithm
simplicity since it does not require merging operations as flooding progresses. The heart
of our implementation is the heap data structure that controls the hill climbing process

73

input : A triangle surface mesh M and a marker set F' .
output : An array label whose elements are associated with vertices in M. The

labels are from the set {- 1, O , . . . , (R- 1)} where - 1 denotes "unlabeled" .

initialize array label as "unlabeled";
initialize boolean array visited with F' ;
r � o;

foreach v in M do
if not visited [v] then

Clear (frontier) ;

Push (frontier, v) ;

repeat
Vi � Pop (frontier) ;

label [vi] � r;
visited [vi] � true ;
foreach Vj in umbrella neighborhood of Vi do

if not visited [vj] then Push (frontier, Vj) ;
end

until Empty (frontier)
end

++r;

end

Figure 5 . 7: Connected Components Algorithm. This algorithm is for a surface mesh
data structure.

input : A triangle surface mesh M and an array label with some "unlabeled"
elements.

output : The array label contains no elements that are "unlabeled."
initialize heap ;

foreach Vi in M do

if label [vi] then Extend.Boundary (vi , heap, label) ;

end

while not Empty (heap) do
data � PopHeap (heap) ;

Vi � ExtractVertex (data) ;

if not label [vi] then
label [vi] � ExtractLabel (data) ;

Extend.Boundary (Vi, heap, label) ;
end

end

Figure 5 . 8: Fast Marching Watershed Algorithm. This algorithm is for a surface mesh
data structure. The power of this algorithm is in the heap data structure and in the
procedure Extend.Boundary O. The heap basically tells the algorithm where to march
next while Extend.Boundary () finds potential candidates for places to march.

74

input : A mesh vertex Vi and an array l abel and heap

output : Marches and extends heap with umbrella neighbors of Vi ,

initialize data ;

foreach Vj in umbrella neighborhood of Vi do

if not label [vj] then

data +- CreateHeapData (Vj , label [vi]) ;

key +- ComputeDirectionalHeight (Vi , Vj) ;

PushHeap (heap, key, data) ;
end

end

Figure 5.9: Extend Boundary Procedure. ExtendBoundary(vertex, heap, label) is a
procedure to extend the marching boundary in the Fast Marching Watersheds algorithm.
The ComputeDirectionalHeight O function computes the directional curvature, rela­
tive to the minima rule.

(a) (b)

Figure 5. 10: Close-up view of base of mug handle. These close-up views show the
progression from the marker set (a) to the final segmentation (b) . The white triangles
are unsegmented in (a) . In (b) , these triangles represent the dams that divide the
catchments basins for the cup and the handle of the mug.

75

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 5 . 11: Comparison of two flooding methods. The top row (a-e) shows the im­
mersion approach (Vincent and Soille, 199 1) and the bottom row (f-j) shows the hill
climbing approach of our algorithm. Note the merging between (c) and (d) for immer­
sion compared to hill climbing in (h) and (i). Both sequences are a trivial case where we
begin with a single marker in (a) and (f) and end with a single catchment basin in (e)
and (j) , respectively.

and the procedure ExtendBoundary () that populates this heap. The key into the heap
is local curvature such that positive curvature keys bubble to the top and more nega­
tive ones sink to the bottom. The PopHeap () function pulls from the top of the heap
to begin each stage of the marching process. The data associated with a key specifies
which vertex to march to and to what watershed it potentially belongs. If we pop a
vertex from the heap and it is already labeled, we simply pop the next one. This climb­
ing heap is similar to the marching heap found in Fast Marching Methods (Kimmel
and Sethian, 1998). In fact, our implementations of Fast Marching Methods for Ch. 4
and Fast Marching Watersheds in Fig. 5.8 are almost identical. As with Fast Marching
Methods, Fast Marching Watersheds have computational complexity O(n log n) where
n is the number of vertices in the mesh since the PushHeap () operation is an O(log n)
operation. This order assumes that we must segment each of the n vertices, but as
we have noted, with an initial marker set we typically have anywhere from 70-90% of
the vertices already segmented. So, n is usually much less than the actual number of
vertices in the entire mesh. The primary difference however between Fast Marching
Methods for geodesics and our Fast Marching Watersheds for segmentation is the func­
tion ComputeDirectionalHeight () . This function is the most significant contribution
of this chapter and is the impetus of the minima rule decomposition. As such, we outline
the equations that govern this function in the next section.

76

5.6 Directional Height

In Sec. 5.2, we presented a set definition of water height for each mesh vertex. Recall
Eq. (5.1). With this equation, each vertex Vi has a corresponding height hi. This global
definition of height is common in watershed algorithms, yet for the minima rule, we
need a more local definition. We need a definition such that we specify the height
hii from vertex vi to vertex vi , relative to the local curvature between these vertices.
Eq. (2.1) serves as a starting point. This equation specifies the normal curvature along
a particular direction. For our local curvature height, this direction is from vi to vi.
The tangent unit vector Tii at vi associated with this direction is as follows:

(5.12)

where Ti is a 3 x 3 matrix that projects the direction vector (vi - vi) into the tangent
plane of vi. We define this matrix as follows:

(5.13)

where I is the identity matrix and the vector Ni is the surface normal at vi. The
superscript t denotes the transpose and thus leads to an outer product operation. The
angle 0 in Eq. (2. 1) is the angle between Tii and the maximum principal direction T1
at vertex vi . The dot product of these two vectors yields the cosine of this angle.

(5.14)

With the above equations, we can now compute the normal curvature "'ii ·

(5.15)

where "'] and "'J are the maximum and minimum principal curvatures at vi , respectively.
Thus, the ComputeDirectionalHeight O function in the Extend.Boundary () procedure
returns "'ii as the directional height from Vj to Vi . This definition of height allows the
watershed algorithm to flow along vertices with similar values of curvature but impedes
climbing up negative curvature hills. This definition of height is interesting as it implies
that the height hji for a vertex Vj is dependent on the direction that we approach the
vertex.

(5 . 16)

This formulation is our major contribution to the watershed literature, especially in the
context of minima rule decomposition and mesh segmentation.

77

5.7 Remarks

In this chapter, the Fast Marching Watershed algorithm leads to a minima rule decom­
position of triangle meshes. See Fig. 5 .4 . At this point , we have not been rigorous in
our discussion of the figurative water height for this algorithm. In our presentation, we
have toggled between global height hi and local directional height hji · We acknowledge
our lack of distinction and attempt to clarify now. When we threshold, we do consider
the water height as global. We set the height equal to the minimum principal curvature
at each vertex, hi = ""7 - However, when we segment after thresholding, we consider the
water height as directional. We set the height hji as in Eq. (5 . 15) . So, we actually use
both definitions of height depending on the particular stage of the algorithm.

Another issue is the choice for the threshold value t from Sec. 5 .3 . 1 . As noted in that
section, the minima rule suggests that t = 0 is the natural choice, but implementation
results suggest that a slight negative offset from zero improves results. The question is
how far to offset . We have defined this offset as a user parameter for our algorithm.
Consider the set of vertices v- with negative minimum principal curvatures such that

v- = { Vi I ""7 � 0 } (5. 17)

where ""t is the minimum principal curvature for vertex Vi - We can average across this
set and establish our threshold as a percentage a of this average as follows

(5. 18)

where n- is the number of vertices in v-. Thus, the user chooses a instead of the
threshold t directly. Our implementation is not sensitive to the choice of a, but we
suggest that a = 0.3 yields good results for most applications .

With the above parameter, the Fast Marching Watersheds algorithm has a total of
two user parameters that control the segmentation process. The other parameter is the size k of the disk structuring Dk from Sec. 5 .3 .2 . We summarize both of these parameters
in Table 5 .2 . The objective of these parameters is to limit oversegmentation, but as with
most watershed systems, oversegmentation is inevitable. In the next chapter, we address
this problem with a metric to measure the quality of the segmentation output in terms of the visual salience of parts.

78

a t=- � 2 n- L.J ""i
ViEV-

Table 5.2: Parameters for Fast Marching Watershed Algorithm.

Parameter Range Equation Typical Comments
Value

k, Dk k E z+ (5.9) k = l Determines the size of the disk
structuring element for the mor-
phological operators. Since k de-
notes a k-ring, we choose k rela-
tive to the feature dimensions of
the surface mesh.

Q o ::; o ::; 1 (5. 18) a = 0.3 Determines the threshold t for the
marker set. We specify the percent-
age o instead of t directly to avoid
scaling issues.

79

Chapter 6

Shape Measure : Part Saliency

Metric

A shortcoming of watershed segmentation in image processing is oversegmentation (Vin­
cent and Soille, 1991 ; Roerdink and Meijster, 2001 ; Gonzalez and Woods, 2002) and
is equally true in mesh segmentation as well (Mangan and Whitaker, 1999; Rettmann
et al. , 2000; Rettmann et al. , 2002) . We have attempted to build robustness into our
system through our curvature estimation with Normal Vector Voting and our marker
selection with Fast Marching Watersheds to overcome or, at least to a certain degree,
minimize this problem. We have no guarantees however that our methods eliminate
the problem entirely. We have no way of knowing the quality of our segmentation.
We therefore propose the Part Saliency Metric. This measure is the salience, i .e. the
significance, each segmented part contributes to the entire mesh, and it quantifies the
importance of a part relative to the whole mesh, which in essence evaluates the quality
of a part as a part itself. Thus, the metric allows a ranking of the parts from least to
greatest in terms of this quality. With such a ranking, we can address oversegmentation
by merging the least salient parts with more salient ones until we eliminate enough
"bad" parts to reach a "good" segmentation. As we will see, the terms bad and good
are debatable and open for discussion. For now, we delay such a discussion, but we
note that the Part Saliency Metric serves as a quantitative measure to begin such a
discussion and constrains the debate to selection of a threshold to demarcate bad and
good.

As an illustration, consider once again the now infamous mug in Fig. 6 .1 . This
sequence shows a potential progression of part merges based on the Part Saliency Metric.
The initial segmentation in Fig. 6 .l (a) reflects five parts, which most observers would
agree is too many parts. The knob at the top junction of the handle with the cup and
the flat bottom underneath are oversegmentations. With the methods in this chapter,
we can compute the salience of the knob and the bottom, and we thus discover that they
are indeed the least important parts of the segmentation. So, we can trim them from
the segmentation and merge with the handle as in Fig. 6. 1 (b) and 6. 1 (c) . Continuing in

81

-

(a) (b) (c)

(d) (e) (f)

Figure 6. 1: Part salience progression for mug example (I). Sequence of region merges
where at each stage we combine the least salient part with a more salient one. The
top row shows a color labeling of the mug for the progression of part merges while
the bottom row shows corresponding Part Adjacency Graphs for these segmentations.
(a,d) Five parts: cup, handle, base, bottom, and knob. (b,e) Four parts: bottom merges
with base. (c,f) Three parts: knob merges with handle.

Fig. 6.2, we can merge the base with the cup in Fig. 6 .2(b) and the handle with the cup
too in Fig. 6.2(c). The Part Saliency Metric governs the decision as to which part is the
next one to merge, and by design, this process agrees with our visual perception of the
parts. Most observers would rank the parts from least to most salient as the bottom,
the knob, the base, the handle, and finally the cup, which the sequence we have just
outlined follows. This result is because we have designed our metric in accordance with
the human vision theory in (Hoffman and Singh, 1997) .

Another way to look at this progression is in the opposite direction. A human
when first viewing the mug in Fig. 6 .2 (c) most likely perceives the handle as the most
significant part of the mug aside from the cup itself. Then, if pressed to identify another
part of the mug, she would probably point out the base as the third part of the mug.
At this point, however, our human observer would probably stop and may never select
the bottom or knob as distinct parts of the mug. She somehow thresholds her notion
of parts and only identifies "good" parts. The minima rule captures her perception
of parts, but the rule does not address the visual salience of the resulting parts. Our

82

(a) (b) (c)

.,. ,.
(d) (e) (f)

Figure 6.2: Part salience progression for mug example (II) . Continued from Fig. 6. 1 .
Sequence of region merges where at each stage we combine the least salient part with
a more salient one. The top row shows a color labeling of the mug for the progression
of part merges while the bottom row shows corresponding Part Adjacency Graphs for
these segmentations. (a,d) Three parts: base, handle, and cup. (b,e) Two parts: base
merges with cup. (c,f) One part: handle merges with cup.

83

goal in this chapter is to seek an algorithm that allows us to measure and threshold the
visual importance of a part and thus keep only good parts.

Leveraging the perceptual theory of the minima rule, Hoffman and Singh propose
that the visual salience of a part depends on at least three factors: its relative size to
the whole object, the degree that it protrudes from the object, and the strength of its
boundaries. Recall Fig. 2.10. They support their theory with results from psychophysi­
cal experiments. In this chapter, we translate this human vision theory into a computer
vision algorithm that computes the salience of parts from a segmentation of a trian­
gle mesh. We apply this metric to the problem of oversegmentation through a filter
and merge algorithm that trims the least salient parts. With the development of this
Part Saliency Metric and the accompanying merge algorithm, we claim the following
contributions to the state of the art:

• implementation of a metric for the visual salience of a minima rule part for triangle
meshes,

• creation of an adjacency graph for representation of our minima rule decomposi­
tion, and

• application of the saliency metric and the graph as a filter and merge post­
processing step.

We outline the chapter as follows. In Sec. 6.1, we first discuss an overview of the
algorithm to computer part salience and trim least salient parts. Then, in Sec. 6.2, we
present our method for generating an adjacency graph to represent the part decomposi­
tion. This section also includes an interesting discussion of the four-color problem from
graph theory as a means to improve the coloring of our segmentation labeling scheme.
Next, Sec. 6.3 is the most important section of this chapter. We formulate the equa­
tions for the Part Saliency Metric within this section and demonstrate a methodology
for computing the metric. In Sec. 6.4, we define an algorithm for merging the least
salient parts of an object with other more salient ones. Finally, we conclude in Sec. 6.5
with a few closing remarks concerning the user parameters in this chapter.

6.1 Algorithm Overview

The algorithm associated with the Part Saliency Metric first creates an adjacency graph
of the segmented mesh, then computes the saliency measure for each part, and finally
merges the least salient parts with other more salient ones. Fig. 6.3 illustrates this
process as a block diagram. The adjacency-graph block takes the segmented mesh
MR and searches for neighboring parts to create an undirected graph G, which entails
isolating the boundary vertices. We label the whole set of boundaries for the mesh
as (3(MR). The bottom block is the implementation of the Part Saliency Metric. The
input to this block is the parts Mr C MR and the associated boundaries (3(Mr) c

84

.... ,

MR Create
G MR ' --

Adjacency Filter
...--

and Merge Graph

I , r �(MR) a

Compute SR
...... Part

Salience

Figure 6.3: Block diagram of merge algorithm. Block diagram of the filter and merge
algorithm using the Part Saliency Metric. The input is the part regions Mr C MR

of the triangle mesh M, and the output is a reduced set of those regions, Mr' C MR,
where R' < R.

f3(MR) , and the output is the set SR of saliency measures for each part .

(6. 1)

The final block uses this salience set SR and the graph G to merge the least salient
parts to form the final segmentation MR, with R' < R total parts. We now discuss each
block in more detail.

6.2 Part Adjacency Graph

The first step in this chapter is to create a Part Adjacency Graph, G = (R, E), from the
segmented mesh MR . The undirected graph G consists of a set of part nodes R and a
set of adjacency edges E. Each edge in E is an unordered pair (r, s) where r, s E R. Ex­
ample graphs appear in Fig. 6 .1 and 6.2. These graphs show the adjacency relationship
among the parts of a mug and are similar to the region adjacency graphs (Shapiro and
Stockman, 2001) from image processing and the surface adjacency graphs (Hoover et al. ,
1998) from range processing. For the data structures to represent and manipulate G,
we use the Boost Graph Library (Siek et al. , 1999; Siek et al. , 2001) . This C++ library
provides generic graph classes and algorithms. The translation of MR into G mainly
requires the identification of the region boundaries /3(MR)- We first outline an algo­
rithm to find /3(MR) , and then we briefly detour to a side topic known as the four-color
problem, which we use to color our segmentation graph.

85

� �

.

6.2. 1 Boundary Identification

Given a segmented mesh MR, we may not necessarily know the vertices, v E /3(MR),
that lie at region boundaries. Recall Fig. 5.lO(b). In this zoom view, we see the shaded
triangles for both the handle and the cup parts and the white triangles between them.
These white triangles are the part boundaries. Although we know which vertices are at
the boundary from this figure, the computer does not. We need a computer algorithm
that finds the boundary vertices f3(Mr) for a part Mr. We present such an algorithm in
Fig. 6 . 4 . Note that this algorithm is similar to the connected components algorithm in
the previous chapter.

This algorithm loops through each vertex v of the mesh. When the algorithm finds a
boundary vertex, it traverses clockwise around that particular boundary and tags each
vertex as "visited" thereby avoiding multiple walks around a boundary from the outer
loop. The walking process requires two special functions to properly handle singularities
such as in Fig. 6.5. In this figure, the problem is that the boundary passes twice
through v and thus requires consideration of the topology of the boundary. The first
function is Find.FirstClockwiseBoundary O. This function takes as input a boundary
vertex v and returns a halfedge h that is on the boundary and points to v. The concept of
a halfedge is found in (Kettner, 1999), and we illustrate it in Fig. 6.6. Since each vertex
on the boundary has at least two boundary halfedges that point to it, we specify h as
a halfedge that we encounter if we start inside the region and walk clockwise around v
until reaching the boundary. For most boundary vertices, this specification of h is
unique, but for others, two or more halfedges may satisfy the specification . As an
example, the singular vertex v in Fig. 6.5 has two such halfedges. The particular one
that the function returns is arbitrary with respect to our application and not necessary
to uniquely specify since we only seek a starting h for boundary traversal. Our walk
will eventually return to the other boundary halfedges at v. The second function is
FindNextClockwiseBoundary () and is the crux of the whole algorithm. This function
takes as input a halfedge h that meets the previous specifications and returns the next
clockwise halfedge on the boundary around v. To implement this function, we .begin at
the input h and circulate clockwise around v until we reach a halfedge on the boundary
that points to v. This time we are walking outside the region across the white triangles
as opposed to inside as with the function FindFirstClockwiseBoundary () . With this
second function, the algorithm moves in a leap-frog fashion around the vertices of a
particular boundary and adds those vertices to /3(Mr).

After identifying the boundaries f3(MR), our task of creating graph G is now trivial.
We first create R nodes to represent the parts. Then we loop through each f3(Mr) c
/3(MR), and add edge pairs (r, s) to the graph if f3(Mr) and f3(M8) are connected. Thus,
we have an adjacency graph G that compactly describes the segmentation MR. For
visualization, we use a graph drawing toolkit from AT&T Research Laboratories known
as Graphviz, which lays out drawings of graphs, approaching the quality of manual
layouts (Gansner and North, 2 000). Our choice of Graphviz results from the fact that

86

- .

.,

I •

I •

....

input : A segmented mesh MR.

output : An array /3 whose R elements are linked lists containing the boundaries
for each part .

initialize boolean array visited as false ;
initialize array /3 with R null lists ;
foreach v in MR do

if not visited [v] then
if IsBoundary (v) then

r +- GetLabel (v) ;

h +- begin +- FindFirstClockwiseBoundary (v) ;
repeat

Push (f3[r] , h) ;
visited [Vertex (h)] +-- true ;
h +-- FindNextClockwiseBoundary (h) ;

h +-- Opposite (h) ;
until h = begin ;

end
end

end

Figure 6.4: Boundary Traversal Algorithm. The algorithm identifies the vertices at the
region boundaries of a segmented mesh. The variable h is a halfedge data structure
as defined in (Kettner, 1999). The function Vertex () returns the vertex to which the
halfedge points, and Opposite O returns the adjacent halfedge. The repeat-until loop
walks around the boundary from an initial arbitrary vertex until returning to that same
vertex.

87

Figure 6.5: Boundary singularity example. A boundary singularity such as v can affect
an algorithm that traces the boundary if the algorithm only considers vertices on the
boundary and not the topology of the boundary itself. Shaded triangles are the seg­
mentation regions Mr and Ms while white triangles are between regions. Thick lines
denote the boundary edges f3(Mr) and f3(M8) of each region.

Figure 6.6: Halfedge data structure. An example of the halfedge data structure. An
edge (Vi , Vj) in the triangle mesh has two halfedges h and g such that h points to Vi and
g to Vj where g is opposite of h. Notice that the halfedges are oriented counterclockwise
around a triangle face.

88

automatic layout of graphs is not trivial when they exceed five or ten nodes. The simple
examples in the bottom rows of Figs. 6 . 1 and 6.2 show results from Graphviz.

Other than visualization, we do not directly use this Part Adjacency Graph. How­
ever, a graph representation is useful for other computer vision tasks such as object
recognition where part decomposition serves as an initial processing step (Trucco and
Verri, 1998) . Also, a graph representation allows us to apply a very rich set of algorithms
from graph theory to manipulate our part decomposition. As an example in the next
subsection, we explore the side topic of the four-color problem-which is well known in
graph theory-for coloring our segmentation regions.

6.2.2 Color Label Selection

With a graph representation such as G, we can easily apply a wide range of graph
algorithms to manipulate our segmentation. In particular, a very practical problem
that we face when visualizing our segmentation is the choice of colors to label each
region. The simplest solution is to choose R unique colors for each of the R parts.
This approach works well when our segmentation appears in full color such as on a
computer display. However, when it appears in grey scale such as from a laser printer
or photocopier, R distinct colors may not necessarily translate into R distinct grey levels ,
and more importantly a human observer may not necessarily be able to distinguish the
grey levels. Our problem now becomes how many grey levels can a human differentiate.
As with most psychophysical questions, this one is open for debate and no set number
exists. The general consensus is that most people can discriminate at any one point
in a monochrome image about one to two dozen different grey levels (Gonzalez and
Woods , 2002) . For our purposes, we seek sharp contrast among the grey levels so half
this number is probably more realistic for coloring our segmentations. Thus, we should
probably use about five to ten grey levels. If our number of parts R is greater than five
or ten, which is most likely the case, we have a problem since we must repeat some of
the grey levels for certain regions. The trick is that we must avoid selecting the same
grey level for adjacent parts because those two parts would erroneously appear as a
single part. This situation leads to the classical four-color conjecture.

In 1852, Francis Guthrie conjectured that only four colors are necessary to color
a planar map divided into countries such that two adjacent countries-countries that
share a common border-have different colors (Chartrand , 1977) . This conjecture is a
long-standing problem in graph theory where a map can be represented as an adjacency
graph. In 1976, Appel and Haken (Appel and Haken, 1977a; Appel and Haken, 1977b)
proffered a proof to this conjecture, but their methodology is a computer assisted ap­
proach that has led to skepticism among many mathematicians. Regardless , a rigorous
proof does exist for the less constrictive five colors (Heawood, 1890) . Heawood explored
other topologies beyond the planar map and conjectured the Heawood number as the
number of necessary and sufficient map colors for a compact connected surface without
boundary. For example , the Heawood number for a torus is seven. Heawood 's work
and the four-color conjecture justify our effort to color our segmentations with a finite

89

.

set of five to ten grey values. The advantage of representing these segmentations as a
graph is that a variety of graph algorithms are available for establishing a four coloring
of a graph. The Boost Graph Library that we use with our implementation offers such
algorithms, and in particular, we have selected a greedy algorithm that works well with
our non-planar topologies to approach the Heawood number (Siek et al., 1999; Siek
et al., 2 001).

Our brief excursion into this problem is to color the parts of our segmentation for
improved visualization. We illustrate the need for intelligent coloring in Fig. 6 . 7 . This
example shows the sole of a tennis shoe and is purposefully over segmented to illustrate
the coloring problem. In this figure, the top row is two different color maps for the
same segmentation. The images immediately below each one are the same coloring
except that we have mapped the colors to an equivalent grey scale.* The left column of
images shows the result of coloring each region with a simple algorithm that sequentially
alternates among a set of colors. The right column shows the more intelligent approach
using a four-color greedy algorithm. Notice for Fig 6 .7 (a) that the same color repeats
for the regions across the arch and through the heel of the shoe. These regions are
adjacent and thus lead to some confusion. We avoid this problem with the four-coloring
algorithm in Fig. 6 .7 (b). The grey scale images on the bottom row further highlight the
problem. The four-color algorithm creates a distinct labeling of the regions and clarifies
the visualization of the segmentation, especially for Fig 6 . 7 (d).

At this point, we now have a graph representation of our segmentation, and we have
a technique for coloring that graph. Our next objective is to develop the equations for
the Part Saliency Metric, which is the subject of the next section.

6 .3 Saliency Metric

The major contribution of this chapter is the Part Saliency Metric that we develop in
this section. Again, we base the development of this metric on the cognitive theory
in (Hoffman and Singh, 1997). Hoffman and Singh follow the minima rule for defining
part boundaries and present a theory of part salience. They mainly focus on 2D silhou­
ettes and do not provide rigorous formulations in terms of equations for their definitions.
They propose that salience is a function of the relative size of a part to the whole object,
the degree to which it protrudes, and the strength of its boundaries. In this section, we
present equations for each of these factors, and we specifically address their formulation
in terms of 3D triangle meshes.

We begin by proposing that the overall salience Sr of a part r is the weighted sum of
the three factors discussed by Hoffman and Singh. Given the relative size of a part Su,
the degree of protrusion S1r, and the strength of the boundary Sf3, we can write the

*The top and bottom rows may appear identical-and in fact are identical-if this document is a
non-color photocopy of the original color document.

90

(a) (b)

(c) (d)

Figure 6. 7: Illustration of four-color problem for segmentation. This set of segmen­
tations shows possible colorings for the bottom of a tennis shoe. The segmentations
are identical and have the same 30 regions. The overall segmentation is intentionally
poor to increase the number of adjacent regions to illustrate the four-color problem.
(a) This labeling of the regions alternates sequentially among a palette of 16 different
colors. (b) This labeling has only four colors for each region such that adjacent regions
never share a common color. (c) Grey scale version of (a) . (d) Grey scale version
of (b) . The grey scale versions further motivate the interest in the four-color problem
as demonstrated in the improvement from (c) to (d) .

91

following equation:
Sr =

3
(wa.Su + W-rrSrr + w13S13) (6.2)

where Wu , W-rr , and w13 are the weights of each factor, respectively, such that

Wu + W-rr + Wf3 = l (6. 3)

This formulation insures the salience Sr is in the range O � Sr � l. The constraint
in (6. 3) means that the user only needs to select two of the three weights since the third
one follows. Two of the weights, however, are indeed free parameters and are necessary
since it is unclear as to the relative significance of each factor to the overall perception
of part salience (Hoffman · and Singh, 199 7) . More experimental research from cognitive
perception is necessary to understand the inter-relationship among these factors, and
so we simply leave these weights as user parameters. We do not investigate perceptual
significance of these weighting terms in this dissertation. We leave this question for
future research and specifically to future cognitive research. The block diagram in
Fig. 6.8 illustrates our methodology. In each of the next three subsections, we discuss
how to compute each factor: Su , Srr , and S13 .

6.3 .1 Part Size

The first factor we explore is the relative size measure Su of a part. This measure
reflects the volume of the part relative to the volume of whole object . See Fig. 6.9.
For our application, this measure is the volume bounded by the part Mr relative to
the volume bounded by the original mesh M. Unfortunately, computing the volume of
either Mr or M is not straightforward since these meshes are possibly open surfaces,
and by definition, an open surface does not bound a volume. The part Mr may be
an open surface since we may not necessarily know how to complete the part itself,
particularly across the boundary contours {3(Mr) . A part-cut rule such as (Singh et al. ,
1999) or (Rosin, 1999) is necessary but part-cut theories are not well understood in terms
of human perception and thus difficult to formulate in terms of computer algorithms.
To demonstrate the ambiguity of part cuts, consider the simple illustration in Fig. 6. 10.
As for the original mesh M, it should ideally be a closed surface, but it may have holes
from scanning occlusions and other imperfections that preclude it from being a closed
mesh, as well. For these reasons , we suggest that the bounding boxes of these meshes
are an appropriate approximation of their volumes, and we thus suggest the following:

(6.4)

where O � Su � l , Br is the volume of the bounding box of the part Mr , and BM is the
volume of the bounding box for the entire mesh.

The question we now face is how to compute the bounding box of an open mesh Mr .
A variety of solutions are possible (O'Rourke, 1994) . We propose a method based on the

92

1

Mr

J3(Mr)

- -

Part
Size

Part
Protrusion

Boundary
Strength

s1t

I

s�

Part Saliency Metric
-- - - - - - - - - - - - - - - - - - - -

Figure 6.8: Block diagram of the Part Saliency Metric. The input is a part Mr and the
boundary /3(Mr) for the part. The output is the salience of the part Sr .

-----.. "-----·
I I

(a) (b) (c)

Figure 6.9: Salience variation with part size. This sequence shows how increasing part
sizes corresponds to increasing salience of the part. The 2D silhouettes show an object
with two parts: a circle and a square. The circle increases in size from left to right .

93

I
I
I
I
I
I
I
I
I
I
I
I Sr

I

(a) (b) (c)

Figure 6. 10: Ambiguity of part cuts. These images show the ambiguity associated with
part cuts. (a) A simple object that consists of a wheel with an axel. (b) If we chose
vertical part cuts, then the decomposition consists of three parts: a wheel and a left
and right axel peg. (c) If we choose a single horizontal part cut, then we have only two
parts: a wheel and an axel.

94

scatter matrix of the vertices of Mr and an eigen analysis of that matrix. The scatter
matrix Sa- is simply the covariance matrix of the vectors Si where we define Si as

(6.5)

and the average vector Vi as

(6.6)

The 3D vectors Vi E Mr are the vertices of the mesh for part r and nr is the number
of such vertices. We formulate the 3 x 3 scatter matrix as the outer product of the Si
vectors as

Sa- = L Sisf (6.7)
Vi EMr

where the summation is over the set of Si vectors and t denotes the transpose. To
compute the bounding box volume of Mr , we perform an eigenvalue decomposition
of Sa- , which yields the three eigenvalues .Xi , .X2 , and A3 . We then estimate the volume
as the product of these three values

(6.8)

From these values, we estimate the volume BM of the whole mesh as the sum of each
part,

BM = L Br , (6.9)
r

The value is more accurate than the bounding volume of the entire mesh. The next
step is compute the degree of protrusion of the part.

6.3.2 Part Protrusion

The second measure that we must compute is the degree of protrusion. This measure is
the degree to which a part "sticks out" from its object (Hoffman and Singh, 1997) . Parts
that stick out more seem to be more salient . See Fig. 6. 1 1 . A couple of definitions for
protrusion are possible (Siddiqi and Kimia, 1995; Hoffman and Singh, 1997) . Hoffman
and Singh argue in a qualitative manner that the most appropriate is the ratio of the
surface area of the part to the area of its cropped base. The cropped base is the area
of the surface bounded by the contour of the part boundary /3(Mr) that cuts through
the object to distinguish the part from the object. Recall Fig. 6.10 and the ambiguity
of part cuts. For now, we assume we know what part cut and cropped base we have.
We write the following equation to formalize the relative protrusion S.rr of a part r.

(6. 10)

95

A
,e S.1r= l-­

Ar

-

(a) (b) (c)

Figure 6 . 11: Salience variation with part protrusion. This sequence shows how increas­
ing part protrusion corresponds to increasing salience of the part. The 2D silhouettes
show an object with two rectangular parts. The top rectangle for each subfigure has
the same area, but its protrusion increases from left to right.

where O < Srr � 1, Ar is the surface area of the part, and A,a is the surface area of the
cropped base. The subtraction from one insures that this function increases as the part
protrudes more from the object. The computation of the part area Ar directly follows
from the area of the triangles that compose the surface of the part.

(6 . 11)

where Ai is the area of the triangle /i for part r. Unfortunately, we can not compute
the area of the cropped base quite as easily.

The difficulty with the cropped base is that we actually do not know the surface
that the boundary /3(Mr) bounds. We do not have a unique specification of the base
of a part and how it joins with the object because we lack an adequate part-cut the­
ory. We only have the part boundary. We could identify a minimal surface where the
boundary serves as a constraint along the lines of "Plateau's Problem" (Stuwe, 1989) .
Unfortunately, a calculus of variations solution makes such an approach unattractive
from a computational standpoint. So, our solution is to again turn to a scatter matrix.
This time our matrix is only for the vertices Vj that reside along the boundary {3(Mr)
of part r. We compute the 3 x 3 matrix S ,a as the covariance of the scatter vectors s j
as follows

S,a = � s . st. L...J J J
v3E,B(Mr)

where t denotes transpose. The scatter vectors are defined as

Sj = Vj - Vj

96

(6.12)

(6 . 13)

where the vector average is
1 Vj = - L Vj. n13 VjE/3(Mr)

(6.14)

The number n13 is the number of vertices Vj in the boundary {3(Mr). We decompose S13
into the eigenvalues A1, A2, and A3. If we assume that the boundary contour {3(Mr) is
close to-but not necessarily-planar, we can now estimate the area A13 of the cropped
base as the product of the two largest eigenvalues .

A13 = 4� (6 . 15)

where A1 � A2 � A3 � 0 since S13 is a semi-definite symmetric matrix. This equation
means that we indirectly find A13 from the bounding box of the part boundary. We
find the two largest dimensions AI and A2 of that box and compute the area from those
dimensions. The assumption is that the third dimension A3 is nearly zero since we
assume the boundary is almost planar. Most part boundaries should not violate this
simple assumption. As a caveat, if a part contains more than one boundary, we use
the boundary with the largest estimated area in the numerator of Eq. (6.10). We add
the areas of the other boundaries for the part back to Ar. This process improves the
estimate of Ar almost as if we are filling in the wholes formed by parts extending from
the current part. Our next task is to compute the boundary strength.

6 .3.3 Boundary Strength

The final measure that we need to compute for the part salience is the boundary
strength. See Fig. 6.12. Recall that the minima rule defines part boundaries along
lines of negative minima curvature. Thus, the strength of the boundary is the degree of
curvature along the boundary. One measure of this degree is an average of the minimum
principal curvatures for each vertex on the boundary. So, for a part r, we know from
the previous section the boundary {3(Mr) for that part. We can compute this average
as follows:

1 l'i,�
S13 = - L _J n13 Kmin

v; E/3(Mr)

(6.16)

where O s S13 s 1 , n13 is the number of vertices in the boundary set, KJ is the minimum
principal curvature for vertex Vj. On the rare occasion when Kj > 0 for a particular Vj,
we just omit this value from the summation, but we still include it in the n13 count. We
normalize this summation with the most negative curvature Kmin from the whole mesh.

Kmin = min { l'i,r I Vi E {3(MR) } (6.17)

where {3(MR) is the set of boundaries for every part from the segmented mesh MR.
This section completes our salience definitions. We now plug each measure back into

Eq. (6 . 2) to compute the salience of a part. The salience reflects the quality of each

97

(a) (b) (c)

Figure 6.1 2: Salience variation with part boundary strength. This sequence shows how
increasing the boundary strength of a part corresponds to increasing salience of the part.
The 2D silhouettes show an object with two circular parts. The boundary strength is
the degree of negative curvature at the part boundary. For example, the boundary
strength is zero-non-existent-for the leftmost figure, which without the dotted lines
we perceive as a single part. The boundary strength is strongest for the rightmost figure.

part, as a part, and allows us to merge bad parts with other more salient ones. We
address this issue in the next section.

6.4 Filter and Merge Algorithm

The previous section allows us to assign a salience value Sr to each part r of the seg­
mented mesh Mn . With this value, we can rank the importance of each part to evaluate
the quality of the segmentation. Assuming that our Part Saliency Metric reflects human
visual perception , a part with a larger salience value is a more important part, and thus
better quality, than one with a smaller value. If we sort the parts into an ascending list
with higher values of salience at the top of the list, then "poor" quality parts trickle to
the bottom of the list. The last part in the list is the least important part within Mn .
With this ordered list, we filter a part at the bottom of the list and merge it with an­
other more salient parts. This process completes the final step in the block diagram of
Fig. 6.3 and serves to improve any oversegmentation of MR that may have occurred.

If we assume that the salience of the last part in our list is such that it is a "bad"
part, then we can merge it with one of its neighboring parts. The Part Adjacency
Graph, G, tells us which parts are the neighbors of this bad part, and we can use this
graph to determine where to merge. If the bad part has only one neighbor, the choice
is simple. We merge it with that neighbor and then recompute the salience for the
subsequent combined part. We reinsert this new part and its salience into the ranking

98

appropriately. If , however, the bad part has more than one neighbor, we must choose
which one is more suitable for a merge. Hoffman and Singh do not discuss this issue
and thus do not suggest theories of human perception. Without an adequate theory, we
suggest the relative salience of each neighboring part governs this choice. If a part has
two or more adjacent neighbors, we select the least salient neighbor as the candidate for
merging. As before, we merge these two parts into a single one, compute their resulting
combined salience and insert this new part into the ordered list.

With this filter-and-merge process, we are able to use the salience of a part to
improve the decomposition of an object (or scene) from our watershed segmentation
of the previous chapter. The key to this process is the definition of a good and bad
part. At the current stage of this research, we do not suggest an absolute definition for
these terms, and indeed such a definition may not exist, even for human perception. We
do, however, propose a computational framework that applies the theories of Hoffman
and Singh to triangle mesh representations that are common in computer vision. Our
framework assigns to each part r a salience value Sr where a threshold of this value
may serve as a definition for good and bad parts. The difficulty is that if we merge
part r with part s , they form a new part r' with its own salience Sr' · Thus, a straight
threshold of the aggregate of parts from MR to establish a set of good and bad parts
is not possible. Rather an iterative, trimming threshold is necessary as our process
above outlines. We order the parts in a list and trim the least salient one from the
bottom of the list. Then, we reevaluate the updated list that includes the merged part
to determine if another bad part is at the bottom.

6.5 Remarks

Our final remark for this chapter concerns the user parameters for the equations dis­
cussed in the previous sections. To compute Sr for each part, the user must select two of
three weights to define the relative significance of each component of the Part Saliency
Metric. Table 6.1 outlines each of these parameters. The intent of these parameters is
to provide a means for a user to mimic human vision preferences for each component of
salience. When a user needs to place more emphasis on one component of salience, she
simply increases the weight for that component. For example, with industrial parts such
as bolts, screws, and other fabricated components, the boundary strength may not be
as important as part size and protrusion since these objects typically have well-defined
boundaries that are often right angles. Since the strength of such part boundaries are
almost equivalent, they do not play a major role in the salience of parts.

The Part Saliency Metric in this chapter along with Normal Vector Voting and Fast
Marching Watersheds from the previous chapters are the major steps of our total part
decomposition algorithm. In the next chapter, we first explore results from each of the
algorithms individually. Then we combine them into a complete system and explore
experimental results with data sets of real-world objects and scenes from a variety of
range scanning devices.

99

' '

, ..

Table 6.1: Parameters for Part Saliency Metric. Eq. (6.3) constrains these three param­
eters such that the user selects two and the third follows

Parameter Range Equation Typical Comments
Value

Wu 0 � Wu � l (6 . 2) Wu = 0.5 Relative importance of part size to
the salience of the part.

W-rr 0 � W-,r � I (6 . 2) W-,r = 0.5 Relative importance of part protru-
sion to the salience of the part.

Wf3 0 � Wf3 � I (6.2) Wf3 = 0.l Relative importance of boundary
strength to the salience of the part.

Recall Eq. (6.3) Wu + W-rr + w13 = I

100

Chapter 7

Experimental Results

This chapter presents the experimental results for the algorithms proposed in this dis­
sertation. We begin with results from the Minima Rule Algorithm in Sec. 7. 1 . This
section demonstrates the overall capabilities of the algorithm relative to human visual
perception through the theory of the minima rule. This first section is a high-level pre­
sentation of the results and does not discuss in detail the strengths and weaknesses of
the algorithm. The next three sections, however, do provide a thorough analysis of the
individual components of the algorithm. First , in Sec. 7.2, we show the robustness of
the Normal Vector Voting algorithm for the estimation of surface curvature. Then, in
Sec. 7.3, we investigate the capabilities of the Fast Marching Watersheds algorithm to
identify the minima rule boundaries and decompose a mesh into visual parts. Finally, in
Sec. 7.4, we evaluate the Part Saliency Metric as a measure of the quality of the results.
These four sections serve as the successful evidence of our proposed algorithms.

7.1 Minima Rule Algorithm

The Minima Rule Algorithm decomposes triangle meshes into visual parts. In previous
chapters, we have described the motivation for this algorithm and we have outlined the
theory that supports the development of the algorithm. In this section, we present the
results from our implementation.

We have coded the complete Minima Rule Algorithm in Visual C++® on a Microsoft
Windows platform using OpenGL for 3D visualization. A screen shot of the interface for
the program appears in Fig. 7. 1 . This main window of the program is a 3D mesh viewer
with a trackball controller. The menu and buttons above the visualization window are
the user interface for each aspect of the Minima Rule Algorithm such as the curvature
estimation, the threshold selection, the morphology operations, and other functions
previously outlined. We have implemented these functions in standard C++ (Weiss,
1999; Stroustrup, 1991) using a variety of libraries as tabulated in Table 7 .1 .

Using this program, we can decompose a mesh that is a manifold surface and has
arbitrary topology into minima rule parts. To demonstrate this capability, we show

101

Figure 7.1: Screen shot of user interface window. This interface is for the complete
Minima Rule Algorithm program.

Table 7.1: List of coding libraries used in software development.

Library Description Technical
Name Reference

Microsoft Foundation Windows interface library (White et al., 1999) Classes

OpenGL 3D graphics visualization (Neider et al., 1993) library

Standard Template flexible and extensible set (Hughes and Hughes, of software building Library blocks 1999)

Computational Geometry geometry and mesh (Veltkamp, 1999) Algorithms Library manipulation algorithms

Numerical Recipes numerical computation (Press et al., 1992) algorithms

Boost Graph Library graph creation and (Siek et al., 1999) manipulation algorithms

Graphviz graph visualization (Gansner and North,
algorithms 2000)

102

the decomposition results for a broad spectrum of meshes in Figs. 7 .2 through 7 .2 3.
Each figure consists of a rendering of the particular object or scene, the color-coded
segmentation of that object or scene, and an adjacency graph of the segmentation
parts. In some cases, we have also included a photograph of the actual object or scene.
Table 7 . 2 briefly describes each mesh in the figures. We have two fundamental sources
for each mesh. We have either generated the meshes in-house using our range scanners
and reconstruction algorithms as outlined in (Sun et al., 2 002b; Page et al., 2 003e) or
used meshes from external sources such as other laboratories or commercial companies.
The previous table designates the source of each mesh, and Tables 7 . 3 and 7 . 4 give
additional details about each source. Table 7 .3 summarizes the types of scanners and
their accuracy that we used to generate in-house reconstructions. On the other hand,
Table 7 .4 documents the external sources of meshes.

We present these figures and results without much discussion. We delay detail analy­
sis of the Minima Rule Algorithm to the next sections where we individually investigate
each component of the algorithm. This section merely serves as a broad overview of
the results. For this overview, one should view each rendering of the meshes through­
out the figures and mentally decompose them into parts. Then, one should compare
this mental image with the color-coded decompositions in the figures. This comparison
should yield strong agreement between one's mental selection of parts and the Minima
Rule Algorithm's selection of parts. We do not suggest that total agreement is possible
since a human observer uses other cognitive strategies to select parts such as context
and experience. However, these results should not totally contradict one's perception
either. This qualitative exercise should provide convincing evidence of the capabilities
of the algorithm.

These figures serve as a demonstration of the Minima Rule Algorithm. We now
turn to a more in-depth analysis of the capabilities of the algorithm. In the next
three sections, we investigate the Normal Vector Voting algorithm, the Fast Marching
Watersheds algorithm, and the Part Saliency Metric algorithm.

7.2 Normal Vector Voting

The heart of the Minima Rule Algorithm is the Normal Vector Voting algorithm that
estimates the orientation and curvature of the triangle mesh where we assume the mesh
approximates some smooth surface. To demonstrate the capabilities of this algorithm,
we have experimented with a variety of data sets from CAD models to range reconstruc­
tions to medical isosurfaces. In this subsection, we present both the qualitative results
of these experiments and a quantitative comparison from a set of more controlled ex­
periments. In the discussions that follow, we must recall the user parameters for the
algorithm as outlined in Table 4.2. The three parameters are: k the neighborhood size,
e the crease detection constant, and T/ the noise suppression constant. We mainly spec­
ify k, but when pertinent we also call out the system constants e and T/· These latter

103

'.

I'

Table 7 . 2: List of triangle meshes used in results. The last column shows the number
of parts after the mesh decomposition.

Figure Brief Date Number of Number of Number of
Number Description Source Vertices Triangles Parts

7 . 2 hand crank RANGER 4 6 , 8 7 0 93, 7 5 2 7
7 . 3 water neck RANGER 5 8, 7 8 4 117 , 5 6 4 6
7 . 4 distributor cap RANGER 6 5 , 3 97 12 9, 8 4 9 2 0
7 . 5 disc brake RANGER 3 7 , 3 3 2 7 3, 5 5 3 2
7 . 6 bin objects RANGER 3 9, 7 5 2 7 1, 97 6 4 2
7 . 7 cone scene COLEMAN 6 1, 02 7 117 , 7 7 8 6
7 .8 office scene (I) RIEGL 6 5 , 3 6 5 12 9, 3 4 2 3 9
7 . 9 office scene (II) PERCEPTRON 15 , 6 6 6 3 0, 98 1 28

7 . 10 bore pin TACOM 3 7 , 4 5 0 7 4, 8 96 4
7 . 11 toilet POLHEMUS 2 2, 92 6 4 5 , 8 6 4 5
7 . 12 watering can POLHEMUS 8, 08 6 15 , 8 4 3 6
7 . 13 chair POLHEMUS 2 6 , 7 6 6 5 3, 4 6 2 11
7 . 14 left hand POLHEMUS 13, 3 4 0 2 6 , 3 7 2 8
7 . 1 5 oil pump HOPPE 19, 5 5 5 3 9, 102 15
7 . 1 6 teapot HOPPE 3, 03 4 6 , 010 5
7 . 17 human femur ITALY 7 6 , 7 94 15 3, 3 2 2 2
7 . 18 machined object SLIM- 3D 28, 6 6 7 5 7 , 107 10
7 . 19 human molar tooth SLIM- 3D 6 , 5 8 6 13, 16 8 4
7 . 2 0 human canine tooth SLIM- 3D 3, 3 7 6 6 , 7 48 2
7 . 2 1 fan blades 3D DIGITAL 12 1, 2 7 1 2 3 9, 2 2 7 16
7 . 2 2 shoe sole 3D DIGITAL 5 8, 108 115 , 7 5 0 18
7 . 2 3 David's head STANFORD 7 , 7 90 15 , 2 03 2 0

104

Table 7 .3 : List of range scanners used for in-house mesh reconstructions. The National
Automotive Center is with the U. S. Army Tank and Automotive Command (TACOM).
A technical reference for this TACOM data set is not available at this time. The
abbreviations Acc. and Max. each mean approximate accuracy and maximum range,
respectively.

Scanner Manufacturer Type Acc. Max. Technical
Label (cm) (m) Reference

RANGER
Integrated Vision Active 0. 1 0. 2 (Integrated Vision

Products Stereo Products, 2 000)

COLEMAN
Coleman Research Time of 0. 1 2 0 (Sebastian et al. ,

Corporation Flight 1995)
Riegl Laser Time of (Riegl Laser

RIEGL Measurement Flight 5 7 00 Measurement
Systems Systems, 2 000)

Perceptron Time of (Perceptron
PERCEPTRON Incorporated Flight 5 10 Incorporated,

1993)
National Laser TACOM Automotive Probe 0. 01 2 0 N/A
Center

Table 7 . 4: List of external sources for triangles meshes used in results.

Source Company Technical
Label Reference

POLHEMUS Applied Research Associates (McCall um et al. , 1 998)
HOPPE Microsoft Research (Hoppe et al . , 1 992)
ITALY Istituti Ortopedici Rizzoli (Viceconti et al. , 1996)

Friedrich-Alexander-
SLIM-3D Universitat (Karchaher et al. , 1997)

Erlangen

3D DIGITAL 3D Digital Corporation (3D Digital Corporation,
2 000)

STANFORD Stanford University (Levoy et al. , 2 000)

105

(a) (b)

(c) (d)

Figure 7.2: Hand crank object decomposition. Minima Rule Algorithm results for hand
crank object . This mesh is a reconstruction from multiple range scans from the IVP
Ranger System. The mesh consists of 46, 870 vertices and 93, 752 triangles while the
decomposition consists of 7 parts. (a) Rendering of original mesh. (b) Photograph
of original object. (c) Decomposition of mesh into parts. (d) Adjacency graph with
user-specified labels.

106

(a) (b)

Bolt B

(c) (d)

Figure 7.3: Water neck object decomposition. Minima Rule Algorithm results for water
neck object. This mesh is a reconstruction from multiple range scans from the IVP
Ranger System. The mesh consists of 58, 784 vertices and 1 17, 564 triangles while the
decomposition consists of 6 parts. (a) Rendering of original mesh. (b) Photograph
of original object. (c) Decomposition of mesh into parts . (d) Adjacency graph with
user-specified labels.

107

(a) {b)

(c) {d)

Figure 7 .4: Distributor cap object decomposition. Minima Rule Algorithm results for
distributor cap object. This mesh is a reconstruction from multiple range scans from the
IVP Ranger System. The mesh consists of 65, 39 7 vertices and 129, 8 49 triangles while
the decomposition consists of 20 parts. (a) Rendering of original mesh. (b) Photograph
of original object. (c) Decomposition of mesh into parts . (d) Adjacency graph with
user-specified labels.

108

(a) (b)

(c) (d)

Figure 7.5: Disc brake object decomposition. Minima Rule Algorithm results for disc
brake object. This mesh is a reconstruction from multiple range scans from the IVP
Ranger System. The mesh consists of 37, 332 vertices and 73, 553 triangles while the
decomposition consists of 2 parts. (a) Rendering of original mesh. (b) Photograph
of original object. (c) Decomposition of mesh into parts. (d) Adjacency graph with
user-specified labels.

109

(a) (b)

Pal l l

(c) (d)

Figure 7.6 : Miscellaneous objects decomposition. Minima Rule Algorithm results for
miscellaneous objects simulating a bin picking application. This mesh is a single view
from the IVP Ranger System. The mesh consists of 3 9, 7 5 2 vertices and 7 1, 97 6 triangles
while the decomposition consists of 4 2 parts. Since this mesh is a single view, the scan
leaves many objects as isolated parts and thus unconnected to other surfaces. (a) Ren­
dering of original mesh. (b) Photograph of approximate scene. (c) Decomposition of
mesh into parts. (d) Adjacency graph with arbitrary labels.

110

/
-

(a) (b) (c)

Figure 7.7: Industrial scene with cone and barrel decomposition. Minima Rule Al­
gorithm results for scene with cone and barrel. This mesh is a single view from the
Coherent Laser Radar System developed by Coleman Research Corporation. The mesh
consists of 61 , 027 vertices and 1 17, 778 triangles while the decomposition consists of
6 parts. (a) Rendering of original mesh. (b) Decomposition of mesh into parts. (c) Ad­
jacency graph with user-specified labels.

(a) (b) (c)

Figure 7.8: Office scene (I) decomposition. Minima Rule Algorithm results for an
office scene. This mesh is a reconstruction from multiple range scans from the Laser
Mirror System Z210 developed by Riegl. The mesh consists of 65 , 365 vertices and
129, 342 triangles while the decomposition consists of 39 parts. (a) Rendering of original
mesh. (b) Decomposition of mesh into parts. (c) Adjacency graph with arbitrary labels.

1 11

(a) (b)

Port26

(c) (d)

Figure 7 .9: Office scene (II) decomposition. Minima Rule Algorithm results for an office
scene. This mesh is a reconstruction from multiple range scans from the Perceptron
Laser System. The mesh consists of 15, 666 vertices and 30, 98 1 triangles while the
decomposition consists of 28 parts. (a) Rendering of original mesh. (b) Photograph
of original scene. (c) Decomposition of mesh into parts. (d) Adjacency graph with
arbitrary labels.

1 1 2

(a) (b) (c)

Figure 7 . 10 : Small bore pin decomposition. Minima Rule Algorithm results for a small
bore pin. This mesh is a reconstruction from a point cloud data set generated at the U. S.
Army TACOM National Automotive Center. The mesh consists of 37, 4506 vertices and
74, 896 triangles while the decomposition consists of 4 parts. (a) Rendering of original
mesh. (b) Decomposition of mesh into parts. (c) Adjacency graph with user-:-specified
labels.

(a) (b) (c)

Figure 7. 1 1 : Toilet seat decomposition. Minima Rule Algorithm results for a toilet seat.
This mesh is a reconstruction from the Polhemus FastSCAN System. The mesh consists
of 22, 926 vertices and 45, 864 triangles while the decomposition consists of 5 parts.
(a) Rendering of original mesh. (b) Decomposition of mesh into parts. (c) Adjacency
graph with arbitrary labels.

1 13

Side Handle

(a) {b) (c)

Figure 7.12: Watering can decomposition. Minima Rule Algorithm results for a wa­
tering can. This mesh is a reconstruction from the Polhemus FastSCAN System. The
mesh consists of 8, 086 vertices and 15, 843 triangles while the decomposition consists
of 6 parts. (a) Rendering of original mesh . (b) Decomposition of mesh into parts.
(c) Adjacency graph with user-specified labels.

(a)

'

.

'
' I ' .

=-- � -

1111

{b)

�!f_

(c)

Figure 7. 13: Three-legged chair decomposition. Minima Rule Algorithm results for a
three-legged chair. This mesh is a reconstruction from the Polhemus FastSCAN System.
The mesh consists of 26, 766 vertices and 53, 462 triangles while the decomposition
consists of 1 1 parts. (a) Rendering of original mesh. (b) Decomposition of mesh into
parts. (c) Adjacency graph with arbitrary labels.

1 14

Pan6

. \

(a) (b) (c)

Figure 7.14: Human left hand decomposition. Minima Rule Algorithm results for a
human left hand. This mesh is a reconstruction from the Polhemus FastSCAN System.
The mesh consists of 13, 3 4 0 vertices and 2 6 , 3 7 2 triangles while the decomposition
consists of 8 parts. (a) Rendering of original mesh. (b) Decomposition of mesh into
parts. (c) Adjacency graph with user-specified labels.

(a) (b) (c)

Figure 7 . 15 : Oil pump decomposition. Minima Rule Algorithm results for an oil pump.
This mesh is a reconstruction from the Hughes Hoppe at Microsoft Research. The
mesh consists of 19, 5 5 5 vertices and 3 9, 102 triangles while the decomposition consists
of 15 parts. (a) Rendering of original mesh. (b) Decomposition of mesh into parts.
(c) Adjacency graph with arbitrary labels.

1 15

-

(a) (b) (c)

Figure 7.16: Teapot decomposition. Minima Rule Algorithm results for a teapot. This
mesh is a reconstruction from the Hughes Hoppe at Microsoft Research. The mesh
consists of 3, 0 34 vertices and 6, 0 10 triangles while the decomposition consists of 5 parts.
(a) Rendering of original mesh. (b) Decomposition of mesh into parts. (c) Adjacency
graph with user-specified labels.

(a) (b) (c)

Figure 7.17 : Human femur decomposition. Minima Rule Algorithm results for a hu­
man femur. This finite element mesh has been created by the Marco Viceconti and
is is available on the Internet at the ISB Finite Element Repository managed by the
Istituti Ortopedici Rizzoli, Bologna, Italy. The mesh consists of 7 6, 7 94 vertices and
15 3 , 3 2 2 triangles while the decomposition consists of 2 parts. (a) Rendering of original
mesh. (b) Decomposition of mesh into parts. (c) Adjacency graph with user-specified
labels.

1 1 6

I
Pan JO

(a) (b) (c)

Figure 7 . 18: Machined object decomposition. Minima Rule Algorithm results for a
machined object. The mesh is a reconstruction using the SLIM 3D software for reverse
engineering. The mesh consists of 2 8, 6 6 7 vertices and 5 7 , 107 triangles while the de­
composition consists of 10 parts. (a) Rendering of original mesh. (b) Decomposition of
mesh into parts. (c) Adjacency graph with arbitrary labels.

(a) (b) (c)

Figure 7 . 19: Human molar tooth decomposition. Minima Rule Algorithm results for
a human molar tooth. The mesh is a reconstruction using the SLIM3D software for
reverse engineering. The mesh consists of 6 , 5 86 vertices and 13, 16 8 triangles while the
decomposition consists of 4 parts. (a) Rendering of original mesh. (b) Decomposition
of mesh into parts. (c) Adjacency graph with arbitrary labels.

117

(a) (b) (c)

Figure 7.20 : Human canine tooth decomposition. Minima Rule Algorithm results for
a human canine tooth. The mesh is a reconstruction using the SLIM3D software for
reverse engineering. The mesh consists of 3, 376 vertices and 6, 7 48 triangles while the
decomposition consists of 2 parts. (a) Rendering of original mesh. (b) Decomposition
of mesh into parts. (c) Adjacency graph with user-specified labels.

(a) (b) (c)

Figure 7.21 : Industrial fan decomposition. Minima Rule Algorithm results for a indus­
trial fan. The mesh is a reconstruction from the 3D Digital Corporation. The mesh
consists of 121 , 271 vertices and 239, 227 triangles while the decomposition consists of
16 parts. (a) Rendering of original mesh. (b) Decomposition of mesh into parts. (c) Ad­
jacency graph with user-specified labels.

1 18

(a) (b) (c)

Figure 7 . 2 2: Shoe sole decomposition. Minima Rule Algorithm results for a shoe sole.
The mesh is a reconstruction from the 3D Digital Corporation. The mesh consists
of 5 8, 108 vertices and 115 , 7 5 0 triangles while the decomposition consists of 18 parts.
(a) Rendering of original mesh. (b) Decomposition of mesh into parts. (c) Adjacency
graph with arbitrary labels.

(a) (b) (c)

Figure 7 . 2 3: Michelangelo's David decomposition . Minima Rule Algorithm results for
the head of Michelangelo's David statue. The mesh is a reconstruction from The Digital
Michelangelo Project at Stanford University. We have extracted just the face from a
more complete model of the entire statue. The mesh consists of 7 , 7 90 vertices and
15 , 2 03 triangles while the decomposition consists of 2 0 parts. (a) Rendering of original
mesh. (b) Decomposition of mesh into parts. (c) Adjacency graph with user-specified
labels.

119

two constants, in actual practice, are fixed and should not change. The intent is that
we control the algorithm with k and not these constants.

7.2. 1 Qualitative Analysis

For a qualitative analysis, we first consider two illustrative data sets: a fandisk in
Fig. 7.2 4 and ·a torus in Fig. 7.25. The fandisk is a CAD model that exemplifies free­
form smooth surfaces, and the torus is a simple object with a genus one topology. We
add noise to these data sets to demonstrate the robustness of our algorithm. To the
original fandisk in Fig. 7.2 4(a), we have added Gaussian noise to each coordinate of the
mesh's vertices where we specify the variance of the Gaussian distribution as 0.1 % of the
average edge length lave for triangles in the mesh. Figure 7 .2 4(b) illustrates this noise,
which simulates the errors that we might encounter from reconstruction algorithms in
computer vision. For the torus, we use a marching cubes algorithm (Lorenson and
Cline, 1987) to introduce noise into the data set. Marc�ing cubes is a common method
in medical imaging to extract isosurfaces from volume data sets. The nature of the
marching cubes algorithm corrupts the ideal smooth surface of the original torus in
Fig. 7.25(a) with the more jagged surfaces in Fig. 7.25(b).

To begin, we explore the crease detection and normal estimation capabilities of our
algorithm. Figs. 7.2 4(c) and 7.2 4(d) show the crease detection results for the fandisk
both without noise and with it. Without noise, we design c, which controls crease
detection in Eq. (4.9), with a large enough value to detect accurately the crease on
the left side of Fig. 7.2 4(c) . With noise, however, we must decrease c to account for
the noise variation, and thus we no longer detect that particular crease in Fig. 7.2 4(d) .
We do, on the other hand, detect the right-angle creases for both cases of the fandisk
despite the increase in noise. This example highlights the trade off between allowing
noise variation and detecting surface discontinuities. When designing a system and thus
choosing c and 'TJ, the designer must balance the level of noise to tolerate and the angle of
creases to detect. Then a user can choose various neighborhood sizes, as denoted by the
user parameter k from Table 4.2 , to balance noise levels, feature scales, and sampling
densities for a particular mesh.

Next, the torus example illustrates normal estimation. Figure 7.25(c) shows a zoom
view for the edge of the torus. In this figure, the vectors extending from the mesh's
vertices are normal estimates derived from a simple average of the triangle normals
adjacent to each vertex. Figure 7.25(d) shows the same view but with normals derived
from the Normal Voting algorithm. The neighborhood size for the latter is an eight­
geodesic neighborhood (k = 8). The larger neighborhood allows for an improvement
in the estimation of the normals. We see that the normals in Fig. 7.25(c) adhere to
the marching cube artifacts while in Fig. 7.25(d) they more closely follow the smooth
surface of the original torus. This smoothing characteristic of a larger neighborhood is
the primary strength of the Normal Vector Voting algorithm.

The third example is in Fig. 7.2 6. The mesh in Fig. 7.2 6(a) is a 3 D mesh from a
Perceptron laser range scanner and is representative of the surface noise that one might

120

•

•

(a) (b)

(c) (d)

Figure 7 . 2 4: Fandisk crease detection. The fandisk model is an example of a free-form
CAD model with sharp edges and sophisticated surface curvature. (a) The original
triangle mesh is from the distribution available at http : / /research . micro soft . com/

research/graphics/hoppe/. The mesh size is 6 , 4 7 5 vertices with 12, 94 6 triangles.
(b) Same model with Gaussian noise added to the vertices of the mesh. The variance
of the Gaussian distribution is 0. 1% of laue · (c) The Normal Vector Voting algorithm
with a one-geodesic neighborhood (c = 3 2 , k = l) labels the creases of the original mesh
as we might expect. (d) With noise the algorithm using a five-geodesic neighborhood
(c = 2, k = 5) does not detect the small crease on the left side of the figure.

12 1

(a) (b)

(c) (d)

Figure 7 .25: Torus normal estimation. The torus model exhibits a genus one topology.
(a) The smooth surfaces of the original model. (b) If we consider the torus as a volume
data set and apply a marching cube algorithm, we introduce systematic artifacts in the
mesh. This mesh has 7,302 vertices and 14,604 triangles. (c) A zoom view of the side
of the mesh in (b) with normals shown extending from each vertex. (d) The same zoom
area where the normals are estimated using Normal Vector Voting with an eight-geodesic
neighborhood (k = 8).

122

expect from a practical system. We apply the normal voting algorithm to this mesh
with the results in Fig. 7 . 2 6(b) . We use a k = 5 voting neighborhood, and we place
blue normals at surface vertices and green tangents at crease ones. Additionally, we
place red vectors at vertices with no preferred orientation. The algorithm performs
well for detecting the creases between the floor and the base of each desk and around
the cabinets, chair, and computer monitor in the scene. Unfortunately, the corner of
the room results in several vertices classified as having no preferred orientation. In the
actual scene, this corner contains an intricate scaled model of an industrial plant with
several small wooden dowels as pipe models. The detail of this model is beyond the
resolution of the range scanner and therefore the classification is not surprising. The
conclusion that we draw is that the resolution of the mesh is too small for the scene
features and not that the normal voting algorithm has failed. We suggest that the ability
to detect such under-sampled regions is an important capability of our algorithm.

Figs. 7 . 2 7 through 7 . 29 demonstrate the robustness of the curvature estimate. Again,
we use the fandisk and torus for these examples. In these figures, the vector at
each vertex is the estimate for the principal direction of the maximum curvature.
Figs. 7 . 2 7 and 7 . 28 show the effects of the neighborhood size. The small neighbor­
hoods in Figs. 7 . 2 7 (c) and 7 . 28 (c) are unable to overcome the surface noise such that
the zoom views reveal the random distribution of the principal directions. The larger
neighborhoods in Figs. 7 . 2 7 (d) and 7 . 28 (d) yield improvement with strong local agree­
ment of the principal directions shown in the zoom views. Notice how the principal
directions flow along the surface curvature of the object. These figures highlight the
robustness of the curvature estimation via selection of the neighborhood size. As noted
previously, this capability is the major contribution of this paper.

One drawback to enlarging the neighborhood is that significant error is introduced at
discontinuity creases. Consider one of the creases in the fandisk model. Figure 7 . 29(a)
shows a crease at the top of the figure with corresponding crease tangents. The principal
directions just below that crease erroneously point across the crease. The problem is
that normals on the other side of the discontinuity vote during the curvature estimation.
To resolve this problem, we restrict the neighborhood from crossing the discontinuity.
Figure 7 . 29(b) illustrates the results. The principal directions near the crease now follow
the curvature of the surface as we desire.

7.2 .2 Quantitative Comparison

The previous examples show the capabilities of the Normal Vector Voting algorithm
but do not provide a baseline for comparison. The figures and graphs in this subsection
attempt to do so. In these figures, we graph the error of the algorithm for both synthetic
and real data where we use ground truth to establish the error. For these graphs, we
manipulate three variables: surface type, noise level, and neighborhood size.

We first consider synthetic data to evaluate noise sensitivity. We choose three surface
types: planar, cylindrical , and spherical. The radius of curvature for the cylinder and
the sphere is 3 1 mm. Figure 7 . 30 shows these surfaces with Gaussian noise added to

12 3

(a) (b)

Figure 7.26: Perceptron range scanner example. (a) A triangle mesh with 16,384 vertices
and 32,258 triangles for the corner of a room, which contains a desk, a chair, a computer
monitor, and a few cabinets. The surface noise is both quantization and measurement
error inherent to the scanner. (b) Normal Vector Voting leads to blue normals at each
surface patch vertex, green tangents at each crease vertex, and red vectors at each vertex
with no preferred orientation.

124

(a) {b)

(c) {d)

Figure 7 . 2 7 : Curvature estimation for the fandisk model. (a) Illustrates a small one­
geodesic neighborhood (k = 1) for a single vertex. (b) A larger five-geodesic neigh­
borhood (k = 5) for the same vertex. (c) Estimates for the principal directions with
0. 1 % Gaussian noise added to the fandisk. The zoom area is for the small neighborhood
in (a) . (d) The same zoom area showing estimates for the larger neighborhood of (b) .

125

(a) (b)

(c) (d)

Figure 7.28: Curvature estimation for the torus. (a) Illustrates a small one-geodesic
neighborhood (k = l) for a single vertex. (b) A larger eight-geodesic neighborhood
(k = 8) for the same vertex. (c) Shows the principal directions for small neighborhood
in (a) . (d) The same zoom area showing estimates for the larger neighborhood of (b) .

126

(a) (b)

Figure 7.2 9: Curvature at the edge of a fandisk. Increasing the neighborhood leads
to errors in the curvature estimate near the crease discontinuities. (a) The zoom view
shows a crease from the fandisk at the top of this image. The principal directions near
this crease tend to point erroneously across the discontinuity. (b) When we restrict the
neighborhood from crossing the discontinuity, the estimates for the principal directions
improve.

12 7

the Z coordinate using a distribution variance of 1 %, 5%, 10%, and 50% of lave • The
graphs in Fig. 7.3 1 compare the performance of the Normal Vector Voting algorithm
for a three- and five-geodesic neighborhood (k = 3 and k = 5) to Taubin's one-ring
algorithm for 10% noise level. We have chosen to compare to Taubin's algorithm since
it serves as the foundation for our algorithm. We do not compare results for Tang and
Medioni's algorithm since their algorithm is for point-cloud data sets and since they do
not compute principal directions for surface curvature.

Taubin's algorithm serves to baseline the performance of our method. However, for
noisy surfaces, a direct comparison is perhaps not appropriate since-as Taubin notes­
his algorithm requires a smoothing step to preprocess any surface noise. In fairness to
Taubin, we emphasize that we baseline the benefits of the k-geodesic neighbors and
do not competitively compare the algorithms. To do so, we would need to select and
implement an appropriate smoothing algorithm.

We look at the normal estimation for the plane in Fig. 7.3 l (a) . The percentage error
in this graph is as follows

err = (1 - IN!Nv l) x 100% (7. 1)

where Np = Z is the ground-truth normal and Nv is the estimation. This graph is
a histogram plot with vertex bins across the horizontal axis and a log scale for the
vertical. Figure 7.3 1 (b) uses a similar error measure and compares the estimation of
the principal directions Tv for the cylinder. Let Tp = X be the ground truth for the
minimum principal direction. The third graph in Fig. 7.3 1 (c) compares the estimation
of the principal curvatures for the sphere. We use a different error measure

�I _ �I
err = I P 1 v I x 100%

�v

(7.2)

where �} = 31�m is the ground truth and �! is the estimate. For each of these graphs,
we see a similar trend. The Normal Vector Voting algorithm for both neighborhoods
provides improved performance over Taubin's algorithm. This improvement is evident
for bins near the 0% error to the left side of the graphs. The more vertices that accu­
mulate in these lower error bins the better.

We next consider the effect of different noise levels. As before for each synthetic
surface, we corrupt the Z coordinate of each vertex with Gaussian noise. Recall Fig. 7. 30.
Using the previous error measures and graphs, Fig. 7.32 plots the Normal Vector Voting
error for surface type and noise level with only the three-geodesic neighborhood size (k =
3). Although the 50% level seems to overwhelm the Normal Vector Voting algorithm,
the other three levels offer useful results for most applications. Again, these graphs
demonstrate the robustness of the algorithm.

Finally, we explore real data from an IVP Ranger System (Integrated Vision Prod­
ucts, 2000) , which is a sheet-of- light profile scanner. Figure 7.3 3 (a) shows the ex­
perimental configuration for this system within our laboratory. The basic output of

128

(a) (b) (c)

(j) (k) (l)

Figure 7.30: Synthetic surfaces with noise. Planar, cylindrical, and spherical synthetic
surfaces with four levels of Gaussian noise. These surfaces contain 1 ,024 vertices and
1 ,922 triangles. (a-c) Noise variance is 1% of the average edge length. (d-f) Noise
variance is 5% of the average edge length. (g-i) Noise variance is 10% of the average
edge length. (j-1) Noise variance is 50% of the average edge length.

129

.�
�
0

E
::,

1000

100

10

Comparison for Plane (10% noise)

... \\'·,,
\\ · ...

\\

Normal Voting (5) -­
Normal Voti119 (3) -­
Taubin Algonthm ·····•·····

Comparison for Cylinder (10% noise)
1000 �-�---r----.------.----,

Normal Voting (5) -­
Normal Voti09 (3) -----­
Taubin Algonthm ·····•·····

� 'E 100
Cl)
>

0
.. •·

10 ...-
::, z

\\ 1 .__ _ ___._ _ _.,__......._ __ ...__� __ _, 1 .__ _ ___._ __ _._ __ _.___ _ __. __ _,
0 20 40 60 80 100 0 20 40 60 80 100

Normal Orientation Error (%) Minimum Principal Direction Error (%)

(a)

·1::
Cl)
>

0

.!
E
::, z

1000

1 00

10

Comparison for Sphere (10% noise)

\
Normal Voting (5) -­
Normal Voti09 (3) ---­
Taubin Algonthm ·····--··

..... "- ...• ·······•···
... ··········�··

'-.'x """
\.

1 '------'---�----__,_ __ _,
0 20 40 60 80 1 00

Maximum Principal Curvature Error (%)

(c)

(b)

Figure 7. 31 : Algorithm comparison for synthetic surfaces with noise. The variance of
the Gaussian noise distribution is 1 0% of lave · The comparison graphs show the Normal
Vector Voting algorithm with a three- and a five-geodesic neighborhood size (k = 3 and
k = 5) compared to the original algorithm of Taubin. The graphs are bin plots with log
scales, and each mesh contains 1 ,024 vertices and 1 ,922 triangles. (a,b) Planar surface
(c,d) Cylindrical surface, and (e,f) Spherical surface.

1 30

.,

z \

' .. ·· . - �

\ · ·-- · _..

..

-
"'

Noise Analysis for Plane (3)
1 000 --------------

50% noise --+--

15

1i
E 10
::,
z

10% noise ------
5% noise ·····•·····
1 % noise -

1000

100 ·e

15

1i
10

::,
z

Noise Analysis for Cylinder (3)

·· ...

� .. . ,

50% noise --+--
10% noise ---------
5% noise ·····•·····
10/o noise --

.. ··•·
1 .___.___, __ __,_, __ __._ __ __.__ _ ____. 1 L-----'-----'--"e---'---+-....L....:tl,::...._--'

0 20 40 60 80 100 0 20 40 60 80

Normal Orientation Error (%) Minimum Principal Direction Error (%)

(a)

Noise Analysis for Sphere (3)
1000 �----------�--

50% noise --+--

15

1i
E 10
::,
z

10% noise ---
5% noise ·-··•·····
1 % noise ---

1 .__ ____,···----"'------'----'
0 20 40 60 80 1 00

Maximum Principal Curvature Error (%)

(c)

(b)

100

Figure 7 . 3 2: Noise comparison with synthetic data. Comparison for synthetic data with
different levels of Gaussian noise added. The variances of the noise distribution are 1 % ,
5 %, 10%, and 5 0% of lave • The graphs show the Normal Vector Voting algorithm for
a three-geodesic neighborhood (k = 3) and are bin plots with log scales. Each mesh
contains 1, 02 4 vertices and 1 , 92 2 triangles. (a,b) Plane, (c,d) Cylinder, and (e,f) Sphere.

1 3 1

J .. 100
�

E

-� � 100

�

(a) (b)

Figure 7.3 3 : IVP Ranger System. This system is a sheet-of-light profiling system.
(a) Experimental setup. (b) Ground truth objects for our real range data comparison.

the scanner is a single range profile in the plane of the sheet of light. For our tests
we stack 512 profiles together to form a 512 x 512 range image with 256 range bins
at 0.62 mm resolution. With proper system calibration, we convert these range images
into appropriate triangle meshes. We again use three surface types as with the synthetic
data. The actual objects for these surfaces appear in Fig. 7.3 3 (b) . As ground truth, the
cylinder has a radius of 26 mm, and the sphere has a radius of 28.5 mm. With slight
modifications, we use the same error measures and graphs as with the synthetic data.
Since we do not know the absolute orientation of the objects relative to the scanner, we
must account for this uncertainty. For the plane, we average the normal estimates to
serve as the ground truth Np = ¼ L Nv for each vertex, and for the cylinder, we average
the minimum principal direction estimates Tp = ¼ L Tv . These ad hoc formulations of
ground truth i.ntroduce some error, but the error is constant across our analysis and is
tolerable. Figure 7.3 4 shows the scanned surfaces while Fig. 7.35 shows the associated
error graphs. These results are similar to the synthetic data where again the Normal
Vector Voting algorithm shows improvement over Taubin's algorithm.

7.2.3 Timing Performance

An issue of future research is to improve the overall performance of our implementa­
tion. The graph in Fig. 7 . 36 shows a simple timing analysis of the proposed algorithm
for the fandisk model in Fig. 7.2 4. The computing platform is an SGI Octane with a
single 195 Mhz MIPS RlOOOO processor and 128 megabytes of memory. Although we
have not optimized the current code configuration, the trend in the plot is interesting.

1 32

(a) (b) (c)

Figure 7.34: IVP Ranger scans of ground truth objects. Triangle mesh representations
of a single view for each ground truth object. The noise on the surfaces is actual noise
from either quantization error or direct measurement error. (a) Plane tilted at 45 degree
angle to viewing plane of Ranger. (b) Clynder parallel to viewing plane. (c) Sphere.

133

>
0

z
z

1 0000

1 000

100

Comparison for Plane (scanner)

···-+>·· ...• i \ ····•

Normal Voting (5) -
Normal Votir19 (3) ----­
Taubin Algonlhm ·····•·····

\I<_',----._ ·•. ·· ·--.,---.. ··• --....., _ .. ··•.

Comparison for Cyfinder (scanner)
1 0000 �-�--�--..-------.------,

Normal Voting (5) -
Normal Votins;i (3) ---­
Taubin Algon1hm ···-•·····

·� 1000

0

z
E 100
=> z .. -····

····
,/

.. -··
10 L-'-_ __,_ __ _,__ __ .__ _ ___.____._____, 1 0 ..__....:;__._ ___ _ ___J.___ _ ___._ _ _..,

0 20 40 60

Normal Orientation Error

(a)

1 0000

1 000 ·e
>
0

z
1 00

=> z !

80 1 00 0 � 40 00 � 100
Minimum Principal Direction Error (%)

(b)

Comparison for Sphere (scanner)

Normal Voting (5) -­
Normal Votir19 (3) ---­
Taubin Algon1hm -···-··

10 "-----'-...__;-=..i__..;..___J _____ __.___�__,
0 20 40 60 80 100

Maximum Principal Curvature Error (%)

(c)

Figure 7. 35: Algorithm comparison for real data from IVP Ranger. The comparison
graphs show the !'_formal Vector Voting algorithm with a three- and a five-geodesic
neighborhood size (k = 3 and k = 5) compared to the original algorithm of Taubin.
The graphs are bin plots with log scales. Note the quantization noise on each surface.
(a,b) Plane with 10,507 vertices and 2 0 ,578 triangles. (c,d) Cylinder with 7 ,4 07 vertices
and 14 ,424 triangles. (e ,f) Sphere with 4 ,026 vertices and 7 ,7 32 triangles.

1 34

..
E

i
I

=

/
I

Timing Plot for Fandisk Model
1 400 ���-���-����

1200

co 1000
� 0 800
!
�

600

i= 400

200

2 3 4 5 6 7 8 9 1 0
k-Geodesic Neighborhood Size

Figure 7 . 3 6 : Performance timing. A graph depicting the computational performance
time for the Normal Vector Voting algorithm as a function of k-geodesic neighborhood
size. The analysis is for the fandisk model and the times are in seconds. Each data
point on the graph represents a single run of the two-pass algorithm through the entire
mesh.

As we increase the k-geodesic neighborhood with the intent of improving our curva­
ture estimate, the computational time grows non-linearly. The three- and five-geodesic
neighborhoods show reasonable performance compared to the one-geodesic neighbor­
hood that is equivalent to the one-ring algorithm of Taubin. Thus we argue that the
improvement in accuracy, as demonstrated in Figs. 7 . 3 1- 7 . 3 5 , with modest increases in
neighborhood size are worth the slight increase in processing time.

We have presented results for our algorithm using both synthetic and real data sets.
For the synthetic data, we have used controlled experiments with ground truth to eval­
uate the performance of the algorithm with respect to varying levels of noise. For the
real data, we have generated meshes within our laboratory using the IVP Ranger. In
addition to a qualitative analysis of our results, we have presented an in-depth quan­
titative analysis as well. In particular, we have directly compared the results of our
algorithm to Taubin's original algorithm (Taubin, 1995) . As a side note, since Tang
and Medioni (Tang and Medioni, 1999) formulate their algorithm for point clouds and
since they do not estimate principal curvatures, we do not compare our algorithm to
theirs. The success of these results demonstrate the stable and robust performance of
our algorithm in the presence of different types of surface noise. In the next section ,
we explore results for the Fast Marching Watersheds algorithm which leverages the
curvature estimation results from this section.

7.3 Fast Marching Watersheds

After we have estimates for the principal curvatures and their associated directions for
each vertex of the mesh, we need an algorithm that segments the mesh and identifies
contours of negative curvature minima. The algorithm that we have developed for this
purpose is the Fast Marching Watersheds algorithm. In this section, we analyze this

13 5

algorithm through experimental results to find its strengths and weaknesses. Further,
we investigate the effects of user parameters on the performance of the algorithm. Recall
the parameters in Table 5.2. The two parameters are: a, the percentage of threshold for
the marker set, and k, the ring size of the Dk structuring element. We mainly control
the algorithm with a. The familiar mug example in Fig. 7. 37 shows the progression of
the algorithm.

7.3. 1 Qualitative Comparison

We begin with a qualitative analysis. We first compare the algorithm to others in the
literature, and then we investigate a potential drawback of the algorithm.

The examples in Figs. 7. 38 and 7. 39 serve to compare our segmentation to two
algorithms in the literature. The first one is Mangan and Whitaker (Mangan and
Whitaker, 1999) , - and the second is a variation of Pulla (Pulla, 2001). We do not directly
test these algorithms since the source code is unavailable. We could have implemented
our own code based on the papers, but such an approach does not always replicate the
nuances derived from the experience of the paper 's authors. An in-house implementation
without source code is unreliable and is not fair for comparison purposes. However , we
are able to implement their definitions of curvature reliably and without ambiguity.
So, for the comparisons that follow, we have implemented their definitions of curvature
and applied our watershed algorithm-with slight modifications-to achieve the spirit
of the results in (Mangan and Whitaker, 1999) and (Pulla, 2001). We note that this
approach does not allow a quantitative comparison of the algorithms, but it does allow
a qualitative comparison of expected results.

The first scene in Fig. 7. 38 for our comparison is a synthetic mesh representing a
cylindrical barrel resting on a floor. The surface mesh approximates both the barrel
and the floor with 5, 3 1 3 vertices and 10 , 37 4 triangles. We first apply Mangan and
Whitaker's segmentation in Fig. 7. 38(b). Their algorithm generates three regions: the
floor, the barrel side, and the barrel top. Their method segments regions bounded
by contours of high curvature without regard to the positive or negative sense. In
fact, Mangan and Whitaker's curvature measure exhibits no sign information and is
always positive. Consequently, their segmentations are surfaces with similar values of
curvature and do not necessarily agree with human perceptional segmentations. Most
human observers would segment the scene into only two parts: the floor and the barrel
without distinguishing the top from the sides of the barrel.

The second algorithm of interest is in (Pulla, 2001). This algorithm leads to similar
results as Mangan and Whitaker, but he employs a different measure of curvature that
estimates Gaussian curvature. He uses this measure to also segment along contours of
high curvature where the measure does distinguish between positive and negative sense,
in contrast to Mangan and Whitaker. So, we have modified Pulla's method slightly to
segment along contours of highly negative curvature. This approach is similar to the
minima rule definition. We show the results in Fig. 7. 38(c) , which does agree with the

1 3 6

(a) {b)

(c) {d)

Figure 7 . 3 7 : Simple example of Fast Marching Watersheds. This example shows the
progression of Fast Marching Watersheds. (a) The familiar coffee mug. (b) An initial
threshold of curvature. (c) Morphology operators clean the marker set. (d) Final
segmented regions after fast marching.

13 7

(a) (b)

(c) (d)

Figure 7. 38: Comparison of segmentation algorithms for the cylinder scene. A compar­
ison of segmentation results for a simple scene consisting of cylindrical barrel resting on
a floor. (a) Original scene. (b) Segmentation results for Mangan and Whitaker's cur­
vature measure (Mangan and Whitaker, 1999) with three regions: the floor, the barrel
side, and the barrel top. (c) Segmentation results for Pulla's curvature measure (Pulla,
2001) with two regions: the floor and the barrel. (d) Segmentation results for our
proposed algorithm with two regions: the floor and the barrel.

1 38

(a) {b)

{c) {d)

Figure 7.39 : Comparison of segmentation algorithms for the box scene. A compar­
ison of segmentation results for a simple scene consisting of a box resting on a floor.
(a) Original scene. (b) Segmentation results for Mangan and Whitaker's curvature mea­
sure (Mangan and Whitaker, 1999) with six regions: the floor, each box side, and the
box top. (c) Segmentation results for Pulla's curvature measure (Pulla, 2001) where
the algorithm fails to segment the scene. (d) Segmentation results for our proposed
algorithm with two regions: the floor and the box.

139

minima rule. This figure shows the segmentation of the scene in to two parts: the barrel
and the floor.

Finally, we show the results in Fig. 7.38(d) for our proposed algorithm. This result
is similar to the one with Pulla's curvature estimation where the barrel and the floor are
the two parts. The question that arises is what is the difference. We find the answer in
Fig. 7.39. This scene consists of a floor and a box sitting on the floor. Again, Mangan
and Whitaker's algorithm leads to a surface segmentation in Fig. 7.39(b) , consisting of
six regions where we have one region for each side of the box and the floor. However,
with Pulla's curvature method, we see a somewhat unexpected result in Fig. 7.38(c)
where we have no segmentation. The algorithm failed to segment the scene. The reason
is that the creases at the base of the box that touch the floor form a contour with
zero Gaussian curvature. The segmentation algorithm is unable to distinguish these
crease from planar regions and as a result does not segment the box from the floor.
Our proposed algorithm using principal curvatures overcomes this problem as seen in
Fig. 7.39(d) . This figure shows a segmentation consisting of the box and the floor. The
principal curvatures allow the Fast Marching Watersheds algorithm to differentiate zero
Gaussian curvature.

As (Hoffman and Richards, 1984) argue , our algorithm reflects the more likely seg­
mentation that a human observer would choose for the above scenes. We highlight this
comparison with a practical example of a disc brake model in Fig. 7.40. This model is
a reconstruction from the IVP Ranger Scanner (Sun et al. , 2002b) . A photograph of
the disc brake appears in Fig. 7.40(a) , and the corresponding reconstruction appears
in Fig. 7.40(b) . The output of Mangan and Whitaker is a surface segmentation with
four regions in Fig. 7 .40(c) . Our proposed method, however, yields only two regions in
Fig. 7.40(d) .

These simple examples demonstrate the minima rule and how that rule differs from
previous mesh segmentations, but a potential drawback does exist. We now study this
drawback and its implication to the Fast Marching Watersheds algorithm in Figs. 7.41
and 7.42. The L-shaped hammer objects may seem similar at first glance, but a closer
inspection reveals that the first object in Fig. 7.41 has a slight indentation at the base
of the hammer shaft while the second one in Fig. 7.42 does not. A smooth transition
from the handle to the hammer head exists in the second object. The difference in
these transitions leads to an ambiguity in the minima rule known as the part cut prob­
lem (Singh et al. , 1999) . With 2D silhouettes , we illustrate this ambiguity in Fig. 7.43.
The consequence of this ambiguity in our watershed implementation is the results in
Figs. 7.41 (c) and 7.42(c) . The clear minima rule boundary for the first object leads to
a segmentation into two parts while the second object results in no segmentation. In
the first object, the recess of the vertical block relative to the horizontal one forms a
closed negative curvature boundary. For the second one, no clear minima rule boundary
is present. As a result , our algorithm leaves the object unsegmented .

140

(a) (b)

_ 1
•

,J /

... _,.,, / .

· •)
. \ /

/

(c) (d)

Figure 7.40: Comparison of segmentation algorithms for automotive disc brake. A
comparison of segmentation results for a simple scene consisting of a box resting on
a floor. (a) Photograph of actual disc brake. (b) Rendering of reconstructed triangle
mesh. (c) Segmentation results for Mangan and Whitaker's algorithm with four regions.
(d) Segmentation results for the proposed algorithm with two regions-the inner and
outer disc.

14 1

(a) (b) (c)

Figure 7.4 1 : Segmentation of L-Shaped hammer. The proposed algorithm segments
the hammer into two parts: the handle and the head. (a) Rendering of hammer ex­
ample. (b) Initial threshold of positive curvature values. (c) Results of minima rule
segmentation.

(a) (b) (c)

Figure 7.42 : Segmentation of L shape. The proposed algorithm does not segment the L
shape. The segmentation yields only a single object. (a) Rendering of L shape. (b) Ini­
tial threshold of positive curvature values. (c) Results of minima rule segmentation.

(a) None (b) Max-Min (c) Median (d) Mean

Figure 7.4 3 : Possible part cuts for L shape.

142

We see the part cut problem in real data sets such as in Fig. 7.4 4. This figure is
a triangle mesh from the Polhemus Corporation (www . polhemus . com) and is a recon­
struction of a typical chair. In Fig. 7.4 4(b) , the zoom view shows the segmentation of
the chair leg and the support bar. These parts follow the minima rule. By contrast,
Figs. 7.4 4(c) and 7.4 4(d) , show the ambiguity of the part cut problem. For Fig. 7.4 4(c) ,
the algorithm does not segment the chair seat and the connection to the leg into two
separate parts. Likewise, in Fig. 7.4 4(d) , the algorithm does not cut the chair back
into a side and top segment. This drawback is not necessarily a problem with the
Fast Marching Watersheds algorithm, but it is an ambiguity in the minima rule that is
important to understand.

In this section, we have compared our proposed algorithm to that of Mangan and
Whitaker (Mangan and Whitaker, 1999) and Pulla (Pulla, 2 001). Also, we have demon­
strated the part cut ambiguity that arises with the minima rule and how that effects
our segmentation method. This investigation serves as a qualitative analysis of the
Fast Marching Watersheds algorithm. In the next section, we seek a more quantitative
investigation.

7.3.2 Quantitative Analysis

The previous examples show the capabilities of the Fast Marching Watersheds algorithm
but do not provide a qualitative analysis of the algorithm parameters. The figures in
this subsection reflect a more focused investigation to study the choices for a and k user
parameters.

The first parameter that we consider is the threshold a in Eq. (5.18). Recall that a
threshold of t > 0 is the ideal case for the minima rule, but we introduced a because we
must offset the threshold to a slightly negative value to handle practical conditions. If
we choose the mug, the disc brake, and the chair from the previous sections and analyze
their curvatures , we see why a is necessary. In Fig. 7.4 5 (a) , we plot the negative
principal curvatures for each of these three examples. These graphs are bin plots where
the x-axis denotes the negative curvature bin while the y-axis denotes the percentage of
vertices with that particular curvature value. These plots are indicative of the general
trend that we see in most triangle meshes that are reconstructions of objects and scenes.
A significant number of vertices exhibit curvature very close to zero with a rapid decay
as one moves away from zero. Most likely, the values near zero should actually be zero,
but errors in estimation lead to slightly negative values. Therefore, a allows the user to
group these slightly negative values into the zero curvature bin.

The question that we face is what value of a provides the most robust results. If we
again use the mug, we gain insight to this question with the plots in Fig. 7.4 6 . These
two graphs study the effects of varying a through the range (0, 1). When a = 0, we use
the ideal threshold of t > 0. When a = 1, we use the average negative curvature value
as the threshold. The first graph in Fig. 7. 4 6 (a) shows the percentage of the mesh that
we segment as a varies. From this graph, we see that 6 0% of the mug is segmented

14 3

l - f1
. l
_,_l

'

(a) (b)

(c) (d)

Figure 7.44: Potential drawback of our algorithm with chair example. Fast Marching
Watersheds segmentation of the Polhemus chair that illustrates the potential drawback
of the minima rule. (a) Segmentation of the chair. (b) Zoom view of leg and support
bar showing minima rule segmentation. (c) Zoom view of seat and leg intersection. The
algorithm does not segment at this intersection as a result of the part cut ambiguity.
(d) Zoom view of the top and side support for the back of the chair. As with (c) , the
algorithm does not segment at this intersection.

144

Negative Curvature for Mug Negative Curvature for Brake

50 50

40 40

!/) !/)

30 � 30 .!:2 �
Cl) > 20 > 20 � � 0 0

1 0 1 0

0 0
-0.1 -0.05 0 -0.3 -0.25 -0.2 -0. 15 -0.1 -0.05 0

Negative Curvature Bins Negative Curvature Bins

(a) (b)

Negative Curvature for Chair

50

40

!/)

30 �
Cl) > 20 �

1 0

0

-0.05 0

Negative Curvature Bins

(c)

Figure 7.45: Negative curvature plots. Distribution of negative principal curvatures for
(a) the mug, (b) the Ranger disc brake, and (c) the Polhemus chair.

145

Threshold Variation for Mug
1 00

80
Q)

60
Q)

40
� 0

20

0
0 0.2 0.4 0.6 0.8

Threshold Parameter

(a)

� 20

-� a: 1 5
0
m 1 0 .0

� 5

Threshold Variation for Mug

0.2 0.4 0.6 0.8
Threshold Parameter

(b)

Figure 7 .4 6: Threshold plots for variations in a::. These plots study the variation of a:: to
understand the threshold operation. The mesh under consideration is the coffee mug.
(a) The percentage of the mug that is above the threshold value as a function of a::.
(b) The number of unique connected regions as a function of a::.

for a:: = 0 while almost 100% of the mug is segmented for a:: = 1. This re.sult suggests
that our definition of a:: is an appropriate parameter to control the threshold.

The second graph in Fig. 7 .4 6 (b) shows the variation of the number of connected
regions as a function of a::. As with the first graph, the range of a:: yields diverse
results. When a:: = 0, we generate over 2 5 different unique regions for potential mug
parts. Obviously, this number is way too many based on our perceptual experience.
When a:: = 1, the number of connected regions is one as we might expect from the data
in the first graph. With almost 100% of the mug segmented a natural conclusion is
that the segmented regions are probably connected. The interesting feature of both of
these graphs is the "knee" in the plots that occur around a:: = 0. 1. These transitions are
typical for the data sets we have tested and usually occur between a:: = 0.0 5 and a:: = 0. 2 .
Thus, with the evidence from these plots and our experience with the data sets, we
recommend a:: = 0. 3 as the most reliable choice for stable results. With a:: = 0. 3 ,
we include the capture the knee transition where meaningful threshold results occur.
However, since we further process the threshold using morphological operations, the
algorithm is not overly sensitive to this choice, and other choices are useful depending
on the needs of an application.

Although a:: is the primary control of the Fast Marching Watersheds algorithm, the
morphological operations also allow the user to control the algorithm, as well . The pa­
rameter for these operations is k, which is the size of the Dk structuring element. The
sampling density of the mesh tightly couples the choice for k to that for a::. As a result,
if we fix one value, we most likely have fixed the other value, too. For the sequence in
Fig. 7 .4 7 , we choose a:: = 0. 3 per our previous discussion, and we vary the value of k.
The initial threshold without morphological processing appears in Fig. 7 .4 7 (a) . This

146

25 �---.-------.------r----.-,

0

E

o L_._____.___.__----'.___
--; 0

subfigure shows nine different connected regions, which is more than we expect. Par­
ticulary, this threshold leaves small unconnected islands around the base of the handle.
To improve this result , we first apply the opening and closing operations with k = l
in Fig. 7 . 4 7 (b). Morphology processing either eliminates the islands or joins them to
a nearby region. This choice for k in conjunction with our choice for a leads to an
appropriate marker set. As shown in the subfigure, the marker set now consists of five
unique regions. Four of the regions correspond to the perceptual parts that we seek in
a segmentation such as the handle, the cup, the base cusp, and the bottom. However,
we still have a small island region at the base of the handle. To eliminate this island,
we can not continue to increase k. Figure 7 . 4 7 (c) demonstrates the effect of applying
a structuring element with k = 2. This subfigure shows only two unique regions. We
have lost the markers for our desired perceptual features. The situation continues to
grow worse when we further increase k = 3 in Fig. 7.4 7 (d) .

What we conclude is that k = l provides the most useful marker set that mini­
mizes the amount of over segmentation. Without morphological operations, the mug
segmentation would have nine marker regions, which is five more than the desired four
perceptual regions. Our post processing with the Part Saliency Metric would have to
account for these five additional regions. With the morphological processing, on the
other hand, we have one region at the base of the handle that is an over segmentation.
Thus, we have improved our marker set and reduced the burden on the Part Saliency
algorithm. Our experience with other data sets besides the mug leads to similar results
that k = I works best when we choose a = 0. 3. The k = I structuring element essen­
tially bridges gaps and removes isthmuses that one to two vertices wide. If we have a
fairly good curvature estimation and a fairly good threshold, data irregularities of one
to two vertices are expected.

7.3.3 Timing Performance

Finally, the graph in Fig. 7 . 4 8 shows the timing performance of the proposed algorithm
for the mug data set . To demonstrate the performance, we vary the resolution of the
mug mesh with a mesh simplification algorithm. The initial mug consists of 1 0, 5 5 5
vertices and 2 0, 910 triangles. We reduce this size in increments of 10% on the x-axis.
The y-axis is the processing time required. We plot four curves on the graph. Three of
the curves (Curvature, Threshold, and Watershed) represent the computational time for
each individual module of the algorithm. The Threshold time includes the morphology
operations, as well . The Total time is the summation of the three modules. The
curves appear close to linear except for the jump in the Threshold curve from 5 0%
to 6 0%. This jump occurs because below 5 0% the mug does not require morphology
operations to clean up the threshold while above 6 0% the opening and closing operations
are necessary. The jump reflects the performance cost for the morphology operations.
We also note that the fast marching module of the algorithm contributes very little
to the overall timing while the curvature module contributes the most. Although the

14 7

(a) (b)

(c) (d)

Figure 7.47: Effects of structuring element size for morphology processing. For these
examples, we vary the size of the structuring element Dk for the morphology operations.
(a) Initial threshold of the mug with a = 0.3 results in 25 unique marker regions.
(b) Set k = I and apply opening and closing operations results in five unique marker
regions. (c) Set k = 2 leads to two marker regions. (d) Set k = 3 also leads to just two
marker regions.

148

Timing Performance for Mug
2
° Curvature

Threshold
� 1 5 Wat�rshed
C:
0

� 1 0

� 5
)It"- ___ ... ______ ______ _..,....---�tc

o ._____...._......,..-�'.(-'-'-.... L. .. _ -=-·• .. _----
.:
--•·_· _ ... _____.

0 20 40 60 80 1 00
Mesh Size (% of Original)

Figure 7 .4 8: Timing performance for the mug. The plot of the code modules is for the
Fast Marching Watersheds as a function of mesh size.

O(n log n) nature of fast marching is inherently fast, the fact that thresholding alone
segments typically 7 0 to 90% of the mesh improves the performance, as well.

7 .4 Part Saliency Metric

With the results from the previous two sections, we are able to compute the principal
curvatures at each vertex of a triangle mesh and then segment the mesh along lines of
negative curvature minima. Our implementation of the minima rule decomposes a mesh
into visual parts. To evaluate the quality of the visual parts, we have developed the
Part Saliency Metric algorithm. In this section, we analyze this algorithm. We assume
that we have a mesh that has been segmented into visual parts according to the minima
rule. These parts however may or may not be visually salient to a human observer. The
algorithm measures the perceptual importance of each part based on a theory of human
vision. We first evaluate in a qualitative manner how the algorithm computes saliency,
and then we compare this measure to other possible measures. Finally we conclude with
an evaluation of the timing performance of the algorithm.

7 .4. 1 Qualitative Analysis

Recall the sequence of part merges for the mug in Figs. 6 .1 and 6 .2. For this sequence,
the Part Saliency Metric controls the merge of the least salient parts as we move from
a segmentation of five parts to a single part. We claimed in these previous figures that
the sequence followed the measured saliency values, but we did not present those values.
We now do so in Figs. 7 .4 9 and 7 .5 0.

The bar charts in these figures demonstrate the relative salience of each part. In
the charts, we have ordered the bars such that the most salient parts are on the left
of the graph while the least are on the right. The legends of each graph show the
corresponding part of the mug. The cup, handle, and bottom parts are fairly obvious
while the knob and base may not be. The latter two parts are an oversegmentation.

149

,.

Cl>

(a)

(c)

0.75
(l)
(J
C:
.!!? 0.5
U)

0.25

0

0.75
Q)
(J
C: a> 0.5

U)

0.25

0

,...

a

Salience of Mug Parts (5)

a: Cup
b: Handle
c: Knob
d: Base
e: Bottom

-

..,., ..,., �
b c d
Part of Interest

(b)

e

Salience of Mug Parts (4)

-

a

a: Cup
b: Handle
c: Bottom
d: Knob

-

n ..,..,
b c d
Part of Interest

(d)

Figure 7.49: Bar graphs of part saliency metric for mug (I) . These bar graphs show the
saliency metric for each part of the mug. The progression sequence shows the metric
changes as we simplify the number of parts for the mug. (a) Five parts: cup, handle,
base, bottom, and knob. (b) Saliency metrics for these five parts. (c) Four parts:
bottom merges with base. (d) Saliency metrics for these four parts.

150

,__.....__ '---------

(a)

(c)

0.75
�
ffi 0.5
� en

0.25

0.75
�
ffi 0.5
� en

0.25

0

0

Salience of Mug Parts (3)

-

a

.....

n
b c

a: Cup
b: Handle
c: Bottom

Part of Interest

(b)

Salience of Mug Parts (2)

-
-

a b
Part of Interest

(d)

a: Cup
b: Handle

Figure 7.50: Bar graphs of part saliency metric for mug (II) . These bar graphs show the
saliency metric for each part of the mug. The progression sequence shows the metric
changes as we simplify the number of parts for the mug. (a) Three parts: cup, handle,
and base. (b) Saliency metrics for these three parts. (c) Two parts: bottom merges
with cup. (d) Saliency metrics for these two parts.

151

The knob is the small portion at the top intersection of the handle with the cup. The
base is the flat region underneath the mug. From Fig. 7.49(b) , we see that the knob,
the base, and the bottom are the least salient parts of the initial segmentation. They
have almost equivalent values. The algorithm selects the bottom as the least salient
and merges it with the base. This operation results in the new bottom, which exhibits
a larger salience than either the base or original bottom alone as shown in Fig. 7.49(d).
The merger clearly leaves the knob as the least salient part. So, if the merge algorithm
continues, the knob joins the cup with the results in Fig. 7.50(b). Finally, we merge
the bottom with the cup in Fig. 7.50(d). The measured saliency values drive the merge
progression of least salient parts to more salient ones.

As these bar graphs show, the importance of the Part Saliency Metric is to evaluate
the quality of each part as a part itself. For example, the knob, the base, and the bottom
in the original segmentation are not visually significant parts, and we have a measure
that quantifies this notion. Further, if we merge the base and the bottom, we see that
these parts together form a more visually significant part, and the measure captures
this change, as well. This ability to measure the quality of each part is the contribution
of this algorithm.

We continue to explore the saliency measure in the remaining figures of this section.
Here, the data set is an automotive distributor cap. The triangle mesh for this model
consists of 65K vertices with 130K triangles. A rendering of the model appears in
Fig. 7.5l (a) with the part decomposition in Fig. 7.5l (b). This decomposition consists
of 20 different parts. The saliency algorithm generates an adjacency graph that shows
the interconnection of these parts. This graph appears in Fig. 7.5 2. The nodes of the
graph represent the parts while the edges define the part connections. We have manually
assigned the node labels to describe the appropriate part of the distributor cap. This
graph benefits other computer vision tasks such as object recognition.

Once we have a graph representation of the segmentation, we can also apply the
four-coloring algorithm as in Fig. 7.5 3. The segmentation in Fig. 7.5 3(a) is the orig­
inal segmentation where a simple method alternates among a palette of 16 different
colors. For some segmentations, this method is adequate and usually does not lead to
ambiguities for full color visualizations such as on a computer monitor. However, in
grey scale such as one may find with a laser printer, the 16 colors are visually difficult
to distinguish for adjacent parts as in Fig. 7.5 3(c). With a palette of four colors and
the four-coloring algorithm, we are able to improve the color labels as in Fig. 7.5 3 (b).
With these labels, the colors do not simply cycle among the palette, but rather the
algorithm intelligently selects a color from the palette so that adjacent parts do not
share a common color. This approach improves the contrasts for visualizations in grey
scale such as Fig. 7.5 3(d). The four-color labeling of the segmentations is often more
visually pleasing for output in grey scale.

The previous results for the distributor cap demonstrate the adjacency graph and
the four-coloring problem for the Part Saliency Metric , but the heart of the algorithm
is the saliency measure as shown previously with the mug data set. The bar graph

15 2

(a) (b)

Figure 7.51 : Segmentation of distributor cap. These screen shots show the segmentation
of the distributor cap model, which consists of 65, 397 vertices and 129, 849 triangles.
(a) Rendered view showing the shape of the model. (b) Colored labeling of the segmen­
tation.

153

'- ·�

:f f
.>'�
Ji
y· .. · .. ·: • re..•.

•.

�--�_.,,,

I

Figure 7 . 5 2: Part adjacency graph for distributor cap model. The above undirected
graph is the part adjacency graph for the segmentation of the distributor cap model.
The nodes of the graph represent the parts of the model while the edges represent the
connections between parts. We manually assign the node labels.

154

PlugE

(a) (b)

(c) (d)

Figure 7 .53: Segmentation of distributor cap with four-color labeling. This coloring of
the distributor cap segmentation is the result of a four-color graph algorithm. Such an
algorithm improves the distinction of the region colors, especially for black and white
contrast. (a) Color labels that alternate among a palette of 16 different colors. (b) Four­
color labels where adjacent regions never share a common color. (c) Grey scale version
of (a) . (d) Grey scale version of (b) .

155

Salience of Distributor Cap Parts

0.75

0.5 -�

0.25

a b c d e f g h i j k l m n o p q r s t u v

Part of Interest

Figure 7 .54 : Bar graph for part saliency of distributor cap. The bar graph shows the
relative saliency of each part from the initial segmentation of the distributor cap. This
segmentation is before merging of the least salient parts. The parts with the smallest
saliency are parts u and v, which correspond to the "bad" parts.

in Fig. 7 .54 shows the saliency values for the distributor cap parts. Note that this
graph has values for 22 parts whereas the results in Figs. 7 .51 and 7 .52 are for only 2 0
parts. The two extra parts are u and v. As the bars indicate, these parts have the
smallest values, and thus the algorithm merges them with other parts to achieve the
final segmentation in Fig. 7 .5l (b). We qualitatively call parts u and v "bad" parts.
The letter designation for each part and its corresponding description are in Table 7 .5.

Fig. 7 .55 shows the physical location of parts u and v on the distributor cap. They
occur at the rear where some irregularities in the surface of the model occur. These
irregularities are most likely measurement errors that lead to problems in surface recon­
struction. As the zoom views in these figures show, neither part bounds a significant
volume, nor do they protrude much from the model. These factors lead to small saliency
values. By comparison, the other parts of the distributor cap have significantly larger
values. Consider the largest part a, which is the center cap from where the other parts
extend. This cap occupies the most volume and is thus the most significant part of the
model. The advantage of the proposed measure, however, is when we consider parts
such as the screw s. A zoom view of this screw appears in Fig. 7 .56. In terms of surface
area, the screw seems quite small in comparison to u and v. Indeed it is small , but
in terms of salience as shown in the bar graph, the screw is much larger. This result
agrees with our visual perception since most human observers would select the screw
over parts u and v as salient features of the distributor cap.

The third least salient part in the graph of Fig. 7 .54 is part t. This part is a small
protrusion at the base of the distributor cap. The zoom view in Fig. 7 .57 shows a better
view of this part. From the bar graph, we know that this part is only slightly more

156

a.,
0
C:

m
U')

0

(a) (b)

(c) (d)

Figure 7.55: Trimming bad parts from distributor cap model. The views on the left
show "bad" parts from the segmentation of the distributor cap. The views on the right
show how evaluation with the saliency metric allows us to merge these parts to improve
the segmentation. (a) Rear view of distributor cap after initial segmentation with 22
parts. (b) Rear view of distributor cap after merging least salient parts with 20 parts.
(c) Zoom view of region of interest in (a) showing two "bad" parts: u and v. (d) Zoom
view of corresponding region in (b) .

157

Table 7 .5 : Part labels for distributor cap model. Part letter designations for distributor
cap model with corresponding descriptions.

a Cap i Base D p Screw A
b Base j Base F q Link Base
C Base A k Plug B r Base B
d Link Tube I Plug D s Screw C
e Plug E m Screw B t Base C
f Plug C n Base E u Bad Part A
g Link Cap 0 Screw D V Bad Part B
h Plug A

--

(a) (b)

Figure 7 .5 6 : View a screw part for distributor cap. The salience metric allows the
algorithm to preserve salient, or "good" , such as this screw, which is part s . (a) The
broad view that shows the context of the zoom view in (b). (b) A zoom view of the
screw that protrudes from the base of the model.

158

(a) (b)

Figure 7 .57 : Side view of distributor cap. The base of the distributor cap consists of
a few different regions. One of those regions is a small protrusion, which is part t.
(c) This view shows the context for the view in (d). (d) A zoom view of the base that
protrudes from the model.

salient than u and v, but less salient than the screw s. The question is whether or not
this part is a "good" or a "bad" part. This decision is essentially a threshold of the
saliency measure. Since this threshold differs for different human observers, establishing
a unique criteria is not trivial-and may not be possible. Thus, we pose this question as
an area of future research. The control of the merge algorithm requires the specification
of a minimum saliency value to define "good" parts.

7.4.2 Quantitative Comparison

We now investigate the Part Saliency Metric in a more quantitative manner. In particu­
lar, we compare the results of the saliency measure to two other measures for evaluating
the quality of the segmentation.The first measure that we compare is the surface area of
the part. To compute this measure, we simply sum the areas for each triangle associated
with a particular part. Sun et al. (Sun et al., 2 002 a) use this approach to improve their
segmentations. The approach assumes that regions that have a small area relative to
some threshold are oversegmentations. The second measure is the watershed depth of
the part. To compute this measure, we find the minima watershed height for a part
and difference this value with the maximum height along the boundary of the part.
With our curvature definition for watershed height, this approach means that we find
the maximum principal curvature for a part and then the minimum principal curvature
along a part boundary. The difference between these values is the depth of the part . .
The assumption is that parts with small depths are oversegmentations. This method
is common in the literature (Mangan and Whitaker, 1999; Rettmann et al., 2002). We

159

have found these methods to be ad hoc and are not as robust as the visual saliency
measure that we have proposed. The results that follow support this argument.

To begin our comparison, we first create a set of synthetic triangle meshes to high­
light the variations between the different methods. These objects appear in Fig. 7.58
and their corresponding segmentations appear in Fig. 7.59. These objects consist of two
parts : a lower box and an upper box. The physical dimensions of the lower box are the
same among the four objects while dimensions of the upper boxes vary. The variation
is such that the visual saliency of the upper box increases from left to right and top to
bottom in the figure. We label the four objects as shown.

We have carefully de�ned the dimensions of the upper boxes to highlight the differ­
ences of the three quality measures. For example, the doormat and tall box object have
roughly the same surface area while the pancake and short box have approximately half
that surface area. For the watershed depth, the doormat object has almost zero depth
while the pancake, short box, and tall box have nearly identical maximum and minimum
curvature values. However, by varying the bounded volume, the part protrusion, and
the boundary strength, each of the parts have very different visual saliency values.

We begin with a comparison for the part area in Fig. 7.60. These measures result in
almost equivalent values for the doormat and the tall box, and their values are the largest
of the four objects. The pancake and short box objects, on the other hand, have the
smallest values. These values reflect our careful creation of the synthetic data set. With
this measure, one might conclude that the doormat is a better part segmentation than
either the pancake or short box. This conclusion disagrees with our visual perception
of the parts, however. The doormat is almost flush to the top surface of the lower box
and has very little visual importance, but the pancake and the short box are readily
discernable as they protrude from the lower box. They perceptually stick out .more than
the doormat. · The part area does not necessarily capture our visual perception of the
parts. A large region in terms of area does not directly imply a "good" part. The "bad"
parts from the distributor cap in Fig. 7.5 5(c) are a practical example.

If part area does not quite meet our needs, then we next consider the part depth as
a quality measure. Since we are using a watershed algorithm to generate our segmen­
tations , we can define a watershed depth to evaluate the quality of the segmentation
regions. For our synthetic data sets, the results appear in Fig. 7.61. Interestingly, the
doormat receives the lowest value, which was not the case with part area previously.
So, this measure might be useful for the parts in Fig. 7.5 5(c). The problem with this
measure, however, is that it does not discriminate the size of a part. Whereas the part
area measure is completely reliant on size, the depth measure offers no insight to the
part size. Consequently, the pancake, short box, and tall box parts have almost identical
values even though they are quite different in size. This measure does not distinguish
among these three objects, and yet a human observer would most likely argue that
they are different. Human perception would factor their relative size in evaluating their
quality as a part. As a practical example, this measure gives very similar results for the
screw in Fig. 7.5 6(b) and the plugs at the top of the distributor cap in Fig. 7.5l (b).

160

(a) A: Doormat (b) B: Pancake

(c) C: Short Box (d) D: Tall Box

Figure 7.58: Synthetic objects for saliency comparison. These objects consist of two
parts. The lower box is the same size for each of the objects. The upper box has varying
dimensions to simulate different visual saliency values. (a) The doormat object where
the top part is almost flush with lower box. (b) The pancake object where the top part
protrudes only slightly. (c) The short box object where the top part has significant
volume and protrusion. (d) The tall box object where the top part extends like an
obelisk from the lower part .

161

(a) A: Doormat (b) B: Pancake

(c) C: Short Box (d) D: Tall Box

Figure 7.59: Segmentation of synthetic objects for saliency comparison. These segmen­
tations show the parts for the objects of the previous figures. Each object consists of
two parts. (a) The doormat object where the top part is almost flush with lower box.
(b) The pancake object where the top part protrudes only slightly. (c) The short box
object where the top part has significant volume and protrusion. (d) The tall box object
where the top part extends like an obelisk from the lower part.

162

Relative Part Area

A: Doormat -

B: Pancake

ca 0.75 Q)
- C: Short Box

D: Tall Box

Q) -
0.5 -�

-

0.25

0
A B C D

Part of Interest

Figure 7.60: Comparison of part area for synthetic objects. This bar graph shows the
relative part area for the top part for each of the synthetic objects.

163

>

ai
a:

Relative Curvature Depth

A: Doormat - -
B: Pancake -
C: Short BoK

0.75
Q)

D: Tall Box

Q)
0.5

0.25

0 n
A B C D

Part of I nterest

Figure 7 . 61: Comparison of watershed depth for synthetic objects. This bar graph
shows the relative depth in terms of the watershed catchment basin for the top part for
each of the synthetic objects. Recall that the segmentation algorithm is a watershed
method.

The Part Saliency Metric takes a different approach from either of these two mea­
sures. Our proposed measure attempts to model human visual perception. Most human
observers would rank the top part of the four objects in a manner similar to the graph
values in Fig. 7 . 62. These values are the results from the Part Saliency Metric algo­
rithm. The agreement between this graph and human perception is the power of this
algorithm over the area and depth measures. The measure allows one to readily distin­
guish among the four objects unlike the depth measure, which gave equivalence to the
pancake, short box, and tall box parts. The proposed measure factors the size of the
part into the estimation of its saliency, yet the measure does not totally consider the
size as the part area measure does. The saliency measure also includes protrusion and
boundary strength factors such that the doormat receives the smallest saliency value.

These three graphs in Figs. 7 . 60 through 7 . 62 motivate our interest and design of
the Part Saliency Metric . This measure allows us to quantify and evaluate the quality
of each part in a segmentation and thus to merge parts that do not meet a minimum
salience requirement. We are able to improve our minima rule decompositions with
this measure. We next study the computational performance of the algorithm for this
measure.

7.4.3 Timing Performance

We finally explore the timing performance of the proposed algorithm. The bar chart
in Fig. 7 . 63 gives the timing results in seconds for ten different mesh examples where
we denote the examples in Table 7 . 6. Each bar is the time required to compute the
saliency of each part for a particular mesh. The implementation for these results is in

164

-E
Q.

Q

I

Relative Part Salience

A: Doormat

B: Pancake
Q)

C: Short Box -
0.75 -� D: Tall Box

Q) 0.5

0 .25 a:
-

0 n
A B C D

Part of Interest

Figure 7.62: Comparison of part salience for synthetic objects. This bar graph shows
the relative part salience for the top part for each of the synthetic objects.

Visual C++ on a desktop computer with an Intel Pentium IV at 1 .8GHz with 512MB
memory. Since the algorithm is a function of the triangle count for a mesh and the
number of segmentation parts , we evaluate the performance of the algorithm with a
range of examples. Since most objects consist of a small number of parts, the algorithm
is almost linear with the number of triangles in the mesh. Although the algorithm has
computational complexity of O(m + n) where m is the number of visual parts and n is
the number of triangles in the mesh, the algorithm is essentially O(n) since n is often
much larger than m. We also note that we have not optimized our implementation.
The times reported in the graph could probably be reduced significantly with tuning.

This section concludes our experimental results for the Minima Rule Algorithm
and the three algorithms associated with it: Normal Vector Voting, Fast Marching
Watersheds, and Part Saliency Metric. This section serves to document the qualitative
and quantitative results of each algorithm along with the performance characteristics
for each. We now move to the final section of this dissertation, which is the conclusions
that we draw from these results and the discussion of future directions for this research.

165

0
C:

1G en

1 �

11

30

20
Q)

Q)

1 0
F

0

Timing Performance

r.1 n n
A B C D E F G H J

Data Set of Interest

Figure 7.6 3: Timing performance for various triangle mesh objects. This bar graph
shows the time in seconds required for the Part Saliency Metric algorithm. The graph
shows timing performance for a variety of meshes that are different sizes in terms of
triangle count and consist of different numbers of parts.

Table 7.6 : Mesh characteristics for timing performance examples.

Object Vertices Triangles Parts

A Teapot 3, 03 4 6 , 010 5
B Watering Can 8, 086 15 , 84 3 6
C Coffee Mug 10, 05 5 2 0, 910 4
D Chair 2 6 , 7 6 6 5 3, 4 6 2 11
E Bore Pin 3 7 , 4 5 0 7 4, 896 6
F Disc Brake 3 7 , 3 3 2 7 3, 5 5 3 2
G Hand Crank 4 6 , 87 0 93, 7 5 2 7
H Cone Scene 6 1, 02 7 117 , 7 7 8 6
I Bunny 3 4, 83 4 6 9, 4 5 1 8
J Distributor Cap 6 5 , 3 97 12 9, 84 9 2 0

16 6

........
<O
-0
C:
0
0

fQ,
E

Chapter 8

Conclusions

In this dissertation, we have described an algorithm to decompose triangle meshes that
approximate piecewise smooth surfaces into visual parts. This decomposition models
the selection of parts that most human observers would choose for the same meshes.
This research leverages the human vision theory known as the minima rule. As our final
illustration of the algorithm, we once again recall our coffee mug example in Fig. 8. 1 .
In the previous chapters, we have reviewed other research in the literature similar to
this algorithm as a context for our contributions, and we have presented the supporting
theory along with experimental results to document the algorithm itself. We now con­
clude this dissertation with a brief summary of the contributions and a short discussion
of future directions.

(a) (b} (c)

Figure 8. 1 : Mug example decomposition. This final example shows the decomposition
of the mug. (a) The input triangle mesh that approximates the piecewise smooth surface
of the coffee mug. (b) The output of the Minima Rule Algorithm that illustrates the
visual parts of the mug with color-coded labels. (c) An adjacency graph representation
of the decomposition with user-specified labels for the nodes of the graph.

167

8.1 Summary of Contributions

The primary contribution of this research as described in this dissertation is the creation
of the Minima Rule Algorithm. This algorithm extends the state of the art in
computer vision research through the implementation of a human vision theory. Within
this algorithm, we offer three other contributions as follows:

• Normal Vector Voting. This contribution is a novel algorithm for the estima­
tion of surface curvature at the vertices of a triangle mesh. The strength of this
algorithm is its robustness to measurement noise.

• Fast Marching Watersheds. This mesh segmentation algorithm identifies nega­
tive minima curvature contours to segment a mesh into regions. This contribution
follows the definition of visual parts with regard to the minima rule theory.

• Part Saliency Metric. This novel measure associates a visual significance, or
saliency, value with each minima rule part of a mesh. This value allows us to
merge the least salient parts with other more salient ones and thereby to address
oversegmentation.

For each of these contributions, we have presented both qualitative and quantitative
results to demonstrate their strengths and to analyze their limitations. We have pub­
lished the Normal Vector Voting algorithm in (Page et al. , 200 1; Page et al . , 200 3f) with
extensions in (Page et al., 200 2) . An additional paper (Page et al . , 200 3c) extends our
proposed curvature algorithm to the notion of shape complexity. The Fast Marching
Watersheds is to appear in (Page et al. , 200 3a) and we have submitted the Part Saliency
Metric to (Page et al . , 200 3b; Page et al. , 200 3g) for review. Further, a general overview
paper is to appear in (Page et al. , 200 3d) . With this summary of the con�ributions, we
now turn to the future directions for this research.

8.2 Directions for Future Research

The ideas and concepts in this dissertation offer interesting avenues for future research.
Although many directions are possible, we have identified the following areas as partic­
ularly important.

8.2.1 Automatic Parameter Selection

The first major area for future research is in automatic selection of the user parameters
associated with each algorithm in this dissertation. Although the algorithms are fairly
insensitive to the parameters in that they do not require fine tuning by the user to
achieve quality results , the requirement for user selection is a minor limitation. Auto­
matic selection of the parameters is not an impossible task, but it does require additional
research. We consider the parameters for each algorithm, individually.

168

'

For Normal Vector Voting, we have three parameters as noted in Table 4 .2. These
parameters are essentially controls to overcome approximation error in the mesh relative
to the original surface. One solution is statistical analysis of the variation of the mesh. A
statistical model could define the appropriate neighborhood size for the voting algorithm
and also the decision thresholds for the vertex classification. Another solution is to
redesign the voting process. Currently, our scheme is a two step process that requires
eigenanalysis at each step. A potential reformulation is to avoid the eigenanalysis during
the first step through vector summation instead of the current matrix summation. We
have discussed the weaknesses of such an approach in the previous theory sections,
but the possibility of overcoming these weaknesses is an interesting avenue for future
research. The computational cost for the eigenanalysis is considerable.

The Fast Marching Watersheds algorithm requires two user parameters as noted
in Table 5.2. As with the pervious parameters, these variables allow control over the
level of robust of the algorithm to errors in curvature estimation. Again, statistical
analysis of the data may offer a solution. Another approach is to include additional
mathematical morphology operations into the algorithm. For example, one possibility
is the skeletonization, or thinning, operation (Rossl et al., 2000). Since we initially
threshold the vertex curvatures to establish regions of negative minima curvature, a
thinning operation would collapse regions into either a point or a contour. The regions
that collapse to a point do not bound a visual part while ones that collapse to a contour
do. A simple filtering of point regions would minimize oversegmentation. We need to
address a few problems with this approach, however, but it does eliminate the need for
the user to select a disc size for the opening and closing operations.

Finally, we consider the parameters for the Part Saliency Metric in Table 6 . 1. These
parameters are more subjective than the previous ones since they are a direct function
of human perception. An novel extension to this algorithm would be to avoid these
parameters entirely through an artificial neural network solution. The proposed saliency
measure is a combination of three measurable quantities of a part: the relative size, the
relative protrusion, and the part boundary strength. These values could serve as input
to a neural network with the output being the part saliency. The key to this approach
is establishing a training set and thus an area for future research.

8.2.2 Object Recognition

Object recognition is an extremely difficult task with most current solutions limited to
very constrained and restricted problem domains. Although the Minima Rule Algo­
rithm alone offers no contributions in terms of recognition, as an implementation of a
human vision theory, it might serve as a first step in the recognition pipeline. Shapiro
and Stockman (Shapiro and Stockman, 2001) suggest commonly used paradigms for
object recognition where the method chosen depends heavily on the application. They
discuss two paradigms that might be applicable to the results in this dissertation: the
matching relational models and the matching functional models. Both of these mod­
els use part relationships to move away from a geometric definition of an object to a

169

more symbolic one. Our decomposition algorithm might benefit the creation of such a
symbolic representation from a mesh representation.

8.2.3 Complexity Measures

Another avenue for future research is to measure the complexity of an object or scene.
Two possible candidate measures from this research are shape complexity and graph
complexity.

First, we might use curvature estimates from Normal Vector Voting to evaluate the
shape complexity of a surface mesh. Since the algorithm estimates principal curvatures
at each vertex, we can generate probability distribution curves. With these curves, we
can formulate an information theoretic based on entropy to define shape complexity.
In the spirit of Claude Shannon's definition of information, this measure would reflect
the amount of shape information that an object possesses. Objects and scenes with
nearly constant curvature would contain relatively low values of shape information.
While other objects and scenes with significant variation in curvature would exhibit
fairly large values. Through some basic experiments, we have already begun to explore
these ideas, and currently the selection of appropriate bin widths for estimation of the
distributions is a hurdle that we must address. Kernel density estimation is one solution
to this issue, but more research is necessary.

A second measure of interest is graph complexity for the Part Adjacency Graph. A
common measure of graph complexity is through the matrix-tree theorem (Bondy and
Murty, 197 6 ; Chartrand, 197 7) , which gives the number of nonidentical spanning trees of
a graph. This complexity measure gives insight to the number of visual parts and their
degree of interconnectedness. Perhaps, we can derive other measures of complexity, but
these two are of current interest.

8.2.4 Exponential Map

A side topic that has developed from the geodesic distance work in Normal Vector Voting
and Fast Marching Watersheds is the computation of an exponential map for a mesh.
With the work of Kimmel and Sethian (Kimmel and Sethian, 1998), we can compute the
geodesic distance from one vertex of a mesh to another. A natural extension might be
to also compute the departure angle of the geodesic path from one vertex to another. If
we can compute this angle, then we can create a geodesic polar mapping (O'Neill, 1997) .
The problem is that Kimmel and Sethian's method does not preserve angular measures
as the algorithm marches across the surface of a mesh. However, the quasi-conformal
mappings discussed in (Hurdal et al., 1999) do preserve angular values. The concepts
in (Hurdal et al. , 1999) along with the straightest geodesic research in (Polthier and
Schmies, 1998) may provide a means to compute the departure angle. Subsequently, a
combination of these methods with Kimmel and Sethian's work may yield an algorithm
to define an exponential map over a triangle mesh.

17 0

..

(a) (b)

Figure 8.2 : Examples of part boundaries that are not smooth. The current implemen­
tation of the part decomposition algorithm does not nece.ssarily lead to visually pleasing
boundaries in terms of smoothness. These zoom views, both (a) and (b) show the jagged
nature of the final part boundaries, which are the white triangles in views. A direction
of future research is to smooth these boundaries.

8.2.5 Discrete Fast Marching Watersheds

The current implementation of the proposed Fast Marching Watersheds algorithm is a
continuous implementation. The term continuous means that the values for the height
map have real values from zero to infinity. The initial motivation for this continuous
approach is that our curvature data is also continuous. A potential modification, how­
ever, is to assign these continuous height levels-via some constraint-to discrete integer
levels. This extension is a discrete implementation of Fast Marching Watersheds.

The advantage is that a discrete definition of the height map suppresses variations in
the curvature values and thereby improves the segmentation results. A tradeoff exists,
though. Fewer levels lead to greater rejection of curvature noise, but more levels lead
to better identification of the negative curvature minima. The success of the method
thus requires a balance. Our future research is to investigate this balance.

In addition to noise suppression, the method may also improve the boundaries be­
tween parts. Currently, the contours that form the boundaries strictly follow the nega­
tive curvature minima, which are often jagged and not visually pleasing. The examples
in Fig. 8.2 demonstrate this problem. Although the Fast Marching Watersheds algo­
rithm properly identifies the boundaries, it does so without regard to smoothing con­
straints. A discrete definition of the height in conjunction with the principles of geodesic
erosion (Vincent and Soille, 1991 ; Sun et al. , 2 002 a) may produce smoother boundary
contours while still remaining close to the minima. The distance constraint of geodesic
erosion should incorporate some boundary smoothing into the part segmentations.

17 1

8.2.6 Visualization Applications

The final topic for future research is the incorporation of the decomposition into mesh
simplification algorithms. In 3D computer graphics, these algorithms are very common.
They attempt to reduce the number of triangles - in a · mesh without loss of fidelity in
the visual appearance of the mesh. . Our Minima Rule Algorithm may benefit these
algorithms. A simple illustration in Fig. 8.3 shows the potential of this approach.
Without decomposition, the simplification algorithms require more triangles around
the part boundaries to preserve the fidelity of the boundaries. With decomposition,
the boundaries do not constrain the simplification process. The application of our
decompositions to mesh simplification is an interesting topic of future research.

8.3 Discussion with Closing Remarks

In the first chapter of this dissertation, we began with a mental exercise involving the
coffee mug. With this exercise, we suggested that most human observers decompose
the mug into three visual parts: the cup, the handle, and the base. Throughout this
dissertation, . we have explored the minima rule as one potential · theory . that partially
explains our selection of these · parts. . Further, we have developed the Minima Rule
Algorithm in the spirit of this theory as a computer vision algorithm to model human
perception. Obviously, the minima rule and our implementation of that rule do not
completely capture the perceptual power of the human mind, but hopefully the concepts
presented in this dissertation do provide a step-if only a small step-towards extending
the state of the art in computer vision.

"A JOURNEY OF A THOUSAND MILES BEGINS WITH A SINGLE STEP ."

-CONFUCIUS

172

(a) (b)

(c) (d)

Figure 8. 3 : Application of part decomposition to aid mesh simplification. Part decom­
position such as the Minima Rule Algorithm may aid mesh simplification algorithms.
These meshes illustrate the benefit of segmenting the original mesh into a floor and bar­
rel. As a part of the decomposition, we have also applied a hole filling algorithm to fill
the boundary holes after decomposition. (a) The original mesh requires over lOK trian­
gles. (b) Simplification without part decomposition. (c) Decomposition into a floor part
with simplification. (d) Decomposition into a barrel part with simplification. Both (c)
and (d) together require 2 5 0 triangles, and (b) also requires 2 5 0 triangles. Notice that
the floor in (c), however, only requires three triangles while the one in (b) many more
than that.

1 7 3

Bibliography

174

t

Bibliography

3D Digital Corporation (2 000).
3ddigitalcorp . com.

RealScan USB White Paper. http : //www .

Alrashdan, A., Motavali, S., and Fallahi, B. (2 000). Automatic segmentation of digitized
data for reverse engineering applications. IIE Transactions, 3 2 : 5 9- 6 9.

Amenta, N., Bern, M., and Kamvysselis, M. (1998). A new voronoi-based surface
reconstruction algorithm. In Computer Graphics Proceedings (SIGGRAPH '98),
pages 4 15 - 4 2 1.

Andreson, J. R. (1995). Cognitivie Psychology and its Implications. W. H. Freeman and
Company, New York, NY , fourth edition.

Appel, K. and Haken, W. (197 7 a). Every planar map is four colorable, part I: Discharg­
ing. lllustrated Jo,urnal of Mathematics, 2 1.

Appel, K. and Haken, W. (197 7 b). Every planar map is four colorable, part II: Re­
ducibility. Illustrated Journal of Mathematics, 2 1.

Athitsos, V. and Sclaroff, S. (2 002). An appearance-based framework for 3D hand
shape classification and camera viewpoint estimation. In Proceedings of the IEEE
Conference on Face and Gesture Recognition.

Baccar, M., Gee, L. A., Gonzalez, R. C., and Abidi, M. A. (1996). Segmentation of
range images via data fusion and morpholocial watersheds. Pattern Recognition,
2 9(10) : 16 7 1- 16 85.

Bajaj , C. L. and Dey, T. K. (1992). Convex decomposition of polyhedra and robustness.
SIAM Journal of Computing, 2 1(2) : 3 3 9- 3 6 4.

Bajcsy, R. and Solina, F. (1987) . Three-dimensional object representation revisited.
In Proceedings of the First International Conference on Computer Vision, pages
2 3 1- 2 4 0, London, UK. IEEE Computer Society Press.

Barr, A. H. (1981). Superquadrics and angle-perserving transformations. IEEE Trans­
actions on Computer Graphics and Applications, 1(1) : 11- 2 3.

17 5

Baylis, G. C. and Driver, J. (1995a). Obligatory edge assignment in vision-the role figure
and part segmentation in symmetry detection. Journal of Experimental Psychology:
Human Perception and Performance, 21 :1 32 3 -1 342 .

Baylis, G. C. and Driver, J. (1995b). One-sided edge assignment in vision. 1 . Figure­
ground segmentation and attention to objects. Current Directions in Psychological
Science, 4 :140-14 6 .

Bernardini, F., Mittleman, J., Rushmeier, H., Silva, C., and Taubin, G. (1999). The ball­
pivoting algorithm for surface reconstruction. IEEE Transactions on Visualization
and Computer Graphics, pages 349-359.

Besl, P. J. and Jain, R. C. (1988). Segmentation through variable-order surface fitting.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 10(2) :16 7-192 .

Biederman, I. (1985). Human image understanding: Recent research and a theory.
Computer Vision, Graphics and Image Processing, 32 (1) :29-73 .

Biederman, I. (1987). Recognition by components: A theory of human image under­
standing. Psychological Review, 94 (2) :115-14 7.

Biermann, H., Levin, A., and Zorin, D. (2000). Piecewise smooth subdivision surfaces
with normal control. In Computer Graphics Proceedings {SIGGRAPH 2000}, pages

11 3 -120.
Binford, T. 0. (1971). Visual perception by computer. In IEEE Systems Science and

Cybernetics Conference, Miami, FL.
Blum, H. (1973). Biological shape and visual science. Journal of Theoretical Biology,

38:205-287.
Blum, H. and Nagel, R. N. (1978). Shape description using weighted symmetric axis

features. Pattern Recognition, 10:16 7-180.
Bondy, J. A. and Murty, U. S. R. (1976). Graph Theory with Applications. London,

UK.
Braunstein, M. L., Hoffman, D. D., and Saidpour, A. (1989). Parts of visual objects:

an experimental test of the minima rule. Perception, 18:81 7-826 .
Brinkhoff, T., Kriegel, H.-P., Schneider, R. , and Braun, A. (1995). Measuring the

complexity of polygonal objects. In Proceedings of the Third A CM International
Workshop on Advances in Geographical Information Systems, pages 109-11 7.

Brooks, R. A. (1981). Symbolic reasoning among 3 -D models and 2 -D images. Artificial
Intelligence, 1 7(1 -3) :285-348.

1 76

I I. 11

Bryson, N. and Mobolurin, A. (2 000). Towards modeling the query processing rele­
vant shape complexity of 2D polygonal spatial objects. Information and Software
Technology, 4 2: 3 5 7 - 3 6 5.

Burdea, G. and Coiffet, P. (1994). Vitrual Reality Technology. John Wiley and Sons,
Inc.

Burgiss, S. G., Whitaker, R. T., and Abidi, M. A. (1998). Range image segmenta­
tion through pattern analysis of the multiscale wavelet transform. Digital Signal
Processing, 8: 2 6 7 - 2 7 6.

Campbell, R. J. and Flynn, P. J. (2 001). A survey of free-form object representation and
recognition techniques. Computer Vision and Image Understanding, 81: 16 6 - 2 01.

Castleman, K. R. (1996). Digital Image Processing. Prentice-Hall, Inc., Englewood
Cliffs, NJ.

Cave, C. B. and Kosslyn, S. M. (1993). The role of parts and spatial relations in object
identification. Perception, 2 2(2) : 2 2 9- 2 4 8.

Cesar, R. M. and Costa, L. (1997). Application and assessment of multiscale bend­
ing energy for morphometric characterization of neural cells. Review of Scientific
Instruments, 6 8(5): 2 17 7 - 2 186.

Chartrand, G. (197 7). Introductory Graph Theory. Dover Publications, Inc., New York,
NY.

Chazelle, B. (1984). Convex partitions of polyhedra: a lower bound and worst-case
optimal algorithm. SIAM Journal of Computing, 13(3): 4 88- 5 07.

Chazelle, B., Dobkin, D. P., Shouraboura, N., and Tal, A. (1997). Strategies for poly­
hedral surface decomposition: An experimental study. Computational Geometry:
Theory and Applications, 7 (5 - 6): 3 2 7 - 3 4 2.

Chazelle, B. and lncerpi, J. (1984). Triangulation and shape complexity. ACM Trans­
actions on Graphics, 3: 135-152.

Chazelle, B. and Palios, L. (1990). Triangulating a nonconvex polytope. Discrete and
Computational Geometry, 5 : 5 05 - 5 2 6.

Chazelle, B. and Palios, L. (1997). Decomposing the boundary of a nonconvex polyhe­
dron. Algorithmica, 17 : 2 4 5 - 2 6 5.

Chen, X. and Schmitt, F. (1992). Intrinsic surface properties from surface triangulation.
In Proceedings of the European Conference on Computer Vision, pages 7 3 9- 7 4 3,
Santa Margherita Ligure, Italy.

17 7

Curless, B. and Levoy, M. (1996). A volumetric method for building complex models
from range images. In Computer Graphics Proceedings (SIGGRAPH '96}, pages
303 -3 12 .

Curless, B. L. (1997). New Methods for Surface Reconstruction from Range Images.
PhD thesis, Stanford University.

Delingette, H. (1994 a) . Simplex meshes: A general representation for 3 D shape recon­
struction. In Proceedings of the International Conference on Computer Vision and
Pattern Recognition, Seattle, WA.

Delingette, H. (1994 b). Simplex meshes: A general representation for 3 D shape recon­
struction. Technical Report 22 14 , INRIA.

Delingette, H. (1997). General object reconstruction based on simplex meshes. Technical
Report 3 1 1 1 , INRIA.

Delingette, H. (1999) . General object reconstruction based on simplex meshes. Inter­
national Journal of Computer Vision, 32 (2) : 1 1 1-146 .

Desbrun, M., Meyer, M., Schroder, P., and Barr, A. H. (1999). Implicit fairing of irreg­
ular meshes using diffusion and curvature flow. In Computer Graphics Proceedings
(SIGGRAPH '99), pages 3 1 7-324 .

Dickinson, S. J., Pentland, A. P., and Rosenfeld, A. (1992). From volumes to views:
An approach to 3 d object recognition. Computer Vision, Graphics, and Image
Processing: Image Understanding, 55(2) : 1 30-154 .

Dijkstra, E. W. (1959). A note on two problems in connexion with graphs. Numerische
Mathematik, 1 :269-2 71 .

do Carmo, M. P. (1976). Differential Geometry of Curves and Surfaces. Prentice-Hall,
Inc., Englewood Cliffs, NJ.

Driver, J. and Baylis, G. C. (1995). One-sided edge assignment in vision. 2 . Part
decomposition, shape description, and attention to objects. Current Directions in
Psychological Science, 4 :201-206.

Eck, M. and Hoppe, H. (1996). Automatic reconstruction of B-spline surfaces of arbi­
trary topological type. In Computer Graphics Proceedings (SIGGRAPH '96), pages
325-3 34 .

Edelsbrunner, H. and Miicke, E. P. (1994). Three-dimensional alpha shapes. ACM
Transactions on Graphics, 1 3 (1) :4 3 -72 .

178

Faber, P. and Fisher, B. (2 002). How can we exploit typical architectural structures to
improve model recovery? In Cortelazzo, G. M. and Guerra, C., editors, Proceed­
ings of the International Symposium on 3D Data Processing, Visualization, and
Transmission, pages 82 4- 833, Padova, Italy.

Falcidieno, B. and Spagnuolo, M. (1992). Polyhderal surface decomposition based on
curvature analysis. In Kunii, T. L. and Shinagawa, Y., editors, Modem Geometric
Computing for Visualization, pages 5 7 - 7 2. Springer-Verlag.

Fan, T., Medioni, G., and Nevatia, R. (1986). Description of surfaces from range data
using curvature properties. In Proceedings of the International Conference on Com­
puter Vision and Pattern Recognition, pages 86 - 91.

Faugeras, 0. D. and Hebert, M. (1986). The representation, recognition and locating
of 3-D objects. International Journal of Robotics Research, 5 (3): 2 7 - 5 2.

Ferrie, F. and Levine, M. (1988). Deriving coarse 3D models of objects. In Proceedings
International Conference on Computer Vision and Pattern Recognition, pages 3 4 5 -
3 5 3.

Ferrie, F. P., Lagarde, J., and Whaite, P. (1993). Darboux frames, snakes, and super­
quadrics: Geometry from the bottom up. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 15 (8): 7 7 1- 7 84.

Fischler, M. and Bolles, R. (1986). Perceptual organization and curve partitioning.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 8: 100- 105 .

Flynn, P. J. and Jain, A. K. (1988). Surface classification: Hypothesis testing and
parameter estimation. In Proceedings of the International Conference on Computer
Vision and Pattern Recognition, pages 2 6 1- 2 6 7 .

Flynn, P. J. and Jain, A. K. (1989). On reliable curvature estimation. In Procee.dings of
the International Conj erence on Computer Vision and Pattern Recognition, pages
110- 116 .

Froimovich, G., Rivlin, E., and Shimshoni, I. (2 002). Object classification by functional
parts. In Cortelazzo, G. M. and Guerra, C., editors, Proceedings International
Symposium on 3D Data Processing, Visualization, and Transmission, pages 6 4 8-
6 5 5 , Padova, Italy.

Frueh, C. and Zakhor, A. (2 001). 3D model generation of cities using aerial photographs
and ground level laser scans. In International Conference on Computer Vision and
Pattern Recognition, volume II, pages 3 1-3 8.

Frueh, C. and Zakhor, A. (2 002). Data processing algorithms for generating textured
3D building facade meshes from laser scans and camera images. In Cortelazzo,

17 9

G. M. and Guerra, C., editors, Proceedings International Symposium on 3D Data
Processing, Visualization, and Transmission, pages 834 -84 7 , Padova, Italy.

Gansner, E. R. and North, S. C. (2000). An open graph visualization system and its ap­
plications to software engineering. Software Practice and Experience, 30(1 1) : 1203 -
12 3 3.

Garland, M. and Heckbert, P. S. (1997). Surface simplification using quadric error
metrics. In Computer Graphics Proceedings (SIGGRAPH '97), pages 209-2 16.

Ghali, A., Daemi, M. F., and Mansour, M. (1998). Image structural information assess­
ment. Pattern Recognition Letters, 19:447 -457.

Gonzalez, R. C. and Woods, R. E. (1993). Digital Image Processing. Addison-Wesley
Publishing Company, Reading, MA.

Gonzalez, R. C. and Woods, R. E. (2002). Digital Image Processing. Addison-Wesley
Publishing Company, Reading, MA, second edition.

Gopi, M., Krishnan, S., and Silva, C. T. (2000). Surface reconstruction based on lower
dimensional localized Delaunay triangulations. In Gross, M. and Hopgood, F.
R. A., editors , Computer Graphics Forum (Eurographics 2000), volume 19(3), pages
C467 -4 78,544.

Gourley, C. S. (1998). Pattern vector based reduction of large multimodal data sets for
fixed rate interactivity during visualization of multiresolution models. PhD thesis,
University of Tennessee, Knoxville, TN.

Gregory, A., State, A., Lin, M. C., Manocha, D., and Livingston, M. A. (1999). Interac­
tive surface decomposition for polyhedral morphing. Visual Computer, 15:453 -470.

Guzman, A. (197 1). Analysis of curved line drawings using context and and global
information. In Machine Intelligence, volume 6 , pages 325-375, Edinburgh, UK.
Edinburgh University Press.

Hagen, H., Heinz, S., Thesing, M., and Schreiber, T. (1998). Simulation based modeling.
International Journal of Shape Modeling, 4 (3 ,4) : 14 3 -164.

Hameiri, E. and Shimshoni, I. (2002). Using principal curvatures and darboux frame to
recover 3 D geometric primitives from range images. In Proceedings International
Symposium on 3D Data Processing, Visualization, and Transmission.

Heawood, P. J. (1890). Map colour theorems. Quarterly Journal of Mathematics,
24 : 3 32 -3 38.

Hebert, M., Hoffman, R., Johnson, A., and Osborn, J. (1995). Sensor-based interior
modeling. In American Nuclear Society Sixth Topical Meeting on Robotics and
Remote Systems, pages 7 3 1-7 37.

180

' . .

. ..

• I

Heckbert, P. S. and Garland, M. (1999) . Optimal triangulation and quadric-based
surface simplification. Computational Geometry: Theory and Applications, 14: 4 9-
6 5 .

Heijmans, H.J. A. M. (1994). Morphological Image Operators. Academic Press, Boston,
MA.

Hershberger, J . E. and Snoeyink , J. S. (1998). Erased arrangements of lines and convex
decompositions of polyhedra. Computational Geometry: Theory and Applications,
9: 12 9- 143.

Hoffman, D. D. (1983) . The interpretation of visual illusions. Scientific American,
2 4 9(6) : 15 4- 16 2.

Hoffman, D. D. and Richards, W. A. (1984) . Parts of recognition. Cognition, 18: 6 5 - 96 .

Hoffman, D. D. and Singh, M. (1997). Salience of visual parts. Cognition, 6 3: 2 9- 7 8.

Hoffman, R. L. and Jain, A. K. (1987) . Segmentation and classification of range images.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 9(5): 6 08- 6 2 0.

Hoover , A. , Goldgof, D., and Bowyer, K. W. (1998) . Dynamic-scale model construc­
tion from range imagery. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 2 0(12): 13 5 2- 13 5 7 .

Hoover, A., Jean-Baptiste, G. , and Jiang, X. (1996). An experimental comparison of
range image segmentation algorithms. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 18(7): 6 7 3- 6 89.

Hoppe, H. , DeRose, T., Duchamp, T. , Halstead, M. , Hubert, J., McDonald, J.,
Schweitzer, J . , and Stuetzle, W . (1994). Piecewise smooth surface reconstruction.
In Computer Graphics Proceedings {SIGGRAPH '94}, pages 2 95 -3 02.

Hoppe, H., DeRose, T . , Duchamp, T. , McDonald, J., and Stuetzle, W. (1992) . Sur­
face reconstruction from unorganized points . In Computer Graphics Proceedings
(SIGGRAPH '92}, volume 2 6 , pages 7 1-7 8.

Hughes, C. and Hughes, T. (1999). Mastering the Standard C++ Classes: An Essential
Reference. John Wiley and Sons, Inc., New York, NY.

Hurdal , M. K., Bowers, P. L., Stephenson, K., Sumners, D. W . L., Rehm, K., Schaper,
K . , and Rottenberg, D. A. (1999) . Quasi-conformally flat mapping the human
cerebellum. In Taylor, C. and Colchester, A. , editors , Lecture Notes in Computer
Science, volume 16 7 9, pages 2 7 9- 2 86 , Berlin. Springer-Verlag. Medical Image Com­
puting and Computer-Assisted Intervention, MICCAl' 99.

Integrated Vision Products (2 000). User Documentation: MAPP Ranger System. Swe­
den.

181

•

Johnson, A., Leger, P., Hoffman, R. , Hebert, M., and Osborn, J. (1995). 3 -D object
modeling and recognition for telerobotic manipulation. In Proceedings of the Intel­
ligent Robots and Systems, pages 104 -1 10.

Juttner, M., Caelli, T., and Rentschler, I. (1996). Recognition-by-parts: A computa­
tional approach to human learning and generalization of shapes. Biological Cyber­
netics, 7 4 :52 1-535.

Kanizsa, G. (1979). Organization in Vision: Essays on Gestalt Perception. Praeger
Publishers, New York, NY.

Karchaher, S., Ritter, D., and Hausler (1997). SLIM3 D: software for reverse engineering.
Technical report, Friedrich-Alexander-Universitat Erlangen. In Lehrstuhl fiir Optik,
http : //www . 3d-shape . com/slim/slim_e . html.

Kettner, L. (1999). Using generic programming for designing a data structure for poly­
hedral surfaces. Computational Geometry: Theory and Applications, 1 3 :65-90.

Kimmel, R . and Sethian, J. A. (1998). Computing geodesic paths on manifolds. In
Proceedings of the National Acadmeny of Sciences, volume 95, pages 84 3 1-84 35.

King, D. and Rossignac, J. (1999). Optimal bit allocation in compressed 3 D models.
Computational Geometry: Theory and Applications, 14 :91-1 18.

Kinsey, L. C. (1993). Topology of Surfaces. Springer-Verlag, New York, NY.
Koenderink, J. J. and van Doorn, A. J. (1982). The shape of smooth objects and the

way contours end. Perception, 1 1 (2) : 129-1 3 7.
Koffka, K. (1935). Principles of Gestalt Psychology. Routledge and Kegan Paul, London,

UK.
Levoy, M., Rusinkiewicz, S., Ginzton, M., Ginsberg, J., Pulli, K., Koller, D., Ander­

son, S., Shade, J., Curless, B., Pereira, L., Davis, J., and Fulk, D. (2000). The
Digital Michelangelo Project: 3 D scanning of large statues. In Computer Graphics
Proceedings (SIGGRAPH 2000), pages 1 3 1-144 .

Li, B. (1993). The moment calculation of polyhedra. Pattern Recognition, 2 6(8) : 1229-
12 3 3 .

Li, X., Woon, T. W., Tan, T. S., and Huang, Z. (2001). Decomposing polygon meshes
for interactive applications. In Proceedings of the A CM Symposium on Interactive
3D Graphics, pages 35-42 , North Carolina.

Lin, C. and Perry, M. J. (1982). Shape description using surface triangulation. In Pro­
ceedings of the IEEE Workshop on Computer Vision: Representation and Control,
pages 38-4 3 .

182

. .

.. t

Lindstrom, P. and Turk, G. (1998) . Fast and memory efficient polygonal simplification.
In Proceedings Visualization '98, pages 2 7 9- 2 86 .

Lingas, A. (1982) . The power of non-rectilinear holes. In Proceedings of the Ninethin­
ternational Colloquim on Automata, Languages, and Programming, Lecture Notes
in Computer Science, pages 3 6 9- 3 83, New York, NY . Springer-Verlag.

Lorenson, W . and Cline, H. (1987) . Marching cubes: a high resolution 3D surface con­
struction algorithm. In Computer Graphics Proceedings (SIGGRAPH '87), pages
16 3- 16 9.

Mandelbrot, B. (196 7) . How long is the coast of Britain: statistical self-similarity and
fractal dimension. 15 5 : 6 3 6 - 6 3 8.

Mangan, A. P. and Whitaker, R. T. (1999) . Partitioning 3D surface meshes using water­
shed segmentation. IEEE Transactions on Visualization and Computer Graphics,
5 (4): 3 08- 3 2 1.

Marr, D. (1982) . Vision: A Computational Investigation into the Human Representation
and Processing of Visual Information. W . H. Freeman and Company, New York,
NY .

Marr, D. and Nishihara, K. (197 8) . Representation and recognition of the spatial orga­
nization three-dimensional shapes. In Proceedings of the Royal Society of London,
volume 2 00 of B, pages 2 6 9- 2 94.

Martin, R. R. (1998) . Estimation of principal curvatures from range data. International
Journal of Shape Modeling, 4 (3- 4): 99- 109.

McCallum, B., Nixon, M., Price, B., and Fright, R. (1998) . Hand-held laser scanning
in practice. In Image and Vision Computing New Zealand, pages 17 - 2 2. The Uni­
versity of Auckland. http : //www . aranz . com/research/hls/theory . html.

Medioni, G. , Lee, M., and Tang, C. K. (2 000) . A Computational Framework for Seg­
mentation and Grouping. Elsevier, Amsterdam.

Mencl, R. and Miiller, H. (1 998) . Graph-based surface reconstruction using sturctures
in scattered point sets. In Proceedings of the Computer Graphics International '98,
Hanover, Germany.

Mitchell, J. S. B., Mount, D. M., and Papadimitriou, C. H. (1987) . The discrete geodesic
problem. SIAM Journal of Computing, 16 (4): 6 4 7 - 6 6 8.

Mortenson, M. E. (1997) . Geometric Modeling. John Wiley and Sons, Inc., New York,
NY, second edition.

Motavalli, S., Suharitdamrong, V ., and Alrashdan, A. (1998) . Design model generation
for reverse engineering using multi-sensors. IIE Transactions, 3 0: 3 5 7 - 3 6 6 .

183

l •

Naik, S. M. and Jain, R. C. (1988). Spline-based surface fitting on range images for
CAD applications. In Proceedings of the International Conference on Computer
Vision and Pattern Recognition, pages 24 9--253.

Neider, J., Davis, T., and Woo, M. (1 993). OpenGL Programming Guide: The offi­
cial guide to Learning OpenGL, Release 1. Addison-Wesley Publishing Company,
Reading, MA.

Nevatia, R. and Binford, T. 0. (1 977). Description and recognition of curved objects.
Artificial Intelligence, 8:77 -98.

Oddo, L. A. (1 992). Global shape entropy : A mathematically tractable approach to
building extraction in aerial imagery. In Proceedings of the 20th SP IE AIP R Work­
shop, volume 162 3 , pages 91-101.

O'Neill, B. (1 997). Elementrary Differential Geometry. Academic Press, Orlando, FL,
second edition.

O'Rourke, J. (1994). Computational Geometry in C. Cambridge University Press.
Osada, R., Funkhouser, T., Chazelle, B., and Dobkin, D. (2002). Shape distributions.

ACM Transactions on Graphics, 2 1 (4) :807 -832.
Page, D. L., Koschan, A., and Abidi, M. (2003 a). Perception-based 3 D triangle mesh

segmentation using fast marching watersheds. In Proceedings of the International
Conference on Computer Vision and Pattern Recognition. To appear.

Page, D. L., Koschan, A., and Abidi, M. (2003 b). Progressive perceptual parts: Part de­
composition and salience of 3 D triangle meshes. In Computer Graphics Proceedings
{SIGGRAPH 2003}. Submitted for review.

Page, D. L., Koschan, A., Sukumar, S. R., Roui-Abidi, B., and Abidi, M. (2003 c). Shape
analysis algorithm based on information theory. In Proceedings of the International
Conference on Image Processing. To appear.

Page, D. L., Koschan, A. F., Sun, Y., and Abidi, M. A. (2003 d). Laser-based imaging
for reverse engineering. Sensor Review. To appear.

Page, D. L., Koschan, A. F., Sun, Y., Zhang, Y., Paik, J. K., and Abidi, M. A. (2003 e).
Towards computer-aided reverse engineering of heavy vehicle parts using laser range
imaging techniques. International Journal of Heavy Vehicle Systems. Submitted
to special issue for review.

Page, D. L., Sun, Y., Koschan, A., Paik, J., and Abidi, M. (2001). Robust crease
detection and curvature estimation of piecewise smooth surfaces from triangle mesh
approximations using normal voting. In Proceedings of the International Conference
on Computer Vision and Pattern Recognition, volume I, pages 162 -167.

184

'.

Page, D. L., Sun, Y., Koschan, A., Paik, J., and Abidi, M. (2 002). Simultaneous
mesh simplification and noise smoothing of range images. In Proceedings of the
International Conference on Image Processing, volume III, pages 82 1- 82 4.

Page, D. L., Sun, Y., Koschan, A., Paik, J., and Abidi, M. (2 003f). Normal vector
voting: Crease detection and curvature estimation on large, noisy meshes. Graphical
Models, 6 4: 1-3 1.

Page, D. L., Zhang, Y ., Koschan, A., and Abidi, M. (2 003g). Perceptually-based 3D
representation for multi-part objects using superquadrics. In Proceedings of the
International Conj erence on Computer Vision. Submitted for review.

Pal, N. R. and Pal, S. K. (1989). Entropic thresholding. Signal Processing, 16 : 97 - 108.

Palmer, S. E. (197 7). Hierarchical structure in perceptual representation. Cognitive
Psychology, 9: 4 4 1- 4 7 4.

Pentland, A. P. (1986 a). Parts: Structured descriptions of shape. In Proceedings AAAI-
86, pages 6 95 - 7 0 1, Philadelphia, PA.

Pentland, A. P. (1986 b). Perceptual organization and the representation of natural
form. Artificial Intelligence, 2 8(3): 2 93- 33 1.

Pentland, A. P. (1987). Recognition by parts. In Proceedings of the First International
Conference on Computer Vision, pages 6 12- 6 2 0, Washington, DC. IEEE Computer
Society Press.

Pentland, A. P. (1989). Part segmentation for object recognition. Neural Computation,
1(1): 82-91.

Perceptron Incorporated (1993). LABAR Hardware Manual. 2 3 85 5 Research Drive,
Farmington Hills, Michigan 3 833 5 . http : //www . perceptron . com.

Pinkall, U. and Polthier, K. (1993). Computing discrete minimal surfaces and their
conjugates. Experimental Mathematics, 2 (1): 15 -3 6 .

Polthier, K. and Schmies, M. (1998). Straightest geodesics on polyhedral surfaces. In
H. C. Hege, K. P., editor, Mathematical Visualization, pages 3 91- 4 09. Springer­
Verlag.

Polthier, K. and Schmies, M. (1999). Geodesic flow on polyhedral surfaces. In Pro­
ceedings of the Joint Eurographics and IEEE TCVG Symposium on Visualization,
pages 17 9-- 188.

Press, W. H., Teukolsky, S. A., Vetterling, W. T., and Flannery, B. P. (1992). Numerical
Recipes in C: The Art of Scientific Computing. Cambridge University Press, New
York, NY, second edition.

185

►

Pulla, S. (2001) . Curvature based segmentation for 3-dimensional meshes. Master's
thesis, Arizona State University, Tempe, AZ.

Pulla, S. , Razdan, A. , and Farin, G. (2002) . Improved curvature estimation for water­
shed segmentation of 3-dimensional meshes. IEEE Transactions on Visualization
and Computer Graphics. In submission.

Pulli, K. , Duchamp, T. , Hoppe, H. , McDonald, J . , Shapiro, L. , and Stuetzle, W. (1997) .
Robust meshes from multiple range maps. In Proceedings of the International
Conference on Recent Advances in 3-D Digital Imaging and Modeling, pages 205-

211 .
Reif, U. and Schroder, P. (2000) . Curvature smoothness of subdivision surfaces. Tech­

nical Report TR-00-03, California Institute of Technology.
Rettmann, M. E. , Han, X. , and Prince, J. L. (2000) . Watersheds on the cortical surface

for automated sulcal segmentation. In IEEE Workshop on Mathematical Methods
in Biomedical Image Analysis, pages 20-27 .

Rettmann, M. E. , Han, X. , and Prince, J. L. (2002) . Automated sulcal segmentation
using watersheds on the cortical surface. Neurolmage, 15(2) :329-344 .

Riegl Laser Measurement Systems (2000). Laser Mirror Scanner LMS- Z210: Technical
Document and User 's Instructions. http : //www . riegl . co . at.

Roerdink, J. B. T. M. (1994) . Shape in Picture. Mathematical Description of Shape in
Grey-level Images, chapter Manifold shape: from differential geometry to mathe­
matical morphology, pages 209-22 3. NATO ASI Series F 12 6. Springer-Verlag.

Roerdink, J. B. T. M. (1996). Computer vision and mathematical morphology. Com­
puting, pages 1 31 -148. Supplement 11 on Theoretical Foundations of Computer
Vision.

Roerdink, J. B. T. M. and Meijster, A. (2001) . The watershed transform: definitions,
algorithms, and parallelization strategies. Fundamenta Informaticae, 41 :187 -228.

Ronse, C. (1989) . Fourier analysis, mathematical morphology, and vision. Technical
Report WD54 , Philips Research Laboratory Brussels, Brussels, Belgium.

Rosch, E. , Mervis, C. B. , Gray, W . D. , Johnson, D. M. , and Boyes-Braem, P. (197 6) .
Basic objects in natural categories. Cognitive Psychology, 8:382 -4 39.

Rosin, P. L. (1999) . Shape partioning by convexity. In Proceedings of the British
Machine Vision Conference, pages 633-642 .

Rossl, C. , Kobbelt, L. , and Seidel , H. -P. (2000) . Extraction of feature lines on tri­
angulated surfaces using morphological operators. In Proceedings of the AAA!
Symposium on Smart Graphics, pages 71 -75.

186

.,

Roui-Abidi, B. (1995) . Automatic sensor placement for volumetric object characteriza­
tion. PhD thesis, University of Tennessee, Knoxville, TN.

Rubin, E. (195 8) . Figure and ground. In Beardslee, D. C. and Wertheimer, M. , editors,
Readings in Perception, pages 194- 2 03. Van Nostrand, New York, NY . An abridged
translation by Micheal Wertheimer of pages 3 5 - 101 of Visuell wahrgenommene Fig­
uren (translated by Peter Collet into German from the Danish Synsoplevede Figurer,
Copenhagen: Gyldendalske, 1915) . Copenhagen: Gyldendalske, 192 1. Translated
and printed by permission of the publishers.

Sacchi, R., Poliakoff, J . F., Thomas, P. D., and Hafele, K.-H. (1999) . Curvature estima­
tion for segmentation of triangulated surfaces. In Proceedings of the International
Conference on Recent Advances in 3-D Digital Imaging and Modeling, pages 5 3 6 -
5 4 3.

Sander, P. T. and Zucker, S. W. (1986) . Stable surface estimation. In Proceedings of the
Eighth International Conference on Pattern Recognition, pages 116 5 - 116 7 , Paris,
France.

Sander, P. T. and Zucker, S. W . (1990) . Inferring surface trace and differential structure
from 3-D images. IEEE Transactions on Pattern Analysis and Machine Intelligence,
12 (9) : 83 3- 85 4 .

Sanniti di Baja, G. and Svensson, S. (2 002). A new shape descriptor for sufaces in 3D
images. Pattern Recognition Letters, 2 3: 7 03- 7 11.

Sapidis, N. S. and Besl, P. J . (1995) . Direct construction of polynomial surfaces from
dense range images through region growing. ACM Transactions on Graphics,
14(2) : 1 7 1- 2 00.

Sebastian, R., Clark, R., Simonson, D., and Slotwinski, A. (1995) . Fiber Optic Coherent
Laser Radar 3D Vision System. Coleman Research Corporation, Springfield, VA.

Shannon, C. E. (194 8) . A mathematical theory of communication. The Bell System
Technical Journal, 2 7 : 3 7 9- 4 2 3, 6 2 3- 6 5 6 .

Shapiro, L. G. and Stockman, G. C. (2 001) . Computer Vision. Prentice-Hall, Inc. ,
Upper Saddle River, NJ.

Siddiqi, K. and Kimia, B. B. (1995) . Parts of visual form: Computational aspects. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 17 (3) : 2 3 9- 2 5 1.

Siek, J . G., Lee, L.-Q. , and Lumsdaine, A. (1999) . The generic graph component li­
brary. In Proceedings of the Conference on Object Oriented Programming Systems,
Languages, and Applications, pages 3 99- 4 14. ACM Special Interest Group on Pro­
gramming Languages. http : //wvw. boost . org/libs/graph/doc/ .

187

Siek, J. G., Lee, L.-Q., and Lumsdaine, A. (2001) . The Boost Graph Library: User
Guide and Reference Manual. Addison-Wesley Publishing Company.

Singh, M., Seyranian, G. D., and Hoffman, D. D. (1999). Parsing silhouettes: the
short-cut rule. Perception and Psychophysics, 6 1 (4) :6 3 6 -660.

Stoddart, A. J., Lemke, A., Hilton, A., and Renn, T. (1998). Estimating pose uncer­
tainty for surface registration. Image and Vision Computing, 16 : 1 1 1-120.

Stroustrup, B. (1991) . The C++ Programing Language. Addison-Wesley Publishing
Company, Reading, MA, second edition.

Stuwe, M. (1989). Plateau 's Problem and the Calculus of Variations. Princeton Univer­
sity Press, Princeton, NJ.

Suk, M. and Bhandarkar, S. M. (1992). Three-Dimensional Object Recognition from
Range Images. Springer-Verlag, Tokyo.

Sun, Y. and Abidi, M. A. (2001). Surface matching by 3 D point's fingerprint. In
Proceedings of the Eighth International Conference on Computer Vision, volume 2 ,
pages 26 3 -269.

Sun, Y ., Page, D. L., Koschan, A., Paik, J., and Abidi, M. (2002 a). Triangle mesh-based
edge detection and its application to surface segmentation and adaptive surface
smoothing. In Proceedings of the International Conference on Image Processing,
volume III, pages 825-828.

Sun, Y., Page, D. L., Paik, J ., Koschan, A., and Abidi, M. (2002 b). Triangle mesh-based
surface modeling using adaptive smoothing and implicit texture integration. In
Proceedings of the International Symposium on 3D Data Processing, Visualization,
and Transmission, pages 588-597.

Svensson, S. and Sanniti di Baja, G. (2001). A tool for decomposing 3 D discrete ob­
jects. In International Conference on Computer Vision and Pattern Recognition,
volume I, pages 850-855.

Svensson, S. and Sanniti di Baja, G. (2002) . Using distance transforms to decompose
3 D discrete objects. Image and Vision Computing, 20:529-540.

Tan, T. S., Chong, C. K., and Low, K. L. (1999). Computing bounding volume hierarchy
using simpilfied models. In Proceedings of the ACM Symposium on Interactive 3D
Graphics, pages 6 3 -69.

Tang, C. K. and Medioni, G. (1999). Robust estimation of curvature information from
noisy 3 D data for shape description. In Proceedings of the Seventh International
Conference on Computer Vision, pages 426 -4 3 3 , Kerkyra, Greece.

188

.,

•

. .

• I ; ,

Tang, C. K. and Medioni , G. (2002) . Curvature augemented tensor voting for shape
inference from noisy 3D data. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 24(6) :858-864.

Tang, K. , Chou, S.-Y. , Chen, L.-L. , and Woo, T. C. (2000). Tetrahedral mesh generation
for solids based on alternating sum of volumes. Computers in Industry, 41 :65-81 .

Taubin, G. (1995) . Estimating the tensor of curvature of a surface from a polyhedral
approximation. In Proceedings of the Fifth International Conj erence on Computer
Vision, pages 902-907.

Terzopoulos, D., Witkin, A. , and Kass, M. (1987) . Symmetry-seeking models and 3D
object reconstruction. International Journal of Computer Vision, 1(3) :211-221 .

Thompson, W. B . , Owen, J. C . , and de St. Germain, H. J. (1999) . Feature-based reverse
engineering of mechanical parts. IEEE Transactions on Robotics and Automation,
15:57-66.

Tookey, R. M. and Ball, A. A. (1997) . The Mathematics of Surfaces VII, chapter Estima­
tion of curvatures from planar point data, pages 131-144. Information Geometers,
Winchester.

Toussaint , G. (1991) . Efficient triangulation of simple polygons. Visual Computer,
7:280-295.

Trucco, E. and Verri, A. (1998) . Introductory Techniques for 3-D Computer Vision.
Prentice-Hall, Inc. , Upper Saddle River, NJ.

Tversky, B. and Hemenway, K. (1984) . Objects, parts, and categories. Journal of
Experimental Psychology: General, 1 13: 169-193.

Vaina, L. M. and Zlateva, S. D. (1990) . The largest convex patches: a boundary-based
method for obtaining object parts. Biological Cybernetics, 62(3):225-236.

van Vliet , L. J. and Verbeeck, P. W. (1993) . Curvature and bending energy in digitized
2D and 3D images. In Procee,dings of the Eighth Scandinavian Conference on Image
Analysis, volume 2, pages 1403-1410.

Varady, T. and Hermann, T. (1996) . The Mathematics of Surfaces VI, chapter Best
Fit Surface Curvature at Vertices of Topologically Irregular Curve Networks, pages
41 1-427. Oxford University Press, Oxford.

Veltkamp, R. (1999) . Generic geometric programming in the computational geometry
algorithms library. · Computer Graphics Forum, 18(2) . http : : //www . cgal . org.

Vemuri, B . , Mitiche, A. , and Aggarwal , J. (1986) . Curvature-based representation of
objects from range data. Image and Vision Computing, 4(2) : 107-1 14.

189

•

Viceconti , M. , Casali, M. , Massari, B . , Cristofolini, L. , Bassini, S . , and Toni, A. (1996) .
The standardized femur program: Proposal for a reference geometry to be used
for the creation of finite element models of the femur. Journal of Biomechanics,
29(1241) . http : //www . cineca . it/hosted/LTM- IDR/back2net/ISB_mesh/mesh_
list . html.

Vincent , L. and Soille, P. (1991). Watersheds in digital spaces: an efficient algorithm
based on immersion simulations. IEEE Transactions on Pattern Analysis and Ma­
chine Intelligence, 13(6) :583-598.

Weiss, M. A. (1999) . Data Structures and Algorithm Analysis in C++. Addison-Wesley
Publishing Company, Reading, MA, second edition.

Werghi, N. and Xiao, Y. (2002) . Posture recognition and segmentation from 3D human
body scans. In Cortelazzo, G . M. and Guerra, C . , editors, Proceedings International
Symposium on 3D Data Processing, Visualization, and Transmission, pages 636-
639, Padova, Italy.

Wertheimer, M. (1958) . Principles in perceptual organization. In Beardslee, D. C. and
Wertheimer, M. , editors, Readings in Perception, pages 1 15-135. Van Nostrand ,
New York, NY. An abridged translation by Micheal Wertheimer of Utersuchungen
zur Lehre von der Gestalt, II. Psychol. Forsch. , 1923, 4, 301-350. Translated and
printed by permission of the publisher, Springer, Berlin.

Whitaker, R. T. (1996). A level-set approach to 3D reconstruction from range data.
Technical Report EE-96-07-01 , University of Tennessee, Knoxville, TN. To appear
in International Journal of Computer Vision.

White, D. , Scribner, K. , and Olafsen, E. (1999). MFG Programming with Visual C++®
6 Unleashed. Sams Publishing.

Wu, K. and Levine, M. D. (1997) . 3D part segmentation using simulated electrical charge
distributions. IEEE Transactions on Pattern Analysis and Machine Intelligence,
19(1 1): 1223-1235.

Yan, X. and Gu, P. (1996) . A review of rapid prototyping technologies and systems.
Computer-Aided Design, 28(4) :307-318.

Yang, M. and Lee, E. (1999) . Segmentation of measured point data using a parametric
quadric surface approximation. Computer-Aided Design, 31:449--457.

Young, I. T. , Walker, J . E . , and Bowie, J. E. (1974) . An analysis technique for biological
shape I. Info Control, 25:357-370.

Yu, Y., Ferencz, A. , and Malik, J. (2001). Extracting objects from range and radiance
images. IEEE Transactions on Visualization and Computer Graphics, 7(4) :351-
364.

190

. ,

.. �

•

Vita

David Lon Page was born in Kingsport , Tennessee, on September 12, 1969, the son

of Bobby Mellville Page and Shirley Jean Boyd Page. After graduating in 1987 from

Sullivan South High School, Sullivan County, Tennessee, he attended Tennessee Tech­

nological University in Cookeville where he received both a Bachelor of Science degree,

magna cum laude, in 1993 and a Master of Science degree in 1995 from the Electrical

Engineering department. During his undergraduate studies, he worked for two years

at the Oak Ridge National Laboratory in Oak Ridge, Tennessee, as a cooperative edu­

cation student and for one summer at the U. S . Space Camp in Huntsville, Alabama,

as a team leader. In the fall of 1995, David entered the workforce as an electronics

engineer with the Naval Surface Warfare Center in Dahlgren, Virginia. In 1997, he

again returned to the academic world as a doctoral student at the University of Ten­

nessee in Electrical Engineering. During the summer of 1998, he joined the Imaging ,

Robotics, and Intelligent Systems Laboratory as a graduate research assistant where

he completed his Doctor of Philosophy degree in 2003. In the future, David hopes to

pursue a professional career in flag football.

191

	Part decomposition of 3D surfaces
	Recommended Citation

	tmp.1549916698.pdf._VG0Y

