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Abstract 

This dissertation describes a general algorithm that automatically decomposes real
world scenes and objects into visual parts. The input to the algorithm is a 3 D  triangle 
mesh that approximates the surfaces of a scene or object. This geometric mesh com
pletely specifies the shape of interest. The output of the algorithm is a set of boundary 
contours that dissect the mesh into parts where these parts agree with human percep
tion. 

In this algorithm, shape alone defines the location of a bom1dary contour for a 
part. The algorithm leverages a human vision theory known as the minima rule that 
states that human visual perception tends to decompose shapes into parts along lines 
of negative curvature minima. Specifically, the minima rule governs the location of part 
boundaries, and as a result the algorithm is known as the Minima Rule Algorithm. 
Previous computer vision methods have attempted to implement this rule but have 
used pseudo measures of surface curvature. Thus, these prior methods are not true 
implementations of the rule. 

The Minima Rule Algorithm is a three step process that consists of curvature es
timation, mesh segmentation, and quality evaluation. These steps have led to three 
novel algorithms known as Normal Vector Voting, Fast Marching Watersheds, and Part 
Saliency Metric, respectively. For each algorithm, this dissertation presents both the 
supporting theory and experimental results. The results demonstrate the effectiveness 
of the algorithm using both synthetic and real data and include comparisons with pre
vious methods from the research literature. Finally, the dissertation concludes with a 
summary of the contributions to the state of the art. 
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Chapter 1 

Introduction 

Let us begin with a brief exercise. Take a few minutes and glance around the room. 
Note objects in the room, perhaps items on your desk. Can you distinguish specific 
objects? Can you visually separate them from their background? For instance can you 
isolate the coffee mug on your desk from the clutter of books and papers? The answer 
is--of course--yes, you can and you do so with ease. 

This seemingly simple task--deceptively simple--actually requires the coordination 
of millions of receptors within your eyes and billions of neurons in your brain. Photons 
of light bounce throughout the room and into your eyes striking each retina. Then 
rods and cones in the retina translate this light into neural signals and transmit them 
along the optic nerve. The optic nerve splashes this avalanche of input across neurons 
at the back of the brain-the visual cortex. These neurons fire sending ripples, like 
stones tossed into a pond, out to other areas of the brain and energize millions of 
neural networks. More neurons now fire igniting their own networks and again sparking 
new ripples. The mind orchestrates this rippling activity into a coherent thought that 
elevates to the conscious plane. The little voice in your mind replies, "There's my mug!" 
The graceful elegance of this complex process is truly a marvelous wonder-a wonder 
that allows you to isolate and identify the mug on your desk. Yes, all that for a mug. 

Now, imagine that you are a computer vision engineer. How can you get a computer 
to do the same thing--separate the mug from the clutter of books and papers? How can 
you get a computer to decompose, or segment, a complex scene into simpler parts? In 
a very focused context, an answer to this question is the research goal of this disserta
tion. In particular, we have developed a novel part decomposition, or part segmentation, 

algorithm for surfaces. For input, instead of neural signals from a human eye, we will 
use triangle meshes generated from laser range scanners. For processing, instead of the 
neural networks of your mind, we will use segmentation algorithms implemented in a 
computer. Hopefully, our proposed algorithms mimic your visual perception, at least to 
a certain extent. 

As a simple example of part decomposition, again think of the mug on your desk. 
Suppose the mug is similar to the one in Fig. 1 . 1  (a) and that we can somehow generate 
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(a) (b) (c) 

Figure 1.1: Part decomposition example for a coffee mug. (a) Photograph of the original 
mug. (b) A surface mesh model of the mug reconstructed from range images. ( c) Part 
decomposition of the mug into three parts: a cup, a handle, and a base. 

a computer model of the mug as shown in Fig. l.l(b). If your perception is like most 
viewers, then you decompose the mug into three or four different smaller parts. Most 
viewers would agree that the mug consists of a bowl-shaped cup, a handle protruding 
from the cup, and a base at the cup bottom. The color labels in Fig. 1.l(c) illustrate 
this segmentation. You have mentally decomposed the mug into three simpler parts. 
By extension, when we view more complex scenes such as the clutter on a desk top, we 
also decompose the scene into simpler parts. This example illustrates the objective of 
our research. In fact, our algorithm generated the segmentation shown. 

This dissertation presents the details of our part decomposition algorithm. The 
remainder of this first chapter outlines the applications for our algorithm in Sec. 1. 1 
and the motivation for this research in Sec. 1.2. In Sec. 1.3, we then present the minima 
rule, which is the human vision theory that serves as the foundation of our research. 
To implement the minima rule, we briefly review the state of the art in Sec. 1.4. Next, 
we emphasize the contributions of this dissertation in Sec. 1.5 , and we conclude with a 
block diagram of our system and the document organization in Sec. 1.6 . 

1.1 Applications 

Segmentation, whose roots date back to the dawn of digital image processing, is an 
age-old problem in computer vision. As Marr (Marr, 1982) has stated, the goal of 
segmentation is to partition a data set into groups that are more meaningful. The 
difficulty is that this partitioning is not well posed and the term "meaningful" is highly 
subjective. Consequently, useful solutions are often ad hoc in origin. Marr points out 
that segmentation is a vague all-encompassing notion that typically digresses into a 
philosophical debate. In the context of image processing, he further argues that most 
images are too complex and often do not contain enough information for segmentation 
to succeed. Despite Marr's objections, segmentation has become a fundamental and 
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ubiquitous topic in computer vision and in image processing, specifically (Gonzalez and 
Woods, 1993 ). The lesson to be learned from Marr however is that useful segmentation 
requires a precise formulation-or better yet, a formulation with strong philosophical 
support-of the segmentation goals. Such a formulation requires specific knowledge of 
the application at hand. To this end, we identify our application domain in the following 
paragraphs and in so doing assert our motivation for research. Additionally, as we will 
see, we are not interested in the traditional image segmentation problem but in the more 
general surface segmentation problem where we approximate a surface with a triangle 
mesh representation. 

What is our application and why does it require segmentation? Our two applications 
are scene modeling and reverse engineering. 

Scene modeling is the process of constructing a 3 D  computer model of a real-world 
scene where such models are useful in flight or driving simulators, architectural walk
throughs, and other virtual reality applications (Burdea and Coiffet, 1994 ). Research 
examples include urban landscapes (Frueh and Zakhor, 2001 ; Frueh and Zakhor, 2002 ), 
in-door environments (Yu et al., 2001 ), architectural structures (Faber and Fisher, 2002 ), 
industrial facilities (Johnson et al., 1995; Hebert et al., 1995), and precious art stat
ues (Bernardini et al., 1999; Levoy et al., 2000). To illustrate, imagine a military 
simulator where a tank commander is training for a mission in an urban environment 
such as Mogadishu, Somalia. We could populate this simulation with cartoon-like mod
els of buildings and roadways designed by a computer artist. To achieve convincing 
realism, an artist would methodically build-up the simulation from basic shapes such 
as boxes and cylinders. On the other hand, we could use the scene modeling techniques 
in (Frueh and Zakhor, 2001 ; Frueh and Zakhor, 2002 ) to rapidly model the streets of a 
specific city by driving through that city. Instead of an artist recreating a city-scape, we 
reconstruct it using a scene modeling system mounted on the roof of a van. As another 
example, imagine an art student in Knoxville who wishes to study the chisel patterns on 
Michelangelo's statues in Italy. Although she could travel to Europe, statue modeling 
such as (Levoy et al., 2000) offers a much more convenient alternative. She could simply 
download a 3 D  model of Michelangelo's David and use a virtual reality viewer to study 
the sculpture without' ever leaving Knoxville. Creating computer models of buildings, 
rooms, and statues is the goal of scene modeling. 

With reverse engineering instead of visually pleasing models, the objective is ac
curate as-built models of existing objects. Although reverse engineering is actually a 
broad field that encompasses many concepts, our specific definition is the ability to 
create a computer-aided design (CAD) model of a real-world part (Bernardini et al., 

1999; Motavalli et al., 1998). By contrast, forward engineering is to create a real-world 
part from a CAD model. The automation of forward engineering, or computer-aided 
manufacturing (CAM), has significantly impacted recent technologies in system design. 
CAM has also introduced rapid prototyping into the design loop and facilitated changes 
on demand after the deployment of a design (Yan and Gu, 1996 ). The automation of 
reverse engineering, or computer-aided reverse engineering (CARE), promises to impact 
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the design process in a similar fashion. CARE allows electronic dissemination of as-built 
parts for comparison of original designs with manufactured results. Additionally, CARE 
allows construction of CAD models of existing parts when such models no longer exist 
as when parts are out of production (Thompson et al. ,  1999). A military example of 
the potential for CARE is the Mobile Parts Hospital initiative within the U. S. Army 
Tank-automotive and Armament Command. The vision for the parts hospital is an 
emergency manufacturing unit for frontline deployment. Although the hospital should 
ideally have access to a CAD database, CAD models for a part may not necessarily 
be available such as for . vehicles that have undocumented field modifications. A CARE 
scanner, however, allows even an untrained-in terms of engineering practices-soldier 
to create high quality CAD models. Additionally, a CARE scanner is a valuable tool 
for documenting part failures and thus creating an electronic history of the life cycle for 
a part. 

1 . 2  Motivation 

Although scene modeling and reverse engineering may seem dissimilar, they in fact 
share the common thread of surf ace reconstruction. Methods of surface reconstruc
tion include (Hoppe et al ., 1992 ; Hoppe et al., 1994; Edelsbrunner and Miicke, 1994; 
Delingette, 1994a; Curless and Levoy, 1996 ; Whitaker, 1996 ; Curless, 1997; Pulli et al., 
1997; Amenta et al., 1998; Mencl and Muller, 1998; Bernardini et al., 1999; Gopi et al., 
2 000). Surface reconstruction is a two step process where by we first acquire the geome
try of a scene or an object and then reconstruct its topology. The geometry acquisition 
is a digitization process whereby a sensor such as a coordinate measuring machine, a 
touch probe, a stereo pair, or perhaps a range scanner measures the location of points 
on the surfaces in a scene or on an object. Then, topology reconstruction finds the 
interconnection of these points. We refer to the collection of points as a point cloud and 
their interconnection as a surface mesh, or simply a mesh. Consider Figs. 1.2 and 1.3 
that show examples of the process. 

Notice that the meshes in Figs. 1.2( c) and 1.3( c) are single contiguous surfaces. 
The meshes represent each connected object, that is to say objects that are physically 
touching each other, as one ubiquitous surface. By way of analogy, we describe this 
representation as a blanket model where Fig. 1.4 shows a simple illustration. Recalling 
our visual exercise, grab a blanket from your bedroom and lay it over your desk. The 
blanket will take the form of the desk, the books, the papers, and the mug.* Now, 
suppose we can apply an epoxy to the blanket so that it hardens and thereby creates 
our blanket model. We can pick up the stiffened blanket and carry it with us. We 
can show it to other people . The problem is that if someone is only interested in the 

• In the case of a mug, our blanket analogy does breakdown, somewhat. Consider that the blanket 
can not change genus, without tearing it, to conform to the topology of the mug handle. So, we must 
tear the blanket and stitch it appropriately to truly model the mug. This point may seem minor but a 
reconstruction algorithm that accurately recovers topology is crucial and is an active area of research. 
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(a) (b) (c) 

Figure 1.2 : Scene modeling of an industrial scene. (a) The original scene with a barrel, 
cone, and blocks. (b) A point cloud derived from measurements of the scene. ( c) A 
mesh reconstructed from the point cloud data. Notice that the mesh models the entire 
scene as a single connected surface--a blanket model. 

(a) (b) (c) 

Figure 1.3: Reverse engineering example of a manufactured component. (a) Render
ing of reconstructed part. (b) A point cloud derived from measurements of the part. 
( c) Underlying triangular mesh showing the blanket model. 
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(a) (b) 

Figure 1 .4: Reconstruction of a scene from multiple range images. These illustrations 
depict the blanket model analogy. 

mug we have to give them the whole blanket . We really do not know which section of 
the blanket might contain the mug. Would it not be better if we could segment the 
blanket into smaller blankets-ones that are more manageable and more meaningful? 
We need a mesh segmentation algorithm. We need to decompose the blanket into smaller 
meaningful parts. 

1 .3  The Minima Rule 

The term meaningful has cropped up again, echoing back to Marr. Although we know 
our applications are scene modeling and reverse engineering, we still need to identify 
what type of segmentation we expect . We need to counter Marr's objections and identify 
a theory to govern our segmentation. For scene modeling, we expect a segmentation 
that benefits real-time visualization of the scenes. We need to chop up the blanket 
so that the pieces are amenable to visualization. For reverse engineering, we expect a 
segmentation that leads to a more compact description of the object and that possibly 
facilitates the most grandiose of all computer vision tasks-the illusive task of object 
recognition. We look to the world of cognitive psychology for help. Researchers in 
human perception have identified a theory, known as the minima rule (Hoffman and 
Richards, 1984) , that provides a precise formulation for segmentation. This rule defines 
meaningful in terms of human visual perception. If we segment our blanket mesh using 
a theory of human perception, the subsequent submeshes should naturally meet our 
needs for both applications. This point will become clear later. The marriage of the 
minima rule to scene modeling and reverse engineering is the primary impetus for our 
research. Is this marriage out in left field, or is it an important research pursuit? In 
the next section, we look at the state of the art in mesh segmentation to address this 
concern and to highlight the hole that our research fills. 
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1 .4 State of the Art 

Although image segmentation is a well known and thoroughly researched topic in com
puter vision, mesh segmentation has only recently become of interest where Mangan 
and Whitaker (Mangan and Whitaker, 1999) are perhaps the first to coin the term 
itself. In this section, we identify the current research on this topic and highlight a few 
shortcomings. 

From a review of the literature, we have identified five papers that represent the 
state of the art. The first three are Vincent and Soille (Vincent and Soille, 1991) ,  Wu 
and Levine (Wu and Levine, 1997 ) and Mangan and Whitaker (Mangan and Whitaker, 
1999) , whose methods directly address the mesh segmentation problem. The other two 
are Tang and Medioni (Tang and Medioni, 1999) and Taubin (Taubin, 1995) , whose 
methods address curvature estimation. As we will see, curvature estimation is an essen
tial component of the mesh segmentation algorithm that we propose. 

Wu and Levine (Wu and Levine, 1997 ) are perhaps the first to directly attack the 
mesh segmentation problem as we have posed it. Their method uses electrical charge 
distribution equations to simulate the charge density on a mesh, and they identify 
segmentation boundaries as regions with the lowest charge density. This physics-based 
approach may seem unusual but their results are quite nice good for certain data sets. 
The strength of their algorithm is its robustness to measurement noise. The drawbacks 
however are that the method does not scale well to large data sets and that simulated 
charge distribution has limitations as a definition for segmentation. Wu and Levine 
suggest that their approach follows the minima rule--just as we propose to do-but in 
practice charge distribution does not directly relate to the rule. Additionally, the search 
algorithm they have implemented has certain limitations as well. Their algorithm tends 
to become trapped in local minima. 

Mangan and Whitaker (Mangan and Whitaker, 1999) offer a different approach. The 
major contribution of their work is that they implement the well-known watershed algo
rithm from image processing on a mesh data structure. They reformulate the watershed 
algorithm from morphological image operations to gradient-following mesh operations. 
The capabilities of the watershed algorithm is a tremendous strength of their algorithm. 
The basis for their segmentation is the local curvature on the mesh. In particular, con
tours of high curvature bound areas of low curvature. They argue with heuristics that 
these boundaries offer a meaningful segmentation, but Marr's warnings about meaning
ful come to mind. From our literature review , we argue that high curvature boundaries 
indeed do not form a meaningful segmentation-at least for our applications-and we 
suggest that this approach is one drawback to their implementation. 

Further, we suggest two other drawbacks. The first is the curvature estimation that 
governs their segmentation. The estimate they use is not robust to noise and in most 
cases leads to significant over segmentation. Also, since their method estimates Gaus
sian curvature , it is not useful for the minima rule, which requires· estimation of the 
principal curvatures. The second drawback is their implementation . of the watershed 
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algorithm. Although Mangan and Whitaker demonstrate nice results, they have imple
mented a "bobsledding" version of watersheds where one initiates a segmentation with 
random seed points and follows the gradients from the seeds to watershed basins. This 
formulation is susceptible to local plateaus and thus requires post processing to handle 
over segmentation. As a result, Mangan and Whitaker implement an ad hoc solution to 
account for over segmentation, based on the depth of each watershed region. 

Although Vincent and Soille (Vincent and Soille, 1991) propose a segmentation 
algorithm for 2D images, they generalize their algorithm to the arbitrary connectivity 
of a graph, such as a mesh. This algorithm does not appear in the review of Mangan and 
Whitaker, but it does propose a fast implementation of watersheds that is important 
to consider since the image processing literature devotes significant attention to this 
algorithm. Their graph variation is a flooding approach to mesh segmentation and 
as such has implementation advantages over Mangan and Whitaker. The downside to 
their algorithm is that it requires a pre-sorting of the mesh vertices according to water 
heights. As we will see, this pre-sorting is not suitable for our application of the minima 
rule. 

Finally, since we are interested in the minima rule, curvature is important to our 
proposal as well. Unfortunately, as noted above, both curvature segmentation methods 
above (Wu and Levine, 1997 ; Mangan and Whitaker, 1999) have drawbacks with regard 
to their curvature estimations. Subsequently, we look to the literature for better meth
ods. Tang and Medioni (Tang and Medioni, 1999) and Taubin (Taubin, 1995 ) represent 
the state of the art. Tang and Medioni offer a robust algorithm that estimates the sign 
of Gaussian curvature and the principal directions for noisy point clouds while Taubin 
presents an algorithm that estimates both principal directions and principal curvatures 
for triangle meshes. The drawback of Tang and Medioni is that they do not estimate 
principal curvatures while the drawback for Taubin is that he does not handle surface 
noise. 

1.5 Contributions 

The algorithms that we have developed extend the above state of the art. Wu and Levine 
present a robust curvature estimation method with a simple segmentation algorithm 
while Mangan and Whitaker present a robust segmentation algorithm with a simple 
curvature estimation method. We have developed an algorithm that has both traits
a robust curvature estimation method and a robust segmentation algorithm-and we 
ground our algorithm in the theory of the minima rule. 

In particular, we have developed a Minima Rule Decomposition Algorithm, 
or more simply the Minima Rule Algorithm, that overcomes many of the drawbacks 
with Wu and Levine and Mangan and Whitaker. (A block diagram of this algorithm 
appears in Fig. 3.6.) The heart of this segmentation is two new algorithms known as 
Normal Vector Voting and Fast Marching Watersheds. Normal Vector Voting is 
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a curvature estimation algorithm, and the Fast Marching Watersheds is a new imple
mentation of the watershed algorithm for surface meshes. Finally, we have developed a 
Part Saliency Metric that handles any over-segmentation problems that may arise. 
To emphasize, this dissertation yields four contributions to the state of the art as follows. 

Part Decomposition: Minima Rule Algorithm The most significant contri
bution is the development of a computer vision algorithm that follows the human vision 
theory of the minima rule. To date, no computer vision algorithm implements the min
ima rule for 3 D  surfaces. As we have noted, Wu and Levine (Wu and Levine, 1997) do 
attempt an implementation, but their approach is not true to the minima rule theory 
since they do not use a proper curvature estimate. The algorithm that we present in 
this dissertation represents the first computer vision implementation of the minima rule 
for mesh segmentation. 

Curvature Estimation: Normal Vector Voting The second major contribu
tion is the development of a robust curvature estimation algorithm known as Normal 
Vector Voting (Page et al., 2 001 ;  Page et al. ,  2 003 f) . Although Tang and Medioni (Tang 
and Medioni, 1999) and Taubin (Taubin, 1995) offer important contributions, we have 
developed an algorithm that bridges the gap between these two algorithms. Our · al
gorithm robustly estimates both principal directions and principal curvatures at the 
vertices of a triangle mesh, despite measurement error in creating the mesh. 

Mesh Segmentation: Fast Marching Watersheds The third contribution is 
the development of a mesh segmentation algorithm inspired by the popular watershed 
algorithm for image segmentation. We call our algorithm Fast Marching Watersheds. 
Although Mangan and Whitaker (Mangan and Whitaker, 1999) have demonstrated the 
feasibility of adapting image processing watersheds to surface meshes, their algorithm 
is a "bobsledding" approach that leads to significant over segmentation and requires 
handling of certain special cases. Similar to Vincent and Soille (Vincent and Soille, 
1991), Fast Marching Watersheds avoids these problems by employing a "hill climbing" 
approach. Unlike Vincent and Soille, our algorithm does not require the pre-sorting 
step and thus does not require random access to each of the vertices in a triangle mesh. 
This difference is important to our application of the minima rule since we make local 
decisions about "water heights" and not global ones, as we explain in later sections. 

Shape Measure: Part Saliency Metric The final contribution is a new Part 
Saliency Metric, derived from a human vision theory (Hoffman and Singh, 1997). After 
we decompose a scene or object into a set of parts, we create a Part Adjacency Graph to 
define the relative relationship of each part. Our proposed metric assigns a value to the 
visual salience, or importance, of each part and to the salience of connections between 
parts. This metric enables filtering of oversegmentations that might occur where we 
merge the least visually salient parts with other more salient ones. 
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1.6 Document Organization 

The remainder of this dissertation documents the details of our algorithms and the 
above contributions. Chapter 2 presents a survey of the literature for each contribu
tion and also justifies our choice of the minima rule. Then, we overview the complete 
algorithm for part decomposition in Chapter 3. Next, Chapter 4 documents the the
ory that supports our Normal Vector Voting algorithm for curvature estimation. For 
mesh segmentation, we present our Fast Marching Watersheds algorithm in Chapter 5 .  
To handle over-segmentation issues, Chapter 6 proposes a pattern vector algorithm to 
compute the salience of a part. After combining the theory from each of these chapters, 
we develop our part decomposition algorithm. The results from this integration are in 
Chapter 7 .  These experimental results demonstrate the robust capabilities of our algo
rithms and their successful application to a wide variety of objects and scenes. Finally, 
we conclude in Chapter 8. 
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Chapter 2 

Literature Review-

This chapter presents a review of the research literature. We begin with an investiga
tion into part decomposition to establish our choice of the minima rule in Sec. 2 . 1 .  This 
review focuses on theories of human vision and computer vision in an effort to address 
both philosophical and implementation issues. With the minima rule, curvature estima
tion becomes important, and Sec. 2 .2 discusses this topic. In Sec. 2 . 3 ,  we review mesh 
segmentation algorithms to identify specific computer vision implementations that may 
be appropriate to the minima rule. Then, Sec. 2 .4 reviews a variety of shape measures 
in order to quantify the quality of a segmentation. We conclude with a summary of the 
key articles in Sec. 2 .5. 

2.1  Part Decomposition 

What do we mean by decomposition? When we view the mug in Fig. 1 . 1 ,  how do we 
decompose it into simpler parts? How might a computer do so? Fig. 2 . 1 is one possible 
result. The question is what governs our decision process to decompose the mug in this 
manner. Does a theory of human vision exist that explains our choice? 

2 . 1 . 1  Gestalt Grouping 

At the turn of the century, gestalt* psychologists (Koffka, 1935; Wertheimer, 1958) 
began to formulate the idea that our minds group scenes. Wertheimer (Wertheimer, 
1958) formalized a set of principles known as the gestalt principles of organization, 
which suggest that our mind and our perception tend to group our visual input. See 
Fig. 2 .2 .  Along this line of thought, Palmer (Palmer, 1977 ) studied observer's abilities 
to recognize parts of figures. He demonstrated with simple line drawings that human 

* A direct translation in English of the German word gestalt is often not adequate but. usually this word 
translates as form. A better translation is organized structure. Gestalt psychologists emphasized percep
tion in their experiments and observed the organized groupings that perception often yields (Kanizsa, 
1979) . 
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(a) Cup (b) Handle (c) Base 

Figure 2. 1: Visual parts of a mug. Visual parts that most observers see for the mug in 
Fig. 1. 1. 

perception tends to identify parts that follow the gestalt principles as in Fig. 2 . 3 .  These 
gestalt observations initiated interest into the notion that human vision groups-or 
decomposes-scenes and objects into simpler parts. 

As time has passed, the gestalt school has faded-for a variety of reasons-and 
lost favor among cognitive psychologists. The gestalt insights, however, have focused 
attention on the importance of organizational groupings of scenes in human percep
tion. Although the gestalt principles emphasized simple lines and dots to highlight 
such groupings, more recent cognitive research (Marr, 198 2; Marr and Nishihara, 19 7 8 ;  
Hoffman and Richards, 198 4; Hoffman and Singh, 199 7 ; Biederman, 198 7 ;  Tversky and 
Hemenway, 198 4; Juttner et al. ,  199 6; Rosch et al . ,  19 7 6; Koenderink and van Doorn, 
198 2; Palmer, 19 7 7 )  has emerged that addresses complex groupings in images. This 
research, which parallels new developments in digital imaging, has led to a growing 
consensus that decomposition of shapes into their constituent parts is fundamental to 
human vision and-'-by extension-to computer vision. 

Although it may seem obvious, we do see the world in terms of parts and the 
early stages of our perception function primarily to identify these parts. We term 
this visual process part-based decomposition, or more simply part decomposition. For 
a fair assessment, we do note that some researchers such as Cave and Kosslyn ( Cave 
and Kosslyn, 199 3) do argue against the notion of parts, but these objections are not 
predominant. Naturally, many researchers (Pentland, 198 9; Pentland, 198 7 ;  Pentland, 
198 6a; Biederman, 198 7 ;  Biederman, 198 5; Guzman, 19 7 1; Binford, 19 7 1; Terzopoulos 
et al. , 198 7 ;  Brooks, 198 1; Dickinson et al . ,  199 2; Siddiqi and Kimia, 199 5) in the 
computer vision communityt also argue that parts are essential to computer vision 

tThroughout this dissertation, we have used the terms human vision and computer vision without 
strictly defining them. We do so now to avoid confusion. Human vision refers to the cognitive processes 
of the human mind and the inter-relationship between our eyes and our brain that allow us to see, model, 
describe, and recognize the world around us. Computer vision, on the other hand, is our attempt-often 
a meager one--to simulate human vision using computer algorithms. 
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(a) Proximity. 

0 0 0 0 0  

x x x x x  

0 0 0 0 0  

x x x x x  

0 0 0 0 0  
(b) Similarity. 

:x. 
( c) Continuation. (d) Closure. 

Figure 2 .2 :  Gestalt principles of organization (Andreson, 1995). (a) With the principle 

of proximity, we perceive four pairs of lines rather than eight separate lines, individually. 
Our mind tends to group items that are closer together. (b) With the principle of 

similarity, we tend to see two rows of X's and three rows of O's. Why? Why not five 
columns of alternating X's and O's? Our mind seems to group elements that are alike 
into common units, in this case rows. (c) With the principle of continuation, we perceive 
two lines from A to B and from C to D. It seems unnatural for our mind to perceive 
the lines as A to D and C to B although this grouping is just as valid. (d) With the 
principle of closure, we observe one circle that occludes another. In this figure, only one 
complete circle exists; the other is incomplete. Yet, we tend to believe that one circle 
is sitting on top of the other one and that we indeed see two circles. 

[7 I\ 
(a) (b) (c) (d) (e) 

Figure 2. 3: Palmer line drawings. Line drawings used by Palmer (Palmer, 1977 ) for 
studying part decomposition. (a) Original example object. (b,c) Part decomposition 
of (a) that follow the gestalt principles. (d,e) Part decomposition that does not fol
low these principles (Andreson, 1995). Note that (b,c) seem more natural while (d,e) 
somehow seem unnatural. 
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tasks as well. These arguments have motivated us to explore part decomposition as the 
starting point for our research. 

2.1 .2  Definition of a Part 

Now that we are convinced that parts are important, what do we mean by a part? Is a 
part a functional component such as an arm or a leg? Is it a geometrical entity such as a 
box or a cylinder? Perhaps it is a perceptual feature such as a handle that protrudes from 
a mug. These questions lead us to classify part decomposition algorithms based on their 
notion of a part (Vaina and Zlateva, 1990; Wu and Levine, 1997 ; Hoffman and Singh, 
1997 ). In particular, as (Hoffman and Richards, 1984; Vaina and Zlateva, 1990) suggest, 
we categorize these algorithms as either primitives-based or boundary-based methods. As 
an aside, both (Hoffman and Richards, 1984) _and (Vaina and Zlateva, 1990) actually 
use the term primitive-based instead of primitives-based. We distinguish these terms 
since primitive-based seems to imply a simple or less cultured approach when the actual 
intent is that these methods employ a library of basic primitives. Also, we note that 
Vaina and Zlateva offer a third classification, called axis-based. These algorithms such 
as (Blum, 197 3) and (Blum and Nagel, 197 8) rely on axes of symmetry and are thus 
only appropriate for objects that exhibit strong symmetry. For this reason, we do not 
consider these algorithms. Fig. 2. 4 illustrates our categorization for part definitions. 

2.1 .3 Primitives-Based Methods 

Primitives-based methods decompose an object or a scene first by defining a set of basic 
shapes-or primitives-and then by finding these shapes in the data. The predefined 
primitives are volumetric models that fully specify the 3D shape of each part. They 
are not points or contours. They are volumes. A primitives-based algorithm forms 
an initial configuration using a set of primitives that closely models the input data. 
Through an iterative search, the algorithm then scales, rotates, translates, removes, 
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adds, and possibly deforms the configuration and each primitive in it until reaching a 
stopping criteria. The final set of primitives are the parts of the scene or object of 
interest. 

The construction of the primitives dictionary is crucial to the success of these al
gorithms where a diverse set of shapes is important. The research literature offers an 
extensive set of possible primitives, but most are derivatives to one degree or another 
of the following: 

• Generalized cylinders (Binford, 1 971 ; Brooks, 1 981 ; Marr and Nishihara, 1978; 
Nevatia and Binford, 1 977), 

• Superquadrics (Barr, 1 981 ;  Pentland, 1986 b; Pentland , 1987; Pentland, 1989; 
Bajcsy and Solina, 1 987), and 

• Geons (Biederman, 1 985; Biederman, 1987). 
Generalized cylinders are historically the first methods proposed and thus have 

greatly influenced the field. Other methods have followed with most recent work fo
cusing on superquadrics. Both generalized cylinders and superquadrics are parametric 
models that are defined by a strict set of mathematical equations. A decomposition 
algorithm iteratively adjusts the parameters of these equation to fit the primitives to 
the input data. For the generalized cylinders, the parameters define a closed planar 
contour and an axis. They form a volume by sweeping the planar contour along the 
axis thereby creating a generalized cylinder. To change the shape of the cylinder, one 
simply redefines the contour or warps the the sweep axis. Unfortunately, the number 
of variables to specify uniquely the contour and the axis can be quite large. As a result 
most practical implementations restrict the parameters to a more focused subclass. 

To avoid the parameter overload problem, another solution is the superquadric 
model. These primitives provide as much flexibility as generalized cylinders but with 
fewer parameters. Superquadrics have greater mathematical support formalized through 
Barr (Barr, 1 981), and thus are a more elegant solution. Pentland (Pentland, 1 986 b) 
introduced this family of primitives to the computer vision community with significant 
work following his research. 

Geons are similar in spirit to both generalized cylinders and superquadrics but are 
a more qualitative approach. The previous approaches have well-defined quantitative 
parameters that govern the shape of the primitives. Goons use qualitative language, as 
opposed to a mathematical formulation, to describe their shape. Biederman (Bieder
man, 1 985; Biederman, 1 987) proposed goons-geometrical icons-as a set of primitives 
that are defined in terms of invariant image features. Biederman notes that certain 
properties of visual features remain invariant to perspective transformation through 
small angles. For example, a straight line in 3 D  appears straight in a 2D image and 
a curved line appears curved. Only by an accident of view does a curved line appear 
straight. Biederman presents four qualitative invariant features that result in a database 
of 36 geon primitives. These features are edge type, symmetry, sweep variation, and 
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axis type, but he does not define these parameters using strict mathematical variables. 
Subsequently, most implementations of geons use generalized cylinders or superquadrics 
as the actual primitives in a computer algorithm. Geons are more of a theory of part 
decomposition than an implementation. 

An interesting aspect of each of the above methods is that part description is inherent 
to the decomposition process. Not only do these methods yield a decomposition of a 
scene into parts but they also provide either a mathematical description, in the case 
of generalized cylinders and superquadrics, or a qualitative description, in the case of 
geons. 

2 .1 .4 Boundary-Based Methods 

As a departure from the above techniques, boundary-based approaches advocate that de
composition alone should precede description and not include it (Hoffman and Richards, 
1984). Unlike primitives-based approaches, boundary-based methods attempt to decom
pose a scene or an object by identifying the boundaries between adjacent parts instead 
of matching primitives to the parts. As Hoffman and Richards (Hoffman and Richards, 
1984) describe, a boundary is where we would draw a contour between parts, as if with 
a felt marker. A boundary is a contour on a surface where one part ends and another 
part begins. Decomposition involves · finding these contours. Thus, we do not need to 
know what the parts look like, rather we only need to know where the parts intersect 
each other. 

So what constitutes a part boundary? This question has led to significant debate 
within the human vision community, which has further led to different implementations 
in the computer vision community. Koenderink and van Doorn (Koenderink and van 
Doorn, 1982) kicked off this debate by proposing parabolic lines as boundaries. They 
argue, as evidenced in works of art, that humans perceive 3D shapes as composed 
mainly of elliptic regions with hyperbolic patches as glue between these regions. A 
basic teaching tool in art for drawing human figures is to have students sketch ellipses 
for faces, arms, legs, torsos, feet, and hands and then to stitch these ellipses together as 
the final drawing progresses. The intersection of elliptic regions and hyperbolic patches 
forms parabolic lines that Koenderink and van Dorn deem to be part boundaries. These 
lines occur where the patches transition from elliptic to hyperbolic-from positive to 
negative Gaussian curvature. 

Hoffman and Richards (Hoffman and Richards, 1984) note a few problems with the 
above boundary definition. First, parabolic lines are invariant to figure and ground 
reversal. Figure and ground (Rubin, 195 8) are a common way in cognitive psychology 
to distinguish the two sides of a curve in 2D and a surface in 3D. One side is figure; 
the other is ground. Consider the classic sketch of (Rubin, 195 8) in Fig. 2. 5 (a) .  This 
sketch illustrates either two human faces that are nose to nose or just a single vase. The 
image that we see depends on how our mind chooses figure and ground. The reversal 
of which allows us to see the other image. Parabo}ic lines on a surface are invariant to 
figure and ground reversal where these lines are the loci of points with zero Gaussian 

16 



(a) (b) ( c) 

Figure 2 .5: Rubin faces and vase sketch. Visual perception sketches illustrating how 
figure and ground effect choices of parts. (a) What do you see? (b) If we choose the 
white space as ground, we see two faces that are· facing nose to nose. ( c) If we chose the 
dark space as figure, we now see a vase. In (b) and ( c) , the arrows denote the minima 
rule boundaries for parts (Hoffman and Richards, 1984 ; Rubin, 1958). 

curvature. Such points do not change whether we are on one side or the other of a curve 
or surface. When we view Fig. 2.5(a) , however, we not only see different images with 
figure and ground reversal, but also we subsequently see different parts for each image. 
Hoffman and Richards voice another objection with regard to the unnatural parts that 
are sometimes spawned by parabolic line boundaries or-in some instances-no parts at 
all. They provide examples where experimental evidence shows that human observers 
choose boundaries that differ significantly from the parabolic line boundaries. 

As an alternative Hoffman and Richards (Hoffman and Richards, 1984 ) propose their 
own definition of a boundary-the minima rule. The formal definition of this rule is as 
follows: 
minima rule All negative minima of the principal curvatures ( along their associated 

lines of curvature) form boundaries between parts (Hoffman and Singh, 1997 ). 
As an illustration of this rule, refer to Fig. 2.5 again. In Fig. 2.5(b ) ,  we see how one 
choice of figure and ground and the minima rule lead to parts of a face. Similarly, 
in Fig. 2.5(c) we see how a different choice leads to parts for a vase. Experimental 
evidence (Baylis and Driver, 1995b; Baylis and Driver, 1995a; Braunstein et al. ,  1989; 
Driver and Baylis, 1995; Hoffman, 1983 ) further supports the rule. 

Researchers have explored other definitions of part boundaries. For example, Hoff
man and Singh (Hoffman and Singh, 1997 ) cite "deep concavities" (Marr and Nishi
hara, 1978) , "sharp concavities" and "concave regions" (Biederman, 1987 ) ,  and "limbs 
and necks" (Siddiqi and Kimia, 1995). Additionally, Fischler and Bolles (Fischler and 
Bolles, 1986 ) propose high- curvature points as part boundaries similar to Mangan and 
Whitaker 's implementation (Mangan and Whitaker, 1999). The minima rule precisely 
captures and more accurately formalizes these definitions into a single concise rule, and 
it overcomes the limitations of Koenderink and van Doom's parabolic lines. 
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Finally, the major strength of the minima rule with regard to our applications is 
that it is computable, robust, and invariant (Hoffman and Singh, 1997 ) . In short, this 
means that we can implement the rule as a computer algorithm and that the rule is 
applicable to a wide variety of situations. 

Computable implies that the theory has a mathematical foundation. As a counter 
example, geons are not computable since geon theory is a qualitative and not quanti
tative description of parts. For the minima rule, curvature is the computable measure 
that we need to implement. We note however that humans do not necessarily compute 
curvature directly, but rather they probably use visual cues such as shape from shading. 
Regardless, the minima rule is a computable theory of part boundaries and as such is 
important to practical implementation. 

Another important trait of the minima rule is that it is robust to shape variability. 
Consider our mug example. Mugs come in many shapes and sizes but as a general 
rule mugs consist of a cup and a handle-two parts. The handles may vary from the 
elaborate ornamentations on a German stein to the simple curves of a household coffee 
mug. The minima rule precisely defines the boundary of the handle and cup for each 
of these examples and for many more as well. The algorithm does not require a priori 
information of the type of object or scene and is a general theory for any shape. This 
robustness is an important characteristic for our application domains. 

The third strength is the invariance of the minima rule. Although this trait mainly 
applies to the 2D version of the rule for images, it has some significance to 3D surfaces. 
With respect to images, invariance means that the rule survives under perspective trans
formations. For 3D, invariance means that the rule is independent of scale and rotation 
changes. A big mug and a little mug both have a handle and a cup as parts. Scale does 
not change our perception of the part boundaries. An upright mug and an upside-down 
mug also have the same parts. Rotation does not change the part boundaries. The 
minima rule holds true for each of these situations. 

For these reasons, we select the minima rule as the foundation for our decomposition 
algorithm. The implementation of this rule requires the development of a curvature 
estimation algorithm and a mesh segmentation algorithm. We review the literature for 
these topics in the next two sections. 

2 .2  Curvature Estimation 

We have identified robust curvature estimation as a weakness in the current literature 
with regard to triangle meshes. In particular, we have not found a method that ro
bustly estimates both principal curvatures and principal directions, which we need for 
implementing the minima rule. Our research intends to address this issue. Most re
search in the literature addresses curvature estimation in the context of range images 
with little work available for the more general problem of surface meshes. Since image 
processing and mesh processing require different tools, we do not intend to address the 
direct estimation of curvature from range images. Our interest instead is to address the 

18 



N 

s 

(a) (b) (c) 

Figure 2 .6 :  Curvature for a surface. (a) Shows a normal curvature on the surface S at 
the point p. The plane Ilp contains the unit surface normal N and the unit tangent 
vector T for point p. (b) The principal directions T1 and T2 form an orthonormal basis 
for the infinite set of normal curvatures at p. ( c) Crease discontinuity. The smooth 
surfaces Si and Sj meet at crease C. At the crease, the minimum principal curvature 
follows the crease and has some finite value. The maximum curvature is infinite and 
orthogonal to the crease. 

more general problem of curvature for a surface mesh. We refer the interested reader 
to (Flynn and Jain, 1989) and (Suk and Bhandarkar, 1992 ) for excellent surveys into 
curvature-from-range methods. 

2.2 . 1  Differential Geometry 

As background, we first present a brief overview of surface curvature in the important 
context of differential geometry (do Carmo, 1976; O'Neill, 1997). The curvature of a 
surface intrinsically describes the local shape of that surface. Consider Fig. 2 .6. The 
point p lies on a smooth surface S, and we specify the orientation of S at p with the 
unit- length normal N. We define S as a manifold embedded in R3 • We can now 
construct a plane Ilp that contains p and N, and the intersection of Ilp with S forms a 
contour a on S. For this contour, there is a unique arc parameterized by length s, a(s) ,  
where a(O) = p and a'(O) = T. This parameterization has the property that T is the 
unit- length tangent vector at p. With this construction, we now have a parameterized 
contour on S, and thus we can find the curvature of that contour. We define the normal 
curvature 1tp(T) of S at p in the direction of T as a"(O) = 1tp (T)N. The normal curvature 
is for a single contour on S passing through p. This curvature 1tp (T) does not however 
specify the surface curvature of S at p. 

For surface curvature, we need to do a little more work since Ilp is not a unique plane. 
If we rotate Ilp around N, we form a new contour on S with its own normal curvature. 
We can see that we actually have an infinite set of these normal curvatures around p in 
every direction. Fortunately, herein enters the elegance of surface curvature. For this 
infinite set, we can construct an orthonormal basis {Ti , T2} that completely specifies the 
set. The eigenvectors, along with their associated eigenvalues, of the second fundamental 
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form for S at p are a natural choice for this basis. These eigenvectors {Ti, T2} are the 
principal directions of S at p and are the directions of the tangent curves with maximum 
curvature K� = Kp(T1 )  and minimum curvature K: = Kp(T2 ), which are the respective 
eigenvalues of the second fundamental form. These maximum and minimum curvatures 
are known as the principal curvatures and lead to the following relationship for any 
normal curvature at p: 

(2 . 1 ) 

where To = cos( 0)T1 + sin( 0)T2 and -1r � 0 < 1r is the angle to vector T1 in the tangent 
plane. The principal directions along with the principal curvatures completely specify 
the surface curvature of S at p, which is what we are seeking. 

Combinations of the principal curvatures lead to other common definitions of surface 
curvature. The first of these-and perhaps the most common-is Gaussian curvature, 
which is the product of the principal curvatures K = K�K:. This definition highlights 
negative surface curvature that occurs at hyperbolic patches since these patches occur 
where only one principal curvature is negative. The second definition of curvature 
is mean curvature. We specify mean curvature as the average sum of both principal 
curvatures H = ½ (K! + K�) .  Although neither Gaussian nor mean curvature specify the 
orientation of curvature, they are common definitions found in the estimation literature, 
as we will see in the next section. We emphasize however that we are not interested in 
just the principal curvatures, which lead to the Gaussian and mean curvatures, but also 
the principal directions. 

Our challenge in estimating curvature is unfortunately that we are not dealing with 
a completely smooth surface such as S above but rather a piecewise-smooth surface S 
where we apply the definition of a piecewise smooth as in (Biermann et al., 2 000). 
The surface S may for example be the union of three smooth surfaces Sj , Sk, and Sl, 
manifolds embedded in R3, such that S = Sj u Sk U Sl , We assume that Sj , Sk, and 
Sl are orientable manifold surf aces, possibly with piecewise-smooth boundaries (Kinsey, 
1993; Biermann et al., 2 000), and that their subsequent union S also conforms to this 
same definition of a surface. The subsequent piecewise-smooth surface has discontinuity 
contours Cjk = Sj n Sk where two smooth surfaces join as in Fig. 2.6 (c) . Other discon
tinuities occur at corner points Cjkl = Si n Sk n Sl where three or more surfaces join. 
Both principal curvatures are singular for such corners. 

Another challenge is that we are not actually working with S but rather with the 
mesh M that approximates S. Recall Figs. 1. 2(c) and l. 3(c). We specify M as the 
pair M = (K, V) where K defines the topology and V defines the geometry. We 
assume as with S that M is an orientable triangulated manifold surface, possibly with 
boundary (Kinsey, 1993) . The vertices V are samples of S such that noise may corrupt 
these samples. We have the following 

v = p + e . ( 2. 2) 
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where v E V is a specific vertex of M, p E S is a sample point on S, and e is a noise 
vector that accounts for measurement, registration, and isosurface extraction error. We 
can think of V as a point cloud and K as the interconnection of V to form the edges 
and faces of the triangles in M. 

Our review of the research literature reveals that only a few papers address the issue 
of curvature estimation on triangle mesh such as M. Of those papers we have identified 
three classes of techniques: 

• Surface Fitting Methods (SFMs), 
• Direct Curvature Methods (DCMs) , and 
• Curve Fitting Methods (CFMs). 

We discuss each class briefly with special emphasis on the curve fitting methods as those 
offer the most promise. 

2.2.2 Surface Fitting Methods 

SFMs fit an analytic surface to the data of interest and then use differential geometry 
to compute curvature from that function. With some modifications, we can use many 
of the analytic methods for range images listed in (Flynn and Jain, 1989) and (Suk and 
Bhandarkar, 1992 ). An interesting modification of (Flynn and Jain, 1989) for meshes 
is the approach in (Sacchi et al. , 1999). Sacchi et al. fit spheres to adjacent triangles 
and use the Gaussian curvature of these spheres as curvature estimates. For a vertex, 
they average the curvature estimate for adjacent triangle pairs around the vertex. Most 
extensions of the range methods, however, require a local parameterization of the sur
face similar to the parameterization that an image provides for range data. Although a 
surface may allow many different functional representations locally, no practical global 
parameterization is useful. The approaches of (Hagen et al., 1998) and (Rossi et al., 
2000) provide possible choices for local parameterization. Also, (Rossl et al. , 2000) use 
thresholds and morphological operations on a mesh to identify smoothness disconti
nuities after estimation of curvature. Once we have a local parameterization, we can 
use methods such as linear regression (Fen-ie and Levine, 1988; Flynn and Jain, 1988; 
Sander and Zucker, 1986) or splines (Naik and Jain, 1988; Vemuri et al. , 1986) to esti
mate curvature. A more recent paper (Pulla et al., 2002 ) uses a local fit of a biquadratic 
polynomial and applies smoothing to improve the analytic estimate of curvature. In a 
similar approach, Yang and Lee (Yang and Lee, 1999) locally fit parametric quadric 
surfaces. 

Instead of triangle meshes, some reconstruction methods generate smooth surfaces 
directly. With smooth surfaces , we can directly apply differential geometry to compute 
curvature. Such reconstruction methods include polynomial surface (Sapidis and Besl, 

1995), splines (Eck and Hoppe, 1996) , and subdivision surfaces (Hoppe et al., 1994 ) ,  as 
examples. Unfortunately, these methods form C2 continuous patches with C1 stitching 
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between these patches. The location of these stitches are arbitrary and may not follow 
the piecewise smooth seams of the original surface. Thus, curvature along stitch junc
tions is not straightforward. Extraordinary points of subdivision surfaces also require 
special treatment for curvature estimation (Reif and Schroder, 2 000) .  

2.2 .3 Direct Curvature Methods 

DCMs are another class of algorithms. These algorithms use the topology and geometry 
of the mesh directly to estimate curvature. Since a triangle mesh is a piecewise-flat 
surface, the direct computation of local curvature is seemingly paradoxical (Mortenson, 
1997 ) .  The curvature is singular at each point on the surface--infinite at vertices and 
edges and zero on triangle faces. We can, however, refer to the total curvature for 
regions on these surfaces, which is not necessarily singular. 

Lin and Perry (Lin and Perry, 1982) use the angle excess around each vertex to 
estimate the total Gaussian curvature. Angle excess itself is well known with (Morten
son, 1997 ) providing a nice discussion in the context of computer graphics and the 
Gauss-Bonnett Theorem. We find another application of angle excess in series of pa
pers (Delingette, 1994a; Delingette, 1994b; Delingette, 1997 ; Delingette, 1999). He lays 
out a framework for a surface representation that he calls a simplex mesh that is a dual 
to a triangle mesh. He discusses the total mean and the total Gaussian curvature for this 
surface representation and shows these formulations are directly related to angle excess 
for a triangle mesh. We find another angle excess approach in the discrete minimal sur
face and straightest geodesic work of Polthier and his coauthors (Polthier and Schmies, 
1998; Pinkall and Polthier, 1993). Following this line of research, Desbrun et al . (Des
brun et al., 1999) define a curvature normal vector as a discrete definition of mean 
curvature for triangle meshes. As with the angle excess methods, Desbrun et al. use 
interior angles of triangles for their formulation. 

With a different approach, Gourley (Gourley, 1998) presents a total pseudo cur
vature based on the dispersion of face normals around a vertex while Mangan and 
Whitaker (Mangan and Whitaker, 1999) refine this measure as the norm of a covariance 
matrix for these face normals. This pseudo curvature is proportional to the magnitude 
of Gaussian curvature. A novel algorithm from Wu and Levine (Wu and Levine, 1997 ) is 
a physics-based approach where they simulate the distribution of charge density across 
a mesh. They relate this charge distribution to surface curvature. This approach also 
yields a pseudo curvature measure that is monotonically increasing relative to Gaussian 
curvature. 

2.2.4 Curve Fitting Methods 

We finally consider the CFMs. With these methods, we fit a family of curves individually 
around a point and then use the ensemble to estimate curvature. Martin (Martin, 1998) 
proposes a method that selects vertex triples from a mesh and fits circles to those triples. 
Tookey and Ball (Tookey and Ball, 1997 ) describe a more sophisticated method that 
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uses five points instead of three but is only valid for data on a regular grid. Varady and 
Hermann (Varady and Hermann, 1996 ) present an algorithm for computing principal 
curvature from a collection of surface curves using a linear system. A very interesting 
paper (Tang and Medioni, 1999) proposes a novel approach to infer the sign of Gaussian 
curvature and compute principal directions from noisy data. This method is an evolution 
of Medioni's tensor voting theory (Medioni et al. ,  2 000) , which uses circular curves to 
discern features from a point cloud. A recent improvement to their original paper 
is (Tang and Medioni, 2 002 ) .  From the Duplin indicatrix, Chen and Schmitt (Chen and 
Schmitt, 1992 ) formulate a quadratic representation of curvature at each vertex and 
then derive the principal curvatures using a least squares minimization of the resulting 
overdetermined system. Inspired by this approach, Taubin (Taubin, 1995) developed 
an algorithm that defines a symmetric matrix that has the same eigenvectors as the 
principal directions and eigenvalues that are related by a fixed homogeneous linear 
transformation to the principal curvatures. He estimates this matrix in discrete form 
for a triangle mesh using vertex pairs that share a common edge. In the context of 
surface reconstruction, Gopi et al. (Gopi et al. ,  2 000) extend Taubin's algorithm beyond 
adjacent vertex pairs to arbitrarily close pairs and use a different weighting scheme. 
Another improvement to Taubin is (Hameiri and Shimshoni, 2 002 ) .  We finally note the 
curvature work in the context of mesh simplification in (Heckbert and Garland, 1999) .  
This paper outlines the relationship of the quadric error metric (Garland and Heckbert, 
1997; Lindstrom and Turk , 1998) for triangle normals to curvature. 

The SFMs require the most computational effort since they typically employ op
timization in the fitting process. This optimization does provide some robustness to 
noise but does not inherently deal with discontinuities. The DCMs on the other hand 
are more computationally efficient but are more susceptible to noise errors. The excep
tion is the method of Wu and Levine (Wu and Levine, 1997) that does demonstrate 
robust results. None of the DCMs, however, directly estimate the principal directions 
or principal curvatures that we seek. The CFMs are the most promising of the three 
classes. In particular, Tang and Medioni (Tang and Medioni, 1999) and Taubin (Taubin, 
1995) offer unique contributions. Tang and Medioni's method is robust but their algo
rithm does not estimate principal curvatures, only principal directions. They construct 
a matrix--similar to Taubin-whose eigenvectors relate to the principal directions but 
they do not show how the eigenvalues relate to the principal curvatures. As stated 
above Taubin's algorithm does. Taubin relates the eigenvalues to the principal curva
tures. As we will show in the next chapter, our contribution is to extend both Tang 
and Medioni's and Taubin's methods with a new algorithm that employs a geodesic 
neighborhood, a voting scheme, and Taubin's discrete formulation to generate robust 
results. In the next section, we explore potential mesh segmentation algorithms to see 
how we can implement the minima rule. 
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2 .3  Mesh Segmentation 

In the first section of this chapter, we reviewed several decomposition theories where we 
have identified the minima rule as the primary theory for our applications. This choice 
has led us to investigate curvature estimation in the previous section. We now review 
the literature on mesh segmentation to see how we might implement the minima rule in 
a practical system. We seek an algorithm to segment a mesh M that approximates a 
manifold surface S, embedded in 3D. Recall the mesh segmentation of a mug in Figs. 1.1 
and 2.1. 

2.3.1 Convex Polyhedra 

An active area of research that is similar to mesh segmentation is convex decomposition 
in computational geometry. This problem seeks to decompose a non-convex polyhedron 
into smaller convex ones. The motivation for this work is to improve computer graphics 
such as rendering and shading ( Chazelle et al., 1997 ). The seminal paper in this field is 
Chazelle (Chazelle, 198 4) and his follow up articles (Chazelle and Palios, 1990; Chazelle 
et al., 1997 ; Chazelle and Palios, 1997 ). Other researchers (Bajaj and Dey, 1992; Her
shberger and Snoeyink, 1998; Tang et al., 2 000) have also contributed with significant 
interest growing. Most of these algorithms seek to find the simpliest decomposition 
possible but Lingas (Lingas, 1982) shows the minimum decomposition complexity is 
NP-hard. Thus heuristics are necessary, and as a result the main focus of the research 
attempts to bound the worst-case complexity of the problem. A computer vision-based 
approach to convex decomposition is (Svensson and Sanniti di Baja, 2 001; Svensson and 
Sanniti di Baja, 2 002). This method is less rigorous than the computational geometry 
approaches above but yields nice results. A volumetric distance transform guides the 
segmentation process. 

Although this research fits nicely with the scene modeling goals for real-time visu
alization, it does not address the needs of reverse engineering. The description of an 
object as a collection of convex parts is not very meaningful. Additionally, these algo
rithms assume the non-convex polyhedra are ideal models with no measurement error 
corrupting them. These ideal models are common in most computer graphics applica
tions but not computer vision ones. For practical scene modeling or reverse engineering, 
measurement error degrades the quality of the mesh, and at present, convex decompo
sition does not address the effects of this noise. The growing interest in this research, 
however, does emphasize the importance of mesh segmentation to computer graphics 
and thus serves as a context for our research. 

2.3.2 Range Images 

Another area related to the mesh segmentation problem is range image segmentation 
where an example appears in Fig. 2.7. Hoover et al. (Hoover et al., 1996 ) survey 
the traditional approaches and establish a framework for comparing these algorithms. 
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(a) {b) 

Figure 2 .  7: Example of range image segmentation. (a) The initial range image of water 
pipes with false coloring. Close surfaces are red while distant ones are blue. (b) A 
segmentation of the range image based on surface discontinuities. 

Suk et al. (Suk and Bhandarkar, 1992 ) also provide a review and present the funda
mental groundwork for the problem itself. Some important papers are (Fan et al. ,  1986 ; 
Hoffman and Jain, 1987; Besl and Jain, 1988) .  More recent work includes (Baccar et al. ,  
1996 ; Burgiss et  al. ,  1998; Yang and Lee, 1999; Alrashdan et al. ,  2000; Froimovich et al. ,  

2002 ). Of these methods , the watershed segmentation of (Baccar et al. ,  1996 ) is note
worthy. Baccar et al. use image processing watersheds and data fusion techniques to 
identify surface discontinuities. As we discuss later, we have an interest in watershed 
segmentation as well. In terms of part decomposition, the algorithm of (Froimovich 
et al. ,  2002 ) demonstrates nice results. They add an additional level of complexity 
beyond segmentation of range images by assigning functionality to the resulting part 
decompositions. 

The drawback of range image segmentation, however , is that images are not surfaces. 
With a range image, one can exploit the regular row-column structure of the image and 
thereby simplify algorithm development. A typical surface mesh, on the other hand, 
does not offer this regular structure and to impose such a structure is often not practical. 
A mesh M has arbitrary connectivity in K. Recall the parameterization discussions in 
the review of curvature estimation techniques. 

2.3.3 Surface Meshes 

So far, we have seen that convex decomposition from computer graphics and range image 
segmentation from computer vision do not address our application domain adequately. 
We truly need a mesh segmentation algorithm. Since this topic is relatively new, the 
literature only offers a few algorithms. 
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Two early mesh segmentation algorithms are (Falcidieno and Spagnuolo, 1992) 
and (Hebert et al. , 1995 ) .  Falcidinieno and Spagnuolo segment a mesh into similar 
curvature regions of concave, convex, planar, and saddle patches. Hebert et al. com
pute quadric surface patches for curvature estimation and then employ a region growing 
method for segmentation. The region growing is a modification of (Faugeras and Hebert, 
1986 ) that Hebert et al. have adapted for the arbitrary connectivity of a surface mesh. 
Johnson et al. ( Johnson et al. ,  1995 ) demonstrate an application of this method. An
other region growing method for CAD applications is (Sapidis and Besl, 1995 ) .  A recent 
computer vision system from Yu and Malik (Yu et al., 2 001) presents a pipeline for re
constructing and editing scenes from range scans. The segment scene geometry into 
distinct surfaces to aid other tasks such as registration. 

In computer graphics, Gregory et al. (Gregory et al. , 1999) propose an interac
tive segmentation for morphing applications that requires user selection of feature 
points. Using the points as landmarks, they segment the mesh into morphing patches. 
Li et al . (Li et al., 2 001) describe edge contraction and space sweeping to decompose a 
mesh for collision detection during visualization. Tan et al. (Tan et al., 1999) demon
strate decomposition results through a vertex-based simplification algorithm. Werghi 
and Xiao (Werghi and Xiao, 2 002) propose a computer vision algorithm with applica
tions in computer graphics to segment 3D scans of the human body. Their algorithm 
uses posture recognition as a first index into identifying human body parts. In a reverse 
engineering application, Rossl et al. (Rossl et al., 2 000) define morphological operators 
such as opening and closing on the surface meshes and use these operators to segment 
surface discontinuities. 

As noted previously, a very successful algorithm is Wu and Levine (Wu and Levine, 
1997 ) .  Recall that they draw from the rich field of finite element analysis and implement 
segmentation as a physics-based approach by simulating electrical charge distributions 
over a surface mesh. Although this formulation yields a robust curvature estimate, the 
mesh segmentation algorithm they propose is somewhat simplistic. Their algorithm 
defines the triangle mesh as a direct connection graph. Then, they identify concave 
extremum within the graph and march from these nodes to neighboring nodes with 
lowest charge density. This march continues until they trace a closed contour across the 
surface of the mesh. The drawback to this algorithm is that it fails when an object has 
three or more parts that intersect at a common point. For such parts, a simple closed 
contour topology is not sufficient. Another drawback is that the algorithm relies on 
a local marching procedure that is susceptible to local minima. Under certain surface 
topologies, the algorithm becomes trapped and is unable to complete a closed contour. 

A second algorithm that we consider in depth is (Mangan and Whitaker, 1999) .  
Again, recall that they implement the watershed algorithm from image processing to 
a mesh data structure. As an improvement to their algorithm, we also note more 
recent papers (Pulla, 2 001; Pulla et al., 2 002) . In image processing, the watershed 
algorithm is a well known thresholding method (Castleman, 1996 ) .  The basic idea is to 
view a data set as an elevation terrain where the height of the mountains and valleys 
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corresponds to the maximum and minimum values of the data. Segmentation involves 
figuratively pouring water over this terrain and monitoring where the catchment basins 
of the terrain form. The algorithm subsequently groups areas of land with common 
basins, i.e. common watersheds, as segmentation regions. 

The final algorithm that we need to consider is the image processing algorithm 
of Vincent and Soille (Vincent and Soille, 1991 ) .  This algorithm is also a watershed 
algorithm like Mangan and Whitaker but a different approach. In fact, the discussion 
in Vincent and Soille is an excellent review of watersheds for image processing. They 
conclude their paper with a section that extends their methods to graphs with arbitrary 
connectivity, including a brief discussion of 3 D  surfaces. Their algorithm uses two 
steps. The first one sorts each pixel in an image according to water height, and then 
the second step grows watershed regions by accessing this initial sorting and using a 
queue to enlarge from the bottom up. More recently, Rettmann et al. (Rettmann et al., 
2000; Rettmann et al. ,  2002 ) implement this algorithm as a true mesh segmentation for 
cortical surface in medical applications. 

As Vincent and Soille (Vincent and Soille, 1991 ) note, two different strategies are 
common for implementation. The first strategy is a bottom-up approach where we form 
catchment basins and flood the data with water. See Fig. 2.8. The second strategy is a 
top-down approach where we descend, or bobsled, down to the catchment basins from 
the slopes and ridges of the terrain. See Fig. 2.9. Both of these approaches require 
an initial threshold to create what is often called the marker set. This set is critical 
to the success of the algorithm since it defines the proper number of regions for the 
final segmentation. The initial boundaries of this set are too small to be a complete 
segmentation, but as the algorithm progresses these boundaries expand. For the flooding 
approach, when two boundaries come in contact as in the left side of Fig. 2.8(b) , they 
are not allowed to merge. On the right side of that same figure, notice that a new basin 
has formed that has no correspondence, yet, to any other basin. As flooding continues 
in Fig. 2 .8(c) , we do merge this new basin with one of the original marker basins. These 
figures illustrate the importance of the marker set. As additional examples, Figs. 2.8(a) 
and 2 .8(d) show two different marker sets with the corresponding final segmentations 
in Figs. 2.8(c) and 2 .8(f). We see very different results. 

For the bobsled approach, the problem is a little different. As before we establish a 
marker set, but instead of flooding, we follow the gradients of the data to a marker set. 
Unfortunately, local minima may stop our bobsled from reaching any marker regions as 
in Fig. 2.9(c). Such cases require special consideration. Mangan and Whitaker (Mangan 
and Whitaker, 1999) have successfully implemented the bobsled method for their mesh 
segmentation algorithm. They note that the local minima problem leads to significant 
over segmentation and that such results are not very useful. To address over segmen
tation, they have developed an intricate filter-and-merge algorithm. This algorithm 
looks for watersheds with relatively low "water depths" and merges such regions with 
neighboring ones. Unfortunately, we suggest that this approach is an ad hoc solution 
and a more robust approach is necessary. Additionally, we believe that the bottom-up 
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(a) (b) (c) 

(d) (e) (f) 

Figure 2.8: Flooding variant of the watershed algorithm. The flooding variant of the 
watershed algorithm is dependent on the initial choice for the marker set. (a) An initial 
marker set (b-c) Progression of the segmentation. Note the merge operation between 
(b) and (c) . (d) A different choice for the marker set. (e-f) The effect of this choice on 
the subsequent segmentation. 
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(a) (b) (c) 

Figure 2.9: Bobsled variant of watershed algorithm. We show the marker set in each 
illustration. The dark arrows show the bobsled analogy where points on the data follow 
the gradient of the data to the catchment basin. (a-b) A typical bobsled. (c) A local 
minimum trap that requires merging to an appropriate catchment basin. 

flooding approach to watersheds leads to better results. For this dissertation, we have 
developed such an approach, and to handle over segmentation we use a theory of part 
saliency as an alternative to the ad hoc water depth as in (Mangan and Whitaker, 1999; 
Rettmann et al., 2000). In the next section, we explore the concepts of part saliency. 

2 .4 Shape Measure 

As stated in the last section, segmentation algorithms must handle the problem of over 
segmentation. If we look at the state of the art, Mangan and Whitaker (Mangan and 
Whitaker, 1999), for example, compute the depth of a watershed for each segmentation 
region and then merge regions that are relatively shallow. They assume that such 
regions represent areas of over segmentation. Other approaches (Wu and Levine, 1997 ) 
merge regions with relatively small surface area, based on the size of the segmentation 
region. These solutions are ad hoc and, as such, are not directly applicable to our desire 
to implement the minima rule. With an implementation of the minima rule, proper 
segmentation-in other words segmentation without over segmentation-yields "good" 
parts. So, if we could measure the "goodness" of a part, we could simply filter bad 
parts when over segmentation occurs. The question that obviously arises is how do we 
measure, or even compute, part "goodness" .  

An answer to the question of "goodness" is part salience (Hoffman and Singh, 1997 ). 
Hoffman and Singh propose a human vision theory in the context of the minima rule 
that defines the salience of a visual part where salience is the visual significance of a part 
in terms of perception. They argue that parts help us index our cognitive memory of 
shapes during visual tasks. They further suggest that the saliency of a part determines 
its efficacy as an index. Efficacy relates to reaction times, error rates, confidence ratings, 
and decisions of figure and ground for our visual processing (Hoffman and Singh, 1997 ) .  
Leveraging psychophysical experiments, Hoffman and Singh propose that the salience of 
a part depends on primarily three factors: relative size of the part, degree of protrusion, 
and strength of part boundary. Although they give quantitative definitions of these 
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factors, their work is a human vision theory and not a computer vision algorithm. In 
particular, they only give a brief discussion of part salience for 3D surfaces and instead 
focus most of their attention to 2D silhouettes. 

2.4.1 Shape Complexity 

The challenge that our research addresses is the development of an algorithm that com
putes Hoffman and Singh's notions of part salience for 3D meshes. Since no algorithm in 
the literature implements Hoffman and Singh's definitions directly, we have broadened 
our literature review to include algorithms that measure shape. Hoffman and Singh's 
definitions are essentially measures to quantify the shape of a part. In the literature, 
we do find a diverse array of applications from satellite imagery (Oddo, 1992) to neuron 
morphology ( Cesar and Costa, 1997 ) that require shape measures. To gain an under
standing of these approaches and to inspire our search for a part salience measure, we 
review the literature in shape measures in the following paragraphs. 

To begin, King and Rossignac (King and Rossignac, 1999) present a paper that 
is directly relevant to triangle mesh data sets. In their work, the authors consider 
lossy mesh compression and propose a shape measure to evaluate compression methods. 
Their shape factor is relative to a sphere of a given radius and measures the level of 
tessellation that a certain shape requires. Toussaint (Toussaint, 1991) proposes another 
measure for shape in 2D based on polygon decomposition. Toussaint argues that the 
number of interior triangles from the resulting decomposition that do not share an 
edge with the boundary of the polygon serves as a measure of shape. Chazelle and 
lncerpi (Chazelle and lncerpi, 1984) have proposed the sinuosity as a measure where 
sinuosity is the number of times that a polygon's boundary alternates between complete 
spirals of opposite orientations (Toussaint, 1991 ) .  Although polygon triangulation is 
a 2D problem, convex decomposition of polyhedra is the 3D analog with examples 
in (Chazelle, 1984; Hershberger and Snoeyink, 1998) as outlined in the previous section. 
A downside to these algorithms and the subsequent shape measures based on them is 
the computational effort required to compute the decompositions. A computationally 
efficient approach to measuring shape is the polyhedra moments found in (Li, 1993) . Li 
presents efficient methods for computing various degrees of moments for a polyhedron. 
A more recent paper is (Osada et al., 2 002), which proposes a method of computing 
shape signatures of polygonal models. The key to their algorithm is the definition of 
an appropriate shape function based on a global geometric property. They suggest the 
distance between two random points on a surface is one possible function. 

Spatial database systems (Bryson and Mobolurin, 2 000) as related to geographic 
information systems are another area of research where quantifying shape has gained in
terest. A theoretical characterization of polygonal objects common to spatial databases 
is through the fractal dimension. A notable investigation is Mandelbrot's paper (Man
delbrot, 196 7 )  that applies fractal analysis to Britain's shoreline. As a shift away from 
fractal dimensions, Brinkhoff (Brinkhoff et al ., 1995 ) proposes a pattern vector approach 
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to measuring shape. Brinkhoff develops a metric based on a set of descriptive param
eters such as notches, vibrations, and convexity. He combines these parameters in a 
weighted sum to compute the complexity of the object. Bryson and Mobolurin (Bryson 
and Mobolurin, 2000) further expand on these concepts. 

We also find shape measures in biological shape analysis, particulary cell morphology. 
An interesting paper by Cesar and Costa (Cesar and Costa, 1997 ) develops a multiscale 
approach. In the context of neuron morphology, they formulate a normalized multiscale 
bending energy description of neural cell boundaries. Bending energy, itself, is a measure 
of shape where Young et al. (Young et al. ,  197 4) use bending energy to characterize the 
contours of biological objects. Vliet and Verbeek (van Vliet and Verbeeck, 1993 ) extend 
bending energy definitions to 3 D  data sets. 

From the computer vision and image processing literature, a few key methods use in
formation theory (Shannon, 1948) to measure shape. Oddo (Oddo, 1992 ) has developed 
a segmentation algorithm based on global shape entropy to extract building boundaries 
from aerial imagery. The entropy definitions in Oddo follow from the gray level def
initions of entropy in (Pal and Pal, 1989). Oddo uses a region growing technique to 
identify building shapes where the curvature of the region boundary defines the entropy 
function. Roui-Abidi (Roui-Abidi, 1995) also uses curvature and entropy but in a dif
ferent context. She formulates a curvature-entropy measure relative to Oddo and uses 
her formulation to govern sensor placement to maximize information in sensor views. 
To estimate the uncertainty in pose for multiple sensor views, Stoddart et al. (Stoddart 
et al. , 1998) propose a registration index as a means of quantifying the error that one 
might expect when registering a particular shape. This registration index represents 
some level of shape measure. Finally, Gahli et al. (Ghali et al. , 1998) define a metric for 
the amount of rotational information that an image contains and investigate rotational 
information properties of Latin character sets. A more recent computer vision method 
is the linear shape descriptor in (Sanniti di Baja and Svensson, 2002 ) ,  which seeks a 
skeletal description of shape volumes. Another recent paper is (Athitsos and Sclaroff, 
2002 ) that describes a method for computing protrusion of fingers in images for hand 
shape classification. 

2.4.2 Part Salience 

Unfortunately, none of these methods are independently sufficient for a straightforward 
development of Hoffman and Singh's part saliency into a computer vision algorithm. 
The pattern vector formulation of Brinkhoff (Brinkhoff et al. , 1995) , however, does 
offer an approach to how we might combine the three factors that Hoffman and Singh 
outline while the computational techniques of (Li, 1993 ) and (Athitsos and Sclaroff, 
2002 ) suggest possible methods of computing these factors . As we will see in a later 
chapter, we have developed a part saliency metric that follows the theory of Hoffman 
and Singh that fills this gap in the literature. 

The fundamental principle of Hoffman and Singh is the relative significance of ad
jacent parts on an object or in a scene. Their research identifies measurable quantities 
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(a) (b) (c) 

Figure 2. 10: Salience of parts. These illustrations are simple examples that demonstrate 
part salience. Each one shows two parts connected with a different salient feature. The 
upper objects have two parts that are less salient than the parts of the lower objects . 
(a) Relative size of parts determines salience. (b) Degree of protrusion. (c) Turning 
angle of the cusp boundary. 

relative to the parts that determines the overall salience of a part. We illustrate these 
measures in Fig. 2 . 10 for simple 2D sketches. These figures demonstrate that global 
properties such as the size of each part in Fig. 2 . lO(a) and the degree of protrusion in 
Fig. 2. l 0(b) effect the salience. In general, a large part is more salient that a smaller one. 
A part that protrudes significantly is more salient that a part that does not. Further, 
these figures illustrate local properties that effect salience such as the turning angle at 
a part boundary in Fig. 2 . lO(c) . Hoffman and Singh extend these ideas and present 
mathematical definitions for both 2D contours and 3D surfaces. We propose to use 
these salience measures as a more appropriate filter-and-merge method than the ad hoc 
approaches in Mangan and Whitaker and Wu and Levine. 

2 .5  Summary 

This chapter has presented an extensive review of the literature for each of the topics 
explored in this dissertation. We now highlight the key articles that serve as the foun
dation for the theories and algorithms that we develop in the next chapters. Below we 
delineate these articles for clarity and note how we intend to extend the state of the art. 

Part Decomposition After surveying a variety of human vision theories, we have se-
lected the minima rule (Hoffman and Richards, 1984) as the most appropriate 
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approach for scene modeling and reverse engineering applications. Our contribu
tion is to develop a computer vision algorithm-the Minima Rule Algorithm-that 
adheres to this theory. 

Curvature Estimation With the minima rule, curvature estimation becomes an im
portant topic. We have identified tensor voting (Tang and Medioni, 2002 ) and 
Taubin's algorithm (Taubin, 1995) as the most promising methods in the litera
ture. We bridge the gap between these two algorithms to extend the state of the 
art. 

Mesh Segmentation To segment a mesh using the minima rule and a curvature es
timation algorithm, we have found three algorithms (Vincent and Soille, 1991 ; 
Wu and Levine, 1997; Mangan and Whitaker, 1999) that serve as starting points 
for our development of a new mesh segmentation algorithm. In particular, our 
contribution is to develop a watershed segmentation algorithm for triangle meshes 
that implements the flooding model of watersheds. 

Shape Measure A successful segmentation algorithm requires appropriate methods 
to handle over segmentation. We have explored the literature with regard to 
shape measures in an effort to measure the segmentation quality. Although we 
have not find an adequate computer vision algorithm that satisfies our needs, we 
have identified part saliency (Hoffman and Singh, 1997) , which is a human vision 
theory, as a potential solution. Our contribution is again to develop a computer 
vision algorithm for this theory, as with the minima rule. 

This summary list completes the literature review. In the next chapter, we develop our 
Minima Rule Algorithm that extends the above state of the art. 
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Chapter 3 

Part Decolllposition: Minima 

Rule Algorithin 

The primary contribution of this dissertation is the development of the Minima Rule 
Algorithm for decomposition of triangle mesh approximations of 3D objects and scenes. 
In this chapter, we briefly overview this algorithm. As the previous chapter outlines , a 
significant body of research is available from cognitive psychology, in particular human 
perception, that seeks to understand the fundamental elements of human vision with 
regard to part decomposition. From our survey of the literature, we have selected the 
minima rule theory from Hoffman and Richards (Hoffman and Richards, 1984) as the 
most applicable to our problem domains for scene modeling and reverse engineering. 
This chapter is a short presentation of the Minima Rule Algorithm as a computer vision 
system. We note that we do not discuss in detail the elements of this algorithm, here. 
We delay such specifics to subsequent chapters that focus on individual components 
of the system. Our goal for this chapter is to introduce the algorithm and build the 
foundation for the remaining chapters. 

We begin this chapter by introducing in Sec. 3 .1  a simple example the we use exten
sively throughout the remaining chapters. This example is illustrative of the concepts 
that we develop. In the next section, Sec. 3.2, we present the input and output for the 
Minima Rule Algorithm. Finally, we conclude in Sec. 3.3 with a block diagram of the 
complete system. This diagram shows the key components that we investigate in detail 
during later chapters. 

3 .1  Mug Example 

Throughout our discussions, we use the same example of a coffee mug to illustrate the 
various concepts of our algorithms. Photographs of the actual mug we have chosen 
appear in Fig. 3. 1 .  We have selected this mug for its familiarity to the reader as a 
common household object and because it has certain interesting features. The first 
feature is that it is entirely one color-black. So, shape is the only visual cue that a 
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(a) (b) (c) 

Figure 3.1: Sequence of photographs of actual mug. This sequence shows the mug that 
is used as an example throughout this dissertation. 

human observer would use to decompose the mug. The second feature is its topology. 
The mug has a genus one topology, which is equivalent to a torus. The handle of the 
mug creates a loop the makes this a genus one surface. Although most objects have 
genus zero topology, many objects we encounter with our applications do have non-zero 
topologies where the mug is just one example. The third feature of the mug is that it 
has clear minima rule parts. The mug basically consists of a cup, a handle, and a base. 
To use this mug in our computer vision system, we have created a full computer model 
of the mug as a triangle mesh using techniques from (Sun and Abidi, 200 1). Fig. 3 . 2 
shows examples of this computer mesh model. This mesh is the input to our system. 
The decomposition of this mesh into a cup, a handle, and a base is the output. In the 
next section, we clearly specify this input and output in further detail. 

3.2 Input and Output 

To clarify the goal of our research, we seek to define precisely the input and output to 
our Minima Rule Algorithm. We begin with an assumption about the underlying surface 
that our mesh data approximates. We assume that our mesh is a discrete sampling of a 
piecewise smooth surface. If we denote the piecewise smooth surface as S, then we can 
denote each part r of S as Sr where we define a part in accordance with the minima 
rule. Each Sr is also a piecewise smooth surface. We now formally state our problem 
as follows. 

Given a piecewise linear approximation M of a piecewise smooth surface S = Ur Sr 

where the minima rule defines each part Sr , 

Find the corresponding mesh decomposition Mn = Ur.Mr where each Mr approxi-
mates the original visual part Sr . 

The union operation U is over the set of R parts where r = 0, ... , (R- 1) .  For definitions 
of S and M, recall Sec. 2. 2 . 1. Note that M = (K, V) where K is the mesh topology 
and V is the vertices of the mesh. An example of a mesh for a coffee mug appears in 
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(a) (b) (c) 

Figure 3 .2 :  Sequence of renderings for scanned mug. This sequence of images show 
computer renderings of the triangle mesh that models the mug. 

Fig. 3 . 3 (a). The geometry of the mesh is the point cloud V as in Fig. 3 . 3 (b) where we 
have the set: 

V = { vo , v1 , . . .  , Vn-1} (3 . 1 )  
and n is the number of vertices in the mesh. The topology K defines the connectivity 
of the vertices, edges, and faces of the mesh as in Fig. 3 . 3 (c). A precise definition of K 
is a simplical 2-complex (Kinsey, 1993 ) with the following k-skeletons 

vertices: 
edges: 
faces: 

K0={0} , { 1 } , {2 } , . . .  , { (n - 1 ) }  
K1 ={0, 1 } , { 1 ,2 } , {0,2 } ,  . . .  
K2={0, 1 ,  2 } , . . . 

where K = LJ�=o Kk. So, M = (K, V) approximates our real world surface S. 
We use the term approximates to emphasize that measurement error often corrupts 

the creation of M. Refer to Fig. 3 .4 that shows the steps to generate M from S. This 
figure shows the sampling block where a laser range scanner or some other computer 
vision sensor samples the real world surfaces of interest. The addition of noise error 
models measurement error that might occur during the sensing process. The point 
cloud V is the set of sampled points that are on or near the surface S. The reconstruction 
block recovers the topology K, or in other words connects the dots, to form the triangle 
mesh M. 

The decomposition of M yields the segmented mesh Mn , which consists of parts Mr 

where again r = 0, . . .  , (R - 1 ). Refer to Fig. 3 .5(a). Each mesh Mr fits the same 
definition of a mesh as M such that Mr = (Kr , Vr ). Also, the decomposition generates 
an adjacency graph G, as in Fig. 3 .5(b) , that represents the interconnection of each 
part Mr to form Mn. Thus, M is the input , and A1n and G are the output to our 
Minima Rule Algorithm. 
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(a) (b) 

( c) (d) 

Figure 3.3: Example input to Minima Rule Algorithm. We show the input mesh M 

as (a) A solid rendered model, (b) A point cloud model of just the mesh vertices, and 
(c) A triangle only model. (d) A zoom view of the handle in (c) . 

Sample 

Noise 
Error 

V K 

Reconstruct 

Figure 3.4: Block diagram of data generation. This block diagram illustrates the cre
ation of a triangle mesh M = (K, V) from a piecewise smooth surface S. 
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(a) (b) 

Figure 3.5: Example output for Minima Rule Algorithm. We show (a) the output 
mesh Mn where R = 3 and (b) the output graph G. 

3.3 Algorithm Overview 

With the input and output defined, the block diagram in Fig. 3.6 shows the three steps 
that are necessary to decompose a triangle mesh M into minima rule parts MR and 
adjacency graph G. This diagram defines our system and thus our contribution to the 
state of the art . The first block is the Normal Vector Voting algorithm , which estimates 
the curvature at each vertex of a mesh. Curvature estimation is fundamental to the 
minima rule, and Normal Vector Voting is a significant contribution to the start of the 
art . We develop the theory for this algorithm in Ch. 4. The second block is the Fast 
Marching Watersheds algorithm for mesh segmentation. This algorithm implements 
a hill climbing definition of the classic watershed algorithm from image processing to 
segment our input mesh into the minima rule parts. Ch. 5 presents the details of 
this algorithm. The final block estimates the quality of the segmentation from the 
watershed and attempts to improve this quality. The central theme of this block is 
the Part Saliency Metric, which Ch. 6 addresses. The implementations for these three 
blocks also include contributions to the state of the art, and each chapter specifically 
delineates those contributions. Also, each algorithm has either two or three parameters 
that a user must specify. In general, the Minima Rule Algorithm is not sensitive to 
these parameters in that a user does not need to tweak each one to gain useful results .  
Rather, these parameters allow the user to control each stage of the decomposition 
algorithm to optimize for certain conditions. At the end of each chapter, we present a 
table of the user parameters for that chapter and specify typical values. This concludes 
our overview of the Minima Rule Algorithm, and we now begin a more in depth look 
at Normal Vector Voting in the next chapter. 
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Figure 3. 6: Block diagram of the algorithm proposed. The input is a triangle mesh 
representation that approximates a 3D surface. The output is a set of meshes that are 
the visual parts of the original surface. 
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Chapter 4 

Curvature Estimation: Normal 

Vector Voting 

Surface curvature plays a key role in tasks such as registration, segmentation, simplifi
cation, recognition, and analysis. We find curvature in reverse engineering (Alrashdan 
et al., 2 000; Yang and Lee, 1999), medical visualization (Sander and Zucker, 1986 ; 
Sander and Zucker, 1990), and robot navigation (Ferrie et al., 1993 ) among other ap
plications. For this dissertation, we are interested in curvature as the foundation for 
our part decomposition algorithm of the minima rule. The importance of curvature is 
that as a local surface feature it is invariant to rigid transformations and thus serves 
as a valuable shape description. The major drawback, however, is that it follows from 
the second derivative of a surface and as such is often difficult to estimate in the dis
crete world of graphical models. Our goal is to estimate the curvature of a surface 
from a dense mesh approximation of that surface and in so doing we recognize two key 
challenges--surface noise and smoothness discontinuities. 

First, we consider surface noise. Errors in measurement and registration manifest 
themselves as noise in the geometry of the mesh. Range imaging in computer vision for 
example samples the surfaces of a scene and creates point-cloud models. The precision in 
estimating the position of these points is a function of the sensor mechanics, instrument 
electronics, surface orientations, and reflective properties. With the variability among 
these elements, measurement error is inevitable. Additionally, registration error results 
from reconstruction algorithms that take multiple point clouds as input and attempt to 
recover the topological relationship among those points relative to the original surface 
topology. The complexity of aligning the coordinate systems of independent point clouds 
is a common source of error. Beyond measurement and registration error, isosurface 
extraction in medical imaging introduces another source of error. Most medical imaging 
systems generate gridded volume data. Extraction algorithms sift through these grids to 
create an isosurface mesh. The nature of these algorithms is such that artifacts usually 
corrupt the output. Although these sources of error listed above are systematic and 
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not necessarily random, we model them as surface noise on the mesh. Filtering and 
processing often minimize the effects of this noise, but they do not eliminate it entirely. 

Second, we consider smoothness discontinuities. Since we assume that our meshes 
approximate some unknown real-world surface, a question that we must consider is 
what class of surfaces do we expect. As a practical matter, we restrict ourselves to 
piecewise-smooth surfaces. This assumption implies that curvature discontinuities are 
present where two or more smooth surfaces join. Since curvature is singular at such 
junctions, we must account for these discontinuities. We justify our choice of piecewise
smooth surfaces since most computer vision applications and most medical applications 
assume a scene consisting of either rigid or non-rigid objects, respectively (Campbell 
and Flynn, 2 001; Flynn and Jain, 1989). Alternatives might include entirely smooth 
surfaces or piecewise-linear ones, which intuition suggests are not practical models of 
real-world surfaces. Piecewise smooth is the most appropriate choice but for curvature 
estimation requires careful consideration at creases. 

In this chapter, we describe an algorithm called Normal Vector Voting that addresses 
both of the above issues and robustly estimates curvature for dense triangle meshes. The 
contributions of Normal Vector Voting are as follows: 

• application of geodesic neighborhoods to improve curvature estimation on large 
dense meshes, 

• robust classification of surface orientation to account for curvature singularities at 
creases and corners, and 

• robust estimation of principal directions and principal curvatures to overcome 
surface measurement noise. 

The first is the application of geodesic operations to curvature estimation. The dense tri
angulations of large meshes from computer vision and medical imaging enables geodesic 
operations to overcome sampling noise and thus to improve the quality of estimation. 
Another contribution is the crease detection scheme that allows the algorithm to des
ignate a mesh vertex as either on a smooth surface, at a crease junction, or with no 
preferred orientation. The advantage of this classification is the detection and avoidance 
of curvature singularities. Finally, a third contribution is the robust estimation of both 
the principal directions and principal curvatures. Previous methods have demonstrated 
robust computation of the principal curvatures alone but not the directions (Tang and 
Medioni, 1999) while others have demonstrated the computation of both but not in a 
robust manner (Taubin, 1995 ). Normal Vector Voting bridges the gap between these 
two algorithms. 

In the following sections, we outline the Normal Vector Voting algorithm. We begin 
in the next section, Sec. 4.1 with a quick overview of Taubin's formulation of curvature 
estimation for triangle meshes. Then, in Sec. 4.2, we present an overview of the major 
components of our algorithm. The remaining sections, Secs. 4.3- 4.6 , discuss each of the 
components in detail. Finally, we close the chapter in Sec. 4. 7 with a few comments. 
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4.1 Discrete Estimation 

By way of introduction, we review the discrete formulation of curvature in accordance 
with Taubin (Taubin, 1995). Taubin shows that for a point p on a smooth surface the 
symmetric matrix 

1 
17r Bp = -2 "'p(To )T0TJd0 , 

7r -'Tr 

(4. 1) 

with superscript t denoting transpose and To is a column vector as defined in Sec. 2.2. 1 ,  
has eigenvectors that are equivalent to the principal directions {T1 , T2} and eigenvalues 
that are related by a fixed homogeneous linear transformation to the principal curvatures 
as 

l'i,1 = 3 bl - b2 
"'� = 3 b� - br (4.2 ) 

p p p 

where b! and b� are the eigenvalues of Bp associated with T1 and T2 , respectively. The 
third eigenvalue is zero and corresponds to the eigenvector equal to the surface normal 
at p. For a vertex v on a discrete mesh, Tau bin approximates ( 4. 1) as 

(4. 3 )  

for a finite set of directions Ti in the tangent plane of v.  The weight Wi is the discrete 
integration step and has the constraint L Wi = 2 1r. Taubin's algorithm computes Bv for 
a vertex on a mesh and then decomposes the matrix with a Householder transformation 
and a Givens rotation. The resulting eigenvectors and eigenvalues lead to the principal 
directions and principal curvatures via (4 .2 ). 

The question at hand is how do we estimate "'i and Ti in (4. 3 ). Taubin employs a 
truncated Laurent series to approximate these values, but this approach is not robust. 
Tang and Medioni (Tang and Medioni, 1999) suggest a more robust solution. Building 
on these algorithms, we have developed Normal Vector Voting as a robust method 
to estimate the individual "'i and Ti and thus the principal directions and principal 
curvatures for a vertex on a mesh. We now take an in-depth look at this algorithm. 

4.2 Algorithm Overview 

Normal Vector Voting is a two-pass algorithm. For the first pass through a mesh, we 
estimate the normal vector orientation for each vertex. For the second pass , we estimate 
curvature. For normal vector estimation, the basic idea is to select a surface region 
around a vertex. A user-specified distance bounds this region in terms of geodesic 
distance from the vertex where the vertex is the center of the geodesic patch. Each 
triangle in this patch---or geodesic neighborhood-votes at that center vertex in order 
to estimate the orientation of that vertex. Note the simple example in Fig. 4. 1. Here, 
triangle /i in the mesh neighborhood Mv of vertex v has a normal N that generates a 
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(a) (b) 

Figure 4 . 1: Normal Vector Voting illustration. A triangle with normal N generates 
vote Ni for the orientation of the surface at v. The circular arc follows the perceptual 
continuity constraints. 

normal vote Ni at v. We collect these votes in a covariance matrix and decompose this 
matrix using eigen analysis. The eigenvectors and eigenvalues estimate the orientation 
for v where the orientation is either a surface normal Nv , a crease tangent Tv , or a 
null vector for no orientation. We illustrate this sequence of events in Fig. 4 . 2 .  With a 
few slight modifications, this same sequence estimates the curvature at v for the second 
pass. The algorithm in Fig . 4. 3 demonstrates both passes and the equations in this 
algorithm are in the following sections. 

4.3 Geodesic Neighborhood 

The first step in Normal Vector Voting for both the first or second pass is to find the 
triangles or vertices that are close in a geodesic sense to the vertex of interest. The 
geodesic neighborhood problem, which follows the discrete geodesic problem (Mitchell 
et al. , 19 87 ) ,  is to find the m triangles that are within a user-specified distance of 
the vertex. The key is that the distance is not the Euclidean distance but rather the 
shortest geodesic distance along the surface of the mesh. As noted in the literature this 
problem closely resembles the shortest path problem for . a graph, which the Dijkstra 
algorithm (Dijkstra, 1959) solves. The difference is that the shortest path along the 
edges and nodes of a graph is not necessarily equivalent to the shortest geodesic path 
over the surface, which includes the triangle interiors and not just the edges. Kimmel 
and Sethian (Kimmel and Sethian, 199 8) present an elegant algorithm, called Fast 
Marching, that solves this problem in 0( m log m) time and Sun and Abidi ( Sun and 
Abidi, 2 001) propose a simplification that is readily adaptable to our domain. The time 
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Figure 4 .2 :  Block diagram of Normal Vector Voting. This block diagram shows the flow 
of the Normal Vector Voting process for a single vertex. With slight modifications, the 
same diagram applies for the estimation of the surface normal for a vertex and of the 
surface curvature for a vertex. 

complexity is important when compared to such Euclidean algorithms as k-d trees that 
2 require O(m + 3 n3 )  time where n is the number of triangles in the whole mesh (Weiss, 

1999). Also, k-d trees require additional O(n) storage space beyond the current space 
required for the mesh, itself. The Kimmel and Sethian algorithm requires no additional 
storage. 

As a brief aside, we distinguish the Kimmel and Sethian definition of shortest 
geodesics from the straightest geodesics of Polthier and Schmies (Polthier and Schmies, 
1998; Polthier and Schmies, 1999). The latter insures the uniqueness of a geodesic path 
on a polyhedral surface. Since we are only concerned with a neighborhood and not the 
actual path, this trait is not crucial to our problem. We are interested in shortest and 
not straightest geodesics. 

Fig. 4 .4 shows three different sizes of geodesic neighborhoods. The smallest neigh
borhood in this figure consists of just the immediate triangles adjacent to the vertex 
of interest. We also refer to this simple patch as the umbrella neighborhood since it 
figuratively resembles a collapsible rain umbrella with a canopy of triangles mounted on 
its central vertex. Another common term for the umbrella is the one-ring neighborhood. 
Subdivision surfaces refer to the k-ring neighborhood of a vertex where a ring is the set 
of triangles within k edges of the vertex. A k-ring is a topological neighborhood defini
tion. We will compare k-ring topological neighborhoods and geodesic ones shortly. Most 
algorithms that require a neighborhood usually work with the umbrella patch. Taubin's 
curvature algorithm (Taubin, 1995), for example, employs such a neighborhood. Our 
research has shown-and hopefully Normal Vector Voting demonstrates-that signifi
cant advantages arise if we enlarge beyond the umbrella neighborhood. The choice of 
the neighborhood size depends on the application but in our context we identify feature 
size, noise level, and sampling density as the variables that dictate this choice. These 
variables have competing interests and thus tradeoffs among them exist. For example, 
a mesh that contains small features requires a small neighborhood to preserve those 
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input : A triangle surface mesh M, k-geodesic boundary, and ( c, r,) for crease 
detection 

output : Four arrays for principal curvatures and directions, Kmax , Kmin , Tmax, 
Tmin 

foreach vertex v in M do 
Mv +- GeodesicFaceNeighbrhood ( v, k ) ; 

initialize matrix Vv ; 
foreach triangle face Ji in Mv do 

Ni +- NormalVectorVote ( v , Ji ) ;  
Wi +- ComputeWeight ( v, Ji ) ; 

Vv +- Vv + Wi Inner Product ( Ni , Ni ) ; 
end 

(Ev , Av) +- EigenAnalysis ( Vv ) ;  

(Ss , Sc , Sn ) +- ComputeSalience ( Av ) ;  
switch max ( Ss , cSc , c'TJSn ) do 

case S8 surface patch Nv +- Ev , I ; 
case cSc crease junction Tv +- Ev ,3 ;  
case c'f/Sn no preferred orientation; 

end 
end 

foreach vertex v in M that is a surface patch with N v do 

Mv +- Geodes icVertexNeighbrhood ( v, k ) ;  
initialize matrix K v ; 
foreach vertex Vi in Mv that is a surface patch with Nvi do 

Ti +- TangentVectorVote (  Nv , Vi ) ;  

ki +- ComputeNormalCurvature ( Nv , Nv,. ,  Ti ) ;  

Kv +- Kv + ki InnerProduct ( Ti , �  ) ;  
end 
(Ev , Av) +- EigenAnalysis ( Kv ) ;  

Tmax [v] +- Ev , 1 ; 
Tmin [v] +- Ev ,2 ; 
Kmax [v] +- 3Av,I - Av,2 ; 
Kmin [v] +- 3Av,2 - Av,I i 

end 

Figure 4.3: Normal Vector Voting Algorithm. This algorithm is for a surface mesh data 
structure. Note the algorithm is a two-pass algorithm through the vertices of the mesh. 
The input values (c, r,) are actually design constants and not user variables like k. The 
user adjusts k to account for noise, sampling, and features in the mesh. However, we fix 
(c , r,) to detect specific crease features. The user does not need to adjust these values 
for different meshes. 
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(a) (b) (c) 

Figure 4 .4 :  Geodesic neighborhood examples. Examples of different sizes of geodesic 
neighborhoods for the same vertex on a cylindrical surface mesh. (a) , (b), and (c) have 
one-, three-, and five-geodesic neighborhoods, respectively. 

features. If that same mesh, however, has significant noise corruption, then a large 
neighborhood is necessary to smooth out the noise. Similar arguments follow for sam
pling density. Because of these competing issues, we have defined the neighborhood 
size as a user-specified parameter. The user simply specifies the geodesic distance that 
bounds the neighborhood. Actually, the user specifies an integer multiple of the average 
length of the triangle edges in the mesh to eliminate scaling issues. As a result we 
define the k-geodesic neighborhood as the neighborhood with a geodesic boundary that 
is k times the average edge length. We derive the term k-geodesic in the spirit of the 
k-ring designation. 

A question that arises is what is the benefit of a k-geodesic neighborhood over a 
k-ring neighborhood. In particular does the computational burden to find a k-geodesic 
overshadow that for a k-ring. For insight, we outline the Kimmel and Sethian's Fast 
Marching algorithm. We begin at the vertex of interest and simply walk outward to 
the one-ring vertices. We use the equations in (Sun and Abidi, 2001)  to estimate the 
shortest geodesic distance back to the center vertex from each one- ring vertex. We then 
place these vertices on a heap with their distance as a key into the heap. We now walk to 
the closest one by removing the top vertex from the heap-the vertex with the shortest 
distance. We compute the geodesic distances for each of its one- ring vertices back to the 
original center and place them on the heap. The algorithm again removes the closest 
vertex from the heap and repeats. We see that this walking algorithm is very similar 
to a k-ring neighborhood algorithm. The only differences are the computation of the 
geodesic distance for each vertex and the priority of the walk driven by the heap. A ring 
algorithm would simply prioritize the walk as a function of the current ring state where 
the walk proceeds after extending the neighborhood to a complete ring. The geodesic 
neighborhood algorithm walks towards the closest vertex regardless of how close or how 
far that vertex is in terms of a ring. 

Although this priority walking does require some additional computation, the hen-: 
efits, especially for small neighborhoods, far outweigh this minor cost as the following 
examples illustrate in Fig. 4 .5. For the regular triangulations that we see with range 
images and isosurface algorithms, we often find a bias of a one-ring neighborhood as 
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shown in Fig. 4. 5 (a) . The thick dark circles in this figure represent k-geodesic bound
aries while the alternating bands of white and shaded triangles represent the various 
k-ring neighborhoods. Inside the first dark circle, the small one-ring neighborhood has a 
bias towards the right side of the figure. A one-geodesic neighborhood, however, defined 
by the first circle includes the one-ring triangles and the triangles labeled with an "A" 
where we consider a triangle to be in the one-geodesic neighborhood if each of its three 
vertices fall within the region bounded by the circle. These additional triangles balance 
the support of the neighborhood and eliminate the unintended bias of a simple one-ring. 
Similarly, the white two-ring also has a bias towards the right where the inclusion of the 
"B" triangles offers a more balanced two-geodesic neighborhood. Similarly, triangula
tions that are not quite as regular such as the one in Fig. 4.5 (b) have a bias as well since 
triangle sizes and configurations have more variation. We again use the "A" and "B" 
labels to illustrate the comparison. For curvature estimation our experience suggests 
that the balanced support of geodesic neighborhoods are a significant benefit especially 
in the context of the discrete ( 4.3) where adequate directional sampling around a vertex 
is important. 

Since Normal Vector Voting is a neighborhood-oriented operation with a geodesic 
definition, we label it as a geodesic operation. We use this label in the spirit of the 
so-called mask operations (Gonzalez and Woods, 1993) from image processing. With 
mask operations, we analyze an image pixel in terms of its own gray level and of the 
gray levels of its neighbors. We often specify the mask neighborhood as k x k where 
k is the width in pixels of the mask centered at the pixel of interest. We see that our 
geodesic operation is similar except we specify the k-geodesic neighborhood of interest. 
We now have a geodesic neighborhood Mv , Our next step is to vote and determine the 
orientation of v or curvature at v depending on if we are in the first or second pass, 
respectively. 

4.4 Vote Collection 

For the first pass, the next block in the diagram of Fig. 4.2 involves the voting of the 
triangle faces Ii E Mv at the vertex v. We must address two questions: 

• How does face Ii cast a vote? 

• How does vertex v collect these votes? 

To answer these questions, we are inspired by Tensor Voting (Medioni et al., 2 000). 
Tensor Voting is a computational framework that infers structures such as boundaries 
and surfaces from unstructured, sparse, and often noisy 3D point clouds. This frame
work employs perceptual constraints from theories of human vision and subsequent 
definitions of tensor voting fields to extract structure. The implementation of tensor 
voting requires a discrete voxel representation of space where input points cast votes and 
voxels collect votes in the context of tensor algebra. Medioni et al. suggest a system of 
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Figure 4.5: Geodesic versus ring neighborhoods. Examples of geodesic neighborhoods 
versus ring neighborhoods. The alternating rings of shaded and white triangles de
pict the various rings. The thick circles bound geodesic neighborhoods. (a) The "A" 
triangles distinguish a one-ring neighborhood from a one-geodesic neighborhood. The 
"B" triangles show a similar difference for a two-ring and a two-geodesic. (b) When 
triangulations are not as regular, we often see more exaggerated differences .  (c,d) Tri
angulations that exhibit the behavior depicted in (a) and (b) . 
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tensor voting fields in conjunction with coordinate frame rotations and convolution-like 
operations with those fields to encode local geometric structure at each voxel. After the 
voting process, they extract salient global structures such as surfaces, curves, and junc
tions by sifting through these voxels with a level-crossing detection algorithm. Although 
the application of this approach to triangle meshes is possible, we reformulate the Tensor 
Voting notions and propose a more natural vector framework for triangle meshes. We use 
the same perceptual continuity constraints (Andreson, 199 5 )  as Medioni et al. to govern 
vote casting, but we define a more appropriate vector geometry instead of the tensor 
voting fields. (Recall Fig. 2.2 for an illustration of perceptual constraints.) For vote col
lection, we use a covariance matrix similar to the quadric error matrix in (Heckbert and 
Garland, 1999), which has a direct relationship to the tensor algebra in Medioni et al. 
Interestingly, Heckbert and Garland (Heckbert and Garland, 1999) show a relationship 
between this covariance matrix-in the limit-to surface curvature. We however use 
this matrix to estimate orientation and later follow Taubin's approach to estimate cur
vature. We have found that, in the presence of surface noise, this two-step approach is 
more robust than directly extracting curvature from the covariance matrix. 

4.4. 1 Casting Votes 

We first consider how a triangle Ji generates a normal vote Ni at vertex v. A couple 
of approaches are possible. For example, one method is to set Ni at v equal to the 
normal N of the plane that contains Ji as in Fig. 4 . 6 (a) , so that Ni = N. This simple 
method works well with low curvature surfaces but leads to significant error as curvature 
increases. With some insight, we see that an improvement to this method is to fit 
a smooth curve from Ji to v and allow the normal vote to follow the curve. The 
perceptual continuity constraint (Andreson, 199 5 )  suggests that the most appropriate 
curve is a circular arc with shortest arc length. Following this argument, we construct 
the geometry in Fig. 4. 6 (b) . For the shortest arc-length circle, the curve must lie 
entirely in the plane Iii that contains the triangle normal N-rooted at centroid Ci of 
triangle Ji-and the vertex v. We can compute 0i in the figure as 

where vq = Ci - v and O � 0i � 1r. This equation leads to the normal vote 
vq Ni = N + 2 cos 0i 

l l vq l l  

4.4.2 Collecting Votes 

( 4 . 4) 

We next address how v collects the Ni votes from each Ji E Mv . One possibility is as 
a weighted vector sum 'E wiNi. This approach is a common method for normal vector 
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Figure 4.6 : Normal Vector Voting geometry. (a) A simple translation of N (Ni = N) . 
(b) A slightly more sophisticated vote where we rotate N by (2 0i - 1r) in plane Ili . 
(c) Curvature estimation geometry where Nv, ni, and 11 lie in the plane Ili and ni is 
the projection of Nvi onto the plane. 

estimation at vertices in a triangle mesh, typically with an umbrella neighborhood. 
The limitation of this scheme is that normals with opposite orientation annihilate each 
other ( Nj = -Ni , Nj + Ni = 0), and we therefore lose variance information. This 
situation occurs near crease and corner discontinuities in particular. As an alternative, 
we represent Ni as a covariance matrix Vi = NiNf and collect votes as a weighted 
matrix sum Vv with 

(4 .5) 

where the summation is over the Mv neighborhood. Unfortunately, the downside is that 
we now lose absolute sign orientation. The covariance matrix Vi does not designate 
which side of the mesh is the outside of the surface. Consider Ni = -Ni , How do 
we distinguish NiNf = NiNJ? The benefit is that these votes no longer annihilate 
each other. We can track the variance of the votes. This capability outweighs the 
loss of the absolute sign information since the variance allows us to draw conclusions 
about the relative orientation of the vertex. We will see in the next section that eigen 
analysis of this variance leads to an interesting classification scheme for the vertex. 
With regard to the absolute sign, we should be able to recover this information with 
a simple ad hoc algorithm such as a quick averaging of the umbrella neighbors. Only 
under a pathological case does such an approach fail. So we can readily overcome the 
sign problem. 

4.4.3 Weighting Votes 

Our final issue to address is the weighting term Wi , Two factors effect this term: surface 
area of h and geodesic distance, 9i, of Ci from v. Naturally, a triangle closer to v should 
have a stronger vote than a triangle farther away while a larger one should also have 
a stronger vote than a smaller one. We choose an exponential decay to reflect these 
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notions 
Wi = � exp (- Yi ) Amax ak (4.6) 

where ak controls the rate of decay, Ai is the area of /i , and Amax is the area of the 
largest triangle in the entire mesh. In practice, the value, ak , is a function of the 
maximum geodesic distance, 9m , that the user specifies as a k multiple of the average 
edge length in the mesh. We define this value as 

9m = 3ak = klave (4.7) 

where lave is the average length of the triangle edges in the mesh. Votes beyond the 
neighborhood 9m have negligible influence and can be ignored. 

The above equations lead to a covariance matrix V v for each vertex v in the mesh. 
This matrix represents the variance of the votes in the geodesic neighborhood Mv around v .  In the next section, we use eigen analysis to investigate the orientation 
of v using this variance information. 

4. 5 Orientation Classification 

While still in the first pass of the algorithm, the third step in Fig. 4 .2 is to decompose V v 
using eigen analysis and then to classify v. Since V v is a symmetric semi-definite matrix, 
eigen decomposition generates real eigenvalues A1 2 A2 2 A3 2 0 with corresponding 
eigenvectors E1 , E2 , and E3 . We can visualize this eigensystem as in Fig. 4 .7(a) . The 
eigenvalues, and thus the shape of the eigen ellipsoid, yield insight into the vote agree
ment within Vv . Figs. 4 .7(b)-4 .7(d) shows three variations of the eigenvalues and how 
we might interpret these variations. 

In Tensor Voting, Medioni et al. (Medioni et al. ,  2000) define saliency maps over 
the entire voxel space with eigenvalues from their tensors. They then use an extremal 
search algorithm to extract salient global structures from these map definitions. The saliency maps use the following relationships for their tensor eigenvalues: 

Ss = A1 - -\2 , surface patch saliency; 
Sc = A2 - A3 , crease junction saliency; and Sn = A3 , no preferred orientation saliency. (4.8) 

Since we seek to classify the preferred orientation of a vertex using vector algebra as 
opposed to the global structure through a voxel using tensor algebra, we take a different 
approach and do not employ a search algorithm to sort through voxels . For our vector 
voting, we propose the following vertex classification scheme for the eigenvalues of V v 
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(a) (b) (c) (d) 

Figure 4.7: Possible variations of eigen ellipsoid. These ellipsoids depict possible varia
tions in the eigenvalues. We interpret these variations of V v as the orientation saliency 
of the neighborhood around v. (a) Covariance matrix V v where the eigenvalues A 1 , A2 ,  
and A3 define the shape. (b) Surface patch where At is much larger than A2 ,  and A3 . 
(c) Crease discontinuity where A 1 , and A2 are similar in value but larger than A3 . 
(d) Patch with no preferred orientation where each eigenvalue is similar in value. 
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Table 4 .1  · Extrema values for classification constants. 

€ 
0 00 

'TJ 

0 Surface Crease 

00 No Decision Noise 

at each vertex: 

{ 
S8 : surface patch with normal Nv = E1 

max{ Ss , €Sc , crJSn} = cSc : crease junction with tangent Tv = E3 
c'f/Sn : no preferred orientation 

(4.9) 

where 0 � c < oo and 0 � rJ < oo are constants that control the relative significance 
of the saliency measures. These constants are not user parameters since they are fixed 
for a given system. When we design a system however we need to carefully select these 
constants to balance noise tolerance and crease detection. 

We demonstrate the design impact of c and 'f/ with examples. First , consider one 
extreme where we design c = rJ = 0. This system always classifies a vertex as a surface 
patch regardless of any corners or creases in the original piecewise-smooth surface. 
Consider 

This design associates a surface normal with each vertex even if the vertex is a sample 
of a crease or a corner. Thus, the design does not detect curvature discontinuities. This 
approach is very similar to a normal estimation algorithm that averages the triangle nor
mals of a a one-ring neighborhood for a vertex. Another design extreme lets c, rJ -+ oo. 
Such a system never classifies a vertex as a surface patch regardless of smoothness and 
instead classifies each vertex as a corner. This design never assigns surface normals to 
vertices. The third extreme is a design where c -+ oo and 'f/ = 0. As we might 
expect, this system always classifies a vertex as a crease and associates a tangent vector 
with the vertex. Although the first design may have some use, the latter two designs 
have little practical use, but they do illustrate the choice of the constants (c, rJ). When 
designing a system, we fix c to discriminate the types of creases that we expect in the 
piecewise-smooth surfaces and rJ to discriminate the amount of surface noise that we 
wish to tolerate in our sensors. Table 4.1 illustrates the extrema of the classification 
constants. 
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(a) (b) 

Figure 4 .8: Crease examples with different dihedral angles. These examples illustrate 
different dihedral angles for creases on piecewise-smooth surfaces. The normal vec
tors N1 and N2 are for the respective smooth patches adjacent to the crease. 

For a system design, we need to decide how much noise we can tolerate and what 
crease angles we need to detect. If we choose to detect small creases, we reduce the 
overall robustness of the system. On the other hand, less tolerance to small creases 
allows more tolerance to noise. The constant c controls these design considerations. In 
our experiments, the system c = 2 offers a balanced compromise of detecting creases 
and allowing variation. As a rule of thumb, we have the following equation 

tan P. = /1 2 V €+1  (4 . 10) 

where <P is the minimum dihedral crease angle that the system can detect. We illustrate 
examples of crease angles in Fig. 4 .8. We emphasize that this angle is not for edges in 
the mesh but for the creases of the original piecewise-smooth surface. So, for c = 2 ,  
we detect creases in the original surface with <P � l If however that surface has 
creases with ¢ < i ,  the system classifies vertices that are samples near these creases 
as surface patches, but the benefit is robustness to noise. Following a similar example 
and argument, we can see that 'T/ = 2 also offers a balance between noise and crease 
detection. We can formulate the following equation 

tan 'f = ✓ 1 

2 TJ + 1 
(4 . 1 1) 

where 1/J is the angle of variation between a crease decision and a n<rpreferred-orientation 
decision relative to the eigen analysis of V v from the previous section. With most 
systems, we suggest c = 2 and 'T/ = 2. 

With our first pass through the mesh, this classification estimates the normals for 
each vertex on a surface patch and detects each vertex along a crease discontinuity. 
Using this information with extensions to Taubin's algorithm, we discuss in the next 
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section how a second pass through the mesh generates estimates for the curvature at 
each vertex. 

4.6 Curvature Estimation 

Our second pass through the mesh follows the same sequence as in the first pass. Recall 
Fig. 4 . 2 .  This time, however, we use the normal estimates from the previous section 
to estimate the curvature at each vertex. We again use a geodesic neighborhood Mv 

around each vertex but for this pass we are interested in the vertices Vi E Mv , and not 
the triangles, in this neighborhood. Each vertex Vi votes at the center vertex v where we 
collect the votes in a matrix Bv from Eqn. ( 4. 3) .  We decompose this matrix with eigen 
analysis and use the subsequent eigenvectors and eigenvalues to estimate the directions 
T1 and T2 and principal curvatures K� and K� at v with the linear transformations in 
Eqn. (4. 2) .  We now specify the weights Wi , tangent directions Ti , and normal curvatures 
Ki in the matrix sum of Bv . 

We begin with the weights since they are the simpliest terms to define. As with the 
first pass, we use the same decay function in Eqn. (4. 6) except that we remove the area 
components Ai and Amax · Also, we constrain I: Wi = 21r for all the weights around v. 
This constraint is necessary to maintain translation invariance among the votes. Again, 
the decay function places more emphasis on votes that are closer to v than ones that 
are farther away. 

We use the geometry in Fig. 4 . 6(c) to define the tangent directions Ti of each vote. 
The figure demonstrates that we project the vector from Vi to v into the tangent plane 
of v and normalize the result. The following equation is more precise 

(4. 12) 

where vvi = Vi - v. This direction is for any vertex Vi in the geodesic neighborhood of 
v and not just the umbrella neighbors as in Taubin's algorithm. The normal Nv is the 
estimate from the previous section. 

Last we consider the normal curvatures Ki - We propose a discrete definition using 
the changes in turning angle {Ji and in arc length s where 

(4. 13) 

An important consideration is that we properly define the turning angle for the normal 
curve and not just the curve connecting Vi and v. The change in the turning angle 
describes the change in the normal vector as we move along the curve. To this end, 
we project the normal estimate Nvi at Vi into the plane Ili that contains Nv-rooted 
at v-and Vi as 

(4. 14) 
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where ni is the projection and Pi = Nv x n defines the plane that contains the normal 
curve. The turning angle thus becomes 

( 4. 15) 

The sign of "'i is the same as the sign of Tfni . Finally, the change in arc length is simply 
the geodesic distance between the two vertices 

!ls = 9i . (4 .16) 
We estimate 9i from the geodesic neighborhood algorithm discussed in Sec . 4.3. For a 
vertex v , we collect the curvature votes from the equations above into the matrix Bv 

of Eqn. (4.3) , and eigen decomposition leads to the principal directions T1 and T2 and 
principal curvatures "'! and "'� from the relation in Eqn. (4.2) . 

4.7 Remarks 

We have reached our goal. After the second pass, we have an estimate for the curva
ture at each vertex. We discuss a few caveats, however. First we only compute surface 
curvature if we classify a vertex as a surface patch. If a vertex has no preferred orien
tation, surface curvature is meaningless. A vertex on a crease on the other hand is a 
little different since we can estimate the curvature in the direction of the crease. With 
slight modifications of the above equations, we can generate a tangential curvature es
timate. The other principal curvature, which is orthogonal to this one, is infinite, but 
we can estimate the cusp angle across the crease as either ¢ = 2 arctan � or ( 1r - 2¢) 
where A1 and A2 are the eigenvalues from the first pass through the mesh in Sec. 4.5. 
The choice for the angle depends on the absolute sign information that our ad hoc um
brella method resolves. We further note that our classification scheme does not enforce 
crease continuity, i.e. topologically link crease vertices. If such topological connectiv
ity is important, we suggest morphological operations (Rossl et al. ,  2000) or watershed 
methods (Mangan and Whitaker, 1999) . The final caveat relates to the neighborhood 
definition. The neighborhood algorithm is a fast marching method that begins at the 
vertex of interest v as the center and marches out to form the neighborhood Mv , For 
curvature estimation as the algorithm marches outward, we check the classification of 
the current vertex and only proceed if it is a surface patch. This qualification does not 
allow the marching algorithm to cross crease discontinuities and thus restricts Afv to the 
same smooth patch as v . This approach improves the curvature estimate since vertices 
on the other side of a discontinuity do not corrupt the estimation. 

In this chapter, we have noted three parameters that control the Normal Vector 
Voting algorithm. As a reference, we summarize these parameters in Table 4.2. Recall 
that the only real user parameter is k and the other two variables, e and r,, are more 
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system design parameters. We make this distinction as the user typically adjusts k 
to increase the accuracy of the curvature estimates relative to the surface noise of a 
particular mesh or to the relative size of features in the mesh. The user, on the other 
hand, should probably not adjust e and 17. We should fix these variables for a particular 
implementation. 

This Normal Vector Voting algorithm, as presented in this chapter, serves as the 
curvature estimation algorithm for the part decomposition algorithm in this dissertation. 
In the next chapter, we present a mesh segmentation algorithm, which is the next step 
in our development of the decomposition theory. The output of Normal Vector Voting 
serves as the input for the algorithm in the next chapter. 
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Table 4.2: Parameters for Normal Vector Voting Algorithm. 

Parameter Range Equation Typical Comments 

Value 

k, Gk O < k < oo  (4.7) k = 3  The k-geodesic neighborhood ac-

counts for surface noise. This pa-

rameter is a balance between noise 

robustness and feature preserva-

tion. 

€ O � c < oo  (4. 10) € = 2  Determines the possible creases 

features that we can detect. This 

variable is more of a system design 

parameter than a user one. 

rJ 0 � rJ < 00 (4. 1 1) rJ = 2 Determines the level of noise sup-

pression. As with e, this variable is 

also a system design parameter. 
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Chapter 5 

Mesh Segmentation: Fast 

Marching Watersheds 

A triangle mesh is simply a collection of triangles and vertices that approximate a 
3D surface. Although this representation is useful for visualization on a computer, 
this low-level description is often inadequate for other tasks such as object recognition, 
scene understanding, and feature modeling. We, as humans, can readily observe a 
3D mesh rendered on a computer screen and quickly infer higher-level descriptions 
such as the handle on a mug, but to the computer, the mesh is nothing more than a 
jumbled pile of triangles and vertices. A computer inherently has no higher notion of the 
interrelationship of the pile. Higher-level descriptions are necessary through appropriate 
data structures . One way to impose such descriptions is through mesh segmentation. 

Mesh segmentation refers to the partitioning of a mesh into a set of groups or regions 
that cover the mesh. We emphasize the words group and region to distinguish the two 
types of segmentation. A group segmentation clusters vertices and triangles without re
gard to their topological relationship while a region segmentation classifies topologically 
connected vertices and triangles. By analogy, if we think of people as mesh vertices and 
triangles, group algorithms would segment people according to characteristics such as 
tall, short , skinny, blonde, and brunette while region algorithms would segment people 
relative to their physical location such as city dwellers , country folks, mountaineers, and 
beach bums. The term cover implies that we assign every vertex and face in the mesh to 
a specific group or region. Segmentation leaves no vertex or face unlabeled, so to speak. 
In this dissertation, we are interested in a region segmentation that partitions a mesh 
into contiguous regions that represent visual parts, as defined by the minima rule. The 
segmentation goal is essentially a change of representation that organizes a mesh in a 
higher-level description that is either more meaningful or more effi.cient--or both-for 
further analysis (Shapiro and Stockman, 2001) .  Recall our discussion of meaningful in 
Sec. 1 . 1  and thus our choice of the minima rule. 

From our literature review in Sec. 2.3, three papers represent the state of the art 
in mesh segmentation (Vincent and Soille, 1991 ; Wu and Levine, 1997; Mangan and 
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Whitaker, 1999). In our review, we noted the drawbacks to (Wu and Levine, 1 997 ) 
and (Mangan and Whitaker, 1999) and suggested that (V incent and Soille, 1991) avoids 
most of these drawbacks. Vincent and Soille propose a bottom-up flooding algorithm 
that we have identified as a robust algorithm for the minima rule. Unfortunately, the 
actual implementation of Vincent and Soille does not allow direct application of the 
minima rule. So, we seek a new flooding algorithm that is appropriate for our definition 
of height. As we will see, our definition of height is a directional definition that is 
necessary for proper implementation of the minima rule. 

In this chapter, we describe a novel algorithm called Fast Marching Watersheds that 
implements watershed flooding and as such extends the state of the art beyond (Vincent 
and Soille, 1991) and more recent implementations (Rettmann et al., 2 000; Rettmann 
et al., 2 002). Specifically, we highlight the contributions of our algorithm as follows: 

• creation of a fast and robust hill climbing algorithm for watershed segmentation 
on a triangle mesh data structure 

• definition of a directional height map appropriate for the minima rule using local 
principal curvatures, 

• application of morphological operations to improve the initial marker set for the 
above algorithm, and 

• a fast implementation of connected component analysis on a triangle mesh to aid 
segmentation. 

We outline the chapter as follows. We begin in Sec. 5 . 1 with a brief description of the 
watershed analogy to clarify the algorithm framework. Then, we present an overview 
of the algorithm, including a block diagram in Sec. 5.2. Next, Sec. 5.3 discusses the 
steps for generation of a marker set to initialize the algorithm, and Sec. 5.4 describes 
the connected components algorithm that distinctly labels the marker set. Sec. 5.5 
presents the details of the hill climbing algorithm that grows the marker set into the final 
segmentation that covers the mesh. Then, we present in Sec. 5.6 the major contribution 
of this chapter, the definition of height for a minima rule segmentation. The final section 
is Sec. 5.7 , which concludes with a few comments and remarks. 

5 .1  Watershed Analogy 

Suppose we have some triangle mesh that represents a surface model of a terrain such 
as the hills around the Tennessee River in Fig. 5.1. For top-down bobsledding, consider 
a drop of water placed at any point on the terrain. By gravity, the water will fall along 
the slope of the terrain to a valley, or in other words, the drop will slide like a bobsled 
to a local minimum. The beginning point where the water was first dropped and each 
of the points along its path to the valley belong to that valley's watershed, or catchment 
basin. Distinct valleys form distinct watershed regions, i. e. the segmentation regions. 
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(a) (b) 

Figure 5. 1 :  Hill terrain along Tennessee River. This triangle mesh helps us to visualize 
the watershed analogy. (a) Near Knoxville, the Tennessee River winds through the hills 
of this computer rendering of a mesh terrain. (b) A zoom view of the underlying mesh 
from (a) . 

Although this description is a nice illustration, it leads to implementation problems 
such as temporary storage to track the path of the water drop, special procedures to 
handle flat plateaus, and output filtering to account for oversegmentation. Subsequently, 
bobsledding algorithms are typically more complex than the second formulation in the 
next paragraph. 

A bottom-up flooding approach avoids these implementation problems. We can 
conceptually describe flooding as in (Baccar et al . ,  1996) . For simplicity, consider the 
one-dimensional case in Fig. 5 .2 .  We first punch holes in each valley of the terrain as in 
Fig. 5 .2(b ). We then begin flooding the terrain as in Fig. 5 .2 (  c) from below by letting 
the water rise through the holes at a uniform rate. See Fig. 5 .2 (d) . When the rising 
water in distinct catchment basins is about to merge, we build a dam to prevent the 
merging as in Fig. 5 .2(e) . The flooding will eventually climb beyond each terrain peak 
and only the tops of the dams will be visible above the water as in Fig. 5 .2 (f) . The 
dam boundaries divide each watershed region and thus define our desired watershed 
segmentation. Since we grow outward from each valley, we do not need to temporarily 
track the water flow until reaching a valley. We inherently know from which valley a 
particular water flow began. Also for plateaus, we assume the water creeps from the 
edge of the plateau until meeting another water flow or sliding down the other edge of 
the plateau. We thus avoid the ambiguity of deciding where a drop of water should flow 
on a plateau, as in bobsledding. Finally, we handle oversegmentation with a proper 
initialization procedure as discussed below. 

We now return to Fig. 5 . 1 .  If we follow this same procedure for this terrain , we will 
have an overwhelming and useless segmentation since the terrain contains a very large 
number of valleys. The resulting segmentation would be grossly oversegmented as in 
bobsledding. The concept of a initial marker set helps alleviate this problem. To create 
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(a) (b) (c) 

(d) (e) (f) 

Figure 5. 2: Simple example of watershed flooding analogy. These simple one
dimensional terrains illustrate the flooding analogy of the watershed algorithm. (a) The 
empty terrain that we wish to segment. (b) We punch holes in the valleys of the ter
rain. (c) Flooding through the holes begins from below. (d) The flooding continues at 
a uniform rate. ( e) When flood waters from distinct valleys meet, they do not merge, 
but rather we build a dam between them. (f) The process continues until each segment 
of the terrain is associated with a specific valley. For the case shown, we have three 
valleys. 
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a marker set, we threshold the terrain to a certain elevation, and the connected segments 
below that elevation become our initial valleys, i. e. our marker set. The examples in 
Fig. 2 . 8 best illustrate marker sets. In this figure, we see how different marker sets lead 
to different segmentations. Importantly, the final number of regions after segmentation 
is equal to the initial number of regions in the marker set. So, the key to a useful 
segmentation is the proper selection of a threshold to create the appropriate marker 
set. We will investigate the selection of a threshold in Sec. 5 . 3. 1. A good marker set 
minimizes oversegmentation. Also, a good marker set reduces computational time as 
an initial threshold often segments 7 0% to 90% of the mesh. Thus, the watershed 
algorithm need only operate over the remaining 3 0% to 10% of the unsegmented mesh. 
This computational savings is an advantage of a marker set. 

The question that we now ask is how does watershed flooding work when we no 
longer have a mesh that is a terrain map. Suppose our mesh is the now familiar mug 
example in Fig. 1. 1. The mug does not have peaks and valleys like the terrain mesh. In 
fact, the topology of the mug, whose handle makes it a genus one surface, is very different 
from the genus zero topology of the terrain map. The answer is that we must formulate 
our mesh into a height map. For the terrain data, this formulation is straightforward 
and obvious. We conceptualize the triangle mesh as lying in the xy-plane and the z
coordinate serves as the height, which defines the peaks and valleys for our watersheds. 
For a mesh with arbitrary topology such as the mug that freely twists and turns in 
3D, we can not simply select one coordinate as the "height" . We must be a little more 
imaginative in our formulation. A solution is to introduce a fourth dimension to each 
vertex of the mesh. This additional dimension is a value that serves as the height of 
the mesh at that vertex. What is this new fourth value? Well , the answer is dependent 
on our segmentation application. For this dissertation the height value is the local 
curvature at a particular vertex. For some other application, it might be the color of 
the surface. A variety of different height map definitions are possible. With a height 
value at each vertex, a watershed algorithm for a mesh treats the surface, regardless 
of topology, as a planar surface as in the terrain case. In other words, a watershed 
algorithm considers surfaces with arbitrary topology to locally appear planar with the 
additional height values defining peaks and valleys. With this concept, we next define 
our watershed algorithm. 

5.2 Algorithm Overview 

Our Fast Marching Watersheds-both the name and the algorithm--derive inspira
tion from Fast Marching Methods (Kimmel and Sethian, 1998) for computing shortest 
geodesic paths on a mesh. Kimmel and Sethian's algorithm employs a heap data struc
ture to control the geodesic "walk" across the surface of the mesh. For our watershed 
algorithm, we use a similar heap structure to control the "flooding" across the vertices 
of the mesh. Unlike Kimmel and Sethian, however, our heap keys on local height val
ues, and not cumulative geodesic distances, and it tracks the progression of regions, and 
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Figure 5.3: Block diagram of the Fast Marching Watersheds algorithm. The input is a 
triangle mesh, and the output is the set of watershed regions. 

not geodesic paths. These differences mark our contribution of extending Kimmel and 
Sethian's algorithm into the wholly different application of mesh segmentation and the 
formulation of a flooding-based algorithm. A block diagram of the integrated algorithm 
appears in Fig. 5.3. 

The input to the algorithm as shown in the figure is a triangle mesh M and height 
map H for the vertices of the mesh. We specify the height map as the following set 

H = {ho ,  . . .  , hn-d (5 . 1 )  

where n is the number of vertices in the mesh and hi is the "height" at vertex i .  We define 
the actual value of hi for our minima rule algorithm in a later section. The first two 
blocks in the diagram create the marker set F' to initialize the watershed algorithm. 
Then, the third block uniquely labels the regions Mr' C MR' individually through a 
connected component analysis where r is the specific label and R is the number of such 
labels. Finally, the last block grows the Mr' marker regions into the final watershed 
catchment basins Mr C MR that covers the entire mesh. 

n-1 
M = LJ Mr

= Mn (5.2) 
r=O 

such that Mr n Ms
= 0 when r I- s. Note that M = Mn where Mn simply denotes the 

segmented version of M into R regions. Fig. 5.4 shows two examples for each step. We 
now look in depth at each of the blocks in the following sections. 

5.3 Marker Set 

The first two blocks in Fig. 5.3 establish the marker set for the initialization of the 
watershed algorithm. These blocks label the mesh in a binary fashion such that each 
vertex of the mesh either belongs to the marker set or does not. The initial step is a 
straightforward thresholding of the height map values in (5 . 1 ) .  Then, the morphology 
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Figure 5.4: Simple example of Fast Marching Watersheds. These simple examples show 
the progression of the steps in the Fast Marching Watersheds algorithm. (a) A 2D 
planar example with the initial threshold yielding black blobs in a binary representa
tion. (b) Morphology operators close the blobs and remove unwanted smaller regions 
to establish a clean marker set. ( c) Connected components uniquely labels each blob, 
in this case with a specific grey scale. (d) At conclusion of marching, the whole plane 
is segmented into the final regions. Since we began with three markers in ( c) , we end 
with three regions in (d). (e-h) Same steps as previous example except for the mug. 
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Table 5 . 1: Two definitions of different foregrounds for a single threshold t. 

Threshold Threshold 
Above Below 

hi >  t hi <  t 

operations in the second step clean up the threshold regions and thereby establish a 
robust marker set. By robust, we mean to say a marker set that avoids significant 
oversegmentation at the completion of the watershed algorithm. 

5.3 . 1  Threshold Segmentation 

Thresholding of gray-scale images is well known (Shapiro and Stockman, 200 1) ,  and 
thresholding of a height map, such as H above, over a mesh is not much different. 
Thresholding yields a binary map of the vertices where some vertices are-in image 
processing terminology-foreground and the rest are background. So, thresholding is 
a group segmentation since we do not care about the topological relationship of the 
vertices . In the simplest case, we choose a single threshold value t and designate whether 
the foreground is threshold above or threshold below. In other words, for threshold above 
if hi > t, then vertex i is foreground. Conversely, for threshold below, if hi < t, then 
vertex i is foreground. Table 5. 1 summarizes these definitions. Thresholding above 
yields the foreground set 

F = { Vi I hi > t } ( 5 . 3) 

where i E { 0 ,  . . .  , n - l} and thus Vi E V denotes a specific vertex in the mesh M = 
(K, V). Recall the mesh topology is K and the geometry is the vertex set V. We have 
F C V and therefore a background set FB. 

(5.4) 

where the operator \ denotes set difference. Obviously, the crux of thresholding is 
choosing t where (Gonzalez and Woods , 199 3 ;  Shapiro and Stockman, 200 1) offer a 
variety of strategies. 

Fortunately, for our application, the minima rule defines a clear choice for the thresh
old, and thus complex strategies for optimal thresholds are unnecessary. With the min
ima rule, part boundaries occur at negative minima of curvature. Thus, t = 0 is a 
natural choice. If we threshold above t = 0, we can create a marker set for the parts 
of an object and flood the watersheds until reaching the negative minima boundaries. 
Consider Fig. 5 . 5 .  In Fig. 5. 5 (a) , we again show the surface mesh for the mug. If we 
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(a) (b) (c) (d) 

Figure 5.5: Various mug threshold results for marker sets. An offset from zero improves 
the threshold segmenation. (a) Original mesh without thresholding. (b) A binary map 
on the mug where black indicates foreground vertices F with positive curvature and 
white indicates background ones Fn with negative curvature. The threshold is set 
at t = 0. ( c) Another binary map where we have offset the threshold to a slightly more 
negative value. Observe the reduction in the size and number of white patches. (d) A 
third threshold example that is even more negative but still close to zero in a relative 
sense. 

apply the t = 0 threshold on curvature values, we create the threshold-above map in 
Fig. 5 .5(b). With an understanding of curvature, we may not necessarily have expected 
this result. The small white patches on the cup of the mug are at areas where we 
probably expect strictly positive curvature values. Ideally, we should only have white 
background around the handle joints and bottom cusp. The problem is that slight errors 
in curvature estimation have led to negative values for these small areas. *  A practical 
solution to minor estimation errors, such as these errors, is to offset the threshold from 
zero to some moderately negative value just below zero as in Figs. 5.5(c) and 5.5(d) . If 
we compare these latter figures to the previous one, we notice a reduction in the size and 
quantity of erroneous white patches. We do, however, preserve as white background
and thus not part of the marker set-the negative curvatures around the handle and 
base as we desire. With a simple offset of the threshold from zero, we gain improve
ment in the marker set. We can further improve this initial set using morphological 
operations. 

5.3.2 Morphological Operations 

Thresholding is usually only successful under highly controlled conditions. As we found 
in Ch. 4, curvature estimation is definitely not a controlled environment. In fact, the 
moderate variations in thresholds for Fig. 5.5 demonstrate the sensitivity of thresholding 
to curvature. To overcome this sensitivity, we suggest mathematical morphology as a 

* Although we are using Normal Vector Voting from Ch. 4 for our curvature estimation, we have pur
posefully set the voting neighborhood of that algorithm to a small value to introduce some inaccuracies 
in the curvature measures. Our intent is to investigate ways to overcome such problems through our 
watershed algorithm and thus to build robustness into the segmentation process itself. 
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post-processing tool to improve the marker set. To clarify terms and notation, we 
briefly review the basic operations of mathematical morphology, and refer the reader 
to (Gonzalez and Woods, 2 002) for additional details. Specifically, we discuss the two 
fundamental operations of dilation and erosion, which by definition lead to the more 
powerful operations of opening and closing. 

The language of morphology is set theory. Consider two sets A, B C  JR.2.t We define 
dilation as 

A EB B  = {P l [(B)p n A] � A} ( 5.5 ) 

where .B denotes the reflection of B while the subscript p denotes shifting this reflection 
by p c JR.2 . We call set B the structuring element, and typically B is a symmetric set 
such that B = B. Similarly, we can define erosion in the following equation 

A e B = {P I  (B)
p 

� A} . ( 5.6 ) 

Dilation expands A with the structure of B while erosion shrinks it. With these defi
nitions, we can buil� the definitions for opening and closing. An opening is simply an 
erosion followed by a dilation. 

A o  B = (A e B) EB B  . (5 .7) 

Opening generally smoothes the contour of a shape, breaks narrow isthmuses, and elim
inates thin protrusions. A closing is just the opposite sequence. 

A •  B = (A EB B) e B .  ( 5.8) 

Closing tends to smooth the contour of a shape as well but, in contrast to opening, 
it generally fuses narrow breaks and long thin gulfs, eliminates small holes, and fills 
gaps in the contour. The power of opening and closing is that used in conjunction with 
each other, they clean the shape boundaries and interiors. Fig. 5.6 (c) is a much better 
marker set than Fig. 5.6 (a). 

Rossl et al. (Rossl et al., 2 000) discuss the implementation of Eqs. ( 5.5 )-( 5.8) for the 
arbitrary connectivity of a triangle mesh, embedded in 3D. Since we claim no contribu
tions with regard to this implementation, we avoid the details of that discussion. We 
instead emphasize two prominent features of their implementation that one must con
sider. First, as (Ronse, 1989) and (Roerdink, 1996 ) note, "mathematical morphology 
is flat" , which is to say, it is unclear how to define morphology on curved smooth sur
faces. Roerdink (Roerdink, 1994) takes a first attempt towards morphological analysis 
on surfaces using techniques from differential geometry such as geodesic paths, parallel 
transport and exponential maps. The difficulty in extending these concepts to triangle 
meshes has led Rossl et al. to redefine the morphological operators in a limited manner 

tThese sets are in 2D to simplify the definition of the morphology operators. Sets that represent 
two-manifold surfaces embedded in 3D require more complicated discussion that adds little to the 
understanding of the operators. So, for now, we simply use these 2D definitions. 
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(a) (b) (c) 

Figure 5.6: Mug morphology operations on marker sets. Morphology operations im
prove the marker set even when the initial threshold may not be perfect. These figures 
show the progression of a common combination of morphological operations, which is a 
closing followed by and opening. (a) Initial curvature threshold with t = 0 for the mug. 
(b) Closing by applying dilation followed by erosion to (a) . (c) Opening by applying 
erosion followed by dilation to (b) . 
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with only a disk-like structuring element. They base their structuring element on the 
k-ring neighborhood about a vertex where the k ring defines the "radius" of the disk 
element. This definition is a topological one and not a geodesic one as (Roerdink, 1994) 
seeks. Heijmans (Heijmans, 1994) refers to such approaches as graph morphology. The 
second issue regards implementation of erosion and dilation beyond a one-ring disk to a 
k-ring disk. Rossl et al. state that iterative application of successive one-ring dilations 
and erosions is equivalent to a simultaneous k-ring operation. The former approach 
has some computational advantages over the latter, and consequently, we use a similar 
approach for our implementation. 

So, from Rossl et al. (Rossl et al. ,  2000) , we apply an opening and a closing operation 
in sequence to clean our initial threshold set F. The user must specify a single param
eter k, the size of the disk structuring element. We choose k = 1 for most applications. 
We outline our morphology operations on F to improve the marker set F' as follows: 

( 5 .9) 

where Dk specifies the special disk element of Ross} et al. An example disk element 
is D1 , which consists of the vertex Vi along with each Vj in the one-ring neighborhood 
of Vi. Again, consider Fig. 5. 6. For this figure, the initial threshold is exactly zero and 
thus yields the poor initial markers in Fig. 5 . 6(a) . We see in the sequence of figures how 
a closing with Di , Fig 5.6(b) , and then an opening with D1 ,  Fig. 5. 6(c) , improves the 
marker set considerably. The closing bridges the small white gaps around the cup while 
the opening eliminates the small isthmuses that appear around the base as a result of 
closing. The next step is to uniquely label this marker set, which we address in the next 
section with connected component analysis. 

5.4 Connected Components 

As with morphology, connected component analysis is well-known in image process
ing (Gonzalez and Woods , 200 2; Shapiro and Stockman, 200 1) ,  and Figs 5.4(b) and 5.4(c) 
illustrate the idea with a simple example. The basic concept is to generate unique labels 
for each connected region in the binary set F' from ( 5.9) and to identify the connected
ness of each region. Two vertices Vi , Vj E F' are connected if there exists a path along 
mesh edges between them consisting entirely of vertices in F'. In other words, as we 
walk along the edges of the mesh from Vi to Vj we encounter vertices v0 • If each v0 E F', 
then Vi is indeed connected to Vj , A connected component Mr' is the set of such vertices 
that are connected to each other. Thus, we have the following relationship: 

R-1 

F' = LJ M/ (5. 10) 
r=O 
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where Mr' is a connected region within F' and R is the total number of such regions. 
The Mr' regions are disjoint and have no overlap such that 

Mr' n Ms' = 0 \/ r i- s . (5. 1 1) 

Note that we grow Mr' marker into the final segmentation region Mr . We present an 
algorithm to find the connected components on a triangle mesh in Fig. 5.7. 

We use a boolean array visited to track vertices that we have labeled. We initialize 
visited for v <t F' as true and for v E F' as false , such that we avoid vertices not 
in the marker set. The queue front ier tracks the boundary of a region as the labeling 
extends to connected foreground vertices. Note that the inner foreach loop circulates 
around the umbrella neighborhood of each vertex. This loop requires a mesh data struc
ture in M capable of maintaining incidence information of vertices and faces (Kettner, 
1999) . The algorithm complexity is linear O (n) where n is the number of vertices for M. 
This algorithm is not necessarily a contribution to the state of  the art, but we have not 
found a connected component algorithm explicitly delineated in the literature for a tri
angle mesh. With this algorithm, we now have our marker set uniquely labeled, and 
thus we can proceed with the watershed algorithm. 

5.5 Watershed Algorithm 

To this point, we have specified a marker set and labeled that set into distinct catchment 
basins. We now seek an algorithm to grow these catchment basins to segment the entire 
mesh. The selection of a particular watershed algorithm is not straightforward and often 
confusing since the image processing literature lacks thoughtful distinctions between al
gorithm specification and implementation (Roerdink and Meijster, 2001) .  Our interest 
in implementing a mesh algorithm, and not an image one, further complicates mat
ters. Roerdink and Meijster, however, attempt to bring some order-at least for image 
processing-to the situation through a critical review of several watershed definitions 
and the associated algorithms that follow from those definitions. From this review, we 
have selected the hill climbing algorithm. Our motivation for choosing this algorithm is 
that it is the simplest since we do not have to compute geodesic distances and that the 
reliance on a local height computation allows us to implement the minima rule. Our 
implementation of this algorithm appears in Figs. 5.8 and 5.9. This algorithm begins 
with the marker set F' and grows that set until we have segmented the whole mesh. 
The background becomes empty, F.fu = 0. The close-up views in Fig. 5 .10 illustrate this 
sequence. 

Although both algorithms are flooding methods, our hill climbing algorithm differs 
slightly from the immersion algorithm of (Vincent and Soille, 1991) as Fig. 5 . 1 1  demon
strates. The main advantage as (Roerdink and Meijster, 2001) notes is the algorithm 
simplicity since it does not require merging operations as flooding progresses. The heart 
of our implementation is the heap data structure that controls the hill climbing process 
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input : A triangle surface mesh M and a marker set F' . 
output : An array label whose elements are associated with vertices in M. The 

labels are from the set {- 1, O ,  . . .  , (R- 1)} where - 1  denotes "unlabeled" . 

initialize array label as "unlabeled";  
initialize boolean array visited with F' ; 
r � o; 

foreach v in M do 
if not visited [v] then 

Clear ( frontier ) ; 

Push ( frontier, v ) ; 

repeat 
Vi � Pop ( frontier ) ; 

label [vi] � r; 
visited [vi] � true ; 
foreach Vj in umbrella neighborhood of Vi do 

if not visited [vj] then Push ( frontier, Vj ) ; 
end 

until Empty ( frontier ) 
end 

++r; 

end 

Figure 5 .  7: Connected Components Algorithm. This algorithm is for a surface mesh 
data structure. 

input : A triangle surface mesh M and an array label with some "unlabeled" 
elements. 

output : The array label contains no elements that are "unlabeled." 
initialize heap ; 

foreach Vi in M do 

if label [vi] then Extend.Boundary ( vi , heap, label ) ; 

end 

while not Empty ( heap ) do 
data � PopHeap ( heap ) ; 

Vi � ExtractVertex ( data ) ;  

if not label [vi] then 
label [vi] � ExtractLabel ( data ) ; 

Extend.Boundary ( Vi, heap, label ) ; 
end 

end 

Figure 5 . 8: Fast Marching Watershed Algorithm. This algorithm is for a surface mesh 
data structure. The power of this algorithm is in the heap data structure and in the 
procedure Extend.Boundary O. The heap basically tells the algorithm where to march 
next while Extend.Boundary ( )  finds potential candidates for places to march. 
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input : A mesh vertex Vi and an array l abel and heap 

output : Marches and extends heap with umbrella neighbors of Vi , 

initialize data ; 

foreach Vj in umbrella neighborhood of Vi do 

if not label [vj] then 

data +- CreateHeapData (  Vj , label [vi] ) ; 

key +- ComputeDirectionalHeight ( Vi , Vj ) ; 

PushHeap ( heap, key, data ) ; 
end 

end 

Figure 5.9: Extend Boundary Procedure. ExtendBoundary( vertex, heap, label ) is a 
procedure to extend the marching boundary in the Fast Marching Watersheds algorithm. 
The ComputeDirectionalHeight O function computes the directional curvature, rela
tive to the minima rule. 

(a) (b) 

Figure 5. 10: Close-up view of base of mug handle. These close-up views show the 
progression from the marker set (a) to the final segmentation (b) . The white triangles 
are unsegmented in (a) . In (b) , these triangles represent the dams that divide the 
catchments basins for the cup and the handle of the mug. 
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(a) (b) ( c) (d) (e) 

(f) (g) (h) (i) (j) 

Figure 5 . 11: Comparison of two flooding methods. The top row (a-e) shows the im
mersion approach (Vincent and Soille, 199 1) and the bottom row (f-j) shows the hill 
climbing approach of our algorithm. Note the merging between ( c) and ( d) for immer
sion compared to hill climbing in (h) and (i). Both sequences are a trivial case where we 
begin with a single marker in (a) and (f) and end with a single catchment basin in (e) 
and (j) , respectively. 

and the procedure ExtendBoundary ( )  that populates this heap. The key into the heap 
is local curvature such that positive curvature keys bubble to the top and more nega
tive ones sink to the bottom. The PopHeap ( )  function pulls from the top of the heap 
to begin each stage of the marching process. The data associated with a key specifies 
which vertex to march to and to what watershed it potentially belongs. If we pop a 
vertex from the heap and it is already labeled, we simply pop the next one. This climb
ing heap is similar to the marching heap found in Fast Marching Methods (Kimmel 
and Sethian, 1998). In fact, our implementations of Fast Marching Methods for Ch. 4 
and Fast Marching Watersheds in Fig. 5.8 are almost identical. As with Fast Marching 
Methods, Fast Marching Watersheds have computational complexity O(n log n) where 
n is the number of vertices in the mesh since the PushHeap ()  operation is an O(log n) 
operation. This order assumes that we must segment each of the n vertices, but as 
we have noted, with an initial marker set we typically have anywhere from 70-90% of 
the vertices already segmented. So, n is usually much less than the actual number of 
vertices in the entire mesh. The primary difference however between Fast Marching 
Methods for geodesics and our Fast Marching Watersheds for segmentation is the func
tion ComputeDirectionalHeight ( ) .  This function is the most significant contribution 
of this chapter and is the impetus of the minima rule decomposition. As such, we outline 
the equations that govern this function in the next section. 
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5.6 Directional Height 

In Sec. 5.2, we presented a set definition of water height for each mesh vertex. Recall 
Eq. ( 5.1). With this equation, each vertex Vi has a corresponding height hi. This global 
definition of height is common in watershed algorithms, yet for the minima rule, we 
need a more local definition. We need a definition such that we specify the height 
hii from vertex vi to vertex vi , relative to the local curvature between these vertices. 
Eq. ( 2.1) serves as a starting point. This equation specifies the normal curvature along 
a particular direction. For our local curvature height, this direction is from vi to vi. 
The tangent unit vector Tii at vi associated with this direction is as follows: 

( 5.12) 

where Ti is a 3 x 3 matrix that projects the direction vector (vi - vi ) into the tangent 
plane of vi. We define this matrix as follows: 

( 5.13) 

where I is the identity matrix and the vector Ni is the surface normal at vi. The 
superscript t denotes the transpose and thus leads to an outer product operation. The 
angle 0 in Eq. ( 2. 1) is the angle between Tii and the maximum principal direction T1 
at vertex vi . The dot product of these two vectors yields the cosine of this angle. 

( 5.14) 

With the above equations, we can now compute the normal curvature "'ii · 

( 5.15 ) 

where "'] and "'J are the maximum and minimum principal curvatures at vi , respectively. 
Thus, the ComputeDirectionalHeight O function in the Extend.Boundary ( )  procedure 
returns "'ii as the directional height from Vj to Vi . This definition of height allows the 
watershed algorithm to flow along vertices with similar values of curvature but impedes 
climbing up negative curvature hills. This definition of height is interesting as it implies 
that the height hji for a vertex Vj is dependent on the direction that we approach the 
vertex. 

( 5 . 16 )  

This formulation is our major contribution to the watershed literature, especially in the 
context of minima rule decomposition and mesh segmentation. 
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5.7 Remarks 

In this chapter, the Fast Marching Watershed algorithm leads to a minima rule decom
position of triangle meshes. See Fig. 5 .4 .  At this point , we have not been rigorous in 
our discussion of the figurative water height for this algorithm. In our presentation, we 
have toggled between global height hi and local directional height hji · We acknowledge 
our lack of distinction and attempt to clarify now. When we threshold, we do consider 
the water height as global. We set the height equal to the minimum principal curvature 
at each vertex, hi = ""7 - However, when we segment after thresholding, we consider the 
water height as directional. We set the height hji as in Eq. (5 . 15) .  So, we actually use 
both definitions of height depending on the particular stage of the algorithm. 

Another issue is the choice for the threshold value t from Sec. 5 .3 . 1 .  As noted in that 
section, the minima rule suggests that t = 0 is the natural choice, but implementation 
results suggest that a slight negative offset from zero improves results. The question is 
how far to offset . We have defined this offset as a user parameter for our algorithm. 
Consider the set of vertices v- with negative minimum principal curvatures such that 

v- = { Vi I ""7 � 0 } (5. 17) 

where ""t is the minimum principal curvature for vertex Vi - We can average across this 
set and establish our threshold as a percentage a of this average as follows 

(5. 18) 

where n- is the number of vertices in v-. Thus, the user chooses a instead of the 
threshold t directly. Our implementation is not sensitive to the choice of a, but we 
suggest that a =  0.3 yields good results for most applications . 

With the above parameter, the Fast Marching Watersheds algorithm has a total of 
two user parameters that control the segmentation process. The other parameter is the size k of the disk structuring Dk from Sec. 5 .3 .2 .  We summarize both of these parameters 
in Table 5 .2 .  The objective of these parameters is to limit oversegmentation, but as with 
most watershed systems, oversegmentation is inevitable. In the next chapter, we address 
this problem with a metric to measure the quality of the segmentation output in terms of the visual salience of parts. 
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Table 5.2: Parameters for Fast Marching Watershed Algorithm. 

Parameter Range Equation Typical Comments 
Value 

k, Dk k E z+ (5.9) k = l  Determines the size of the disk 
structuring element for the mor-
phological operators. Since k de-
notes a k-ring, we choose k rela-
tive to the feature dimensions of 
the surface mesh. 

Q o ::; o ::; 1 (5. 18) a =  0.3 Determines the threshold t for the 
marker set. We specify the percent-
age o instead of t directly to avoid 
scaling issues. 
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Chapter 6 

Shape Measure : Part Saliency 

Metric 

A shortcoming of watershed segmentation in image processing is oversegmentation (Vin
cent and Soille, 1991 ;  Roerdink and Meijster, 2001 ;  Gonzalez and Woods, 2002) and 
is equally true in mesh segmentation as well (Mangan and Whitaker, 1999; Rettmann 
et al. ,  2000; Rettmann et al. ,  2002) . We have attempted to build robustness into our 
system through our curvature estimation with Normal Vector Voting and our marker 
selection with Fast Marching Watersheds to overcome or, at least to a certain degree, 
minimize this problem. We have no guarantees however that our methods eliminate 
the problem entirely. We have no way of knowing the quality of our segmentation. 
We therefore propose the Part Saliency Metric. This measure is the salience, i .e. the 
significance, each segmented part contributes to the entire mesh, and it quantifies the 
importance of a part relative to the whole mesh, which in essence evaluates the quality 
of a part as a part itself. Thus, the metric allows a ranking of the parts from least to 
greatest in terms of this quality. With such a ranking, we can address oversegmentation 
by merging the least salient parts with more salient ones until we eliminate enough 
"bad" parts to reach a "good" segmentation. As we will see, the terms bad and good 
are debatable and open for discussion. For now, we delay such a discussion, but we 
note that the Part Saliency Metric serves as a quantitative measure to begin such a 
discussion and constrains the debate to selection of a threshold to demarcate bad and 
good. 

As an illustration, consider once again the now infamous mug in Fig. 6 .1 .  This 
sequence shows a potential progression of part merges based on the Part Saliency Metric. 
The initial segmentation in Fig. 6 .l (a) reflects five parts, which most observers would 
agree is too many parts. The knob at the top junction of the handle with the cup and 
the flat bottom underneath are oversegmentations. With the methods in this chapter, 
we can compute the salience of the knob and the bottom, and we thus discover that they 
are indeed the least important parts of the segmentation. So, we can trim them from 
the segmentation and merge with the handle as in Fig. 6. 1 (b) and 6. 1 ( c) . Continuing in 
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(a) (b) (c) 

(d) (e) (f) 

Figure 6. 1: Part salience progression for mug example (I). Sequence of region merges 
where at each stage we combine the least salient part with a more salient one. The 
top row shows a color labeling of the mug for the progression of part merges while 
the bottom row shows corresponding Part Adjacency Graphs for these segmentations. 
(a,d) Five parts: cup, handle, base, bottom, and knob. (b,e) Four parts: bottom merges 
with base. ( c,f) Three parts: knob merges with handle. 

Fig. 6.2, we can merge the base with the cup in Fig. 6 .2(b) and the handle with the cup 
too in Fig. 6.2(c). The Part Saliency Metric governs the decision as to which part is the 
next one to merge, and by design, this process agrees with our visual perception of the 
parts. Most observers would rank the parts from least to most salient as the bottom, 
the knob, the base, the handle, and finally the cup, which the sequence we have just 
outlined follows. This result is because we have designed our metric in accordance with 
the human vision theory in (Hoffman and Singh, 1997 ) .  

Another way to look at  this progression is in the opposite direction. A human 
when first viewing the mug in Fig. 6 .2 (c) most likely perceives the handle as the most 
significant part of the mug aside from the cup itself. Then, if pressed to identify another 
part of the mug, she would probably point out the base as the third part of the mug. 
At this point, however, our human observer would probably stop and may never select 
the bottom or knob as distinct parts of the mug. She somehow thresholds her notion 
of parts and only identifies "good" parts. The minima rule captures her perception 
of parts, but the rule does not address the visual salience of the resulting parts. Our 
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(a) (b) ( c) 

.,. ,. 
(d) (e) (f) 

Figure 6.2: Part salience progression for mug example (II) .  Continued from Fig. 6. 1 .  
Sequence of region merges where at each stage we combine the least salient part with 
a more salient one. The top row shows a color labeling of the mug for the progression 
of part merges while the bottom row shows corresponding Part Adjacency Graphs for 
these segmentations. (a,d) Three parts: base, handle, and cup. (b,e) Two parts: base 
merges with cup. (c,f) One part: handle merges with cup. 
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goal in this chapter is to seek an algorithm that allows us to measure and threshold the 
visual importance of a part and thus keep only good parts. 

Leveraging the perceptual theory of the minima rule, Hoffman and Singh propose 
that the visual salience of a part depends on at least three factors: its relative size to 
the whole object, the degree that it protrudes from the object, and the strength of its 
boundaries. Recall Fig. 2.10. They support their theory with results from psychophysi
cal experiments. In this chapter, we translate this human vision theory into a computer 
vision algorithm that computes the salience of parts from a segmentation of a trian
gle mesh. We apply this metric to the problem of oversegmentation through a filter 
and merge algorithm that trims the least salient parts. With the development of this 
Part Saliency Metric and the accompanying merge algorithm, we claim the following 
contributions to the state of the art: 

• implementation of a metric for the visual salience of a minima rule part for triangle 
meshes, 

• creation of an adjacency graph for representation of our minima rule decomposi
tion, and 

• application of the saliency metric and the graph as a filter and merge post
processing step. 

We outline the chapter as follows. In Sec. 6.1, we first discuss an overview of the 
algorithm to computer part salience and trim least salient parts. Then, in Sec. 6.2, we 
present our method for generating an adjacency graph to represent the part decomposi
tion. This section also includes an interesting discussion of the four-color problem from 
graph theory as a means to improve the coloring of our segmentation labeling scheme. 
Next, Sec. 6.3 is the most important section of this chapter. We formulate the equa
tions for the Part Saliency Metric within this section and demonstrate a methodology 
for computing the metric. In Sec. 6.4, we define an algorithm for merging the least 
salient parts of an object with other more salient ones. Finally, we conclude in Sec. 6.5 
with a few closing remarks concerning the user parameters in this chapter. 

6.1 Algorithm Overview 

The algorithm associated with the Part Saliency Metric first creates an adjacency graph 
of the segmented mesh, then computes the saliency measure for each part, and finally 
merges the least salient parts with other more salient ones. Fig. 6.3 illustrates this 
process as a block diagram. The adjacency-graph block takes the segmented mesh 
MR and searches for neighboring parts to create an undirected graph G, which entails 
isolating the boundary vertices. We label the whole set of boundaries for the mesh 
as (3(MR). The bottom block is the implementation of the Part Saliency Metric. The 
input to this block is the parts Mr C MR and the associated boundaries (3(Mr) c 
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MR Create 
G MR ' --

Adjacency ...... Filter 
...--

and Merge Graph 

I , r �(MR) a 

Compute SR 
...... Part .... 

Salience 

Figure 6.3: Block diagram of merge algorithm. Block diagram of the filter and merge 
algorithm using the Part Saliency Metric. The input is the part regions Mr C MR 

of the triangle mesh M, and the output is a reduced set of those regions, Mr' C MR, 
where R' < R. 

f3(MR) ,  and the output is the set SR of saliency measures for each part . 

(6. 1)  

The final block uses this salience set SR and the graph G to merge the least salient 
parts to form the final segmentation MR, with R' < R total parts. We now discuss each 
block in more detail. 

6.2  Part Adjacency Graph 

The first step in this chapter is to create a Part Adjacency Graph, G = (R, E), from the 
segmented mesh MR . The undirected graph G consists of a set of part nodes R and a 
set of adjacency edges E. Each edge in E is an unordered pair (r, s) where r, s E R. Ex
ample graphs appear in Fig. 6 .1  and 6.2. These graphs show the adjacency relationship 
among the parts of a mug and are similar to the region adjacency graphs (Shapiro and 
Stockman, 2001)  from image processing and the surface adjacency graphs (Hoover et al. ,  
1998) from range processing. For the data structures to  represent and manipulate G, 
we use the Boost Graph Library (Siek et al. ,  1999; Siek et al. ,  2001) .  This C++ library 
provides generic graph classes and algorithms. The translation of MR into G mainly 
requires the identification of the region boundaries /3(MR)- We first outline an algo
rithm to find /3(MR) ,  and then we briefly detour to a side topic known as the four-color 
problem, which we use to color our segmentation graph. 
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6.2. 1 Boundary Identification 

Given a segmented mesh MR, we may not necessarily know the vertices, v E /3(MR), 
that lie at region boundaries. Recall Fig. 5.lO(b). In this zoom view, we see the shaded 
triangles for both the handle and the cup parts and the white triangles between them. 
These white triangles are the part boundaries. Although we know which vertices are at 
the boundary from this figure, the computer does not. We need a computer algorithm 
that finds the boundary vertices f3(Mr) for a part Mr. We present such an algorithm in 
Fig. 6 . 4 .  Note that this algorithm is similar to the connected components algorithm in 
the previous chapter. 

This algorithm loops through each vertex v of the mesh. When the algorithm finds a 
boundary vertex, it traverses clockwise around that particular boundary and tags each 
vertex as "visited" thereby avoiding multiple walks around a boundary from the outer 
loop. The walking process requires two special functions to properly handle singularities 
such as in Fig. 6.5. In this figure, the problem is that the boundary passes twice 
through v and thus requires consideration of the topology of the boundary. The first 
function is Find.FirstClockwiseBoundary O. This function takes as input a boundary 
vertex v and returns a halfedge h that is on the boundary and points to v. The concept of 
a halfedge is found in (Kettner, 1999), and we illustrate it in Fig. 6.6. Since each vertex 
on the boundary has at least two boundary halfedges that point to it, we specify h as 
a halfedge that we encounter if we start inside the region and walk clockwise around v 
until reaching the boundary. For most boundary vertices, this specification of h is 
unique, but for others, two or more halfedges may satisfy the specification . As an 
example, the singular vertex v in Fig. 6.5 has two such halfedges. The particular one 
that the function returns is arbitrary with respect to our application and not necessary 
to uniquely specify since we only seek a starting h for boundary traversal. Our walk 
will eventually return to the other boundary halfedges at v. The second function is 
FindNextClockwiseBoundary ( )  and is the crux of the whole algorithm. This function 
takes as input a halfedge h that meets the previous specifications and returns the next 
clockwise halfedge on the boundary around v. To implement this function, we .begin at 
the input h and circulate clockwise around v until we reach a halfedge on the boundary 
that points to v. This time we are walking outside the region across the white triangles 
as opposed to inside as with the function FindFirstClockwiseBoundary ( ) .  With this 
second function, the algorithm moves in a leap-frog fashion around the vertices of a 
particular boundary and adds those vertices to /3(Mr ). 

After identifying the boundaries f3(MR), our task of creating graph G is now trivial. 
We first create R nodes to represent the parts. Then we loop through each f3(Mr ) c 
/3(MR), and add edge pairs (r, s) to the graph if f3(Mr ) and f3(M8) are connected. Thus, 
we have an adjacency graph G that compactly describes the segmentation MR. For 
visualization, we use a graph drawing toolkit from AT&T Research Laboratories known 
as Graphviz, which lays out drawings of graphs, approaching the quality of manual 
layouts (Gansner and North, 2 000). Our choice of Graphviz results from the fact that 
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input : A segmented mesh MR. 

output : An array /3 whose R elements are linked lists containing the boundaries 
for each part . 

initialize boolean array visited as false ; 
initialize array /3 with R null lists ; 
foreach v in MR do 

if not visited [ v] then 
if IsBoundary ( v ) then 

r +- GetLabel ( v ) ; 

h +- begin +- FindFirstClockwiseBoundary ( v ) ; 
repeat 

Push ( f3[r] , h ) ; 
visited [ Vertex ( h ) ] +-- true ; 
h +-- FindNextClockwiseBoundary ( h ) ; 

h +-- Opposite ( h ) ; 
until h = begin ; 

end 
end 

end 

Figure 6.4: Boundary Traversal Algorithm. The algorithm identifies the vertices at the 
region boundaries of a segmented mesh. The variable h is a halfedge data structure 
as defined in (Kettner, 1999). The function Vertex ( )  returns the vertex to which the 
halfedge points, and Opposite O returns the adjacent halfedge. The repeat-until loop 
walks around the boundary from an initial arbitrary vertex until returning to that same 
vertex. 
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Figure 6.5: Boundary singularity example. A boundary singularity such as v can affect 
an algorithm that traces the boundary if the algorithm only considers vertices on the 
boundary and not the topology of the boundary itself. Shaded triangles are the seg
mentation regions Mr and Ms while white triangles are between regions. Thick lines 
denote the boundary edges f3(Mr) and f3(M8 ) of each region. 

Figure 6.6: Halfedge data structure. An example of the halfedge data structure. An 
edge (Vi ,  Vj) in the triangle mesh has two halfedges h and g such that h points to Vi and 
g to Vj where g is opposite of h. Notice that the halfedges are oriented counterclockwise 
around a triangle face. 
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automatic layout of graphs is not trivial when they exceed five or ten nodes. The simple 
examples in the bottom rows of Figs. 6 . 1  and 6.2 show results from Graphviz. 

Other than visualization, we do not directly use this Part Adjacency Graph. How
ever, a graph representation is useful for other computer vision tasks such as object 
recognition where part decomposition serves as an initial processing step (Trucco and 
Verri, 1998) . Also, a graph representation allows us to apply a very rich set of algorithms 
from graph theory to manipulate our part decomposition. As an example in the next 
subsection, we explore the side topic of the four-color problem-which is well known in 
graph theory-for coloring our segmentation regions. 

6.2.2 Color Label Selection 

With a graph representation such as G, we can easily apply a wide range of graph 
algorithms to manipulate our segmentation. In particular, a very practical problem 
that we face when visualizing our segmentation is the choice of colors to label each 
region. The simplest solution is to choose R unique colors for each of the R parts. 
This approach works well when our segmentation appears in full color such as on a 
computer display. However, when it appears in grey scale such as from a laser printer 
or photocopier, R distinct colors may not necessarily translate into R distinct grey levels , 
and more importantly a human observer may not necessarily be able to distinguish the 
grey levels. Our problem now becomes how many grey levels can a human differentiate. 
As with most psychophysical questions, this one is open for debate and no set number 
exists. The general consensus is that most people can discriminate at any one point 
in a monochrome image about one to two dozen different grey levels ( Gonzalez and 
Woods , 2002) . For our purposes, we seek sharp contrast among the grey levels so half 
this number is probably more realistic for coloring our segmentations. Thus, we should 
probably use about five to ten grey levels. If our number of parts R is greater than five 
or ten, which is most likely the case, we have a problem since we must repeat some of 
the grey levels for certain regions. The trick is that we must avoid selecting the same 
grey level for adjacent parts because those two parts would erroneously appear as a 
single part. This situation leads to the classical four-color conjecture. 

In 1852, Francis Guthrie conjectured that only four colors are necessary to color 
a planar map divided into countries such that two adjacent countries-countries that 
share a common border-have different colors (Chartrand , 1977) . This conjecture is a 
long-standing problem in graph theory where a map can be represented as an adjacency 
graph. In 1976, Appel and Haken (Appel and Haken, 1977a; Appel and Haken, 1977b) 
proffered a proof to this conjecture, but their methodology is a computer assisted ap
proach that has led to skepticism among many mathematicians. Regardless , a rigorous 
proof does exist for the less constrictive five colors (Heawood, 1890) .  Heawood explored 
other topologies beyond the planar map and conjectured the Heawood number as the 
number of necessary and sufficient map colors for a compact connected surface without 
boundary. For example , the Heawood number for a torus is seven. Heawood 's work 
and the four-color conjecture justify our effort to color our segmentations with a finite 
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set of five to ten grey values. The advantage of representing these segmentations as a 
graph is that a variety of graph algorithms are available for establishing a four coloring 
of a graph. The Boost Graph Library that we use with our implementation offers such 
algorithms, and in particular, we have selected a greedy algorithm that works well with 
our non-planar topologies to approach the Heawood number (Siek et al., 1999; Siek 
et al., 2 001 ). 

Our brief excursion into this problem is to color the parts of our segmentation for 
improved visualization. We illustrate the need for intelligent coloring in Fig. 6 .  7 .  This 
example shows the sole of a tennis shoe and is purposefully over segmented to illustrate 
the coloring problem. In this figure, the top row is two different color maps for the 
same segmentation. The images immediately below each one are the same coloring 
except that we have mapped the colors to an equivalent grey scale.* The left column of 
images shows the result of coloring each region with a simple algorithm that sequentially 
alternates among a set of colors. The right column shows the more intelligent approach 
using a four-color greedy algorithm. Notice for Fig 6 .7 (a) that the same color repeats 
for the regions across the arch and through the heel of the shoe. These regions are 
adjacent and thus lead to some confusion. We avoid this problem with the four-coloring 
algorithm in Fig. 6 .7 (b). The grey scale images on the bottom row further highlight the 
problem. The four-color algorithm creates a distinct labeling of the regions and clarifies 
the visualization of the segmentation, especially for Fig 6 .  7 ( d). 

At this point, we now have a graph representation of our segmentation, and we have 
a technique for coloring that graph. Our next objective is to develop the equations for 
the Part Saliency Metric, which is the subject of the next section. 

6 .3  Saliency Metric 

The major contribution of this chapter is the Part Saliency Metric that we develop in 
this section. Again, we base the development of this metric on the cognitive theory 
in (Hoffman and Singh, 1997 ). Hoffman and Singh follow the minima rule for defining 
part boundaries and present a theory of part salience. They mainly focus on 2D silhou
ettes and do not provide rigorous formulations in terms of equations for their definitions. 
They propose that salience is a function of the relative size of a part to the whole object, 
the degree to which it protrudes, and the strength of its boundaries. In this section, we 
present equations for each of these factors, and we specifically address their formulation 
in terms of 3D triangle meshes. 

We begin by proposing that the overall salience Sr of a part r is the weighted sum of 
the three factors discussed by Hoffman and Singh. Given the relative size of a part Su, 
the degree of protrusion S1r, and the strength of the boundary Sf3, we can write the 

*The top and bottom rows may appear identical-and in fact are identical-if this document is a 
non-color photocopy of the original color document. 
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(a) (b) 

(c) (d) 

Figure 6. 7: Illustration of four-color problem for segmentation. This set of segmen
tations shows possible colorings for the bottom of a tennis shoe. The segmentations 
are identical and have the same 30 regions. The overall segmentation is intentionally 
poor to increase the number of adjacent regions to illustrate the four-color problem. 
(a) This labeling of the regions alternates sequentially among a palette of 16 different 
colors. (b) This labeling has only four colors for each region such that adjacent regions 
never share a common color. (c) Grey scale version of (a) . (d) Grey scale version 
of (b ) .  The grey scale versions further motivate the interest in the four-color problem 
as demonstrated in the improvement from (c) to (d) . 
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following equation: 
Sr = 

3 
(wa.Su + W-rrSrr + w13S13) (6.2) 

where Wu , W-rr , and w13 are the weights of each factor, respectively, such that 

Wu + W-rr + Wf3 = l ( 6. 3) 

This formulation insures the salience Sr is in the range O � Sr � l. The constraint 
in ( 6. 3) means that the user only needs to select two of the three weights since the third 
one follows. Two of the weights, however, are indeed free parameters and are necessary 
since it is unclear as to the relative significance of each factor to the overall perception 
of part salience (Hoffman · and Singh, 199 7 ) . More experimental research from cognitive 
perception is necessary to understand the inter-relationship among these factors, and 
so we simply leave these weights as user parameters. We do not investigate perceptual 
significance of these weighting terms in this dissertation. We leave this question for 
future research and specifically to future cognitive research. The block diagram in 
Fig. 6.8 illustrates our methodology. In each of the next three subsections, we discuss 
how to compute each factor: Su , Srr , and S13 . 

6.3 .1  Part Size 

The first factor we explore is the relative size measure Su of a part. This measure 
reflects the volume of the part relative to the volume of whole object . See Fig. 6.9. 
For our application, this measure is the volume bounded by the part Mr relative to 
the volume bounded by the original mesh M. Unfortunately, computing the volume of 
either Mr or M is not straightforward since these meshes are possibly open surfaces, 
and by definition, an open surface does not bound a volume. The part Mr may be 
an open surface since we may not necessarily know how to complete the part itself, 
particularly across the boundary contours {3(Mr ) .  A part-cut rule such as (Singh et al. ,  
1999) or (Rosin, 1999) is necessary but part-cut theories are not well understood in terms 
of human perception and thus difficult to formulate in terms of computer algorithms. 
To demonstrate the ambiguity of part cuts, consider the simple illustration in Fig. 6. 10. 
As for the original mesh M, it should ideally be a closed surface, but it may have holes 
from scanning occlusions and other imperfections that preclude it from being a closed 
mesh, as well. For these reasons , we suggest that the bounding boxes of these meshes 
are an appropriate approximation of their volumes, and we thus suggest the following: 

(6.4) 

where O � Su � l ,  Br is the volume of the bounding box of the part Mr , and BM is the 
volume of the bounding box for the entire mesh. 

The question we now face is how to compute the bounding box of an open mesh Mr . 
A variety of solutions are possible (O'Rourke, 1994) .  We propose a method based on the 
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Figure 6.8: Block diagram of the Part Saliency Metric. The input is a part Mr and the 
boundary /3( Mr ) for the part. The output is the salience of the part Sr . 

-----.. "-----· 
I I 

(a) (b) (c) 

Figure 6.9: Salience variation with part size. This sequence shows how increasing part 
sizes corresponds to increasing salience of the part. The 2D silhouettes show an object 
with two parts: a circle and a square. The circle increases in size from left to right . 
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(a) (b) (c) 

Figure 6. 10: Ambiguity of part cuts. These images show the ambiguity associated with 
part cuts. (a) A simple object that consists of a wheel with an axel. (b) If we chose 
vertical part cuts, then the decomposition consists of three parts: a wheel and a left 
and right axel peg. ( c) If we choose a single horizontal part cut, then we have only two 
parts: a wheel and an axel. 
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scatter matrix of the vertices of Mr and an eigen analysis of that matrix. The scatter 
matrix Sa- is simply the covariance matrix of the vectors Si where we define Si as 

(6.5) 

and the average vector Vi as 

(6.6) 

The 3D vectors Vi E Mr are the vertices of the mesh for part r and nr is the number 
of such vertices. We formulate the 3 x 3 scatter matrix as the outer product of the Si 
vectors as 

Sa- = L Sisf (6.7) 
Vi EMr 

where the summation is over the set of Si vectors and t denotes the transpose. To 
compute the bounding box volume of Mr , we perform an eigenvalue decomposition 
of Sa- , which yields the three eigenvalues .Xi , .X2 , and A3 . We then estimate the volume 
as the product of these three values 

(6.8) 

From these values, we estimate the volume BM of the whole mesh as the sum of each 
part, 

BM = L Br , (6.9) 
r 

The value is more accurate than the bounding volume of the entire mesh. The next 
step is compute the degree of protrusion of the part. 

6.3.2 Part Protrusion 

The second measure that we must compute is the degree of protrusion. This measure is 
the degree to which a part "sticks out" from its object (Hoffman and Singh, 1997) . Parts 
that stick out more seem to be more salient . See Fig. 6. 1 1 .  A couple of definitions for 
protrusion are possible (Siddiqi and Kimia, 1995; Hoffman and Singh, 1997) . Hoffman 
and Singh argue in a qualitative manner that the most appropriate is the ratio of the 
surface area of the part to the area of its cropped base. The cropped base is the area 
of the surface bounded by the contour of the part boundary /3(Mr) that cuts through 
the object to distinguish the part from the object. Recall Fig. 6.10 and the ambiguity 
of part cuts. For now, we assume we know what part cut and cropped base we have. 
We write the following equation to formalize the relative protrusion S.rr of a part r. 

(6. 10) 
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(a) (b) (c) 

Figure 6 . 11: Salience variation with part protrusion. This sequence shows how increas
ing part protrusion corresponds to increasing salience of the part. The 2D silhouettes 
show an object with two rectangular parts. The top rectangle for each subfigure has 
the same area, but its protrusion increases from left to right. 

where O < Srr � 1, Ar is the surface area of the part, and A,a is the surface area of the 
cropped base. The subtraction from one insures that this function increases as the part 
protrudes more from the object. The computation of the part area Ar directly follows 
from the area of the triangles that compose the surface of the part. 

( 6 . 11) 

where Ai is the area of the triangle /i for part r. Unfortunately, we can not compute 
the area of the cropped base quite as easily. 

The difficulty with the cropped base is that we actually do not know the surface 
that the boundary /3( Mr ) bounds. We do not have a unique specification of the base 
of a part and how it joins with the object because we lack an adequate part-cut the
ory. We only have the part boundary. We could identify a minimal surface where the 
boundary serves as a constraint along the lines of "Plateau's Problem" (Stuwe, 1989) .  
Unfortunately, a calculus of  variations solution makes such an approach unattractive 
from a computational standpoint. So, our solution is to again turn to a scatter matrix. 
This time our matrix is only for the vertices Vj that reside along the boundary {3(Mr ) 
of part r. We compute the 3 x 3 matrix S ,a as the covariance of the scatter vectors s j 
as follows 

S,a = � s . st. L...J J J 
v3E,B(Mr) 

where t denotes transpose. The scatter vectors are defined as 

Sj = Vj - Vj 
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where the vector average is 
1 Vj = - L Vj. n13 VjE/3(Mr) 

( 6.14) 

The number n13 is the number of vertices Vj in the boundary {3(Mr ). We decompose S13 
into the eigenvalues A1, A2, and A3. If we assume that the boundary contour {3(Mr) is 
close to-but not necessarily-planar, we can now estimate the area A13 of the cropped 
base as the product of the two largest eigenvalues . 

A13 = 4� ( 6 . 15 )  

where A1 � A2 � A3 � 0 since S13 is a semi-definite symmetric matrix. This equation 
means that we indirectly find A13 from the bounding box of the part boundary. We 
find the two largest dimensions AI and A2 of that box and compute the area from those 
dimensions. The assumption is that the third dimension A3 is nearly zero since we 
assume the boundary is almost planar. Most part boundaries should not violate this 
simple assumption. As a caveat, if a part contains more than one boundary, we use 
the boundary with the largest estimated area in the numerator of Eq. ( 6.10). We add 
the areas of the other boundaries for the part back to Ar. This process improves the 
estimate of Ar almost as if we are filling in the wholes formed by parts extending from 
the current part. Our next task is to compute the boundary strength. 

6 .3.3 Boundary Strength 

The final measure that we need to compute for the part salience is the boundary 
strength. See Fig. 6.12. Recall that the minima rule defines part boundaries along 
lines of negative minima curvature. Thus, the strength of the boundary is the degree of 
curvature along the boundary. One measure of this degree is an average of the minimum 
principal curvatures for each vertex on the boundary. So, for a part r, we know from 
the previous section the boundary {3(Mr) for that part. We can compute this average 
as follows: 

1 l'i,� 
S13 = - L _J n13 Kmin 

v; E/3(Mr) 

( 6.16 ) 

where O s  S13 s 1 ,  n13 is the number of vertices in the boundary set, KJ is the minimum 
principal curvature for vertex Vj. On the rare occasion when Kj > 0 for a particular Vj, 
we just omit this value from the summation, but we still include it in the n13 count. We 
normalize this summation with the most negative curvature Kmin from the whole mesh. 

Kmin = min { l'i,r I Vi E {3(MR) } ( 6.17 ) 

where {3(MR) is the set of boundaries for every part from the segmented mesh MR. 
This section completes our salience definitions. We now plug each measure back into 

Eq. ( 6 . 2) to compute the salience of a part. The salience reflects the quality of each 
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(a) (b) (c) 

Figure 6.1 2: Salience variation with part boundary strength. This sequence shows how 
increasing the boundary strength of a part corresponds to increasing salience of the part. 
The 2D silhouettes show an object with two circular parts. The boundary strength is 
the degree of negative curvature at the part boundary. For example, the boundary 
strength is zero-non-existent-for the leftmost figure, which without the dotted lines 
we perceive as a single part. The boundary strength is strongest for the rightmost figure. 

part, as a part, and allows us to merge bad parts with other more salient ones. We 
address this issue in the next section. 

6.4 Filter and Merge Algorithm 

The previous section allows us to assign a salience value Sr to each part r of the seg
mented mesh Mn . With this value, we can rank the importance of each part to evaluate 
the quality of the segmentation. Assuming that our Part Saliency Metric reflects human 
visual perception , a part with a larger salience value is a more important part, and thus 
better quality, than one with a smaller value. If we sort the parts into an ascending list 
with higher values of salience at the top of the list, then "poor" quality parts trickle to 
the bottom of the list. The last part in the list is the least important part within Mn . 
With this ordered list, we filter a part at the bottom of the list and merge it with an
other more salient parts. This process completes the final step in the block diagram of 
Fig. 6.3 and serves to improve any oversegmentation of MR that may have occurred. 

If we assume that the salience of the last part in our list is such that it is a "bad" 
part, then we can merge it with one of its neighboring parts. The Part Adjacency 
Graph, G, tells us which parts are the neighbors of this bad part, and we can use this 
graph to determine where to merge. If the bad part has only one neighbor, the choice 
is simple. We merge it with that neighbor and then recompute the salience for the 
subsequent combined part. We reinsert this new part and its salience into the ranking 
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appropriately. If , however, the bad part has more than one neighbor, we must choose 
which one is more suitable for a merge. Hoffman and Singh do not discuss this issue 
and thus do not suggest theories of human perception. Without an adequate theory, we 
suggest the relative salience of each neighboring part governs this choice. If a part has 
two or more adjacent neighbors, we select the least salient neighbor as the candidate for 
merging. As before, we merge these two parts into a single one, compute their resulting 
combined salience and insert this new part into the ordered list. 

With this filter-and-merge process, we are able to use the salience of a part to 
improve the decomposition of an object (or scene) from our watershed segmentation 
of the previous chapter. The key to this process is the definition of a good and bad 
part. At the current stage of this research, we do not suggest an absolute definition for 
these terms, and indeed such a definition may not exist, even for human perception. We 
do, however, propose a computational framework that applies the theories of Hoffman 
and Singh to triangle mesh representations that are common in computer vision. Our 
framework assigns to each part r a salience value Sr where a threshold of this value 
may serve as a definition for good and bad parts. The difficulty is that if we merge 
part r with part s ,  they form a new part r' with its own salience Sr' ·  Thus, a straight 
threshold of the aggregate of parts from MR to establish a set of good and bad parts 
is not possible. Rather an iterative, trimming threshold is necessary as our process 
above outlines. We order the parts in a list and trim the least salient one from the 
bottom of the list. Then, we reevaluate the updated list that includes the merged part 
to determine if another bad part is at the bottom. 

6.5 Remarks 

Our final remark for this chapter concerns the user parameters for the equations dis
cussed in the previous sections. To compute Sr for each part, the user must select two of 
three weights to define the relative significance of each component of the Part Saliency 
Metric. Table 6.1 outlines each of these parameters. The intent of these parameters is 
to provide a means for a user to mimic human vision preferences for each component of 
salience. When a user needs to place more emphasis on one component of salience, she 
simply increases the weight for that component. For example, with industrial parts such 
as bolts, screws, and other fabricated components, the boundary strength may not be 
as important as part size and protrusion since these objects typically have well-defined 
boundaries that are often right angles. Since the strength of such part boundaries are 
almost equivalent, they do not play a major role in the salience of parts. 

The Part Saliency Metric in this chapter along with Normal Vector Voting and Fast 
Marching Watersheds from the previous chapters are the major steps of our total part 
decomposition algorithm. In the next chapter, we first explore results from each of the 
algorithms individually. Then we combine them into a complete system and explore 
experimental results with data sets of real-world objects and scenes from a variety of 
range scanning devices. 
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Table 6.1: Parameters for Part Saliency Metric. Eq. ( 6.3) constrains these three param
eters such that the user selects two and the third follows 

Parameter Range Equation Typical Comments 
Value 

Wu 0 � Wu �  l ( 6 . 2) Wu = 0.5 Relative importance of part size to 
the salience of the part. 

W-rr 0 � W-,r � I ( 6 . 2) W-,r = 0.5 Relative importance of part protru-
sion to the salience of the part. 

Wf3 0 � Wf3 � I ( 6.2) Wf3 = 0.l Relative importance of boundary 
strength to the salience of the part. 

Recall Eq. ( 6.3) Wu + W-rr + w13 = I 
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Chapter 7 

Experimental Results 

This chapter presents the experimental results for the algorithms proposed in this dis
sertation. We begin with results from the Minima Rule Algorithm in Sec. 7. 1 .  This 
section demonstrates the overall capabilities of the algorithm relative to human visual 
perception through the theory of the minima rule. This first section is a high-level pre
sentation of the results and does not discuss in detail the strengths and weaknesses of 
the algorithm. The next three sections, however, do provide a thorough analysis of the 
individual components of the algorithm. First , in Sec. 7.2, we show the robustness of 
the Normal Vector Voting algorithm for the estimation of surface curvature. Then, in 
Sec. 7.3, we investigate the capabilities of the Fast Marching Watersheds algorithm to 
identify the minima rule boundaries and decompose a mesh into visual parts. Finally, in 
Sec. 7.4, we evaluate the Part Saliency Metric as a measure of the quality of the results. 
These four sections serve as the successful evidence of our proposed algorithms. 

7.1 Minima Rule Algorithm 

The Minima Rule Algorithm decomposes triangle meshes into visual parts. In previous 
chapters, we have described the motivation for this algorithm and we have outlined the 
theory that supports the development of the algorithm. In this section, we present the 
results from our implementation. 

We have coded the complete Minima Rule Algorithm in Visual C++® on a Microsoft 
Windows platform using OpenGL for 3D visualization. A screen shot of the interface for 
the program appears in Fig. 7. 1 .  This main window of the program is a 3D mesh viewer 
with a trackball controller. The menu and buttons above the visualization window are 
the user interface for each aspect of the Minima Rule Algorithm such as the curvature 
estimation, the threshold selection, the morphology operations, and other functions 
previously outlined. We have implemented these functions in standard C++ (Weiss, 
1999; Stroustrup, 1991) using a variety of libraries as tabulated in Table 7 .1 .  

Using this program, we can decompose a mesh that is a manifold surface and has 
arbitrary topology into minima rule parts. To demonstrate this capability, we show 
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Figure 7.1: Screen shot of user interface window. This interface is for the complete 
Minima Rule Algorithm program. 

Table 7.1: List of coding libraries used in software development. 

Library Description Technical 
Name Reference 

Microsoft Foundation Windows interface library (White et al., 1999) Classes 

OpenGL 3D graphics visualization (Neider et al., 1993) library 

Standard Template flexible and extensible set (Hughes and Hughes, of software building Library blocks 1999) 

Computational Geometry geometry and mesh (Veltkamp, 1999) Algorithms Library manipulation algorithms 

Numerical Recipes numerical computation (Press et al., 1992) algorithms 

Boost Graph Library graph creation and (Siek et al., 1999) manipulation algorithms 

Graphviz graph visualization (Gansner and North, 
algorithms 2000) 
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the decomposition results for a broad spectrum of meshes in Figs. 7 .2 through 7 .2 3. 
Each figure consists of a rendering of the particular object or scene, the color-coded 
segmentation of that object or scene, and an adjacency graph of the segmentation 
parts. In some cases, we have also included a photograph of the actual object or scene. 
Table 7 . 2 briefly describes each mesh in the figures. We have two fundamental sources 
for each mesh. We have either generated the meshes in-house using our range scanners 
and reconstruction algorithms as outlined in (Sun et al., 2 002b; Page et al., 2 003e) or 
used meshes from external sources such as other laboratories or commercial companies. 
The previous table designates the source of each mesh, and Tables 7 . 3  and 7 . 4  give 
additional details about each source. Table 7 .3 summarizes the types of scanners and 
their accuracy that we used to generate in-house reconstructions. On the other hand, 
Table 7 .4 documents the external sources of meshes. 

We present these figures and results without much discussion. We delay detail analy
sis of the Minima Rule Algorithm to the next sections where we individually investigate 
each component of the algorithm. This section merely serves as a broad overview of 
the results. For this overview, one should view each rendering of the meshes through
out the figures and mentally decompose them into parts. Then, one should compare 
this mental image with the color-coded decompositions in the figures. This comparison 
should yield strong agreement between one's mental selection of parts and the Minima 
Rule Algorithm's selection of parts. We do not suggest that total agreement is possible 
since a human observer uses other cognitive strategies to select parts such as context 
and experience. However, these results should not totally contradict one's perception 
either. This qualitative exercise should provide convincing evidence of the capabilities 
of the algorithm. 

These figures serve as a demonstration of the Minima Rule Algorithm. We now 
turn to a more in-depth analysis of the capabilities of the algorithm. In the next 
three sections, we investigate the Normal Vector Voting algorithm, the Fast Marching 
Watersheds algorithm, and the Part Saliency Metric algorithm. 

7.2 Normal Vector Voting 

The heart of the Minima Rule Algorithm is the Normal Vector Voting algorithm that 
estimates the orientation and curvature of the triangle mesh where we assume the mesh 
approximates some smooth surface. To demonstrate the capabilities of this algorithm, 
we have experimented with a variety of data sets from CAD models to range reconstruc
tions to medical isosurfaces. In this subsection, we present both the qualitative results 
of these experiments and a quantitative comparison from a set of more controlled ex
periments. In the discussions that follow, we must recall the user parameters for the 
algorithm as outlined in Table 4.2. The three parameters are: k the neighborhood size, 
e the crease detection constant, and T/ the noise suppression constant. We mainly spec
ify k, but when pertinent we also call out the system constants e and T/· These latter 
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Table 7 . 2: List of triangle meshes used in results. The last column shows the number 
of parts after the mesh decomposition. 

Figure Brief Date Number of Number of Number of 
Number Description Source Vertices Triangles Parts 

7 . 2 hand crank RANGER 4 6 , 8 7 0 93, 7 5 2  7 
7 . 3 water neck RANGER 5 8, 7 8 4 117 , 5 6 4  6 
7 . 4 distributor cap RANGER 6 5 , 3 97 12 9, 8 4 9  2 0  
7 . 5 disc brake RANGER 3 7 , 3 3 2  7 3, 5 5 3  2 
7 . 6 bin objects RANGER 3 9, 7 5 2  7 1, 97 6  4 2  
7 . 7 cone scene COLEMAN 6 1, 02 7  117 , 7 7 8  6 
7 .8 office scene (I) RIEGL 6 5 , 3 6 5  12 9, 3 4 2  3 9  
7 . 9 office scene (II) PERCEPTRON 15 , 6 6 6  3 0, 98 1 28 

7 . 10 bore pin TACOM 3 7 , 4 5 0 7 4, 8 96 4 
7 . 11 toilet POLHEMUS 2 2, 92 6 4 5 , 8 6 4 5 
7 . 12 watering can POLHEMUS 8, 08 6  15 , 8 4 3  6 
7 . 13 chair POLHEMUS 2 6 , 7 6 6  5 3, 4 6 2  11 
7 . 14 left hand POLHEMUS 13, 3 4 0  2 6 , 3 7 2 8 
7 . 1 5 oil pump HOPPE 19, 5 5 5  3 9, 102 15 
7 . 1 6 teapot HOPPE 3, 03 4 6 , 010 5 
7 . 17 human femur ITALY 7 6 , 7 94 15 3, 3 2 2 2 
7 . 18 machined object SLIM- 3D 28, 6 6 7  5 7 , 107 10 
7 . 19 human molar tooth SLIM- 3D 6 , 5 8 6 13, 16 8 4 
7 . 2 0  human canine tooth SLIM- 3D 3, 3 7 6  6 , 7 48 2 
7 . 2 1  fan blades 3D DIGITAL 12 1, 2 7 1  2 3 9, 2 2 7  16 
7 . 2 2  shoe sole 3D DIGITAL 5 8, 108 115 , 7 5 0  18 
7 . 2 3  David's head STANFORD 7 , 7 90 15 , 2 03 2 0  
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Table 7 .3 :  List of range scanners used for in-house mesh reconstructions. The National 
Automotive Center is with the U. S. Army Tank and Automotive Command (TACOM). 
A technical reference for this TACOM data set is not available at this time. The 
abbreviations Acc. and Max. each mean approximate accuracy and maximum range, 
respectively. 

Scanner Manufacturer Type Acc. Max. Technical 
Label (cm) (m) Reference 

RANGER 
Integrated Vision Active 0. 1 0. 2 (Integrated Vision 

Products Stereo Products, 2 000) 

COLEMAN 
Coleman Research Time of 0. 1 2 0  (Sebastian et al. ,  

Corporation Flight 1995 ) 
Riegl Laser Time of (Riegl Laser 

RIEGL Measurement Flight 5 7 00 Measurement 
Systems Systems, 2 000) 

Perceptron Time of (Perceptron 
PERCEPTRON Incorporated Flight 5 10 Incorporated, 

1993) 
National Laser TACOM Automotive Probe 0. 01 2 0  N/A 
Center 

Table 7 . 4: List of external sources for triangles meshes used in results. 

Source Company Technical 
Label Reference 

POLHEMUS Applied Research Associates (McCall um et al. , 1 998) 
HOPPE Microsoft Research (Hoppe et al . ,  1 992) 
ITALY Istituti Ortopedici Rizzoli (Viceconti et al. , 1996 ) 

Friedrich-Alexander-
SLIM-3D Universitat (Karchaher et al. , 1997 ) 

Erlangen 

3D DIGITAL 3D Digital Corporation (3D Digital Corporation, 
2 000) 

STANFORD Stanford University (Levoy et al. , 2 000) 
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(a) (b) 

(c) (d) 

Figure 7.2: Hand crank object decomposition. Minima Rule Algorithm results for hand 
crank object . This mesh is a reconstruction from multiple range scans from the IVP 
Ranger System. The mesh consists of 46, 870 vertices and 93, 752 triangles while the 
decomposition consists of 7 parts. (a) Rendering of original mesh. (b) Photograph 
of original object. (c) Decomposition of mesh into parts. (d) Adjacency graph with 
user-specified labels. 
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(a) (b) 

Bolt B 

(c) (d) 

Figure 7.3: Water neck object decomposition. Minima Rule Algorithm results for water 
neck object. This mesh is a reconstruction from multiple range scans from the IVP 
Ranger System. The mesh consists of 58, 784 vertices and 1 17, 564 triangles while the 
decomposition consists of 6 parts. (a) Rendering of original mesh. (b) Photograph 
of original object. (c) Decomposition of mesh into parts . (d) Adjacency graph with 
user-specified labels. 
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(a) {b) 

(c) {d) 

Figure 7 .4: Distributor cap object decomposition. Minima Rule Algorithm results for 
distributor cap object. This mesh is a reconstruction from multiple range scans from the 
IVP Ranger System. The mesh consists of 65, 39 7 vertices and 129, 8 49 triangles while 
the decomposition consists of 20 parts. (a) Rendering of original mesh. (b) Photograph 
of original object. (c) Decomposition of mesh into parts . (d) Adjacency graph with 
user-specified labels. 
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(a) (b) 

(c) (d) 

Figure 7.5:  Disc brake object decomposition. Minima Rule Algorithm results for disc 
brake object. This mesh is a reconstruction from multiple range scans from the IVP 
Ranger System. The mesh consists of 37, 332 vertices and 73, 553 triangles while the 
decomposition consists of 2 parts. (a) Rendering of original mesh. (b) Photograph 
of original object. (c) Decomposition of mesh into parts. (d) Adjacency graph with 
user-specified labels. 
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(a) (b) 

Pal l l  

(c) (d) 

Figure 7.6 : Miscellaneous objects decomposition. Minima Rule Algorithm results for 
miscellaneous objects simulating a bin picking application. This mesh is a single view 
from the IVP Ranger System. The mesh consists of 3 9, 7 5 2  vertices and 7 1, 97 6  triangles 
while the decomposition consists of 4 2  parts. Since this mesh is a single view, the scan 
leaves many objects as isolated parts and thus unconnected to other surfaces. (a) Ren
dering of original mesh. (b) Photograph of approximate scene. ( c) Decomposition of 
mesh into parts. ( d) Adjacency graph with arbitrary labels. 
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(a) (b) (c) 

Figure 7.7: Industrial scene with cone and barrel decomposition. Minima Rule Al
gorithm results for scene with cone and barrel. This mesh is a single view from the 
Coherent Laser Radar System developed by Coleman Research Corporation. The mesh 
consists of 61 , 027 vertices and 1 17, 778 triangles while the decomposition consists of 
6 parts. (a) Rendering of original mesh. (b) Decomposition of mesh into parts. ( c) Ad
jacency graph with user-specified labels. 

(a) (b) (c) 

Figure 7.8: Office scene (I) decomposition. Minima Rule Algorithm results for an 
office scene. This mesh is a reconstruction from multiple range scans from the Laser 
Mirror System Z210 developed by Riegl. The mesh consists of 65 , 365 vertices and 
129, 342 triangles while the decomposition consists of 39 parts. (a) Rendering of original 
mesh. (b) Decomposition of mesh into parts. (c) Adjacency graph with arbitrary labels. 
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(a) (b) 

Port26 

(c) (d) 

Figure 7 .9: Office scene (II) decomposition. Minima Rule Algorithm results for an office 
scene. This mesh is a reconstruction from multiple range scans from the Perceptron 
Laser System. The mesh consists of 15, 666 vertices and 30, 98 1 triangles while the 
decomposition consists of 28 parts. (a) Rendering of original mesh. (b) Photograph 
of original scene. ( c) Decomposition of mesh into parts. ( d) Adjacency graph with 
arbitrary labels. 
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(a) (b) (c) 

Figure 7 . 10 :  Small bore pin decomposition. Minima Rule Algorithm results for a small 
bore pin. This mesh is a reconstruction from a point cloud data set generated at the U. S.  
Army TACOM National Automotive Center. The mesh consists of 37,  4506 vertices and 
74, 896 triangles while the decomposition consists of 4 parts. (a) Rendering of original 
mesh. (b) Decomposition of mesh into parts. (c) Adjacency graph with user-:-specified 
labels. 

(a) (b) (c) 

Figure 7. 1 1 :  Toilet seat decomposition. Minima Rule Algorithm results for a toilet seat. 
This mesh is a reconstruction from the Polhemus FastSCAN System. The mesh consists 
of 22, 926 vertices and 45, 864 triangles while the decomposition consists of 5 parts. 
(a) Rendering of original mesh. (b) Decomposition of mesh into parts. (c) Adjacency 
graph with arbitrary labels. 
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(a) {b) (c) 

Figure 7.12: Watering can decomposition. Minima Rule Algorithm results for a wa
tering can. This mesh is a reconstruction from the Polhemus FastSCAN System. The 
mesh consists of 8, 086 vertices and 15, 843 triangles while the decomposition consists 
of 6 parts. (a) Rendering of original mesh . (b) Decomposition of mesh into parts. 
( c) Adjacency graph with user-specified labels. 

(a) 
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Figure 7. 13: Three-legged chair decomposition. Minima Rule Algorithm results for a 
three-legged chair. This mesh is a reconstruction from the Polhemus FastSCAN System. 
The mesh consists of 26, 766 vertices and 53, 462 triangles while the decomposition 
consists of 1 1  parts. (a) Rendering of original mesh. (b) Decomposition of mesh into 
parts. ( c) Adjacency graph with arbitrary labels. 
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(a) (b) (c) 

Figure 7.14: Human left hand decomposition. Minima Rule Algorithm results for a 
human left hand. This mesh is a reconstruction from the Polhemus FastSCAN System. 
The mesh consists of 13, 3 4 0  vertices and 2 6 , 3 7 2 triangles while the decomposition 
consists of 8 parts. (a) Rendering of original mesh. (b) Decomposition of mesh into 
parts. ( c) Adjacency graph with user-specified labels. 

(a) (b) (c) 

Figure 7 . 15 : Oil pump decomposition. Minima Rule Algorithm results for an oil pump. 
This mesh is a reconstruction from the Hughes Hoppe at Microsoft Research. The 
mesh consists of 19, 5 5 5  vertices and 3 9, 102 triangles while the decomposition consists 
of 15 parts. (a) Rendering of original mesh. (b) Decomposition of mesh into parts. 
( c) Adjacency graph with arbitrary labels. 
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(a) (b) (c) 

Figure 7.16: Teapot decomposition. Minima Rule Algorithm results for a teapot. This 
mesh is a reconstruction from the Hughes Hoppe at Microsoft Research. The mesh 
consists of 3, 0 34 vertices and 6, 0 10 triangles while the decomposition consists of 5 parts. 
(a) Rendering of original mesh. (b) Decomposition of mesh into parts. (c) Adjacency 
graph with user-specified labels. 

(a) (b) (c) 

Figure 7.17 : Human femur decomposition. Minima Rule Algorithm results for a hu
man femur. This finite element mesh has been created by the Marco Viceconti and 
is is available on the Internet at the ISB Finite Element Repository managed by the 
Istituti Ortopedici Rizzoli, Bologna, Italy. The mesh consists of 7 6, 7 94 vertices and 
15 3 , 3 2 2  triangles while the decomposition consists of 2 parts. (a) Rendering of original 
mesh. (b) Decomposition of mesh into parts. ( c) Adjacency graph with user-specified 
labels. 
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(a) (b) (c) 

Figure 7 . 18: Machined object decomposition. Minima Rule Algorithm results for a 
machined object. The mesh is a reconstruction using the SLIM 3D software for reverse 
engineering. The mesh consists of 2 8, 6 6 7  vertices and 5 7 , 107 triangles while the de
composition consists of 10 parts. (a) Rendering of original mesh. (b) Decomposition of 
mesh into parts. ( c) Adjacency graph with arbitrary labels. 

(a) (b) (c) 

Figure 7 . 19: Human molar tooth decomposition. Minima Rule Algorithm results for 
a human molar tooth. The mesh is a reconstruction using the SLIM3D software for 
reverse engineering. The mesh consists of 6 , 5 86 vertices and 13, 16 8 triangles while the 
decomposition consists of 4 parts. (a) Rendering of original mesh. (b) Decomposition 
of mesh into parts. ( c) Adjacency graph with arbitrary labels. 
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(a) (b) (c) 

Figure 7.20 : Human canine tooth decomposition. Minima Rule Algorithm results for 
a human canine tooth. The mesh is a reconstruction using the SLIM3D software for 
reverse engineering. The mesh consists of 3, 376 vertices and 6, 7 48 triangles while the 
decomposition consists of 2 parts. (a) Rendering of original mesh. (b) Decomposition 
of mesh into parts. ( c) Adjacency graph with user-specified labels. 

(a) (b) (c) 

Figure 7.21 : Industrial fan decomposition. Minima Rule Algorithm results for a indus
trial fan. The mesh is a reconstruction from the 3D Digital Corporation. The mesh 
consists of 121 , 271 vertices and 239, 227 triangles while the decomposition consists of 
16 parts. (a) Rendering of original mesh. (b) Decomposition of mesh into parts. (c) Ad
jacency graph with user-specified labels. 
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(a) (b) (c) 

Figure 7 . 2 2: Shoe sole decomposition. Minima Rule Algorithm results for a shoe sole. 
The mesh is a reconstruction from the 3D Digital Corporation. The mesh consists 
of 5 8, 108 vertices and 115 , 7 5 0  triangles while the decomposition consists of 18 parts. 
(a) Rendering of original mesh. (b) Decomposition of mesh into parts. ( c) Adjacency 
graph with arbitrary labels. 

(a) (b) (c) 

Figure 7 . 2 3: Michelangelo's David decomposition . Minima Rule Algorithm results for 
the head of Michelangelo's David statue. The mesh is a reconstruction from The Digital 
Michelangelo Project at Stanford University. We have extracted just the face from a 
more complete model of the entire statue. The mesh consists of 7 ,  7 90 vertices and 
15 , 2 03 triangles while the decomposition consists of 2 0  parts. (a) Rendering of original 
mesh. (b) Decomposition of mesh into parts. ( c) Adjacency graph with user-specified 
labels. 
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two constants, in actual practice, are fixed and should not change. The intent is that 
we control the algorithm with k and not these constants. 

7.2. 1 Qualitative Analysis 

For a qualitative analysis, we first consider two illustrative data sets: a fandisk in 
Fig. 7.2 4 and ·a torus in Fig. 7.25. The fandisk is a CAD model that exemplifies free
form smooth surfaces, and the torus is a simple object with a genus one topology. We 
add noise to these data sets to demonstrate the robustness of our algorithm. To the 
original fandisk in Fig. 7.2 4(a), we have added Gaussian noise to each coordinate of the 
mesh's vertices where we specify the variance of the Gaussian distribution as 0.1 % of the 
average edge length lave for triangles in the mesh. Figure 7 .2 4(b) illustrates this noise, 
which simulates the errors that we might encounter from reconstruction algorithms in 
computer vision. For the torus, we use a marching cubes algorithm (Lorenson and 
Cline, 1987) to introduce noise into the data set. Marc�ing cubes is a common method 
in medical imaging to extract isosurfaces from volume data sets. The nature of the 
marching cubes algorithm corrupts the ideal smooth surface of the original torus in 
Fig. 7.25(a) with the more jagged surfaces in Fig. 7.25(b). 

To begin, we explore the crease detection and normal estimation capabilities of our 
algorithm. Figs. 7.2 4(c) and 7.2 4(d) show the crease detection results for the fandisk 
both without noise and with it. Without noise, we design c, which controls crease 
detection in Eq. (4.9), with a large enough value to detect accurately the crease on 
the left side of Fig. 7.2 4(c) . With noise, however, we must decrease c to account for 
the noise variation, and thus we no longer detect that particular crease in Fig. 7.2 4(d) . 
We do, on the other hand, detect the right-angle creases for both cases of the fandisk 
despite the increase in noise. This example highlights the trade off between allowing 
noise variation and detecting surface discontinuities. When designing a system and thus 
choosing c and 'TJ, the designer must balance the level of noise to tolerate and the angle of 
creases to detect. Then a user can choose various neighborhood sizes, as denoted by the 
user parameter k from Table 4.2 ,  to balance noise levels, feature scales, and sampling 
densities for a particular mesh. 

Next, the torus example illustrates normal estimation. Figure 7.25(c) shows a zoom 
view for the edge of the torus. In this figure, the vectors extending from the mesh's 
vertices are normal estimates derived from a simple average of the triangle normals 
adjacent to each vertex. Figure 7.25(d) shows the same view but with normals derived 
from the Normal Voting algorithm. The neighborhood size for the latter is an eight
geodesic neighborhood ( k = 8). The larger neighborhood allows for an improvement 
in the estimation of the normals. We see that the normals in Fig. 7.25(c) adhere to 
the marching cube artifacts while in Fig. 7.25(d) they more closely follow the smooth 
surface of the original torus. This smoothing characteristic of a larger neighborhood is 
the primary strength of the Normal Vector Voting algorithm. 

The third example is in Fig. 7.2 6. The mesh in Fig. 7.2 6(a) is a 3 D  mesh from a 
Perceptron laser range scanner and is representative of the surface noise that one might 
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(a) (b) 

(c) (d) 

Figure 7 . 2 4: Fandisk crease detection. The fandisk model is an example of a free-form 
CAD model with sharp edges and sophisticated surface curvature. (a) The original 
triangle mesh is from the distribution available at http : /  /research . micro soft . com/ 

research/graphics/hoppe/.  The mesh size is 6 , 4 7 5 vertices with 12, 94 6 triangles. 
(b) Same model with Gaussian noise added to the vertices of the mesh. The variance 
of the Gaussian distribution is 0. 1% of laue · (c) The Normal Vector Voting algorithm 
with a one-geodesic neighborhood (c = 3 2 , k = l) labels the creases of the original mesh 
as we might expect. ( d) With noise the algorithm using a five-geodesic neighborhood 
(c = 2, k = 5 )  does not detect the small crease on the left side of the figure. 
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(a) (b) 

(c) (d) 

Figure 7 .25: Torus normal estimation. The torus model exhibits a genus one topology. 
(a) The smooth surfaces of the original model. (b) If we consider the torus as a volume 
data set and apply a marching cube algorithm, we introduce systematic artifacts in the 
mesh. This mesh has 7,302 vertices and 14,604 triangles. (c) A zoom view of the side 
of the mesh in (b) with normals shown extending from each vertex. ( d) The same zoom 
area where the normals are estimated using Normal Vector Voting with an eight-geodesic 
neighborhood (k = 8). 
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expect from a practical system. We apply the normal voting algorithm to this mesh 
with the results in Fig. 7 . 2 6(b) . We use a k = 5 voting neighborhood,  and we place 
blue normals at surface vertices and green tangents at crease ones. Additionally, we 
place red vectors at vertices with no preferred orientation. The algorithm performs 
well for detecting the creases between the floor and the base of each desk and around 
the cabinets, chair, and computer monitor in the scene. Unfortunately, the corner of 
the room results in several vertices classified as having no preferred orientation. In the 
actual scene, this corner contains an intricate scaled model of an industrial plant with 
several small wooden dowels as pipe models. The detail of this model is beyond the 
resolution of the range scanner and therefore the classification is not surprising. The 
conclusion that we draw is that the resolution of the mesh is too small for the scene 
features and not that the normal voting algorithm has failed. We suggest that the ability 
to detect such under-sampled regions is an important capability of our algorithm. 

Figs. 7 . 2 7  through 7 . 29 demonstrate the robustness of the curvature estimate. Again, 
we use the fandisk and torus for these examples. In these figures, the vector at 
each vertex is the estimate for the principal direction of the maximum curvature. 
Figs. 7 . 2 7  and 7 . 28 show the effects of the neighborhood size. The small neighbor
hoods in Figs. 7 . 2 7 (c)  and 7 . 28 (c) are unable to overcome the surface noise such that 
the zoom views reveal the random distribution of the principal directions. The larger 
neighborhoods in Figs. 7 . 2 7 ( d) and 7 . 28 (  d) yield improvement with strong local agree
ment of the principal directions shown in the zoom views. Notice how the principal 
directions flow along the surface curvature of the object. These figures highlight the 
robustness of the curvature estimation via selection of the neighborhood size. As noted 
previously, this capability is the major contribution of this paper. 

One drawback to enlarging the neighborhood is that significant error is introduced at 
discontinuity creases. Consider one of the creases in the fandisk model. Figure 7 . 29(a) 
shows a crease at the top of the figure with corresponding crease tangents. The principal 
directions just below that crease erroneously point across the crease. The problem is 
that normals on the other side of the discontinuity vote during the curvature estimation. 
To resolve this problem, we restrict the neighborhood from crossing the discontinuity. 
Figure 7 . 29(b) illustrates the results. The principal directions near the crease now follow 
the curvature of the surface as we desire. 

7.2 .2 Quantitative Comparison 

The previous examples show the capabilities of the Normal Vector Voting algorithm 
but do not provide a baseline for comparison. The figures and graphs in this subsection 
attempt to do so. In these figures, we graph the error of the algorithm for both synthetic 
and real data where we use ground truth to establish the error. For these graphs, we 
manipulate three variables: surface type, noise level, and neighborhood size. 

We first consider synthetic data to evaluate noise sensitivity. We choose three surface 
types: planar, cylindrical , and spherical. The radius of curvature for the cylinder and 
the sphere is 3 1  mm. Figure 7 . 30 shows these surfaces with Gaussian noise added to 
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(a) (b) 

Figure 7.26: Perceptron range scanner example. (a) A triangle mesh with 16,384 vertices 
and 32,258 triangles for the corner of a room, which contains a desk, a chair, a computer 
monitor, and a few cabinets. The surface noise is both quantization and measurement 
error inherent to the scanner. (b) Normal Vector Voting leads to blue normals at each 
surface patch vertex, green tangents at each crease vertex, and red vectors at each vertex 
with no preferred orientation. 
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(a) {b) 

(c) {d) 

Figure 7 . 2 7 : Curvature estimation for the fandisk model. (a) Illustrates a small one
geodesic neighborhood (k = 1) for a single vertex. (b) A larger five-geodesic neigh
borhood (k = 5 )  for the same vertex. (c) Estimates for the principal directions with 
0. 1 % Gaussian noise added to the fandisk. The zoom area is for the small neighborhood 
in (a) . (d) The same zoom area showing estimates for the larger neighborhood of (b) . 
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(a) (b) 

(c) (d) 

Figure 7.28: Curvature estimation for the torus. (a) Illustrates a small one-geodesic 
neighborhood ( k = l) for a single vertex. (b) A larger eight-geodesic neighborhood 
( k = 8) for the same vertex. ( c) Shows the principal directions for small neighborhood 
in (a) .  (d) The same zoom area showing estimates for the larger neighborhood of (b) . 
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(a) (b) 

Figure 7.2 9: Curvature at the edge of a fandisk. Increasing the neighborhood leads 
to errors in the curvature estimate near the crease discontinuities. (a) The zoom view 
shows a crease from the fandisk at the top of this image. The principal directions near 
this crease tend to point erroneously across the discontinuity. (b) When we restrict the 
neighborhood from crossing the discontinuity, the estimates for the principal directions 
improve. 
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the Z coordinate using a distribution variance of 1 %, 5%, 10%, and 50% of lave • The 
graphs in Fig. 7.3 1 compare the performance of the Normal Vector Voting algorithm 
for a three- and five-geodesic neighborhood (k = 3 and k = 5) to Taubin's one-ring 
algorithm for 10% noise level. We have chosen to compare to Taubin's algorithm since 
it serves as the foundation for our algorithm. We do not compare results for Tang and 
Medioni's algorithm since their algorithm is for point-cloud data sets and since they do 
not compute principal directions for surface curvature. 

Taubin's algorithm serves to baseline the performance of our method. However, for 
noisy surfaces, a direct comparison is perhaps not appropriate since-as Taubin notes
his algorithm requires a smoothing step to preprocess any surface noise. In fairness to 
Taubin, we emphasize that we baseline the benefits of the k-geodesic neighbors and 
do not competitively compare the algorithms. To do so, we would need to select and 
implement an appropriate smoothing algorithm. 

We look at the normal estimation for the plane in Fig. 7.3 l (a) . The percentage error 
in this graph is as follows 

err = (1 - IN!Nv l) x 100% (7. 1 )  

where Np = Z is the ground-truth normal and Nv is the estimation. This graph is 
a histogram plot with vertex bins across the horizontal axis and a log scale for the 
vertical. Figure 7.3 1 (b) uses a similar error measure and compares the estimation of 
the principal directions Tv for the cylinder. Let Tp = X be the ground truth for the 
minimum principal direction. The third graph in Fig. 7.3 1 (  c) compares the estimation 
of the principal curvatures for the sphere. We use a different error measure 

�I _ �I 
err = I P 1 v I x 100% 

�v 

(7.2 ) 

where �} = 31�m is the ground truth and �! is the estimate. For each of these graphs, 
we see a similar trend. The Normal Vector Voting algorithm for both neighborhoods 
provides improved performance over Taubin's algorithm. This improvement is evident 
for bins near the 0% error to the left side of the graphs. The more vertices that accu
mulate in these lower error bins the better. 

We next consider the effect of different noise levels. As before for each synthetic 
surface, we corrupt the Z coordinate of each vertex with Gaussian noise. Recall Fig. 7. 30. 
Using the previous error measures and graphs, Fig. 7.32 plots the Normal Vector Voting 
error for surface type and noise level with only the three-geodesic neighborhood size ( k = 
3 ). Although the 50% level seems to overwhelm the Normal Vector Voting algorithm, 
the other three levels offer useful results for most applications. Again, these graphs 
demonstrate the robustness of the algorithm. 

Finally, we explore real data from an IVP Ranger System (Integrated Vision Prod
ucts, 2000) , which is a sheet-of- light profile scanner. Figure 7.3 3 (a) shows the ex
perimental configuration for this system within our laboratory. The basic output of 
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(a) (b) (c) 

(j) (k) (l) 

Figure 7.30: Synthetic surfaces with noise. Planar, cylindrical, and spherical synthetic 
surfaces with four levels of Gaussian noise. These surfaces contain 1 ,024 vertices and 
1 ,922 triangles. (a-c) Noise variance is 1% of the average edge length. (d-f) Noise 
variance is 5% of the average edge length. (g-i) Noise variance is 10% of the average 
edge length. (j-1) Noise variance is 50% of the average edge length. 
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Figure 7. 31 : Algorithm comparison for synthetic surfaces with noise. The variance of 
the Gaussian noise distribution is 1 0% of lave · The comparison graphs show the Normal 
Vector Voting algorithm with a three- and a five-geodesic neighborhood size (k = 3 and 
k = 5) compared to the original algorithm of Taubin. The graphs are bin plots with log 
scales, and each mesh contains 1 ,024 vertices and 1 ,922 triangles. ( a,b) Planar surface 
( c,d) Cylindrical surface, and ( e,f) Spherical surface. 
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Figure 7 . 3 2: Noise comparison with synthetic data. Comparison for synthetic data with 
different levels of Gaussian noise added. The variances of the noise distribution are 1 % ,  
5 %, 10%, and 5 0% of lave • The graphs show the Normal Vector Voting algorithm for 
a three-geodesic neighborhood (k = 3) and are bin plots with log scales. Each mesh 
contains 1, 02 4 vertices and 1 , 92 2  triangles. (a,b) Plane, (c,d) Cylinder, and (e,f) Sphere. 
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(a) (b) 

Figure 7.3 3 :  IVP Ranger System. This system is a sheet-of-light profiling system. 
(a) Experimental setup. (b) Ground truth objects for our real range data comparison. 

the scanner is a single range profile in the plane of the sheet of light. For our tests 
we stack 512 profiles together to form a 512 x 512 range image with 256 range bins 
at 0.62 mm resolution. With proper system calibration, we convert these range images 
into appropriate triangle meshes. We again use three surface types as with the synthetic 
data. The actual objects for these surfaces appear in Fig. 7.3 3 (b ) .  As ground truth, the 
cylinder has a radius of 26 mm, and the sphere has a radius of 28.5 mm. With slight 
modifications, we use the same error measures and graphs as with the synthetic data. 
Since we do not know the absolute orientation of the objects relative to the scanner, we 
must account for this uncertainty. For the plane, we average the normal estimates to 
serve as the ground truth Np = ¼ L Nv for each vertex, and for the cylinder, we average 
the minimum principal direction estimates Tp = ¼ L Tv . These ad hoc formulations of 
ground truth i.ntroduce some error, but the error is constant across our analysis and is 
tolerable. Figure 7.3 4 shows the scanned surfaces while Fig. 7.35 shows the associated 
error graphs. These results are similar to the synthetic data where again the Normal 
Vector Voting algorithm shows improvement over Taubin's algorithm. 

7.2.3 Timing Performance 

An issue of future research is to improve the overall performance of our implementa
tion. The graph in Fig. 7 . 36 shows a simple timing analysis of the proposed algorithm 
for the fandisk model in Fig. 7.2 4. The computing platform is an SGI Octane with a 
single 195 Mhz MIPS RlOOOO processor and 128 megabytes of memory. Although we 
have not optimized the current code configuration, the trend in the plot is interesting. 
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(a) (b) (c) 

Figure 7.34: IVP Ranger scans of ground truth objects. Triangle mesh representations 
of a single view for each ground truth object. The noise on the surfaces is actual noise 
from either quantization error or direct measurement error. (a) Plane tilted at 45 degree 
angle to viewing plane of Ranger. (b) Clynder parallel to viewing plane. ( c) Sphere. 
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Figure 7. 35: Algorithm comparison for real data from IVP Ranger. The comparison 
graphs show the !'_formal Vector Voting algorithm with a three- and a five-geodesic 
neighborhood size (k = 3 and k = 5) compared to the original algorithm of Taubin. 
The graphs are bin plots with log scales. Note the quantization noise on each surface. 
(a,b) Plane with 10,507 vertices and 2 0 ,578 triangles. (c,d) Cylinder with 7 ,4 07 vertices 
and 14 ,424 triangles. (e ,f) Sphere with 4 ,026 vertices and 7 ,7 32 triangles. 
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Figure 7 . 3 6 : Performance timing. A graph depicting the computational performance 
time for the Normal Vector Voting algorithm as a function of k-geodesic neighborhood 
size. The analysis is for the fandisk model and the times are in seconds. Each data 
point on the graph represents a single run of the two-pass algorithm through the entire 
mesh. 

As we increase the k-geodesic neighborhood with the intent of improving our curva
ture estimate, the computational time grows non-linearly. The three- and five-geodesic 
neighborhoods show reasonable performance compared to the one-geodesic neighbor
hood that is equivalent to the one-ring algorithm of Taubin. Thus we argue that the 
improvement in accuracy, as demonstrated in Figs. 7 . 3 1- 7 . 3 5 , with modest increases in 
neighborhood size are worth the slight increase in processing time. 

We have presented results for our algorithm using both synthetic and real data sets. 
For the synthetic data, we have used controlled experiments with ground truth to eval
uate the performance of the algorithm with respect to varying levels of noise. For the 
real data, we have generated meshes within our laboratory using the IVP Ranger. In 
addition to a qualitative analysis of our results, we have presented an in-depth quan
titative analysis as well. In particular, we have directly compared the results of our 
algorithm to Taubin's original algorithm (Taubin, 1995 ) .  As a side note, since Tang 
and Medioni (Tang and Medioni, 1999) formulate their algorithm for point clouds and 
since they do not estimate principal curvatures, we do not compare our algorithm to 
theirs. The success of these results demonstrate the stable and robust performance of 
our algorithm in the presence of different types of surface noise. In the next section , 
we explore results for the Fast Marching Watersheds algorithm which leverages the 
curvature estimation results from this section. 

7.3 Fast Marching Watersheds 

After we have estimates for the principal curvatures and their associated directions for 
each vertex of the mesh, we need an algorithm that segments the mesh and identifies 
contours of negative curvature minima. The algorithm that we have developed for this 
purpose is the Fast Marching Watersheds algorithm. In this section, we analyze this 
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algorithm through experimental results to find its strengths and weaknesses. Further, 
we investigate the effects of user parameters on the performance of the algorithm. Recall 
the parameters in Table 5.2. The two parameters are: a, the percentage of threshold for 
the marker set, and k, the ring size of the Dk structuring element. We mainly control 
the algorithm with a. The familiar mug example in Fig. 7. 37 shows the progression of 
the algorithm. 

7.3. 1 Qualitative Comparison 

We begin with a qualitative analysis. We first compare the algorithm to others in the 
literature, and then we investigate a potential drawback of the algorithm. 

The examples in Figs. 7. 38 and 7. 39 serve to compare our segmentation to two 
algorithms in the literature. The first one is Mangan and Whitaker (Mangan and 
Whitaker, 1999) , - and the second is a variation of Pulla (Pulla, 2001). We do not directly 
test these algorithms since the source code is unavailable. We could have implemented 
our own code based on the papers, but such an approach does not always replicate the 
nuances derived from the experience of the paper 's authors. An in-house implementation 
without source code is unreliable and is not fair for comparison purposes. However , we 
are able to implement their definitions of curvature reliably and without ambiguity. 
So, for the comparisons that follow, we have implemented their definitions of curvature 
and applied our watershed algorithm-with slight modifications-to achieve the spirit 
of the results in (Mangan and Whitaker, 1999) and (Pulla, 2001). We note that this 
approach does not allow a quantitative comparison of the algorithms, but it does allow 
a qualitative comparison of expected results. 

The first scene in Fig. 7. 38 for our comparison is a synthetic mesh representing a 
cylindrical barrel resting on a floor. The surface mesh approximates both the barrel 
and the floor with 5, 3 1 3 vertices and 10 , 37 4  triangles. We first apply Mangan and 
Whitaker's segmentation in Fig. 7. 38(b). Their algorithm generates three regions: the 
floor, the barrel side, and the barrel top. Their method segments regions bounded 
by contours of high curvature without regard to the positive or negative sense. In 
fact, Mangan and Whitaker's curvature measure exhibits no sign information and is 
always positive. Consequently, their segmentations are surfaces with similar values of 
curvature and do not necessarily agree with human perceptional segmentations. Most 
human observers would segment the scene into only two parts: the floor and the barrel 
without distinguishing the top from the sides of the barrel. 

The second algorithm of interest is in (Pulla, 2001 ). This algorithm leads to similar 
results as Mangan and Whitaker, but he employs a different measure of curvature that 
estimates Gaussian curvature. He uses this measure to also segment along contours of 
high curvature where the measure does distinguish between positive and negative sense, 
in contrast to Mangan and Whitaker. So, we have modified Pulla's method slightly to 
segment along contours of highly negative curvature. This approach is similar to the 
minima rule definition. We show the results in Fig. 7. 38(c) , which does agree with the 
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(a) {b) 

(c) {d) 

Figure 7 . 3 7 :  Simple example of Fast Marching Watersheds. This example shows the 
progression of Fast Marching Watersheds. (a) The familiar coffee mug. (b) An initial 
threshold of curvature. (c) Morphology operators clean the marker set. (d) Final 
segmented regions after fast marching. 

13 7 



(a) (b) 

( c) (d) 

Figure 7. 38: Comparison of segmentation algorithms for the cylinder scene. A compar
ison of segmentation results for a simple scene consisting of cylindrical barrel resting on 
a floor. (a) Original scene. (b) Segmentation results for Mangan and Whitaker's cur
vature measure (Mangan and Whitaker, 1999) with three regions: the floor, the barrel 
side, and the barrel top. ( c) Segmentation results for Pulla's curvature measure (Pulla, 
2001)  with two regions: the floor and the barrel. (d) Segmentation results for our 
proposed algorithm with two regions: the floor and the barrel. 
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(a) {b) 

{c) {d) 

Figure 7.39 : Comparison of segmentation algorithms for the box scene. A compar
ison of segmentation results for a simple scene consisting of a box resting on a floor. 
(a) Original scene. (b) Segmentation results for Mangan and Whitaker's curvature mea
sure (Mangan and Whitaker, 1999) with six regions: the floor, each box side, and the 
box top. (c) Segmentation results for Pulla's curvature measure (Pulla, 2001)  where 
the algorithm fails to segment the scene. (d) Segmentation results for our proposed 
algorithm with two regions: the floor and the box. 

139 



minima rule. This figure shows the segmentation of the scene in to two parts: the barrel 
and the floor. 

Finally, we show the results in Fig. 7.38(d) for our proposed algorithm. This result 
is similar to the one with Pulla's curvature estimation where the barrel and the floor are 
the two parts. The question that arises is what is the difference. We find the answer in 
Fig. 7.39. This scene consists of a floor and a box sitting on the floor. Again, Mangan 
and Whitaker's algorithm leads to a surface segmentation in Fig. 7.39(b ) ,  consisting of 
six regions where we have one region for each side of the box and the floor. However, 
with Pulla's curvature method, we see a somewhat unexpected result in Fig. 7.38(c) 
where we have no segmentation. The algorithm failed to segment the scene. The reason 
is that the creases at the base of the box that touch the floor form a contour with 
zero Gaussian curvature. The segmentation algorithm is unable to distinguish these 
crease from planar regions and as a result does not segment the box from the floor. 
Our proposed algorithm using principal curvatures overcomes this problem as seen in 
Fig. 7.39(d) . This figure shows a segmentation consisting of the box and the floor. The 
principal curvatures allow the Fast Marching Watersheds algorithm to differentiate zero 
Gaussian curvature. 

As (Hoffman and Richards, 1984) argue , our algorithm reflects the more likely seg
mentation that a human observer would choose for the above scenes. We highlight this 
comparison with a practical example of a disc brake model in Fig. 7.40. This model is 
a reconstruction from the IVP Ranger Scanner (Sun et al. ,  2002b) . A photograph of 
the disc brake appears in Fig. 7.40(a) , and the corresponding reconstruction appears 
in Fig. 7.40(b) . The output of Mangan and Whitaker is a surface segmentation with 
four regions in Fig. 7 .40( c) . Our proposed method, however, yields only two regions in 
Fig. 7.40(d) . 

These simple examples demonstrate the minima rule and how that rule differs from 
previous mesh segmentations, but a potential drawback does exist. We now study this 
drawback and its implication to the Fast Marching Watersheds algorithm in Figs. 7.41 
and 7.42. The L-shaped hammer objects may seem similar at first glance, but a closer 
inspection reveals that the first object in Fig. 7.41 has a slight indentation at the base 
of the hammer shaft while the second one in Fig. 7.42 does not. A smooth transition 
from the handle to the hammer head exists in the second object. The difference in 
these transitions leads to an ambiguity in the minima rule known as the part cut prob
lem (Singh et al. ,  1999) . With 2D silhouettes , we illustrate this ambiguity in Fig. 7.43. 
The consequence of this ambiguity in our watershed implementation is the results in 
Figs. 7.41 (c) and 7.42(c) . The clear minima rule boundary for the first object leads to 
a segmentation into two parts while the second object results in no segmentation. In 
the first object, the recess of the vertical block relative to the horizontal one forms a 
closed negative curvature boundary. For the second one, no clear minima rule boundary 
is present. As a result , our algorithm leaves the object unsegmented . 
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Figure 7.40: Comparison of segmentation algorithms for automotive disc brake. A 
comparison of segmentation results for a simple scene consisting of a box resting on 
a floor. (a) Photograph of actual disc brake. (b) Rendering of reconstructed triangle 
mesh. ( c) Segmentation results for Mangan and Whitaker's algorithm with four regions. 
(d) Segmentation results for the proposed algorithm with two regions-the inner and 
outer disc. 
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(a) (b) (c) 

Figure 7.4 1 :  Segmentation of L-Shaped hammer. The proposed algorithm segments 
the hammer into two parts: the handle and the head. (a) Rendering of hammer ex
ample. (b) Initial threshold of positive curvature values. ( c) Results of minima rule 
segmentation. 

(a) (b) (c) 

Figure 7.42 : Segmentation of L shape. The proposed algorithm does not segment the L 
shape. The segmentation yields only a single object. (a) Rendering of L shape. (b) Ini
tial threshold of positive curvature values. ( c) Results of minima rule segmentation. 

(a) None (b) Max-Min (c) Median (d) Mean 

Figure 7.4 3 :  Possible part cuts for L shape. 
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We see the part cut problem in real data sets such as in Fig. 7.4 4. This figure is 
a triangle mesh from the Polhemus Corporation (www . polhemus . com) and is a recon
struction of a typical chair. In Fig. 7.4 4(b) , the zoom view shows the segmentation of 
the chair leg and the support bar. These parts follow the minima rule. By contrast, 
Figs. 7.4 4(c) and 7.4 4(d) , show the ambiguity of the part cut problem. For Fig. 7.4 4(c) , 
the algorithm does not segment the chair seat and the connection to the leg into two 
separate parts. Likewise, in Fig. 7.4 4(d) , the algorithm does not cut the chair back 
into a side and top segment. This drawback is not necessarily a problem with the 
Fast Marching Watersheds algorithm, but it is an ambiguity in the minima rule that is 
important to understand. 

In this section, we have compared our proposed algorithm to that of Mangan and 
Whitaker (Mangan and Whitaker, 1999) and Pulla (Pulla, 2 001). Also, we have demon
strated the part cut ambiguity that arises with the minima rule and how that effects 
our segmentation method. This investigation serves as a qualitative analysis of the 
Fast Marching Watersheds algorithm. In the next section, we seek a more quantitative 
investigation. 

7.3.2 Quantitative Analysis 

The previous examples show the capabilities of the Fast Marching Watersheds algorithm 
but do not provide a qualitative analysis of the algorithm parameters. The figures in 
this subsection reflect a more focused investigation to study the choices for a and k user 
parameters. 

The first parameter that we consider is the threshold a in Eq. ( 5.18). Recall that a 
threshold of t >  0 is the ideal case for the minima rule, but we introduced a because we 
must offset the threshold to a slightly negative value to handle practical conditions. If 
we choose the mug, the disc brake, and the chair from the previous sections and analyze 
their curvatures , we see why a is necessary. In Fig. 7.4 5 (a) , we plot the negative 
principal curvatures for each of these three examples. These graphs are bin plots where 
the x-axis denotes the negative curvature bin while the y-axis denotes the percentage of 
vertices with that particular curvature value. These plots are indicative of the general 
trend that we see in most triangle meshes that are reconstructions of objects and scenes. 
A significant number of vertices exhibit curvature very close to zero with a rapid decay 
as one moves away from zero. Most likely, the values near zero should actually be zero, 
but errors in estimation lead to slightly negative values. Therefore, a allows the user to 
group these slightly negative values into the zero curvature bin. 

The question that we face is what value of a provides the most robust results. If we 
again use the mug, we gain insight to this question with the plots in Fig. 7.4 6 .  These 
two graphs study the effects of varying a through the range ( 0, 1). When a =  0, we use 
the ideal threshold of t >  0. When a =  1, we use the average negative curvature value 
as the threshold. The first graph in Fig. 7. 4 6 (a) shows the percentage of the mesh that 
we segment as a varies. From this graph, we see that 6 0% of the mug is segmented 
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(a) (b) 

(c) (d) 

Figure 7.44: Potential drawback of our algorithm with chair example. Fast Marching 
Watersheds segmentation of the Polhemus chair that illustrates the potential drawback 
of the minima rule. (a) Segmentation of the chair. (b) Zoom view of leg and support 
bar showing minima rule segmentation. ( c) Zoom view of seat and leg intersection. The 
algorithm does not segment at this intersection as a result of the part cut ambiguity. 
(d) Zoom view of the top and side support for the back of the chair. As with (c) , the 
algorithm does not segment at this intersection. 
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Figure 7.45: Negative curvature plots. Distribution of negative principal curvatures for 
(a) the mug, (b) the Ranger disc brake, and (c) the Polhemus chair. 
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Figure 7 .4 6: Threshold plots for variations in a::. These plots study the variation of a:: to 
understand the threshold operation. The mesh under consideration is the coffee mug. 
(a) The percentage of the mug that is above the threshold value as a function of a::. 
(b) The number of unique connected regions as a function of a::. 

for a:: = 0 while almost 100% of the mug is segmented for a:: = 1. This re.sult suggests 
that our definition of a:: is an appropriate parameter to control the threshold. 

The second graph in Fig. 7 .4 6  (b) shows the variation of the number of connected 
regions as a function of a::. As with the first graph, the range of a:: yields diverse 
results. When a:: = 0, we generate over 2 5  different unique regions for potential mug 
parts. Obviously, this number is way too many based on our perceptual experience. 
When a:: = 1, the number of connected regions is one as we might expect from the data 
in the first graph. With almost 100% of the mug segmented a natural conclusion is 
that the segmented regions are probably connected. The interesting feature of both of 
these graphs is the "knee" in the plots that occur around a:: =  0. 1. These transitions are 
typical for the data sets we have tested and usually occur between a:: = 0.0 5 and a:: = 0. 2 .  
Thus, with the evidence from these plots and our experience with the data sets, we 
recommend a:: = 0. 3 as the most reliable choice for stable results. With a:: = 0. 3 ,  
we include the capture the knee transition where meaningful threshold results occur. 
However, since we further process the threshold using morphological operations, the 
algorithm is not overly sensitive to this choice, and other choices are useful depending 
on the needs of an application. 

Although a:: is the primary control of the Fast Marching Watersheds algorithm, the 
morphological operations also allow the user to control the algorithm, as well . The pa
rameter for these operations is k, which is the size of the Dk structuring element. The 
sampling density of the mesh tightly couples the choice for k to that for a::. As a result, 
if we fix one value, we most likely have fixed the other value, too. For the sequence in 
Fig. 7 .4 7 , we choose a:: = 0. 3 per our previous discussion, and we vary the value of k. 
The initial threshold without morphological processing appears in Fig. 7 .4 7 (a) . This 
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subfigure shows nine different connected regions, which is more than we expect. Par
ticulary, this threshold leaves small unconnected islands around the base of the handle. 
To improve this result , we first apply the opening and closing operations with k = l 
in Fig. 7 . 4 7 (b). Morphology processing either eliminates the islands or joins them to 
a nearby region. This choice for k in conjunction with our choice for a leads to an 
appropriate marker set. As shown in the subfigure, the marker set now consists of five 
unique regions. Four of the regions correspond to the perceptual parts that we seek in 
a segmentation such as the handle, the cup, the base cusp, and the bottom. However, 
we still have a small island region at the base of the handle. To eliminate this island, 
we can not continue to increase k. Figure 7 . 4 7 (c) demonstrates the effect of applying 
a structuring element with k = 2. This subfigure shows only two unique regions. We 
have lost the markers for our desired perceptual features. The situation continues to 
grow worse when we further increase k = 3 in Fig. 7.4 7 (d) . 

What we conclude is that k = l provides the most useful marker set that mini
mizes the amount of over segmentation. Without morphological operations, the mug 
segmentation would have nine marker regions, which is five more than the desired four 
perceptual regions. Our post processing with the Part Saliency Metric would have to 
account for these five additional regions. With the morphological processing, on the 
other hand, we have one region at the base of the handle that is an over segmentation. 
Thus, we have improved our marker set and reduced the burden on the Part Saliency 
algorithm. Our experience with other data sets besides the mug leads to similar results 
that k = I works best when we choose a =  0. 3. The k = I structuring element essen
tially bridges gaps and removes isthmuses that one to two vertices wide. If we have a 
fairly good curvature estimation and a fairly good threshold, data irregularities of one 
to two vertices are expected. 

7.3.3 Timing Performance 

Finally, the graph in Fig. 7 . 4 8  shows the timing performance of the proposed algorithm 
for the mug data set . To demonstrate the performance, we vary the resolution of the 
mug mesh with a mesh simplification algorithm. The initial mug consists of 1 0, 5 5 5 
vertices and 2 0, 910 triangles. We reduce this size in increments of 10% on the x-axis. 
The y-axis is the processing time required. We plot four curves on the graph. Three of 
the curves ( Curvature, Threshold, and Watershed) represent the computational time for 
each individual module of the algorithm. The Threshold time includes the morphology 
operations, as well . The Total time is the summation of the three modules. The 
curves appear close to linear except for the jump in the Threshold curve from 5 0% 
to 6 0%. This jump occurs because below 5 0% the mug does not require morphology 
operations to clean up the threshold while above 6 0% the opening and closing operations 
are necessary. The jump reflects the performance cost for the morphology operations. 
We also note that the fast marching module of the algorithm contributes very little 
to the overall timing while the curvature module contributes the most. Although the 
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(a) (b) 

(c) (d) 

Figure 7.47: Effects of structuring element size for morphology processing. For these 
examples, we vary the size of the structuring element Dk for the morphology operations. 
(a) Initial threshold of the mug with a = 0.3 results in 25 unique marker regions. 
(b) Set k = I and apply opening and closing operations results in five unique marker 
regions. (c) Set k = 2 leads to two marker regions. (d) Set k = 3 also leads to just two 
marker regions. 
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Figure 7 .4 8: Timing performance for the mug. The plot of the code modules is for the 
Fast Marching Watersheds as a function of mesh size. 

O(n log n) nature of fast marching is inherently fast, the fact that thresholding alone 
segments typically 7 0  to 90% of the mesh improves the performance, as well. 

7 .4 Part Saliency Metric 

With the results from the previous two sections, we are able to compute the principal 
curvatures at each vertex of a triangle mesh and then segment the mesh along lines of 
negative curvature minima. Our implementation of the minima rule decomposes a mesh 
into visual parts. To evaluate the quality of the visual parts, we have developed the 
Part Saliency Metric algorithm. In this section, we analyze this algorithm. We assume 
that we have a mesh that has been segmented into visual parts according to the minima 
rule. These parts however may or may not be visually salient to a human observer. The 
algorithm measures the perceptual importance of each part based on a theory of human 
vision. We first evaluate in a qualitative manner how the algorithm computes saliency, 
and then we compare this measure to other possible measures. Finally we conclude with 
an evaluation of the timing performance of the algorithm. 

7 .4. 1 Qualitative Analysis 

Recall the sequence of part merges for the mug in Figs. 6 .1 and 6 .2. For this sequence, 
the Part Saliency Metric controls the merge of the least salient parts as we move from 
a segmentation of five parts to a single part. We claimed in these previous figures that 
the sequence followed the measured saliency values, but we did not present those values. 
We now do so in Figs. 7 .4 9  and 7 .5 0. 

The bar charts in these figures demonstrate the relative salience of each part. In 
the charts, we have ordered the bars such that the most salient parts are on the left 
of the graph while the least are on the right. The legends of each graph show the 
corresponding part of the mug. The cup, handle, and bottom parts are fairly obvious 
while the knob and base may not be. The latter two parts are an oversegmentation. 
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Figure 7.49: Bar graphs of part saliency metric for mug (I) . These bar graphs show the 
saliency metric for each part of the mug. The progression sequence shows the metric 
changes as we simplify the number of parts for the mug. (a) Five parts: cup, handle, 
base, bottom, and knob. (b) Saliency metrics for these five parts. ( c) Four parts: 
bottom merges with base. ( d) Saliency metrics for these four parts. 
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Figure 7.50: Bar graphs of part saliency metric for mug (II) . These bar graphs show the 
saliency metric for each part of the mug. The progression sequence shows the metric 
changes as we simplify the number of parts for the mug. (a) Three parts: cup, handle, 
and base. (b) Saliency metrics for these three parts. ( c) Two parts: bottom merges 
with cup. (d) Saliency metrics for these two parts. 
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The knob is the small portion at the top intersection of the handle with the cup. The 
base is the flat region underneath the mug. From Fig. 7.49(b) , we see that the knob, 
the base, and the bottom are the least salient parts of the initial segmentation. They 
have almost equivalent values. The algorithm selects the bottom as the least salient 
and merges it with the base. This operation results in the new bottom, which exhibits 
a larger salience than either the base or original bottom alone as shown in Fig. 7.49(d). 
The merger clearly leaves the knob as the least salient part. So, if the merge algorithm 
continues, the knob joins the cup with the results in Fig. 7.50(b ). Finally, we merge 
the bottom with the cup in Fig. 7.50(d).  The measured saliency values drive the merge 
progression of least salient parts to more salient ones. 

As these bar graphs show, the importance of the Part Saliency Metric is to evaluate 
the quality of each part as a part itself. For example, the knob, the base, and the bottom 
in the original segmentation are not visually significant parts, and we have a measure 
that quantifies this notion. Further, if we merge the base and the bottom, we see that 
these parts together form a more visually significant part, and the measure captures 
this change, as well. This ability to measure the quality of each part is the contribution 
of this algorithm. 

We continue to explore the saliency measure in the remaining figures of this section. 
Here, the data set is an automotive distributor cap. The triangle mesh for this model 
consists of 65K vertices with 130K triangles. A rendering of the model appears in 
Fig. 7.5l (a) with the part decomposition in Fig. 7.5l (b). This decomposition consists 
of 20 different parts. The saliency algorithm generates an adjacency graph that shows 
the interconnection of these parts. This graph appears in Fig. 7.5 2. The nodes of the 
graph represent the parts while the edges define the part connections. We have manually 
assigned the node labels to describe the appropriate part of the distributor cap. This 
graph benefits other computer vision tasks such as object recognition. 

Once we have a graph representation of the segmentation, we can also apply the 
four-coloring algorithm as in Fig. 7.5 3. The segmentation in Fig. 7.5 3(a) is the orig
inal segmentation where a simple method alternates among a palette of 16 different 
colors. For some segmentations, this method is adequate and usually does not lead to 
ambiguities for full color visualizations such as on a computer monitor. However, in 
grey scale such as one may find with a laser printer, the 16 colors are visually difficult 
to distinguish for adjacent parts as in Fig. 7.5 3(c). With a palette of four colors and 
the four-coloring algorithm, we are able to improve the color labels as in Fig. 7.5 3 (b). 
With these labels, the colors do not simply cycle among the palette, but rather the 
algorithm intelligently selects a color from the palette so that adjacent parts do not 
share a common color. This approach improves the contrasts for visualizations in grey 
scale such as Fig. 7.5 3(d). The four-color labeling of the segmentations is often more 
visually pleasing for output in grey scale. 

The previous results for the distributor cap demonstrate the adjacency graph and 
the four-coloring problem for the Part Saliency Metric , but the heart of the algorithm 
is the saliency measure as shown previously with the mug data set. The bar graph 
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(a) (b) 

Figure 7.51 :  Segmentation of distributor cap. These screen shots show the segmentation 
of the distributor cap model, which consists of 65, 397 vertices and 129, 849 triangles. 
(a) Rendered view showing the shape of the model. (b) Colored labeling of the segmen
tation. 
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Figure 7 . 5 2: Part adjacency graph for distributor cap model. The above undirected 
graph is the part adjacency graph for the segmentation of the distributor cap model. 
The nodes of the graph represent the parts of the model while the edges represent the 
connections between parts. We manually assign the node labels. 
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(a) (b) 

(c) (d) 

Figure 7 .53: Segmentation of distributor cap with four-color labeling. This coloring of 
the distributor cap segmentation is the result of a four-color graph algorithm. Such an 
algorithm improves the distinction of the region colors, especially for black and white 
contrast. (a) Color labels that alternate among a palette of 16 different colors. (b) Four
color labels where adjacent regions never share a common color. (c) Grey scale version 
of (a) . ( d) Grey scale version of (b) . 
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Figure 7 .54 : Bar graph for part saliency of distributor cap. The bar graph shows the 
relative saliency of each part from the initial segmentation of the distributor cap. This 
segmentation is before merging of the least salient parts. The parts with the smallest 
saliency are parts u and v, which correspond to the "bad" parts. 

in Fig. 7 .54 shows the saliency values for the distributor cap parts. Note that this 
graph has values for 22 parts whereas the results in Figs. 7 .51 and 7 .52 are for only 2 0  
parts. The two extra parts are u and v. As the bars indicate, these parts have the 
smallest values, and thus the algorithm merges them with other parts to achieve the 
final segmentation in Fig. 7 .5l (b). We qualitatively call parts u and v "bad" parts. 
The letter designation for each part and its corresponding description are in Table 7 .5. 

Fig. 7 .55 shows the physical location of parts u and v on the distributor cap. They 
occur at the rear where some irregularities in the surface of the model occur. These 
irregularities are most likely measurement errors that lead to problems in surface recon
struction. As the zoom views in these figures show, neither part bounds a significant 
volume, nor do they protrude much from the model. These factors lead to small saliency 
values. By comparison, the other parts of the distributor cap have significantly larger 
values. Consider the largest part a, which is the center cap from where the other parts 
extend. This cap occupies the most volume and is thus the most significant part of the 
model. The advantage of the proposed measure, however, is when we consider parts 
such as the screw s. A zoom view of this screw appears in Fig. 7 .56. In terms of surface 
area, the screw seems quite small in comparison to u and v. Indeed it is small , but 
in terms of salience as shown in the bar graph, the screw is much larger. This result 
agrees with our visual perception since most human observers would select the screw 
over parts u and v as salient features of the distributor cap. 

The third least salient part in the graph of Fig. 7 .54 is part t. This part is a small 
protrusion at the base of the distributor cap. The zoom view in Fig. 7 .57 shows a better 
view of this part. From the bar graph, we know that this part is only slightly more 
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(a) (b) 

(c) (d) 

Figure 7.55: Trimming bad parts from distributor cap model. The views on the left 
show "bad" parts from the segmentation of the distributor cap. The views on the right 
show how evaluation with the saliency metric allows us to merge these parts to improve 
the segmentation. (a) Rear view of distributor cap after initial segmentation with 22 
parts. (b) Rear view of distributor cap after merging least salient parts with 20 parts. 
( c) Zoom view of region of interest in (a) showing two "bad" parts: u and v. ( d) Zoom 
view of corresponding region in (b) . 
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Table 7 .5 : Part labels for distributor cap model. Part letter designations for distributor 
cap model with corresponding descriptions. 

a Cap i Base D p Screw A 
b Base j Base F q Link Base 
C Base A k Plug B r Base B 
d Link Tube I Plug D s Screw C 
e Plug E m Screw B t Base C 
f Plug C n Base E u Bad Part A 
g Link Cap 0 Screw D V Bad Part B 
h Plug A 

--

(a) (b) 

Figure 7 .5 6 :  View a screw part for distributor cap. The salience metric allows the 
algorithm to preserve salient, or "good" , such as this screw, which is part s .  (a) The 
broad view that shows the context of the zoom view in (b). (b) A zoom view of the 
screw that protrudes from the base of the model. 
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(a) (b) 

Figure 7 .57 : Side view of distributor cap. The base of the distributor cap consists of 
a few different regions. One of those regions is a small protrusion, which is part t. 
( c) This view shows the context for the view in ( d). ( d) A zoom view of the base that 
protrudes from the model. 

salient than u and v, but less salient than the screw s. The question is whether or not 
this part is a "good" or a "bad" part. This decision is essentially a threshold of the 
saliency measure. Since this threshold differs for different human observers, establishing 
a unique criteria is not trivial-and may not be possible. Thus, we pose this question as 
an area of future research. The control of the merge algorithm requires the specification 
of a minimum saliency value to define "good" parts. 

7.4.2 Quantitative Comparison 

We now investigate the Part Saliency Metric in a more quantitative manner. In particu
lar, we compare the results of the saliency measure to two other measures for evaluating 
the quality of the segmentation.The first measure that we compare is the surface area of 
the part. To compute this measure, we simply sum the areas for each triangle associated 
with a particular part. Sun et al. (Sun et al., 2 002 a) use this approach to improve their 
segmentations. The approach assumes that regions that have a small area relative to 
some threshold are oversegmentations. The second measure is the watershed depth of 
the part. To compute this measure, we find the minima watershed height for a part 
and difference this value with the maximum height along the boundary of the part. 
With our curvature definition for watershed height, this approach means that we find 
the maximum principal curvature for a part and then the minimum principal curvature 
along a part boundary. The difference between these values is the depth of the part . . 
The assumption is that parts with small depths are oversegmentations. This method 
is common in the literature (Mangan and Whitaker, 1999; Rettmann et al., 2002). We 
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have found these methods to be ad hoc and are not as robust as the visual saliency 
measure that we have proposed. The results that follow support this argument. 

To begin our comparison, we first create a set of synthetic triangle meshes to high
light the variations between the different methods. These objects appear in Fig. 7.58 
and their corresponding segmentations appear in Fig. 7.59. These objects consist of two 
parts : a lower box and an upper box. The physical dimensions of the lower box are the 
same among the four objects while dimensions of the upper boxes vary. The variation 
is such that the visual saliency of the upper box increases from left to right and top to 
bottom in the figure. We label the four objects as shown. 

We have carefully de�ned the dimensions of the upper boxes to highlight the differ
ences of the three quality measures. For example, the doormat and tall box object have 
roughly the same surface area while the pancake and short box have approximately half 
that surface area. For the watershed depth,  the doormat object has almost zero depth 
while the pancake, short box, and tall box have nearly identical maximum and minimum 
curvature values. However, by varying the bounded volume, the part protrusion, and 
the boundary strength, each of the parts have very different visual saliency values. 

We begin with a comparison for the part area in Fig. 7.60. These measures result in 
almost equivalent values for the doormat and the tall box, and their values are the largest 
of the four objects. The pancake and short box objects, on the other hand, have the 
smallest values. These values reflect our careful creation of the synthetic data set. With 
this measure, one might conclude that the doormat is a better part segmentation than 
either the pancake or short box. This conclusion disagrees with our visual perception 
of the parts, however. The doormat is almost flush to the top surface of the lower box 
and has very little visual importance, but the pancake and the short box are readily 
discernable as they protrude from the lower box. They perceptually stick out .more than 
the doormat. · The part area does not necessarily capture our visual perception of the 
parts. A large region in terms of area does not directly imply a "good" part. The "bad" 
parts from the distributor cap in Fig. 7.5 5(c) are a practical example. 

If part area does not quite meet our needs, then we next consider the part depth as 
a quality measure. Since we are using a watershed algorithm to generate our segmen
tations , we can define a watershed depth to evaluate the quality of the segmentation 
regions. For our synthetic data sets, the results appear in Fig. 7.61. Interestingly, the 
doormat receives the lowest value, which was not the case with part area previously. 
So, this measure might be useful for the parts in Fig. 7.5 5(c). The problem with this 
measure, however, is that it does not discriminate the size of a part. Whereas the part 
area measure is completely reliant on size, the depth measure offers no insight to the 
part size. Consequently, the pancake, short box, and tall box parts have almost identical 
values even though they are quite different in size. This measure does not distinguish 
among these three objects, and yet a human observer would most likely argue that 
they are different. Human perception would factor their relative size in evaluating their 
quality as a part. As a practical example, this measure gives very similar results for the 
screw in Fig. 7.5 6(b) and the plugs at the top of the distributor cap in Fig. 7.5l (b). 
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(a) A: Doormat (b) B: Pancake 

(c) C: Short Box (d) D: Tall Box 

Figure 7.58: Synthetic objects for saliency comparison. These objects consist of two 
parts. The lower box is the same size for each of the objects. The upper box has varying 
dimensions to simulate different visual saliency values. (a) The doormat object where 
the top part is almost flush with lower box. (b) The pancake object where the top part 
protrudes only slightly. (c) The short box object where the top part has significant 
volume and protrusion. ( d) The tall box object where the top part extends like an 
obelisk from the lower part . 
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(a) A: Doormat (b) B: Pancake 

( c) C: Short Box (d) D: Tall Box 

Figure 7.59: Segmentation of synthetic objects for saliency comparison. These segmen
tations show the parts for the objects of the previous figures. Each object consists of 
two parts. (a) The doormat object where the top part is almost flush with lower box. 
(b) The pancake object where the top part protrudes only slightly. (c) The short box 
object where the top part has significant volume and protrusion. (d) The tall box object 
where the top part extends like an obelisk from the lower part. 
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Figure 7.60: Comparison of part area for synthetic objects. This bar graph shows the 
relative part area for the top part for each of the synthetic objects. 
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Relative Curvature Depth 
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Figure 7 . 61: Comparison of watershed depth for synthetic objects. This bar graph 
shows the relative depth in terms of the watershed catchment basin for the top part for 
each of the synthetic objects. Recall that the segmentation algorithm is a watershed 
method. 

The Part Saliency Metric takes a different approach from either of these two mea
sures. Our proposed measure attempts to model human visual perception. Most human 
observers would rank the top part of the four objects in a manner similar to the graph 
values in Fig. 7 . 62. These values are the results from the Part Saliency Metric algo
rithm. The agreement between this graph and human perception is the power of this 
algorithm over the area and depth measures. The measure allows one to readily distin
guish among the four objects unlike the depth measure, which gave equivalence to the 
pancake, short box, and tall box parts. The proposed measure factors the size of the 
part into the estimation of its saliency, yet the measure does not totally consider the 
size as the part area measure does. The saliency measure also includes protrusion and 
boundary strength factors such that the doormat receives the smallest saliency value. 

These three graphs in Figs. 7 . 60 through 7 . 62 motivate our interest and design of 
the Part Saliency Metric .  This measure allows us to quantify and evaluate the quality 
of each part in a segmentation and thus to merge parts that do not meet a minimum 
salience requirement. We are able to improve our minima rule decompositions with 
this measure. We next study the computational performance of the algorithm for this 
measure. 

7.4.3 Timing Performance 

We finally explore the timing performance of the proposed algorithm. The bar chart 
in Fig. 7 . 63 gives the timing results in seconds for ten different mesh examples where 
we denote the examples in Table 7 . 6. Each bar is the time required to compute the 
saliency of each part for a particular mesh. The implementation for these results is in 
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Figure 7.62: Comparison of part salience for synthetic objects. This bar graph shows 
the relative part salience for the top part for each of the synthetic objects. 

Visual C++ on a desktop computer with an Intel Pentium IV at 1 .8GHz with 512MB 
memory. Since the algorithm is a function of the triangle count for a mesh and the 
number of segmentation parts , we evaluate the performance of the algorithm with a 
range of examples. Since most objects consist of a small number of parts, the algorithm 
is almost linear with the number of triangles in the mesh. Although the algorithm has 
computational complexity of O(m + n) where m is the number of visual parts and n is 
the number of triangles in the mesh, the algorithm is essentially O(n) since n is often 
much larger than m. We also note that we have not optimized our implementation. 
The times reported in the graph could probably be reduced significantly with tuning. 

This section concludes our experimental results for the Minima Rule Algorithm 
and the three algorithms associated with it: Normal Vector Voting, Fast Marching 
Watersheds, and Part Saliency Metric. This section serves to document the qualitative 
and quantitative results of each algorithm along with the performance characteristics 
for each. We now move to the final section of this dissertation, which is the conclusions 
that we draw from these results and the discussion of future directions for this research. 
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Figure 7.6 3: Timing performance for various triangle mesh objects. This bar graph 
shows the time in seconds required for the Part Saliency Metric algorithm. The graph 
shows timing performance for a variety of meshes that are different sizes in terms of 
triangle count and consist of different numbers of parts. 

Table 7.6 : Mesh characteristics for timing performance examples. 

Object Vertices Triangles Parts 

A Teapot 3, 03 4 6 , 010 5 
B Watering Can 8, 086 15 , 84 3 6 
C Coffee Mug 10, 05 5  2 0, 910 4 
D Chair 2 6 , 7 6 6  5 3, 4 6 2  11 
E Bore Pin 3 7 , 4 5 0  7 4, 896 6 
F Disc Brake 3 7 , 3 3 2  7 3, 5 5 3  2 
G Hand Crank 4 6 , 87 0  93, 7 5 2  7 
H Cone Scene 6 1, 02 7  117 , 7 7 8  6 
I Bunny 3 4, 83 4 6 9, 4 5 1  8 
J Distributor Cap 6 5 , 3 97 12 9, 84 9 2 0  

16 6 

........ 
<O 
-0 
C: 
0 
0 

fQ, 
E 



Chapter 8 

Conclusions 

In this dissertation, we have described an algorithm to decompose triangle meshes that 
approximate piecewise smooth surfaces into visual parts. This decomposition models 
the selection of parts that most human observers would choose for the same meshes. 
This research leverages the human vision theory known as the minima rule. As our final 
illustration of the algorithm, we once again recall our coffee mug example in Fig. 8. 1 .  
In the previous chapters, we have reviewed other research in the literature similar to 
this algorithm as a context for our contributions, and we have presented the supporting 
theory along with experimental results to document the algorithm itself. We now con
clude this dissertation with a brief summary of the contributions and a short discussion 
of future directions. 

(a) (b} (c) 

Figure 8. 1 :  Mug example decomposition. This final example shows the decomposition 
of the mug. (a) The input triangle mesh that approximates the piecewise smooth surface 
of the coffee mug. (b) The output of the Minima Rule Algorithm that illustrates the 
visual parts of the mug with color-coded labels. ( c) An adjacency graph representation 
of the decomposition with user-specified labels for the nodes of the graph. 
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8.1 Summary of Contributions 

The primary contribution of this research as described in this dissertation is the creation 
of the Minima Rule Algorithm. This algorithm extends the state of the art in 
computer vision research through the implementation of a human vision theory. Within 
this algorithm, we offer three other contributions as follows: 

• Normal Vector Voting. This contribution is a novel algorithm for the estima
tion of surface curvature at the vertices of a triangle mesh. The strength of this 
algorithm is its robustness to measurement noise. 

• Fast Marching Watersheds. This mesh segmentation algorithm identifies nega
tive minima curvature contours to segment a mesh into regions. This contribution 
follows the definition of visual parts with regard to the minima rule theory. 

• Part Saliency Metric. This novel measure associates a visual significance, or 
saliency, value with each minima rule part of a mesh. This value allows us to 
merge the least salient parts with other more salient ones and thereby to address 
oversegmentation. 

For each of these contributions, we have presented both qualitative and quantitative 
results to demonstrate their strengths and to analyze their limitations. We have pub
lished the Normal Vector Voting algorithm in (Page et al. ,  200 1; Page et al . ,  200 3f) with 
extensions in (Page et al., 200 2) .  An additional paper (Page et al . ,  200 3c) extends our 
proposed curvature algorithm to the notion of shape complexity. The Fast Marching 
Watersheds is to appear in (Page et al. ,  200 3a) and we have submitted the Part Saliency 
Metric to (Page et al . ,  200 3b; Page et al. , 200 3g) for review. Further, a general overview 
paper is to appear in (Page et al. ,  200 3d) .  With this summary of the con�ributions, we 
now turn to the future directions for this research. 

8.2 Directions for Future Research 

The ideas and concepts in this dissertation offer interesting avenues for future research. 
Although many directions are possible, we have identified the following areas as partic
ularly important. 

8.2.1 Automatic Parameter Selection 

The first major area for future research is in automatic selection of the user parameters 
associated with each algorithm in this dissertation. Although the algorithms are fairly 
insensitive to the parameters in that they do not require fine tuning by the user to 
achieve quality results , the requirement for user selection is a minor limitation. Auto
matic selection of the parameters is not an impossible task, but it does require additional 
research. We consider the parameters for each algorithm, individually. 
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For Normal Vector Voting, we have three parameters as noted in Table 4 .2. These 
parameters are essentially controls to overcome approximation error in the mesh relative 
to the original surface. One solution is statistical analysis of the variation of the mesh. A 
statistical model could define the appropriate neighborhood size for the voting algorithm 
and also the decision thresholds for the vertex classification. Another solution is to 
redesign the voting process. Currently, our scheme is a two step process that requires 
eigenanalysis at each step. A potential reformulation is to avoid the eigenanalysis during 
the first step through vector summation instead of the current matrix summation. We 
have discussed the weaknesses of such an approach in the previous theory sections, 
but the possibility of overcoming these weaknesses is an interesting avenue for future 
research. The computational cost for the eigenanalysis is considerable. 

The Fast Marching Watersheds algorithm requires two user parameters as noted 
in Table 5.2. As with the pervious parameters, these variables allow control over the 
level of robust of the algorithm to errors in curvature estimation. Again, statistical 
analysis of the data may offer a solution. Another approach is to include additional 
mathematical morphology operations into the algorithm. For example, one possibility 
is the skeletonization, or thinning, operation (Rossl et al., 2000). Since we initially 
threshold the vertex curvatures to establish regions of negative minima curvature, a 
thinning operation would collapse regions into either a point or a contour. The regions 
that collapse to a point do not bound a visual part while ones that collapse to a contour 
do. A simple filtering of point regions would minimize oversegmentation. We need to 
address a few problems with this approach, however, but it does eliminate the need for 
the user to select a disc size for the opening and closing operations. 

Finally, we consider the parameters for the Part Saliency Metric in Table 6 . 1. These 
parameters are more subjective than the previous ones since they are a direct function 
of human perception. An novel extension to this algorithm would be to avoid these 
parameters entirely through an artificial neural network solution. The proposed saliency 
measure is a combination of three measurable quantities of a part: the relative size, the 
relative protrusion, and the part boundary strength. These values could serve as input 
to a neural network with the output being the part saliency. The key to this approach 
is establishing a training set and thus an area for future research. 

8.2.2 Object Recognition 

Object recognition is an extremely difficult task with most current solutions limited to 
very constrained and restricted problem domains. Although the Minima Rule Algo
rithm alone offers no contributions in terms of recognition, as an implementation of a 
human vision theory, it might serve as a first step in the recognition pipeline. Shapiro 
and Stockman (Shapiro and Stockman, 2001 )  suggest commonly used paradigms for 
object recognition where the method chosen depends heavily on the application. They 
discuss two paradigms that might be applicable to the results in this dissertation: the 
matching relational models and the matching functional models. Both of these mod
els use part relationships to move away from a geometric definition of an object to a 
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more symbolic one. Our decomposition algorithm might benefit the creation of such a 
symbolic representation from a mesh representation. 

8.2.3 Complexity Measures 

Another avenue for future research is to measure the complexity of an object or scene. 
Two possible candidate measures from this research are shape complexity and graph 
complexity. 

First, we might use curvature estimates from Normal Vector Voting to evaluate the 
shape complexity of a surface mesh. Since the algorithm estimates principal curvatures 
at each vertex, we can generate probability distribution curves. With these curves, we 
can formulate an information theoretic based on entropy to define shape complexity. 
In the spirit of Claude Shannon's definition of information, this measure would reflect 
the amount of shape information that an object possesses. Objects and scenes with 
nearly constant curvature would contain relatively low values of shape information. 
While other objects and scenes with significant variation in curvature would exhibit 
fairly large values. Through some basic experiments, we have already begun to explore 
these ideas, and currently the selection of appropriate bin widths for estimation of the 
distributions is a hurdle that we must address. Kernel density estimation is one solution 
to this issue, but more research is necessary. 

A second measure of interest is graph complexity for the Part Adjacency Graph. A 
common measure of graph complexity is through the matrix-tree theorem (Bondy and 
Murty, 197 6 ;  Chartrand, 197 7 ) , which gives the number of nonidentical spanning trees of 
a graph. This complexity measure gives insight to the number of visual parts and their 
degree of interconnectedness. Perhaps, we can derive other measures of complexity, but 
these two are of current interest. 

8.2.4 Exponential Map 

A side topic that has developed from the geodesic distance work in Normal Vector Voting 
and Fast Marching Watersheds is the computation of an exponential map for a mesh. 
With the work of Kimmel and Sethian (Kimmel and Sethian, 1998), we can compute the 
geodesic distance from one vertex of a mesh to another. A natural extension might be 
to also compute the departure angle of the geodesic path from one vertex to another. If 
we can compute this angle, then we can create a geodesic polar mapping (O'Neill, 1997 ) .  
The problem is that Kimmel and Sethian's method does not preserve angular measures 
as the algorithm marches across the surface of a mesh. However, the quasi-conformal 
mappings discussed in (Hurdal et al., 1999) do preserve angular values. The concepts 
in (Hurdal et al. ,  1999) along with the straightest geodesic research in (Polthier and 
Schmies, 1998) may provide a means to compute the departure angle. Subsequently, a 
combination of these methods with Kimmel and Sethian's work may yield an algorithm 
to define an exponential map over a triangle mesh. 
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(a) (b) 

Figure 8.2 : Examples of part boundaries that are not smooth. The current implemen
tation of the part decomposition algorithm does not nece.ssarily lead to visually pleasing 
boundaries in terms of smoothness. These zoom views, both (a) and (b) show the jagged 
nature of the final part boundaries, which are the white triangles in views. A direction 
of future research is to smooth these boundaries. 

8.2.5 Discrete Fast Marching Watersheds 

The current implementation of the proposed Fast Marching Watersheds algorithm is a 
continuous implementation. The term continuous means that the values for the height 
map have real values from zero to infinity. The initial motivation for this continuous 
approach is that our curvature data is also continuous. A potential modification, how
ever, is to assign these continuous height levels-via some constraint-to discrete integer 
levels. This extension is a discrete implementation of Fast Marching Watersheds. 

The advantage is that a discrete definition of the height map suppresses variations in 
the curvature values and thereby improves the segmentation results. A tradeoff exists, 
though. Fewer levels lead to greater rejection of curvature noise, but more levels lead 
to better identification of the negative curvature minima. The success of the method 
thus requires a balance. Our future research is to investigate this balance. 

In addition to noise suppression, the method may also improve the boundaries be
tween parts. Currently, the contours that form the boundaries strictly follow the nega
tive curvature minima, which are often jagged and not visually pleasing. The examples 
in Fig. 8.2 demonstrate this problem. Although the Fast Marching Watersheds algo
rithm properly identifies the boundaries, it does so without regard to smoothing con
straints. A discrete definition of the height in conjunction with the principles of geodesic 
erosion (Vincent and Soille, 1991 ; Sun et al. , 2 002 a) may produce smoother boundary 
contours while still remaining close to the minima. The distance constraint of geodesic 
erosion should incorporate some boundary smoothing into the part segmentations. 
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8.2.6 Visualization Applications 

The final topic for future research is the incorporation of the decomposition into mesh 
simplification algorithms. In 3D computer graphics, these algorithms are very common. 
They attempt to reduce the number of triangles - in a · mesh without loss of fidelity in 
the visual appearance of the mesh. . Our Minima Rule Algorithm may benefit these 
algorithms. A simple illustration in Fig. 8.3 shows the potential of this approach. 
Without decomposition, the simplification algorithms require more triangles around 
the part boundaries to preserve the fidelity of the boundaries. With decomposition, 
the boundaries do not constrain the simplification process. The application of our 
decompositions to mesh simplification is an interesting topic of future research. 

8.3 Discussion with Closing Remarks 

In the first chapter of this dissertation, we began with a mental exercise involving the 
coffee mug. With this exercise, we suggested that most human observers decompose 
the mug into three visual parts: the cup, the handle, and the base. Throughout this 
dissertation, . we have explored the minima rule as one potential · theory . that partially 
explains our selection of these · parts. . Further, we have developed the Minima Rule 
Algorithm in the spirit of this theory as a computer vision algorithm to model human 
perception. Obviously, the minima rule and our implementation of that rule do not 
completely capture the perceptual power of the human mind, but hopefully the concepts 
presented in this dissertation do provide a step-if only a small step-towards extending 
the state of the art in computer vision. 

"A JOURNEY OF A THOUSAND MILES BEGINS WITH A SINGLE STEP ."  

-CONFUCIUS 
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(a) (b) 

(c) (d) 

Figure 8. 3 :  Application of part decomposition to aid mesh simplification. Part decom
position such as the Minima Rule Algorithm may aid mesh simplification algorithms. 
These meshes illustrate the benefit of segmenting the original mesh into a floor and bar
rel. As a part of the decomposition, we have also applied a hole filling algorithm to fill 
the boundary holes after decomposition. (a) The original mesh requires over lOK trian
gles. (b) Simplification without part decomposition. (c) Decomposition into a floor part 
with simplification. ( d) Decomposition into a barrel part with simplification. Both ( c) 
and (d) together require 2 5 0 triangles, and (b) also requires 2 5 0 triangles. Notice that 
the floor in ( c), however, only requires three triangles while the one in (b) many more 
than that. 
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