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ABSTRACT

TERRAIN VISIBILITY OPTIMIZATION PROBLEMS

Düger, İbrahim

M.S. in  Industrial Engineering

Advisor: Assoc. Prof. Barbaros Tansel

September, 2001

The Art Gallery Problem is the problem of determining the number of observers

necessary to cover an art gallery such that every point is seen by at least one

observer. This problem is well known and has a linear time solution for the 2

dimensional case, but little is known about 3-D case. In this thesis, the dominance

relationship between vertex guards and point guards is searched and found that a

convex polyhedron can be constructed such that it can be covered by some number

of point guards which is one third of the number of the vertex guards needed. A new

algorithm which tests the visibility of two vertices is constructed for the discrete

case. How to compute the visible region of a vertex is shown for the continuous case.

Finally, several potential applications of geometric terrain visibility in geographic

information systems and coverage problems related with visibility are presented.

Keywords-Art Gallery Problem, Terrain visibility, Facility Location.
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ÖZET

ARAZİ GÖZETLENMESİNİN OPTİMİZASYONU

Düger, İbrahim

Endüstri Mühendisliği Bölümü Yüksek Lisans

Tez Danışmanı: Doç. Barbaros Tansel

Eylül, 2001

Sanat Galerisi Problemi bir sanat galerisinin her noktasının en az bir kamera

tarafından gözetlenebilmesi için gerekli kamera sayısının ve yerlerinin bulunması

problemidir. Bu problem 2 boyut için linear bir çözüme sahip olmasına rağmen 3

boyutlu durumlar hakkında fazla bilgi bulunmamaktadır. Bu tezde, düğüm ve nokta

kameraları arasındaki baskınlık ilişkisi araştırılıp gerekli düğüm kameralarının üçte

biri sayısında nokta kamerası ile gözetlenebilecek bir konveks polihedronun olduğu

gösterilmiştir. Kesikli durumlar için yeni bir görünürlük algoritması geliştirilip

süreklilik durumları için de bir düğümün gördüğü alanın nasıl hesaplanacağı

gösterilmiştir. Arazi görünürlüğü uygulamaları ve gözetleme ile ilgili kaplama

problemleri  de sunulmuştur.

Anahtar Sözcükler: Sanat Galerisi Problemi, Arazi Görünürlülüğü, Makina ve

Tesis Yerleştirme.
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CHAPTER 1

1 Introduction

The Art Gallery Problem (AGP) is the problem of determining the minimum number

of cameras (observers, guards) necessary to cover an art gallery such that every point

is seen by at least one camera. The AGP is posed in 1973 by Victor Klee and Chvatal

[Chv75] showed that  n/3  cameras are sufficient and sometimes necessary to cover

the interior of an n-sided art gallery. Subsequently Fisk [Fis78] gave a concise and

elegant proof using the fact that the vertices of a triangulated polygon may be three-

colored. By using three-coloring Avis and Toussaint [AT81] designed an O(nlogn)

algorithm for placing the cameras. Although many similar problems, including

moving observers, polygones with holes and internal and external visibility have

been studied in computational geometry (CG), little is known about guarding an

object in three dimensions. Prosenjit Bose [Bos97] proved that n/2 vertex guards1

are always sufficient and sometimes necessary to guard the surface of an n-vertex

polyhedral terrain and by using five coloring he presented a linear time algorithm for

placing 3n/5 vertex guards to cover a polyhedral terrain which is clearly not the

optimum.

                                                
1 A vertex guard is a guard that is only allowed to be placed at the vertices of terrain T. Similarly, a
point guard is a guard that is allowed to be placed at any point on the surface of T.
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 Digital elevation models (DEMs) provide an abstract representation (model) of

the surface of the earth by ignoring all aspects other than topography. For instance,

the elevation may be specified on a set of grid points (with stipulated method of

interpolation). Terrain analysis on digital elevation models (DEMs) are among the

most important functions in a geographic information system (GIS) as they have

many diverse applications. Of the many types of information which may be derived

from digital topographic surfaces, visibility, i.e. the location and size of the area

which can be seen from any given viewpoint, is especially useful for terrain analysis

such as navigation, scenic lanscape assessment, terrain exploration, military

surveillance and site analysis for visibility coverage on topographic surfaces. The

resulting abstraction, called geometric visibility, is based only on the intersection

with the terrain of the lines of sight emanating from each viewpoint. Surface

attributes, vegetation, atmospheric diffraction, and light intensity are neglected.

The computation of visibility is affected by the choice of the underlying

computer representation of the terrain. Only regular square grids (RSGs) and

triangulated irregular networks (TINs) have been used so far.

Visibility information can be computed by a few existing methods from RSGs.

In general, the visibility information generated by using RSGs is of doubtful

accuracy because such information is computed using grid cells as the visibility

units. It is for this reason that TINs are preferred as the model for the surface

representation.

Basic analyses for visibility coverage include the determination of the number

of facilities that are needed and how to locate facilities such as fire towers (for
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monitoring forest fires), watch towers (for military surveillance), or radio

transmission stations (for television or radio broadcasting) on topographic surfaces

so that the entire region can be seen or monitored. Similar problems can easily be

found in many other application areas, for example, site analyses for locating a

specified number of facilities (within a limited construction budget) on a topographic

surface so that the area of the monitored region is maximum.

For finding the minimum set of observers on TIN, it is customary to restrict

consideration to viewpoints located at vertices of the triangulation. Although this

restriction makes the problem tractable, it is never questioned.

In this study, we aim to show that visibility problems involving point guards

are nontrivial theoretically and present two algorithms for computing visibility and

we also review some aspects of visibility problems, including Art Gallery Problems,

representation of surfaces and visibility related problems.

Before giving some necessary information about surface models in Chapter 3,

we first present in Chapter 2 a summary of pertinent results regarding the Art Gallery

Problem. At the end of  Chapter 2, we present the terrain visibility problem and give

concise definitions of terrain, visibility, and also some theoretical results. In Chapter

3 digital elevation models are summarized regarding their definitions and

constructions while giving their advantages and disadvantages in visibility-usage.

We concentrate on triangulated irregular networks since they appear to give a more

accurate representation. In Chapter 4, we ask the question “Are point guards worth-

considering?” and demonstrate the effect of point guards on optimization. In

visibility optimization problems, we have two given sets, the candidate set and the
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target set. The candidate set includes the viewpoints to be chosen to optimize the

guarding and the target set includes the points to be watched. With respect to the

given sets, we have 4 cases for visibility optimization  problems depending on which

of the sets are discrete or continuous and study two of them. In Chapter 5, an

algorithm for visibility calculations is constructed when both observer and target sets

are discrete. In Chapter 6, we compute the visible region of a vertex. Due to its

interesting applications, we dedicate Chapter 7 to the visibility optimization

problems. Finally conclusions are presented in Chapter 8.
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CHAPTER 2

2 The Art Gallery Problem

2.1 Problem Definition

The Art Gallery Problem (AGP), which is posed by Victor Klee, is the problem of

determining the minimum number of cameras (observers, guards) and their locations

to cover an art gallery such that every point is seen by at least one camera.

A gallery is, of course, a 3-dimensional space, but a floor plan gives us enough

information to place the cameras. It is customary to model a gallery as a polygonal

region of n vertices in the plane. We further restrict ourselves to regions that are

simple polygones, that is, regions enclosed by a single closed polygonal chain that

does not intersect itself. Thus we don’t allow holes. A camera position in the gallery

corresponds to a point in the polygon. In the simplest version of the AGP, each

camera  is considered as a fixed point that can see in every direction, that is, has a

2π range of visibility.

A camera sees those points in the polygon to which it can be connected with an

open line segment that lies in the interior of the polygon. To make this notion

precise, we say that point x can see point y (or y is visible to x) iff the closed line

segment  xy is nowhere exterior to the polygon P, i.e. xy ⊆ P.

A set of cameras is said to cover a polygon if every point in the polygon is

visible to some camera. Cameras themselves do not block each other’s visibility.
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2.2 Max over min formulation

We have now made most of Klee’s problem precise, except for the phrase “How

many.” Succinctly put, Klee poses the problem as that of finding the minimum

number of guards needed to cover any polygon of n vertices.

For any given polygon, there is some minimum number of cameras that are

necessary for complete coverage. Thus in Figure 2.1(a), it is clear that three cameras

are needed to cover this polygon of twelve vertices, although there is considerable

freedom in the location of the three cameras. But that is not the worst case for all

polygons of twelve vertices: the polygon in Figure 2.1(b), also with twelve vertices,

requires four cameras. This is what Klee’s question seeks: Express as a function of n,

the smallest number of cameras that suffice to cover any polygon of n vertices.

                          (a)                                                                                            (b)

Figure 2.1 Two polygons of n = 12 vertices (a) requires 3 cameras, (b) requires 4 cameras

Let g(P) be the smallest number of cameras needed to cover polygon
Smin  (P) g :P

PS
P covers S :S

⊂

= , where S is a set of points each from P, and  S  is the

cardinality of S. Let Pn be a polygon of n vertices. Define G(n) to be the maximum of

.

. .

..
..
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g(Pn) over all polygons of n vertices: G(n) = )(max nP
Pg

n

. Klee’s problem is to

determine the function G(n).

2.3 Empirical Exploration

2.3.1 Sufficiency of n.

Certainly at least one camera is always necessary. This provides a lower bound on

G(n): 1 ≤ G(n). It seems obvious that n cameras suffice for any polygon: stationing a

camera at every vertex will certainly cover the polygon. This provides an upper

bound: G(n) ≤ n.

2.3.2 Necessity For Small n.

For small values of n, it is possible to guess the value of G(n) with a little

exploration. Clearly every triangle requires just one guard, so G(3) = 1.

 Quadrilaterals may be divided into two groups: convex quadrilaterals and

quadrilaterals with a reflex vertex. A vertex is called reflex if its internal angle is

strictly greater than π . A quadrilateral can have at most one reflex vertex. As Figure

2.2(a) makes evident, even quadrilaterals with a reflex vertex can be covered by a

single camera placed near that vertex. Thus G(4) = 1.

For pentagons the situation is less clear. Certainly a convex pentagon needs

just one camera, and a pentagon with one reflex vertex needs only one camera for the

same reason as in a quadrilateral. A pentagon can have two reflex vertices. They may
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be either adjacent or seperated by a convex vertex, as in Figure 2.2 (b) and (c); in

each case one camera suffices. Therefore G(5) =1.

          (a)                                                        (b)                                                                (c)

Figure 2.2: Polygons n = 4 and, n = 5 vertices.

a)                                                                                    (b)

Figure 2.3: G(6) = 2.

.
. .

.

. . .
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Hexagons may require two cameras, as shown in Figure 2.3(a) and (b). A little

experimentation can lead to a conviction that no more than two are ever needed, so

that G(6) = 2.

2.4 Necessity of n/3

Figure 2.4 illustrates the design for n = 12; note the relation to Figure 2.3(b). This

“comb” shape consists of k prongs, with each prong being composed of two edges,

and adjacent prongs being separated by an edge. Associating each prong with the

seperating edge to its right, and the bottom edge with the rightmost prong, we see

that a comb of k prongs has n = 3k edges ( and therefore 3k vertices). Because each

prong requires its own camera, we establish with this one example that n / 3 ≤ G(n)

for n = 3k. Noticing that G(3) = G(4) = G(5) might lead one to conjecture that G(n) =

n/3.

Figure 2.4: Chvátal’s comb

.. . ..
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2.5 Fisk’s Proof of Sufficiency

The first proof that G(n) = n / 3 was due to Chvátal [Chv75]. His proof was by

induction: Assuming that n / 3 cameras are needed for n < N, he proves the same

formula for n = N by carefully removing part of polygon so that its number of

vertices is reduced, applying the induction hypothesis, and then reattaching the

removed portion.

Three years later Fisk [Fis78] found a very simple proof, occupying just a

single journal page. We will present Fisk’s proof here.

2.6 Diagonals and Triangulation

Fisk’s proof  depends crucially on partitioning a polygon into triangles with

diagonals. A diagonal of a polygon P is a line segment between two of its vertices a

and b that are clearly visible to one another. This means that the intersection of the

closed segment ab with, ∂P,the boundary of the polygon is exactly the set {a, b}.

Another way to say this is that the open segment from a to b does not intersect ∂P

except at a and b; thus a diagonal cannot make grazing contact with the boundary.

Let us call two diagonals noncrossing if their intersection is a subset of their

end-points: They share no interior points. If we add as many noncrossing diagonals

to a polygon as posible, the interior is partitioned into triangles. Such a partition is

called a triangulation of a polygon. The diagonals may be added in arbitrary order, as

long as they are legal diagonals and noncrossing. In general there are many ways to
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triangulate a given polygon. Figure 2.5 shows two triangulations of a polygon of n =

14 vertices.

2.7 Three Coloring

Assume an arbitrary polygon P of n vertices is given. The first step of Fisk’s proof is

to triangulate P. The second step is to “ show ” that the resulting graph may be 3-

colored.

Figure 2.5: Two triangulations of a polygon of n = 14 vertices.

Let G be a graph associated with a triangulation such that the arcs are the edges

of the polygon and the diagonals of the triangulation and the nodes are the vertices of

the polygon. This is the graph used by Fisk. A k-coloring of a graph is an assignment

of k colors to the nodes of a graph such that no two nodes connected by an arc are
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assigned the same color. Fisk claims that every triangulation graph may be 3-colored.

Three coloring of Figure 2.5 are shown in Figure 2.6. Starting at, say, the vertex

indicated by the arrow, and coloring its triangle arbitrarily with three colors, the

remainder of the coloring is completely forced: There are no other free choices.

The third step of Fisk’s proof is the observation that placing cameras at all

vertices of the same color guarantees visibility coverage of the polygon. His

reasoning is as follows. Let red, yellow and blue be the colors used in the 3-coloring.

Each triangle must have each of the three colors at its three corners. Thus every

triangle has a red node at one corner. Suppose cameras are placed at every red node.

Then every triangle has a camera in one corner. Clearly a triangle is covered by a

camera at one of its corners. Thus every triangle is covered. Thus the entire polygon

is covered if cameras are placed at red nodes. Similarly, the entire polygon is covered

if cameras are placed at blue nodes or at yellow nodes.

               Figure 2.6: Two different 3-coloring of the same graph
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The fourth and final step of Fisk’s proof applies the “pigeon-hole principle”: If

n objects are placed into k pigeon holes, then at least one hole must contain no more

than n / k objects. For if each one of the k holes contained more than n / k objects, the

total number of objects would exceed n. In our case, the n objects are the n nodes of

the triangulation graph, and the k holes are the 3 colors. The principle says that one

color must be used no more than n / 3 times. Since n is an integer, we can conclude

that one color is used no more than n / 3 times. We now have our sufficiency proof:

Just place cameras at nodes with the least-frequently used color in the 3-coloring.

In Figure 2.6, n = 14, so n / 3 = 4. In (a) of the figure, yellow is used four

times; in (b), the same color is used three times. Note that the three coloring

argument does not always lead to the most efficient use of cameras.

By using three-coloring Avis and Toussaint [AT81] designed an O(nlogn)

algorithm for placing the cameras. Although many similar problems, including

moving observers, polygones with holes and internal and external visibility have

been studied in computational geometry (CG), little is known about guarding an

object in three dimensions. For more details about the 2-D problem, its applications

and solutions, see [O’R87) and [She92].

2.8  Visibility on Polyhedral Terrains

The problem of guarding a polyhedral terrain was first investigated by de Floriani, et

al. [dFP+86] . They showed that finding the minimum number of guards could be

done using a set covering algorithm. Cole and Sharir [CS89] showed that the
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problem was NP-complete. Goodchild and Lee[GL89] and Lee [Lee91] present some

heuristics for placing vertex guards on a terrain which will be given in Chapter 6.

Prosenjit Bose [Bos97] proved that n / 2 vertex guards are always sufficient

and sometimes necessary to guard the surface of an n-vertex polyhedral terrain and

by using five coloring he presented a linear time algorithm for placing 3n / 5 vertex

guards to cover a polyhedral terrain which is clearly not the optimum. We will now

give some details of this survey but first, some definitions will be given.

We define a terrain T as a triangulated polyhedral surface with n vertices V =

{v1, v2,..., vn }.Each vertex vi is specified by three real numbers (xi,  yi , zi ) which are

its Cartesian coordinates and zi is referred to as the height of vertex vi . It is

convenient to assume that zi is non-negative so that if the X-Y plane is associated

with sea-level, no points on the terrain are below sea-level. Let P = { p1, p2 ,..., pn }

denote the orthogonal projections of the points V = {v1, v2,..., vn } on the X-Y plane,

i.e., each point pi is specified by the two real numbers (xi , yi ). It is assumed that the

set P is in general position, i.e., no three points are collinear and no four are

co-circular so that the projections of the edges of the polyhedral surface onto the X-Y

plane determine a triangulation of P (hence the term triangulated polyhedral surface).

We refer to the triangulation as the underlying triangulated planar graph associated

with the terrain. Two points a, b on or above T are said to be visible if the line

segment ab does not intersect ab any point strictly below T .
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2.8.1 Vertex guards

Bose [Bos97] proves by induction that  n / 2 vertex guards are always sufficient

and sometimes necessary to guard the surface of an n-vertex polyhedral terrain. He

begins with constructing a seven-vertex graph which needs three vertex guards at

least and forms the basis of the lower bound construction. Using that graph he

constructs a series of planar subdivisions at each step by using the former graph.

Finally he presents a linear time algorithm by using five coloring for placing 3n / 5

vertex guards to cover a polyhedral terrain which is clearly not the optimum.

Lemma 2.1 (Lemma 3.1 in [Bos97]) The seven-vertex graph shown in Figure 2.7

needs at least three vertex guards. Furthermore, if three vertex guards are used to

cover it, then at most one of the three guards can be an exterior vertex.

Proof: Suppose that two vertices suffice. One of the inner four vertices must be

chosen to cover the inner triangles. If the central vertex is chosen, then the remaining

unguarded (outer layer) triangles cannot be covered by one guard, as the triangles A

and B do not share a vertex. Therefore, one of the three middle vertices must be

chosen. Without loss of generality, suppose vertex x is chosen. Then, the unguarded

triangles (A and the three triangles adjacent to A) are not coverable by one vertex

guard.

The second step of his proof is that at most one vertex guard can be an exterior

vertex. If all three were exterior vertices, then the middle three triangles would be

unguarded. Suppose that at least two of the vertex guards are exterior vertices.
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x

y z

.w
A

                            B                                            

                                                                                                                          

Figure 2.7. The seven vertex graph

Without loss of generality, let them be the bottom two. We now have A and the

three central triangles (directly below A) unguarded. These triangles cannot be

guarded with one additional guard.

Using the graph in Figure 2.7, he constructs a series of planar subdivisions S1

,..., Sk , where S1 is the graph of Figure 2.7 and Sk+1 is obtained from Sk in the

following manner: let S k+1 be the graph of Figure 2.7 with one of the central triangles

replaced by a copy of Sk (without loss of generality, suppose it is the one below face

A). He shows the following property about Sk :

Lemma 2.2 (Lemma 3.2 in [Bos97]) Sk is triangulated, has nk = 4k + 3 vertices,

needs gk = 2k + 1 guards, and if it is covered by exactly 2k + 1 guards, then at most

one guard is on the exterior face.
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Proof: By induction on k.

Basis: k = 1: Follows from Lemma 2.1.

Inductive Hypothesis: For all k ≤ t, t ≥ 1, Sk is triangulated, has nk = 4k + 3 vertices,

needs gk = 2k + 1 guards, and if it is covered by exactly 2k + 1 guards, then at most

one guard is on the exterior face.

Inductive Step: k = t +1. St+1 is triangulated by construction. It has nt +4 = (4t + 3) + 4

=  4(t + 1) + 3 vertices. He then shows that it requires 2(t + 1) + 1 = 2t + 3 guards,

and that if it uses exactly 2t + 3 guards, only one exterior vertex is a guard. In St+1 ,

there is a copy of St . By induction, this copy of St must use at least 2t + 1 guards. He

considers cases based on how many guards this copy of St uses.

Case 1: The copy of S t uses exactly 2t + 1 guards. Then the copy of S t has at most

one guard on one of its exterior vertices. There are 4 cases: no guard is placed on the

exterior of S t , left vertex (y) is a guard, right vertex (z) is a guard, and the lower

vertex (w) is a guard.

Case 1.1: No guard is placed on the exterior of S t . Since S t is already covered,

two guards suffice to cover the remainder of S t+1 . We have that g t+1 = (2t + 1) + 2 =

2(t+1) + 1. If exactly 2 guards are used, then at most one of them can be on the

exterior of S t+1 .

Case 1.2: A guard is placed at y. This configuration requires at least 2 guards.

If covered with exactly two guards ((2t + 1) + 2 = 2t + 3 guards total), then at most

one is on the exterior face.

Case 1.3: A guard is placed at z. This case is symmetric to Case 1.2.
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Case 1.4: A guard is placed at w. There is a ring of six triangles that requires

two guards and at most one of these guards is on the exterior face.

Case 2: The copy of S t uses exactly 2t + 2 guards. Then the copy of S t may have

guards on all three of its exterior vertices (i.e. w, y, z). However, this still leaves one

face (B) uncovered, so one more guard is required. If only one more guard (2t+3

total) is used, then only that guard may be on the exterior face.

Case 3: The copy of S t uses more than 2t +2 guards. Then the induction hypothesis

is true.

Theorem 2.1 (Theorem 3.1 in [Bos97]) There exists a terrain on n vertices, for any

n ≡ 3 (mod 4) that requires  n / 2 vertex guards.

Proof: Follows directly from Lemma 2.2. For that terrain, we have:

                       g k = 2k + 1  and  n k = 4k + 3, therefore

                      g k = 2 ( ( n k –3 ) / 4)+ 1 = ( ( n k –3 ) / 2 ) + 1 = n k / 2 .

Theorem 2.2 (Theorem 3.2 in [Bos97]) n / 2 vertex guards are always sufficient

and sometimes necessary to guard the surface of an arbitrary terrain T with n

vertices.

Proof: First 4-color the vertices of T '. This can always be done since T 'is a planar

graph. By the pigeon hole principle, among the 4 colors there must be 2 colors such

that no more than  n / 2  vertices are colored by these two colors. Furthermore,

these        n / 2 vertices are sufficient to guard all of the faces of T ' (because every
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triangle must have at least one vertex colored with one of these 2 colors). Necessity

follows from Theorem 2.1.

2.8.2 An Algorithm for Placing Terrain Vertex Guards

Observation 2.1 (Observation 4.1 in [Bos97) Given a five coloring of the vertices

of any terrain, any set of three color classes provides a vertex guarding of the terrain

since every face of the terrain is a triangle except possibly the outer face (i.e. the

outer face of the underlying planar graph which need not be guarded). Based on this

observation, Bose constructs a simple linear time algorithm as follows:

1. 5-color the vertices of the planar triangulation graph;

2. Among the 5 colors, choose 3 colors which are minimally used.
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CHAPTER 3

3 Representation of Surfaces

A natural terrain can be described as a continuous function z = f(x,y) defined over a

simply connected subset D of the x-y plane. Thus a Mathematical Terrain Model

(MTM), which we simply refer to as a terrain, can be defined as a pair M = ( D,f ).

The notion of a digital terrain model (DTM) characterizes a subclass of MTM’s

which can be represented in a compact way through a finite number of data.

Elevation data are acquired either through sampling technologies (on-site

measurements or remote sensing: tachcometers, photogrammetry: stereo pairs of air

photos etc.), or through digitization of existing contour maps. Raw data come in the

form of elevations at a set of points, either regularly distributed, or scattered on a

two-dimensional domain; chains of points may form polygonal lines, approximating

either linear features, or contour lines.

3.1 Terrain Models

There are  three commonly used approaches to the digital representation of an

arbitrary surface. This process of representation is referred to as the construction of a

digital elevation model or DEM. Since the commonest representation of topography

on a paper map is by contours, or lines connecting points of equal elevation, we

might simply digitize the contour lines as ordered sets of points, and assume adjacent



21

pairs of points within each line to be connected by straight lines. Contour maps are

easily transposed onto paper and best understood by humans (Figure 3.1), but are not

suitable for performing complex computer-aided terrain analyses. This is due to the

complete lack of information about terrain morphology between two contour lines.

Thus the major disadvantage of this approach as a digital representation is that it

provides a very uneven density of information; uncertainity about a randomly chosen

point’s elevation is zero on each contour line, and increases directly with the point’s

distance from the nearest line. To obtain an accurate representation of an entire

surface it is therefore necessary to use a large number of contours for very small

intervals of elevation.

Figure 3.1. A contour map

The second alternative, the representation  of the surface by a regular square

grid of sample elevations (RSG) is a digital grid (raster or bitmap are synonyms)
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containing numeric values describing topography (Figure 3.2). Elevation grids are

divided into rows and columns which define grid cells or pixels. Each individual

pixel represents a square area on the earth’s surface and contains 3 numeric values

(x, y, and z) which define that pixel’s column, row, and average elevation; i.e., its

location in 3-dimensional space. RSG gives a uniform intensity of sampling, and is

therefore frequently used in practice. Clearly it would be possible to calculate the

area  seen from each of the grid of sample points by interpolation.

Figure 3.2: An RSG. The grid above represents an elevation raster. Columns (x values) and rows (y values) are

vertically and horizontally arranged and numbered across the top and down the DEM. For this figure f(5,7) = 8.

However the ruggedness of any topographic surface tends to vary from one

part of the surface to another. Some areas tend to be very smooth while in other areas

elevation varies rapidly over short distances. For this reason, a uniform sampling

 1 2 3 4 5 6 7 8 9 10

1 3 3 1 1 4 5 3 5 4 3

2 2 2 4 6 7 8 8 7 5 3

1 1 4 7 10 10 9 10 8 6 2

4 1 5 10 9 10 9 9 7 3 3

5 2 3 8 10 10 10 9 4 5 4

6 2 5 9 9 10 9 8 6 4 1

7 2 5 8 10 8 9 7 6 4 2

8 5 6 7 8 9 8 6 5 3 2

9 7 6 5 7 8 7 6 4 1 1

10 2 7 2 6 7 3 6 4 1 1
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density is inefficient compared to a design which responds to the variability in the

surface by sampling more intensively in the more rugged  areas. Moreover it is not

clear how the surface should be interpolated between grid points. Any binary form

(visible/invisible) of the resultant visibility information for the grid cell will be

subject to “oversimplification “ as Lee claims [Lee91].

Figure 3.3. A TIN. In a TIN, the space is divided into a set of irregular triangles.

This leads logically to the third alternative, known as the TIN or Triangulated

Irregular Network (see Figure 3.3). In this model, the space is divided into a set of

irregular triangles with shared edges, and the surface is modeled by the triangles as if

they were mosaic tiles. Each edge is shared by exactly two triangles, with the

exception of those whose edges form the outer boundary of the network. Each vertex
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is shared by at least three triangles. In the simplest version, which is commonly used,

the surface is assumed to be planar within each triangle. Advantages and

disadvantages of the last two models are illustrated in  [Aro89] and [Bur86].

We can triangulate the set of sample points in many different ways and there is

no definitive criteria which compares different triangulations of the same sample

points if we don’t know the original terrain but only the heigths of it at the sample

points. The construction of a TIN model begins with the selection of an irregularly

located sample of points. “For maximum economy” [Lee91] the points should be

more densely sampled in areas of rugged terrain. By using pits, peaks and other

critical surface points on ridges and in valleys it is possible to achieve an adequate

representation of a surface with far fewer sample points  than with either of the

previously discussed alternatives. These points then form the vertices of the TIN.

One unambigious and frequently used procedure of defining the edges of the TIN is

to connect all pairs of points which are Voronoi neighbors. The details of the

problems about triangulations can be found in [deB97]. Due to its interesting

theoretical properties and extensive preeminence, we will return to TINs in Section

3.3.

3.2 Construction and Conversion Algorithms

Raw data can come in the form of a set of points V, and possibly a set of lines E. In

case the points of V are distributed regularly, an RSG is implicitly provided. Since

sometimes MTMs are derived from contour maps, contours may also play the role of
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raw data. Hence, we have the following possible construction and conversion

problems. Note that a clear distinction between conversion and construction

techniques cannot be made since sometimes models and raw data are the same (e.g.,

regular distributed data points and RSGs).

1.   RSG from sparse points. There are two possible approaches for constructing an

RSG from a set V of scattered points [Pet90]:

(a) pointwise methods: the elevation at each grid point p is estimated on the basis

of a subset of data that are neighbors of p. There are different criteria to

define the neighbors that must be considered, e.g.: the closest k points, for

some fixed k; all points inside a given circle centered at p, and of some given

radius; the neighbors of p in the Voronoi diagram of V ∪ { p }, etc. The basic

geometric structure for all such tasks is the Voronoi diagram of the given data

points.

(b)  patchwise interpolation methods: the domain is subdivided into a number of

patches, which can be either disjoint or partially overlapping, and either

regular or irregular shape. The terrain is approximated first within each patch

through a function that depends only on data inside the patch. The elevation

at grid nodes inside each patch is estimated by sampling the corresponding

function.

2. RSG from TIN. Some  systems first compute a TIN from sparse data points

then they convert such a representation into an RSG [Web90]. This conversion is

indeed a special case of patch interpolation methods described above.
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3. RSG from contours. Early methods performed in this method as follows: a

number of straight lines at horizontal and vertical directions are drawn through each

node of the grid, and their intersections with the contour lines are computed; terrain

profiles along each line are approximated by some function interpolating contours at

intersection points; the elevation at grid node is computed as an average of its

approximate elevations along various profiles. The underlying geometric problem is

to find intersections between contour map, and the lines through each grid node.

More recent approaches perform this conversion in two steps: contours are first

converted into a TIN, then such a TIN is converted to produce the final RSG . See

[Pet90] for details.

4. TIN from points. A TIN is obtained from sparse data points by computing a

triangulation having vertices at data points. In case raw data also includes line

segments, a constrained triangulation is computed. See [Web90] for details.

5.  TIN from RSG. This conversion is usually aimed at data compression: the

adaptivity of the TIN to surface characteristics is exploited to produce a model of

terrain that can be described on the basis of a reduced subset of elevation data from

an input RSG. Hence, RSG to TIN conversion involves approximation. See [Web90]

for details.

6. TIN from contours. A TIN conforming to a given contour map should be

based on triangulation that conforms to the set of contours. This problem has been

studied in the literature both in the context of GIS, and more generally in the

reconstruction of three-dimensional object models. See [Web90] for details.
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3.3 Triangulated Irregular Networks (TINs)

Given a finite set V of points in the plane, a triangulation of V is “a maximal

straight-line plane graph having V as its set of vertices” ([deB97]). Thus, in a

triangulation, every region, except for the external region, is a triangle. When a

triangulation is taken as the basis for a digital surface model, the approximated

elevation of a point P, internal to a triangle, is obtained as a function of the

elevations of the vertices of that triangle.

The problem of finding an optimal triangulation of a given set of points has

been considered for many different applications. In surface approximation problems,

a criterion related to the size of the angles of triangles is used. A better

approximation is obtained when the three vertices of the triangle lie as close as

possible to P. Intuitively, a Delaunay triangulation of a set V of points, is, among all

the possible triangulations of V, the one in which triangles are as much equiangular

as possible (see Figure 3.4).

The Delaunay triangulation of a set V of points in the plane is usually defined

in terms of another geometric structure, the Voronoi diagram. The Voronoi diagram

of a set V of n points is a subdivision of the plane into n convex polygonal regions,

called Voronoi regions, each associated with a point Pi of V. The Voronoi region of

Pi is the set of points of the plane which lie closer to Pi than to any other point in V.

Two points Pi and Pj of V are said to be Voronoi neighbors when the corresponding

Voronoi regions are adjacent. The geometric dual graph of the Voronoi diagram is a

plane graph T ≡ (V,E), called the Delaunay graph of V, whose edges join pair of
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(a)                                                                                         (b)

Figure 3.4: (a) An arbitrary triangulation of a point set, and (b) a Delaunay triangulation of the same set.

Figure 3.5: The Voronoi diagram of the same point set of Figure 3.4.
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points Pi , Pj ( i ≠ j ) of V, such that Pi and Pj are Voronoi neighbors (Figure 3.5). The

Delaunay graph explicitly represents the Voronoi neighborhood relation induced by

the Voronoi diagram over set V.

An alternative characterization of the Delaunay triangulation is given by the

so-called empty circle property.  Let τ be a triangulation of a set V of points. A

triangle t of τ is said to satisfy the empty circle property if and only if the circle

circumscribing t does not contain any point of V in its interior. A triangulation τ of V

is a Delaunay triangulation if and only if every triangle of τ satisfies the empty circle

property.   

A Delaunay triangulation satisfies also the the max-min angle property, which

is used operatively by several construction algorithms. Let τ be a triangulation of V,

let e be an edge of τ, and Q be the quadrilateral formed by the two triangles of τ

adjacent to e. Edge e is said to satify the max-min angle property if and only if either

Q is not strictly convex, or replacing e with the opposite diagonal of Q does not

increase the minimum of the six internal angles of the resulting triangulation of Q.

An edge e, which satisfies the max-min angle property, is also called a locally

optimal edge. A triangulation τ of V is a Delaunay triangulation if and only if every

edge of τ is locally optimal.

3.3.1 Algorithms for Computing a Delaunay Triangulation
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An arbitrary triangulation may not represent, in general, an acceptable solution for

numerical interpolation because of the elongated shape of its triangles. Intuitively, a

“good triangulation” is one in which triangles are ``as much equiangular as possible'',

so as to avoid thin and elongated triangular facets. Delaunay triangulation is optimal

with respect to such a requirement, and thus has been extensively used as a basis for

surface models.

Following de Floriani [dP92] existing algorithms for building a Delaunay

triangulation or, equivalently, its dual graph (the Voronoi diagram) can be classified

into the following five categories (they will be detailed after giving categories ) :

• two-step algorithms, which first compute an arbitrary triangulation, and then

optimize it to a Delaunay triangulation by iteratively applying either the

empty circle or the max-min angle criteria.

• incremental algorithms, which construct a Delaunay triangulation by

stepwise insertion of the data points, while maintaining a Delaunay

triangulation at each step.

• divide-and-conquer algorithms, which compute a Delaunay triangulation by

splitting the point set into two halves, and merging the computed partial

solutions.

• sweep-line methods, which compute the Voronoi diagram of a set of points by

first transforming it in such a way that the Voronoi region of a point Pi is

considered only when Pi is intersected by the sweep-line.

• Three-dimensional algorithms, which compute the convex hull in 3D, and

then project the lower portion on the x – y plane.
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 The first Delaunay triangulation algorithms were based on a two-step strategy.

An arbitrary triangulation of the given set V of points can be obtained through the

following three steps:

• sort the points of V by increasing x-coordinate;

• form a triangle with the first three non-collinear points in the sorted sequence;

• iteratively add the next point Pi by connecting Pi to all the vertices of the

existing triangulation which are visible from Pi (i.e., they can be connected to

without intersecting existing edges).

The optimization step iteratively applies the max-min angle (or the empty

circle) criterion to any internal edge of the current triangulation, such that its two

adjacent triangles form a strictly convex quadrilateral, until no more edge swapping

occurs.

Incremental algorithms can be further classified into static and on-line

algoritms. Static algorithms usually start by sorting all the points according to their

euclidean distance from a fixed origin and then build the triangulation in such a way

that each created triangle belongs to the final tesselation [deB97]. On-line algorithms

are based on the incremental insertion of the internal points in an initial Delaunay

triangulation of the domain. The initial triangulation of the domain can be obtained,

for instance, by creating a triangle enclosing all the data points, which will be

removed together with all the edges incident in its vertices at the end of the process.

The update of the current Delaunay triangulation at the insertion of a new internal

point Pi can be performed in an iterative approach. This approach [deB97] builds

first an arbitrary triangulation by connecting Pi to the three vertices of the triangle t
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of the existing triangulation, which contains Pi. The triangulation is then optimized

by iteratively applying the max-min angle criterion until no more edge swapping

occurs.

 Divide-and-conquer algorithms perform the following four steps[O’R98]:

• the points of V are preliminarily sorted from left to right (if two points

have the same x-coordinate, then the y-coordinate is considered);

• set V is split into two subsets VL and VR , where VL contains the leftmost

half of the points of V, and VR, the rightmost half;

• the Delaunay triangulations of VL and VR  are recursively constructed and

then merged together to form the Delaunay triangulation of V.

The merging step of the triangulations of VL and VR  starts with the

computation of the convex hull of V  = VL ∪ VR, which is the domain of the Delaunay

triangulation of V. This reduces to determining the lower and upper common tangent

of the convex hulls of VL and VR  (domains of the corresponding triangulations).

Then, we move from the lower tangent to the upper one, by deleting the edges that

are not in the final Delaunay triangulation of V, and adding the new edges.

The sweep-line algorithm proposed by Fortune [For87] for Voronoi diagram

sweeps a horizontal line across the plane, noting the regions intersected by the line as

the line moves. The algorithm computes a geometric transformation of the Voronoi

diagram which has the property that the lowest point of the transformed region of a

point appears at the point itself, and, thus, the Voronoi region of a point is considered

only when the point itself is intersected by the sweep line.
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3.4 Surface Simplification

When a large number of sampled points is available, a triangulation joining all the

data can be highly inefficient in storage and for search and retrieval operations.

Approximated models based on triangular grids have been used in the past.

Such models are built on the basis of a restricted subset of the data, chosen in such a

way to provide a representation of the surface within a certain error tolerance.

Approximated surface models are a good data compression mechanism, but they give

an approximation at a predefined level of accuracy (see Figure 3.6).

The ideal aim of surface simplification is to achieve an optimal ratio between

accuracy and the size representation. There are two different optimization criteria:

              (a)                                                                   (b)

Figure 3.6: Two TINs of the same sample: (a) Uniform grid triangulation of 65X65 height field H, (b)

A triangulation τ using 512 vertices that approximates H.
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• minimizing the number of vertices of the model for a given accuracy;

• maximizing the accuracy for a given number of vertices.

For the first problem a negative result has been proven by Agarwal and Suri

[Aga94]: they consider a polyhedral terrain (for simplicity, a TIN), and show that the

problem of finding an approximation for it at a given accuracy with another TIN

having a minimum number of vertices at arbitrary positions is NP-hard. It was

conjectured that such problems remain NP-complete even if vertices of the

approximate terrain are constrained to lie at original data points.

3.4.1 Surface simplification algorithms

Only for the first problem, there exist algorithms that can achieve a suboptimal

solution in polynomial time, while guaranteeing some bounds on its size. Those

algorithms can be categorized into five groups (for an entire coverage of  methods in

detail see[HG95]):   

1. uniform grid methods, which use a regular grid of samples in x and y;

2. one pass feature methods, which select a set of important \ feature" points

(such as peaks,pits, ridges, and valleys) in one pass and use them as the

vertex set for triangulation;

3.  multi-pass refinement methods which start with a minimal approximation

and use multiple passes of point selection and retriangulation to build up

the final triangulation;
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4. multi-pass decimation methods, which begin with a triangulation of all of

the input points and iteratively delete vertices from the triangulation,

gradually simplifying the approximation; and

5. other methods, including adjustment techniques, optimization-based

methods, and optimal methods.

The latter four simplification methods typically employ two triangulation methods:

Delaunay triangulation and data-dependent triangulation. Delaunay triangulation is a

purely two-dimensional method; it uses only the xy projections of the input points.

Data-dependent triangulation, in contrast, uses the heights of points in addition to

their x and y coordinates (see [DLR90] for details). It can achieve lower error

approximations than Delaunay triangulation, but it generates more slivers.

Within the basic framework outlined above, the key to good simplification lies

in the choice of a good point importance measure. But what criteria should be used to

judge such a measure? Ultimately, the final judgement must depend upon the quality

of the results it produces. With this in mind, we suggest that a good measure should

be simple and fast, it should produce good results on arbitrary height fields, and it

should use only local information since the importance measure will be evaluated

many times. Consequently, any cost inherent in the importance measure will be

magnified many times due to its repetition.
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3.4.2 Importance measures

We explored four categories of importance measures: local error, curvature, global

error, and products of selected other measures. We briefly discuss each of these

below.

• Local Error Measure. The importance of a point (x, y) is measured as the

difference between the actual function and the interpolated approximation at

that point (i.e. │ H(x, y) - (T S)(x, y)│, where H(x,y) is the height of the actual

surface at the point (x,y) which is provided and (TS)(x,y) is the height of the

point (x,y) on the reconstructed surface). This difference is a measure of local

error. Intuitively, we would expect that eliminating such local errors would

yield high quality approximations, and it generally does. This measure also

meets the other criteria suggested earlier: it is simple, fast, and uses only local

information.

• Curvature Measure. The piecewise-linear reconstruction affected by T

approximates nearly planar functions well, but does more poorly on curved

surfaces. However, in everyday life, peaks, pits, ridges, and valleys, which

have high curvature, are visually significant. These observations suggest that

we try curvature as a measure of importance.

In one dimension, │H ''│is a good curvature measure. Compute values for

│H''│ at all points and select the m points with the highest values. However, the

method is over-sensitive to high frequency variations.
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Because the curvature measure was inferior in one dimension, it wasn’t tested

in two dimensions. Laplacian, 2
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Consider H(x; y ) = ax2 - ay2, for any a, for example. A better measure is the sum of
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• Global Error Measure. At every point, the global resultant error of a new

approximation is formed by adding that point to the current approximation,

measured as  ∑
),( yx
│H(x; y) - (T S)(x; y) │. Then the point that produces the

smallest global error is selected.

• Product Measures. Combine one or more of the importance measures given

above with some bias measures. Two examples of bias measures are: absolute

height, and the ratio of the number of unselected points in a region to the

number of points remaining to be selected.
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CHAPTER 4

4  Point Guards

To make the visibility optimization problem tractable, the search for the optimum set

of observers is limited to a finite set of locations, which should include all of the

peaks of the terrain. Thus the process of selection of TIN vertices has been a custom

both as a means representing the surface and as a method of selecting a discrete set

of locations to be searched. The validity of this method of representation has not

been questioned. In this chapter we consider the problem of whether or not there

exists a point guard set with smaller number than that of vertex guards to cover a

polyhedral terrain. First, let’s remember some definitions.

We define a terrain T as a triangulated polyhedral surface with n vertices V =

{v1, v2,..., vn}. Each vertex vi is specified by three real numbers (xi, yi, zi) which are

the Cartesian coordinates with  zi being referred to as the height of vertex vi . A vertex

guard is a guard that is only allowed to be placed at the vertices of T. Similarly, a

point guard is a guard that is allowed to be placed at any point on the surface of T.

Gv is the number of the vertex guards needed to cover a polyhedral terrain and Gp is

the number of point guards needed.

4.1. Existency of a better point guard

In this subsection we give an example which demonstrates that an optimal vertex

guard may be strictly worse than an optimal point guard. This proves that restricting
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the search for a guard to the vertices of a TIN may be suboptimal as compared to a

search over the entire surface.

 Suppose we are given 3 triangles A, B, and C with vertices ai, bi, and ci, i =

1,2,3, and wish to locate an observer on A to guard C while B blocks the visibility of

A (see Figure 4.1). Let’s refer to the guard located at vertex ai as gi and let z (mi) be

the height of  vertex or point mi. Suppose further;

1. z ( a3 ) < z ( a1 ) = z ( a2 ),

2. z ( bi ) = z ( a1 ), for all i,

3. a4 is the intersection point of edge a1a2 of triangle A and the line that

contains edge b1b3 of triangle B ( see Figure 4.2),

4. x ( c1 ) = x ( c2 ) = x ( c3 )

5. By ignoring the height information, let’s depict Figure 4.1 again, i.e.

project it onto the x-y plane (Figure 4.2).

        a1                                b1                                                              b2                                               C

                                                                   B

A                                a2                                         b3

a3                                             

Figure 4.1.Existency of a better point guard
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Figure 4.2: Projection of A,B, and C onto x-y plane

Figure 4.3: IRi

a
B

C

h
h

L1

IR1

a4

a1
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                         B

L2

L1

L4

C
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Let IRi be the invisible region of point ai with edges ei and fi whose lengths are hi and

Li, respectively. Thus IRi will be a rectangular for which  hi denotes its height and Li

denotes its length (Figure 4.3). Since A, B, and C are on the surface of a terrain and z

(a3) < z (a1) = z (a2), g3 can not see the region under the edge e3 whose endpoints are

points of intersection of the line segment a1a3 and a2a3 with C. Clearly, e3 will the

longest edge and h3 will be the biggest height value.

Since g3 is inferior, we need to find a better point guard than g1 and g2. Since

a1, a2, a4, and B have the same height, height information is trivial for the rest of the

Figure 4.4: a4 is the best location for an observer.

C

IR2 IR1

IR4

h

L1 L2

L4
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proof. This leads us to deal with edges of IRi’s. As shown in Figure 4.2 L4 is the

smallest and so, the invisible region with the smallest area is IR4. Briefly,

1. IR3 > IR1 and IR3 > IR2 because z ( a3 ) < z ( a1 ) = z ( a2 ).

2. IR4 < IR1 and IR4 < IR2 since L4 < L1 and L4 < L2 and h4 = h1 = h2. Thus

IR4 < IR3. As depicted in Figure 4.4, the  point guard g4 has a smaller

invisible region than the vertex guards.

4.2  Bound for dominance

In this section, we show that a polyhedron P can be constructed for which pk = vk/3

where pk is the number of point guards needed to guard P, and vk is the number of

vertex guards needed. To show this bound, we first construct a seven-vertex

polyhedron, S1, for which pk = 1 and vk = 2. By using S1, we get a twelve-vertex

polyhedron, S2, which can be covered by three vertex guard, and conversely by two

point guards. As a third step, we construct a twenty-vertex polyhedron, B1, which is

based on S2. To cover B1 we need six vertex guards while two point guards suffice to

cover it. Finally we construct an n-vertex polyhedron, Bk, by using B1’s for which pk

= vk/3.

Lemma 1. The seven-vertex polyhedral, S1 shown in Figure 4.5 needs at least two

vertex guards and if it is covered by two vertex guards, then at most one of them can

be an exterior vertex. Furthermore, it can be covered by  just one point guard.

Proof:  Suppose that this polyhedral is a modified version of the case which we used

to prove the existency of a better point guard. Namely the triangles (1) K and A, (2)
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N, O and B (3) M, P and C are similar. Thus vertex x can’t see P and O because of

edge tw, similarly z can’t see M and N because of edge wt. Suppose further the height

of vertex y is so small that the guard on vertex y can’t see any other triangle except

K, exactly like  vertex a3 in the first case. Unlike the first case, suppose the height of

vertex w is a little smaller than the vertex t so that the guard located on point q can

see vertex t, thus the whole seven-vertex polyhedral (Figure 4.6 shows the heights of

vertices y, q, w, t).

Since vertex guards x and z can’t see O and N, respectively, and vertex guards

s, t, u, w can’t see K, any of the vertex guards can not cover the whole polyhedron.

Clearly vertex guards w and z (or x) suffice to cover the polyhedron. Let’s consider

the other cases;

1. If t is chosen, two vertex guards will also be needed  to guard  M, P, L and K. If

one of x or z is also chosen, then two triangles will not be covered: without loss

of generality, suppose vertex x is chosen. Then, triangles O and P will not be

covered.

2. If y is chosen, triangles L, M, N, O, and P will remain unguarded. Clearly one

vertex guard more will not suffice.

3. If s or u is chosen, two vertex guards more will be needed to guard K, and the

triangles on the other side of edge tw. Without loss of generality, suppose s is

chosen remaining O, P, L, and K uncovered. If u is chosen, K will not be

covered. If z is chosen, O will not be covered.

4.  If x or z is chosen, three triangles will not be covered. Without loss of

generality, suppose x is chosen remaining N, O and P uncovered. If t is also
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chosen, P will not be covered. If u is chosen N will remain uncovered. If z is

chosen O and N will be uncovered.

By using this S1, we can get a twelve-vertex polyhedral, S2 which can be

covered by three vertex guards, x, y, z, and conversely by two point guards, p, q

(Figure 4.7). As the third step, we can construct a twenty-vertex polyhedral, B1 which

is based  on S2 in such a way that two S2‘s are placed back-to-back (Figure 4.8). To

cover S3 we need six vertex guards while two point guards suffice to cover it since

one point guard can see two back-to-back S1’s. To clarify this, it will be neccessary

to find out whether one point guard can see the other S1’s vertex t. As shown in

Figure 4.9 point p can see whole line between t1 and t2.

Figure 4.5: The seven vertex graph

s u
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Figure 4.6: While point q can see the whole

line, no vertex can.

Figure 4.7: The twelve-vertex polyhedral, S2

can be covered by three vertex guards, x, y, z,

and conversely by two point guards,  p, q.

                                            P                                   q

   

Figure 4.8: The twenty-vertex polyhedral, B1 formed by two back-to-back S2 , the point guards p and q

suffice to cover it while it is needs six vertex guards.

y

q

x

zp
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 t1                                                                                                                           t2

                                                                                                            p

Figure 4.9: The point guard p can see the whole line

Finally we can construct an n-vertex polyhedral, Bk in a such a way that B1‘s are

placed side by side as shown in Figure 4.10.

Observation: Bk needs vk = 6k vertex guards and pk = 2k guards. Thus we can

construct a polyhedral terrain where pk = vk /3.

Figure 4.10: The construction of n-vertex polyhedral
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4.3. Examining the dominance relationship

 By using the visibility algorithm, we examined the dominance relationship in a

sample terrain of approximately 5000 vertices and 10000 triangles. Among them we

have examined the first 10 triangles for each of them by calculating the best vertex of

the triangle and by randomly choosing 50 point guards to dominate this chosen

viewpoints. As expected, just three point guards has dominated with approximately

0,6 (= 3/500) % percentage (the coding is in the appendix).
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CHAPTER 5

5  Discrete Visibility

In visibility optimization problems, we have two given sets, candidate set and target

set. Candidate set includes the viewpoints to be chosen to optimize the guarding and

the target set includes the points to be watched. With respect to given sets we have 4

cases for visibility optimization  problems depending on which of the sets are

discrete or continuous. In this thesis, we have studied the first two problems.

Table 5.1: Visibility optimization problems

We have already shown in Chapter 4 that some point guards with larger areas

of viewsheds than that of vertex guards can be found. This leads us to study

continuous cases. Although it is possible to find precise definitions of visibility in the

context of discrete models of a surface in a TIN such as the one used in this study, no

such precise definition exists for continuous terrain. The results of calculating the set

of vertices or points visible from each of the TIN vertices can be expressed as a

CANDIDATE \ TARGET

SET DISCRETE CONTINUOUS

DISCRETE Problem 1 Problem 2

CONTINUOUS Problem 3 Problem 4
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rectangular matrix with each row representing a viewpoint vertex and each column a

target vertex or a triangle. A target vertex is represented in each column for Problem

1 and target triangle is represented for Problem 2. Each element xij of the matrix is

set to 1 if vertex i (Problem 1) or some part of triangle i (Problem 2) is visible from

vertex j and 0 otherwise. Each triangle is weighted by its visible area when the

objective is concerned with the area visible.

In this chapter we compute xij when both i and j are vertices, i.e. we compute

the mutual visibility of two points. Problem 2 will be given in the next chapter. We

compute the visible region from a vertex i iteratively, find the visible region of vertex

A on triangle C and sum up the visible regions on all triangles finally.    

5.1 Problem 1

The mutual visibility of two vertices A and B is determined in two ways. In the

“brute force” approach, the problem is reduced to finding either the terrain edges (for

a TIN), or grid cells (for an RSG) intersected by the vertical plane passing through

the segment AB. For each intersected segment (edge or cell) e, a test is performed to

decide whether e lies above AB, and the two points are reported as not visible in case

of a positive answer for at least one of such tests (see [Lee91] for TINs and [Ray92]

for RSGs). On TINs, a piecewise linear interpolation over each triangle is used in all

studies. On RSGs, different tecniques are chosen like bilinear functions, or step

functions, or other interpolation conventions; a common approach is to consider a
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linear approximation of the edges , while disregarding the interior of the cells as

reported in [Nag94].

The second way can also be regarded as a special case of the ray shooting

problem on a polyhedral terrain. Given a polyhedral terrain T, a viewpoint V, and a

view direction (θ,α), the ray shooting problem consists of finding the first face of T

hit by a ray emanating from V with direction (θ,α) ( see [Col89] for details).

We also applied “brute force” approach in which two vertices of the TIN are

intervisible if a straight line between them lies entirely on or above the surface

without intersecting any part of the surface, except at two end points. A visibility

function is usually defined as a Boolean function, VAB= 1 when two points, A and B,

are intervisible, i.e. are visible to each other. Generally a subset of triangles are

defined the visible area of a vertex rather than a subset of vertices: if all vertices of a

triangle T is visible to some vertex V then T is accepted as visible to V. There is no

requirement that the subset be connected. However it will necessarily contain the

viewpoint since we define the triangles adjacent to the viewpoint as visible.

Clearly, the visibility problem is closely related to the detection of hidden lines

and hidden surface problems, which are a well-known problem in computer graphics.

However, the hidden surface algorithms were designed either to determine only how

an image of the surface model will appear from a given viewpoint, or for grid based

surface models.

There are three main approaches when calculating the visibility of two points.

The block is either;

(1) a point, generally used with regular square grid maps ([Ray92],[Fra94]),
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(2)  an edge of a triangle ([CS89] , [Caz91], [deF92], [GL89])  or

(3)  the triangle.

          To calculate the visibility of two points A and B, we will use the third

approach: Try all triangles one by one to see if they block the straight line connecting

the two points A and B. Let’s take the case with a single triangle first. Let T={v1, v2,

v3} be the triangle with vertices v1, v2, v3 where the coordinates of vi is (xi, yi, zi). Let

A=(a1, a2, a3) and B=(b1, b2, b3) be the two points of interest as depicted (Figure 5.1).

5.2  The algorithm

A and B are intervisible if and only if the line segment connecting A and B does not

intersect the triangle T. Whenever this is the case, some convex combination of

points A and B is also a convex combination of the vertices v1, v2, v3.

Figure 5.1: The visibility of points A and B are blocked by triangle T.

A

B

T
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Thus A and B does not see each other if and only if there exists numbers α, β1, β2, β3

such that

αΑ + (1−α)Β = β1v1 + β2 v2+ β3v3                (1)

with

10 ≤≤ α  ,

10 ≤≤ iβ        i =1, 2, 3, 

 β1 + β2 + β3 =1   ⇒   β3 =1 − (β1 + β2 )        (2)

 By combining (1) and (2);

α(Α−Β) +Β = β1(v1 – v3) + β2( v2 – v3)+ v3

which is equal to

α(Α−Β) + β1(v3 – v1) + β2( v3 – v2) = ( v3 - Β) 

so,




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zz
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xx

zz
yy
xx

ba
ba
ba

ββα          (3)

with

1,,,0 2121 ≤+≤ ββββα                                (4)

It follows that we are dealing with a system,(3), of 3 equations with 4

additional bounding inequalities. That is, we look for a solution to a system of the

form

Hu = t

10 ≤≤ iu    ,  for i =1,2,3           (5)
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10 21 ≤+≤ uu                             (6)

Assuming H is nonsingular, Cramer’s Rule gives

)det(
)det(

H
Hu i

i =      for i =1,2,3      (7)

where;

     









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




=

2

1

β
β
α

u    and 

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









−−−
−−−
−−−

=

231333

231322

231311

zzzzba
yyyyba
xxxxba

H     (8)

If the solution u satisfies the bounding inequalities (4), then A and B are

blocked by triangle T , i.e. they are not visible to each other. Otherwise, A and B are

intervisible.

Note that H-1 does not exist either

1. when AB line segment is on the surface of triangle T, or

2. when AB line segment is parallel to the surface of T.

In both cases rows of H are linearly dependent. In the first case, we define A

and B are intervisible as a matter of convention. If AB line segment is parallel to the

surface of T, then it is enough to check the height of a point of AB line segment on T.

For simplicity, compare the height of any vertex of T with the height of AB line

segment above this vertex. If the vertex has a higher value, then they will be

invisible.
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5.3  Remedies for the drawbacks

Clearly there is a drawback of that method; we try all triangles one by one to see if it

blocks. To overcome this, we suggest some simple operations;

1. If va b = 0 once, stop trying the other block triangles.

2. The vertices of the same triangles are visible to each other.

3.  Let rectangle R be the rectangle whose definitive vertices are A and B. If all

points of the triangle T are not in R, T will not clearly block the visibility of A

and B (Figure 5.2).

4.   If  all z values of triangle T are smaller than those of both the points A and

B, again T will not block the visibility of A and B.

5.  If all vertices of T are invisible to A, then T cannot block any point C’s

visibility from A.

Figure 5.2: All points of T are outside of R
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T
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CHAPTER 6

6  Continuous Visibility

To calculate the visible region of a point A, we will calculate the visible region of

this point on each target triangle seperately and sum up all these visible regions.

Target triangle, say C, may be blocked completely or partially by other triangles. To

find this blocked region, i.e. invisible region, it seems necessary to try all triangles

other than C, one by one, as a blocking triangle as long as some parts of C is visible.

Thus we will calculate the visible region of  A on C in two steps;

1.) if some parts of C is still visible calculate the invisible region of  A on C

caused by one triangle, say triangle B, and try all triangles as B,

2.) find the union of these visible regions on C.

6.1 Step 1

Suppose we are given a point A, and two triangles B and C, and want to calculate the

invisible region of point A on C caused by B. This can be done in two ways,

1.) find triangle-triangle intersection

2.) find the extreme points of the intersection region.
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6.1.1 Triangle-triangle intersection

Clearly it is needed to find the projection of B on C (Figure 6.1). The projection of B

on the plane containing C will also be a triangle, say S, whose vertices are the

projections of the vertices of B. The vertices of S, si , will be on the ray  { A + λidi :

λi ≥ 1 }, where di = bi – A and bi is the ith vertex of B. Moreover, since S and C are

on the same plane, any point of S can be written as an affine combination of the

vertices of C.

Figure 6.1: Projection of B on C

The projection of bi ( i = 1,2,3) on the plane of C requires solving the inequality

system Ii below:

c1

A.
b1

b2 b3

c2
c3

s2
s3

s1

s4 s5
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A + λi (bi – A) =∑
=

3

1j
j

i
jcγ ,   j = 1,2,3,                  (1)

∑
=

3

1j

i
jγ = 1 ,  0 ≤ γi

j ≤ 1    j = 1,2,3, and λi ≥ 1.

In system Ii, we are dealing with a system of 4 equations with 4 unknowns and 4

more bounding inequalities. If system Ii has a feasible solution in the variable λi, γi
1,

γi
2, γi

3 then the projection of bi is ,

Si = A + λi (bi – A) =∑
=

3

1j
j

i
jcγ ,   j = 1,2,3,

(1) can be rewritten as,

     A + λi(bi-A) = γi
1c1 + γi

2c2 + ( 1-γi
1-γi

2 )c3

⇒  γi
1(c1 – c3) + γi

2(c2 – c3) + λi(A - bi ) = (A - c3)

⇒  (c1 – c3    c2 – c3    A - bi ) 
















i

i

i

λ
γ
γ

2

1

 = (A - c3)                     (2)

(2) can be solved with either one of the two methods; Gauss-Jordan reduction and

Cramer’s methods. The solution gives  γi
1, γi

2, and λi and by substituting γi
1, γi

2, and

γi
3, which is ( 1-γi

1-γi
2 ), si will be found. In case of λi < 1, we conclude that B does

not block C to A.

The intersection region of S and C will be the invisible region of A on C. Thus

we are faced with the problem of determining the intersection region of two triangles

on the same plane.
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Two triangles will intersect if some convex combination of one of them is also

a convex combination the other. Thus, two triangles intersect if and only if there

exists αi’s and βj’s ( i = 1,2,3, and j = 1,2,3 ) such that

α1s1 + α2s2 + α3 s3  =  β1c1 + β2c2 + β3 c3                                                       (3)

with 0 ≤  α1 , α2 , α3 , β1,  β2 ,  β3  ≤ 1, and

 α1 + α2 + α2 = 1,and

 β1 + β2 + β3 = 1

(3) can be rewritten as,

α1s1 + α2s2 + ( 1-α1-α2 )s3  =  β1c1 + β2c2 + ( 1-β1-β2 )c3

⇒ α1(s1-s3) + α2(s2-s3) +   β1(c3-c1) + β2(c3-c2)   = ( c3 - s3 )

⇒  (s1-s3   s2-s3   c3-c1   c3-c2) 



















2

1

2

1

β
β
α
α

= ( c3 - s3 )                       (4)

with   0 ≤  α1 , α2 , α1+α2 , β1,  β2 ,  β1+β2  ≤ 1.

It follows that we have a system of 3 equations with 4 unknowns and 6 bounding

constraints. Since S and C are on the same plane, the equations are linearly

dependent resulting in two free variables. Clearly we can’t use Cramer’s method to

solve (4) instead Gauss-Jordan reduction will be used. We will demonstrate the

method on the following example.

Suppose A, B, and C are given as follows, and wanted to compute the invisible

region of A on C caused by B.
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














=

8
5
3

A , 















=
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5.332.1

25.28.0
B , and 
















=

100
010
001

C .

The projection S of B will be defined by the projection si of each corner bi of B.

Thus, for i =1, we solve the system Ii;
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1
1 γγγ  where γ1

3=1-(γ1
1+γ1

2). By replacing γ3 with

this,


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1
1 λγγ which can be rewritten as,
















=

































−− 7
5
3

611
8.310
2.201

1

1
2

1
1
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γ
γ

.

This system can easily be solved by Gauss-Jordan reduction. Finally we get,

γ1
1 = 0.25, γ1

2 = 0.25, and λ1 = 1.25

Since,  γ1
3 = 1 – (γ1

1 + γ1
2) = 0.5.

So we have found the projection of b1 onto the plane containing C which is;

s1 = ( 0.25   0.25   0.5)T.

Similarly,

s2 = (2   1  -2)T  and s3 = (1   2  -2)T.

The second step is to determine whether the triangles S and C intersect or not.

To decide this, we need to solve the system,
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Cα = Sβ with 1=∑
i

iα  , 1=∑
j

jβ  and 0 ≤ αk , βl ≤1, for k =1,2,3 and l =1,2,3.

Thus we have,
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321321 βββααα

with α1+α2 +α3 =1,  β1+β2 + β3 = 1 and  0 ≤  α1 , α2 ,α3 , β1,  β2 , β3   ≤ 1

After replacing α3 = 1 – ( α1+α2 )  and β3 =1 – ( β1+β2 ), Gauss-Jordan reduction is used

and we get the matrix,















 −

00000
2175.110
1175.001

which means,

α1       + 0.75β1 – β2 = 1,

     α2  + 1.75β1 + β2 = 2.

Equivalently,

α1 = 1 – 0.75β1 + β2,

α2 = 2 – 1.75β1 –  β2 .

By using the last two equations, we get,

0 ≤ α1 = 1 – 0.75β1 + β2 ≤ 1,

0 ≤ α2 = 2 – 1.75β1 –  β2 ≤ 1, and since α3 = 1 – ( α1+α2 )

0 ≤ α3 = 1 –  (1 – 0.75β1 + β2 + 2 – 1.75β1 –  β2)  ≤ 1,

⇒ 0 ≤ α3 = -2 + 2.5β1  ≤ 1.

The other constraints remain the same,
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0 ≤  β1,  β2 , β3   ≤ 1                                         (5)

Finally we get,

-1 ≤  – 0.75β1 + β2 ≤ 0 ,                                   (6)

-2 ≤ – 1.75β1 –  β2 ≤ -1 ,                                  (7)

 0.8≤    β1                     ≤ 1.2                                  (8)

So, the system (5), (6), (7) and (8) give infinitely many feasible solutions as shown in

the shaded region of Figure 6.2. Each  choice of β1, β2 in the shaded region together

with β3 =1 – ( β1+β2 ) gives a point β1c1 + β2c2 + ( 1-β1-β2 )c3 which is in the

intersection of triangles S and C.

6.1.2 Extreme points of the intersection

The second way to compute invisible region of A on C caused by B, is to find the

extereme points of the intersection region. Clearly these extreme points are the edge-

edge, vertex-point and point-vertex intersection points (Figure 6.3).

When the intersection point is a vertex of the projection triangle, say si, and a

point of the target triangle, a convex combination of c1, c2 and c3 (Figure 6.4), vertex-

point intersection occurs. To find the intersected si, we use the ray information. Each

such ray is an affine combination of A and one of bj’s (j = 1, 2, 3). Thus we have

three systems each with three unknowns and four inequalities.
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Figure 6.2. The graph of intersection .

Figure 6.3:  Extreme points of intersection region.

c
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Figure 6.4: Vertex-point intersection

Observation 1: si intersect C if and only if there exists numbers β1, β2, and β3 such

that

Ii ( i = 1,2,3 )

               si = β1c1 + β2c2 + β3c3   (9)

with    0 ≤  β1,  β2 ,  β1  ≤ 1  ,

and         β1 + β2 + β3 = 1.

Since si is an affine combination of A and one of bi, (9) can be rewritten as;

           A + α (bi –A) = β1c1 + β2c2 + ( 1-β1-β2 )c3                   (10)

              With,     α ≥ 1,  0 ≤  β1,  β2 ,  β1+β2  ≤ 1.

   When the intersection point is the edge point of both target and projection triangles,

edge-edge intersection occurs (Figure 6.5). Whenever this is the case, some convex

combination of any two vertices of the projection triangle is also a convex

combination of any two vertices of the target triangle.

b1A. .
b2 b3

c1

c2 c3
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Figure 6.5: Edge-edge intersection

Observation 2: Edge sisj and edge ckcl intersect if and only if there exists numbers β

and γ such that,

βsi + (1-β)sj = γck + (1-γ)cl                                       (11)

where;   0 ≤ β, γ ≤ 1.

For  each combination of (i,j)∈{(1,2), (1,3), (2,3)} and, (k,l)∈{(1,2), (1,3), (2,3)},

we have a system of the form (11). Thus, we have nine independent systems each

with three unknowns and three equalities.

Figure 6.6: Point-vertex intersection
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.
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In the point-vertex intersection case, the point of intersection can be found in

three ways where indeed all of them are the same (Figure 6.6). The first one of them

is that the point of intersection is ci  and it is also a point of the of the projection

triangle. That is;

ci =  β1s1 + β2s2 + β3 s3               

with,   β1 + β2 + β3 = 1 and 0 ≤ β1, β2, β3 ≤ 1.

The second way is that the point of intersection is ci and affine combination of

the point A and some point of the block triangle. That is;

 ci =  A + α(β1b1 + β2b2 + β3 b3 )

 where  β1 + β2 + β3 = 1 , 0 ≤ β1, β2, β3 ≤ 1 and  α ≥ 1.

The last way is that the point of intersection is the convex combination of ci

and A and also it is equal to one point of the block triangle.

Observation 3: A vertex of the target triange, ci intersect projection triangle if and

only if there exist numbers α, β1, β2 and β3 such that

Ii ( i = 1,2,3 )

αA + ( 1-α )ci = β1b1 + β2b2 + β3b3                                   (12)

with               0 ≤ α,  β1,  β2 ,  β3  ≤ 1

and                β1+β2 + β3 =1.

6.2 Step 2: The total invisible region of C

The total invisible region of target triangle to one point will be the union of invisible

regions caused by different block triangles. After getting the extreme points of the
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union of the invisible regions, we can find this total invisible region by Monte Carlo

simulation or by the algorithmic way.

6.2.1 Intersection of convex polygons

Since intersection of two convex polygons will also be convex, when we find the

extreme points of this intersection, we are done. Moreover we are looking for a

special case of intersections of convex polygons; an intersection of a convex polygon

and a triangle. Extreme points of the intersection can be found by using (10), (11),

and (12). Let eij, and ejk be two edges of triangle A with vertices vi, vj, and vk and B

be the convex polygon (Figure 6.7). Then,

1. eij intersect B at two edges at most (because of convexity). Thus the total

number of intersections cannot be bigger than six.

2. If  eij intersect B at one edge, then either vj or vi of A intersect B (Figure 6.7).

Suppose vj does. Then vk will also intersect B, if eki intersect B at one edge.

Figure 6.7:Extreme points of intersection                                     Figure 6.8: Intersection at two edges
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3. If eij intersects B at two edges of B, then neither vi nor vj does not intersect B

(Figure 6.8).

4. All of the three properties are true for also B.

5. Let va,vb,..vn be the sequence of the vertices of B and for all adjacent vertex

tuples there exists an edge. If vi and vm intersect A and there is no edge

intersection between vi and vm, all vertices between vi and vm will also

intersect A.

 Although for edge–edge intersections, (11) can be used, vertex intersections needs to

be changed since B may have more than three vertices. In this case we can take

vertices four by four and take their convex combinations. Thus we have the system;

ai =  β1b1 + β2b2 + β3 b3 + β4b4   

where β1 + β2 + β3  + β4 = 1 and 0 ≤ βi ≤ 1.

So if the system

 ai =  β1b1 + β2b2 + β3 b3 + ( 1 - β1 - β2 – β3)b4

where β1 + β2 + β3  + β4 = 1 and 0 ≤ βi ≤ 1.

Has a solution set, then vertex intersection occurs.

Thus we can define an algorithm with two steps for finding the triangle-convex

polygon intersection.

1. Find the edge-edge intersections. Remember any edge can intersect only two

edges of the other. Get two lists for the edge sets of A and B, if any edge has

two intersections, drop it from the list.

2.  Find the vertex intersections. We can find these intersections in three steps,
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(a)  If any edge has two edge intersections, then it has no vertex

intersection.

(b)  If it has one edge intersection, it will have just one vertex intersection

which needs to be calculated.

(c)  As the last step, if it has no edge intersection, either both of vertices

intersect or not. We can decide by using the information about the

vertices of the adjacent edges. If any common vertex of the adjacent

edge intersect, the other vertex of the non-intersecting edge will also

intersect.

6.2.2  Monte Carlo simulation

Since we are typically dealing with thousands of triangles, this way sounds logical.

Choose a point randomly on target triangle C (it should be a convex combination of

the vertices of C) and check to see if this point is a convex combination of  extreme

points of any invisible region or not. If it is, increase the number of successes. If the

process is stopped on the nth trial and if the number of successes is m, then the area

of invisible region of C to A will be ac(m/n) where ac is the area of triangle C.

Change the target triangle, repeat the simulation and finally sum up all these invisible

regions to find the total invisible region of A.
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6.2.3 Algorithmic way

Let aij be the total area of the invisible region of a triangle i, to vertex j and aijk be the

area of the invisible region of  triangle i to vertex j caused by block triangle k ( k =

1,2,...,n). Then,

)...()1(...)()( 1

11
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n

mlk
ijmijlijk
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Thus we are faced with two problems here; finding the area of a convex polygon

(aijk) and finding their intersections. Since all invisible regions, not the union of any

invisible region set but the projection and target triangle intersection, are clearly

convex polygons, their intersection will also be convex.                                                                        

It is easy to find the area of any convex polygon by first triangulating it, and

then summing the triangle areas. Every convex polygon may be triangulated as a

“fan” with all diagonals incident to a common vertex; and this may be done with any

vertex serving as the fan “center”. See Figure 6.9.

The area of a triangle is one half the base times the altitude. However this

formula is not directly useful if we want the area of a triangle T whose three vertices

are arbitrary points a, b, c. Let us denote this area as A(t). This base is easy: a-b ,

but this altitude is not so immediately available from the coordinates, unless the

triangle  happens to be oriented with one side parallel to one of the axes.

From linear algebra we know that the magnitude of the cross product of two

vectors is the area of the parallelogram they determine: If A and B are vectors, then

A×B is the area of the parallelogram with sides A and B. Since any triangle can be
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                           Figure 6.9: Triangulating a convex polygon

viewed as the half of a parallelogram. Just let A = b – a and B = c – a where a,b,and c

are the Cartesian coordinates of the vertices of the triangle. Then the area is half the

length of A×B. The cross product can be computed from the following determinant,

where î , ĵ , and k̂  are unit vectors in the x,y, and z directions respectively:
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Therefore the area of a polygon with vertices v0, v1, ..., vn-1 can be calculated as

       A(P) = A(v0, v1, v2) + A(v0, v2, v3) + ... + A(v0, vn-2, vn-1) .
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CHAPTER 7

7  Visibility Related Problems

Interesting  application problems which are based on visibility information on a

terrain,  can be classified in the following major categories:

1. problems which require the placement of observation points on a topographic

surface according to suitable requirements,

2. line-of-sight communication problems,

3. problems regarding the computation of paths on a terrain, with certain

visibility properties.

Viewpoint placement problems require to place several observation points on a

terrain, in such a way that a large part of the surface is visible from at least one point.

Applications include the location of fire towers, artillery observers, radar sites, etc. In

general, the aim is either to minimize the number of viewpoints to cover a target

area, or, in a dual formulation, to select a fixed number of points in such a way that

the visible area is maximized. By using the visibility matrix they are formulated as

coverage problems. For extensive surveys on this subject see [GL89, Lee91, Nag94,

Mar00].

Line-of-sight communication problems consist of finding a visibility network,

connecting two or more sites, such that every two consecutive nodes of the network

are mutualy visible. Applications are in the location of microwave transmitters for

telephone, FM radio, television and digital data networks. A typical problem is to
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find the minimum number of relay towers necessary for line-of-sight communication

between a set of sites. The given sites and relay towers are usually restricted on

vertices of a TIN (see[Nag94, deF92, Caz91]).

Paths can be defined on a terrain, with application-dependent visibility

characteristics. A smuggler’s path is the shortest path, connecting two given points,

such that no point on the path is visible from a predefined set of viewpoints.

Conversely, a path where every point can be seen from all viewpoints is known as

scenic path. Path problems are usually addressed on a DEM by restricting the

viewpoints to be vertices, and the path to pass along edges. A solution (if there

exists) can be determined by first computing the vertices which are visible/invisible

from all viewpoints, and then applying a standard shortest path algorithm to the

edges connecting them [Pup97].

In the following, we give a non-exhaustive review of relevant problems for

each class, and we outline analyses and possible practical solutions of some of them.

7.1 Viewpoint placement

Problems related to the placement of observation points can be defined in terms of

either a finite number of points to be watched, or of an area on the terrain to be

observed. In the former case a discrete visibility model defined on Sv × So

(respectively called the set of observation points and the set of target points)gives

sufficient information for providing and testing a candidate solution to the problem.
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7.1.1 Scenic sites

A typical context in which the problem of scenic sites (SS) arises is the detection of

panoramic points along tourist paths. Such problem can be formulated (which is

given in [Pup97] ) as the following visibility problem:

Given a terrain T, and two sets Sv and So of points on T, find the observation

point p that sees as many target points as possible.

Variations of SS are shortest watchtower and single observation point

problems. A shortest watchtower problem determines the location of the point with

the lowest elevation above the surface from which an entire polyhedral terrain is

visible (see [Sha88]). Such a point must exist because the terrain elevation is a

“single-valued function”, and therefore entirely visible from any point sufficiently far

above it [Nag95]. The computational complexity is O( nlog2n), where n is the

number of polyhedral faces, so the algorithm is practicable [Sha88]. It is also

possible to preprocess to determine efficiently whether any particular point is visible

from a single observation point on or above the surface [CS89].

A solution to SS can be found by simply considering each node in Sv and by

counting the number of its outgoing arcs. The worst-case time complexity is (nonv )

[Pup97].

7.1.2 Watch towers

 The problem of watch towers (WT) relies on the surveillance of a certain area by

means of a set of towers placed on the terrain: such set is required to be as small as
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possible, and each point within the area of interest must be seen by at least one

tower. Typical application areas include the location of fire towers for forest fire

monitoring, or lighthouses for safe navigation. Similar problems arise in military

surveillance and weather forecasting. WT can be formulated as the following

visibility problem:

Given a terrain T and sets Sv  and So of points on T, find a set vSS ⊂′  of

minimum cardinality, such that any point in So can be seen from at least one

point in S ′ .

The WT problem, and some of its variations, have been considered by C. Ray

[Ray92], W. Franklin [Fra94], M. Marengoni [Mar00], and J. Lee [Lee91].

Variations of the problem include:

• Find the area visible from a fixed set of observation points.

• Maximize the area visible from a fixed number of observation points.

• Given some cost function related to tower height, locate the towers so as to

see the entire area at minimum cost.

• Given some cost function related to tower height, locate the towers that

maximize the area visible at a fixed cost.

Mainly three different heuristics have been proposed. Although no bound is

warranted with respect to the optimal solution, the effectiveness of such heuristics is

demonstrated by experimental results made on reasonably large data sets. The

surveys and their conclusions will be given at the end of this chapter.
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7.2  Line-of-sight communication

An obvious application of geometric visibility is the location of microwave

transceivers for telephone, FM, and digital data networks. Of course, a realistic

solution must take into account the height of the towers, the diffraction from the

intermediate ridges, and the distance limit of electromagnetic propagation. So far,

“only the tower-height has been considered” (claims Nagy [Nag94]). Problems

involving line-of-sight communication rely on guaranteeing intervisibility between

all pairs of sites of a predefined set. Relays may be permitted or not: whenever

permitted, the number of relays should be as small as possible.

In the context of line-of-sight communication, using a discrete visibility model

is even more strongly motivated with respect to problems related to the placement of

observation points, since the predefined set of points and the set of possible relays

are always finite. Furthermore, the choice for relay location is often constrained to

strategic points on the terrain.

7.2.1 Communication without relays

In applications in which relays are not permitted, directional antennae are generally

used at each site to ensure communication between pairs of sites. The aim is to

minimize the total number of antennae. Hence, the line-of-sight communication

problem consists of finding a network, whose sites are located in correspondence

with a predefined set S ′ , and connecting all points in S ′ . For each pair ( p, q ) of
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points of S ′ , either q is visible from p or there exists a sequence of points connected

in the network v1,v2,...,vn in S ′ such that v1 is visible from p, vi+1 is visible from vi

(with 1 ≤ i ≤ n), and q is visible from vn. We call such a sequence a line-of-sight

connected path between p and q, and the global network a connected visibility

network for S ′ . Directional antennae are placed at each site p in S ′ : one antenna for

each other site that is connected to p in the network. This yields the formulation of

the following discrete visibility problem which is given by E. Puppo [Pup97]:

Given a terrain T, a set S = Sv ∪ So of points on T and a subset SS ⊆′ find a

connected visibility network for S ′ using the minimum number of antennae.

7.2.2 Two-point communication

The problem two-point communication (TPC) arises whenever two non-visible points

on the terrain are given, and communication has to be warranted between them

through relays. Fields of application are all those in which communication between a

transmitter and a receiver station is involved (television and radio transmission,

electro-magnetic signal exchange, etc.), or in which wayfinding between a departure

and a destination site is concerned (navigation or terrain exploration).

Since the number of relays must be finite, a discrete visibility model is

sufficient for the formulation of the problem. The following discrete visibility

problem gives a formalization for TPC which can be found in [Pup97]:

Given a terrain T, a set  S = Sv ∪ So of points on T and two points p∈Sv and

q∈So, find the minimum subset S ′  ⊆ ((Sv∩So ) \ { p,q }) (called the set of
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relays) that permits communication between p and q along a line-of-sight

connected path.

Mario Cazzanti et. al. [Caz91] proposes a dynamic structure  called the

visibility tree to solve the TPC. They notice that the problem can be solved in two

steps; first compute the visibility graph G ' on S and then apply a shortest-path

computation algorithm on G '. Since the computation of complete visibility graph is a

quite time-consuming process, they compute point intervisibilities dynamically while

computing the minimum-cost path. Therefore, the intervisibility of two points is

computed only when necessary.

7.2.3 Line-of-sight network

The problem of finding a line-of-sight network  (LSN) has relevance in several

applications, such as the optimal location of radar, laser or sonar surveillance

systems, of television transmitters on a predefined area on the terrain, etc. In such

contexts a set S* of transceiver/receiver stations is located on the terrain and auxiliary

relays must be placed in such a way that a signal transmitted from any station can be

received by any other. Clearly, the number of relays should be as small as possible.

This corresponds to determine the minimum set of relays that permit connection of

all stations in a connected visibility network. As already mentioned, the two-point

communication problem is a special case of the line-of-sight network problem for

which set S* contains only two points. LSN can be formulated as the following

discrete visibility problem (given in [deF92]):
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Given a terrain T, a set S = Sv ∪ So of points on T and a subset  S* ⊂ S (called

the set of transmitter/receiver stations), find the subset S' ⊆ (( Sv ∩ So ) \ S*)

(called the set of relays) of minimum cardinality such that points in S ∪ S* can

be arranged in a connected visibility network.

The above problem is equivalent to the problem known in graph theory as the

Steiner problem, on a weighted graph in which all arcs have unit cost. The Steiner

problem on graphs can be defined as follows. Given a weighted graph G and a subset

B of its vertex set ( called the set of the base vertices of G ), any connected subgraph

of G containing B in the set of its vertices is a Steiner subgraph of G for B. The

Steiner problem in G with respect to B consists of computing a steiner subgraph of G

for B of minimum cost. When the costs associated with the arcs of G are all positive (

as in the case of visibility graph ), then the Steiner subgraph of minimum cost of G

for B is a Minimum Steiner Tree (  MST ) for B ( see [deF92] for details ).

7.2.4 Critical points

Given a set of receiver/transmission stations and a set of relays organized into a

connected visibility network, the problem of critical points (CP) consists of

determining relays that are fundamental for communication, i.e., relays whose failure

would interrupt communication.Application fields in which such problem arises are

those already mentioned for the LSN, in which failure detection is warranted. The

problem of critical points can be formulated as the following discrete visibility

problem which can be found in [Pup97]:
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Given a terrain T, a set S = Sv  ∪ So of points on T, a set S* ⊂ S of transmitter /

receiver stations and a set S ' ⊆ (( Sv ∩ So ) \ S* ) of relays such that S* ∪ S '

form a connected visibility network, find the points whose failure disconnects

the network.

7.2.5 Fault tolerant network

The problem fault tolerant network (FTN) combines the problem of finding a

line-of-sight network with the problem of determining critical points. In several

applications, such as electrical or telephonic communication, it is important to

determine the minimum set of relays that allow joining a given set of

transceiver/receiver stations into a connected network with the further constraint of

reliability: communication among stations should be warranted even though a site

fails. Failure may be due to different operational causes: overload, errors,

destruction, etc. In such contexts, two antagonistic goals have to be considered:

minimization of total cost and maximization of reliability. Reliability is often

expressed in terms of connectivity degree of the network. While the MST connecting

the given set of stations represents an optimal solution to the minimization of cost, it

can be extremely vulnerable to failures. FTN can be formulated as the following

discrete visibility problem [Pup97]:

Given a terrain T, a set  S = Sv ∪ So of points on T and a subset S* ⊂ S (called

the set of transmitter/receiver stations), find the subset S ' ⊆ (( Sv ∩ So ) \ S*)

(called the set of relays) of minimum cardinality such that:
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• points in S ' ∪ S*can be arranged in a connected visibility network, and

• the failure of k points in S ' ∪ S* (with 1 ≤ k ≤ ( | S ' ∪ S* | – 1)) does not

disconnect the network.

7.2.6 Television broadcast

The problem television broadcast (TB) consists of determining the minimum number

of relays necessary to connect a given transceiver station to a given set of receiver

stations. A minimum number of relays may be used to this purpose. Furthermore,

receiver stations cannot be employed as relays: this requirement corresponds to the

practical necessity of avoiding having a receiver station located near a relay to ensure

good signal reception. TB can be formulated as the following discrete visibility

problem ( see [Pup97]):

Given a terrain T, a set S = Sv ∪ So of points on T, a point (called the

transmitter station), and a subset  S*  ⊂  So \  {p} (called the set of receiver

stations), find a subset S ' ⊆ ( Sv ∩ So ) \ (S*  ∪ {p} ) (called the set of relays) of

minimum cardinality such that for each receiver station q there exists a

line-of-sight connected path from p to q.

7.3 Surface paths

Finding surface paths implies the determination of lines on the terrain with specific

visibility characteristics (such as scenic peculiarities, invisibility, etc). For this
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reasons, the solution of such problems involves retrieval of both visibility and

adjacency information about points on the terrain. Since a line on the terrain is

formed by an infinity of points, continuous visibility models seem more suitable in

this context. However, discrete approximations can be used as well. A discrete

visibility model is appropriate if, for instance, a discrete gridded model is used for

terrain represention. A discrete visibility model can also be used whenever the

topographic surface is represented by a TIN and lines are approximated by sequences

of edges of the TIN. In both cases, reducing such problems to graph problems

involves both the visibility graph and the encoding adjacency relations among points

on terrain. In particular, for a gridded model, pixel-to-pixel adjacencies should be

stored, while for a TIN vertex-to-vertex adjacencies should be encoded.

7.3.1 Hidden path

The problem of hidden path (HP) consists of determining a path on the terrain from a

given site a to a given site b that is as hidden as possible from a given set of

observation points. Such problem finds applications in several contexts, such as

scenic landscape assessment, terrain exploration, and military topography.

Let us refer to a path on the terrain as a topological path to distinguish it from a

line-of-sight path. HP can be formulated as the following discrete visibility problem

([Pup97]):

Given a set So of points on a terrain T, two points a and b in So, and a set of

points Sv on T  (the observation points), find a connected topological path
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between and having vertices in So such that the number of vertices of the path

visible from Sv is minimum.

7.3.2 Scenic path

The problem of scenic paths (SP) involves the determination of a path between two

given sites that is particularly interesting from a panoramic point of view. This

problem can be formulated as an optimization problem, in which the number of

``boring'' points, from which no scenic sites are seen, is minimized. We can

formulate SP as (see [Pup97]);

Let Sv be a set of points on a terrain T; let a, b be two points of Sv and So be a

set of points on T. Let Gv be the visibility graph defined on Sv ∪ So and Gt be

the adjacency graph defined on S. Find a connected path on Gt between a and b

having vertices in a subset S ' of S, and such that the number of ``boring'' nodes

p'∈  So for which there exists no arc ( p, p' ), with  p∈  S ' , is minimum.

Lee [Lee98] has surveyed some variations of surface paths which he called the

least-cost paths including hidden path, scenic path, strategic path, and withdrawn

path. Lee notices that a grid, or lattice, may be used in a GIS environment as a

friction surface in least-cost path analysis, and is used to influence the computation

of a least cost path on a DEM. To support the computation of the various least-cost

path problems he has given, two grids of visibility information is calculated. The first

is a general viewgrid (VG) that records for each cell the number of cells visible. The

second is a dominance viewgrid (VD) that holds for each cell the number of cells
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from which the cell is visible. Two matrices are not equal because the height of the

viewpoints is not ignored. Next, these two visibility grids are converted to friction

surfaces. Each of four viewpaths needs different friction surfaces to be setup from

viewgrids as;

• The hidden path friction surface falls between the pre-selected origin and the

destination points, such that the path is minimally visible from all of the cells

in the DEM. The hidden path is in fact a path that is seen the least from all

parts of the terrain surface. It indicates the best route for military special

forces operatios.

• The scenic path friction surface is located between the pre-selected origin and

the destination point such that the path has maximum visibility of all of the

cells in the DEM i.e. we wish to see the most area of the DEM surface from

the path.

• The strategic path friction surface lies on the path between pre-selected origin

and the destination points, and it will contain cells that have the best

possibility of being minimally seen from ather cells while maintaining

maximum visibility to other cells in the DEM. It indicates the best route for

military surveillance and reconnaissance.

• The withdrawn path friction surface is the path between pre-selected origin

and the destination points. This path is minimally visible from any cell, but it

maintains minimum visibility of all of the cells in the DEM. It indicates the

best route for above–ground pipelines or high-power lines.
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7.4  The coverage problem

Among the visibility related problems, viewpoint placement problems are of great

deal and after getting the visibility matrix, clearly they are typical of coverage

problems foe which extensive surveys can be found in ( see [GL89, Lee91, Nag94,

Mar00]).

The results of calculating the set of triangles visible from each of the TIN

vertices can be expressed as a rectangular matrix with each row representing a

viewpoint vertex and each column a triangle. Each element xij of the matrix is set to 1

if the triangle i is visible from the vertex j and 0 otherwise. Each triangle can be

weighted by its area if the objective is concerned with the area visible, rather than the

number of triangles visible.

The formalization of the visibility coverage problems follows the standard

form of of location set-covering and maximum covering location problems

respectively ( see [Lee91]). Let the presence of a facility at vertex i be denoted by yi,

which is 1 if a facility is present and 0 otherwise. To minimize the number of

facilities required to see the entire surface;

∑
i

iymin

such that   yi={0,1}       for all i

                1≥∑
i

iij yx     for all j.
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To maximize the area covered by a given number of facilities p, for the case of

triangle j being accepted as visible as a whole when all vertices of it is visible to i, let

the area of triangle j be denoted by Aj.

∑ ∑ 








j i
iijj yxA ,1minmax

such that  yi={0,1}       for all i

              py
i

i =∑ .

To maximize the area covered by a given number of facilities p, for the case of

visible part of triangle j is computed, replace Aj with Aij where Aij is the area of

triangle j visible to i be denoted by Aij.

Visibility dominance is used to enhance and speed up visibility analyses such

as watchtower siting or viewshed assessment by Lee [Lee94]. Dominance occurs

when all visible pixels from a viewing pixel are also visible from another viewing

pixel. It is possible that rows can be eliminated as potential viewpoints if they are

dominated by other vertices. The necessary condition for the dominance of vertex i

by vertex k is simply;

          ijkj xx ≥  for all j.

Unfortunately it appeares that dominance is unlikely in practice. It requires

situations in which an observer is able to move on a landscape without bringing out

new areas into view; in practice moves almost always result in a changing field of

view, with the addition of some areas and the deletion of others. The search for

coverage must therefore consider all vertices.
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Three broad classes of heuristics were tested in [Lee91] also. In greedy add

(GA) viewpoints are added to the solution set one at a time, on each step selecting

the vertex which maximizes some conveniently computed parameter. To solve the

problem of coverage-with-minimum observers, the GA algorithm picks for the first

viewpoint the point which has the largest area of visible triangles. For the second

viewpoint, the GA algorithm picks the viewpoint which has the largest area of visible

triangles not visible to the first viewpoint. This process continues until the solution

set just covers all the triangles in the network. Similarly for the problem of

maximum-visible-area-with-n-observers the GA stops when solution set includes n

viewpoints. The GA algorithm never removes viewpoints from the solution set. In

stingy drop (SD) initially all vertices are selected and then SD drops the vertex with

the least deterioration of the objective function. The most suitable viewpiont to be

dropped is the point which produces the least areas which are visible before dropping

the point, but are invisible after dropping the point. For a minimization (whole

coverage) problem, the process is continued until the solution set just covers the the

whole network. For a maximization (partial coverage) problem, it continues until the

number of points remaining in the solution reaches the predefined number, n. In

greedy add with swaps (GAS) an attempt is made to improve the objective function

by exchanging each vertex in the solution with one not in the solution after the

addition of each new vertex.

Two approaches had also been suggested by Lee [Lee91] to avoid very long

computation time; selecting only more critical elevation vertices to reduce the size of
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the TINs, or selecting a subset of elevation vertices in the TIN as candidate

viewpoints to reduce the size of the visibility matrices.

Tserkezou solves a small fire-tower problem, using the matrix-reduction

heuristics [Tse88]. The two steps of the iterative reduction process are;

1. Eliminate any viewpoint (column) that sees only a subset of the partitions

seen by some other viewpoint.

2. Eliminate any partition (row) that is seen by a superset of the viewpoints that

also sees some other partition.

 Marengoni et.al. [Mar00] use a 5 coloring algorithm first to reduce the number

of the candidate viewpoints after simplifying the terrain by choosing fixed points of

great importance and then finally use two lists to find the minimum number of

observers to cover a polyhedral terrain. The first list is of observers and for each

observer a list of triangles that the observer can see, as well as the total number of

triangles visible to the observer. The second list gives for each triangle a list of

observers that can see it. Observers are placed in the terrain using the following loop:

the triangle that is viewed by the fewest observers is selected, and among those

observers, the one who can see the highest number of triangles is placed in the

terrain. All the triangles that the chosen observer can see are marked. The loop is

repeated until all triangles are marked and the next unmarked triangle with the fewest

observer is selected for the next loop.

W.R.Franklin [Fra94] proposes an algorithm to find a set of observers that

jointly can see every point as follows.
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1. List all the points by visibility index, and hence, to find the most visible

point. Place the first observer, O1, there.

2. Find the points that O1 cannot see.

3. Filter the sorted list of points to delete points that O1 can see.

4. Find the most visible point that O1 cannot see; that is the second observer, O2.

5.  Repeat until the set of observers can see every point.
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CHAPTER 8

8   Conclusion

We have shown that some point guards with larger areas of viewsheds that that of

vertex guards can be found. This leads us to study continuous cases. Although it is

possible to find precise definitions of visibility in the context of discrete models of a

surface in a TIN such as the one used in this study, no such precise definition exists

for continuous terrain; we have developed two bases for the cases of discrete

viewpoints, and the cases when the viewpoints are continuous still needs to be

worked.

The solution is clearly sensitive to the accuracy of the underlying TIN in

representing the true topography. We have already seen that the digital elevation

model can only approximate the real surface; although elevations at vertices may be

exact, the surface between them is assumed to vary linearly. To obtain an accurate

representation it is necessary to choose a large number of appropriately located

sample points. However, an accurate TIN is no guarantee that the set of triangles

visible from a point will be an accurate representation of the seen area. Apart from

the artifacts such as trees which may inhibit visibility independently of the

topography itself, a small error in elevation can produce very large errors in visibility

while this deviation is expected to be smaller in other analyses of the same terrain

such as slope or distance. For example, a difference of a few centimetres in a horizon
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close to the viewpoint can produce a difference of many square kilometres in the

visible area. As with all location problems, the search for optimality must be

conducted on a model of reality rather than on reality itself; in this case the TIN

serves as a model of the real topographic surface. However the effects of the

modelling are unusually explicit in this case, and the ability to investigate these

effects is one of the more interesting aspects of this class of problems. It is shown

that the area of the viewshed calculated in the original DEM may significantly

overestimate the viewshed area [Fis91]. This study has used a Monte Carlo

simulation and testing approach in which a number of randomizing models of how

error occurs coded as computer procedures. However, this error was for an RSG of

200- by 200 cell and for two viewpoints. Moreover he has tested just three packages

of visibility computation. Thus for TINs and other packages of visibility analyses

still need to be tested whether the accuracy of visibility is significant or not.

Efficient solutions to the single viewpoint problem have been published for

discrete cases of both viewpoint and candidate points in RSG and we have presented

a new one for a TIN. The problem of locating the minimum number of viewpoints

from which the entire terrain is visible can be solved by a set-covering algoritm.

Some shortest surface-path problems constrained by visibility criteria and line-of-

sight path problems are computationally tractable.

The use of the TIN digital elevation model, the restriction of the search space

to the vertices of the TIN, and the definition of each vertex’s visible area as a set of

fully visible triangles produces a tractable version of the visibility problem which is

suitable for application to site selection. It can readily be generalized to the case
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where viewpoints are raised above the surface, and standard heuristics for set

covering are presented and still needs to be worked.

Still many visibility-related problems on terrains lack of practically satisfactory

solutions. This lack of efficient solutions is partially due to the fact that such

problems have deserved only little attention from the research community, both

because most of them are intrinsically hard , and because some of them have come to

the attention of Geographic Information Systems (GIS) people only recently . The

major driving force has been geographic information systems for military

applications. The applications of visibility methods for navigation for civilian

purposes has barely been initiated. In many cases a good definition of  the problem is

still missing, thus making the work of finding algorithmic methods even harder.
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APPENDIX

CODE FOR CHECKING DOMINANCE

#include <windows.h>
#include <stdio.h>
#include <stdlib.h>
#include <iostream.h>

// 5329 Verticies
// 10368 Triangles

static short face_indicies[10368][9] = {
// QuadPatch0

{1729,1730,1735 ,0,1,2 ,0,1,2 }, {1735,1734,1729 ,2,3,0 ,2,3,0 },
{1730,1731,1736 ,1,4,5 ,1,4,5 }, {1736,1735,1730 ,5,2,1 ,5,2,1 },

*
*
*
,5296,5287,5282 ,5302,5296,5294 }
};
static float vertices [5329][3] = {
{-0.499842f,-0.499826f,-0.0133705f},{-0.416546f,-0.499826f,-
0.015398f},{0.333251f,-0.499826f,-0.00900962f},
*
*
*
{0.485809f,0.48584f,-0.0141254f}
};

int visibility_control(float [],int ,int);
float det(float [3][3]);
int boundry_control(float [],float ,float ,float ,float [3][3]);

void main()
{

    int N_VERTICES, N_TRIANGLES;
    int visibility[6000][6000];
    int ij,i,j,k;
    float base[3];
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    int v_number[3];
    int vis_vertex[3];
    int viewpoint[10],vis_triangle[10];
    float v[3][3],v4[3];
    int alfa[3];
    int visibility2[5000];
    int vis_inner[50];
    float success_point[50][3],success_percentage;
    int success;

    N_VERTICES=sizeof(vertices);
    N_TRIANGLES=sizeof(face_indicies);

  //make all the elements visibility matrix 2 which means it is not tried
   for (ij=0;ij<9;ij++)
   {
   for (i=0;i<N_VERTICES;i++)
        for (j=0;i<N_VERTICES;i++)
             {
             visibility[i][j]=2;
             visibility[j][i]=2;
             }
  //vertices in the same triangles are visible to each other
   for (i=0;i<N_TRIANGLES;i++)
       { for (j=0;j<3;j++)
             for (k=j;k<3;k++)
               {
               visibility[face_indicies[i][j]][face_indicies[i][k]]=1;
               visibility[face_indicies[i][k]][face_indicies[i][j]]=1;
               }
       }

   // take the ijth Triangle as the Base Triangle

   for (i=0;i<3;i++)
        {
          v_number[i]=face_indicies[ij][i];//the number ith vertex of the base triangle
          for (j=0;j<3;j++)
          base[j] = vertices[v_number[i]][j]; //the coordinates of the ith vertex of the
base triangle
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             //can base see vertex j, try all vertices other than the invisible vertices
             //and the vertices which are in the same triangle as vertex base

            for (int j=0;j<=N_VERTICES;j++)
               {
                  if (visibility[v_number[i]][j]==2)   //if it is not tried
                     {
                       visibility[v_number[i]][j]=visibility_control(base,j,N_TRIANGLES);
                       visibility[j][v_number[i]]=visibility[v_number[i]][j];
                       vis_vertex[i]=vis_vertex[i]+visibility[v_number[i]][j];
                      }
                 }
          }

   //choose the best vertex of the triangle
   if ((vis_vertex[0] > vis_vertex[1]) && (vis_vertex[0] > vis_vertex[2]))
               {
                viewpoint[ij]=v_number[0];
                vis_triangle[ij]=vis_vertex[0];
                }
   else
       {if ( vis_vertex[1] > vis_vertex[2])
                {
                viewpoint[ij]=v_number[1];
                vis_triangle[ij]=vis_vertex[1];
                }
        else
            {
             viewpoint[ij]=v_number[2];
             vis_triangle[ij]=vis_vertex[2];
             }
        }

  //take an inner point and check if its viewshed is larger than that of the triangle
  for (i=0;i<50;i++)
     {
       for (j=0;j<3;j++)
           {
             for (k=0;k<3;k++)
               v[j][k]=vertices[v_number[j]][k];
           }

       alfa[0]=1;
       alfa[1]=1;
       alfa[2]=1;
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        if (((alfa[0]+ alfa[1])>1)||(alfa[0]<0)||(alfa[1]<0)) {
                for (j=0;j<2;j++)
                     alfa[j]=rand(); }

     alfa[2]=1-(alfa[0]+alfa[1]);

     for (j=0;j<3;j++)
          v4[j]=(alfa[0]*v[0][j])+(alfa[1]*v[1][j])+(alfa[2]*v[2][j]);

     //create a visibility index vector, of whose all values are 2, for the current inner
point
      for (j=0;j<N_VERTICES;j++)
         visibility2[j]=2;
      //the vertices of the base triangle are visible to the inner point
      for (j=0;j<3;j++)
          visibility2[v_number[j]]=1;

     //find whether viewshed of this inner point is better than the chosen viewpoint
     for (int j=0;j<=N_VERTICES;j++)
               {
                  if (visibility2[j]==2)   //if it is not tried
                     {
                       visibility2[j]=visibility_control(v4,j, N_TRIANGLES);
                       vis_inner[i]=vis_inner[i]+visibility2[j];
                      }
                 }

    if(vis_inner[i]>vis_triangle[0])
       {
        for (i=0;i<3;i++)
        //success_point[i]= v4[i];
        //success_percentage=((vis_inner[i])/(vis_triangle[ij])) * 100;
        success++;
       }
   }
}
cout << success << endl ;
}

//***************FUNCTIONS******************

  //are vertices A and B  blocked by triangle T

int visibility_control(float a[],int b,int N_TRIANGLES)
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{
  float bx,by,bz,x[3][3],H[3][3];
  float NH[3][3],t[3],u[3], a1 [3];
  int conc,i,j,k,b_control;
  float deth,dethi;

   bx=vertices[b][0];
   by=vertices[b][1];
   bz=vertices[b][2];
   conc=1;

   for ( i=0 ;i<3;i++ )
   a1 [i] = a [i] ;

  for (k=0; N_TRIANGLES;k++)
     {
       if (conc==1)
         {
           for (i=0;i<3;i++)
              for (j=0;j<3;j++)
                  x[i][j]=vertices[face_indicies[k][i]][j];
                b_control=boundry_control(a1,bx,by,bz,x)  ;
            if (b_control==1)
            {
             for (i=0;i<3;i++)
                 H[i][0] = a[i]-bx;
             for (i=0;i<3;i++)
                 H[i][1] = x[2][i]-x[0][i];
             for (i=0;i<3;i++)
                 H[i][2] = x[2][i]-x[1][i];
             for (i=0;i<3;i++)
                 t[i]=x[2][i]-bx;

            deth=det(H);

            for (i=0;i<3;i++)
                {
                for (j=0;j<3;j++)
                   for (k=0;k<3;k++)
                        NH[j][k]=H[j][k];
                for (j=0;j<3;j++)
                   NH[j][i]=t[j];
                dethi=det(NH);
                u[i]=dethi/deth;
                }
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if(u[0]<=1&&u[0]>=0&&u[1]<=1&&u[1]>=0&&u[2]<=1&&u[2]>=0&&u[0]+u[1]
+u[2]==1)
    conc=0;
         }
       } // end of outer if
     } // end of outer for

    return conc;
  }

  //determinant

float det(float h[3][3])
  {
  float conclusion;

   conclusion=
h[0][0]*h[1][1]*h[2][2]+h[0][1]*h[1][2]*h[2][0]+h[0][2]*h[1][0]*h[2][1]
              -h[0][1]*h[1][0]*h[2][2]-h[0][0]*h[1][2]*h[2][1]-h[0][1]*h[1][1]*h[2][0]  ;

   return conclusion ;
  }

int boundry_control(float a[],float bx,float by,float bz,float x[3][3])
  {
    float upperx,uppery,lowerx,lowery;
    int control,i;

     if (a[0]<=bx)
       {
         upperx=bx;
         lowerx=a[0];
       }
      else
       {
         upperx=a[0];
         lowerx=bx;
       }
     if (a[1]<=by)
       {
         uppery=by;
         lowery=a[1];
       }
      else
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       {
         uppery=a[1];
         lowery=by;
       }

      for ( i=0;i<3;i++)
      if ((x[i][0]<= upperx) && (x[i][1]<= uppery)
          && (x[i][0]>= lowerx) && (x[i][1]>= lowery))
             control=1;

      for ( i=0;i<3;i++)
           if(x[i][2]<=a[2]&&x[i][2]<=bz)
             control=0;
      return control ;
     }




