1,131 research outputs found

    Generalized Method Of Designing Unmanned Remotely Operated Complexes Based On The System Approach

    Get PDF
    Self-propelled underwater systems belong to the effective means of marine robotics. The advantages of their use include the ability to perform underwater work in real time with high quality and without risk to the life of a human operator. At present, the design of such complexes is not formalized and is carried out separately for each of the components – a remotely operated vehicle, a tether-cable and cable winch, a cargo device and a control and energy device. As a result, the time spent on design increases and its quality decreases. The system approach to the design of remotely operated complexes ensures that the features of the interaction of the components of the complex are taken into account when performing its main operating modes. In this paper, the system interaction between the components of the complex is proposed to take into account in the form of decomposition of “underwater tasks (mission) – underwater technology of its implementation – underwater work on the selected technology – task for the executive mechanism of the complex” operations. With this approach, an information base is formed for the formation of a list of mechanisms of the complex, the technical appearance of its components is being formed, which is important for the early design stages. Operative, creative and engineering phases of the design of the complex are proposed. For each phase, a set of works has been formulated that cover all the components of the complex and use the author's existence equations for these components as a tool for system analysis of technical solutions.The perspective of the scientific task of the creative phase to create accurate information models of the functioning of the components of the complex and models to support the adoption of design decisions based on a systematic approach is shown.The obtained results form the theoretical basis for finding effective technical solutions in the early stages of designing remotely operated complexes and for automating the design with the assistance of modern applied computer research and design packages

    Advancing automation and robotics technology for the Space Station Freedom and for the US economy

    Get PDF
    In April 1985, as required by Public Law 98-371, the NASA Advanced Technology Advisory Committee (ATAC) reported to Congress the results of its studies on advanced automation and robotics technology for use on the Freedom space station. This material was documented in the initial report (NASA Technical Memorandum 87566). A further requirement of the law was that ATAC follow NASA's progress in this area and report to Congress semiannually. This report is the seventh in a series of progress updates and covers the period between April 1, 1988 and September 30, 1988. NASA has accepted the basic recommendations of ATAC for its Space Station Freedom efforts. ATAC and NASA agree that the thrust of Congress is to build an advanced automation and robotics technology base that will support an evolutionary Space Station Freedom program and serve as a highly visible stimulator, affecting the U.S. long-term economy. The progress report identifies the work of NASA and the Freedom study contractors. It also describes research in progress, and it makes assessments of the advancement of automation and robotics technology on the Freedom space station

    Accurate Bolt Tightening using Model-Free Fuzzy Control for Wind Turbine Hub Bearing Assembly

    Get PDF
    "In the modern wind turbine industry, one of the core processes is the assembly of the bolt-nut connections of the hub, which requires tightening bolts and nuts to obtain well-distributed clamping force all over the hub. This force deals with nonlinear uncertainties due to the mechanical properties and it depends on the final torque and relative angular position of the bolt/nut connection. This paper handles the control problem of automated bolt tightening processes. To develop a controller, the process is divided into four stages, according to the mechanical characteristics of the bolt/nut connection: a Fuzzy Logic Controller (FLC) with expert knowledge of tightening process and error detection capability is proposed. For each one of the four stages, an individual FLC is designed to address the highly non-linearity of the system and the error scenarios related to that stage, to promptly prevent and avoid mechanical damage. The FLC is implemented and real time executed on an industrial PC and finally validated. Experimental results show the performance of the controller to reach precise torque and angle levels as well as desired clamping force. The capability of error detection is also validated.

    An overview of decision table literature 1982-1995.

    Get PDF
    This report gives an overview of the literature on decision tables over the past 15 years. As much as possible, for each reference, an author supplied abstract, a number of keywords and a classification are provided. In some cases own comments are added. The purpose of these comments is to show where, how and why decision tables are used. The literature is classified according to application area, theoretical versus practical character, year of publication, country or origin (not necessarily country of publication) and the language of the document. After a description of the scope of the interview, classification results and the classification by topic are presented. The main body of the paper is the ordered list of publications with abstract, classification and comments.

    Fuzzy Controlled Hydraulic Excavator with Model Parameter Uncertainty

    Get PDF
    The hydraulic actuated excavator, being a non-linear mobile machine, encounters many uncertainties. There are uncertainties in the hydraulic system in addition to the uncertain nature of the load. The simulation results obtained in this study show that there is a need for intelligent control of such machines and in particular interval type-2 fuzzy controller is most suitable for minimizing the position error of a typical excavator’s bucket under load variations. We consider the model parameter uncertainties such as hydraulic fluid leakage and friction. These are uncertainties which also depend up on the temperature and alter bulk modulus and viscosity of the hydraulic fluid. Such uncertainties together with the load variations cause chattering of the bucket position. The interval type-2 fuzzy controller effectively eliminates the chattering and manages to control the end-effecter (bucket) position with positional error in the order of few millimeters

    Electric Vehicle Battery Disassembly Using Interfacing Toolbox for Robotic Arms

    Get PDF
    This paper showcases the integration of the Interfacing Toolbox for Robotic Arms (ITRA) with our newly developed hybrid Visual Servoing (VS) methods to automate the disassembly of electric vehicle batteries, thereby advancing sustainability and fostering a circular economy. ITRA enhances collaboration between industrial robotic arms, server computers, sensors, and actuators, meeting the intricate demands of robotic disassembly, including the essential real-time tracking of components and robotic arms. We demonstrate the effectiveness of our hybrid VS approach, combined with ITRA, in the context of Electric Vehicle (EV) battery disassembly across two robotic testbeds. The first employs a KUKA KR10 robot for precision tasks, while the second utilizes a KUKA KR500 for operations needing higher payload capacity. Conducted in T1 (Manual Reduced Velocity) mode, our experiments underscore a swift communication protocol that links low-level and high-level control systems, thus enabling rapid object detection and tracking. This allows for the efficient completion of disassembly tasks, such as removing the EV battery’s top case in 27 s and disassembling a stack of modules in 32 s. The demonstrated success of our framework highlights its extensive applicability in robotic manufacturing sectors that demand precision and adaptability, including medical robotics, extreme environments, aerospace, and construction

    An Overview of Self-Adaptive Technologies Within Virtual Reality Training

    Get PDF
    This overview presents the current state-of-the-art of self-adaptive technologies within virtual reality (VR) training. Virtual reality training and assessment is increasingly used for five key areas: medical, industrial & commercial training, serious games, rehabilitation and remote training such as Massive Open Online Courses (MOOCs). Adaptation can be applied to five core technologies of VR including haptic devices, stereo graphics, adaptive content, assessment and autonomous agents. Automation of VR training can contribute to automation of actual procedures including remote and robotic assisted surgery which reduces injury and improves accuracy of the procedure. Automated haptic interaction can enable tele-presence and virtual artefact tactile interaction from either remote or simulated environments. Automation, machine learning and data driven features play an important role in providing trainee-specific individual adaptive training content. Data from trainee assessment can form an input to autonomous systems for customised training and automated difficulty levels to match individual requirements. Self-adaptive technology has been developed previously within individual technologies of VR training. One of the conclusions of this research is that while it does not exist, an enhanced portable framework is needed and it would be beneficial to combine automation of core technologies, producing a reusable automation framework for VR training
    • …
    corecore