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This report discusses the design and implementation of an automated sys-

tem for use in geometrically-constrained, hazardous glovebox environments. This

system’s purpose is to reduce a hemispherical plutonium pit into smaller pieces

that fit inside of a crucible. The size reduction of plutonium pits supports stockpile

stewardship efforts by the United States Department of Energy. The automation

of this process increases the safety of radiation workers by handling radioactive

nuclear material. This decreases glovebox worker dose and exposure to tools,

sharps, and fines.

This effort examines the hardware and software framework developed to

support the use of a Port Deployed Manipulator (PDM) for a contact task. This

research effort uses a 7 Degree-of-Freedom (DOF) PDM and a micropunch to

reduce hemispherical pit surrogates. Formulation of the material reduction ex-

ecution algorithm involved addressing a variety of topics related to industrial

automation:
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• Collision detection and object recognition based on user-specified parame-

ters.

• Joint torque monitoring

• Online motion planning for contact tasks

• Object-in-hand industrial manufacturing

• Grasping and handling of nuclear material

• Software compliance via robust nonlinear control methods

A high-bandwidth collision detection algorithm involving joint torque mon-

itoring was developed to increase robot safety during operation. The motion plan-

ning algorithm developed for this effort takes variable geometric properties to be

used with a range of hemishells. The algorithm’s feasibility was validated on a

hardware test bed in a laboratory setting.

Hardware cold tests conclude that mechanical compliance is sufficient for

task completion. However, software compliance would increase performance, ef-

ficiency, and safety during task execution. Two different nonlinear force control

laws (feedback linearization and sliding mode control) that minimize object shear

forces were developed using a simplified material reduction simulation. It is rec-

ommended that glovebox automation research continue to increase worker safety

throughout the DOE complex.
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Chapter 1

Introduction

Mankind has long dreamed of autonomous beings working alongside people.

Science fiction writers such as Asimov have depicted robots as benefactors, with

circuits programming the robots to be benevolent. This dream would eventually

become reality in 1959, when the first prototype industrial robot to be used on the

factory floor was created, called the Unimate [41]. It was created by George Devol

and Joseph Engelberger, who would later found Unimation Inc. The Unimate was

a five degree-of-freedom (DOF) automated serial manipulator intended for use on

the General Motors factory floor as a die casting machine. This machine intended

to replace workers on the factory floor for a task that was undesirable and

dangerous .

Figure 1.1: The Unimate robot demonstrating how to golf on the Johnny Carson
Show (1966) [1]
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In 1966, the Air Force-sponsored study known as Project Hindsight exam-

ined several research projects conducted after World War II. The initial report

concluded:

“A utilized innovation can occur only when there is a conjunction of

three elements: (1) a recognized need; (2) competent people with rele-

vant scientific or technological ideas; and (3) financial support.” [50]

This section of the report focuses on the first element: a recognized need.

The desire for robots to replace human workers in industry is still present today,

with the need for robots expanding past its roots in the automotive industry.

Industrial robots are utilized for increasingly complex tasks. The da Vinci Surgical

System is a robot operating in the medical field [29]. Robots are commonly used on

the factory floor of many companies for manufacturing with welding and grinding

robots taking the place of human workers.

Robots are finding more and more use in the nuclear industry as well. The

need for improved safety and performance in power plants has led to the intro-

duction of robotic systems working alongside humans [21]. The United States

Department of Energy (DOE) is now employing automation for tasks conducted

at national labs [55]. The DOE recognizes the need for robots to be employed in

national labs. Efforts have been made to automate tasks typically performed by

humans to primarily to reduce dose and exposure to hazardous and potentially ra-

dioactive nuclear material. This effort will focus on automating one such handling

task.
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1.1 Nuclear Material Handling

It is necessary to understand the environment of workers in the nuclear in-

dustry that directly handle nuclear material. At Los Alamos National Laboratory

(LANL), radiation workers in the Plutonium Facility (TA-55) typically handle ob-

jects and materials containing a substantial amount of alpha-emitting plutonium

isotopes. 1 In order to contain radiological contamination and prevent the spread

of toxic material, all workers must perform nuclear handling tasks from outside of

a sealed environment. These tasks are typically executed in a lead-lined glovebox.

A glovebox is a containment vessel that acts as a physical barrier between the

operator and the material inside. Most gloveboxes are made of stainless steel,

with lead lining layered inside. The glovebox features window ports for viewing

and glove ports to allow for interaction and handling.

There are a number of hazards imposed on DOE glovebox workers by op-

erating in this environment. Structurally, the weakest part of a glovebox is the

gloveport itself. The gloves lining the gloveport are much more susceptible to

mechanical, chemical, and radiological failure than any other glovebox compo-

nent [39]. This puts the radiation worker at risk of glove breach during normal

operation. Certain safeguards exist to minimize the harmful effects of a glove

breach, such as lowering the pressure inside of gloveboxes relative to the exte-

rior. This prevents contaminants from escaping the glovebox. However, a serious

breach puts the operator at risk of exposure to unwanted dose. Some machining

processes that commonly take place inside of gloveboxes involve the creation of

small, jagged pieces of material (known as sharps and/or fines). These sharps and

1Alpha particles consist of two protons and two neutrons. Alpha radiation is easily attenuated
by even thin material, but is highly damaging if consumed.

3



fines greatly increase the risk of a glove breach.

Figure 1.2: Typical glovebox worker environment[32]

An injury from a glove breach or failure would be the most severe glovebox

event that could happen to a glovebox worker (excluding criticality events). How-

ever, the Glovebox Glove Integrity Program (GGIP) at LANL has rated ergonomic

injury as the greatest glovebox environment failure risk to a glovebox worker [39].

The risk evaluation of environment failure is based on not only the severity of the

risk, but also on ease of detection and occurrence rate. Ergonomic injuries are

particularly common for glovebox workers due to the cramped workspace, varying

height of glovebox workers in relation to a fixed gloveport height, and stress. Lost

work days and productivity due to ergonomic injuries indirectly cost employers

like LANL as well. In 2003, strains and sprains due to injury on the job were the

leading causes of missing work days by a wide margin for the United States [32].

The motivations to automate these tasks includes safety, dose, and containment.

4



1.2 Task Statement and Objectives

This thesis follows the design and implementation of an autonomous indus-

trial robotic manipulator system for the reduction of hazardous materials. The

system was developed to be used in gloveboxes commonly found in the DOE com-

plex. Traditionally, a human glovebox operator would handle hazardous radioac-

tive materials via the glove ports. Different glovebox applications each require a

specific procedure to be carried out by the glovebox operator. The goal of this

system is to reduce risks to DOE workers by removing the need for a human op-

erator from one particular glovebox procedure that involves the size reduction of

a hemispherical plutonium shell.

One possibility for autonomous system deployment in a glovebox is the

use of a Port Deployed Manipulator (PDM). For an autonomous system to be

deployed in a hazardous contained environment, many of the challenges involved

in safely deploying a PDM should be addressed. An ideal PDM deployment in a

glove port would allow the robot to be safe from radiological and physical damage

while maintaining mobility and function. The requirements and solutions for

safely deploying a PDM has been previously researched and covered by Joseph

Hashem of The University of Texas at Austin’s Nuclear Robotics Group (UT

NRG) [19]. Hashem’s thesis primarily concerns the requirements for deployment

and preparation of a flexible robotic system for operation in a glovebox. Based

on this research, the work done in this document is primarily focused on the use

of a flexible PDM for a specific contact task.

5



1.2.1 Background

An essential part of an implosion-based nuclear bomb is the plutonium pit.

The pit is composed of two hemispherical shells. The United States created many

thousand nuclear weapons and pits, competing primarily with the Soviet Union

in the nuclear arms race during the Cold War. Both the United States and Russia

have taken an interest in the reduction of their nuclear arsenals. Treaties such

as the Strategic Arms Reduction were signed with the intent that a number of

nuclear weapons should be retired by a certain date. Many thousands of nuclear

warheads have been dismantled or retired since the signing of such treaties. The

nuclear weapons are transferred from the Department of Defense (DOD) to the

Department of Energy (DOE) for staging and dismantling. Historically, the stock-

pile for plutonium pits was the Rocky Flats site in Colorado. Since its closure,

weapons have been taken to the Pantex Plant in Amarillo, Texas, for disman-

tlement. After dismantlement of the warhead, many pits are staged for interim

storage at Pantex itself. Secondary components are shipped to various facilities

in the nuclear complex, such as the Y-12 plant in Oak Ridge, Tennessee, or the

Savannah River Site in South Carolina. [6]

In addition to policy concerns, plutonium pits have a limited shelf life. The

plutonium metal corrodes and oxidizes easily. The particles formed during storage

pose a radiological hazard as they could easily be inhaled by a human. Fissile Pu-

239 is an isotope of particular interest in plutonium weapons pits. Pu-239 decays

by alpha-particle emission to U-235. Alpha particles pose a serious health risk

when ingested. Eventually, Am-241 is produced via a decay chain. Am-241 poses

a radiological threat by emitting high-energy gammas through decay.

The DOE is interested in continuing the reduction of the nuclear arsenal

6



Figure 1.3: Mock plutonium pit; recreation of the 1945 Louis Slotin criticality
accident at Los Alamos. [37]

through pit dismantlement and reduction. One option is the conversion of weapons

pits to plutonium oxide. This oxide could then be processed and fabricated into

Mixed-Oxide Fuel (MOX) used as fuel for power reactors. Another option is the

reprocessing of the plutonium in pits to be refabricated, essentially extending

the shelf life of existing pits. However, before the DOE can make any use of

the weapons pits, the pits themselves need to be rendered usable again via a re-

smelting process. This process starts with breaking down the pits into smaller

pieces that can fit into an induction crucible. Typically a human radiation worker

completes this task using off-the-shelf power tools in gloveboxes to reduce the pit

into smaller pieces. The automation of this task is of particular interest to LANL

in order to maintain stockpile stewardship.

1.2.2 Task-Defined and System-Defined Performance Constraints

This section outlines the task-defined constraints the autonomous system

must follow during operation.
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• The plutonium hemishell should be size-reduced into components that fit

within a standard cylindrical crucible (Approximately 8” deep by 3” in di-

ameter)

Figure 1.4: Molten plutonium in a LANL crucible [48]

The induction crucibles used to melt plutonium components have a stan-

dard set geometry. Material entering the crucible must conform to size standards

to ensure they fit in the crucible and settle with a low packing factor.2

• All plutonium material should be accounted for within 0.5 grams

Due to the nature of nuclear nonproliferation policy in the United States, it

is necessary to have accountability of material flow throughout the manufacturing

processes. For reference, 0.5 grams of plutonium is roughly equivalent to 0.025

cm3. This is about the size of a grain of rice.

• Process should adhere to ALARA principles

2A packing factor refers to how well material can fit into a set volume.
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Every process involving nuclear material handling must make a reasonable

effort to adhere to minimize exposure and dose to radiation workers (ie. ALARA

3) as defined by NRC regulations 10 CFR Part 20 [53].

• The entire autonomous system should operate within the geometric con-

straints of the glovebox environment

All nuclear material for this task must be contained within the glovebox.

Therefore the system should operate within the workspace of the glovebox. This

does not necessarily mean that the robot must fit inside of the glovebox entirely.

The robot chosen could be a PDM.

• The system should be able to withstand alpha-emitting radiation from com-

mon plutonium isotopes used within glovebox applications

The robot should be rated for a suitable amount of operating time within

a hot glovebox environment. If the robot is a PDM, suitable shielding is required

for the robot to operate within the glovebox. The robot would therefore be re-

placed after its rated operating time to account for robot components degrading

due to radiation damage. In addition, LANL complies with a multitude of addi-

tional regulation requirements to assume systems operate safely and securely. It

is beyond the scope of this effort to address all these constraints. However, UT

researchers will regularly communicate with LANL engineers to ensure there are

no obvious conflicts with the proposed solution.

The following are system-defined constraints and desires that further define

the autonomous system, along with an explanation for each:

3As Low As Reasonably Achievable
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• The procedure should be autonomous, with minimal human interaction nec-

essary for completion

The autonomous system described in this report will most likely differ

from the final design iteration to be implemented in an actual DOE hot glovebox.

Therefore, the goal of this thesis is to demonstrate that this material reduction

task can be fully automated in a feasible manner. However, the general reduc-

tion algorithm should fully complete the material reduction task without human

intervention regardless of hardware platform.

• Human interaction with the system should be minimal, clearly defined, and

user-friendly

The end-user of this autonomous system is a DOE glovebox worker or tech-

nician. The user should ideally only be required to set up, start, and emergency

stop the system. Troubleshooting the system should be intuitive and require min-

imal hardware or software interaction. It is not necessary to have a user-friendly

interface for the purposes of this report, but is necessary for the final software

implementation.

• The robot system must support a range of plutonium pit geometries compat-

ible with current and foreseeable demand

It is desired to complete this task for multiple types and classifications of

plutonium pits. This report assumes a uniform hemispherical pit geometry with

variable radius.

• The motion-planner and inverse kinematic solver should be robust
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The software framework should have online motion planning built in. It is

desirable for the end-user and DOE engineering support to have access to a high-

level API as well as the low-level inverse kinematics and planning framework. The

operator must have control via clear and intuitive interface modes (EEF jogging,

joint control, and target pose goal setting, etc).

• The supervisor must be able to stop and control the robot at any time

Absolute safety cannot be guaranteed so a user must always be able to

intervene in the case of an emergency.

• The system must be theoretically tested within an appropriate cold-testing

environment with geometrically-similar plutonium surrogates

It is necessary to test operation of the reduction algorithm on a robot

system within a controlled cold glovebox before implementing the same algorithm

in a glovebox with radioactive material inside. Therefore, a suitable surrogate

object should be used for testing purposes. It is desirable for this surrogate to be

similar in size and shape to an actual plutonium hemishell. It is also desireable for

the surrogate to have certain similar material properties to a plutonium hemishell

in order to accurately simulate object behavior during material reduction.

• The system should reliably perform collision checking and obstacle avoidance

during operation

Collision detection is a robot application that necessitates software support

for point-to-point motion planning and reactive motion planning. It is required for
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the robot system to check for collisions during motion planning to avoid obstacles.

It is also required that the robot react to disturbance forces and torques that might

otherwise damage the robot, cause a hardware malfunction, lower the performance

of the task, or cause a criticality event. For point-to-point motion planning, it is

necessary to have a priori knowledge of the workspace of the robot. For glovebox

applications, the workspace is usually fully defined and all geometric obstacles

known prior to starting the automation system. These obstacles should therefore

be accountable in software. Collision checking is explained in detail in Chapters

2 and 4.

• The robot should exhibit partial compliance in material handling when inter-

acting with the material reduction tool

The material reduction tool will introduce disturbance forces and torques

on the end-effector (EEF) of the robot in addition to interacting with the object

being manipulated. Therefore, it may be necessary for the manipulator to exhibit

compliance during the material reduction task. Compliance can come in the form

of reactive motion planning based on sensor inputs, or mechanical compliance in

the robot or manipulated component exhibiting finite stiffness.

• If software compliance is used, the control law for compliance should be robust

and stable

Contact control tasks involving a robotic manipulator are inherently non-

linear due to robot geometry. Software compliance should utilize a suitable non-

linear control law for bounded disturbance forces and torques.
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1.3 Industrial Automation

The broadening market for industrial robots was mentioned previously.

The International Organization for Standardization (ISO) gives an exact definition

of an industrial robot:

automatically controlled, reprogrammable, multipurpose manipulator,

programmable in three or more axes, which can be either fixed in

place or mobile for use in industrial automation applications[...] The

industrial robot includes: the manipulator, including actuators; the

controller, including teach pendant and any communication interface

(hardware and software). [2]

Industrial robots are the standard in industry for many subtractive man-

ufacturing tasks. By using robots instead of people, much of the safety concerns

for factory workers have vanished. Productivity, process control, and quality con-

trol are various aspects of manufacturing that industrial robots have a distinct

advantage over humans. The advantage of using an industrial robot for a material

reduction task in this instance would be the highly configurable nature of a pro-

grammable manipulator in addition to dose reduction. Industrial robots in recent

years have been shown to handle more and more tasks as opposed to specializing

in one particular task. In Figure 1.5, robots on the Tesla factory floor perform

many different tasks such as welding, riveting, bonding, and assembly.

1.3.1 Compliance in Robots

An important topic in industrial robotics is the study of compliance. Com-

pliance refers to either a mechanical or software-driven feedback mechanism to
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Figure 1.5: Industrial robots at a Tesla manufacturing plant in Fremont, California
[36]

respond to environmental forces in a flexible manner. In many industrial auto-

mated tasks, compliance is necessary. Compliance allows for improved safety and

motion plan feedback. Compliance could come in the form of passive mechan-

ical joint flexibility, or non-rigid links and EEFs. Often, however, compliance

is software-driven in the form of a control law taking force and torque sensor

feedback and outputting a desired robot trajectory. Many industrial systems use

software compliance for contact tasks such as grinding. Software compliance for

industrial robotic systems has been investigated at the Nuclear Robotics Group

[56] [28]. In this particular material reduction contact task, reactive force control

might be necessary to reduce forces on both the pit and the robot. High cutting

forces on a moment arm in relation to the EEF could potentially put unwanted

torques on joint servos. Sufficiently high shear forces on the pit lend to unwanted

warping of part geometry.
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1.4 Summary of Objectives

The primary objective of this thesis is to develop a procedure for a flexible

automation system to complete an industrial contact task that might be performed

in a geometrically constrained, radiologically hazardous environment. Addition-

ally, further research is done to analyze the nonlinear force control of a simplified,

generic serial manipulator for this specific task via mathematical simulation. A

software package is developed to simulate the nonlinear control of this specific

task for a planar manipulator.

1.4.1 Original Contribution

This research serves to enhance the literature of industrial automation

by pushing the boundaries of subtractive manufacturing in the context of con-

strained glovebox environments using a flexible robotic system. The work done

on simulating a nonlinear control task for this application can be applied to future

industrial automation contact tasks. The software package developed allows for

application simulation and stability analysis for a simplified generic planar ma-

nipulator. Therefore, this work is hardware agnostic in the sense that the same

control principles are applicable to many other industrial tasks.

1.5 Organization of This Thesis

This chapter introduced the problem of material handling in a radiological

hazardous environment, the history and implementation of traditional automated

industrial systems, and the task-defined and system-defined performance param-

eters. These parameters fully define the problem and research motivation. The

remainder of this report is organized as follows:
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Chapter 2 summarizes previous work done in object handling by serial

manipulators, specifically in the areas of grasping, motion planning, and non-

linear control methods for software compliance. The state-of-the-art for nuclear

industrial automation is discussed with a summary of the DOE project ARIES.

The tools to introduce an automated system to perform this particular

glovebox application process were established based on both task-defined and

system-defined process parameters. Chapter 3 involves the selection of a suitable

robotic system based on prior work done in nuclear material handling.

Chapter 4 covers the general path planning algorithm for this particular

contact task given a generic geometric model. The implementation of safety mea-

sures with force and torque monitoring is discussed in this chapter as well. Chapter

4 concludes with results from the automated cold reduction process demonstration

using a stainless steel surrogate.

Chapter 5 covers the development of a software package to simulate a

generic nonlinear robotic system for a simplified version of this particular contact

task. The implementation of a nonlinear controller allows for fine closed-loop force

control based on user-defined parameters.

Chapter 6 concludes this report with a summary of the research. This

chapter analyzes the remaining roadblocks for both cold testing and hot cell de-

ployment at LANL. The scope and possibilities for future work are outlined.
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Chapter 2

Literature Review

The material reduction contact task specified in this report is similar to

existing material reduction contact tasks performed by industrial manufacturers

today. Grinding, for example, is a common automated task that subtracts ma-

terial from a handled object. Therefore, it is important to understand relevant

techniques for automated manipulation on the factory floor. It is also important to

study how researchers within the nuclear field change these automation techniques

in a geometrically confined, hazardous, and potentially radioactive workspace.

This section of the report covers both industry standards and state-of-the-

art for motion planning, object manipulation and grasping for serial manipulators,

as well as control strategies for software compliance. The necessary geometry

background for understanding industrial robot motion planning is described in this

section. Additionally, existing techniques for automated object manipulation in

gloveboxes are discussed in the context of current DOE project ARIES (Advanced

Recovery and Integrated Extraction System) [55]. Other automated systems used

in nuclear environments that are of interest to this report are discussed briefly.

2.1 Motion Planning

Motion planning for robotic manipulators in contact tasks refers to cal-

culation of joint-level position, velocity, and accelerations as a function of time
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from the start state to goal state. In industrial manufacturing tasks, it is de-

sirable to control the path of the robot in the workspace both to perform the

required task and avoid physical collisions in the robot’s workspace. Motion plan-

ning for a manipulator in industrial manufacturing processes is accomplished via

joint-interpolated and Cartesian EEF motion.

2.1.1 Joint Space Motion Planning

In joint-space planning, the angular position, velocity, and acceleration of

each joint is calculated to make up the trajectory of the robot. Typically joint-

space motion planners are used for start-to-goal point moves and does not allow

for fine EEF control. In order to generate desired trajectories, a robust motion

planner must be used to translate high-level desired objectives into low-level hard-

ware motion while avoiding specified constraints such as workspace collisions and

singularities within the reachable robot configuration. Figure 2.1 below illustrates

a simple motion plan in a workspace.
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Figure 2.1: Generic workspace motion plan [26]

We take the workspace W shown in the figure above as W = R3 where R3

is the representation of the physical world in Cartesian space assuming dimensions

x, y, and z. In this case, Cartesian space is a human-intuitive understanding of

Euclidean space in the specified world/workspace frame. The obstacle region is

represented by O within the workspace W while the robot is represented by A

within the workspace W . The robot configuration is defined by q ∈ C, where C

is the configuration space [26].

q = (x0, y0, α) (2.1)

Additionally, the obstacle region Cobs ⊆ C is

Cobs = q ∈ C|A(q) ∩O 6= 0 (2.2)

This defines the set of configurations where the robot is in collision. The free
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space is therefore

Cfree = C\Cobs (2.3)

The goal of any motion planning algorithm is therefore to find a continuous path

from a start state to a goal state with Cfree in time t. The path generated will vary

based on user-specified costs. Usually, the path should be short, have minimal

execution time, and maximal distance to obstacles. There are many planning algo-

rithms used to accomplish trajectory generation of start-to-goal paths, including

visibility graphs, grid-based planning, and potential fields. However, sampling-

based motion planners are considered to be the most successful and common

planning algorithm for serial manipulators [31].

2.1.2 Sampling-based Motion Planning

Sampling-based motion planners are considered to be state-of-the-art for

motion planning in industrial automation [3] [31]. The reason sampling-based

planners are used as opposed to other planning algorithms such as combinatorial

planners is because they do not take exact robot definition into account, are easy to

implement, and work in conjunction with a separate collision detection algorithm.

Because of their effectiveness, sampling-based planners are widely used in the field

of robotics. Most single-query, sampling-based motion planning algorithms follow

the general procedure [31] :

1. Determine free space based on configuration space, robot, and obstacle re-

gion.

2. Sample the space based on random or pseudo-random sampling for robot

state milestones. Determine which points lie in the free space.
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3. Create additional milestones for the start and end goal states.

4. Construct a roadmap by finding links between milestones. If the links are

valid within the free space, they are added to the roadmap.

5. Connect the start and end goal state using a series of local paths specified

in the previous step. The generated path will vary depending on user-

specified cost functions and how the particular planning algorithm processes

information. The user, for example, may specify the generated path to

maximize distance between obstacles and minimize time from start state to

goal state.

6. In order to choose a path from start to goal, the algorithm must choose a

starting milestone (This step is known as the Vertex Selection Method [31].)

to connect to a neighboring milestone. The Local Planning Method will

choose which local path to take to the next milestone. This step is iterated

until a complete valid path has been generated within the search graph.

Consider the following images in Figures 2.2 and 2.3 which demonstrate the

Probabilistic Roadmap (PRM), a common sampling-based planning algorithm.
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Figure 2.2: PRM milestone sampling in free
space [3]

Figure 2.3: PRM milestone roadmap [3]

Figure 2.2 illustrates that the workspace has been randomly sampled for

valid milestones and milestones which are invalid due to robot configuration limits

and collisions with obstacles have been eliminated. The remaining milestones are

located in the free space. Figure 2.3 illustrates the inclusion of start and goal

states, which have been clearly defined as milestones. All milestones in free space

have been connected by local paths. PRM planners typically connect a milestone

to a specified number of nearest neighboring milestones or all milestones within

a certain distance. After the roadmap is dense enough, construction is complete

and the roadmap completes the algorithms search graph [3].

This planning process of connecting the start and goal states based on

sampled milestones will be iterated until the user-specified cost functions have
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been met or the planning time is exceeded. Figure 2.4 illustrates a successfully-

generated path from start state to goal state. Continuing the PRM example, the

construction of a path from start to goal states is known as the query phase, where

the path is obtained using Dijkstras Shortest Path query [23].

Figure 2.4: PRM generated motion plan [3]

The generic path generation in the search graph for any sampling-based

algorithm is a non-trivial problem. There are many different implementations of

sampling-based algorithms that solve this problem besides PRM described above.

Other popular examples include the A* algorithm, the D* algorithm, and Rapidly

Exploring Random Tree algorithm [44] [52] [30].

One of the distinct advantages of using a sampling-based motion planning

algorithm is that the algorithm searches for possibilities within the solution set

Cfree, making trajectory path planning itself hardware agnostic if Cfree is known.

As stated previously, this free planning space is defined by the workspace obsta-

cles, robot location, and robot configuration. However, the robot configuration is
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hardware-specific and is defined by the robots Denavit-Hartenberg (DH) param-

eters [9]. Sampling-based algorithms typically have a fast runtime while being

relatively easy to implement with high-DOF robotic systems. Additionally, as

planning time increases, the probability that a valid trajectory is generated ap-

proaches 100%.

2.2 Cartesian Space Motion Planning

Cartesian space planning is used to finely control the desired state of the

EEF. In a serial chain manipulator, the EEF is directly linked to the Cartesian

world frame via a series of frame transformations about each robot joint. In

order to move the EEF to a desired pose (position and orientation in space), it is

necessary to solve the inverse kinematics (IK) problem. This statement holds true

for both joint-space planning and Cartesian space planning. However, joint-space

planning is accomplished by smoothing a series of linking IK solutions in the free

space with joint-angle position, velocity, and acceleration functions. The sequence

of IK solutions provided by the planning algorithm (sampling-based or otherwise)

may result in complex EEF motion in space. It is often necessary when handling

hazardous material to directly control the path of the held object in space. For

example, the held material must adhere to a straight path as it is placed in an

oven, or an open contain must be held such that contents are not spilled. In our

case, the path planning problem could be considered a hybrid of the joint and

Cartesian approaches as the target points for the hole punch track a Cartesian

path covering a hemisphere with a 1-3 cm spacing. A move from one point to the

next can be performed using a joint trajectory sampling method, but the solution

space is severely restricted when the part is located in the punch. Thus, it may
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be necessary to consider both joint and EEF trajectory planning strategies as a

part of this effort.

Consider the following equation:

yn = fn(x1, x2, . . . , xn) (2.4)

Where yn is the output (such as the EEF location), and fn is the function

that gives this output given inputs x1 through xn. It is possible to describe any

number of functions y as

Y = F (X) (2.5)

If it is desired to express an instantaneous change in Y as a function of the

instantaneous change in X, then the equation becomes

∂Y =
∂F

∂X
∂X (2.6)

The matrix of partial derivatives ∂F
∂X

is known as the Jacobian [7]. The

Jacobian in the context of serial manipulators is a linear, time-varying mapping

of velocities in X to velocities in Y . It is often desirable to describe the trans-

formation of joint angle velocities to EEF velocity in the Cartesian space. The

above equation can be described as:

ov = oJ(θ)θ̇ (2.7)

where the vector ov is a 6x1 vector, a combination of a 3x1 Cartesian linear

velocity vector and a 3x1 Cartesian rotational velocity vector for the tool point.
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The vector θ is a 6x1 angular velocity vector for each joint. The Jacobian is

therefore a 6x6 linear transformation matrix. If the Jacobian is well-conditioned,

joint angular velocities can be calculated using a desired Cartesian velocity vector

and the inverse of the Jacobian for an instantaneous time step:

θ̇ = J−1(θ)v (2.8)

This relation between joint angle velocities and EEF Cartesian velocities

is fundamental to industrial automation and manufacturing and allows for fine

object manipulation by perturbation of the desired velocity vector. However, for

redundant manipulators (>6-DOF) such as the SIA5, then the pseudoinverse of

the Jacobian is taken as the Jacobian is a non-square matrix. The following

equation summarizes the pseudoinverse calculation for redundant manipulators,

where J−1(θ)∗ is the pseudoinverse:

J(θ)θ̇ = v

J(θ)TJ(θ)θ̇ = J(θ)Tv

θ̇ = [J(θ)TJ(θ)]
−1
J(θ)Tv

θ̇ = J−1(θ)∗v

(2.9)

The mapping described here is a powerful tool that lets the user have

control of the EEF in space during each control cycle.

2.3 Contact Manipulation

Robots in industrial manufacturing typically perform tasks in two different

manipulation scenarios: Tool-in-hand and Part-in-hand [16]. Tool-in-hand manu-
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facturing refers to the robot manipulating a finishing tool over a fixed object while

Part-in-hand manufacturing refers to the robot manipulating the object over a

fixed processing tool. Contact tasks such as welding may have a working tool-in-

hand fixed on the robot EEF while contact tasks such as grinding may have the

robot grasping a fixed part and performing a motion plan to change the grasped

object properties using a tool point fixed relative to the world frame.

Tool-in-hand manufacturing usually do not require the operator to formu-

late a grasping strategy as the tool is affixed to the robot EEF and its properties

will remain virtually unchanged for the duration of the task. This problem has

been solved for tasks such as Remote Laser Welding (RLW). A typical Tool-in-

hand contact manufacturing process strategy, including simulation and motion

planning, is outlined in [15]. It should be noted that in both tool-in-hand and

part-in-hand manufacturing scenarios, the objects geometric, material, and me-

chanical properties are typically known prior to the implementation of any process

strategy.
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Figure 2.5: RLW task process strategy [15]

However, Part-in-hand manufacturing usually requires the object manip-

ulated to first be grasped by the robot arm and the part’s properties may change

during the task. Therefore, it is necessary for a grasping strategy to be formulated

to allow the robot to manipulate the object in space. A typical grasp process will

follow the procedure described by Figure 2.6.

Figure 2.6: Typical grasp procedure outline [11]
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Typically it is necessary to monitor the task through the grasp phase with

feedback sensors to ensure grasp success. Monitoring refers to three sensing prin-

cipals: Presence, Force/Torque, and Position/Orientation [11]. For example, a

force-torque sensor could determine material weight loss in a part-in-hand sub-

tractive manufacturing scenario while a vision sensor could determine a successful

grasp based on the objects location in space.

Depending on the object the user wishes to manipulate, grasping can prove

to be a much more challenging task for certain EEFs. Some factors that man-

ufacturers consider for contact tasks is the geometry of the object, mechanical

compliance of the EEF, position of the object relative to sensors and tool point

of the robot, and motion planning of the robot with a grasped object.

Grasp strategies have been researched for DOE glovebox objects within

the UT-NRG group. Brabek formulates an algorithm for grasp strategies based

on known object primitives in the form of 3D CAD models [5].

Figure 2.7: Bowl grasp approach vectors for Robotiq 3-finger gripper
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Motion planning and control strategy for the robot manipulator is heav-

ily dependent on the specific EEF hardware interface option used, requiring a

task-specific interface mechanism. Assuming the arm, software, controllers, safety

equipment, and fixtures are chosen properties of the configuration space, choos-

ing a suitable end-of-arm hardware interface is the final step to formulating the

complete robot workcell. The selection of a suitable EEF is described in the next

chapter.

2.4 Industrial Automation Control Methods

Usually automated contact tasks require some sort of mechanical or soft-

ware compliance to be exhibited by the EEF based on external forces acting upon

the tool point or manipulated object. The focus of this report is on software com-

pliance. Modern industrial manufacturers accomplish software compliance via

real-time motion planning, employing nonlinear controllers at a high (>60 Hz )

control rate to change the object position in space according to the system state

and disturbance forces felt [7]. The goal of software compliance is therefore to re-

duce or eliminate disturbance forces on the robot tool point that might adversely

affect robot joint hardware or the quality of the manufactured product.

2.4.1 A Time-Delayed Nonlinear Control Problem

Whitney et al. describe a closed-loop automated system for completing a

weld bead grinding task using a flexible grinding disk attached to the EEF of a

PUMA 560 robot [8]. Feedback arrives in the form of Kalman-filtered vision data

and force-torque data from the EEF frame. The attached flexible abrasive disk

exhibits a degree of mechanical compliance, which significantly affects the sta-
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bility and performance of the system. The force/displacement relationship of the

grinding disk plant was measured, recorded, and fit with a nonlinear (exponential)

model that resembled a hardening spring with a hysteresis curve.

The software caused a significant (approximately 0.1 seconds) time delay

in the force/position data feedback. The open-loop transfer function is shown

below in Figure 2.8, with apparent phase lag. This phase lag is a major problem

for time-delayed systems, and will destabilize a closed-loop system operating with

high gains. One method of compensating is to enforce low gains. The method

employed by Whitney et al. to overcome time delay while operating with relatively

high gains is to formulate a closed-loop control law based on the Smith predictor

[8] [54]. Three signals are fed back to the controller: The predicted plant model

output for the future time step, the immediate signal output of the system, and a

delayed system response. These signals prevent the robot from overcompensating

due to a time-delayed system output while still preserving the ability to utilize high

gains and maintain robustness. One of the advantages of this particular system

is that the output feedforward forces could be computed at previous timesteps,

allowing for fast system response.
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Figure 2.8: Linear open-loop transfer function response for PUMA grinding robot
[8]

Figure 2.9: Time-delay compensated control law for force/position displacement
feedback [8]
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The nonlinearity of the mechanically-compliant grinding disk may intro-

duce limit cycles. The stability of this system is directly coupled with the nonlinear

gain increase introduced by the hardening spring behavior of the disk. As a con-

sequence, the limit cycle introduced has the possibility of being unstable. A linear

controller will therefore not be suitable for such a system, as a force outside of

the limit cycle will cause a gain increase, introducing high oscillations. For initial

conditions inside of the limit cycle, a linear controller will have a very small gain,

leading to slow input response. The solution was the modelling of the nonlinear

behavior of the plant with an exponential function and an appropriate nonlinear

gain function with on a time-varying error signal.

2.4.2 Gain Scheduling

A common method used to control nonlinear systems is to break the non-

linear system apart into regions where a linear controller provides an acceptable

closed-loop output. This method is known as gain scheduling, and typically utilizes

a family of linear controllers that operate based on different equilibrium points

of the system. There are numerous different gain scheduling algorithms, includ-

ing fuzzy logic-based scheduling, and Linear Parameter Varying (LPV) scheduling

[54]. All of these algorithms serve to approximately linearize a nonlinear prob-

lem. The advantage of linearizing a nonlinear problem is the ability to employ

well-understood and relatively simple and computationally cheap control meth-

ods. Disadvantages include requiring accurate equations to model a given system,

and susceptibility to instability.
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2.4.3 Impedance Control

One approach for addressing disturbance forces acting on a manipulated

object is to design a controller that mimics a human response. Most conventional

controllers for nonlinear robotic systems fall into the realm of position control,

or operated in the force domain. Duchaine argues that such a controller is not

ideal for cooperative systems based around perturbations to the EEF [10]. Final

position from force input is unknown, so small position increments commanded

during each hardware control loop would lead to substantial position errors due

to a buildup of small encoder errors. Additionally, compliant position-controlled

systems are not as responsive as velocity position-controlled systems and can be

difficult to stabilize [10].

Hogan says [20]:

“Seen from the environment along any degree of freedom, physical sys-

tems come in only two types: admittances, which accept effort (e.g.,

force) inputs and yield flow (e.g. motion) outputs; and impedances,

which accept flow (e.g. motion) inputs and yield effort (e.g., force)

outputs.”

His proposed impedance control describes a strategy of controlling the interaction

of a physical system (the manipulator) and its environment by modelling the

environment as an admittance. Therefore, a disturbance response from motion

deviations for the manipulator is modelled as an impedance. A bond graph of the

proposed impedance controller is shown in Figure 2.10.
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Figure 2.10: Bond graph for multiaxis manipulator interacting with environment
[20]

Following this theory, a velocity and impedance can be commanded based

on the manipulator interaction forces and position displacement. Many impedance

control algorithms utilize this knowledge by modeling the EEF of a manipulator

as a virtual spring to achieve software compliance. This method of control drasti-

cally simplifies realistic modeling of dynamic manipulator interaction, but proper

selection of impedance values for complex or poorly modeled system may require

a tedious trial and error process by the developer.

2.5 Automated Nuclear Material Handling

2.5.1 DOE Plutonium Pit Disassembly System ARIES

The automation of plutonium pit disassembly has been largely completed

on the Advanced Recovery and Integration Extraction System (ARIES) at LANL.

The purpose of the ARIES is to demonstrate the automated dismantling of nuclear
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weapons in a controlled glovebox environment to support the Pit Disassembly and

Conversion Facility (PDCF) at the Savannah River Site (SRS) in South Carolina.

The primary reason for the introduction of automation in a glovebox is to re-

duce dose to the radiation worker. Certain machining processes during a nuclear

weapon pit disassembly will occasionally cause the glovebox operator to exceed

the 500 mrem dose limit set for nuclear workers [45].

ARIES receives nuclear weapon pits and separates it into two hemishells

via a lathe operation [55]. These hemishells are disassembled in the glovebox

and reduced into plutonium oxide. The oxide is then physically and chemically

processed and analyzed, and packaged into subcritical canisters. The ARIES me-

chanical components consist of a lathe, a 5-DOF robot, a glovebox, and a universal

controller external to the glovebox that controls the hardware inside. Peripheral

and support components consist of a material handling conveyer system, receiv-

ing module, decontamination and canning modules, nondestructive assay modules,

and instrumentation system.
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Figure 2.11: ARIES lathe, glovebox, and
robot [55]

Figure 2.12: Lathe hardware [55]

Figures 2.11 and 2.12 show an early iteration of the ARIES lathe in a

glovebox. The lathe is a computer-controlled 2-axis custom-built machine tool.

Instead of the original tool changer, the robot changes the tools. The lathe is

bolted directly to the bottom of the glovebox and uses a vacuum chuck on both

axes to hold the pit in place.

The robot system is a 5-DOF gantry device. It was custom built and

is composed of linear sliding sections. The X-axis is belt driven while the Y
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and Z axes are ball screw driven. The tool changer is located on the Z-axis rail

connected to a force sensor. The force sensor is connected to a yaw-axis motor

and pitch-axis motor. Robot and lathe tooling were made specifically for this

glovebox application and can be swapped out using the tool changer. This entire

5-DOF gantry robot is a semi-autonomous system with preprogrammed motions

used sparingly. Most of the gantry motion is teleoperated.

Separate from the glovebox lathe is the canning operation (ICAN), which is

fully autonomous. The system features separate hot-cell/cold-cell/fluid-processing

modules [38]. Both the hot-cell and cold-cell have a 5-DOF Fanuc LR Mate 100i

robot inside. Each robot is expected to last at least 20,000 hours of glovebox

lifetime. Fissile material comes through the hot-cell in a small can, which the

robot places into a larger DOE 3013 can. This can is welded via an automated

welding support system. The robot then places the can into an airlock, where

the can is automatically decontaminated. The cold-cell robot takes the can and

performs a radiation survey and weld check. The entire automated components

of ARIES, including automatic support systems, contain a total of 25-DOF. The

system is the most complex automated glovebox process to date, featuring varying

levels of autonomy, and is an example of a hybrid fixed/flexible automation system.

2.5.2 Other Automated Material Handling Systems

Although ARIES is a prime example of automated pit reduction, the study

and implementation of robotics systems has been done for other tasks in the

DOE complex. Williams of the UT NRG studied the feasibility of incorporating

robotics into an americium-241 conversion task from americium oxide [25]. This

task would take place within a glovebox, with the robot performing tasks that a
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human would normally complete, such as picking and placing material containers.

The purpose of incorporating such a robot would be to minimize worker dose by

reducing worker time in a radiological environment and increasing worker distance

from radiation sources. The report concluded that incorporating a robotic system

in a glovebox for this task is feasible for a select number of tasks. Certain tasks

would be difficult for a robot to complete, and would need to be completed by

a glovebox worker. These tasks include door opening and breaking solids and

stirring oxalates. This study is important from the perspective of this material

reduction tasks as it describes the benefit of co-robotics: the act of robots working

in the same workspace as humans.

Another example of co-robotics is a spherical vessel cleanout task at LANL.

This task involves a robot coming into contact with the environment during task

execution. Schroeder of the UT NRG developed a joint torque collision detection

algorithm in order to detect unwanted environmental disturbances [28]. The re-

sults of this study indicate a need for not only model-based collision detection but

real-time force and torque monitoring as well.

Dual-arm robots are also being used to dismantle materials in hazardous

environments. The Dual Arm Work Module (DAWM) was deployed at Argonne

National Lab to help with decontamination and dismantlement (D&D) of the CP-

5 reactor in 1995 [35]. Two 6-DOF high-payload arms were mounted on a 5-DOF

torso and controlled remotely. The purpose of this robot was to reduce worker

dose and injury in a hazardous and radiological environment.
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2.6 Literature Review Summary

The beginning of this section summarized how industrial robots move and

operate geometrically in space in the context of both joint-space motion and

Cartesian-space motion. Sampling-based motion planning algorithms were sum-

marized for the purpose of understanding modern joint-space trajectory planning

and execution. Motion in Cartesian space was described as a perturbation of a

linear mapping between a desired Cartesian-frame pose and joint angles. Relevant

grasping and nonlinear control strategy literature was surveyed. Multiple control

strategies will be evaluated for the material reduction task. The methodology and

hardware of ARIES, the state-of-the-art for DOE glovebox automation, was intro-

duced. Finally, other relevant research is presented that is of particular interest

for material reduction automation.
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Chapter 3

Formulation of Autonomous System

The motivation for formulating an autonomous system was discussed in

Chapter 1. In this section, the selection of the autonomous system is detailed.

Successful integration will depend on the robustness of component selection. The

final robotic system chosen is a flexible PDM that consists of a 7-DOF industrial

manipulator with vacuum gripper EEF. Fixed vs. flexible automation is discussed

with respect to prior attempts at automating the material reduction task. Hard-

ware selection is justified in the context of path planning constraints. Finally, the

formulation of the software framework that wraps joint-space and reactive motion

planning with the hardware is detailed.

3.1 Fixed vs. Flexible Automation

The difference between fixed and flexible automation in glovebox environ-

ments was addressed by members of the NRG at UT Austin [24]. In this study,

it was concluded that the level of flexibility of the integrated robotic system de-

pends on the level of structure of both the task and the working environment.

Figure 3.1 illustrates different robotic applications as they appear on the auton-

omy spectrum, changing with respect to the amount of task and environment

structure.

Fixed automation refers to the design of a robotic system to execute a
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Figure 3.1: Autonomy spectrum for robotic systems [24]

small number of tasks. Usually both the tasks and environment exhibit a high

degree of structure. Flexible automation refers to the design of a robotic system

that can be programmed for a variety of different tasks. The degree of task

and environment structure may vary per application. Flexible automation can

complete tasks with a higher degree of uncertainty than fixed automation. Hashem

and O’Neil claim there are multiple levels of autonomy for glovebox automation

[24]. Five possible categories include manual, teleoperation, fixed, flexible, and

a fixed/flexible hybrid. The advantages and disadvantages of each method are

depicted in Figure 3.2.

Based on the task and design constraints specified in Chapter 1, human

interaction with the robot and workspace should be kept to a minimum in order to
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Figure 3.2: Pros and cons for different autonomy levels [24]

adhere to ALARA principles. Manual methods and robot teleoperation should be

kept to a bare minimum. Due to the varying geometric qualities of the plutonium

pits, a certain degree of flexibility should be exhibited by the system in order

to account for eccentricities and error. Prior work in fixed, flexible, and hybrid

automation must be studied.

3.1.1 Previous Design Work

Prior attempts at automating the material reduction task have consisted

of multiple undergraduate senior design projects at UT Austin in addition to the

study by Hashem and O’Neil [24]. The fixed automation system proposed by the

design teams consists of the same nibbler power tool (TRUMPF TruTool N700 )

used by glovebox operators for this task and two rotating holonomic wheels driven

by a pair of programmable DC motors. A linear actuator provides a normal force

perpendicular to the pinch point between the wheels in order to keep the pluto-
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nium pit surrogate (a stainless steel bowl) in place. The software that interfaces

with the DC motors rotates the holonomic wheels to “feed” the bowl into the

nibbler cutting tool opening. The nibbler power tool and holonomic wheels and

fixed and mounted onto a base plate. The finished prototype can be seen in Figure

3.3.

Figure 3.3: Undergraduate design team material reduction prototype

The figure illustrates the three separate actuators, each connected to each

other via an RS-232 daisy chain. A separate computer relays commands to each
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motor during the reduction process. Although a novel design, the prototype has

difficulties producing a repeatable and consistent actuating motion, as the bowl

will slightly shift and move during the cutting process. The prototype also encoun-

ters difficulty rotating the bowl away from the nibbler as the tool interface will

catch onto the uneven bowl edges produced by the cutting process. The process

cannot account for any errors during the cutting processes, and any significant

position error will result in a failed execution and the bowl will have to be manu-

ally reset. This design also requires a human operator or robot to place the bowl

into the prototype for reduction. Finally, one of the most significant drawbacks

of this automation method is the this design is only valid for a limited range of

geometries. It would be difficult to extend this range.

The report by Hashem and O’Neil researches the possibility of a hybrid

automation system, using a PDM to place the bowl into the reduction prototype.

While this method effectively solves the problem of using a human operator to

initially insert the bowl, it does not address the drawbacks associated with using

a fixed automation system to solve the material reduction task. For these issues

to be addressed, it is necessary to formulate a flexible robotic system.

3.2 Hardware

Using an industrial serial manipulator instead of a fixed automation sys-

tem allows for finer object manipulation and accommodates a variety of object

geometries. Choosing suitable EEFs allows for different grasping approaches to be

used. A flexible system also has the potential to be utilized for a variety of contact

tasks, as opposed to being specialized for one. The robot chosen for completing

the material reduction task is a 7-DOF Yaskawa Motoman SIA5, which has been
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used extensively for research by members of the NRG and evaluated for multiple

applications at LANL. This robot is a demonstratively viable PDM [19], and fea-

tures extensive software support. It is also the same robot used by Hashem and

O’Neil for the hybrid material reduction automation scheme, and can manipulate

a bowl surrogate using both joint-interpolated moves and Cartesian jogging.

3.2.1 Micro-Punch

Glovebox operators currently use a nibbler power tool (see Figure 3.3) to

manually reduce pits. The undergraduate design team also uses the nibbler as

the primary reduction tool in their prototype. The downside of using a nibbling

tool is that it creates sharps and fines, and will induce vibrations on the system.

In order to remedy this, a different power tool was used. A micro-punch has

distinct advantages over a nibbler. The most obvious advantage is that it reduces

the amount of sharps and fines, creating circular or rectangular slugs of material

instead. Because it operates by individually punching holes, the speed of actuation

can be controlled by the operator. Vibration is only introduced into the system

during the punching action. Material is more accountable this way, as material is

removed with more predictable shapes and sizes.

The punch and robot arm can be seen in Figure 3.4. This picture illustrates

a bowl surrogate being held by a three-fingered Robotiq gripper EEF. One of the

more difficult problems of this reduction task is selecting an appropriate gripper,

as the grasp orientation of the object with respect to the tool point will drastically

affect motion planning and execution.
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3.2.2 Gripper

The gripper chosen for the final implementation of the material reduction

task is a pneumatic vacuum gripper. Vacuum grippers are commonly used in

industrial pick-and-place applications for handling objects with smooth and known

surfaces. One of the difficulties associated with grasping a bowl with a fingered

gripper is the limitation of possible arm positions for proper bowl orientation into

the micro punch. This problem is illustrated in Figure 3.4.

Figure 3.4: SIA5 robot arm using a finger gripper

The simulation shows that in order to orient the bowl to fit into the punch,

the arm position must be placed into a very constrained position. Based on open-

loop motion planning simulation, in this orientation the robot would be required

to place the bowl down and reorient the grasp pose after a few punches. This

would introduce errors that could compound over time without precise feedback
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from multiple sensors. Alternatively, a different gripper could grasp the object

with a more advantageous pose with respect to motion planning. Because the

bowl can only be placed in the punch at a specific orientation, the geometric

transform between the bowl and punch is fixed for every punch. An alternate

tool-to-object transform allows for more possible paths or options.

Figure 3.5: Material reduction testbed

A vacuum gripper allows for continuous motion planning, as the tool-to-

object transform is altered to allow for more Inverse-Kinematic (IK) solutions to be

found in the robot’s free space. This is illustrated by Figure 3.5, which shows the

final hardware setup, with a much more advantageous tool-to-object transform

than the gripper setup. In addition to a vacuum gripper, an ATI force/torque

sensor was mounted to the EEF. This allows for fine force control, and force and

torque monitoring throughout any contact application.

A final summary of the system components is included in Table 3.1.
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Table 3.1: Robot hardware components
1. SIA5 7-DOF arm and controller
2. Micro-punch
3. Computer running Windows OS
4. Computer running Linux OS
5. ATI force/torque sensor
6. Arduino microcontroller
7. Vacuum gripper and suction cup
8. 5VDC actuated relays
9. Pneumatic valve

3.3 Software

In order to control the robot hardware, proper software support must be

implemented to issue commands and feed back data to the application at a high

control rate. The SIA5 robot utilizes a custom, high-bandwidth (approximately

500 Hz), PLC-based controller manufactured by Agile Planet. Real-time control

and robot commands are executed by an embedded Windows CE operating sys-

tem (licensed as “CeWin”). The software that handles motion planning is the

proprietary AX software, also developed by Agile Planet. All programming is

done on a separate Windows 7 operating system, and launched using CeWin.

3.3.1 ROS

In order to accomplish motion planning, robot trajectory execution, and

integration with other hardware, it is necessary to have a suitable software frame-

work. Robot Operating System (ROS) is a software framework for developing

robotic applications [46]. ROS provides a level of hardware abstraction, utilizing

open-source motion planning libraries and other packages for messaging, visual-

ization, and more. By specifying the basic geometric properties of their robot,
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the user is able to take advantage of a vast amount of software libraries for their

particular robot application. This makes it easy for users to program robots at

a high level while still having control of low-level processes. ROS is utilized in

the NRG in combination with AX, by writing application code in C++ or Python

with ROS, and sending generated commands and trajectories to AX on CeWin for

additional processing and execution. This allows users to program high-level com-

mands easily using state-of-the-art motion planning libraries while maintaining a

high hardware control rate.

Figure 3.6 illustrates the operational framework for most robotic applica-

tions in NRG. Custom ROS and AX software drivers were written by members

of the NRG in order for both ROS and AX machines to communicate with each

other via TCP/IP.

In this diagram, the desired planned trajectory zd is queued by the ROS

point streaming thread, and sent via a TCP-IP socket to the CEWIN system.

The AX trajectory interpolator further smooths the trajectory and pushes each

desired trajectory to the AX control loop. This control loop tells the controller

to execute a motion vd. The controller gives the robot a current input id. The

robot feeds back encoder information xa to the controller. The actual robot state

is given by va and sent by the controller to the CEWIN driver. The monitoring

thread converts this information to a readable state. This information zd gets sent

by the TCP thread back to the ROS machine via a TCP-IP socket. The state

publisher updates the state of the robot in ROS.

ROS also allows for hardware besides robots to be integrated into the

application code. For this task, it is necessary for the micro-punch to be automated

and the pneumatic vacuum gripper valve to be toggled to open and close. This
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Figure 3.6: NRG robot network setup

can easily be done via publisher/subscriber nodes within the ROS framework.

ROS libraries also allow for the integration of the Arduino microcontroller IDE

using the ROS communication protocol [46]. By publishing commands within the

application code, the user can use an Arduino microcontroller to send high and

low voltage signals to different pins to actuate the gripper valve and micro-punch

on and off.

3.3.2 OMPL

ROS comes packaged with the Open Motion Planning Library (OMPL),

which contains a number of popular sampling-based motion planning algorithms

[22]. OMPL allows the user to use these planners in their application code by
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inputting minimal high-level commands. All code is released under the Berkeley

Software Distribution (BSD) license, allowing the source to be available for users

to contribute and improve. OMPL is written with class and object abstraction

in mind, allowing ease of integration for a variety of robot types. The material

reduction task utilizes a version of the Rapidly-expanding Random Trees (RRT)

sampling-based planning algorithm included in OMPL to achieve fast, collision-

free motion plans.

3.4 Collision Detection and Obstacle Avoidance

OMPL’s planners all perform model-based Collision Detection (CD). How-

ever, multiple layers of robot safety should be implemented for robot deployment

in a glovebox environment. A typical control architecture is described by Table

3.2. This table lists the abstraction of control layers commonly found in a robot’s

system architecture from highest-level (Collision Avoidance) to lowest-level (In-

dustrial controller collision detection).

Table 3.2: Robot safety control architecture
1. Collision Avoidance
2. Model-based CD
3. Sensor-based CD
4. Torque-based CD
5. Redundant external system CD
6. Industrial controller (low-level) CD

Collision avoidance is handled by the motion planning software, which

will generate collision-free paths with the environment. Model-based CD is also
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typically handled by the motion planning software, which will take user-specified

3D models to generate a valid workspace. Sensor-based CD is accomplished with

external devices, such as vision sensors or EEF-mounted force/torque sensors.

Torque-based CD occurs at the driver level, typically using controller feedback

from joint servos to determine unwanted contact with the environment. A torque-

based CD algorithm was developed for this report and is described in the next

chapter. Redundant external system CD can refer to any number of backup

safety systems, including operator-controlled emergency stop (E-stop) switches or

light curtains. Industrial controller CD often relies on detection of a servo fault

or current limit spike. Collision detection at this level avoids major damage to

robotic components but should be avoided to preserve the integrity and lifespan

of these components.

Figure 3.7 illustrates the state machine that describes UT NRG CeWin

driver operation. Any collision the driver detects results in braking the servos and

locking the robot in place. The driver must be restarted if it enters this state. At

this point the system requires operator intervention for safety purposes. A robust

control architecture will implement error checking after a collision is detected and

respond to events accordingly. In a majority of cases this will require operator

intervention, although software drivers can be modified to allow the controller

to automatically respond to various events. For example, a force detected above

an operator-specified threshold could result in the robot backing away from the

source of the collision. There are other methods of collision detection that could

be implemented, but were not included in this report. For example, light curtains

could be used in the event that the robot shares the workspace with a human

worker. Tripping a light curtain would indicate a workspace violation from either
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Figure 3.7: SIA5 state machine

the robot entering the human’s working range or a human entering the robot’s

working range. Visual feedback in the form of point cloud data could detect

when an undesirable object enters the workspace. More safety features should

be investigated before hot cell deployment to ensure proper robot operation and

worker safety.

3.5 Summary of Autonomous System Integration

The decision to formulate a flexible autonomous system was based on both

prior work and the advanced capabilities of current available software. The main
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robot used is a 7-DOF Motoman SIA5 robot commanded by a high-bandwidth

Agile Planet Controller. The punch, gripper actuation, and motion planning take

place on a machine running ROS. The commands generated by this machine are

send to another machine running the virtual CeWin operating system, which sends

commands directly to the robot controller. The final workspace setup can be seen

in Figure 3.5.
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Chapter 4

Material Reduction Demonstration

This section presents the formulation and demonstration of the material re-

duction task on a stainless steel surrogate. A robust motion planning algorithm is

essential for task completion. The planning algorithm was implemented in C++

utilizing the ROS software framework [46]. It takes a user-specified geometric

properties for a hemishell as input and generates and executes the trajectories

necessary for material reduction. The utilization of ROS allows for hardware-

agnostic motion plans to be generated using a high-level C++ API. The algo-

rithm is therefore relatively simple and easy to modify as shown in the presented

pseudocode (see Appendix A).

In order for this task to be automated in a glovebox, the system must

be robust and incorporate redundant safety features when handling hazardous

material. Reliable safeguards1 must be implemented for all realistically conceiv-

able failure scenarios. Even if a robot handling nuclear material collides with the

workspace or punch, sensors must detect the collision and react accordingly. Thus,

a joint-torque monitoring system developed at the driver level for robot glovebox

applications is detailed. This section concludes with hardware demonstration re-

sults of the material reduction algorithm on a hemishell surrogate using hardware

already operational at LANL. Because the surrogate used in the hardware demon-

1Such as path checking to ensure collision-free paths using modeled and sensed data. These
safeguards were discussed in detail in the previous chapter.
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stration is a stainless steel bowl, the hemishell will be referred to in this section

as either a hemisphere or bowl.

4.1 Material Reduction Planning Algorithm

To keep the material reduction task simple for the operator, the algorithm

takes the geometric properties of the bowl and punch tooling as inputs. The

algorithm then generates a valid motion plan. The process itself is outlined below:

1. The user places the center of the bowl in a predetermined location2 in the

workspace and starts the material reduction code.

2. The robot executes a Cartesian move to the bowl in a pre-grasp pose, grasps

the bowl by automatically actuating the vacuum gripper, and returns to the

pre-grasp pose.

3. The robot moves the bowl to an approach pose for the punch, and executes

a Cartesian move to place the bowl into the punch for reduction.

4. The punch is actuated automatically by the code to generate a circular slug

of material.

5. The robot rotates the bowl using the seventh redundant joint until the first

“ring” of material is cut.

6. The robot executes a Cartesian move away from the punch. It then rotates

the bowl inwards so the the next “ring” of material can be cut. The robot

2The capability to visually recognize the bowl pose information has been developed by NRG
members citeoneildiss. However, this capability was unnecessary for this demonstration.
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executes a Cartesian move towards the punch in preparation for cutting the

next ring.

7. This process is continued until the entire bowl is reduced.

8. The robot executes a Cartesian move away from the punch. The robot

returns to its original stow position.

9. The user manually removes what is left of the bowl.

10. In an ideal scenario, the robot will reduce the whole bowl into pieces that

fit into a crucible. These pieces are automatically gathered by the robot in

a subcritical container.

The bowl is grasped directly at the apex of the hemisphere with a vacuum

gripper. Assuming the bowl is approximately symmetric, the rotation of the last

joint of the EEF aligns with the bowl’s axis of rotation. This allows for the material

reduction algorithm to be used with variable radii and other different geometric

properties. This method takes full advantage of the robot’s redundancy.

To plan a joint move in ROS, the user specifies a desired EEF frame pose.

For grasping objects, planning should be done with respect to the object’s frame

instead of the EEF frame by calculating the EEF-to-object transform defined by

the grasp. This transform remains constant throughout the entire process as the

gripper is always in contact with the bowl until task completion. The robot spins

the bowl about the redundant joint to feed material into the punch. A ring of

material refers to a layer of material removed by the punch in this way. These

rings are visualized in Figure 4.1.
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Figure 4.1: Bowl before reduction (left), bowl with one ring punched out (center,
and bowl with two rings punched out (right)

The number of punches required to fully reduce the bowl is determined by

the size of the punch and die set as well as the bowl.3 Two angles, θ and φ, define

object rotation in the punch with respect to the local object coordinate frame.

The origin of the coordinate frame for the bowl is located at the center of the

plane touching the edge of the bowl (as shown in Figure 4.2). If the bowl were

turned upside-down on the table, the plane would be the same as the surface.

This defines the XY plane of the coordinate frame. The angle of rotation of the

redundant joint θ starts at -180 degrees and advances to 180 degrees for each ring

iteration. φ refers to the angle offset of the center axis in the XZ plane. The

location of the angles and planes are illustrated by Figure 4.2.

Th user-specified radius of the unmodified bowl is given by R. The number

of rotational steps (rings) in the XZ plane φ is given by Nφ, leaving room for the

distance dsuction taken by the vacuum gripper suction cup. Using only R and the

radius of the tool rtool, these variables are calculated for each ring iteration, shown

in equations 4.1 through 4.3.

3If we assume the bowl is a true hemisphere.
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Figure 4.2: Bowl coordinate convention in the XZ plane

θ =
rtool
R

(4.1)

φ = θ (4.2)

Nφ =
R− dsuction

rtool
(4.3)

4.1.1 Pseudocode

The process planning algorithm is implemented in ROS with C++. The

steps are described in the previous section. The implementation is generalized

using pseudocode shown in Appendix A.
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4.2 Joint Torque Monitoring

The previous chapters discussed the motivation and previous work done by

UT students in implementing collision detection and workspace object recognition

with robots. Chapter 3 detailed the greater safety control architecture. This

section describes a real-time collision detection procedure developed for contact

tasks using joint torque monitoring. Hardware application of this technique is

demonstrated using the SIA5 to validate this aspect of the control architecture.

Motion planning algorithms included in software libraries such as OMPL

utilize 3D models in the workspace for collision avoidance during motion planning.

However, discrepancies between the actual workspace and the virtual workspace

used in software may result in suboptimal motion planning. In a worst-case sce-

nario, an improperly calibrated workspace may lead to a robot arm colliding with

the glovebox environment. This could possibly lead to hardware failure or to a

criticality accident.

Real-time joint torque monitoring allows for automatic controller response

to unwanted impact anywhere on the robot. Joint-torque monitoring is a neces-

sary implementation for automated glovebox systems as the workspace geomet-

rically constrains the robot. Unlike other methods of collision detection such as

force-monitoring, joint torque monitoring detects collisions for each robot link;

force/torque sensors typically are only mounted on the EEF of robots.

The effectiveness of torque monitoring is highly dependent on the sample

rate of the software and speed of the robot. Higher control rates and slower robot

motion allow a faster response time to unwanted collisions. A robotic system that

utilizes a high data sampling rate will react faster to environmental disturbances

faster than any human operator can. The demonstration described in this sec-
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tion uses the same AX controller setup as described in Chapter 3 with the same

(approximately 500 Hz ) control rate.

In order to prove the effectiveness of torque monitoring, a driver-side soft-

ware thread was integrated into the existing AX framework. This software thread

examined the difference between the actual torque values for each joint read by

the hardware and the calculated (expected) torque values for each joint based on

the configuration of the robot at each time step. A large discrepancy between

these two torque values for multiple consecutive time steps indicates an unwanted

collision for that particular joint. The following demonstration illustrates this

collision detection process:

1. The robot servos are activated at time t = 0 seconds with the robot in a

stowed position.

2. A human introduces an external force on the robot by shoving it with his

hands in a random location. This happens while the robot is still at rest in

the stow position.

3. The robot starts a joint-interpolated move from the stow position at time t

= 16 seconds.

4. A human introduces an external force on the robot by shoving it again in a

random location. This happens while the robot is in motion (Figure 4.3).

5. The demonstration ends with the robot at rest at time t = 20 seconds.

The absolute value of the difference between the expected and actual joint

torques for each joint is logged for each time step of the demonstration. The result
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Figure 4.3: Inducing an unmodeled disturbance on the robot during motion

of one of these demonstrations can be seen in Figure 4.4. The torque difference

for joint ’L’ (the second revolute joint in the robot chain) increases rapidly at

approximately time t = 9 seconds. A second collision can be seen at approximately

time t = 19 seconds. However, the raw data is inconsistent and noisy. In order to

better distinguish between normal robot operation and a collision, data processing

becomes necessary.

4.2.1 Filtering Torque Data

Many modern systems that incorporate digital readings from sensors will

use some form of signal processing to increase system performance. During typical

robot use, it can difficult to distinguish between normal operation and unwanted

collisions due to signal noise, especially when the robot is in motion. A digital
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filter can reduce the noise and help clearly define unwanted joint collisions. The

filter used in this demonstration is an Exponential Moving Average (EMA) filter,

a simple moving average filter variation [43]. A moving average filter applies a

weighting factor to data taken at the current time step as well as previous time

steps, effectively producing a convolution of a data set over a period of time. An

EMA filter applies an exponentially-decaying weighting factor to all data taken.

Equation 4.4 describes the calculation of an EMA at any time step.

S1 = Y1

St = αYt + (1− α)St−1
(4.4)

In this equation, St represents the EMA value at time step t, and St−1

represents the EMA value at the previous time step. Yt represents the raw data

value at time step t. α is a user-defined weighting value between 0 and 1. A larger

value of α will place higher priority on newer data samples while discounting older

data samples faster. Because the weighting factor of any time step will always

be greater than 0, the EMA can be seen as a low-pass, infinite impulse response

filter. In this particular demonstration, the α value was chosen to be 0.05. The

filtered torque difference values for joint ’L’ can be seen in Figure 4.5.

By monitoring filtered joint torque differences, collisions are detected by

specifying a torque difference threshold for each joint. By examining torque data

for each joint for multiple controlled collisions, a threshold value is specified in

the hardware driver. If a collision is detected for multiple time steps, the robot

enters an emergency-stop mode where the servos brakes engage. At this point the

operator must restart the robot and manually jog the robot into a safe position

for application reset.
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Figure 4.4: Unfiltered torque difference values for joint ’L’ for two collisions

It should be noted that although joint torque monitoring was developed

for this report, futher safeguards could and should be implemented as future

work. Redundant safety measures will most likely need to be developed for actual

automated system installment in a hot DOE glovebox. Force monitoring via a

force/torque sensor mounted on the EEF could more finely monitor external forces

on the end link of the manipulator. A closed-loop control law could reduce forces

on the EEF when the punch comes into contact with the bowl. Such a control

law is simulated for a simplified robot arm in the next chapter.
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Figure 4.5: EMA-filtered torque difference values for joint ’L’ for two collisions

4.3 Demonstration Results and Conclusions

A demonstration of the material reduction algorithm has been completed

on the SIA5. The variables used are listed in Table 4.1.

Table 4.1: Material reduction algorithm parameters
rtool 25/32 inches

R 4 inches

θ 0.2 rads

φ 0.2 rads

Nφ 6
dsuction 0.5 inches
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The micropunch tool used a circular 25/32 inch custom punch and die set.

An 80/20 aluminum framing mechanism held the bowl in place for an adequate

robot grasp. For a 4-inch radius hemispherical bowl surrogate, the total run

time of the program was approximately 30 minutes to complete 6 ring iterations,

with the punch speed and die size as the limiting factors. The results of the

program can be seen in Figure 4.6. The remaining stainless steel piece held by

the vacuum gripper would have to be manually reduced by a human worker if it

cannot fit inside of the crucible. However, the majority of the work at the end of

the application has been done by the robot.

Figure 4.6: Bowl before reduction (left) and the remainder of the bowl after the
material reduction algorithm run (right)

The successful demonstration of this material reduction algorithm proves

the viability of automating this glovebox process using a relatively low-cost PDM.

By removing the human operator from the majority of the task, automation sig-

nificantly decreases worker dose rate while maintaining high task performance and

repeatability. The material reduction algorithm remains valid for hemispherical

surrogates for a certain range of surrogate geometries by utilizing robust motion

planners within the ROS-side OMPL. However, this demonstration does not con-

clude the development of material reduction automation. Extensive future work

must be done in a cold glovebox environment before successful deployment into
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a DOE hot cell. Specifically, the work that should be done in the near future

includes:

• Generalize the algorithm to accept variable geometries besides a hemisphere.

Perhaps incorporate path planning by interpolating the surface of a variable

3D CAD model.

• Validate hardware procedure for a variety of bowl geometries.

• Integrate vision capabilities such as object pose estimation based on point

cloud data.

• Induce other faults that may occur during hot cell scenario to validate pro-

cedure.

• Develop a material capture system.

It is likely that a possible robot hardware platform switch or EEF hardware

changes and modifications will occur to better suit a proper hot environment.

Future work is discussed more extensively in Chapter 6.
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Chapter 5

Nonlinear Control Simulation

The material reduction demonstration was successfully conducted without

significant software feedback1 or reactive motion planning, as the mechanical com-

pliance of the vacuum gripper was sufficient for task completion. However, this

particular hardware setup will not necessarily be used in the final implementation

of the material reduction task in a hot glovebox. Therefore, a form of robust

software feedback for a multi-DOF robotic system must be investigated. In a

hot glovebox, the degradation of components in a radiological environment may

necessitate the use of a different EEF. Variable shear forces acting on the object

held by the robot may warp the object and thus require a reactionary force control

law. Therefore, a real-world implementation of the material reduction algorithm

should account for variable stiffness of the EEF and tool-point interaction forces

via software compliance.

This section of the report details a simulation of a simplified multi-DOF

arm and external forces acting on it. Creating a robot arm simulation for a

simplified system allows for fast control design and analysis before hardware im-

plementation. In this case, the goal is to minimize interaction forces on the EEF

during a punch by controlling the input torques in each joint. When the punch

tool interfaces with the surface of a bowl held by a human, the intuitive reaction

1Sensor feedback to the controller was used for collision detection and safety only.
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is to allow the bowl to move spatially in the direction of the punching force. The

following control scheme modules were developed in this regard:

1. A high-level EEF force/velocity control law. A reactionary force on the EEF

translates to a desired EEF Cartesian velocity vector.

2. An Inverse-Kinematic (IK) mapping of desired EEF states to desired joint

states.

3. An outer-loop linear tracking control law that translates joint state errors

to desired linear input.

4. An inner-loop nonlinear control law that decouples each link of the robot

and input-output linearizes joint states to input torque.

A simplification of the robot is given at the beginning of this section, fol-

lowed by formulation of the robot dynamic system model based on Euler-Lagrange

equations. Two different nonlinear controllers were simulated, compared, and an-

alyzed. An outer-loop linear PID control law is formulated, followed by a joint-

space to Cartesian mapping scheme. Finally, the high-level EEF force control law

is introduced to simulate the punching force applied to the robot EEF by the hole

punch operation.

5.1 Robot Simulation Simplification

In this section, the formulation of a robot trajectory control law is presented

by using a simplified version of the current hardware setup. Consider Figure 5.1.

In this picture, it is apparent that the motion planning algorithm only utilizes the
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workspace as an approximately planar space for the majority of the demonstration.

The robot can be further simplified into a planar free body diagram.

Figure 5.1: Simplification of material reduction workspace

Figure 5.2 above shows a simplified version of a generic multi-DOF robot

arm that lies in the planar space. There are a number of assumptions that are

made by simplifying the system in this manner.

5.1.1 Assumptions

The following assumptions are made for the purposes of full simulation of

the autonomous system. Although the purpose of this chapter is to provide a

detailed analysis of a particular planar robot arm, the methodology and control

law can be applied to any generic, rigid, multi-DOF system.

1. A multi-DOF robot arm can be approximated by lining up its joints in
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Figure 5.2: Free body diagram of 3-DOF planar robot arm

a planar fashion. This constrains and simplifies motion planning to a 2D

surface.

2. The robot link masses are approximated by point masses at the ends of each

link.

3. In order to account for the inertia matrix of the object held by the EEF, the

mass of the object is added to the point mass of the last link for simplicity.

This neglects another link to be added to the EEF, but is necessary to

simplify the system state equations.

4. The input torques are applied at each joint.

5. Friction consists of dynamic and viscous friction at each joint.

6. The formulation of the system state equations from the Lagrange-Euler dy-

72



namics of the robot account for the inertia, gravity, centripetal force, and

disturbance torques but does not account for quantization, noise, etc.

7. The model and controllers are continuous in nature.

8. This simulation disregards input torque saturation.

Using a simplified robot model allows for faster controller design and gain

tuning. It also provides a better understanding of the low-level dynamics of the

robot arm. These same controller designs and concepts can be applied to a full

7-DOF arm and implemented on hardware after extensive testing and simulation

on a simplified system.

These assumptions are acceptable for modeling the dynamics of the robot

model. However, there are certain technical challenges that remain unaddressed.

Input saturation is not taken into account during the simulation so controller

parameters can be adjusted after simulation should saturation become an issue.

The main technical issue that is not addressed in this section is the discrete nature

of hardware systems. The entire simulation is continuous, and effects such as

noise, aliasing, discrete control, and quantization are not covered here. Chapter

6 contains detailed discussion of future work.

5.2 Robot Dynamics

Before implementing any sort of control law for a mechanical system, it

is useful to model the system mathematically. To construct a model describing

the dynamical behavior of a generic planar manipulator, Lagrange’s equations of

motion are used. The crux of this derivation lies in formulating a relationship

between the energy of the system and the input force or torque required.
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Lewis et al. gives the basis for Lagrange’s equation of motion [14]:

d

dt

∂L

∂q̇
− ∂L

∂q
= τ (5.1)

In this equation, the vector q is a set of coordinates, τ is a set of torques,

and L is the Lagrangian, given by equation 5.2 as the change in kinetic and

potential energy of the system.

L = K − P (5.2)

Consider again Figure 5.2. In this system, it is desired for the input torques

to change the output joint angles. Therefore, q can be specified as a vector

containing the joint angles θi and τ can be specified as a vector containing the

input torques τi.

q =
[
θ1 θ2 . . . θn

]T
(5.3)

τ =
[
τ1 τ2 . . . τn

]T
(5.4)

Using equation 5.1, it is necessary to compute the kinetic and potential

energies as a function of the joint states q, q̇, q̈. Calculation of equation 5.1 gives a

set of n coupled nonlinear differential equations, where n is the DOF of the robot

arm. These equations can be arranged into the form given in equation 5.5.

M(q)q̈ + V (q, q̇) +G(q) + Fv(q̇) + Fd(q̇) + τdist = τ (5.5)
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Equation 5.5 is the standard form of Lagrange’s equation for a robot arm

and is used to model the dynamics of any multi-DOF manipulator. The full

derivation of Lagrange’s equation for a 3-link planar rigid robot can be seen in

Appendix B.

The first term M represents the n−by−n inertia matrix, V is the n−by−1

vector describing the Coriolis and centrifugal forces, and G is the n−by−1 gravity

vector. Friction for each joint is formed by a n−by−1 viscous friction vector Fv

and a n−by−1 dynamic friction vector Fd. The torque τ is the n−by−1 input

vector, while τdist is the n−by−1 disturbance torque vector. In a general nonlinear

system equation, this input would be described by the term u.

It is acceptable to model disturbances as a torque because any external

force acting on the robot will be translated into joint torques.2 An important

property of this equation is the fact that the inertia matrix M is square, symmet-

ric, invertible, and positive definite. If τ is the control input and θ̈ is the desired

reference output, the system is both controllable and observable [51].

Finally, it is also important to note that uncertainty exists for measured

constants such as link masses m. Therefore, the nonlinear terms M , V , and G

are simply approximations M̂ , V̂ , Ĝ of the actual system states. In the following

simulations, mass uncertainties are noted as δmi.

5.3 Feedback Linearization by Computed Torque Method

One of the most common methods of compensating for nonlinearities in a

control design problem is to transform the model into a linear problem. This is

2In other words, τ = JTFdist, where JT is the transpose of the Jacobian matrix.
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partially accomplished by “brute force” methods such as gain scheduling, which

rely on linear approximations. However, a more elegant solution is to mathemati-

cally cancel out all nonlinearities using a single control law that is appropriate for

the controllable and observable subspace of interest. This is known as feedback

linearization, an exact linearization method that accounts for the internal dynam-

ics of the system and doesn’t rely on linear approximations. If a nonlinear system

model can be successfully feedback linearized, the user can implement their choice

of linear control law (pole-placement, PID, etc.).

Slotin et al. summarizes the control design based on input-output lin-

earization in three steps [51]:

• differentiate the output y until the input u appears

• choose u to cancel the nonlinearities and guarantee tracking convergence

• study the stability of the internal dynamics

Suppose the nonlinear system is of the general form 5.6.

ẋ = f(x) + g(x)u

y = h(x)
(5.6)

The process of output differentiation is given by equation 5.7. This equa-

tion involves taking Lie derivatives of the output function h(x) and input function

g(x) with respect to the system function f(x).

yr = Lf
r(h) + Lg(Lf

r−1(h))u

Lg(Lf
r−1(h)) 6= 0

(5.7)
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The variable r refers to the relative order of the system, which is when the

input u appears in the rth derivative of y. If the relative order of the system is

equal to the nonlinear system order n, the relative order of the system is said to

be well-defined. This is the case of a rigid body manipulator, where the relative

order of the system is equal to the system order (r = n = 2) [51]. Because of this

property and since the inertia matrix M is invertible, the feedback-linearization

process for a rigid arm is trivial. Consider again the standard form of the arm

dynamics equation 5.5. This equation can be rearranged into the form given in

equation 5.8.

q̈ = v = M−1(−V −G− Fv − Fd − τdist + τ) (5.8)

This control law is commonly referred to as the computed torque method,

or the inverse-dynamics equation [14]. This control law is illustrated in Figure

5.3, where the outer loop feedback control law is a user-specified linear control

law.

−
M(q)

+
Arm (Plant)

Outer loop feedback

q̈d q̈ τ q, q̇

u

N(q, q̇)

Nonlinear inner loop

Linear outer loop

Figure 5.3: Block diagram of computed-torque control model [14]
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5.3.1 PD Computed Torque Law

Consider the case where the desired linear control law is a PD controller.

The general computer torque control law introduced in equation 5.8 would take

the form of equation 5.9.

v = −Kdė−Kpe

τ = M(q)(q̈ +Kdė+Kpe) + V (q, q̇) +G(q) + Fv(q̇) + Fd(q̇)
(5.9)

Where the desired states [q̈, q̇, q] = [θ̈, θ̇, θ] and tracking errors are repre-

sented by [ė, e]. A simulation of a robot arm controlled by a PD computed torque

controller as in Figure 5.3 was constructed using MATLAB using parameters given

in Table 5.1. All simulations featured in this chapter use values from this table,

so any unused values for a particular simulation is used for another simulation.

Table 5.1: 3-DOF simulation parameters and system bounds
q0 = [π

2
,−π

2
,−π

4
] rads l1 = 0.4 [m]

q̇0 = [0, 0, 0] rads/sec l2 = 0.3 [m]

q̈0 = [0, 0, 0] rads2/sec l3 = 0.3 [m]

m̂1 = 2.00 [kg] δm1 = 0.100 [kg]

m̂2 = 1.50 [kg] δm2 = 0.075 [kg]

m̂3 = 1.00 [kg] δm3 = 0.050 [kg]

g = 9.81 [kg/s2] τdist = [3.0,-4.0,1.0] [N·m]
fv = [0.05, 0.02, 0.01] fd = [0.10, 0.05, 0.03]
kp = 200 γ = 200
kd = 20 η = 3
ki = 200 λ = 100

The simulation goal is to track a constant joint angle value for each joint.

Equation 5.10 gives the desired goal state.
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qd =
[2π

3
,−3π

4
,−π

3

]
q̇d = [0, 0, 0]

q̈d = [0, 0, 0]

(5.10)

The results of this simulation are seen in Figures 5.4 through 5.6. Due

to a constant disturbance torque on each joint, the steady-state tracking error

is significant. This tracking error is unacceptable and necessitates the use of a

different controller.
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Figure 5.4: Computed Torque Method PD Setpoint Tracking (dashed lines repre-
sent desired robot setpoint) with significant disturbances
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5.3.2 PID Computed Torque Law

The addition of an integral term to the outer-loop PD control law com-

pensates for steady-state tracking error. The new control law is given in equation

5.11.

ε̇ = e

v = −Kdė−Kpe−Kiε

τ = M(q)(q̈ +Kdė+Kpe+Kiε) + V (q, q̇) +G(q) + Fv(q̇) + Fd(q̇

(5.11)

In this equation ε is the integral of the tracking error e. This eliminates

most of the steady-state tracking error seen in the previous section, even with

constant high disturbance torques acting on each joint. The result of the same

constant joint tracking simulation with a PID controller can be seen in Figures

5.7 and 5.9.

Almost all of the simulations in this report feature high starting torque

values. This is due to the robot starting at rest, requiring a high amount of

energy to reach the desired state based on controller gains. Higher controller gains

will require higher input torques, but lower controller gains equate to suboptimal

tracking. Adaptive PID controller tuning is discussed in Chapter 6.
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Figure 5.8: Computed Torque Method input torque
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Figure 5.9: Computed Torque Method joint angles (above, dashed lines represent
desired tracking joint angles) and joint angle tracking error (below)
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5.3.3 Routh’s Stability Criteria

The closed-loop stability of the outer-loop PID controller can be calculated

using Routh’s Stability Criteria [17]. The characteristic cubic polynomial of the

PID controller is given by Equation 5.12.

s3I +Kds
2 +Kps+Ki (5.12)

Where the Kd, Kp, Ki terms are diagonal matrices corresponding to deriva-

tive, proportional, and integral gains kd, kp, ki respectively. The Routh array is

given by Table 5.2.

Table 5.2: Routh array for PID controller
s3 1 kp
s2 kd ki
s1 kdkp−ki

kd

s0 ki

So for all roots to have negative real parts, the condition 5.13 must be satisfied.

ki < kdkp (5.13)

As long as the integral gain is not too high relative to the other gains, then

the closed-loop system is stable according to the Routh Criteria.

5.4 Sliding Mode Control

Although feedback linearization of this system through explicit modeling

of the robot dynamics is a common and relatively trivial simplification for robotic
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systems, it is not without its drawbacks. The computed torque method of input-

output linearization assumes that the system model is perfect. In reality, the

robot dynamics are merely an estimate of the system. Unstructured parameter

uncertainties and disturbances are not known beforehand and are therefore not

accounted for. An alternative is to use a more robust linearization process that

overcomes uncertainties and disturbances while eliminating nonlinearities.

Sliding Mode Control (SMC) is a nonlinear control method that places

a priority on robustness. This can be applied to input-output linearization in

the form of Sliding Mode Linearization (SML) as described by [4]. In this paper,

Fernandez et al. describe a linearization of both Single Input Single Output (SISO)

systems and Multi Input Multi Output (MIMO) systems by implementing SML.

A linear controller can then be used to make the system track a user-defined

trajectory with bounded unstructured uncertainties and disturbances. This is

done by attracting the system to a defined sliding surface s in the phase plane by

using high gain feedback. Fernandez et al. claims that sliding mode guarantees

system attraction to the surface provided that the disturbances are bounded and

matching conditions are satisfied [4]. Another advantage of sliding mode control

is the system is guaranteed to reach stability at a desired equilibrium point in a

finite time.

The general nonlinear system equation is written again in 5.14.

ẋ = f(x) + g(x)u+ d

y = h(x)
(5.14)

The reference yd is the desired tracking signal for the output. The sliding

surface s is defined by equation 5.15.
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s =
r−1∑
k=0

βk
dke

dtk

e = yd − y
(5.15)

The sliding surface s requires that the following condition in equation 5.16

is met [4].

lim
s→0

s · ṡ < 0 (5.16)

By differentiating 5.15 and satisfying the condition 5.16, the time derivative

of the sliding surface s is chosen.

ṡ = −ηsign(s) (5.17)

5.4.1 Sliding Mode PID Controller

As with the feedback linearization method described previously, the output

y is differentiated with respect to time until the input u is seen in the equations.

This defines the relative order r of the system. By combining equations 5.11, 5.15,

and 5.17, a control law for the input u can be defined by modifying the existing

computed torque control law. This is seen in equation 5.18.

ε̇ =e

v =−Kdė−Kpe−Kiε

s =ė+ λe

τ =M(q)(q̈ +Kdė+Kpe+Kiε) + . . .

V (q, q̇) +G(q) + Fv(q̇) + Fd(q̇) + τdist + ηsign(s)

(5.18)
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sign(s) = erf(γs) (5.19)

The addition of the sliding function to the existing control law ensures that

the controller will push the system tendency towards the sliding surface to track

the desired reference value. The sliding mode controller used in the following

simulations follows the block diagram shown in Figure 5.10.

−
PID

Controller
SMC Arm (Plant)

q̈d e v τ q, q̇

Linearized System

Figure 5.10: Block diagram of SMC control model [4]

The error function in equation 5.19 is used instead of an actual signum

function. This was done in order to minimize computation time, as the error

function is continuously differentiable. The γ value dictates the thickness of the

boundary layer of the sliding surface. The same constant joint tracking simulation

was completed with a PID sliding mode controller with the same parameters and

disturbances. In addition, γ = 200, λ = 100, η = 5. The selection of the PID gains

and the values of λ and η determine the behavior of the sliding mode controller.

The results of the simulation can be seen in Figures 5.11 through 5.13.
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5.4.2 Lyapunov Stability

To prove the stability of the controller in the presence of disturbances and

uncertainties, Lyapunov Stability Theory is used. The Lyapunov function for this

system is defined by equation 5.20. According to [51], this equation is valid given

the skew-symmetry of Ṁ = −2V , which can also be written as Ṁ = V + V T .

V (t) =
1

2
[sTMs] (5.20)

Differentiating

V̇ (t) = sT (Mq̈ −Mq̈d) +
1

2
sTṀs (5.21)

Given skew-symmetry, and substituting Mq̈, and N representing other

nonlinear terms:

N(q̇, q) = V −G− Fv − Fd

V̇ = sT (τ −Mq̈d −N)
(5.22)

If the control input τ is defined by equation 5.18, the derivative of the

Lyapunov function becomes

V̇ = ST (τdist)−
n∑
1

ηi|si| (5.23)

As long as the components of the η vector are greater than the bounded

disturbance forces and modeling errors, the sliding condition is satisfied and the

sliding surface s = 0 can be reached in a finite time [51]. The trajectory tends

toward qd exponentially.
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5.5 Cartesian to Joint Space Mapping

Both the PID Sliding Mode and Computed Torque controllers work by

tracking a desired joint angle trajectory. A convenient method of converting a

desired Cartesian trajectory command to a desired joint trajectory command was

introduced in Chapter 2. Recall that the Jacobian is a linear mapping of joint

velocities in joint space to Cartesian space. This relationship is repeated here in

equations 5.24 and 5.25.

ov = oJ(θ)θ̇ (5.24)

θ̇ = J−1(θ)v (5.25)

The Jacobian matrix for a spatial manipulator is only invertible for a 6-

DOF robot. If n 6= m3, the pseudo inverse of the Jacobian must be used for all

other cases (sometimes referred to as the Moore-Penrose pseudoinverse) [14].

5.6 Results

To understand the effect of both the sliding mode and computed torque

controllers, two sets of simulations were conducted. The first set of simulations

used both controller types to track a circular path with and without disturbances.

The second set of simulations added a force control element to simulate a per-

pendicular force on the EEF. This would simulate the force profile felt on the

EEF of the robot during a punch. This simulation was done using both controller

3This occurs when the number of inputs differs from the number of outputs
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types with and without disturbances. Both controllers used an outer loop PID

controller with parameters listed in Table 5.1.

5.6.1 Circular trajectory tracking simulation

The goal for this set of simulations was to track a desired trajectory with

the EEF. Both the computed torque and the sliding mode controllers were used

to track the perimeter of a circle with radius 0.1 meters. The robot EEF tracks

the circle for two revolutions, with the starting and stopping poses equal to the

initial pose of the robot (q0 as specified in Table 5.1).

5.6.1.1 Computed Torque Method Results

The first set of simulations was conducted without any disturbances acting

on the system. The results can be seen in Figures 5.14 through 5.16.
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Figure 5.14: Computed Torque Method circle tracking simulation (with no dis-
turbances)
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Figure 5.15: Computed Torque Method input torque
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Figure 5.16: Computed Torque Method joint angles (above) and joint angle track-
ing error (below)

Figures 5.17 through 5.19 give the results of the simulation using a com-
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puted torque controller with significant disturbance torques. The disturbance

torque values are given in Table 5.1.
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Figure 5.17: Computed Torque Method circle tracking simulation (with significant
disturbances)
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Figure 5.18: Computed Torque Method input torque
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Figure 5.19: Computed Torque Method joint angles (above) and joint angle track-
ing error (below)

101



5.6.1.2 Sliding Mode Control Results

Figures 5.20 through 5.22 give the results of the simulation using a sliding

mode controller with significant disturbance torques. The disturbance torque

values are given in Table 5.1. This controller allows the robot to track the reference

value with minimal error despite significant disturbances.
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Figure 5.20: SMC circle tracking simulation (with significant disturbances)
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Figure 5.21: SMC input torque
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Figure 5.22: SMC joint angles (above) and joint angle tracking error (below)

It was stated previously that the sliding surface s was defined by equation
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5.19. The error function changes in stiffness as the γ value increases. The γ value

can be changed to a much smaller number to increase the boundary layer of the

sliding surface. Figures 5.23 through 5.25 illustrate the same simulation with the

sliding mode controller but with a γ value of 0.2.
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Figure 5.23: SMC circle tracking simulation (with significant disturbances and
low γ value)
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Figure 5.24: SMC input torque
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Figure 5.25: SMC joint angles (above) and joint angle tracking error (below)
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5.6.2 Punch Force Control Simulation

This simulation set involves force control and tracking. In order to simulate

the effect the punch has on the EEF of the robot arm, an approximate force profile

was created that would act perpendicular to the EEF of the robot, mimicking a

punch force. In reality, the punch would also exert a torque on the EEF due to

the moment arm offset from punch location to EEF. However, this is discounted

in the simulation as inducing a torque compliance would bend the surface of the

object, resulting in a poor shear profile. Because the goal is for the object to track

the punching tool, only the X and Y forces in the world frame are accounted for.

A Cartesian EEF outer-loop control law dictates how the EEF will react during a

punch. The force profile is given in the equation below and in Figure 5.26. This

force profile is modeled as a square instantaneous force for two seconds. In reality,

the force on the EEF would be gradually induced. However, the instantaneous

force is modeled here as a worst-case scenario.

F (t) =

{
20, if 4 ≤ t ≤ 6

0, otherwise
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Figure 5.26: Punch force magnitude acting on EEF during simulation
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The EEF commanded velocity to send to the controller is given by equation

5.26. The velocity command is dictated by a spring force that acts in opposition

to the force on the EEF.

eeef = y − y0

ẏd = KfF +Keeeef
(5.26)

The further the EEF distance is from its initial location, the greater its

restoring force magnitude will be. The maximum distance the EEF will travel can

be calculated by setting the commanded EEF velocity to 0. In this simulation,

Kf = 1
100

, and Ke = 2.

|ymax| =
KfF

Ke

(5.27)

This ensures that the EEF will return to its initial state after the punch,

while also exhibiting compliance during the punch to minimize shear forces on the

object.
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5.6.2.1 Computed Torque Method Results
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Figure 5.27: Computed Torque Method punch simulation (no disturbances). Ar-
row represents punch force direction
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Figure 5.28: Computed Torque Method input torque
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Figure 5.29: Computed Torque Method joint angles (above) and joint angle track-
ing error (below)
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Figures 5.30 through 5.32 show the performance of the same computed

torque control law during a punch with constant significant disturbance torques.

The disturbance torque values are given in Table 5.1. The effect of adding un-

known disturbances significantly change the expected trajectory.
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Figure 5.30: Computed Torque Method punch simulation (with significant distur-
bances). Arrow represents punch force direction
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Figure 5.31: Computed Torque Method input torque
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Figure 5.32: Computed Torque Method joint angles (above) and joint angle track-
ing error (below)
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5.6.2.2 Sliding Mode Control Results
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Figure 5.33: SMC punch simulation (with significant disturbances). Arrow repre-
sents punch force direction
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Figure 5.34: SMC input torque
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Figure 5.35: SMC joint angles (above) and joint angle tracking error (below)
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5.7 Conclusion

The results of the circle tracker and punch simulations give insight as to

how the robot arm hardware will behave if either of the two nonlinear control laws

are implemented. The difference between the two control laws is quite apparent

by looking at Figures 5.19, 5.22, 5.32, and 5.33. In the presence of significant

bounded disturbance torques, the sliding mode controller guarantees a faster re-

sponse toward equilibrium with a minimal error margin for both circular tracking

and force control scenarios. These simulations show that a sliding mode controller

is a feasible solution to EEF force control during handling tasks. However, the

simulation is limited in scope and sliding mode control has hardware drawbacks.4

For example, the PID gain parameters and sliding control parameters η and λ

were not changed throughout this simulation, but have a huge effect on the be-

havior of the system. The main gain parameter η can cause significant overshoot

if too high, and variation of λ will change the speed of the sliding surface. The

outer-loop linear controller will ultimately determine successful tracking of the

system.

The details concerning the drawbacks of sliding mode control, alternative

control laws, simulation improvements, and real time hardware control are dis-

cussed in the next chapter. As simplistic as this simulation is, it is apparent

from the results that the introduction of a sliding surface parameter improves the

robustness of the controller. It also provides additional safety and operational effi-

ciencies over the open loop approach shown in Chapter 4. It is recommended that

4Sliding mode drawbacks such as chattering and plant damage can be remedied with tech-
niques such as adaptive gain tuning and time delay techniques. This is discussed further in
Chapter 6.
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further research be done to implement a robust controller on glovebox-deployed

PDMs.
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Chapter 6

Conclusions and Future Work

6.1 Research Summary

Industrial robots are seeing more use as they are slowly introduced into

hazardous environments. This particular document details the automation of a

Port-Deployed Manipulator (PDM) to replace a human worker to exposure in a

hazardous radiological environment for one particular task. This task consists of

the size reduction of a hemispherical plutonium shell using a micro punch. A

successful material reduction algorithm was implemented on a PDM and demon-

strated on a stainless steel surrogate. The algorithm was developed to reduce a

hemispherical shell into pieces small enough to fit in a crucible without generating

sharps or fines. The algorithm works for a variety of different hemishell radii by

utilizing online motion planning and state-of-the-art sampling based motion plan-

ning. Although this algorithm was demonstrated using a particular robot, the

software base is hardware-agnostic. This allows the algorithm to be implemented

on a variety of platforms.

In addition to an open-loop hardware demonstration, a closed-loop sim-

ulation of the nonlinear system was developed in MATLAB using two different

nonlinear controllers. A feedback linearizing controller and a sliding mode con-

troller were used to introduce trajectory tracking on a 3-DOF simulated robot.

Two simulation scenarios were conducted with each controller: a circular EEF

trajectory tracking scenario and a force-feedback compliance scenario. Unmod-
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eled disturbances were added to the dynamics of the system during each scenario

to compare the robustness of each controller. The circular EEF trajectory track-

ing simulation demonstrated the tracking capabilities of both of the combined

PID-nonlinear control schemes. The force-feedback compliance simulation demon-

strated the behavior of the closed-loop system in response to a similar punch force

that is induced during the material reduction process. The sliding mode controller

outperformed the computed torque controller by tracking the desired trajectory

with significantly smaller error bounds and a faster response time.

6.2 Future Work

The material reduction algorithm demonstrated the feasibility of an auto-

mated solution in a laboratory setting. The robot and supporting hardware itself

may change in order to meet additional requirements for the hot workspace. The

software base will likely need revisions if cold testing results deem it necessary.

The implementation of closed-loop force feedback during motion planning needs

to address issues such as discrete time control, input saturation, plant damage,

and time delay. This section will outline future research topics that are of interest

for material reduction task automation.

6.2.1 Material Reduction Hardware Selection

All research and development for the material reduction task was com-

pleted using an SIA5 robot arm, which has served as a hardware platform for

much of the research done in the UT Nuclear Robotics Group. However, it may

not be an ideal hardware platform for hot cell implementation. Further investiga-

tion should be done to identify other hardware platforms for glovebox automation
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that may improve certain automation qualities. The SIA10, for example, could

also serve as a PDM. The SIA10 has a much more favorable geometric configura-

tion, allowing for more IK solutions to be calculated in a given workspace by virtue

of its longer link lengths. It is also capable of manipulating twice the payload of

an SIA5.

Figure 6.1: Robotiq 3-finger gripper (left) and 2-finger gripper (right) [47]

Another option that should be investigated is a dual-arm configuration.

This would be useful if finger grippers (such as the Robotiq grippers shown in

figure 6.1) are used as EEFs. This would allow one robot arm to transfer the

hemishell to the other robot arm to provide a more favorable object/tool trans-

formation during motion planning. Additionally, the robot arm in question need

not be a PDM, but a robot that fits completely inside of a glovebox. This would

protect the outside environment to contamination from the contents of a glove-

box. Smaller 5-DOF Fanuc LR Mate 100i robots are used in the ARIES project

that fit inside of a hot cell [38]. Although motion planning development on a

geometrically smaller platform would be difficult, a smaller robot would likely be

123



cheaper to replace should radiation compromise its integrity.

Similarly, the EEF used in the material reduction process does not need to

be a vacuum gripper. Although vacuum grippers are commonly used in industrial

manufacturing, they are not without their limitations. Running a pneumatic

line through the inside of a hot glovebox could potentially be dangerous as it

could spread contaminants. The compliance of the gripper suction cup may also

interfere with motion planning, as the plutonium hemishell’s weight could change

its orientation with respect to the EEF during robot motion. A suction cup also

takes up surface area on the hemishell, which will not be reduced by the punch.

This means a human would have to manually reduce the last piece of the hemishell

if it cannot fit inside of the crucible if the suction cup is too large. This could be

remedied by researching an alternative method of rigidly attaching the hemishell

in a desirable configuration onto the EEF without sacrificing surface area.

6.2.2 Material Collection

The material reduction process developed in this report does not have a

method of collecting the slugs of material produced by the micro punch. Material

accountability should be addressed before hot cell deployment. This would involve

the creation a material collection apparatus that would hold pieces of the reduced

hemishell in some sort of container. A container would need to be handled and its

contents emptied into an induction crucible. The handling of the container could

potentially be automated, as well as using capabilities already demonstrated by

the NRG [24].

The collection of the hemishell pieces has been researched by an under-

graduate design team at UT. This device was previously mentioned in Chapter 3.
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The design team formed several ideas for a collection system, including a shaker

table, feed ramp, and a pneumatic-assisted design. The team concluded that

based on their research, the best material collection system is a funnel-fed tube

system. The pieces of hemishell material would be gravity-fed down a tube into

a container as they are produced from the tool. This design can be seen in figure

6.2.

Figure 6.2: Undergraduate design team material collection prototype design

A similar material collection system could be developed for the micro punch

that collects slugs of material in a standard DOE plutonium container.

6.2.3 Reactive Motion Planning

The motion planning algorithm developed for the material reduction pro-

cess only allows the radius of the object to be specified prior to the start of

the program. It is currently not suitable for objects to be reduced that are not
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perfectly hemispherical. However, the algorithm can be modified to include any

number of objects that are revolute about an axis. Consider a perfect hemisphere

as discussed in this report. This hemisphere can be defined by a Bézier curve

revolved around a vertical axis. The algorithm developed for this report is only

valid for one particular type of Bézier curve defined by its radius. Instead of only

using a user-defined radius as the input for the material reduction algorithm, a

user-defined Bézier curve and radius could be used as inputs. Such an algorithm

would allow a variety of solid model configurations to be valid that are not per-

fectly hemispherical. A standard Bézier curve of order n is described by n + 1

control points in 3-D space, expressed by Pi in equation 6.1.

B(t) =
n∑
i=0

xibi,n(t), t ∈ [0, 1]

Pi =

xiyi
zi

 (6.1)

De Casteljau’s algorithm is a recursive method of determining point loca-

tions along a known Bézier curve [18]. This is necessary to determine the location

in space to place the pit in relation to the punch tool. The punch is then rotated

by θ for a number of rotations based on the radius of the solid object. The next

point of interest on the Bézier curve is calculated by varying the parameter t with

De Casteljau’s algorithm. Prautzsch et. al give a more detailed explanation of

the algorithm [18].

This method of automated motion planning would assume that the user

gave an input of a known curve to the program. If the user does not know how to

describe a curve to fit the surface of any given pit, it may be possible to automate

126



this step using a vision application. Visual feedback has been studied at the UT

Nuclear Robotics Group and is occasionally used in industrial automation. O’Neil

developed a vision algorithm that identified objects in a glovebox environment us-

ing visual point-cloud data [42]. This capability could be extended by developing

an algorithm to match point cloud data of the curvature of a hemispherical ob-

ject to a Bézier curve. Visual feedback would also be useful during the material

reduction process to determine punch success or failure.

6.2.4 Closed-Loop Hardware Control

In order to implement the controllers presented in Chapter 5 to real world

hardware, several factors must be addressed that were not included in the math-

ematical simulation. In the real world, joint servos have an output limit. This

means that the input torques to the system are limited by a saturation function.

Although the input torques in each of the simulations described in Chapter 5

are well within the range of standard industrial robots (on the order of several

Newton-meters), handling heavier payloads will necessitate the use of a saturation

function.

Real-world effects such as viscous friction and joint noise are unmodeled.

The inertia matrix and other nonlinear terms in the nonlinear control law will not

be known exactly and will have some kind of uncertainty associated with each

term (ie. M = M̂, V = V̂ , etc.). This is why more robust methods of nonlinear

control should be researched further. However, implementing these controllers on

hardware involves discretizing the control law as robots are commonly controlled

digitally via a high-frequency control loop.
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6.2.4.1 Discrete Control and Time Delays

A discrete control law must be used as opposed to the continuous controllers

introduced in the previous chapter. Recall the sliding mode controller from the

previous chapter. The sliding mode controller has its roots in continuous-time

relay control, but sliding mode control theory assumes that switching can be

achieved at an infinitely fast rate. In reality, this is not possible. There are several

methods to compensate for this. Consider the block diagram given in figure 6.3.

A hybrid closed-loop system is created by incorporating a digital controller with

a continuous system.

Actuators Plant Sensors

Analog/Digital
Converter

Digital
Controller

Digital/Analog
Converter

u(t) y(t) ym(t)

ykuk

uc(t)

rk

Continuous system

“Continuous” controller

Figure 6.3: Block diagram of closed-loop discrete system [13]

The sliding mode controller needs to be discretized. One of the most

common ways to discretize a continuous signal is by using the delta model. The

control signal given by the delta model is similar to Euler’s method of predicting

the next time step function value and is given by equation 6.2 [13].
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xk+1 = xk + Tfδ(xk, uk) (6.2)

where

lim
T→0

fδ(xkuk) = f(xk, uk) = lim
T→0

xk+1 − xk
T

(6.3)

Discrete sliding mode controller designs have been researched extensively

[13] [40]. However, using a discrete controller creates challenges. Latency between

the actuators and plant, between the plant and the sensors, and between the

controller and the actuators cause a time delay. If the sampling frequency is high,

this may not be a noticeable issue. However, a low sampling rate may necessitate

the use of a compensator. One method of time delay compensation is the Smith

Predictor Method, previously mentioned in Chapter 2 [54].

Digitally sampling a continuous waveform leads to discontinuities, even at

a high control rate. In some of the worst cases, this may lead to aliasing, where

the meaning of the waveform is lost due to poor sampling of the signal. This

phenomenon is illustrated in figure 6.4.

This applies to sampling from sensors such as a force/torque sensor. This

may not be an issue if the hardware is operating at a high control rate, but some

cases may necessitate the use of a digital filter if data quantization is significant.

Quantization of the input signal given by the discrete controller will also occur,

but as long as the control rate is high and controller is robust, the system should

remain stable. Force/torque sensor data filtering and quantization in robotic

systems has been previously researched by Zelenak of the UT NRG [56].
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Figure 6.4: Digital sampling of a continuous signal [27]

6.2.4.2 Adaptive Control

The outer-loop PID gains were not optimized for this particular task but

were based on user-intuition. A more complex method of gain tuning would al-

low the system to essentially “self-tune” based on the behavior of the system in

previous time intervals [12]. This adaptive interaction algorithm could poten-

tially optimize tracking for any control scheme that relied on a linear outer-loop

controller.

Similarly, an adaptive sliding mode control law could be tested to improve

the gains associated with the sliding surface term. A reasonable η gain value was

chosen for the purposes of simulation in the previous chapter. However, too large

of an η value would overshoot the desired sliding surface and cause “chattering”

near the sliding surface. This could lead to plant servo/actuator damage. The use

of an adaptive sliding mode control algorithm could alleviate some of the issues of
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sliding mode control. The basic algorithm to implement an adaptive sliding mode

controller is given by Slotine et al [51].

6.2.4.3 Impedance/Admittance Control

The force-feedback control law introduced in the 3-DOF simulation was

modeled after a linear spring. This is a simplified version of an impedance control

law. An overview of Hogan’s impedance control law was given in Chapter 2. It

might prove useful to expand this linear relation of force and position change into a

full impedance controller. This is accomplished by adding a mass and acceleration

term, and a damping factor associated with the EEF velocity. Depending on

hardware test results, a full impedance controller may improve performance by

introducing human-like compliance. In any case, further research can be done to

develop a more suitable force control law.

6.3 Concluding Remarks

The work presented in this report furthers the development of automated

systems and control in hazardous radiological environments. Although there is

work to be done before system deployment, the research presented in this report

is applicable to a variety of automated glovebox systems. In particular, this report

addresses:

• Collision detection and object recognition based on user-specified parame-

ters.

• Joint torque monitoring

• Online motion planning for contact tasks
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• Object-in-hand industrial manufacturing

• Grasping and handling of nuclear material

• Software compliance via robust nonlinear control methods

Although these topics are not new avenues of research, the integration of

many different aspects of industrial automation is what makes the work presented

in this report unique. Future development of material handling by robots in

a nuclear environment will utilize many or all of these techniques for safe and

efficient operation. It is recommended that the automation of glovebox tasks such

as the one described in this report continue in order to increase safety across the

DOE complex.
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Appendix A

Material Reduction Pseudocode

Data: User-specified radius R and tool radius rtool
Result: Size-reduced hemishell surrogate
ROS[workcell]→initialize();
robotarm →pick(bowl); // Pick up the bowl
robotarm →move(Pre-punch); // Move arm to prepunch position
R = User-input ;
rtool = User-input ;
θ = rtool

R
;

φ = θ ;

Nφ = R−dsuction
rtool

;

while Nφi < Nφ do
robotjoint(t) → move(-180 degrees); // Reset redundant joint
if Nφi 6= 1 then

robotarm → moveCartesian(withdraw); // Withdraw arm
robotbowl → rotate(XZ plane, φ); // Rotate bowl to next ring
robotarm → moveCartesian(punch); // Move arm into punch

end
while θi < 180 do

Punch();
robotjoint(t) → move(θ) ; // Rotate redundant joint

end
Punch();
Nφi+ = 1; // Increment ring counter

end
robotarm →move(stow); // Move arm back to stow position
robotgripper → off; // Turn vacuum gripper off
Program→End(); // End the program

Algorithm 1: Material Reduction Algorithm
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Appendix B

Dynamics of a Three-Link Planar Elbow Arm

The development of the Euler-Lagrange dynamic equations for a three-link

planar arm are based on equations presented by Lewis et al. [14]. The free-body

diagram model used in this section is the same one presented in Chapter 5. It is

repeated here in figure B.1.

Figure B.1: Free body diagram of 3-DOF planar robot arm

For link 1,
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K1 =
1

2
m1l1

2θ̇21

P1 = m1gl1sinθ1

(B.1)

For link 2, it is necessary to find the end coordinates of the point mass m2.

x2 = l1cosθ1 + l2cos(θ1 + θ2)

y2 = l2sinθ1 + l2sin(θ1 + θ2)

ẋ2 = −l1θ̇1sinθ1 − l2(θ̇1 + θ̇2)sin(θ1 + θ2)

ẏ2 = l1θ̇1cosθ1 + l2(θ̇1 + θ̇2)cos(θ1 + θ2)

(B.2)

v2
2 = ẋ22 + ẏ22 = l1

2θ̇21 + l2
2(θ̇1 + θ̇2)

2
+ 2l1l2θ̇1(θ̇1 + θ̇2)cosθ2 (B.3)

The kinetic and potential energies:

K2 =
1

2
m2v2

2 =
1

2
m2l1

2θ̇21 +
1

2
m2l2

2(θ̇21 + θ̇2)
2

+m2l1l2θ̇1(θ̇1 + θ̇2)cosθ2

P2 = m2gy2 = m2g[l1sinθ1 + l2sin(θ1 + θ2)]

(B.4)

The same process can be applied to link 3.

x3 = l1cosθ1 + l2cos(θ1 + θ2) + l3cos(θ1 + θ2 + θ3)

y3 = l1sinθ1 + l2sin(θ1 + θ2) + l3sin(θ1 + θ2 + θ3)

ẋ3 = −l1θ̇1sinθ1 − l2(θ̇1 + θ̇2)sin(θ1 + θ2)− . . .

l3(θ̇1 + θ̇2 + θ̇3)sin(θ1 + θ2 + θ3)

ẏ3 = l1θ̇1cosθ1 + l2(θ̇1 + θ̇2)cos(θ1 + θ2) + . . .

l3(θ̇1 + θ̇2 + θ̇3)cos(θ1 + θ2 + θ3)

(B.5)
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v3
2 = ẋ23 + ẏ23 = l1

2θ̇21 + l2
2(θ̇1 + θ̇2)

2
+ l3

2(θ̇1 + θ̇2 + θ̇3)
2

+ . . .

2l1l2θ̇1(θ̇1 + θ̇2)cosθ2 + 2l1l3θ̇1(θ̇1θ̇2θ̇3)cos(θ2 + θ3) + . . .

2cosl2l3(θ̇1 + θ̇2)(θ̇1 + θ̇2 + θ̇3)cosθ3

(B.6)

The kinetic energy of link 3 is

K3 =
1

2
m3v3

2 =
1

2
m3l1

2θ̇21 +
1

2
m3l2

2(θ̇1 + θ̇2)
2

+ . . .

1

2
m3l3

2(θ̇1 + θ̇2 + θ̇3)
2

+m3l1l2θ̇1(θ̇1 + θ̇2)cosθ2 + . . .

+m3l1l3θ̇1(θ̇1 + θ̇2 + θ̇3)cos(θ2 + θ3) + . . .

m3cosl2l3(θ̇1 + θ̇2)(θ̇1 + θ̇2 + θ̇3)cosθ3

(B.7)

The potential energy of link 3 is

P3 = m3gy3 = m3g[l1sinθ1 + l2sin(θ1 + θ2) + l3sin(θ1 + θ2 + θ3)] (B.8)

With these equations, the Lagrangian L can be solved:

L = K − P = K1 +K2 +K3 − P1 − P2 − P3 =

1

2
(m1 +m2 +m3)l1

2θ̇21 +
1

2
(m2 +m3)l2

2(θ̇1 + θ̇2)
2

+ . . .

1

2
m3l3

2(θ̇1 + θ̇2 + θ̇3)
2

+ (m3 +m2)l1l2θ̇1(θ̇1 + θ̇2)cosθ2 + . . .

m3l1l3θ̇1(θ̇1 + θ̇2 + θ̇3)cos(θ2 + θ3) + . . .

m3l2l3(θ̇1 + θ̇2)(θ̇1 + θ̇2 + θ̇3)cosθ3 − . . .

(m1 +m2 +m3)gl1sinθ1 − (m2 +m3)gl2sin(θ1 + θ2)− . . .

m3gl3sin(θ1 + θ2 + θ3)

(B.9)
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Solving for each joint torque:

∂L

∂θ̇1
= (m1 +m2 +m3)l1

2θ̇1 + (m2 +m3)l2
2(θ̇1 + θ̇2) + . . .

m3l3
2(θ̇1 + θ̇2 + θ̇3) + (m2 +m3)l1l2(2θ̇1 + θ̇2)cosθ2 + . . .

m3cos(θ2 + θ3)l1l3(2θ̇1 + θ̇2 + θ̇3) + . . .

m3cosθ3l2l3(2θ̇1 + 2θ̇2 + θ̇3)

(B.10)

d

dt
(
∂L

∂θ̇1
) = (m1 +m2 +m3)l2

2(θ̈1) + (m2 +m3)l2
2(θ̈1 + θ̈2) + . . .

m3l3
2(θ̈1 + θ̈2 + θ̈3) + (m2 +m3)l1l2(2θ̈1 + θ̈2)cosθ2 − . . .

(m2 +m3)l1l2(2θ̇1θ̇2 + θ̇21)sinθ2 +m3l1l3(2θ̈1θ̈2 + θ̈1)cos(θ2 + θ3)− . . .

m3l1l3(2θ̇1 + θ̇2 + θ̇3)sin(θ2 + θ3)(θ̇2 + θ̇3) + . . .

m3cosθ3l2l3(2θ̈1 + 2θ̈2 + θ̈3)−m3l2l3(2θ̇1 + 2θ̇2 + θ̇3)sin(θ3)θ̇3

(B.11)

∂L

∂θ1
= −(m1 +m2 +m3)gl1cosθ1 − . . .

(m2 +m3)gl2cos(θ1 + θ2)−m3gl3cos(θ1 + θ2 + θ3)

(B.12)

∂L

∂θ̇2
= (m2 +m3)l2

2(θ̇1 + θ̇2) +m3l3
2(θ̇1 + θ̇2 + θ̇3) + . . .

(m2 +m3)l1l2θ̇2cosθ2 +m3cos(θ2 + θ3)l1l3θ̇1 +m3cosθ3l2l3(2θ̇1 + 2θ̇2 + θ̇3)

(B.13)

d

dt
(
∂L

∂θ̇2
) = (m2 +m3)l2

2(θ̈1 + θ̈2) +m3l3
2(θ̈1 + θ̈2 + θ̈3) + . . .

(m2 +m3)l1l2θ̈1cosθ2 − (m2 +m3)l1l2θ̇1θ̇2sinθ2 + . . .

m3l1l3θ̈1cos(θ2 + θ3)−m3l1l3θ̇1(θ̇2 + θ̇3)sin(θ2 + θ3) + . . .

m3cosθ3l2l3(2θ̈1 + 2θ̈2 + θ̈3)−m3l2l3(2θ̇1 + 2θ̇2 + θ̇3)θ̇3sinθ3

(B.14)
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∂L

∂θ2
= −(m2 +m3)l1l2θ̇1(θ̇1 + θ̇2)sinθ2 − . . .

m3l1l3θ̇1(θ̇1 + θ̇2 + θ̇3)sin(θ2 + θ3)− (m2 +m3)gl2cos(θ1 + θ2)− . . .

m3gl3cos(θ1 + θ2 + θ3)

(B.15)

∂L

∂θ̇3
= m3l3

2(θ̇1 + θ̇2 + θ̇3)m3cos(θ2 + θ3)l1l3θ̇1 + . . .

m3cosθ3l2l3(θ̇1 + θ̇2)

(B.16)

d

dt
(
∂L

∂θ̇3
) = m3l3

2(θ̈1 + θ̈2 + θ̈3) +m3l1l3θ̈1cos(θ2 + θ3)− . . .

m3l1l2θ̇1(θ̇2 + θ̇3)sin(θ2 + θ3) +m3l2l3(θ̈1 + θ̈2)cosθ3 − . . .

m3l2l3(θ̇1 + θ̇2)θ̇3sinθ3

(B.17)

∂L

∂θ3
= −m3l1l3θ̇1(θ̇1 + θ̇2 + θ̇3)sin(θ2 + θ3)− . . .

m3l2l3(θ̇1 + θ̇2)(θ̇1 + θ̇2 + θ̇3)sinθ3 −m3gl3cos(θ1 + θ2 + θ3)

(B.18)

Using Lagrange’s Equation of Motion:

d

dt

∂L

∂q̇
− ∂L

∂q
= τ (B.19)

By calculating τi from Equations B.10 through B.18, the resulting torques

can be put into the form

M(q)q̈ + V (q, q̇) +G(q) = τ (B.20)

The friction dynamics are represented by joint-localized dynamic friction

Fd and viscous friction Fv terms:
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M(q)q̈ + V (q, q̇) +G(q) + Fv(q̇) + Fd(q̇) = τ (B.21)

This equation represents the standard manipulator dynamics for a generic

robot arm that includes friction, where:

Fv q̇ = vec[fviq̇i]

Fdq̇ = vec[fdisgn(q̇i)]
(B.22)

The terms fv and fd are scaling terms. The terms used for the arm simu-

lation were chosen to closely match the friction model created by a previous UT

NRG member for the SIA5 arm [49]. In his dissertation, Schroeder experimentally

determined joint friction models based on current.

Calculating the nonlinear terms for this arm,

M =

M11 M12 M13

M21 M22 M23

M31 M32 M33

 (B.23)

V =

V1V2
V3

 (B.24)

G =

G1

G2

G3

 (B.25)
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M11 = (m1 +m2 +m3)l1
2 + (m2 +m3)l2

2 +m3l3
2 + . . .

2(m2 +m3)l1l2cos(θ2) + 2m3l1l3cos(θ2 + θ3) + 2m3l2l3cos(θ3)

M12 = M21 = (m2 +m3)l2
2 +m3l3

2 + (m2 +m3)l1l2cos(θ2) + . . .

m3l1l3cos(θ2 + θ3) + 2m3l2l3cos(θ3)

M13 = M31 = m3l2
2 +m3l1l3cos(θ2 + θ3) +m3l2l3cos(θ3)

M22 = (m2 +m3)l2
2 +m3l3

2 + 2m3l2l3cos(θ3)

M23 = M32 = m3l3
2 +m3l2l3cos(θ3)

M33 = m3l3
2

(B.26)

V1 = −(m2 +m3)l1l2(2θ̇1θ̇2 + θ̇22sin(θ2)− . . .

m3l1l3(2θ̇1 + θ̇2 + θ̇3)(θ̇2 + θ̇3)sin(θ1 + θ3)− . . .

m3l2l3(2θ̇1 + 2θ̇2 + θ̇3)θ̇3sin(θ3)

V2 = −(m1 +m3)l1l2θ̇1θ̇2sin(θ2)−m3l1l3θ̇1(θ̇2 + θ̇3)sin(θ2 + θ3)− . . .

m3l2l3(2θ̇1 + 2θ̇2 + θ̇3)θ̇3sin(θ̇3) + (m2 +m3)l1l2θ̇1(θ̇1 + θ̇2)sin(θ2) + . . .

m3l1l3θ̇1(θ̇1 + θ̇2 + θ̇3)sin(θ̇1 + θ3)

V3 = −m3l1l2θ̇1(θ̇2 + θ̇3)sin(θ2 + θ3)−m3l2l3(θ̇1 + θ̇2)θ̇3sin(θ3) + . . .

m3l1l3θ̇1(θ̇1 + θ̇2 + θ̇3)sin(θ2 + θ3) +m3l2l3(θ̇1 + θ̇2)(θ̇1 + θ̇2 + θ̇3)sin(θ3)

(B.27)

G1 = (m1 +m2 +m3)gl1cos(θ1) + (m2 +m3)gl2cos(θ1 + θ2) + . . .

m3gl3cos(θ1 + θ2 + θ3)

G2 = (m2 +m3)gl2cos(θ1 + θ2) +m3gl3cos(θ1 + θ2 + θ3)

G3 = m3gl3cos(θ1 + θ2 + θ3)

(B.28)
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Fr1 = fv1θ̇1 + fd1sign(θ̇1)

Fr2 = fv2θ̇2 + fd2sign(θ̇2)

Fr3 = fv3θ̇3 + fd3sign(θ̇3)

(B.29)
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