
 
 

University of Birmingham

Electric Vehicle Battery Disassembly Using
Interfacing Toolbox for Robotic Arms
Rastegarpanah, Alireza; Mineo, Carmelo; Contreras, Cesar Alan; Aflakian, Ali; Paragliola,
Giovanni; Stolkin, Rustam
DOI:
10.3390/batteries10050147

License:
Creative Commons: Attribution (CC BY)

Document Version
Publisher's PDF, also known as Version of record

Citation for published version (Harvard):
Rastegarpanah, A, Mineo, C, Contreras, CA, Aflakian, A, Paragliola, G & Stolkin, R 2024, 'Electric Vehicle
Battery Disassembly Using Interfacing Toolbox for Robotic Arms', Batteries, vol. 10, no. 5, 147.
https://doi.org/10.3390/batteries10050147

Link to publication on Research at Birmingham portal

General rights
Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the
copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes
permitted by law.

•Users may freely distribute the URL that is used to identify this publication.
•Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private
study or non-commercial research.
•User may use extracts from the document in line with the concept of ‘fair dealing’ under the Copyright, Designs and Patents Act 1988 (?)
•Users may not further distribute the material nor use it for the purposes of commercial gain.

Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.

When citing, please reference the published version.
Take down policy
While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been
uploaded in error or has been deemed to be commercially or otherwise sensitive.

If you believe that this is the case for this document, please contact UBIRA@lists.bham.ac.uk providing details and we will remove access to
the work immediately and investigate.

Download date: 15. May. 2024

https://doi.org/10.3390/batteries10050147
https://doi.org/10.3390/batteries10050147
https://birmingham.elsevierpure.com/en/publications/1ceef94c-1266-4894-9a1b-72bb944a8f79


Citation: Rastegarpanah, A.; Mineo,

C.; Contreras, C.A.; Afakian, A.;

Paragliola, G.; Stolkin, R. Electric

Vehicle Battery Disassembly Using

Interfacing Toolbox for Robotic Arms.

Batteries 2024, 10, 147. https://

doi.org/10.3390/batteries10050147

Academic Editors: Chiara Ferrara and

Elza Bontempi

Received: 15 March 2024

Revised: 19 April 2024

Accepted: 25 April 2024

Published: 27 April 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

batteries

Article

Electric Vehicle Battery Disassembly Using Interfacing Toolbox
for Robotic Arms
Alireza Rastegarpanah 1,2,* , Carmelo Mineo 3 , Cesar Alan Contreras 1, Ali Aflakian 1,2 , Giovanni Paragliola 3

and Rustam Stolkin 1,2

1 Department of Metallurgy & Materials Science, University of Birmingham, Birmingham B15 2TT, UK;
cac214@student.bham.ac.uk (C.A.C.); axa1550@student.bham.ac.uk (A.A.); r.stolkin@bham.ac.uk (R.S.)

2 The Faraday Institution, Quad One, Harwell Science and Innovation Campus, Didcot OX11 0RA, UK
3 Institute for High-Performance Computing and Networking of the National Research Council (ICAR-CNR),

Via Ugo La Malfa 153, 90146 Palermo, Italy; carmelo.mineo@icar.cnr.it (C.M.);
giovanni.paragliola@icar.cnr.it (G.P.)

* Correspondence: a.rastegarpanah@bham.ac.uk

Abstract: This paper showcases the integration of the Interfacing Toolbox for Robotic Arms (ITRA)
with our newly developed hybrid Visual Servoing (VS) methods to automate the disassembly of
electric vehicle batteries, thereby advancing sustainability and fostering a circular economy. ITRA
enhances collaboration between industrial robotic arms, server computers, sensors, and actuators,
meeting the intricate demands of robotic disassembly, including the essential real-time tracking
of components and robotic arms. We demonstrate the effectiveness of our hybrid VS approach,
combined with ITRA, in the context of Electric Vehicle (EV) battery disassembly across two robotic
testbeds. The first employs a KUKA KR10 robot for precision tasks, while the second utilizes a
KUKA KR500 for operations needing higher payload capacity. Conducted in T1 (Manual Reduced
Velocity) mode, our experiments underscore a swift communication protocol that links low-level
and high-level control systems, thus enabling rapid object detection and tracking. This allows for
the efficient completion of disassembly tasks, such as removing the EV battery’s top case in 27 s and
disassembling a stack of modules in 32 s. The demonstrated success of our framework highlights
its extensive applicability in robotic manufacturing sectors that demand precision and adaptability,
including medical robotics, extreme environments, aerospace, and construction.

Keywords: industrial robot; robotic disassembly; EV battery; visual servoing; recycling

1. Introduction

Lithium-ion batteries (LIBs) are increasingly significant in today’s society, integral in
everything from mobile phones to energy storage systems in renewable energy sources,
and play a crucial role in the electric vehicle (EV) industry. This has raised concerns
about the recycling and reuse of LIBs. Consequently, the industrial sector has seen a
growing demand for disassembly solutions driven by environmental objectives and recent
regulations. This scenario necessitates real-time adaptability in disassembly, especially in
high-force industrial settings where constant vigilance for changes is essential. This study
employs various case scenarios for autonomously disassembling and real-time tracking of
battery components, focusing on industrial robotic applications in this area.

Despite the widespread adoption of lithium-ion batteries in electric vehicles, the dis-
assembly of these batteries is not yet fully automated within the industry. Automation is
needed to mitigate safety risks associated with manual disassembly processes. Moreover,
automating disassembly aligns with the NetZero2050 strategies, which aim to preserve criti-
cal materials and support the circular economy by enhancing the efficiency of EV recycling.

Robotic manufacturing is traditionally thought of as involving structured tasks charac-
terized by repetition. Major industrial robot suppliers offer proprietary programming lan-
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guages to enable operators to set up assembly tasks for manufacturing lines [1]. However,
challenges and bottlenecks in efficiency arise in chaotic and unstructured manufacturing
scenarios, such as disassembly tasks. Traditional programming methods for robot manipu-
lators are inefficient in dealing with variability, which is a challenge for LIBs due to their
diversity in models, sizes, shapes, and conditions [2]. Various actions like cutting, pulling,
unbolting, and sorting are often required for disassembly, leading to complex systems with
various sensors and actuators.

The process of EV battery disassembly is challenging due to the diversity in battery
designs, the lack of prior knowledge about each battery’s condition, and the absence of
detailed design information from OEMs. Necessitating robust sensory feedback mecha-
nisms, including vision and force feedback, to enhance perception and accuracy during the
disassembly process.

Several toolboxes have been developed to enhance system integration, incorporating
sensors, actuators, and software [3–6]. However, many of these toolboxes are limited
in capabilities or were designed for outdated generations of robot controllers, requiring
advanced technical and programming skills. Despite these limitations, such toolboxes are
crucial for system integration, particularly for advanced tasks like disassembly.

Vision sensors are among the most commonly used, providing feedback about envi-
ronments without physical contact, making them essential for working in unstructured and
uncertain environments [7]. In control tasks, vision sensors identify a goal in the environ-
ment and then calculate the optimal path to move the robot towards the goal, avoiding joint
limits and singularities [8]. Visual Servoing (VS) involves using data from vision sensors
for closed-loop dynamic control of a robot to achieve its goal. Various VS approaches
in robotics have been tried to address industrial challenges [9,10] with mixed success,
nevertheless demonstrating their potential in adapting to dynamic scenarios, which is the
case for disassembly tasks.

This study extends the Interfacing Toolbox for Robotic Arms (ITRA) with real-time
adaptive behavior capabilities from our previous paper [11]. ITRA enables real-time control
and hardware integration for fourth-generation KUKA robot controllers. The extension in-
cludes multiple VS algorithms, particularly our Decoupled Hybrid Visual Servoing (DHVS)
and object-based trackers. Our previous paper [12] demonstrated that DHVS performs bet-
ter than classical VS approaches to address the industrial challenge of battery disassembly.

This interfacing in industrial robots is required for managing complex disassembly
tasks, especially those requiring the manipulation of high payloads, such as lifting batteries
weighing around 300 kg and full of uncertainties. This research is a step to contribute
to environmental sustainability, and our solutions applied to industrial settings can also
be a step towards a circular economy, particularly in EV recycling at an industrial scale.
Scientifically, the study advances our understanding of adaptive robotic behaviours in high-
variability environments, showing the feasibility of integrating advanced control algorithms
and sensory feedback for real-world applications with giant industrial manipulators.

The present paper is structured as follows: Section 2 discusses related works in real-
time control of industrial robots and visual servoing. Section 3 presents the methodology
and background knowledge with a description of the robotic setup needed for the experi-
ment. Section 4 proceeds to present the experiments and case studies to test the framework
in precision and speed tasks using the KR10 robot and high-force requiring tasks using
the KR500 robot. Section 5 presents and discusses the results across the different scenar-
ios. Finally, Section 6 concludes with insights from the study on battery disassembly and
directions for future work in the area.

2. Related Works

Several areas relevant to the paper need to be tackled before discussing the battery
disassembly task we are performing and how the combination of DHVS and ITRA can help
address these challenges.
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2.1. Battery Disassembly

Recent research in robotic battery disassembly has unveiled complexities and chal-
lenges in automating this process due to inherent uncertainties. Zhang et al. developed
an autonomous system for disassembling electric vehicle batteries, achieving high success
in laboratory settings and demonstrating efficiency and autonomy in controlled environ-
ments [13]. Xiao et al. investigated optimizing EV battery disassembly through multi-agent
reinforcement learning, focusing on the dynamic nature of the process and the importance
of human–robot collaboration [14], which our integrated framework allows. Gerlitz et al. en-
hanced precision in identifying crucial points during LIBs module disassembly using com-
puter vision and 3D camera-based localization, addressing accurate component handling
challenges [15], with our DHVS algorithm also allowing 3D localization, optimized for
handling the battery components. Hathaway et al. explored real-time teleoperation of
collaborative robots (cobots) for EV battery disassembly, noting time-saving benefits and
compromises in first-attempt success rates [16]. ITRA enables real-time control for KUKA
industrial robots, potentially allowing the replication of Hathaway’s approach with tradi-
tional (non-collaborative) robotic manipulators. These studies show the evolving landscape
of robotic disassembly in unpredictable environments, like EV battery disassembly. This
shows the need for adaptable, precise, and collaborative robotic solutions in areas where a
real-time adaptive toolbox like ITRA could be beneficial.

2.2. System Integration Toolboxes

The application of industrial robots in manufacturing, especially in the Industry 4.0 era,
presents unique opportunities for disassembly, aided by toolboxes that permit better control
of manipulators. Fitka et al. developed a training tool for operating and programming
KUKA industrial robots, offering practical and educational insights for integrating these
robots into industrial setups [3]. Mišković et al. proposed combining a cloud-based system,
a prototyped mobile robot, and an ABB IRB 140 industrial robot, demonstrating potential
advancements in factory automation [4]. Golz et al. introduced the RoBO-2L Matlab
Toolbox, enabling the extended offline programming of KUKA robots and integration with
unsupported peripheral hardware and software [5].

Additionally, various toolboxes have been developed for specific purposes and plat-
forms. These include the Matlab-based Robotics and Fuzzy Logic Toolboxes [17], the Finite
Element Method for the dynamic modelling of flexible manipulators [18], and the Epipolar
Geometry Toolbox (EGT) for multi-camera system visual information management [19].
Other notable contributions are Corke’s toolbox for robotic manipulators [20], KUKA Sun-
rise Toolbox (KST) [21], the KUKA control toolbox (KCT) [6], among others like Robot
Operating System (ROS) [22] and the robotics toolbox for Python [23]. These toolboxes
cater to a wide range of needs, from basic modelling and simulation to complex control
scenarios in robotic systems, often requiring specialized knowledge in areas like MATLAB
programming or finite element analysis.

The ITRA toolbox has been designed to enable the seamless integration of industrial
robotic arms with server computers, sensors, and actuators, providing a platform that
is both highly adaptable and extendable [11]. It has extensively been adopted in robotic
non-destructive testing applications [24,25]. It enables real-time adaptive robotic responses
and the control of multiple robots simultaneously. Whereas ROS and ROS2 (second gener-
ation of ROS) have improved their real-time capabilities and support real-time systems,
ITRA still offers superior performance in specific real-time applications due to its dedi-
cated support for KUKA’s Robot Sensor Interface (RSI) and direct integration with KUKA
controllers, which are optimized for the fastest cycle times required in industrial settings.
The middleware approach of ITRA, designed specifically around the needs and capabili-
ties of KUKA robots, offers a more straightforward setup for those specific environments.
Although ROS/ROS2 benefits from a vast user community, contributing to its extensive
library of drivers, tools, and algorithms, ITRA’s focused development for specific industrial
applications offers a more tailored approach, especially in contexts where high precision
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and real-time responsiveness are crucial. ITRA is platform-independent and perfect for
tackling the challenges of disassembling the Nissan Leaf battery pack.

2.3. Visual Servoing

Visual servoing has been a crucially important technique in advancing robotics, partic-
ularly industrial applications. Classical methods like Image-based Visual Servoing (IBVS),
Hybrid Visual Servoing (HVS) and Position-based Visual Servoing (PBVS) each offer unique
strengths and challenges. IBVS is notable for its resistance to camera calibration and robot
kinematic errors but faces difficulties with unreachable robot trajectories [26]. PBVS cal-
culates camera velocities from task space errors and avoids interaction matrix problems;
however, it is vulnerable to 3D estimation errors [27]. HVS combines the best of both IBVS
and PBVS for a more balanced approach [28,29]. In industrial contexts, VS techniques
enhance robotic precision and efficiency. Hybrid VS methods, for example, have been used
in controlling soft continuum arms [26] and in mobile robots for optimized controllability
and movement [30].

Decoupled Hybrid Visual Servoing (DHVS) [12] represents a significant improvement
over classical VS methods. DHVS integrates the strengths of both IBVS and PBVS while
minimizing their weaknesses. It provides more efficient robot trajectories, enhanced ro-
bustness and improved controllability, addressing challenges like robot singularities and
discontinuities. Thanks to its adaptability to various industrial tasks, DHVS is a lead-
ing solution in visual servoing. It demonstrates progress in robotic control and enables
robots to perform more complex and precise tasks with higher reliability in dynamic and
unpredictable environments.

Combining DHVS with ITRA expands upon the existing toolbox to demonstrate its
capabilities to easily integrate hardware and software while also solving more industrial
problems with the addition of the camera control.

3. Methodology

The method of control merges the ITRA and DHVS strategies. ITRA is developed
on top of a KUKA System Software 8.3 extension called the Robot Sensor Interface (RSI).
RSI operates within any specified robot controller in real-time. KUKA specifically crafted
this software extension to facilitate interactions between a robot controller and an external
entity (for example, a sensor system or a server computer). A cyclical exchange of data
between the robot controller (the RSI context) and the external system (and vice versa)
occurs concurrently with the running of a KUKA Robot Language (KRL) program. By in-
tegrating ITRA with DHVS, improved visual servoing capabilities were realized. ITRA
introduces several functionalities used in the setup to manage communications. Notably,
ITRA’s functionalities are pivotal for enabling real-time control of robot motion, a critical
requirement in sophisticated industrial robotic applications. Real-time control of robot
motion is segmented into two distinct challenges: (i) determining the control points of
the geometric path (path planning) and (ii) defining the temporal progression along this
geometric path (trajectory planning). ITRA facilitates three unique methods for control-
ling the robot. While the task of path planning is consistently handled by the computer
hosting ITRA, which processes machine vision data and/or other sensor data to ascertain
the robot’s target position, ITRA permits different components of the system to tackle
the trajectory planning challenge. In the initial method (subsequently dubbed the KRL-
based method), trajectory planning is executed at the level of the KRL module within the
robot controller. Given that the robot controller processes the KRL module line by line,
this method’s drawback is the need for the robot to reduce speed and halt at the target
location. This method does not support real-time robot control, as a newly commanded
target can only be set after reaching the previously commanded position. The second
method has trajectory planning done within the external computer immediately follow-
ing path planning, known as the Computer-based method. This method is optimal for
precisely following intricate trajectories. Yet, akin to the KRL-based method, a limitation
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of the Computer-based method is the requirement to wait until all trajectory points are
dispatched before a new series of points can be relayed to the robot. The final method
employs a real-time trajectory planning algorithm built into the RSI configuration, using a
second-order trajectory generation algorithm. Hence, trajectory planning is overseen by
the RSI context, referred to as the RSI-based method. The RSI-based method enables true
real-time path control of KUKA robots, allowing for swift online adjustments to planned
trajectories, adapting to dynamic environment changes, tracking rapidly moving objects,
and circumventing unforeseen obstacles.

3.1. Background in Visual Servoing

The real-time camera velocities are computed by the DHVS algorithm and converted
into positions.

vxy = L+
xy{−k(∥e∥)e − Lrvr} (1)

In our DHVS approach, two equations govern the calculation of camera velocities.
Equation (1) is essential for determining the camera velocity in the X and Y directions, vxy,
by considering the error (e) in the image plane and the influence of rotational movements.
Here, e denotes the error vector in the image plane, reflecting the difference between
desired features projected onto the image plane and the actual (current) features captured
by the camera. Furthermore, Lxy represents the first two columns of the image Jacobian L as
outlined in reference [12]. Correspondingly, Lr denotes the last four columns of the image
Jacobian L, and vr represents translational velocity in the Z direction and three orientations.
Moreover, L+

xy is the pseudo-inverse of the Lxy, and k(∥e∥) is the adaptive control gain
based on the magnitude of the error vector e in the image plane.

vr = L+
Pr
{
−k(∥e∥)ep − LPxyvxy

}
(2)

Equation (2) complements Equation (1) by calculating vr, the camera velocity for
rotations and translation in the Z axis. It incorporates the position error ep which is the
difference between the desired position of the camera and its actual position in the 3D space.
LPxy denotes the first two columns of LP as detailed in reference [12] and LPr represents
the last four columns of LP . The use of L+

Pr, the pseudo-inverse of the interaction matrix
for rotations and translation in the z-axis, enables adjustment of the camera’s rotational
plus z-translational movements based on the desired position in the 3D space.

These equations are used in the DHVS method, as they allow for the decoupling of
translational and rotational camera movements, leading to more accurate and efficient
visual serving. To fine-tune adaptive gains, we started with an initial constant gain. There-
after, we positioned the robot near the target and gradually increased the gain to determine
the threshold where oscillations begin. The low-error optimal gain would be slightly less
than this threshold value, ensuring stability and faster convergence when the error (||e||)
is small. Doing so, for errors less than 0.005 m, a gain of k(0) = 4 is found to be effective.
Similarly, for the high-error gain ((||e||) more than 0.005 m), we placed the robot far from
the target to induce a large error. Then we started with a low gain and incremented it until
the robot moved fast enough. The gain of k(∞) = 0.4 is chosen for high-error values. These
equations’ full derivation and explanation are detailed in our previous work [12].

After converting into end-effector target positions, these are published into the robot
at a rate of 250 Hz using ITRA, with this rate limitation imposed by the RSI Context in the
KUKA controller. The trajectory execution is performed in real time, ensuring responsive
and accurate robot movements in line with the visual servoing tasks. Figure 1 shows the
communication process carried out for the robot control.
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Figure 1. Schematic flowchart of the Proposed Framework: integrated ITRA with DHVS. First
routine connects to the robot via RSI and subscribes to camera and velocity topics, then calculates
and publishes target speed and accelerations for the robot. In parallel image-based calculations for
visual servoing, bolt tracking or module tracking are performed and published into camera and
velocity topics.

3.2. Experimental Setup

The testing setup is divided into two work cells: The first work cell comprises a KUKA
KR10 with an RGB-D (Realsense 435i) camera mounted on the robot end-effector; this work
cell is tested on high-speed and high-precision tasks, relying on marker and object tracking
(Figure 2). The second work cell contains a KUKA KR500 with a Suction Gripper (VMECA
V-Grip: Foam Pad) and an RGB-D (Realsense 435i) camera mounted on the end-effector
(Figure 3). This latter space is set up to test heavy-duty applications in battery disassembly.
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Figure 2. The experimental setup for high speed and precision disassembly tasks using a KR10 KUKA
robot arm. (a) Shows Rapid Marker Tracking with KR10. (b) Shows Bolt Detection and Tracking.
(c) Shows Battery Module Detection and Tracking.

Figure 3. The National Sustainable Robotic Centre including two heavy-duty KR500arms for lifting
heavy objects like EV battery packs, a KR20 mounted on a 5 m rail track equipped with a nutrunner for
unbolting, and a custom-design tool for testing battery modules by Electrochemical impedance spec-
troscopy. The National Sustainable Robotic Centre is located at the Birmingham Energy Innovation
Centre in the Tyseley Energy Park.

Four distinct case studies have been meticulously designed to elucidate the effec-
tiveness of the proposed framework in the intricate process of disassembling Nissan Leaf
EV batteries, each deliberately crafted to spotlight a unique facet of the framework, such
as its efficiency, communication speed, and accuracy. This strategic approach ensures
a comprehensive evaluation of the framework’s overall efficacy. Complementing these
case studies, the application of the proposed framework was further validated through a
practical demonstration at the National Sustainable Robotic Centre (NSRC). Here, the initial
step involved the removal of the top case of the EV battery pack, followed by the precise
localization and subsequent removal of the battery stack of modules, thereby reinforcing
the framework’s utility in streamlining the disassembly process of EV batteries.

ITRA was loaded into MATLAB 2023b (64-bit version) for all case studies, running
within a computer with an Intel i7 CPU and 64 GB of RAM and equipped with an RTX
4080. The computer was linked to the controller of one KUKA KR500 robot or KUKA
KR10, respectively, running a KUKA Robot Language (KRL) module and an RSI context
that contained all required lines to enable the execution of the ITRA functions. A second
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computer was used to run the visual servoing control featuring a GTX 1080 Ti graphics card,
an Intel i7 processor, and 32 GB of RAM. It is important to note that ITRA can work with
other programming languages such as Python and C++, as it is a group of binaries that was
compiled in Linux, and that Matlab is only utilized because of its ease of use. Although for
this application it is running on Windows, ITRA can be used across different operating
systems including the Real Time Linux Kernels; also, we note that the RSI context, which
is needed for the communication, runs within a real-time platform in the robot controller;
hence, the claim of real-time behaviour.

3.3. Visual Servoing Calibration

Before conducting the experiments, hand-eye calibration was performed for KR500
and KR10 robots using the Visual Servoing Platform (ViSP) [31]. This allowed the coordinate
systems of each robot to align with those of their respective vision cameras. The calibration
process involved using a standard chessboard marker as a reference object. The camera
was positioned in 30 distinct joint configurations for each robot, capturing the chessboard
from various angles and distances in a half-sphere motion around the chessboard. The data
collected from these varied positions were processed using ViSP’s “hand2eye” calibration
algorithm [32]. This procedure computed the transformation matrices between the cameras
and the robot arms, synchronizing the visual and physical coordinate systems.

4. Experiments

The case studies are designed to evaluate the capabilities of ITRA in industrial robots
enhanced with visual servoing, specifically focusing on tasks related to Electric Vehicle (EV)
battery disassembly. The integrated framework underwent testing on the KR500 to assess
its applicability in applications and tasks demanding higher industrial power. Conversely,
it was evaluated on the KR10 for tasks requiring fine control.

4.1. Case 1: Rapid Marker Tracking with KR10

The first task features the KR10 robot, equipped with an RGB-D Camera. This study
focuses on fast-paced, dynamic object tracking, where the KR10 is tasked with following
a flying drone marked with a visual identifier as shown in Figure 2a. Testing capabilities
to quickly adapt to moving targets, showcasing the high communication rate of ITRA
and the accuracy of the DHVS in the dynamic environment. During battery disassembly,
the positions of the components change continuously, requiring the vision system to track
the locations of the objects without interruption.

4.2. Case 2: Bolt Detection and Tracking

In this scenario, the KR10 accurately tracks a bolt, as illustrated in Figure 2b, emphasiz-
ing precise alignment with the bolt’s position with a slight, intentional offset—a common
requirement in EV battery disassembly workflows. This task demonstrates the precision
and finesse of the DHVS system, coupled with ITRA, particularly in managing smaller and
more delicate objects.

4.3. Case 3: Battery Module Detection and Tracking

The third case study involved the KR10 tracking a large battery module. The robot
efficiently follows the module throughout the scene, guided by the physical model of the
battery module as shown in Figure 2c. This exploits DHVS’s versatility in tracking and
managing larger objects that can be part of any disassembly process.

4.4. Case 4: Case and Packs Sorting with DHVS

In the final case study, we deploy the KR500 robot, equipped with a vacuum suction
gripper and an RGB-D camera, as depicted in Figure 4. This setup utilizes the DHVS to track
markers affixed to the battery case and the battery packs, facilitating their localization and
subsequent sorting into the disassembly area. Initially, visual servoing guides the robot’s
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end-effector to approach the battery case closely. Following this, the top case is detached
and conveyed to the sorting area. The process of visual servoing is then repeated for the
battery packs, which are sorted utilizing the vacuum gripper. After accurately tracking
the object, the robot approaches the object’s location with a predefined offset from the
marker. This case study is designed to demonstrate the robustness and precision of DHVS
in complex, real-world battery disassembly tasks that require a higher force to operate.

Figure 4. Outline of the proposed framework deployed at the robotic test bed at NSRC. The framework
utilising the ITRA toolbox connects to the KUKA KR500 Industrial robot via a digital RSI Context,
and a physical network switch, where Ubuntu performs visual servoing from data obtained from a
camera, and that is transferred to window where data processing and robot commands are determined
and uploaded to the robot. (a,b) show the process of the Top Case Removal, consisting of the
localization of the case, and its sorting. (c,d) show the process of sorting a battery stack, which
consists of localization and sorting.

The precision of the DHVS system is vital for each case study, with the system allowing
a 5% error in distance to the centre of the markers and objects in each task, with a reduction
in this threshold allowed to permit a more precise but slower disassembly, which was not
needed due to the nature of the tasks. The system can work on models that vary by size
and position as long as they have the same shape, and can be expanded to other objects,
if a model file is created for them, or contain a marker.

5. Results and Discussion
5.1. Integrated ITRA-DHVS for EV Battery Disassembly Using KR500 Robot Arm

The disassembly process at the NSRC was segmented into two primary tasks: Top Case
Sorting and Battery Stack Sorting. Each task was timed and monitored for communication
and camera rates, with the results summarized in Table 1. These findings illustrate the
efficiency of the integrated system in performing tasks within the battery disassembly
process. It is important to note that these times were obtained in T1 (Manual Reduced
Velocity) mode, limiting the robot’s speed to 10% of its maximum; improvements in
time are achievable in fully automatic mode. The Top Case Sorting was subdivided into
two sub-tasks: Localization and Removal, averaging 27 and 39 s, respectively. Similarly,
Battery Stack Sorting was divided into Stack Localization and Module Sorting, lasting
an average of 32 s and 24 s, respectively. Across all tasks, the framework maintained an
average communication rate of 250 Hz and a camera rate of 60 Hz. Assumptions were
made, such as the prior removal of connectors, cables, and other battery components,
because this disassembly scenario was primarily focused on testing the capabilities of the
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ITRA framework as a foundation for future work. Future investigations will include more
components throughout the scene to offer a more accurate representation of the battery
disassembly process, with an anticipated speed increase of up to 50% of the industrial
robot’s maximum speed. With the current speed, the total removal of 48 battery cells
is expected to take approximately 22 min, as the robot can remove two stacks per trip,
requiring at least 24 trips. If the battery disassembly speed were increased to 50% or five
times its current rate, the completion time is expected to be approximately 4 min. Other
disassembly scenarios can be conducted using the same methodology, relying on the ITRA
framework. A primary challenge in this case study was selecting the offsets for contact
with the battery components. Future work will explore incorporating force sensors and
mixed teleoperated control, allowing the operator to intervene at the moment of contact,
thereby facilitating these tasks.

Table 1. Battery disassembly.

Average Average
Task Time Communication Rate Camera Rate

Top Case Removal 66 s 250 Hz 60 Hz
Localization 27 s 250 Hz 60 Hz

Sorting 39 s 250 Hz 60 Hz

Battery Stack Sorting 56 s 250 Hz 60 Hz
Localization 32 s 250 Hz 60 Hz

Sorting 24 s 250 Hz 60 Hz

5.2. Integrated ITRA-DHVS for EV Battery Disassembly Using KR10 Robot Arm

In the task of visual servoing for rapid movements and drone tracking, the KR10 robot
exhibited its capability to adeptly adjust to swift alterations in the drone’s position, consis-
tently following it. This process required approximately 500 iterations, with each iteration
lasting 4 ms, to accurately align with the drone’s position, as illustrated in Figure 5a,b.
Despite the limitations imposed by the camera’s refresh rate on capturing the drone’s
position, ITRA’s consistent communication rate ensured effective control over the robot
during these rapid movement tasks.

In the Bolt tracking task, the KR10 significantly minimized the error rate, achieving po-
sitional repeatability nearly at the manufacturer’s specified level. It successfully converged
in on the bolt’s position in less than 700 iterations on average, as depicted in Figure 6a.
For the battery module tracking task, the number of iterations required varied between 550
and 700, as demonstrated in Figure 6b.

Typical Cartesian trajectories for both object-tracking tasks are shown in Figure 6c. It
is important to note that the divergence between case studies in the KR10 with the KR500
reflects their suitability for different scales of tasks. KR10 being a small industrial robot is
suited for handling delicate and dynamically changing tasks. While KR500 with its strength
is good for large-scale and high power demanding tasks, although it is also capable of
precise and delicate handling. Primary difficulties in scaling from the KR10 implementation
to the KR500 implementation are related to the calibration and accuracy. The bigger system
is more susceptible to calibration errors, as it covers a bigger area, making it necessary to
do a more precise alignment from the vision camera and reference object. A well-calibrated
KR500 system should be able to perform equally precise tasks as the KR10 only limited to
the size of the objects it can manage, and to the visibility of such objects, for this in future
works, a more dedicated calibration procedure is recommended. with at least 40 different
end-effector positions covering more positions.

The success of our battery disassembly tasks will enable us to extend our system to
other domains, such as space and medical fields, while incorporating variable autonomy
and mixed teleoperation control. In space exploration, the precision and adaptability of our
system could prove crucial for tasks such as satellite repair and space debris management.
Similarly, the demonstrated precision and control could significantly enhance surgical
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robotics in the medical field, facilitating minimally invasive procedures. With variable
autonomy, the tracking capabilities provided by ITRA and DHVS in industrial robots could
permit a seamless switch between object detection and manual control to complete more
complex tasks. ITRA enhances this process with its precise control and high communication
rate. Future efforts will be focused on adapting our methodologies to these sectors and
further expanding the capabilities of ITRA by facilitating changes in autonomy and modes
of operation.
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Figure 5. Real-world results of DHVS for drone tracking. (a) Visual Servoing Velocities while tracking
fast movement drone. (b) Feature errors and visual servoing for fast movement drone.
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Figure 6. Real-world results for object tracking cases: (a) Feature errors with DHVS in bolt tracking,
(b) Feature errors with DHVS in module tracking, (c) Cartesian trajectory of KR10 performing bolt
tracking task in red, and Cartesian trajectory of KR10 performing battery module tracking task
in blue.
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6. Conclusions

This paper has shown the integration of visual tracking and servoing together with
the Interfacing Toolbox for Robotic Arms (ITRA). Its applications were demonstrated in
industrial settings related to the disassembly of Electriv Vehicle (EV) battieries. The integra-
tion has proven ITRA’s flexibility and capabilities, particularly those in control strategies,
with this case enabling vision-guided control. This capability proves advantageous for
transitioning from collaborative robots (cobots) programming, to the management of indus-
trial robots, which tend to be pre-programmed. Moreover, ITRA’s advanced functionality
has been shown to be both effective and efficient, facilitating its application across various
systems employing different programming languages.

Real-time adaptive behaviour has significantly improved the capabilities of both the
KR500 and KR10 robots in executing vision-guided manipulation tasks for EV battery dis-
assembly. While ITRA facilitated control of the robot arm at rates up to 250 Hz, the reaction
time of the vision system for acceleration calculations was limited by the camera’s refresh
rate at the end-effector, at 60 fps, which was plenty at the limited velocity T1 (Manual
Reduced Velocity) mode the KUKA controller allowed.

Performance was consistently upheld in industrial scenarios, achieving precision and
efficiency in heavy-duty tasks, with Top Case removal of an EV battery pack within 66 s,
and sorting battery modules accomplished in 56 s. Additionally, the system’s adaptability
was demonstrated in dynamic environments, as shown by the KR10’s rapid convergence
during tracking tasks, requiring only between 500–700 iterations. Current efforts and
improvements to the system are being made on teleoperating the KUKA robot arm with
various haptic systems and force feedback mechanisms. Future work aims to implement
and enhance variable autonomy within these systems, facilitating transitioning between
teleoperated control and autonomous vision-based movement, tailored to the specific
requirements of task duration, precision, and variability.
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