78 research outputs found

    Issues in representing domain-specific concerns in model-driven engineering

    Get PDF
    The integration of domain-specific concepts in a model-driven engineering (MDE) approach raises a number of interesting research questions. There are two possibilities to represent these concepts. The first one focuses on models that contain domain-specific concepts only, i.e. domain-specific modelling languages (DSML). The second one advocates the integration of domain-specific concepts in general-purpose models, using what we will refer to in this paper as domain-specific modelling annotation languages (DSMAL). In this position paper, we argue that each approach is particularly suited for specific activities and specific actors, and show how they can be developed and used together. We also highlight the challenges created by the use of two representations, such as the evaluation of models OCL constraints and the synchronisation between the two representations. As an illustration, we present rbacUML, our approach for integrating role-based access control (RBAC) concepts into an MDE approach

    XMLText: From XML Schema to Xtext

    Get PDF
    A multitude of Domain-Specific Languages (DSLs) have been implemented with XML Schemas. While such DSLs are well adopted and flexible, they miss modern DSL editor functionality. Moreover, since XML is primarily designed as a machine-processible format, artifacts defined with XMLbased DSLs lack comprehensibility and, therefore, maintainability. In order to tackle these shortcomings, we propose a bridge between the XML Schema Definition (XSD) language and text-based metamodeling languages. This bridge exploits existing seams between the technical spaces XMLware, modelware, and grammarware as well as closes identified gaps. The resulting approach is able to generate Xtextbased editors from XSDs providing powerful editor functionality, customization options for the textual concrete syntax style, and round-trip transformations enabling the exchange of data between the involved technical spaces. We evaluate our approach by a case study on TOSCA, which is an XML-based standard for defining Cloud deployments. The results show that our approach enables bridging XMLware with modelware and grammarware in several ways going beyond existing approaches and allows the automated generation of editors that are at least equivalent to editors manually built for XML-based languages.European Commission ICT Policy Support Programme 31785

    Supporting Automatic Interoperability in Model-Driven Development Processes

    Full text link
    By analyzing the last years of software development evolution, it is possible to observe that the involved technologies are increasingly focused on the definition of models for the specification of the intended software products. This model-centric development schema is the main ingredient for the Model-Driven Development (MDD) paradigm. In general terms, the MDD approaches propose the automatic generation of software products by means of the transformation of the defined models into the final program code. This transformation process is also known as model compilation process. Thus, MDD is oriented to reduce (or even eliminate) the hand-made programming, which is an error-prone and time-consuming task. Hence, models become the main actors of the MDD processes: the models are the new programming code. In this context, the interoperability can be considered a natural trend for the future of model-driven technologies, where different modeling approaches, tools, and standards can be integrated and coordinated to reduce the implementation and learning time of MDD solutions as well as to improve the quality of the final software products. However, there is a lack of approaches that provide a suitable solution to support the interoperability in MDD processes. Moreover, the proposals that define an interoperability framework for MDD processes are still in a theoretical space and are not aligned with current standards, interoperability approaches, and technologies. Thus, the main objective of this doctoral thesis is to develop an approach to achieve the interoperability in MDD processes. This interoperability approach is based on current metamodeling standards, modeling language customization mechanisms, and model-to-model transformation technologies. To achieve this objective, novel approaches have been defined to improve the integration of modeling languages, to obtain a suitable interchange of modeling information, and to perform automatic interoperability verification.Giachetti Herrera, GA. (2011). Supporting Automatic Interoperability in Model-Driven Development Processes [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/11108Palanci

    Integration and Test of MOF/UML-based Domain-specific Modeling Languages

    Get PDF
    In model-driven development (MDD), domain-specific modeling languages (DSMLs) are used as tailor-made software languages targeting dedicated application domains. Due to the narrow domain coverage of DSMLs, demands to integrate their individual functionality into a consolidated DSML arise (e.g., developing a software product combining two or more pre-existing DSMLs). However, in order to realize the benefits of integrated DSMLs, it must be ensured that the integrated DSML is correctly implemented and behaves as specified. To support the integration and the test of DSMLs, this thesis presents an approach targeting the Meta Object Facility (MOF) and the Unified Modeling Language (UML)- a metamodeling infrastructure frequently employed for the MDD of software systems. The integration of DSMLs is based on a rewriting technique for model-to-text (M2T) transformations. This method allows for the reuse as well as for the automatic refactoring of M2T transformation templates to fix important syntactical mismatches between templates and the integrated DSML. To test an integrated DSML, scenarios are used to define domain requirements on an abstract level (via structured text descriptions). In a subsequent step, executable scenario tests are derived from the requirements-level scenarios. These executable scenario specifications are then employed to test the integrated DSML for compliance with corresponding domain requirements. Empirical evaluations of the approach (case studies, controlled experiment) demonstrate its successful application, collect evidence for its usefulness, and quantify its benefits. The integrated proof-of-concept implementations build on the Eclipse Modeling Framework (EMF), making use of and extending well-known Eclipse-based projects. All accompanying developments are placed into the public domain as free/libre open source software. Within the framework of this thesis, research results were originally published as individual contributions (workshop, conference, and journal articles). All research contributions are results of applying a design science research approach. (author's abstract

    Towards automatic generation of UML profile graphical editors for papyrus

    Get PDF
    We present an approach for defining the abstract and concrete syntax of UML profiles and their equivalent Papyrus graphical editors using annotated Ecore metamodels, driven by automated model-to-model and model-to-text transformations. We compare our approach against manual UML profile specification and implementation using Archimate, a non-trivial enterprise modelling language, and we demonstrate the substantial productivity and maintainability benefits it delivers

    Proceedings of the 4th Workshop of the MPM4CPS COST Action

    Get PDF
    Proceedings of the 4th Workshop of the MPM4CPS COST Action with the presentations delivered during the workshop and papers with extended versions of some of them

    Extensibility of Enterprise Modelling Languages

    Get PDF
    Die Arbeit adressiert insgesamt drei Forschungsschwerpunkte. Der erste Schwerpunkt setzt sich mit zu entwickelnden BPMN-Erweiterungen auseinander und stellt deren methodische Implikationen im Rahmen der bestehenden Sprachstandards dar. Dies umfasst zum einen ganz konkrete Spracherweiterungen wie z. B. BPMN4CP, eine BPMN-Erweiterung zur multi-perspektivischen Modellierung von klinischen Behandlungspfaden. Zum anderen betrifft dieser Teil auch modellierungsmethodische Konsequenzen, um parallel sowohl die zugrunde liegende Sprache (d. h. das BPMN-Metamodell) als auch die Methode zur Erweiterungsentwicklung zu verbessern und somit den festgestellten Unzulänglichkeiten zu begegnen. Der zweite Schwerpunkt adressiert die Untersuchung von sprachunabhängigen Fragen der Erweiterbarkeit, welche sich entweder während der Bearbeitung des ersten Teils ergeben haben oder aus dessen Ergebnissen induktiv geschlossen wurden. Der Forschungsschwerpunkt fokussiert dabei insbesondere eine Konsolidierung bestehender Terminologien, die Beschreibung generisch anwendbarer Erweiterungsmechanismen sowie die nutzerorientierte Analyse eines potentiellen Erweiterungsbedarfs. Dieser Teil bereitet somit die Entwicklung einer generischen Erweiterungsmethode grundlegend vor. Hierzu zählt auch die fundamentale Auseinandersetzung mit Unternehmensmodellierungssprachen generell, da nur eine ganzheitliche, widerspruchsfreie und integrierte Sprachdefinition Erweiterungen überhaupt ermöglichen und gelingen lassen kann. Dies betrifft beispielsweise die Spezifikation der intendierten Semantik einer Sprache

    A meta-modelling language definition for specific domain

    Get PDF
    Model Driven software development has been considered to be a further software construction technology following object-oriented software development methods and with the potential to bring new breakthroughs in the research of software development. With deepening research, a growing number of Model Driven software development methods have been proposed. The model is now widely used in all aspects of software development. One key element determining progress in Model Driven software development research is how to better express and describe the models required for various software components. From a study of current Model Driven development technologies and methods, Domain-Specific Modelling is suggested in the thesis as a Model Driven method to better realise the potential of Model-Driven Software Development. Domain-specific modelling methods can be successfully applied to actual software development projects, which need a flexible and easy to extend, meta-modelling language to provide support. There is a particular requirement for modelling languages based on domain-specific modelling methods in Meta-modelling as most general modelling languages are not suitable. The thesis focuses on implementation of domain-specific modelling methods. The "domain" is stressed as a keystone of software design and development and this is what most differentiates the approach from general software development process and methods. Concerning the design of meta-modelling languages, the meta-modelling language based on XML is defined including its abstract syntax, concrete syntax and semantics. It can support description and construction of the domain meta-model and the domain application model. It can effectively realise visual descriptions, domain objects descriptions, relationships descriptions and rules relationships of domain model. In the area of supporting tools, a meta-meta model is given. The meta-meta model provides a group of general basic component meta-model elements together with the relationships between elements for the construction of the domain meta-model. It can support multi-view, multi-level description of the domain model. Developers or domain experts can complete the design and construction of the domain-specific meta-model and the domain application model in the integrated modelling environment. The thesis has laid the foundation necessary for research in descriptive languages through further study in key technologies of meta-modelling languages based on Model Driven development

    Model-Based Analysis of Role-Based Access Control

    Get PDF
    Model-Driven Engineering (MDE) has been extensively studied. Many directions have been explored, sometimes with the dream of providing a fully integrated approach for designers, developers and other stakeholders to create, reason about and modify models representing software systems. Most, but not all, of the research in MDE has focused on general-purpose languages and models, such as Java and UML. Domain-specific and cross-cutting concerns, such as security, are increasingly essential parts of a software system, but are only treated as second-class citizens in the most popular modelling languages. Efforts have been made to give security, and in particular access control, a more prominent place in MDE, but most of these approaches require advanced knowledge in security, programming (often declarative), or both, making them difficult to use by less technically trained stakeholders. In this thesis, we propose an approach to modelling, analysing and automatically fixing role-based access control (RBAC) that does not require users to write code or queries themselves. To this end, we use two UML profiles and associated OCL constraints that provide the modelling and analysis features. We propose a taxonomy of OCL constraints and use it to define a partial order between categories of constraints, that we use to propose strategies to speed up the models’ evaluation time. Finally, by representing OCL constraints as constraints on a graph, we propose an automated approach for generating lists of model changes that can be applied to an incorrect model in order to fix it. All these features have been fully integrated into a UML modelling IDE, IBM Rational Software Architect

    On the Use of Alloy in Engineering Domain Specific Modeling Languages

    Get PDF
    Domain Specific Modeling Languages (DSMLs) tend to play a central role in modern design processes as they enable the effective involvement of domain experts by focusing on a particular problem domain while abstracting away technical details. In this thesis, we investigate the specification of DSMLs with a particular focus on domain expert driven validation. Mainly, we are interested in developing Alloy-based approaches, allowing the definition of specifications from which instances can be generated and given to the domain experts for the sake of validation. The work we present in this thesis can be divided into three parts: The first part concerns the definition and execution of model transformations defined in Alloy. While Alloy analysis can be used as an execution engine for model transformations, the analysis process is time consuming. Model transformations playing a central role in DSML definitions, the development of a new model transformation language, named F-Alloy, retaining the benefits of Alloy with the added property of being efficiently computable was necessary. The second part focuses on validation. In that domain, our first contribution is a novel approach to the validation of model transformations called Visualization-Based Validation (VBV). VBV relies on the review by domain experts of intuitive depictions of model transformation traces to validate model transformation specifications. The whole process is made efficient by the usage of hybrid analysis, a combination of Alloy analysis and F-Alloy interpretation, allowing to reduce the time needed to analyze model transformations to the time needed to analyze its source. Our second contribution in the validation area is the definition of an Alloy-based approach to the specification and validation of DSMLs and of a design process defining how DSMLs can be validated using Alloy analysis at each iteration of the process. More precisely, we present how the abstract syntax, concrete syntax and operational semantics of a DSML can be defined using Alloy and F-Alloy, and show that the validation of a DSML' s abstract syntax and semantics benefits from the application of its concrete syntax. The third and last part aims at bringing those contributions to the practical world. To achieve this we developed a tool named Lightning implementing the aforementioned contributions. This tool, which belongs to the category of language workbenches, has been successfully used in an inter-disciplinary collaboration to define the Robot Perception System Language (RPSL). Based on this definition of RPSL, a framework has been developed to allow the execution of so called design space explorations. This framework represents a successful application of our approach to the real world problem of having RPSL specifications validated by experts in robotics
    corecore