
Extensibility of Enterprise Modelling
Languages

Dissertation

zur Erlangung des akademischen Grades

Dr. rer. pol.

vorgelegt an der

Technischen Universität Dresden

Fakultät Wirtschaftswissenschaften

von

Dipl.-Wirt.-Inf. Richard Braun

Gutachter:
Vorgelegt: 09.09.2016 Prof. Dr. Werner Esswein
Verteidigt: 09.11.2016 Prof. Dr. Susanne Strahringer

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Technische Universität Dresden: Qucosa

https://core.ac.uk/display/236375136?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Richard Braun

Extensibility of Enterprise
Modelling Languages

Technische Universität Dresden

Fakultät Wirtschaftswissenschaften

Lehrstuhl für Wirtschaftsinformatik,

insb. Systementwicklung

Preface

Einführung

Während meiner Tätigkeit am Lehrstuhl für Wirtschaftsinformatik, insb. Syste-
mentwicklung der TU Dresden arbeitete ich innerhalb des Sonderforschungsbere-
ichs SFB Transregio 96 in einem Projekt zur Beschreibung und Bewertung in-
novativer Technologien im Werkzeugmaschinenbau. Während des Projektes er-
gab sich die Notwendigkeit, die den Technologien zugrunde liegenden Verfahren
zu modellieren. Die Wahl fiel dabei auf die BPMN, den führenden Standard für
die Geschäftsprozessmodellierung. Die Domänenspezifik, Komplexität und Viel-
schichtigkeit der zu modellierenden Verfahren erforderte jedoch die Anpassung der
BPMN, um alle notwendigen Aspekte innerhalb der Sprache abzubilden und z. B.
Ressourcen-Konzepte auf Metamodell-Ebene spezifizieren zu können.

Überraschenderweise stellte sich die folgende Implementierung als schwierig her-
aus, da so gut wie keine nutzbaren Vorarbeiten zur systematischen Erweiterung
von Modellierungssprachen allgemein und der BPMN im Speziellen existieren.
Auch bietet die BPMN selber nur einen sehr rudimentären, unscharf definierten
und teils widersprüchlichen Erweiterungsmechanismus. Fast alle Sprachen zur Un-
ternehmensmodellierung verzichten gänzlich auf die Betrachtung möglicher Er-
weiterungen. Dementsprechend werden die meisten Spracherweiterungen ad hoc
definiert oder modifizieren die originale Grammatik gar. Auch sind die meisten
Spracherweiterungen werkzeuggebunden und liegen nicht in einem austauschfähigen
Format vor. Eine entsprechende Wiederverwendung oder Adaption wird daher
ebenso erschwert wie die systematische und transparente Konstruktion von Er-
weiterungen ganz allgemein. Diese methodische Unreife steht im Gegensatz zum
tatsächlichen Bedarf der situativen, problemspezifischen oder domänenspezifischen
Ausgestaltung oder Verfeinerung von eher generisch definierten Unternehmensmod-
ellierungssprachen wie BPMN, EPK oder ArchiMate.

Motiviert durch diese Notwendigkeit befasse ich mich seit 2014 mit der Er-
weiterbarkeit von Unternehmensmodellierungssprachen, insbesondere am Beispiel
der BPMN. In der Forschungsthematik kumulieren mehrere relevante Aspekte. Zu-
vorderst bilden semi-formale Modellierungssprachen prinzipiell ausdrucksstarke In-
strumente, um die heutige Komplexität vielschichtiger Informationssysteme über-
haupt beschreibbar und zu einem gewissen Grad beherrschbar zu machen. Sie ste-
hen dabei symbolisch für die immanent wichtige Schnittstelle zwischen maschinell-

VI Preface

technischen Anwendungssystemen und sozialen Akteuren innerhalb von Organisa-
tionen.

Um der Komplexität des Problembereichs nicht mit einem schwer handhabbaren
multi-pluralistischen Satz von verschiedenen Modellierungsmethoden zu begegnen,
proklamiere ich die Fokussierung auf einen Kern von hinreichend generischen Stan-
dardsprachen in der Unternehmensmodellierung und deren systematische und ein-
heitlich definierte Erweiterung, insofern ein spezifischer Bedarf dies erfordert. Dieser
“Standard+X ”-Ansatz ist unter anderem durch den Erfolg von erweiterbarer Open-
Source-Software inspiriert. Mit Hilfe wohl-definierter Erweiterungsmöglichkeiten er-
laubt dieser Software-Typ spezifische Erweiterungen und somit nutzergruppen-
gerechte Individualisierungen. Einmal entwickelte Erweiterungen können zusätzlich
auf marktplatz-ähnlichen Portalen angeboten und somit von anderen Nutzern
wiederverwendet werden.

Forschungsschwerpunkte

Die Forschungsarbeiten zu Spracherweiterungen innerhalb der letzten zweieinhalb
Jahre können als dreigeteilt angesehen werden.

Der erste Schwerpunkt setzt sich mit den zu entwickelnden BPMN-Erweiterungen
auseinander und stellt deren methodische Implikationen im Rahmen der bestehenden
Sprachstandards dar. Dies umfasst zum einen ganz konkrete Spracherweiterungen
wie z. B. BPMN4CP, eine BPMN-Erweiterung zur multi-perspektivischen Model-
lierung von klinischen Behandlungspfaden. Zum anderen betrifft dieser Teil auch
modellierungsmethodische Konsequenzen, um parallel sowohl die zugrunde liegende
Sprache (d. h. das BPMN-Metamodell) als auch die Methode zur Erweiterungsen-
twicklung zu verbessern und somit den festgestellten Unzulänglichkeiten zu begeg-
nen. Dieser Teil intendiert daher primär eine rigorose, aber pragmatisch-orientierte
Implementierung in derzeit gegebenen Modellierungsumgebungen, um dem aktuellen
Stand der Technik gerecht zu werden.

Der zweite Schwerpunkt adressiert die Untersuchung von sprachunabhängigen
Fragen der Erweiterbarkeit, welche sich entweder während der Bearbeitung des er-
sten Teils ergeben haben oder aus dessen Ergebnissen induktiv geschlossen wur-
den. Der Forschungsschwerpunkt fokussiert dabei insbesondere eine Konsolidierung
bestehender Terminologien, die Beschreibung generisch anwendbarer Erweiterungs-
mechanismen sowie die nutzerorientierte Analyse eines potentiellen Erweiterungsbe-
darfs. Dieser Teil bereitet somit die Entwicklung einer generischen Erweiterungsmeth-
ode grundlegend vor.

Hierzu zählt auch die fundamentale Auseinandersetzung mit Unternehmensmod-
ellierungssprachen generell, da nur eine ganzheitliche, widerspruchsfreie und integri-
erte Sprachdefinition Erweiterungen überhaupt erst ermöglichen und gelingen lassen
kann. Dies betrifft beispielsweise die Spezifikation der intendierten Semantik einer
Sprache. Die Thematisierung von Erweiterungen führte somit in letzter Konsequenz
zu sehr elementaren Untersuchungen, die ob ihrer Komplexität und Vielschichtig-
keit nicht vollständig bearbeitet und gelöst werden konnten. Die vorliegende Arbeit
versteht sich somit insbesondere hinsichtlich dieses Schwerpunktes explizit auch als

Preface VII

die vorstrukturierte Grundlage für weitere Forschungsarbeiten, welche im Rahmen
eines Habilitationsprojektes vertieft und ausgebaut werden sollen.

Danksagung

Herrn Prof. Dr. Werner Esswein danke ich für die eingeräumte Freiheit bei der
wissenschaftlichen Schwerpunktsetzung, die vorbehaltlose Unterstützung aller For-
schungsaktivitäten sowie die übertragene Verantwortung in der akademischen Lehre
und in Forschungsprojekten. Frau Prof. Dr. Susanne Strahringer gebührt mein
ausdrücklicher Dank für die unkomplizierte Übernahme des Zweitgutachtens sowie
die kurzfristige und zügige Begutachtung der Arbeit.

Meinen Kollegen am Lehrstuhl für Systementwicklung danke ich für die jederzeit
angenehme, kollegiale und positive Arbeitsatmosphäre. Herrn Dr. Hannes Schlieter,
Herrn Martin Burwitz und Herrn Martin Benedict danke ich für die sehr ergiebige
und fortwährende Zusammenarbeit in Bezug auf die Anwendung von Spracher-
weiterungen im Kontext von Informationssystemen im Gesundheitswesen. Aus un-
serer Zusammenarbeit entstanden mehrere Publikationen, welche sowohl innerhalb
der Forschungsgemeinschaft als auch in Praxisprojekten Anklang fanden und the-
matisch weiter vertieft werden sollen.

Meiner Kollegin Frau Jeannette Stark danke ich für die vielfältigen Diskussionen
in der Endphase unserer beiden Promotionen sowie die begonnene Zusammenarbeit
in Bezug auf grundlegende Forschungsfragen der konkreten Syntax. Herrn Dr. Jens
Weller danke ich für die Einführung in Grundzüge der Metamodellierung zu Beginn
meiner Tätigkeit als Studentische Hilfskraft am Lehrstuhl. Frau Lisa Gerstenberger
danke ich herzlich für die fortwährende Unterstützung bei der Abrechnung vieler
Dienstreisen sowie ihre Hilfe beim Verständnis der universitären Administration.

Darüber hinaus möchte ich explizit den unzähligen anonymen Gutachtern meiner
Forschungspapiere danken. Die in der Regel sehr hilfreiche Kritik sowie die Diskus-
sion eigener Forschungsarbeiten auf Konferenzen förderten die kritische Reflexion
der eigenen Arbeiten, lieferten wichtige Impulse und prägten somit den inhaltlichen
Fortschritt der Arbeit sowie meinen wissenschaftlichen Werdegang.

Den Kunden meiner Firma digiturax danke ich für das teilweise seit mehr als
zehn Jahren entgegengebrachte Vertrauen. Es war mir somit bereits im Studium als
auch während der Promotion möglich, gewonnene theoretische Kenntnisse praktisch
anzuwenden und zu reflektieren. Dieser Perspektivwechsel ist insbesondere in der
Wirtschaftsinformatik-Forschung außerordentlich wichtig und kostbar.

Abschließend möchte ich mich herzlich bei meiner Familie bedanken. Meiner über
alles geliebten Freundin Minja danke ich für ihr grenzenloses Verständnis in den let-
zten Monaten. Minja, volim te – do neba i nazad! Der größte Dank gilt meinen
Eltern, die mich bei meinen wissenschaftlichen und beruflichen Vorhaben stets un-
terstützt haben und mich im letzten Jahr motiviert haben, das Promotionsvorhaben
zu finalisieren und nicht dem Drang einer kontinuierlichen Verfeinerung und Weit-
erentwicklung zu unterliegen. Ich widme ihnen dieses Werk von ganzem Herzen.

Dresden, September 2016 Richard Braun

Contents

Part I Motivation and Introduction

1 Research Design . 3
1.1 Context and Motivation . 3
1.2 Research Problems . 4

1.2.1 Extensibility in the Context of BPMN and MOF 4
1.2.2 Extensibility for EMLs in General . 6
1.2.3 EML Definitions in General . 7

1.3 Research Objectives . 10
1.4 Research Approach . 12

1.4.1 Research Papers and Consolidation Essay 12
1.4.2 Application of Design Science . 13

2 Organisation of the Consolidation Essay . 17

Part II Fundamentals

3 Relevant Publications . 21
3.1 Publication POEM-2014 . 22
3.2 Publication MODELSWARD-2015-A . 24
3.3 Publication MODELSWARD-2015-B . 26
3.4 Publication ICEIS-2015 . 27
3.5 Publication MKWI-2016 . 29

4 Terminological and Conceptual Foundations . 31
4.1 Peculiarities of Enterprise Modelling Languages 31
4.2 Discussion on Standard Enterprise Modelling Languages 33

4.2.1 Pro Standardisation . 33
4.2.2 Contra Standardisation . 34
4.2.3 Towards Extensible Standard EMLs . 34

4.3 Terminology . 34
4.3.1 Extension . 35
4.3.2 Pseudo Reduction . 38
4.3.3 Hybrid . 38
4.3.4 Semantic Extensions and Modifications . 39

X Contents

4.4 Summary and Conclusion . 39

5 Extension Types of Enterprise Modelling Languages 41
5.1 Criteria for EML Classification . 41

5.1.1 Formalisation . 41
5.1.2 Focus . 42
5.1.3 Domain-Specificity . 42

5.2 Framework Architecture . 43
5.3 Types of Enterprise Modelling Languages . 43
5.4 Consequences for EML Extension Types . 46

5.4.1 Formalisation . 46
5.4.2 Views . 47
5.4.3 Domain-Specificity . 47

5.5 Language Extension Types . 48
5.5.1 Accents – Semantic Extensions . 48
5.5.2 Dialects – Syntactic and Semantic Extensions 49

5.6 Consolidation and Conclusion . 49

Part III Extension Mechanisms

6 Relevant Publications . 53
6.1 Publication WIT-2014 . 53
6.2 Publication MKWI-2014 . 55
6.3 Publication BIBM-2014 . 57
6.4 Publication WI-2015 . 59
6.5 Publication CCIS-2015 . 61
6.6 Publication MEDI-2015 . 63
6.7 Publication CBI-2015 . 65

7 Introduction . 67
7.1 State of Affairs . 67
7.2 Classification and Specification . 68

8 Mechanisms . 71
8.1 Annotations . 72

8.1.1 Leveraging Principles from Software Engineering 72
8.1.2 Decorators . 72
8.1.3 Plugins . 73
8.1.4 Aspects . 73
8.1.5 Add-Ons . 74

8.2 Hooking (Under-Specification) . 74
8.2.1 Motivation . 74
8.2.2 Adaptation and Application . 75

8.3 Profiling and Stereotypes . 75
8.3.1 Motivation . 75
8.3.2 Adaptation and Application . 76

8.4 Multilevel Modelling . 76

Contents XI

8.4.1 Motivation: Issues within Fixed Level Architectures 76
8.4.2 Existing Multilevel Modelling Approaches 77
8.4.3 Core Question: Specialisation or Instantiation 78
8.4.4 Principle of Adaptation for EML Extensions 80
8.4.5 Adaptation Procedure . 81
8.4.6 Required Redesign . 82
8.4.7 Demarcation from Other Approaches and Limitations 82
8.4.8 Pragmatics . 83

8.5 Simple Generalisation/Specialisation . 83
8.5.1 Motivation . 83
8.5.2 Architecture and Application . 84
8.5.3 Pragmatics . 84
8.5.4 Restrictions and Limitations . 84

8.6 Semantic Extension Techniques . 84
8.6.1 Motivation . 84
8.6.2 Architecture and Application . 85
8.6.3 Pragmatics . 85
8.6.4 Restrictions and Limitations . 85

9 Repository . 87
9.1 Overview . 87
9.2 Comparison . 89
9.3 Combination of Mechanisms . 90

Part IV Semantics-Driven Justification of Extension Need

10 Relevant Publications . 95
10.1Publication DESRIST-2015 . 96
10.2Publication REBPM-2014 . 98
10.3Publication BIBM-2015 . 100
10.4Publication EEWC-2015 . 102
10.5Publication IDS-2015 . 104
10.6Publication HICSS-2016 . 106
10.7Publication ZEUS-2016 . 108
10.8Publication AQEMO-2016 . 109
10.9Publication MODELSWARD-2016 . 110

11 Relevant Unpublished Papers . 113
11.1Paper UNPUB-MOF4EM-2016 . 114

12 Motivation and Introduction . 117
12.1Related Work . 117
12.2Pragmatics and Semantics First . 118

12.2.1Methodical Consideration of Pragmatics and Semantics in
EML Extensions . 120

12.2.2Consequences for Extension Design . 121
12.2.3Assumptions and Limitations . 121

XII Contents

13 Structure for Extension Procedure . 123

14 Use Case Analysis . 127
14.1Motivation and Fundamentals . 127
14.2Related Work . 127
14.3 Input, Method, Output . 128

15 Requirements Analysis . 131
15.1Motivation and Fundamentals . 131
15.2Related Work . 132
15.3 Input, Method and Output . 133

15.3.1Requirements Classification . 133
15.3.2Derivation of Requirements from Use Cases 133
15.3.3Output . 135

16 Concept Analysis . 137
16.1Motivation and Fundamentals . 137

16.1.1Relevance of Semantics and Current Issues 137
16.1.2Consequences for Extension Method . 138
16.1.3Ontologies for Semantics Representation . 138
16.1.4From Requirements to Semantics Specification 139

16.2Ontological Constructs from Conceptual Requirements 139
16.3UEML for the Representation of Material Semantics 139

16.3.1Introduction . 139
16.3.2Architecture . 140
16.3.3Application and Adaptation . 142

16.4Semantic Comparison with UEML . 144
16.4.1Related Work . 144
16.4.2Correspondence Types in UEML . 145
16.4.3Proposal for Correspondence Typology . 146

16.5Justifying and Modelling Intended Semantic Constructs 151
16.5.1Invariant Semantics . 152
16.5.2Variance of Type Semantics . 153
16.5.3Relevance . 154
16.5.4Instances as Types Intuitively . 154
16.5.5Output . 154

16.6Ontological Constructs from Capability-Related Requirements 154
16.6.1DMM for the Representation of Formal Semantics 155
16.6.2Outline and Discussion of a Possible Implementation 156

16.7Perspectives and User-Related Requirements . 157
16.7.1Perspectives . 157
16.7.2User-Related Requirements . 158

16.8Output . 158

Contents XIII

17 Correspondence Analysis . 161
17.1Material Semantic Constructs . 161

17.1.1Equivalent Scenes . 162
17.1.2Similar Scenes . 164
17.1.3Different Scenes . 166
17.1.4Instances . 168
17.1.5Consolidation, Application, and Remarks 168

17.2Formal Semantic Constructs and Perspectives . 169
17.2.1Formal Semantic Constructs . 169
17.2.2Perspectives . 169

17.3Output . 170

18 Extension Preparation and Subsequent Stages 171
18.1Pragmatics-Driven Pre-Selection . 171

18.1.1Formalisation Dimension . 171
18.1.2View Dimension . 173
18.1.3Domain-Specificity Dimension . 173

18.2Mechanism Selection . 174
18.3Mechanism Application and Subsequent Steps . 175

18.3.1Extension Definition in General . 176
18.3.2Extension Definition in BPMN . 176
18.3.3Extension Labelling . 177

19 Conclusion . 179

Part V Conclusion and Further Research

20 Contributions . 185
20.1Research Artefacts, Studies and Consolidations 185
20.2Reflection of Research Objectives . 186

21 Implications for Further Research . 189
21.1Pragmatics . 189
21.2Semantics . 189
21.3Syntax . 190
21.4Method . 191

List Of Figures . 193

List Of Tables . 193

References . 197

Appendix . 209
1.1 Overview of Extension Mechanisms . 209

1.1.1 Decorators . 209
1.1.2 Plugins . 210

XIV Contents

1.1.3 Aspects . 211
1.1.4 Add-Ons . 212
1.1.5 Hooking . 213
1.1.6 Profiling . 214
1.1.7 Multilevel Modelling . 215
1.1.8 Generalisation/Specialisation . 216
1.1.9 Semantic Extension . 217

Part I

Motivation and Introduction

1

Research Design

1.1 Context and Motivation

Enterprises are multifarious, heterogeneous socio-technical Information Systems (IS)
whose components are interrelated within a complex nexus of interdependencies on
different abstraction levels [1, 2, 3]. Enterprise Modelling (EM) aims to support the
conceptualisation, abstraction, and final representation of relevant enterprise-related
aspects by creating conceptual models [4, 5]. EM hence serves as an auspicious
approach for managing present-day business complexity in the light of increasing
interdependencies between and within IS [6]. In particular, enterprise models support
inter-subjective communication, documentation, organisational engineering, systems
engineering, as well as various operative tasks and automatisation purposes [7, 8, 9].

Enterprise models are instances of Enterprise Modelling Languages (EML). EMLs
are conceptual modelling languages that provide concepts for modelling character-
istic aspects for the analysis and design of IS and application systems [10, 11, 12, 6].
EMLs serve as semi-formal languages and have a precisely defined formal syntax
and mostly informal semantics [13, 14]. Several official language standards and de
facto language standards have evolved over the last decade, e.g. BPMN [15, 16],
ArchiMate [17, 10] or EPC [18, 19].

The complexity of enterprise-related issues requires a permanent review of the
communicative usefulness of existing EMLs [20]. Fixed and all-encompassing stan-
dard EMLs are hence rather illusory and also impractical in terms of a complete a
priori design [21, 22]. Instead, it is more reasonable to consider flexible modelling
approaches. Therefore, some authors proclaim the integration and composition of
modular meta model components (according to [23, 24]), while other authors sug-
gest the design, specification, and arrangement of dedicated and precisely fitting
Domain-Specific Modelling Languages (DSMLs [25]). In contrast to these modular
approaches, some research has been conducted around punctual extensions or cus-
tomisations of standard languages like BPMN [21, 26, 27]. The stated approaches
differ in terms of invasiveness, the forethought of particular mechanisms, as well as
academic and industrial prevalence [28].

Within this thesis, the EML extension approach is followed. The approach stands
for the situational extension of a commonly used language like BPMN for a partic-
ular industry, domain or business problem [27]. The approach is motivated by the
intended exploitation of the benefits of standard languages, such as well-defined syn-
tax, general prevalence, tool support, and model interoperability (cf. [22]). Investi-

4 1 Research Design

gating the situational adaptation of prevalent EMLs further appears to be promising
in terms of avoiding exuberant method pluralism in the EM domain (according to
[29]) and may also contribute to the evolution of EMLs in general [30].

A review of the current state of the art reveals the emergence of extensions,
adaptations, or variants of common EMLs [31, 32, 33, 28, 19]. In the light of the
notable need for research on extending EMLs [34, 21, 22, 33, 35], this thesis tackles
several issues of EML extensibility using the motivating example of the Business
Process Management and Notation (BPMN).

1.2 Research Problems

Our research was initially driven by extending the BPMN within research projects
in the field of Product Engineering [36, 37] and Clinical Process Management [27]. It
became apparent that the design of standard-compliant BPMN extensions was not
straightforward and error-prone, as the official BPMN specification reveals several
methodical and architectural shortcomings which are closely related and partially
caused by deficiencies of the underlying meta modelling language, the Meta Object
Facility (MOF [38]).

Although MOF itself serves as a commonly applied and widely disseminated lan-
guage for the specification of meta models, it suffers from limited capabilities for
the definition of EMLs and lacks in the provision of appropriate extension mecha-
nisms. Consequently, respective methodical guidance needed for conducting specific
extensions in BPMN is also missing [39].

Both BPMN and MOF are officially defined standards of the Object Management
Group (OMG), though the addressed issues are not limited to the field of OMG-
related standards, but rather prominent for all EMLs [28]. Despite the generally
perceived relevance of EML extensions and adaptations in academia and profes-
sional practice [7], there are numerous research challenges that have not yet been
tackled [40, 28, 39, 19]. Some issue causes further research in regard to fundamen-
tal but indeed under-investigated topics such as language pragmatics and language
semantics [40, 9].

Considerations on EML extensibility are hence triggered by the specific case of
BPMN on the one side and further implications in the context of MOF as well as
general extensibility of EMLs on the other side. An extensive review of the literature
corpus as well as in-depth analyses of multiple EML specifications (e.g. [33, 28, 39,
41, 42]) reveal several research gaps, which are consolidated within three main parts
below: Extensibility in the context of BPMN and MOF (Sect. 1.2.1), extensibility
for EMLs in general (Sect. 1.2.2), and general aspects in regard to EML definitions
within the MOF environment (Sect. 1.2.3).

1.2.1 Extensibility in the Context of BPMN and MOF

The stated issues consequently manifest in particular EMLs like BPMN, which serves
as dominant process modelling language in academia and industry [15, 16]. BPMN
provides a large vocabulary of generic and partly under-specified language constructs
aiming to facilitate cross-domain and industry-independent process modelling.

1.2 Research Problems 5

Research Problem 1: Specific Extension Need in BPMN

The involvement in large-scale research projects creates a need for implementing
different concepts within BPMN in order to fulfil project-specific tasks. Within the
research project SFB Transregio 96, it is necessary to integrate different types of
resources and machine-related attributes into engineering processes [37]. Several
research projects in the field of Telemedicine and Clinical Process Management
provoke the integration of additional perspectives in BPMN as well as different
concepts for modelling Clinical Pathways (CPs [43]). The required concepts as well
as the required perspectives are not part of the BPMN meta model.

Research Problem 2: Syntactical Specification of BPMN Extensions

BPMN is frequently adapted to different degrees. Numerous extensions, variants, or
adaptations have evolved over the last years [33]. Although BPMN is one of the very
few languages that provides an extension mechanism, it reveals several shortcomings
[39, 28].

First, a lack of specifity has to be bemoaned. Four extension meta classes are
defined: Extension, ExtensionDefinition, ExtensionAttributeDefinition, and Exten-
sionAttributeValue. These meta classes semantically indicate a particular annota-
tion of meta types. However, it remains unclear whether the stated classes allow
type extensions or only attribute extensions of original BPMN meta classes. Due to
this missing clarification, it is also difficult to define complex extension models with
multiple relations and different relation types (e.g. aggregations or compositions).
This issue is closely related to the below discussed abstraction concerns (cf. [39]).

Second, neither BPMN nor the BPMN extension mechanism provides any op-
portunity to define perspectives or other instruments for user-specific views and
complexity reduction (cf. [44]). BPMN explicitly states that it does not serve as
a dataflow language, for instance [15, p. 22], but actual need for integrating non-
process concepts and even non-process transformations has been observed (cf. [33]).
Due to the prominent role of business process modelling within EM and its generally
integrated character, a strict demarcation from other purposes is often difficult.

Third, it is currently not possible to specify the concrete syntax of BPMN and
there are no capabilities for integrating the introduced concrete syntax with the
abstract syntax. Consequently, there is a lack of exchange specification for exten-
sions, although a re-usage of some MOF-based formats is promising (e.g. MOF2XMI
transformations).

Research Problem 3: Abstraction Conflicts in BPMN Extension
Mechanism

The current BPMN extension mechanism further reveals another syntactical issue
that has to be addressed. Any extension application yields an actual intermediate
level between the meta model level and the model level (referred as M1.5 level [39]),
since the defined extension has to be instantiated at first in order to become part of
the language. The same issue can be observed within Profiling in UML [45]. However,
it is more feasible to position additional meta classes on the same classification level,
causing a relocation of extension meta types to the meta meta model level in order

6 1 Research Design

to define (and instantiate) extensions for the meta model level. This issue is tightly
coupled with general abstraction issues in the context of MOF.

BPMN reveals further abstraction conflicts in regard to missing specification of
extended BaseElement classes as well as the integration of the CMOF::Element
class from the meta meta model level, which breaks the four level architecture of
the OMG again [39].

Research Problem 4: Missing BPMN Extension Method

The consideration of extensibility in BPMN is limited to a few syntactical operations
and omits semantic and pragmatic aspects completely. There is missing guidance in
terms of both domain conceptualisation and semantic justification; this leads to a
particular gap between domain analysis and artefact design, although procedure
models and methodical guidance serve as immanently important elements for mod-
elling methods [46, 47].

To the best of our knowledge, Stroppi et al. [48] exclusively address this topic
by introducing a transformation-based BPMN extension method. Their method
builds on the standard BPMN extension mechanism and provides a step-wise ex-
tension design procedure. However, the method does not consider the underlying
conceptual shortcomings of BPMN and solely focuses on the abstract syntax, omit-
ting any aspects from EM or material semantics [48].

1.2.2 Extensibility for EMLs in General

Research Problem 5: Inconsistent Terminology

Reflecting the literature on EML extensions further reveals an inconsistent termi-
nology within the research community. Extensions, modifications, or specifications
of EMLs are referred to differently. For instance, some authors refer to extensions
[49, 34, 22, 33], while other authors give the impression of having a rather broad
understanding of modifying an EML, which could lead to adaptations [9], customi-
sations [50], variants, or variations [51, 21, 19]. Also the concept of dialects can be
found in literature [21, 22, 19].

Furthermore, conceptual principles and specific technical implementations are
often amalgamated, implicating insufficient separation (cf. the extension technique
of Profiling [42]). However, definitional clarification of key terms within a field of
research serves as an essential feature for research in general and for design-oriented
research in particular [52, 53, 54]. It is necessary to establish a terminological and
conceptual base for further analysis.

Research Problem 6: Missing Guidance for Extension Justification

There is also a lack of methodical support for the systematic analysis and design
of EML extensions [28], which covers several related issues. Due to a certain over-
emphasis of syntactical tasks [40], the actually more interesting tasks of identifying
and justifying extension need based on intended pragmatics and derived semantic
constructs are largely omitted. It is therefore unavoidable to consider the respective
contextual situation. Very few papers address this topic to any degree [55, 25, 56].

1.2 Research Problems 7

The stated shortcomings are closely related to immanent EML issues in regard
to the specification of semantics and an appropriate consideration of pragmatics
[40, 57]. Consequently, it seems to be reasonable to investigate these aspects from
scratch. The analysis of EML use cases and particularly resulting requirements on
the semantics may facilitate the selection of appropriate syntactical extension mech-
anisms in later design stages [45].

Research Problem 7: General Lack of Reference Methods and
Mechanisms

The provision of an integrated EML extension method could further facilitate the
standardised specification of extensions for a particular EML, fostering their dissem-
ination and reuse. Recent research reveals that the majority of EML extensions are
defined by informal statements and underlying design procedures are rarely exter-
nalised in a comprehensive manner [33, p. 50], [19, p. 11]. Both aspects are amplified
by the absence of generally applicable meta-model-based extension mechanisms, the
lack of integrated extension methods, and shortcomings of existing methods like in
BPMN [58, 59].

Extensibility is not explicitly considered in leading meta modelling languages
and a general lack of reference mechanisms and procedures has to be concluded [39].
Atkinson et al. [26] state that “no existing modelling framework offers the ideal
mix of features needed to support the full range of modelling language extension
requirements found in the enterprise computing domain” [26, p. 49]. The absence of
a consistent methodical and architectural base for EML extensions further hampers
the design of powerful modelling tools and impedes effective reuse in the sense of
adapting extension techniques to several domains.

1.2.3 EML Definitions in General

Research Problem 8: Abstraction Conflicts and Missing Integration in
MOF-based Languages

Analysing BPMN extensibility reveals several shortcomings and inefficiencies on
the meta meta model level, which is defined by the MOF. Concerning the abstract
syntax, the separation of abstraction level is broken, as MOF imports and uses the
UML Infrastructure Library that is originally positioned on the meta model level
within the UML specification. This cycle definition causes further problems, e.g. in
regard to the possible application of the Profile mechanism. It should therefore be
clarified and fixed.

Additionally, the concrete syntax of a modelling language cannot be defined in
a generic manner on the meta modelling level, although the Diagram Definition
(DD) standard is predestined for this purpose. Confusingly, DD and its contained
packages (namely DG) are originally positioned on the model level, which should be
discussed, too [45, p. 109], [42, p. 139].

8 1 Research Design

Research Problem 9: Limited Capabilities of MOF for Enterprise
Modelling

The above mentioned research problems cumulate in the limited expressiveness of
MOF for EM in general. Basically, MOF is originally not designed with a focus on
EML definition, but rather as an instrument for technically driven tasks and tool
integration. However, MOF inevitably gets into the focus of EM, as it serves as a
well-disseminated standard for the BPMN definition. Especially from the perspective
of BPMN, MOF needs to provide more efficient and less contradictory capabilities
for different aspects.

In its current version, MOF amalgamates conceptual and technical concepts [60].
It is also not possible to explicitly define perspectives or comparable instruments for
complexity reduction. MOF only provides the general and less specific instrument
of Packages. Extensibility is limited to package-based extensions, rather simple Tag-
based annotations, and an unclear role of the Profiling mechanism [61, 45].

There is also no guidance on defining the concrete syntax of languages. Respective
specifications (e.g. in the case of BPMN) are hence limited to textual descriptions
and the representation of symbols and icons. This hampers tool-independent ex-
change of meta models as well as the exchange of their extensions. It could also
cause variance on the shape of model elements. Finally, appropriate integration be-
tween abstract and concrete syntax is also missing.

Research Problem 10: Limited Consideration of Semantics on the Meta
Model Layer

Considering the definition of EMLs further introduces the traditional yet unsolved
challenge of defining semantics on the meta model level. Reflecting the specifica-
tions of BPMN and MOF, the complete lack of specification instruments for the
definition of semantics has to be bemoaned. Semantics are usually specified in a
textual and unsystematic manner (cf. [62, pp. 67-69], [63, p. 19], [64, p. 108], [65,
pp. 690, 706], [66, p. 485]). There is also no immanent differentiation between ma-
terial and formal semantics, which causes a severe issue in the context of BPMN
and process modelling in general [67, 8]. Also ambiguity aspects in regard to mate-
rial semantics are not considered (e.g. lexical ambiguity or different epistemological
positions). Accordingly, semantic description techniques can neither be applied for
EML extensions nor re-used for extension justification. A deeper analysis of these
aspects is therefore generally necessary.

Related Work

Very few research works investigate extensibility of EMLs. Relevant works are briefly
considered below in order to differentiate them from this thesis. More detailed anal-
yses of these considered related work can be found in the published research papers
that are referred to in the consolidation parts of this work.

Bjeković et al. [21, 22] discuss flexibility of standard EMLs and thereby in-
vestigate the role of pragmatics and semantics on a fundamental level. The authors
primarily aim at understanding and explaining the main drivers and factors behind
the actual usage of EMLs in order to identify particular differences from the intended

1.2 Research Problems 9

Extensibility in BPMN and MOF

Research Problem 1:
Extensions for Resources and CPs

Research Problem 2:
Syntax of BPMN Extensions

Research Problem 3:
Abstraction Conflicts in BPMN

Extensions

Research Problem 4:
Missing BPMN Extension Method

Extensibility of EMLs

Research Problem 5:
Inconsistent Terminology

Research Problem 6:
Missing Extension Justification

Research Problem 7:
Missing Reference Methods

EML Definitions

Research Problem 8:
Integrated Specification

Research Problem 9:
MOF for Enterprise Modelling

Research Problem 10:
Semantics in Meta Models

caused by

Fig. 1.1. Consolidated research problems

usage of an EML. Also the most efficient degree of standardisation is covered [22].
This approach is generally similar to the research directions proposed in this thesis,
but the research of Bjeković et al. is rather theoretically driven, omitting any
practical application in BPMN and respective limitations from MOF, for instance.

Karagiannis [68] and Visić et al. [69] discuss flexible modelling languages
and agile modelling methods. Agility and flexibility of modelling methods is an out-
standing aspect that corresponds to the premises of this thesis. However, the stated
authors rather work in the field of the ADOxx modelling suite, which implicates a
strong tooling focus, while OMG-related modelling standards are not considered.

Similar to that, Frank [25] investigates the analysis and design of DSMLs in
order to provide perfectly fitting languages for business tasks. A strong user focus
as well as a special consideration of the particular modelling context is similar to
this thesis, but the author rather focusses on dedicated language design instead of
the extension of standard EMLs.

Stroppi et al. [48] introduce a transformation-based extension method for the
well-guided design of BPMN extensions in compliance with the BPMN meta model.
The approach starts with a domain model that is translated to a valid BPMN
extension model and a corresponding exchange specification [48]. Stroppi et al.
[48] primarily focus on the abstract syntax and specific tool implementation, while
semantic issues or peculiarities of EMLs are not discussed.

Atkinson et al. [26] briefly discuss extensibility of EMLs by proposing basal
extension purposes. However, their work has not been continued in recent years and
the authors mainly focus on a technical level of EMLs.

Patig [30, 70] analyses and investigates the evolution of modelling languages,
namely Petri Nets and Entity Relationship Models. Thereby, particular variation
mechanisms as well as evolution trends are proposed in a rather large context. How-
ever, the focus lies not on EM, but rather on simple conceptual modelling languages.

Finally, there are some authors which conduct specific investigations on the ex-
tensibility of single languages. Kopp et al. [34] provide an extensive analysis of
BPEL extensions and Pardillo [31] examines lightweight Profile-based extensions
within UML. However, both works rather appear as isolated research papers which
are not integrated within larger research on extensibility.

10 1 Research Design

1.3 Research Objectives

Figure 1.1 summarises the stated research problems and outlines their relations.
Despite the perceived need for appropriate methodical support, research on EML
flexibility and EML extensions is limited and most EMLs lack in the provision of
respective mechanisms. This thesis is hence driven by two main premises. A par-
ticular EML should “be extensible”, in the sense of providing a sufficiently speci-
fied, consistent, and comprehensive syntactical and semantic environment that en-
ables language extensions. In contrast to this rather language-oriented perspective,
the premise “make useful extensions” covers the systematically guided design and
evolvement of extensions in accordance with user needs. Based on the above outlined
research problems, the following research objectives are pursued by this thesis.

Research Objective 1:
BPMN Extension Mechanism

and Implications

Research Objective 1a:
State of the Art

Research Objective 1b:
BPMN Extension Design

Research Objective 1c:
BPMN Extension Method

Research Objective 1d:
Extensibility of MOF-based EMLs

RP1

Research Objective 2:
Fundamentals for

General EML Extension Method

Research Objective 2a:
Terminology and Fundamentals

Research Objective 2b:
Extension Repository (Syntax)

Research Objective 2c:
User-Centric Extension Design

(Pragmatics, Semantics)

implicates

RP3 RP2

RP6 RP4 RP3 RP2

RP1

RP9 RP8 RP7 RP3

RP5

RP7

RP10 RP6

Research Problem

Fig. 1.2. Research objectives and associated research problems

Research Objective 1

Research Objective 1 covers the step-wise, incremental improvement of the BPMN
extension mechanism that includes the methodically guided design of particular
BPMN extensions as well as the derivation of generalisable artefacts for other MOF-
based languages. This research objective explicitly respects the current state of the
art within the OMG environment, i.e. the current BPMN specification as well as
its particularly existing methodical extensions [48]. The approach is motivated by
practical reasons and the required relevance of design-oriented research [71]. It is
intended to enhance existing standards and commonly applied methods instead of

1.3 Research Objectives 11

defining artefacts completely from scratch. This includes particular workarounds
that may exist in the area of BPMN and MOF. The concerned idea of working with
a certain state of the art is reconsidered within the Standard+X approach. The first
research objective is consequently divided into the following sub-goals:

• Research Objective 1a: Investigating and summarising the state of the art in
regard to BPMN extensibility and EML extensibility in general.

• Research Objective 1b: Design of a BPMN extension for resource modelling in
Product Engineering and a BPMN extension for Clinical Process Management.

• Research Objective 1c: Design of a BPMN extension method with a special
consideration of reusing OMG standards and already defined method fragments.

• Research Objective 1d: Inductive derivation of insights and artefacts for gen-
eral extensibility of MOF-based EMLs.

Research Objective 2

Research Objective 2 covers the elaboration of fundamentals for a generic EML
extension method, as some aspects of BPMN-related extensibility concern EMLs in
general. Respective findings hence indicate more general insights on a generic and
methodical layer. This objective is rather normative and implicates the consideration
of further implementations in the context of EMLs. It also covers fundamental and
general topics and is hence rather theoretically driven [71]. The second research
objective is divided into the following sub-goals:

• Research Objective 2a: Consolidation of key terminology in the context of
EML extensibility and elaboration of an extension framework in order to charac-
terise the type of EMLs and their extensions. This seems to be necessary in order
to understand different types of EML extensions that are intended by users in
order to appropriately match use cases and syntactical extension mechanisms.

• Research Objective 2b: Elaboration and specification of a mechanism reposi-
tory in order to facilitate generic extension design. This implies a special consid-
eration of syntactical operations and design alternatives.

• Research Objective 2c: Outlining an EML extension method with a special
focus on user-centric extension design. This implies an explicit consideration of
EML pragmatics and EML semantics, which is important for mainly two reasons.
First, the expectations and requirements of prospective language extension users
should fall within the focus in order to provide useful and adequate extensions
and avoid technically driven overemphasis of pure syntax operations. Second,
the language engineer needs to be supported methodically from the beginning in
order to explicitly consider user expectations or domain peculiarities.

Overview

Especially Research Objective 2c is featured by a notable level of complexity and
multi-facetedness in terms of EML semantics. Thus, it is explicitly intended to elab-
orate respective fundamentals first and outline possible realisations which need to
be intensified and extended in further research.

12 1 Research Design

Figure 1.2 presents all research objectives, the covered research problems, and
the relations between the research objectives. In particular, Research Objectives 1a
and 1b serve as preparation for the solution of Research Objective 2a, as they are
expected to provide several insights on the current state of the art. Research Objec-
tive 1c is expected to provide fundamentals for Research Objectives 2b and 2c, as
it addresses syntactical, semantic, and procedural aspects that might be inductively
abstracted to EML extension design in general. Further, Research Objective 1d facil-
itates the examination of Research Objective 2b to a certain degree, as it intends the
provision of generic EML concepts. The derivation of them is fostered by tackling
Research Objective 1b.

1.4 Research Approach

1.4.1 Research Papers and Consolidation Essay

The stated research objectives have been tackled within a cumulative research
project that is composed of 22 single research papers and a so-called consoli-
dation essay. The consolidation essay is mainly represented within this document
by its three main components in the Parts II, III and IV.

Contribution /
Result

Publication ID
«Artefact Type»

Main
Contribution

Publication ID
«Artefact Type»

R
es

ea
rc

h
Th

em
e

Input Relates to Instantiation

Fig. 1.3. Legend for structuring research papers and the consolidation essay

All relevant papers as well as the essential parts of the consolidation essay are
summarised in Fig. 1.4 and Fig. 1.5. The used notation is represented in Fig. 1.3. A
particular research work is identified by its publication ID and the main contribu-
tion is depicted in the middle of the rectangle. Following [53] and [72], the type of
contribution is stated in square brackets. We divide specific artefact types (exten-
sion, method fragment, method), rather abstract frameworks, as well as overviews,
which indicate a state of the art analysis or some kind of consolidation. If a research
work provides a main contribution (e.g. by integrating different prior results into
one main artefact), then the rectangle is grey and highlighted by a thick borderline.
Different contributions are covered by a particular research theme that represents
the tackled research objectives. The specific relation between single publications is
expressed by three relationship types. Input stands for the re-usage of artefacts, for
instance, and their evolvement and progression. Relates to represents a particular
coupling between publications, while a specific input relation is missing. Instantia-
tion represents the application of generic principles to a specific case. For instance,
the application of the generic Profiling technique to BPMN [45, 42] or the application
of the SemFrame framework to BPMN extensions [57, 9].

Research Objective 1

Research Objective 1 and corresponding sub-goals are mainly tackled within pub-
lished papers as outlined in Fig. 1.4. Several papers focus on Research Objective 1a

1.4 Research Approach 13

by considering the state of the art in terms of BPMN extension design [33, 73],
as well as the critical analysis of the BPMN extension mechanism in general [39].
Research Objective 1b is tackled by designing a BPMN extension for resources in
Product Engineering [36, 74] and by the iterative design of BPMN4CP, an extension
for multi-perspective hospital modelling [27, 75, 76, 77]. Revisions of BPMN4CP
thereby cause implications for a general BPMN extension procedure [27, 76] and
further evolve several architectural extensions of the MOF [77].

Research Objective 1c is considered by different publications which focus on syn-
tax [59, 44, 42, 45, 78], semantics [9], and procedural aspects [55]. Motivated by the
concrete example of BPMN, two papers refer to MOF-based extensibility in general
and, hence, tackle Research Objective 1d [45, 78].

Research Objective 2

Research Objective 2 and respective sub-goals are tackled by a combination of single
papers [79, 41, 57, 67, 28, 80] and insights or artefacts that are inductively inferred
from BPMN-related research. These papers provide the foundation for tackling Re-
search Objectives 2a, 2b and 2c within this consolidation essay as outlined in the
middle of Fig. 1.5.

The consolidation essay intends the integrated and multi-perspective considera-
tion and analysis of EML extensibility in order to prepare the evolution of a generic
EML extension method. The consolidation essay, hence, not only serves as a simple
summary of already completed research, but also advances this research in specific
aspects. The underlying papers for Research Objectives 2a, 2b and 2c are elaborated
in Sect. 2 in order to introduce the structure of this consolidation essay.

1.4.2 Application of Design Science

All research works as well as their final aggregation follow the Design Science Re-
search (DSR) paradigm, aiming at elaborating and designing innovative and rele-
vant artefacts in a rigorous manner [81, 82, 71, 83, 84]. More precisely, several re-
search works follow the recently introduced requirements-driven DSR approach [79].
Requirements-driven DSR proclaims the consequent usage of different requirement
types for the analysis, design, construction, and evolution of artefacts in order to
facilitate design decisions, enhance their evaluation and support comprehensibility
as well as procedural transparency [79].

For instance, requirements are generally elaborated in order to explicate domain
features [33, 27]. In addition, a well-defined and fine-grained requirements set for-
mulates respective revision need for the extension with different perspectives [76].
Requirements are further utilised for specifying the need of generic extension mecha-
nisms on the meta meta model layer and their language-specific instantiation [45, 42].
Research on single artefacts was partially conducted as an iterative design process,
whose iterations were caused by the identification of updated or expanded require-
ments which came from application in real-world projects or progress in research.
In particular, the BPMN4CP extension went through two iteration cycles, causing
additional meta model extensions [27, 75, 77, 76].

14 1 Research Design

DSR generally requires the rigorous evaluation of artefacts. However, this task is
difficult to realise in a straightforward manner since modelling languages or frame-
works serve as rather normative artefacts (cf. [85, 79]) whose effects cannot be mea-
sured precisely within complex socio-technical systems like IS. Against the backdrop
of this issue, a mild form of evaluation was conducted by describing the applicability
and usefulness of artefacts by demonstrations (according to [83]).

Artefacts that were designed in order to tackle Research Objective 1 were there-
fore usually evaluated by applying them to representative use cases, partly in the
context of real-world projects [36, 74, 75, 27, 77]. For some other artefacts, the proof-
of-concept principle was conducted (e.g. in case of the Profiling extension mechanism
[45, 42]).

Artefacts that were designed in regard to Research Objective 2 have not been
evaluated yet due to their essential and consolidating character that intends to
integrate several research streams in order to elaborate a solid foundation for a
generic and integrated EML design method. Nevertheless, further research on that
is indeed necessary (cf. Part V). For instance, it is promising to investigate whether
EML extensions designed with the EML method are more appropriate for their users.
Such topics are excluded from this work. Instead, required fundamentals, method
fragments, and techniques are elaborated in the context of BPMN and MOF-based
languages.

Research on BPMN and EML extensibility generally ranges within the two ex-
trema of practical applicability (e.g. BPMN and MOF standards with all peculiar-
ities) and methodical rigour, attempting to reach a possibly clean, integrated and
consistent solution (e.g. re-considerations of semantic specification dimensions). Re-
spective investigations are driven by critical reflections and in-depth analyses of
existing artefacts. For instance, the extension mechanisms of BPMN, several parts
of the MOF, as well as the DD standard are critically analysed in a fine-grained
manner [45, 42, 77].

1.4 Research Approach 15

State of the Art (BPMN) Design of BPMN Extensions BPMN Extension Method /
Extensibility in MOF-based EMLs

BP
M

N
 fo

r P
ro

du
ct

io
n

R
es

so
ur

ce
s

(I)

W
IT

-2
01

4
«E

xt
en

si
on

»

BP
M

N
 fo

r P
ro

du
ct

io
n

R
es

so
ur

ce
s

(II
)

M
KW

I-2
01

4
«E

xt
en

si
on

»

D
es

ig
n

of
 B

PM
N

Ex

te
ns

io
ns

PO
EM

-2
01

4
«O

ve
rv

ie
w

»

Is
su

es
 B

PM
N

 E
xt

en
si

on

M
ec

ha
ni

sm

M
O

DE
LS

W
AR

D-
20

15
-B

«O

ve
rv

ie
w

»

Ex
te

ns
io

n
M

ec
ha

ni
sm

s
(S

yn
ta

x)

CC
IS

-2
01

5
«M

et
ho

d
Fr

ag
m

en
t»

Pr
of

ilin
g

in
 B

PM
N

CB
I-2

01
5

«M
et

ho
d»

R
eq

ui
re

m
en

ts
 A

na
ly

si
s

an
d

D
om

ai
n

An
al

ys
is

RE
BP

M
-2

01
4

«M
et

ho
d

Fr
ag

m
en

t»

BP
M

N
4C

P
v1

.0

BI
BM

-2
01

4
«E

xt
en

si
on

»

BP
M

N
4C

P
v1

.0

D
SM

L
vs

. E
xt

en
si

on

W
I-2

01
5

«E
xt

en
si

on
»

BP
M

N
4C

P
v2

.0

Ex
te

ns
io

n
Pr

oc
ed

ur
e

HI
CS

S-
20

16

«E
xt

en
si

on
, M

et
ho

d»

Pe
rs

pe
ct

iv
es

 in
 B

PM
N

D

ia
gr

am
 D

ef
in

iti
on

EE
W

C-
20

15

«M
et

ho
d

Fr
ag

m
en

t»

Pr
of

ilin
g

fo
r E

M
Ls

,
M

O
F

an
d

D
D

 o
n

M
3

M
ED

I-2
01

5
«M

et
ho

d»

M
O

F
Ex

te
ns

io
n

M
O

F4
EM

, M
O

F4
EM

+

UN
PU

B
-M

O
F4

EM
-2

01
6

«M
et

ho
d»

B
PM

N
4C

P
v2

.1

M
O

F4
EM

 P
ro

po
sa

l

BI
BM

-2
01

5
«E

xt
en

si
on

, M
et

ho
d»

Se
m

an
tic

s
in

 B
PM

N

Ex
te

ns
io

ns

M
KW

I-2
01

6
«O

ve
rv

ie
w

»

Se
m

Fr
am

eX
 fo

r
Ex

te
ns

io
n

Ju
st

ifi
ca

tio
n

ZE
US

-2
01

6
«F

ra
m

ew
or

k»

AQ
EM

O
-2

01
6

F
ig

.
1
.4

.
R

es
ea

rc
h

d
es

ig
n
,

re
le

va
n
t

p
u
b
li
ca

ti
o
n
s

a
n
d

co
n
si

d
er

ed
P

a
rt

s
o
f

th
e

co
n
so

li
d
a
ti

o
n

es
sa

y
in

th
e

co
n
te

x
t

o
f

R
es

ea
rc

h
O

b
je

ct
iv

e
1

16 1 Research Design

Consolidation Essay

State of the Art (EMLs) /
Terminology

Extension Design
Mechanism Extension Method

Ex
te

ns
io

n
M

ec
ha

ni
sm

s,

Ex
te

ns
io

n
Pu

rp
os

es

M
O

DE
LS

W
AR

D
-2

01
5-

A
«O

ve
rv

ie
w

»

La
ng

ua
ge

 M
od

ifi
ca

tio
n

Fr
am

ew
or

k

IC
EI

S-
20

15

«F
ra

m
ew

or
k»

M
ED

I-2
01

5

CC
IS

-2
01

5

M
KW

I-2
01

6

Ep
is

te
m

ol
og

ic
al

 A
sp

ec
ts

of

 E
M

L
Se

m
an

tic
s

ID
S-

20
15

«O

ve
rv

ie
w

»

Se
m

Fr
am

e,

Se
m

an
tic

 D
im

en
si

on
s

AQ
EM

O
-2

01
6

«F
ra

m
ew

or
k»

M
at

er
ia

l,
Fo

rm
al

 a
nd

H

yb
rid

 S
em

an
tic

s

M
O

DE
LS

W
AR

D-
20

16

«O
ve

rv
ie

w
»

R
eq

ui
re

m
en

ts
-D

riv
en

Ar

te
fa

ct
 D

es
ig

n

DE
SR

IS
T-

20
15

«F

ra
m

ew
or

k»

Ex
te

ns
io

n
Fr

am
ew

or
k,

Te

rm
in

ol
og

y

Co
ns

ol
id

at
io

n
- P

ar
t I

I
«F

ra
m

ew
or

k»

Ex
te

ns
io

n
M

ec
ha

ni
sm

R

ep
os

ito
ry

Co
ns

ol
id

at
io

n
–

Pa
rt

III

«F
ra

m
ew

or
k»

Se
m

an
tic

s-
D

riv
en

Ex

te
ns

io
n

D
es

ig
n

Co
ns

ol
id

at
io

n
–

Pa
rt

IV

«M
et

ho
d»

State of the Art (BPMN) Design of BPMN
Extensions

BPMN Extension Method /
Extensibility in MOF-based EMLs

F
ig

.
1
.5

.
R

es
ea

rc
h

d
es

ig
n
,

re
le

va
n
t

p
u
b
li
ca

ti
o
n
s

a
n
d

co
n
si

d
er

ed
P

a
rt

s
o
f

th
e

co
n
so

li
d
a
ti

o
n

es
sa

y
in

th
e

co
n
te

x
t

o
f

R
es

ea
rc

h
O

b
je

ct
iv

e
2

2

Organisation of the Consolidation Essay

As mentioned in Sect. 1.4, the consolidation essay aims to tackle three objectives.
The essay is consequently divided into three Parts. Each of them bases on several
papers that are referred to or partly applied within each respective Part (cf. Fig. 1.5).
Each paper is assigned to exactly one Part according to its most relevant contribution
or impact.

Part II provides fundamentals for EML extensibility by elaborating terminological
and conceptual foundations and by proposing different types of EMLs and EML
extensions in order to facilitate problem understanding. This Part bases on research
papers which investigate the state of the art in terms of extensibility in general
[28, 80], BPMN extensibility [33, 73], and current issues with the BPMN extension
mechanism [39].

Part III elaborates a generic repository of different extension mechanisms by
summarising recently applied mechanisms within a specification framework. This
Part bases on several publications regarding insights from designing specific BPMN
extensions [36, 74, 27, 75], a critical analysis of the current BPMN environment [59],
as well as papers on the Profiling technique [45, 42].

Part IV introduces semantics-driven extension design, which proclaims a strong
focus on intended pragmatics and intended semantics. Due to the notable lack of
research on these topics, several fundamentals are additionally provided in order
to consolidate relevant research, e.g. pragmatics, types of semantics, and respective
description instruments. This Part bases on a publication on the methodical design
in DSR projects [79], papers on methodical BPMN extension design [55, 76, 77], a
research paper on BPMN extension justification [9], publications on EML specifica-
tions with MOF [44, 78], as well as a rather fundamental consideration of semantics
from an epistemological point of view [41] and two research papers on different
semantic dimensions in EMLs [57, 67].

Part V summarises the entire work and discusses the achievement of the research
objectives by consolidating their contributions. Accordingly, detailed implications
for further research are given in order to provide a solid base for following research
tasks.

Each publication is characterised by a set of the attributes in order to provide a
concise and comprehensive overview that facilitates its integration within the entire
thesis. Therefore, the following attributes are introduced:

18 2 Organisation of the Consolidation Essay

• Publication ID : A publication is identified by a unique identifier that is created
by the acronym of its publication medium and the year of publication.

• General Information: This category covers basic information, i.e. title, authors,
year of publication, publication medium (e.g. proceeding or journal) as well as
the number of pages.

• Rankings : Further, the ranking of a medium is quoted in the form of the VHB-
JOURQUAL-3 ranking [86] and the WKWI-2008 ranking [87]. Due to a lack
of common and unified information on particular acceptance rates, possible rank
upgrades or downgrades within the WKWI-2008 ranking are omitted [87, p. 162].
It should be further noted that several publications cannot be ranked with the
stated metrics, as they are part of adjacent research disciplines like Computer
Science (e.g. [39, 59]) or Bioinformatics (e.g. [27, 77]).

• Contribution of the Authors : According to the authors of a publication, the work
share of each author is given in percentage values. Thereby, author contributions
are represented by the titles or topics of the regarded paper sections an author
has written. In case of rather conceptual contributions (e.g. in regard to the
research strategy or focus of a publication), an author contribution is referred as
“research conception”. If a publication has only one author or the contribution of
the second author is limited to conceptual work, then further detailing is omitted.

• Abstract : The research paper is summarised by its abstract.
• Summary of Contents : This category aims to provide a structured and aggre-

gated overview of the publication in order to briefly summarise its contents and
contributions to the entire thesis. Therefore, the main motivation behind a par-
ticular paper is stated. The underlying research methods as well as potentially
re-used results from previous papers (referred as input) are further stated. In
addition, the main contributions of a paper are explicated. The contributions are
differentiated in regard to their specifity (meta level, meta meta level, general
implications, consolidations etc.). The general context of a paper is stated in or-
der to facilitate associations to particular research problems (BPMN, EMLs, EM
in general).

The original version of each publication is attached within a separate document.
In this document, all research papers are ordered according to their integration
within this consolidation essay as presented in the table of contents.

Part II

Fundamentals

3

Relevant Publications

22 3 Relevant Publications

3.1 Publication POEM-2014

General Information:

Title: Classification of Domain-Specific BPMN Extensions
Authors: Richard Braun, Werner Esswein
Year: 2014
Medium: Frank, U., Loucopoulos, P., Pastor, O., Petrounias, I.

(Eds.): The Practice of Enterprise Modeling, 7th IFIP
WG 8.1 Working Conference

Series: Lecture Notes in Business Information Processing, Vol.
197

Pages: 42-57
Reference: [33]

Rankings:

VHB-JOURQUAL-3: C
WKWI-2008: B

Contributions of Authors:

Richard Braun: 90% (introduction and motivation, BPMN extension
analysis framework, BPMN extension classification, im-
plications, conclusion)

Werner Esswein: 10% (research conception)

Summary of Contents:

Context: BPMN
Motivation: Lack of methodical guidance on BPMN extension design;

missing extension overview and comparison
Input and Method: Literature review, content analysis of 30 extension defini-

tions
Contributions: State of affairs in regard to BPMN extensions:

• Majority of extensions is not compliant to BPMN
standard

• Methodical shortcomings

3.1 Publication POEM-2014 23

Implications:

• Determined need for integrated BPMN extension
method

• Classification framework: quantitative and qualitative
criteria

• Extension types (abstract syntax, concrete syntax,
semantics)

Abstract:

BPMN is a standard for modeling business processes and provides meta model con-
cepts for the design of extensions. Thus, domain-specific extensions of the BPMN
are facilitated. This research article provides an overview of BPMN extension de-
velopment by the descriptive analysis and classification of 30 BPMN extensions. An
extensive literature review was conducted in order to find published extensions. Fur-
ther, a classification framework was designed to enable a comprehensive analysis of
each extension. The analysis showed, that four out of five extensions are not compli-
ant with the BPMN standard. Also, we found several methodological shortcomings
that should be tackled in further research.

24 3 Relevant Publications

3.2 Publication MODELSWARD-2015-A

General Information:

Title: Towards the State of the Art of Extending Enterprise
Modeling Languages

Authors: Richard Braun
Year: 2015
Medium: Hammoudi, S., Pires, L.F., Desfray, P., Filipe, J. (Eds.):

Proceedings of the 3rd International Conference on
Model-Driven Engineering and Software Development

Pages: 394-402
Reference: [28]

Rankings:

VHB-JOURQUAL-3: not ranked
WKWI-2008: not ranked

Contributions of Authors:

Richard Braun: 100%

Summary of Contents:

Context: EMLs
Motivation: Missing conceptualisation and overview on EML exten-

sions
Input and Method: Consolidation of the current state of affairs
Contributions: Motivation and implications for extensible EMLs:

• Investigated lack of consideration within meta models
and meta modelling languages

• Classification of extension purposes and extension
mechanisms

Abstract:

In the previous decade, more and more de facto standards of enterprise modeling
languages (EML) evolved. The establishment of EMLs leads naturally to an increas-
ing number of EML extensions in order to integrate requirements and needs from
specific problems or domains in an EML. Thus, EML extensibility is proposed as
a relevant topic within both the field of meta modeling and enterprise modeling.
We therefore conducted an analysis of existing meta modeling languages and well
known EML languages in order to derive the current state of the art in terms of
EML extensibility. In addition to that, classification schemes for extension purposes

3.2 Publication MODELSWARD-2015-A 25

and extension mechanisms are presented. Finally, topics for further research are
proclaimed in order to facilitate more research on language extensibility.

26 3 Relevant Publications

3.3 Publication MODELSWARD-2015-B

General Information:

Title: Behind the Scenes of the BPMN Extension Mechanism –
Principles, Problems and Options for Improvement

Authors: Richard Braun
Year: 2015
Medium: Hammoudi, S., Pires, L.F., Desfray, P., Filipe, J. (Eds.):

Proceedings of the 3rd International Conference on
Model-Driven Engineering and Software Development

Pages: 403-410
Reference: [39]

Rankings:

VHB-JOURQUAL-3: not ranked
WKWI-2008: not ranked

Contributions:

Richard Braun: 100%

Summary of Contents:

Context: BPMN
Motivation: Critical analysis of BPMN extension mechanism
Input and Method: Critical in-depth analysis of BPMN meta model and ex-

tension mechanism
Contributions: Elaboration of nine problem statements and implicit re-

quirements for meta meta model changes (i.e. MOF revi-
sion)

Abstract:

The Business Process Model and Notation (BPMN) is a standard for modeling busi-
ness processes that is widely used and accepted both in academia and industry due
to its well-defined meta model, its large set of concepts and its extensibility. BPMN
is one of very few modeling languages that provides an integrated extension mech-
anism. However, the mechanism is not often implemented in research articles or
in professional practice. We suppose, that both syntactical and methodical aspects
within the BPMN extension mechanism may cause misunderstandings and uncer-
tainty regarding its implementation. Therefore, we conducted an in-depth analysis of
the extension mechanism in order to rationally figure out problematic aspects. These
aspects are consolidated and compared to two existing BPMN extension methods.
Based on that, a range of further research topics is finally derived.

3.4 Publication ICEIS-2015 27

3.4 Publication ICEIS-2015

General Information:

Title: A Generic Framework for Modifying and Extending En-
terprise Modeling Languages

Authors: Richard Braun, Werner Esswein
Year: 2015
Medium: Hammoudi, S., Maciaszek, L.A., Teniente, E. (Eds.): Pro-

ceedings of the 17th International Conference on Enter-
prise Information Systems - Volume 2

Pages: 277-286
Reference: [80]

Rankings:

VHB-JOURQUAL-3: not ranked
WKWI-2008: C

Contributions of Authors:

Richard Braun: 90% (introduction and motivation, fundamentals, frame-
work architecture, conclusion)

Werner Esswein: 10% (research conception)

Summary of Contents:

Context: EMLs
Motivation: Lack of methodical support for EML modifications
Input and Method: Consolidation of the current state of affairs
Contributions: Framework for meta model modifications and their conse-

quences:

• Dimensions: Abstract syntax, concrete syntax, seman-
tics

• Operations: Add, remove, specify, redefine

Abstract:

Conceptual modeling languages are of great importance within information sys-
tems management. During the last decade, a small set of commonly used enterprise
modeling languages established and gained broad acceptance in both academia and
practice (e.g., BPMN). Due to their dissemination, these languages often need to be
extended or adapted for domain-specific or technical requirements. Since most mod-
eling languages provide rather poor extension mechanisms, it is necessary to modify
a language meta model directly. However, there is lack of integrated methodical
support for these modifications. Within this position paper, we therefore proclaim a

28 3 Relevant Publications

generic framework for modifying enterprise modeling languages on the meta model
level. The framework is divided into the main parts of a modeling language (abstract
syntax, concrete syntax, semantics) and respective operations (add, remove, specify
and redefine).

3.5 Publication MKWI-2016 29

3.5 Publication MKWI-2016

General Information:

Title: Semantics in the Context of BPMN Extensions – State of
Affairs and Research Challenges

Authors: Richard Braun, Werner Esswein
Year: 2016
Medium: Nissen, V., Stelzer, D., Straßburger, S., Fischer, D.

(Eds.): Tagungsband Multikonferenz Wirtschaftsinfor-
matik 2016

Pages: 1119-1130
Reference: [73]

Rankings:

VHB-JOURQUAL-3: D
WKWI-2008: C

Contributions:

Richard Braun: 90% (introduction and motivation, semantics and lan-
guage extensibility, semantic review of BPMN extensions,
implications and possible approaches, conclusion)

Werner Esswein: 10% (research conception)

Summary of Contents:

Context: BPMN
Motivation: Semantic analysis of BPMN extensions
Input and Method: Literature review, content analysis of 36 extension defini-

tions
Contributions: In regard to BPMN:

• Descriptive analysis of BPMN extensions in regard to
semantics

• Lack of semantic considerations

In regard to EMLs in general:

• Semantic extension types
• Research challenges for EML semantics

Abstract:

This research article addresses the issue of meta model semantics in extensions of en-
terprise modeling languages by conducting an extensive analysis of 36 extensions of

30 3 Relevant Publications

the process modeling language BPMN. The study reveals remarkable shortcomings
regarding to semantic considerations both during extension design and extension
specification. Only 50% of the analyzed extensions provide a clear description of the
required domain concepts and only the minority conducts some kind of ontological
comparison with original BPMN elements. Extension semantics largely arise directly
from syntactical additions, but some extensions also introduce additional semantics
without syntactical changes. Positively, semantic redefinitions are very rare. How-
ever, 80% of the analyzed extensions do not provide any semantic specification of the
extension elements. We therefore outline several aspects for further improvement.

4

Terminological and Conceptual Foundations

Within this Section, the terminological and conceptual foundations for a prospective
extension method are elaborated. We consolidate current research in the context of
EML extensions and propose definitions for key terms. It should be understood as
conceptual-deductive work (referring to [88]), aiming to consolidate and organise
commonly used concepts in order to prepare the design of a prospectively useful
framework. It primarily contributes to the knowledge base and prepares the design
of artefacts in the sense of extension methods (cf. [81, 71]).

4.1 Peculiarities of Enterprise Modelling Languages

Enterprises are multifarious, heterogeneous socio-technical IS, whose components
are interrelated within a complex nexus of interdependencies on different abstrac-
tion levels [1, 2, 3]. EM intends to conceptualise, abstract, and represent parts and
aspects of enterprises by creating conceptual models in order to foster communica-
tion between involved stakeholders and enable an integration of static, procedural,
and functional dimensions [89, 5, 4, 11, 6].

EM intends to understand, improve and control enterprises [90, p. 124] and should
work as conceptual infrastructure for a high level of integration [12]. EM serves as a
capable and auspicious approach for managing present-day business complexity in
the light of increasing interdependencies between and within IS. It further aims to
make relevant things explicit and to provide a mechanism for working with these
models [6]. While enterprise models are usually designed for documentation, inter-
subjective communication purposes and managerial decision making [3, p. 26], they
are also useful for operative support and automation [7, 8], which indicates a parallel
consideration of material semantics and formal semantics [73].

This Section aims to work out the particularities of EMLs in order to clarify its
specific position within the class of conceptual modelling languages and emphasise
the inherent need for extension. This deeper consideration is necessary due to miss-
ing consensus on elementary EM concepts, since EM is a field under ongoing research
[3]. EMLs are conceptual modelling languages that provide concepts for modelling
characteristic aspects of enterprise systems like organisational architectures, busi-
ness processes or resources [10, 12]. EMLs are usually semi-formal languages, having
a precisely defined formal syntax and mostly informal semantics [13, 14]. In compari-
son to design-oriented languages or domain-specific programming languages [91, 92],
EMLs feature at least four prominent specificities:

32 4 Terminological and Conceptual Foundations

Dynamics: Modern enterprises and businesses are complex socio-technical sys-
tems having knowledge-intensive, project-specific value creation processes. They are
consequently characterised by ongoing dynamics and a certain level of inherent
volatility, which requires agility and constant flexibility (e.g. [93, 94]). Frequent
changes may also influence the way of communication within and about enterprises,
which in turn provokes a new impetus for supplementing EMLs with context-specific
concepts [3, pp. 23-26]. Consequently, the languages used to model enterprises be-
come the subject of frequent change, as EMLs provide both representational and
linguistic functions [95, 40]. Karagiannis [68] states that “models are means of
representing the relevant knowledge pertaining to different facts”, establishing an
enterprise-related terminological box [68, p. 6].

Perspectives: Modern businesses are further characterised by a high degree of
inter-disciplinarily, cross-company cooperation and project teams with different pro-
fessional backgrounds [12]. Consequently, enterprises face the issue of establishing
a common communication base between different users and stakeholder groups [7],
having different purposes [6], conceptual perspectives [96] and also different mod-
elling languages [97]. In EM, the systems under study have an inherent complex-
ity, covering multiple views, facets, and perspectives. Understandings of enterprise-
related issues and concepts between stakeholders may change or evolve over time (re-
ferring to [68, p. 6]). The underlying (perhaps time-dependent) multi-perspectivity
requires some kind of EML adaptivity, since all-encompassing standard EMLs are
rather illusory and impractical in terms of complete a-priori designs [22, p. 9], [35,
p. 24]. Perspectives are generally accepted techniques for stakeholder-specific com-
plexity reduction and conceptual integration in EMLs [12, 96, 6].

Semantics: Semantics require special attention as EMLs typically address real
world things to a certain degree, which causes the issue of ambiguity due to indi-
vidual mental conceptualisations and their consequences to model understandings
[98, 99, 100, 22, 101]. Despite different personal interpretations, the understanding of
rather generic BPMN concepts like Tasks or Resources may be different according to
specific domains. This is especially relevant for standard EMLs like BPMN [33, 27].
Additionally, also formal semantics in the sense of automatically interpretable mod-
els have to be considered as demonstrated in Bork & Fill [8]. A detailed discussion
on the ambivalent role of semantics in the context of EMLs can be found in recent
literature [41, 57, 67]. Particular investigations of BPMN and its extensions can be
found [73].

Concrete syntax: Concrete syntax plays an outstanding role and EMLs usually
serve as diagrammatic modelling languages [46]. In contrast to textual modelling
languages, the intent is to facilitate the visually supported transfer of model infor-
mation [102]. This can be supported by the integration of commonly used domain
symbols of a stakeholder group, for instance [25]. Consequently, not only the abstract
syntax, but also the concrete syntax has to be taken into account when examining
EML extensions.

4.2 Discussion on Standard Enterprise Modelling Languages 33

4.2 Discussion on Standard Enterprise Modelling Languages

The Standard+X approach bases on the idea of extending a well-known standard
EML with specific concepts and ensuring the validity of the EML core by applying
inherent extension mechanisms. Designing an EML extension in conformity to this
extension mechanism should also ensure exchangeability and reusability of them.
The extension approach is primarily useful for standard languages or commonly
used languages with a high degree of dissemination. Languages with a limited scope
like DSMLs are rather a subject for language revisions and the need for non-invasive
modification is inherently supposed to be lower. Below, the importance of standard
EMLs is discussed controversially by elaborating pros and cons of standard creation
in general. The recent discussion on specifying an EPC standard (e.g. [103]) indicates
the necessity of such a discussion. However, a general discussion of EML standards
has been omitted so far.

4.2.1 Pro Standardisation

Standardisation of EMLs facilitates four aspects, which are considered below. First
and foremost, the communication between human actors and also between machine
actors can be improved remarkably by the commonly accepted usage of a stan-
dardised EMLs. This covers the vocabulary of the language (abstract syntax), their
graphical representation (concrete syntax), as well as the meaning of language con-
structs (semantics). Moreover, different stakeholder perspectives can be integrated
[22, p. 4] and the language is generally designed for reusability across domains and
application scenarios [22, pp. 4ff], [68, p. 5]. Standardised communication between
machines refers to interoperability between modelling tools. Establishing and ap-
plying an EML standard may diminish tool dependency and could also avoid the
expensive and error-prone transformation between dedicated language implementa-
tions.

Another important aspect is the level of quality, reusability, and reference build-
ing. Standards foster the agreement and consensus processes within particular com-
munities (cf. [104, 105]) and may hence facilitate the collection and consolidation
of established and well-proven language concepts, rules, and approaches within one
EML (cf. [40]). Such a concentration of knowledge is promising in terms of EML
evolution and EML quality (e.g. [70]). For instance, the UML was largely motivated
by the integration of a number of commonly used object-oriented design languages
[106, 107] and parts of early BPMN extension become part of the BPMN standard
itself (cf. [108, 15]). Focussing on a limited set of standard EMLs further avoids ex-
uberant method pluralism (according to [29]) and standardising could also avoid re-
dundant design of generic concepts and constructs in dedicated approaches (e.g. the
recreation of control-flows as covered in [43] and [27]).

Finally, we proclaim standards as an important artefact type and general object
of research in design-oriented research. As stated in Braun et al. [79], design-
oriented research in the IS discipline struggle with certain demarcation issues from
professional engineering. More precisely, it seems to be at least debatable whether
research institutions having traditionally very limited budgets and resources may
produce highly innovative and especially practically applicable artefacts (in com-
parison to large business companies with notable research budgets). It seems to be

34 4 Terminological and Conceptual Foundations

promising to focus on topics which are highly relevant and important on the one
side, but not that attractive for business companies on the other side. Consolidating
a certain state of affairs and deriving particular standards could be such a research
niche that is worthy for consideration.

4.2.2 Contra Standardisation

Despite the number of benefits, there remain some issues that have to be considered.
The first issue addresses the paradigmatic determination of particular structures and
concepts, which could impede the integration of innovative approaches within an
EML (e.g. Multilevel Modelling [12]). The normative character of EML standards
could also impede the linguistic function of a language in the sense of subjective
conceptualisations about a particular area of discourse [109, 110, 40]. The fixation of
a particular EML version could also lead to the temporal acceptance of shortcomings,
which are barely correctable due to the long revision intervals [111]. For instance,
some OMG standards like MOF or BPMN reveal some architectural shortcomings
or inconsistencies [85, 112, 39, 42], but respective revisions or requests for revisions
are missing so far.

4.2.3 Towards Extensible Standard EMLs

We proclaim the general definition and usage of EML standards due to the stated
benefits. However, several peculiarities of EML standards as well as the reflection
of the stated contra arguments cause the following necessities. Most EMLs require
mechanisms for situation, context-specific or domain-specific adaptation in order to
both provide concepts for multiple industries as well as capabilities for the definition
of fine-grained integration rules of particular domains [3, 40, 28]. It is important to
emphasise that the respective extension mechanisms must be provided by the EML
itself in order to enable the flexible design of EML extensions, which can enhance
the dissemination of a language in turn (referring to [113]). We further argue that
each extension of an EML has to be justified based on an analysis of the intended
semantics, which come from the required pragmatics of the EML users.

Except the above stated dedicated design or combination of DSMLs [12], it is
possible to differentiate between two main approaches: Meta model composition [23,
24] and language extensions [21, 26, 40, 33]. Meta model compositions refer to the
combination and integration of meta models or meta model fragments, which is
very useful for integrating PSMLs. For instance, an EML for resource modelling is
integrated with a EML for process modelling purposes.

With respect to also rather fine-grained extensions (e.g. semantic extensions [73]),
we prefer the standard extension type and refer to this as the Standard+X approach.
This approach covers all types of extending an EML, i.e. both syntactical and se-
mantic extensions to differing extents. Each kind of extension guarantees conformity
to the original EML meta model and neglects any invasive meta model modification.

4.3 Terminology

Extending EMLs naturally arouses the association of extending programmes in the
field of Software Engineering, which is a longstanding research discipline in compar-

4.3 Terminology 35

ison to EM. Basically, an extension in the field of Software Engineering is under-
stood as a programme that can be adapted to new, not precisely predictable tasks,
without altering the original software core (according to [114] and [115]). An ap-
propriate adaptation of this term to the field of conceptual modelling languages or
EMLs is missing so far. Current discussions on flexible or extensible EMLs struggle
within ambiguous definitions about the outcome of adaptation or extension pro-
cesses. Variants, dialects, or lightweight versions are only some of the used terms
(e.g. [22, 19, 69]).

We therefore propose an explicit definition of extensions below. We also differ-
entiate some adjacent concepts that are often amalgamated in the context of EML
extensions, i.e. modifications and reductions. Within this discussion, the language
under consideration is referred as original language [26].

4.3.1 Extension

Kopp et al. [34] define an extension twofold. In the narrower sense, an extension
enhances the expressiveness and functionality of a conceptual modelling language
by introducing additional types and attributes for the representation of purpose-
specific concepts. The authors emphasise that an isolated extension is neither useful
nor functional on its own [34, p. 6]. In a wider sense, an extension must conform to
the extension mechanism of a language.

We basically follow this definition, but suggest a slight relaxation in regard to
the kind of existence dependency in order to comprise all component-like extensions
or meta-model bridging approaches (cf. [22, 45, 24]). Thereby, extensions should
be always non-invasive, which means that the original meta model must not be
modified or reduced [50, p. 123]. This enables backward compatibility as well as
an exchange of models created with the original language. In addition, the original
semantic character of the language should be preserved [80].

The demand for non-invasiveness further forbids any kind of mandatory exten-
sions. Mandatory extensions cover the introduction of additional constructs (or ad-
ditional constraints), which have to be met by original constructs. Mandatory exten-
sions need to be excluded and treated as modifications, since fully-compliant models
cannot be realised per se [50, p. 126]. Examples for mandatory extensions are intro-
duced associations from original meta classes to extension meta classes with a lower
cardinality of greater than zero. Also the mandatory inheritance of properties from
introduced generalisations would represent such a mandatory extension. For reasons
of clarity, additional generalisations are therefore excluded.

Mandatory: Additional expressiveness
Non-invasive
Non-restrictive
Backward compatible

Optional: Conformity to extension interface (if defined)

Table 4.1. Characteristics of extensions

Additional expressiveness can be realised by additional concepts on the same
level of abstraction (horizontal) or on a different level of abstraction (specialisation

36 4 Terminological and Conceptual Foundations

for refinement; referring to [50]). Horizontal extensions aim at detailing and can
be divided into extensions within the same area of discourse and extensions with
concepts from other domains or areas of discourse (cf. [26]). Generally, any extension
enhances the expressiveness of a original language to a certain extent [69, p. 4].

Below, different types of top-level extensions are briefly introduced according to
[50].

Generalisation

Extension by generalisation means that the extended language serves as a superset
of different languages, i.e. the original language and additional languages. This is
typically conducted for joining different independent languages [50, p. 124]. In its
strictest form, generalisation could also constitute integration of additional super
types in the case of a very simple and basal language (according to [80, p. 280]).

Each generalisation extension can be treated as a special type of a disjoint spe-
cialisation that will be mentioned below [50]. With respect to the avoidance of
mandatory and hence invasive extensions, generalisations are only treated as valid
and completely compliant extensions, if the direct or indirect properties of the new
super types are optional and not mandatorily restricted (related work, e.g. [50], re-
mains imprecise on this aspect). In this case, a generalisation would be classified
as a modification, since the type of an original class is obligatorily modified, which
indicates that original models would become invalid.

Specialisation

In case of specialisation, the extended language serves as a superset of exactly one
original language [50, p. 124]. Specialisation serves as a compliant derivation and
can be divided into several types, which are briefly considered below.

Disjoint: A disjoint specialisation is characterised by the introduction of op-
tional, unrelated and hence independent constructs. This leads to a rather low-
coupled union of an original language with additional concepts or an additional
language, which comprises language composition approaches (e.g. [24]). Disjoint
specialisations extensions can be primarily used to conduct horizontal extensions
in order to integrate concepts from other domains, for instance (cf. [26]). Except in
the case of generalisation (see above), the level of abstraction is therefore usually the
same. It has to be stated again that the demand for optionality excludes mandatory
properties (e.g. a minimum cardinality equal to or greater than one), which impli-
cate dependencies of additional concepts. Otherwise, such extensions are treated as
modifications.

Conservative: A conservative specialisation does not introduce completely un-
related concepts, but rather intends a refinement of already existing ones. It is
therefore useful for the (domain-specific) specialisation of rather under-specified or
generic concepts. Consequently, the level of abstraction of the additional concepts
differs and a vertical extension evolves.

Additive: According to Atkinson & Kühne [50], an additive specialisation
combines the two mentioned types and covers both the introduction of so far un-
related concepts (disjoint) and specialising concepts (conservative). For instance,

4.3 Terminology 37

most BPMN extensions are implemented in this way, proposing both vertical and
horizontal extensions [33].

Modification

In contrast to the explicitly emphasised non-invasiveness, several authors give the
impression of having a rather broad understanding of extensions in the sense of
general language customisations [50, 22, 68]. Consequently, extensions seem to be
synonymous with variants (e.g. [40, 19]) or general language modifications [116].

Mandatory: Additional expressiveness
Invasive
Restrictive
Not backward compatible
Ad hoc alteration: No conformity to extension inter-
face

Table 4.2. Characteristics of modifications

We therefore define modifications as invasive alterations of the original language,
which implies missing backward compatibility. Not all models of the original lan-
guage can be modelled with a modified language, as any modification determines
non-compliant or partially-compliant consequences, which refers to a certain loss of
original expressiveness [50, p. 121]. Removing a construct or changing its value range
to a more restrictive character could cause modification, for instance [116, p. 2011].

With respect to model configuration management [47], any modification causes
a revision of the original meta model indicating a new version of it. Modifications
therefore lead to language variants [80].

Overwriting: Overwriting covers the redefinition or alteration of original meta
model constructs. This encompasses the alteration of owned and associated proper-
ties, range values, or even multiplicity values, for instance. Redefinitions can be also
realised by simple renaming of original constructs implicating altered semantic ref-
erences [80, p. 280]. Technically, each overwriting operation is composed of at least
one removing operation and at least one adding operation to introduce the desired
concepts. In contrast to modification by reduction, the general shape or structure of
the original meta model remains stable, but its particular nodes (or node values) are
modified. Overwriting also encompasses each intensification and limitation of condi-
tions defined in the original language. As stated above, existence dependencies are
hence permitted (e.g. in regard to associated concepts). More precisely, any change
of original concepts that cause the exclusion of valid original models is referred to as
overwriting modification. Exemplarily overwriting operations include the following
(cf. [80, pp. 280ff]):

• Limitation of multiplicity values (e.g.: “0..*” is limited to “1..*” or “1..5” to
“2..2”)

• Additional superclass that owns mandatory properties
• Introduction of mandatory properties to an original class
• Renaming of elements

38 4 Terminological and Conceptual Foundations

Reduction

Literature on flexible EMLs also considers language reduction as an appropriate
means for better EML application [117, 118, 119, 120, 22]. Reducing the vocabulary
of EMLs is often motivated by a particularly perceived language overload and the
existence of rarely used concepts (cf. [119, 121, 122]), which in turn manifests the
trade-off between language expressiveness and language comprehensibility [7]. Tech-
nically, reduction is realised by omitting constructs of an EML meta model, leading
to a smaller meta model. The meta modelling pruning technique of Bea et al.
[118] can be applied for this purpose.

Destructive: A destructive reduction refers to the removal of at least one manda-
tory construct from the original language. This implicates a lower level of expression
on the one side and a missing backward compatibility on the other side, since not all
models created with the extended language can be modelled with the original lan-
guage (non-compliant or partially-compliant derivation as discussed in [50, p. 121]).

Compliant: A compliant reduction refers to the removal of solely optional con-
structs. The derived extension therefore constitutes a subset of the original language
and each model created with the extension can be created from the original lan-
guage. However, at least one model of the original language cannot be created with
the extension (partially-conformant derivation [50, p. 121]). This might be useful for
complexity reducing language subsets [117].

4.3.2 Pseudo Reduction

Modifications should be prevented in order to correspond to the above mentioned
benefits of non-invasiveness of EML extensions. However, the need for stakeholder-
specific subsets of very comprehensive EMLs like BPMN – that is even exacerbated
by the sheer amount of extensions (cf. [33]) – requires some means for de facto reduc-
tion in order to create sub-views or filters on the entire vocabularies. We therefore
propose a pseudo reduction, called reduction by extension.

The introduction of additional perspectives enables the creation of situational,
complexity reducing subsets of exactly those concepts, which are useful for a partic-
ular stakeholder group [44]. Importantly, underlying constructs remain unaffected
and respective conditions have to be preserved within the views. These filters may
contain additional concepts, if required (e.g. [76]).

Technically, this approach requires respective filter mechanisms. More precisely,
view and perspective concepts need to be available on the meta model level, indicat-
ing an EML-specific definition on the meta meta model level (cf. MEMO MML [60]
and E3 [47]). Despite the promising benefits of this solution, prevalent meta mod-
elling languages like MOF struggle with the provision of respective meta concepts
and the necessary groundwork as to be laid on the level of EML design.

4.3.3 Hybrid

In case of combining extensions and modifications, modifying alterations are domi-
nant and prevent a classification as non-invasiveness extension.

4.4 Summary and Conclusion 39

4.3.4 Semantic Extensions and Modifications

As stated in Braun & Esswein [73], current literature over-emphasises syntactical
aspects in the context of EMLs and EML extensions. However, it is also imaginable
to conduct semantic adjustments in order to create semantic BPMN extensions,
which keep the original language syntax unaffected [80]. It is therefore necessary
to consider the semantic level of EMLs as an explicit place for “semantics only”
extensions. In particular, the respective semantic constructs and semantic mappings
between syntactical constructs and these semantic constructs have to be addressed
as follows [73].

Syntactical Construct

Domain Construct

Original Sem. Mapping
Added Sem. Mapping

Add

a)!

Remove

d)!

Redefine

c)!

Specify

b)!

Fig. 4.1. Types of semantic alterations [73, p. 1124]

Semantic Extension

In case of semantic extension, original semantic mappings and domain constructs re-
main unaffected, but additional semantic mappings and constructs are introduced as
depicted in Fig. 4.1. Additional semantic mappings are introduced in case of adding
semantics, implicating a larger space of application of a particular syntactical con-
struct. In case of specifying semantics, domain concepts are specified and explicitly
referred to by introduced semantic mappings. This means that a particular concept
is understood in a more precise, perhaps domain-specific meaning. This could be
the case within specific and delimited stakeholder groups having common domain
understanding of rather generically specified syntactical constructs.

Semantic Modification

Semantic modifications cover the removal of semantic mappings implicating the
limitation of the intended meaning of syntactical constructs. In case of redefining
semantics, original semantic mappings are removed and finally replaced by new
mappings, leading to a modification of the original meaning. In case of removing
semantics, original semantic mappings are removed without the assignment of new
ones. This implicates a loss of precision in terms of interpreting the syntax of an
original language.

4.4 Summary and Conclusion

This Section provides a consideration and definition of key terms within the con-
text of EML extensions and characterises different types of language modification.

40 4 Terminological and Conceptual Foundations

Further, the Standard+X approach was elaborated and discussed in detail. This
Section hence acts as conceptual base for the subsequent topics, which consider par-
ticular syntactical extension techniques or the semantic justification of extensions,
for instance.

5

Extension Types of Enterprise Modelling

Languages

The stated language extension types rationally cause the deeper consideration of
the underlying EML type in order to cope with potential consequences for EML
extension design. This seems to be necessary, since EML differ in regard of their
expressiveness, level of domain-dependence, and their particular application area. It
is therefore sensible to consider the topic of EML extensions from a rather language-
oriented point of view in order to differentiate types of EML extensions for differ-
ent EMLs. Surprisingly, a dedicated analysis and classification of EMLs has rarely
been addressed in literature so far. Atkinson & Kühne [50] present a framework
for the differentiation based on domain-specificity and abstraction (in the sense of
problem-oriented and solution-oriented). Frank [123] divides domain-specific lan-
guages in regard of their enterprise-specific implementation, which motivates a mul-
tilevel based approach (referred as Reference DSMLs and Local DSMLs). In respect
of apposite extension mechanisms, we therefore consolidate existing works and pro-
pose a useful EML classification schema with respective differentiation criteria in
order to facilitate the appropriate selection of extension mechanisms.

5.1 Criteria for EML Classification

The characterisation of EMLs needs to be conducted by a certain set of attributes
in order to estimate consequences for extension design. We therefore proclaim three
attributes: Domain-Specificity, Formalisation, and Focus.

5.1.1 Formalisation

In this work, formalisation is understood as the type of semantic concepts in the
area of tension between problem space and the solution space that is finally derived
or designed for managing and solving particular tasks.

The problem space regards to parts of the real world or area of discourse and aims
to represent (or reconstruct [41]) the “what” perspective on a particular problem.
Abstraction in the problem space actually refers to the basal kind of modelling,
encompassing the selection of omitted and abundant attributes (cf. [124, 41]). Find-
ing the right level of abstraction is a challenging task and a crucial aspect for the
differentiation between GPMLs and DSMLs.

The solution space covers concepts which are explicitly designed or derived for
solving a particular task. Dependent on the type of tasks, the kind of respectively

42 5 Extension Types of Enterprise Modelling Languages

designed models could differentiate between rather real-world oriented conceptual
models (e.g. process models for process re-engineering), rather technical-oriented
conceptual models (e.g. intermediate models in MDA approaches), or derived soft-
ware code. This could further imply a certain difference between material semantics
(human beings are model readers), formal semantics (models should be invariantly
interpreted by technical actors), or respective hybrid implementations (cf. [67]).
The solution space hence reflects the “how” perspective on enterprises and implies
differing levels of formalisation from the business domain to the technical system
(cf. [5, 50, 125]).

5.1.2 Focus

Analysis and management of enterprise systems is typically organised within En-
terprise Architecture Frameworks (EAF), which are composed of several layers and
perspectives [4, 5, 125]. While the above stated abstraction attribute addresses the
tension between problem space and solution space, the focus attribute refers to those
parts and aspects that are primarily covered by an EML. We therefore refer to the
framework of Frank [5] that proposes a matrix consisting of perspectives (abscissa)
and aspects (ordinate).

Perspectives represent specific professional backgrounds that correspond to cog-
nitive dispositions, technical languages, specific intentions, objectives, or capabilities
[126, pp. 10ff]. The perspective concept corresponds to the concept of abstraction, if
perspectives are understood in a strictly ascending manner, which implicates that a
lower perspective has a higher formalisation degree; cf. the perspectives Technology,
Application, or Business in ArchiMate [10] or similar perspectives in Frank [5] and
Adam & Esswein [127], as well as the summary in Weller & Esswein [125].

Perspectives typically encompass multiple aspects. Aspects can be seen as spe-
cific views on enterprises that work like filters on a set of concepts in order to
reduce complexity [47]. With respect to the meaning of aspects in Aspect-Oriented
Programming [128], the term “views” is used in the following discourse for reasons
of clarity. The point of intersection between (probably multiple) perspectives and
(probably multiple) aspects is referred to as focus and represents a selective view on
enterprises [12, p. 948]. In regard to the characterisation of EMLs, a focus may also
span multiple perspectives if necessary. The criterion should emphasise the specific
intention of an EML and stresses its differentiation in comparison to other languages.

For instance, BPMN focusses on the process view of enterprises and enables
modelling both the IS perspective and the application system perspective of enter-
prises [125, 129]. RiskM enables modelling the risk view on multiple perspectives [96,
p. 601]. The modelling languages KAOS and i* cover the requirements view with
respective foci between early and late requirements [130, 131, 132]. Other languages
provide multiple foci of particular industries, e.g. the healthcare sector (CPmod
[43]).

5.1.3 Domain-Specificity

This criterion represents the kind of specificity in regard of a particular area of
discourse or industry, which is more broadly referred as domain. Domain-Specific

5.3 Types of Enterprise Modelling Languages 43

Modelling Languages (DSMLs) refer to specific domains and support their concise
modelling by using common domain terminology and notation that is reconstructed
from the particular fields of application [50, 133, 134, 135, 136, 25].

DSMLs usually serve as small languages with a limited set of concepts, precise
integrity constraints, and a concrete application focus [137, 138, 60]. Consequently,
the way of using and interpreting constructs is rather standardised, as DSMLs base
on invariant semantics implicating a certain level of consensus within the possibly
limited number of users (cf. [25]). In regard of the dichotomy between highly spe-
cialised DSMLs (e.g. for specific businesses) and rather generic DSMLs (e.g. for en-
tire industries), Frank [123] proposes a multilevel based approach for the derivation
of different DSML types based on a specific reference DSML on top that enables
a flexible language architecture and renounces the rigid four-level architecture of
MOF.

The opposite of domain-specificity is generality (e.g. [69]). General Purpose Mod-
elling Languages (GPMLs) provide generic, domain-independent and generally us-
able concepts that can be applied across different domains, industries, and busi-
nesses.

5.2 Framework Architecture

Unfortunately, current research lacks in the provision of EML classification frame-
works and a precise positioning of EMLs is hence difficult. We therefore propose
a framework based on the presented attributes. The classification framework was
designed in alignment with the Dresden Architecture Framework (DAF) and exist-
ing EAFs (cf. [5, 127, 125, 10]). Basically, the DAF – as a consolidation of existing
EAFs with a special focus on language integration and extensibility – was adapted
as follows.

The levels of system design (e.g. application level) were adapted to represent
the formalisation level of an EML. It is assumed that each EML has a notable but
differing level of semi-formality (cf. discussions on semantics [14, 139, 100, 8, 67]).

The view level was reused in order to represent particular views on enterprises.
The enterprise-specific levels were omitted and replaced by the domain-specificity
levels as depicted in Fig. 5.1. All characteristics are respectively represented by one
dimension enabling an integrated specification of EMLs. The intersection points and
areas shape the above-introduced foci and represent the scope of an EML.

For instance, BPMN is a domain-independent, generic EML for process mod-
elling. BPMN both supports the creation of less formalised models (e.g. for pure
documentation) and semi-formal models (e.g. partly automatable workflows). As
depicted on the left side of Fig. 5.1, BPMN can hence be located on the Generic
level (dimension Domain-Specificity), within the Process view, and affects the Busi-
ness Level and the Application Level of the Formalisation dimension.

5.3 Types of Enterprise Modelling Languages

The presented framework facilitates the location of existing EMLs as well as the
more fine-grained characterisation and differentiation between them. Basically, the

44 5 Extension Types of Enterprise Modelling Languages

Views

O
bj

ec
tiv

es

D
om

ai
n-

S
pe

ci
fic

ity

Pr
oc

es
se

s

Re
so

ur
ce

s

In
fo

rm
at

io
n

O
bj

ec
ts

O
rg

an
is

at
io

na
l S

tr
uc

tu
re

Ri
sk

s

Technology Level

Application Level

Business Level

+

+

+

+ Extension Spot Legend: Focus

BPMN

+

Fig. 5.1. Extension framework with a localisation of the BPMN

following three general EML types can be identified: General Enterprise Modelling
Languages (GEML), Purpose-Specific Modelling Languages (PSML), and Domain-
Specific Modelling Languages (DSML). Thereby, the rather formal Technology Level
of the Formalisation dimension is intentionally included, since EMLs may also cover
formal aspects as outlined in Sect. 4.1. As expected, most EML address rather non-
technical aspects [6].

GEMLs support the integrated, multi-perspective analysis of entire enterprise
systems and provide rather abstract and generic enterprise concepts. Examples for
GEMLs are ArchiMate [10], ARIS [18], or MEMO, although MEMO can be rather
seen as a design framework for an integrated derivation of languages [60, 12]. GEMLs
are under-specified and ontologically incomplete on purpose, which may indicate a
specification of concepts according to a particular domain, modelling task, or per-
spective (according to [25, p. 136]). For instance, ArchiMate was intended to remain
as simple and generic as possible [10], and such languages are often intentionally
designed to express an enterprise at a high level of abstraction [35, 7]. GEMLs differ
from General Purpose Modelling Languages (GPMLs) like UML in regard of the gen-
eral focus on enterprise-related concepts that can be found in different views of the
presented classification framework. From the perspective of GPMLs, GEMLs can be
classified as domain-specific languages covering the domain of enterprises. GEMLs
are usually problem-oriented and semi-formal, but the derivation or existence of
well-formalised, solution-oriented concepts is not impossible. GEMLs further cover
multiple views of enterprises in an integrated manner.

PSMLs can be seen as specialisations of GEMLs that are limited to a certain view
on enterprises. The prefix “purpose” highlights this view in regard to its intended ap-

5.3 Types of Enterprise Modelling Languages 45

plication in a rather general sense, as views are also concepts within EML definition
(cf. [47]). Concepts of PSMLs remain generic and independent of any domain and
can also cover different abstraction levels. BPMN serves as a prominent example for
a process-specific PSML [15, 16]. RiskM is an example for a risk-specific PSML and
languages likes i* or KAOS represent requirements-specific PSMLs [130, 131, 96].

DSMLs provide specific concepts of a domain that is aligned with particular do-
main terminology, implicating a lower level of abstraction [25]. The degree of view
coverage may differ according to the intended application of a DSML. Some DSMLs
cover multiple views of enterprises (e.g. CPmod [43]), while other DSMLs only focus
on one or two aspects. In contrast to, for instance, Frank [126, 25], we understood
domains explicitly in the sense of concrete industries (e.g. healthcare or manufactur-
ing). DSMLs in the understanding of Frank [126, 25] – e.g. ResML [140], RiskML
[96], or ControlML [141] – are rather seen as PSMLs due to their independence of
specific industries. We therefore aim to correspond to the peculiarities of EM in
regard to their practical application within concrete industries and daily businesses.

Dimensions

Type Abstraction Views Domain-
Specificity

Description Examples

GPML Various Unspecified Generic Highly generic meta concepts for
conceptual modelling.

UML [106,
107]

GEML Business
Level, Appli-
cation Level

Multiple Generic Fundamental meta concepts for the
domain of EM, e.g. Actor, Event,
Goal or Process (cf. [101]).

ArchiMate
[10], ARIS
[18], MEMO
[60]

PSML Business
Level, Appli-
cation Level

Selective Generic Fundamental meta concepts for
a particular aspect of EM or a
specific view within EM (e.g. Task,
Decision, Event and Participant
within process modelling [16]).

Petri Nets
[142], BPMN
[15], EPC [19],
RiskML [96],
ResML [140],
GoalML [143],
ITML [144]

DSML Various Various Domain Meta concepts, which are typical
for multiple aspects of a particular
domain or industry (e.g. health-
care or manufacturing) and their
valid application is limited to that
domain (cf. de facto invariant se-
mantics [25]).

CPmod [43]

Local
DSML

Various Various Enterprise,
Project

Refined or specified concepts of
a DSML for solving issues of a
specific enterprise or project, which
leads to a limited scope of a DSML
[123].

cf. [123]

Table 5.1. Language types

Table 5.1 summarises the role of the introduced EML types against the back-
ground of the classification dimensions and differentiates them from further types
of conceptual modelling languages. The outlined classification framework serves as
a base for the presentation of respective consequences in regard to EML extension
types below, which determines the final syntactical implementation.

46 5 Extension Types of Enterprise Modelling Languages

5.4 Consequences for EML Extension Types

The proposed EML classification framework facilitates the guided derivation of
EML extensions. As mentioned above, an EML can be located on a cohesive three-
dimensional corpus within the framework, which features its language character-
istics. Expanding this corpus over adjacent framework elements manifests an ex-
tension, which leads to a larger set of covered concepts within the language. Such
an expansion can also be caused by a refinement of single elements, although each
expansion is only possible at the outlined extension points. The view dimension
can be expanded infinitely. In contrast, the abstraction dimension and the domain-
specificity dimension can only be extended within the respective outer limits. Below,
extension consequences for each dimension are briefly considered.

5.4.1 Formalisation

Extending the formalisation dimension refers to the attachment of additional con-
cepts with a different level of semantic variance between formal and informal se-
mantics (e.g. [139]). This aspect explicitly refers to the difference between human
model readers and technical model interpreters (in contrast to semantic variance of
domain-specificity). Typically, a semi-formal modelling language like BPMN is ex-
tended with concepts for formal model interpretation. This reduction of interpreta-
tion variance is often the result of three main causes: Behavioural formal semantics,
enhanced static formal semantics, and model analysis [67].

Behavioural formal semantics covers the automatic interpretation of models
in the sense of invariantly defined model state transitions, which enables workflow
execution, for instance [63, p. 25], [145, p. 489], [146, p. 435], [8, p. 3403], [15,
p. 435]. Formal semantics enable prescriptive modelling, while material semantics
rather support descriptive modelling [14].

Static formal semantics refers to valid and consistent model states by intro-
ducing additional constraints, for instance [67, p. 417]. Static formal semantics can
be seen as intensification of particularly defined syntactical rules [40, p. 439]. While
behavioural formal semantics cover transitions, static formal semantics focus on a
particular model state (e.g. [145]). Both types have in common that they are part
of the conceptual scope of language.

In contrast, the class of model operations refers to situations where an EML
gets extended for the purpose of analysing models or facilitating some kind of work
on these models [67, p. 417]. Extensions for such tasks implicate a separation be-
tween the actual conceptual scope of a language (e.g. process-related concepts) and
respective analytical and hence rather technical capabilities (e.g. for transforma-
tions or calculations). Mixing both concept types is critical in regard to separation
of concern and tool independence (cf. the discussion on MOF shortcomings in [60]).
Especially MOF-based languages suffer from a noticeable mixture of both types (e.g.
ItemDefinition and Import in BPMN [15]). It is hence advisable to avoid the amal-
gamation of constructs and rather introduce an appropriate analytical layer as an
additional perspective in order to ensure loose coupling.

All in all, abstraction extensions primarily affect the semantics of EML and imply
respectively required syntactical extensions in order to support and enable these ex-
tensions. It is hence extremely important to consider additional semantic mappings

5.4 Consequences for EML Extension Types 47

and semantic constructs and their consequences to the original EML meta model
at first (e.g. [73]). Although some authors propose the investigation of hybrid forms
between semi-formal and formal semantics [67], it is further important to ensure
a unified and homogenous semantic level. Semantic differences should be treated
appropriately. This is closely related to the general necessity of more sophisticated
and multi-faceted investigation of semantics in EML [57].

5.4.2 Views

Extending the view dimension refers to an extension of the conceptual, non-technical
scope of the EML. The vocabulary of a language is expanded in order to enable the
formulation of a broader set of sentences, i.e. conceptual models. The meta model
is hence supplemented with additional concepts [147]. The semantic level of any
extension is thereby equal or at least similar. Two types of view extensions are
differentiated according to Atkinson et al. [26]: enhancement and augmentation.

Enhancement covers the introduction of additional concepts from the same area
of discourse [26]. A process modelling language is extended with additional process-
related concepts, for instance. Enhancement implicates refinements and expansions
of a particular view within the presented framework.

Augmentation covers the introduction of additional concepts from another area
of discourse that is related with a particular view over integrating concepts (referring
to [26]). For instance, a process modelling language is extended with concepts from
risk modelling. The integration and combination of different views could also lead to
a composition-like extensions (cf. [24]). However, it is important to find appropriate
mechanisms for meta model component integration, homogenous semantic levels,
and appropriate means of handling the potentially increasing complexity of the
vocabulary. Consequently, augmentation refers to the combination of different views.

5.4.3 Domain-Specificity

On the one side, generic EM concepts are often reused across domains and busi-
nesses (cf. [101, 68]). On the other side, these rather generic concepts need to be
specified, adapted, or extended due to situational or domain-specific requirements
and needs [56]. Extending the domain-specificity dimension hence causes the special-
isation of rather generic language constructs in regard to particularities of industries,
enterprises, departments, projects, or even situations (cf. [40, 12]). This includes the
integration of respective domain terminology and the reduction of semantic variance
between prospective language users. An increased domain-specificity may solely in-
volve the specification of semantics [73] of under-specified concepts (e.g. Pools and
Lanes in BPMN).

In contrast to the abstraction dimension, extensions in the domain-specificity
dimension do not address the degree of formalisation, but the level of common un-
derstanding of language concepts and the range of the language. Thereby, the inte-
gration of specific rules and constraints within the language meta model reduces the
degree of modelling freedom on the one side, but aims to enhance modelling accuracy
on the other side. The understanding of “semantic variance” hence differs between
the stated dimensions. Consequently, specialisation techniques are required on both

48 5 Extension Types of Enterprise Modelling Languages

syntactical and semantic levels. It is further advisable to investigate the parallelism
between highly generic concepts of the host language and respectively fine-grained
and specific concepts for a particular context on the other side (cf. [147, 148, 123]).
So far, generic languages like UML or ArchiMate provide basic specialisation means
(cf. [31, 28]). Some authors further proclaim the need for specialising DSMLs in
order to respond to context- or situation-specific requirements and support DSML
evolution [135, p. 15], [25, pp. 136, 141], [69, p. 293].

5.5 Language Extension Types

Various terms and labels exist in the research community as outlined in Sect. 1.2.2.
It is therefore promising to find more general notations for EML extensions types,
which particularly consist of multiple extension techniques as stated in Part III.
The consideration of modelling languages generally provokes the consideration of
language adaptation in linguistics. Two types should be reflected: accents and di-
alects. Both types are briefly discussed below. In combination with the introduced
extension framework, they should support clear and precise communication about
(especially complex) EML extensions in order to emphasise their intention and pur-
pose.

5.5.1 Accents – Semantic Extensions

Characteristics

Basically, an accent is defined as characteristic pronunciation of a particular group
of people relative to the group of people speaking a particular language [149]. Speak-
ing with an accent means that the way of speaking a language (usually the native
language) is mistakenly transferred to a language. While the grammar and the vo-
cabularies of a language are accurately used, the manner of expressing it differs,
which could lead to misunderstandings within conversations with non-accent speak-
ing people. An accent often relates to a particular group of people having something
characteristic in common, e.g. their geographic origin or a particular social class
[150].

Adaptation

The accurate use of grammar and vocabulary can be adapted to the correct use of
the EML syntax. Consequently, the syntax is not extended. However, semantics of an
EML are extended within a particular group of EML users. An EML accent therefore
refers to all those EML extensions which solely consist of semantic extensions. An
EML dialect can be seen as a specific way an EML is spoken and understood in
a particular domain or within a specific group of EML stakeholders. Semantically
underspecified constructs are therefore specified according to the peculiarities of
domains (cf. [73]). Also the formalisations of concepts with variant semantics could
establish an accent. Therefore, accents refer to the Formalisation dimension and the
Domain-Specificity dimension of the proposed framework (cf. Sect. 5.2). Accents are
interesting from a technical point of view as they avoid any kind of tool modifications
and just address the meaning of syntactical constructs.

5.6 Consolidation and Conclusion 49

5.5.2 Dialects – Syntactic and Semantic Extensions

Characteristics

A dialect is defined as “a particular form of a language, which is peculiar to a specific
region or social group” [149]. Dialects can be seen as language varieties, differing in
terms of syntax, lexis, or phonology [151], i.e. the vocabulary that is provided by
the language as well as its explication. In the field of Software Engineering, a dialect
is understood as a modified version of a programming language [152].

Adaptation

Due to the larger extent of variation, an EML dialect is hence understood as an
extension of the original syntax of an EML or as the extension of both syntax and
semantics. EML dialects are therefore characterised by a higher level of complexity
in regard to the number of used and specified concepts. However, the introduction
of additional syntactical constructs is characteristic for EML dialects. Consequently,
dialects could be created by extensions in each framework dimension (cf. Sect. 5.2).
With respect to the framework, three major dialect types can be identified: Anno-
tations, Specialisations, and Hybrids.

Annotation Dialects primarily refer to extensions of the view dimension indicating
view-across extensions (e.g. in case of enhancement). Compositionally created EML
extensions (referring to [24]) are special annotation dialect implementations.

Specialisation Dialects cover primarily syntactical specialisations of rather under-
specified modelling languages. This type is typically conducted for a specialisation
of GEMLs or PSMLs (e.g. for the healthcare domain [27] or industrial engineering
[153]). Specialisations introduce additional syntactical constructs in order to enable
a lower level of abstraction that is more appropriate to a particular domain or more
adequate for a group of stakeholders. This means that existing meta model classes are
specified by generalisations and the underlying concept thus become more concrete
and specific, while the general vocabulary and constrains remain unaffected.

Hybrid Dialects cover both above introduced dialect types and combine them to
complex EML extensions.

5.6 Consolidation and Conclusion

The above introduced language extension framework and the extension types should
finally be consolidated and summarised. The consolidation should facilitate two
tasks: It should support the selection of the most appropriate EML extension type
based on semantic and pragmatic considerations (cf. Part IV), and it should further
support the selection of the most adequate syntax extension mechanism (cf. Part III).

Table 5.2 consolidates the previous Sections and summarises relevant dimensions,
extension types, and the resulting language extension type that is justified by the
particular extension corpus. The extension corpus is created by the set of extended
framework dimensions and can be seen as those framework elements that are affected
by an extension.

50 5 Extension Types of Enterprise Modelling Languages

Dimension Abstraction View Domain-Specificity

Extension
Type

Behavioural-
formal Semantics:
• Execution
Static-formal Semantics:
• Validation, Conditions
Model Operations:
• Analysis, Transformation

Enhancement :
• Refinement, same area of

discourse
Augmentation:
• Additional area of dis-

course

Higher degree of special-
isation or lower level of
invariance

Language Accent (semantics only) Annotation Dialect Accent (semantics only)
Ext. Type Specialisation Dialect Specialisation Dialect

Hybrid Dialect

Table 5.2. Language extension types

Part III

Extension Mechanisms

6

Relevant Publications

6.1 Publication WIT-2014

General Information:

Title: Extending BPMN for Modeling Resource Aspects in the
Domain of Machine Tools

Authors: Richard Braun, Werner Esswein
Year: 2014
Medium: WIT Transactions on Engineering Sciences, Vol. 87
Pages: 450-458
Reference: [36]

Rankings:

VHB-JOURQUAL-3: not ranked
WKWI-2008: not ranked

Contributions of Authors:

Richard Braun: 90% (introduction and motivation, research design, anal-
ysis, design, example, conclusion and further research)

Werner Esswein: 10% (research conception)

Summary of Contents:

Context: BPMN
Motivation: Lack of machine-related resource concepts in BPMN
Input and Method: BPMN extension method of Stroppi et al. [48]
Contributions: BPMN extension:

• Extension for resource modelling (less specified due to
page restrictions)

54 6 Relevant Publications

Extended BPMN extension method:

• Initial domain analysis stage investigates capabilities
of BPMN and justifies extension decision

Abstract:

Engineering processes that use machine tools face the possible problem of inaccu-
racy and a loss of product quality because of position errors of the machine tool.
Current research projects address this problem and provide so-called correction and
compensation methods to reduce position errors in machine tools and thus enhance
the product quality. However, since these optimization processes are very innovative
and sophisticated, their description as well as their integration into engineering pro-
cesses is not trivial. This research article aims to address this issue by a conceptual
modelling approach. The popular Business Process Management Notation (BPMN)
is adapted and extended by domain specific concepts to represent resource intensive
engineering and optimization processes. The BPMN extension is evolved systemat-
ically on the base of the BPMN specification and previous research in the field of
BPMN extensibility. Further, a literature review was conducted to identify relevant
resource concepts for the domain of machine tools.

6.2 Publication MKWI-2014 55

6.2 Publication MKWI-2014

General Information:

Title: Entwicklung einer BPMN-Extension für ressourcen-
intensive Prozesse im Maschinenbau

Authors: Richard Braun, Werner Esswein
Year: 2014
Medium: Kundisch, D., Suhl, L., Beckmann, L. (Eds.): Tagungs-

band Multikonferenz Wirtschaftsinformatik 2014
Pages: 1574-1586
Reference: [74]

Rankings:

VHB-JOURQUAL-3: D
WKWI-2008: C

Contributions of Authors:

Richard Braun: 90% (introduction and motivation, problem domain, re-
search approach, analysis, design, example, conclusion
and outlook)

Werner Esswein: 10% (research conception)

Summary of Contents:

Context: BPMN
Motivation: Lack of machine-related resource concepts in BPMN
Input and Method: BPMN extension method of Stroppi et al. [48]
Contributions: BPMN extension:

• Extension for resource modelling

Extended BPMN extension method:

• Domain analysis is operationalised by domain ontology
(OWL Lite)

• Correspondence types are textually introduced
• Reuse of existing modelling languages and extensions

Abstract:

In Grundlagenforschungsprojekten im Bereich des Maschinenbaus werden Ver-
fahren erforscht, die thermisch bedingte Produktionsfehler an Maschinen vermindern
sollen. Zur Modellierung dieser Verfahren kann die Prozessmodellierungssprache
BPMN verwendet werden, welche aufgrund ihrer generischen Ausrichtung jedoch

56 6 Relevant Publications

Mängel in Bezug auf die spezifische Abbildung von Ressourcenobjekten aufweist.
Es wurde daher auf Basis des Design-Science-Ansatzes eine BPMN-Erweiterung für
ressourcen-intensive Prozesse im Maschinenbau entwickelt. Im Gegensatz zu an-
deren Forschungsarbeiten wird die BPMN-Erweiterung systematisch auf Basis einer
Domänen-Ontologie, des BPMN-Erweiterungsmechanismus sowie des Vorgehens von
Stroppi et al. (2011) konstruiert.

6.3 Publication BIBM-2014 57

6.3 Publication BIBM-2014

General Information:

Title: BPMN4CP: Design and Implementation of a BPMN Ex-
tension for Clinical Pathways

Authors: Richard Braun, Hannes Schlieter, Martin Burwitz,
Werner Esswein

Year: 2014
Medium: Zheng, H.J., Dubitzky, W., Hu, X., Hao, J., Berrar,

D.P., Cho, K., Wang, Y., Gilbert, D.R. (Eds.): 2014
IEEE International Conference on Bioinformatics and
Biomedicine (BIBM)

Pages: 9-16
Reference: [27]

Rankings:

VHB-JOURQUAL-3: not ranked
WKWI-2008: not ranked

Contributions of Authors:

Richard Braun: 50% (method, domain analysis, extension design, further
research)

Hannes Schlieter: 25% (introduction and motivation, contributions)
Martin Burwitz: 15% (demonstration, tool implementation)
Werner Esswein: 10% (research conception)

Summary of Contents:

Context: BPMN
Motivation: Modelling Clinical Pathways with BPMN
Input and Method: Extended BPMN extension method, including the BPMN

extension method of Stroppi et al. [48]
Contributions: BPMN extension:

• BPMN4CP v1.0

Enhanced BPMN extension method:

• Detailed equivalence check based on requirements and
derived language concepts

• Explicit specification of the concrete syntax

58 6 Relevant Publications

Abstract:

The Business Process Model and Notation (BPMN) is a standard for business pro-
cess modeling that is very common in professional practice due to its expressive-
ness, the well defined meta model and the possibility of workflow integration. This
research article aims to apply the BPMN for the representation of clinical path-
ways in order to utilize its benefits in the clinical context. BPMN provides a set of
generic process modeling elements what makes it necessary to extend the language
by domain-specific concepts from the field of clinical pathways (e.g., evidence indi-
cators). Therefore, the extension method of Stroppi et al. (2011) was applied and
extended in order to facilitate a systematic design and development. This research
article provides the analysis of requirements and relevant concepts for modeling clin-
ical pathways. Based on a domain ontology, need for extension is identified and the
valid BPMN extension meta model is designed by the construction of a conceptional
domain model and the corresponding BPMN extension model. The evolved exten-
sion BPMN4CP is demonstrated by an example process of wisdom tooth treatment.

6.4 Publication WI-2015 59

6.4 Publication WI-2015

General Information:

Title: Extending a Business Process Modeling Language for
Domain-Specific Adaptation in Healthcare

Authors: Richard Braun, Hannes Schlieter, Martin Burwitz,
Werner Esswein

Year: 2015
Medium: Thomas, O., Teuteberg, F. (Eds.): Smart Enterprise En-

gineering: 12. Internationale Tagung Wirtschaftsinfor-
matik

Pages: 468-481
Reference: [75]

Rankings:

VHB-JOURQUAL-3: C
WKWI-2008: A

Contributions:

Richard Braun: 60% (BPMN extensibility, design of the extension, discus-
sion, further research)

Hannes Schlieter: 20% (introduction and motivation)
Martin Burwitz: 10% (demonstration)
Werner Esswein: 10% (research conception)

Summary of Contents:

Context: BPMN, EMLs
Motivation: Modelling CPs with BPMN and support for decision

about selecting a DSML-based approach or an extension-
based approach

Input and Method: Extended BPMN extension method, including the BPMN
extension method of Stroppi et al. [48]

Contributions: BPMN extension:

• BPMN4CP v1.0

Methodical implications:

• Comparison and criteria for decision support in regard
to DSML or extension

60 6 Relevant Publications

Abstract:

It is often required to provide a modeling language that enables the representation of
domain-specific problems and concepts. Domain-specific modeling approaches can be
applied for that. However, these approaches usually suffer from low dissemination,
missing tool support and high design costs. Thus, it might be more reasonable
to adapt and extend common standard modeling languages. This research article
presents an extension of the common process modeling language BPMN for modeling
clinical pathways in the healthcare sector. The extension is designed methodically
by application of the extension design method of Stroppi et al. (2011), which was
extended regarding to a deeper domain analysis. The domain analysis considers
the design of a domain ontology, requirements analysis as well as an equivalence
check between domain concept and BPMN concepts. Finally, the evolved extension
is compared with the CPmod modeling language of Burwitz et al. (2013) in order
to discuss strengths and limitations.

6.5 Publication CCIS-2015 61

6.5 Publication CCIS-2015

General Information:

Title: Meta Model Extensibility of BPMN: Current Limitations
and Proposed Improvements

Authors: Richard Braun
Year: 2015
Medium: Hammoudi, S., Pires, L.F., Desfray, P., Filipe, J. (Eds.):

Model-Driven Engineering and Software Development -
Third International Conference, MODELSWARD 2015,
Revised Selected Papers

Series: Communications in Computer and Information Science,
Vol. 580

Pages: 230-247
Reference: [59]

Rankings:

VHB-JOURQUAL-3: not ranked
WKWI-2008: not ranked

Contributions:

Richard Braun: 100%

Summary of Contents:

Context: BPMN
Motivation: Critical analysis of BPMN extension mechanism and pro-

vision of design alternatives
Input and Method: Adaptation of extension mechanisms from UML (Profil-

ing) and Software Engineering (Hooking, Plugins, Add-
Ons)

Contributions: Specification of extension mechanisms for BPMN:

• Profiling
• Hooking
• Plugins
• Add-Ons

Meta meta modelling concepts for generic extension de-
sign in MOF on M3 level, e.g.:

• Extension interface
• Extension points
• Hooking generalisations

62 6 Relevant Publications

Abstract:

The Business Process Model and Notation (BPMN) is the prevalent conceptual
modeling language for business process modeling and process analysis. BPMN ben-
efits from its expressiveness and the well-defined meta model, which is defined by
the Meta Object Facility (MOF). The emergence of BPMN entails an increasing
demand for language extensions in order to both benefit from the dissemination
and apposite concepts. Although BPMN is one of very few languages that explicitly
provides capabilities for its extension, the proposed mechanism reveals some short-
comings and inaccuracies concerning model abstractions, specificity and semantical
clarity. A list of improvable aspects is hence provided based on an in-depth anal-
ysis of the extension mechanism. The analysis has a special focus on the abstract
syntax (BPMN meta model). Several techniques for enhanced BPMN extension de-
sign are proclaimed by adapting alternative mechanisms for language extensibility:
Profiling, under specification (hooking) and annotation (plug-ins and add-ons). The
stated mechanisms are partly adapted from other modeling languages (profiling) or
the field of Software Engineering (hooking, plug-ins, add-ons). Each approach is de-
scribed by its core concepts, its application and by some examples. The approaches
are finally compared regarding several criteria.

6.6 Publication MEDI-2015 63

6.6 Publication MEDI-2015

General Information:

Title: Towards an Integrated Method for the Extension of
MOF-Based Modeling Languages

Authors: Richard Braun, Werner Esswein
Year: 2015
Medium: Bellatreche, L., Manolopoulos, Y. (Eds.): Model and

Data Engineering, 5th International Conference MEDI
Series: Lecture Notes in Computer Science, Vol. 9344
Pages: 103-115
Reference: [45]

Rankings:

VHB-JOURQUAL-3: C
WKWI-2008: B

Contributions:

Richard Braun: 90% (introduction and motivation, fundamentals, related
work, requirements, MOF extension capabilities, con-
struction of the extension method, conclusion and further
research)

Werner Esswein: 10% (research conception)

Summary of Contents:

Context: EMLs
Motivation: Extensibility of MOF-based languages and limited exten-

sion capabilities on M3
Input and Method: Adaptation of Profiling from UML
Contributions: Profile-based extension method for MOF-based lan-

guages:

• Abstract syntax (MOF-based Profiles)
• Concrete syntax (DD)
• Integration (MOF-to-DD mapping)

Generic infrastructure for MOF-based extensions on M3:

• Infrastructure on M3
• DD package on M3
• Introduced integration package on M3

64 6 Relevant Publications

Abstract:

During the last years, various MOF-based modeling languages became de-facto stan-
dards in their field of application. Due to their common application and dissemi-
nation the need for extending these languages also increased in order to integrate
domain-specific concepts or facilitate interoperability and tool support. However,
only the minority of MOF-based modeling languages provides an extension mecha-
nism and even those defining one, reveal some syntactical issues (e.g., BPMN). Also
MOF itself does not provide an integrated and consistent extension mechanism. We
therefore proclaim the application of the UML-based profile mechanism for extend-
ing the abstract syntax of MOF-based languages while keeping their original meta
models unaffected. Further, the application of the Diagram Definition (DD) stan-
dard for extending the concrete syntax is outlined and both aspects are integrated.
The research article proposes a generic extension method for MOF-based languages
based on existing concepts and constructs from the MOF environment. In this con-
text, the article also discusses the positions of the Profiles package and the Diagram
Graphics (DG) package within the OMG meta hierarchy.

6.7 Publication CBI-2015 65

6.7 Publication CBI-2015

General Information:

Title: BPMN Extension Profiles – Adapting the Profile Mecha-
nism for Integrated BPMN Extensibility

Authors: Richard Braun
Year: 2015
Medium: 17th IEEE Conference on Business Informatics - Vol-

ume 1
Pages: 133-142
Reference: [42]

Rankings:

VHB-JOURQUAL-3: not ranked
WKWI-2008: B

Contributions:

Richard Braun: 100%

Summary of Contents:

Context: BPMN
Motivation: Structured and well-defined extension method for BPMN

in order to compensate current shortcomings
Input and Method: Demonstration of the MEDI-2015 contribution by instan-

tiation to the BPMN
Contributions: Profile-based extension method for BPMN:

• Implementation of the generic method in BPMN
• Transformation rules for translating a conceptual do-

main model into a BPMN extension profile

Implications for MOF-based EML definitions:

• Well-defined specification of the concrete syntax by
applying DD (e.g. BPMN DG)

Abstract:

BPMN is one of the most prevalent modeling languages within the field of enter-
prise modeling and constitutes as de facto standard for business process modeling.
BPMN provides explicit capabilities for extending the vocabulary of the language.
While a range of BPMN extensions evolved during the last years, only very few of
them conduct the extension mechanism. Instead, the vast majority of extensions

66 6 Relevant Publications

is designed in an ad-hoc manner and lacks in conformity to the BPMN standard,
what hampers interoperability, extension integration and model reuse. We suppose,
that some architectural shortcomings and barriers of the extension mechanism itself
provoke missing application. For instance, BPMN reveals abstraction conflicts and
inaccuracies within the extension design. The extension mechanism also lacks in re-
gard of exactly specifying those elements that are extended. Further, the exchange
of both the concrete syntax and serialized extended model data remains vague. We
therefore present an adaptation of the well-established profile mechanism from the
UML Infrastructure in order to facilitate a straightforward definition of the abstract
syntax for BPMN extensions. Additionally, the definition of the concrete syntax is
supported by an instantiation of OMG’s Diagram Definition (DD) specification in
order to provide an integrated extension definition and exchange specification. The
migration of existing, standard-conform BPMN extensions is outlined by a transfor-
mation process.

7

Introduction

7.1 State of Affairs

EML extensions can have different reasons, as outlined in Sect. 5. The semantically
driven need for language extension hence requires the definition and application of
extension mechanisms in order to implement the required adaptations appropriately.
Currently, there is no commonly used set of well-specified extension mechanisms.
There is a general lack of syntax repositories while dedicated research on extensible
syntax architectures in the context of EM is missing [28]. Nevertheless, a few works
can be found in the general area of conceptual modelling.

Atkinson & Kühne [50] motivate the issue of language customisation in general
and provide an introduction and discussion of different mechanisms, namely Stereo-
typing, Customisation, Domain-Specific Modelling, and Multilevel Modelling. The
authors focus rather on engineering-oriented modelling in the context of UML and
do not cover the peculiarities of EM. Further, invasive techniques like meta-model
customisation or the definition of DSMLs are included, which is not in the scope of
this work due to the criteria of non-invasiveness (cf. Sect. 4.3.1).

Pardillo [31] provides a statistical analysis of conducted UML extensions and
found that especially Classes, Properties, and Associations are extended by profiles.
Due to the high level of domain-independence in UML and the intentionally under-
specified character of Classes in UML, most profile-based extensions actually serve
as de facto DSMLs (cf. [147, 154]).

Langer et al. [155] provide an approach for the generic application of Profiling
to modelling languages in the context of MOF-based languages. The authors there-
fore introduce EMF Profiles as lightweight extension means for MOF-based mod-
elling languages. This work strongly focusses on the EMF modelling environment
[155, p. 4] and requires therefore a dedicated multilevel architecture within EMF,
since the profile technique is not located on the meta meta model level (cf. [42, 156]).
Moreover, the approach is rather technical-oriented and does not cover the specific
features of the EM domain.

The same issue can be observed in the field of mostly textual domain-specific
languages (e.g. [157]), which provide sophisticated mechanisms for extending the
abstract syntax, but no appropriate means for perspectives, diagrams, or semantics.

The discussed papers solely focus on syntactical analysis and omit a deeper anal-
ysis of the underlying context and modelling purpose, which are significant topics
for EMLs.

68 7 Introduction

7.2 Classification and Specification

The presented state of affairs leads to the unrewarding situation that EML exten-
sions are either implemented in an ad hoc manner or within rather simple and
hence semantically limited extension mechanisms [59, 28]. Implementations efforts
are therefore expensive and the level of reuse is rather low. With respect to the over-
all aim of providing methodical support for extension design, it is hence extremely
important to provide (1) a repository of applicable extension mechanisms and (2)
support the integration between extension needs and those mechanisms in order to
facilitate straightforward extension design.

The intention behind the syntax repository is the guided selection of mecha-
nisms within a potential extension situation. It is therefore advisable to elaborate
different criteria in order to characterise mechanisms, differentiate them, and es-
timate respective technical consequences within the (meta) meta modelling archi-
tecture. Below, the set of elaborated criteria for this purpose is presented. Sin-
gle criteria are thereby adapted from the field of Software Engineering [158, 159].

User Perspective (Semantics and Pragmatics – Outside View):

• General Scope: Characteristic idea and scope of the mechanism; consideration of
prevailing authors or meta modelling environments.

• Dissemination and Occurrence: Assessment of current dissemination of the exten-
sion technique indicating a certain level of relevance and prominence in existing
modelling languages.

• Pragmatics : Useful application purposes and typical application scenarios.
• Appropriate Extension Type: For which extension types and language extension

types could the mechanism be applied and used?
• Main Benefits : Summary of main benefits in comparison to alternative ap-

proaches.
• Limitations and Problems : Possible limitations in regard to its application and

occurring problems.

Technical Perspective (Language Specification – Inside View):
Syntactical Macro View:

• Invasiveness and Architectural Predesign: Level of invasiveness in the sense of
architectural preparations within the original meta model or in regard to the
applied meta modelling language.

• Implementation and Application: Condensed process of extension definition and
application (adapted from [158, 159]).

• Multiple Application: Possible or explicitly intended combination with other
mechanisms and multiple applications with extensions of the same mechanisms.

Syntactical Mirco View:

• Extension: Type of meta modelling constructs that can be extended.
• Modularity : Degree of modularity in regard to a potentially isolated instantiation

of the extension. Refers to the principles of high cohesion, low coupling and
separation of concern [160, 26].

7.2 Classification and Specification 69

• Inner Complexity and Design Freedom: Level of design freedom and opportunity
to define complex extension structures. This refers to the set of possibly usable
and applicable meta modelling constructs.

• Interface Structure: Extension interface definition within the original meta model
(if required).

Consequences for Meta Modelling and Meta Meta Modelling:

• Redesign Consequences (if required): As investigated, very few EMLs provide
dedicated extension mechanisms and EMLs providing one reveal different short-
comings [28, 39, 59]. It is therefore necessary to consider potential modifications
of the underlying meta model in order to conduct a mechanism. Such modifi-
cations may comprise alterations on the meta meta model level. This criterion
therefore derives respective consequences and changes for the BPMN modelling
environment.

• Meta Meta Modelling : If required, particular consequences for meta modelling
languages are summarised based on the elaborations within the criterion before.

The criteria catalogue is divided into a user-driven perspective representing the
outside view on a mechanism and a technical perspective indicating detailed syntac-
tical characteristics and consequences. Each mechanism is generally analysed and
discussed in the Appendix. Then, concrete consequences in regard to the BPMN
and the underlying meta modelling language MOF are briefly considered for reasons
of practical applicability.

8

Mechanisms

Below, different extension mechanisms are presented, classified, and semantically
specified in order to provide a black-box-like view on each mechanism for a pur-
poseful application. The presented mechanisms and thus the entire repository are
results of an analogy-driven adaptation from different fields like Software Engineer-
ing (e.g. Decorators [161]) or Reference Modelling [59]. Also preliminary works
from implementation-oriented conceptual modelling are examined and adapted
[42, 59, 161].

First, different patterns and principles from Software Engineering are adapted
in order to provide meta model annotations. In particular, Decorators (Sect. 8.1.2),
Plugins (Sect. 8.1.3), Aspects (Sect. 8.1.4), and Add-Ons (Sect. 8.1.5) are reflected
and discussed. Since these approaches rather address the run-time level of programs,
a straightforward one-to-one adaptation is less useful, as we rather focus on the
definition level, i.e. meta models. Nevertheless, aspects like non-invasiveness, run-
time extensibility, and separation of concern (e.g. [113, 115]) seem to be promising
for conceptual adaptation to the meta model level (cf. [45, 156]).

Second, the Software Engineering principle of Hooking as well as techniques
from Reference Modelling are adapted and amalgamated in terms of explicit under-
specifications in meta models (Sect. 8.2).

Third, the generic adaptation of the well-known Profiling technique from UML is
discussed in Sect. 8.3. Profiling, more precisely the application of Stereotypes, is a
very popular lightweight mechanism from UML indicating a situational specification
of GPMLs that can be transferred to other generic modelling languages [147, 31, 42,
45, 156].

Fourth, Sect. 8.4 analyses the novel Multilevel Modelling approach as a promising
architecture for flexible EML extensions across different classification levels [162, 163,
123]. Due to the novelty of the multilevel paradigm itself, several fundamentals are
given before.

Fifth, the structured application of the basic Generalisation/Specialisation prin-
ciple for EML extensions is motivated in Sect. 8.5.

In contrast to the set of primarily syntactical mechanisms, Sect. 8.6 finally intro-
duces semantic extension techniques which solely address semantic extensions, i.e.
additional semantic mappings and additional semantic constructs.

72 8 Mechanisms

8.1 Annotations

8.1.1 Leveraging Principles from Software Engineering

The consideration of unforeseen programme extensions is perceived as an impor-
tant but non-trivial task within Software Engineering [113, 115]. An extensible pro-
gramme (or software in a wider sense) is defined as a programme that can be adapted
to new tasks without changing the core source code [114]. An extensible programme
should provide explicit concepts and mechanisms for customisation, on the one side,
but needs to ensure high cohesion within the extension and low coupling between
extension and host software, on the other side [160, 164]. Extensions should not be
invasive in terms of changing the original host system [115]. We therefore argue to
conceptually adapt extension patterns and principles from Software Engineering for
the derivation of applicable syntactic extension mechanisms. Consequently, flexible
extensions should not be applied to the model layer (by analogy with program code),
but to the meta model layer in order to facilitate flexible EML extensions.

In addition to the below discussed approaches, Software Engineering provides
further techniques like the Observer Pattern that can be used for execution of ac-
tions of dependent instances that are triggered by state changes of other instances
(cf. [165]). However, behavioural patterns like the Observer Pattern are rather useful
for concrete technical implementations on code level and less useful for conceptual
EML extensions as outlined in Sect. 5.2.

8.1.2 Decorators

Motivation

The decorator pattern is a structural pattern for the situational annotation and re-
leasing of capabilities to or from components at runtime [165]. It is motivated by the
problem of realising structures that have a large amount of combinatorial variants
(e.g. products with multiple options). Implementing those definitions in complex and
large-scale generalisation hierarchies is inflexible, partly redundant, and difficult to
manage. The decorator pattern therefore aims to ensure that the change of some
features at runtime does not require the change of the entire instance at run time.
It rather prefers simple binding and releasing of additional features [165]. This is
realised by wrapping a component with respectively defined Decorators, enabling
a flexible annotatable gateway in front of the actual component. Subclasses of the
Decorator can then be used for the injection of additional capabilities [165]. Deco-
rators hence facilitate the localised, situational, and perhaps multiple extensions of
components.

Adaptation and Application

Decorators are conceptually adapted in the sense of situational annotations of
context-specific or domain-specific attributes and features of meta classes. In con-
trast to the below mentioned Aspects, these additional features are in the con-
textual scope of the area of discourse and can be added to multiple meta classes.
For instance, Decorators can be used for the definition of particular roles, complex

8.1 Annotations 73

classifications, or complex hierarchies. The straightforward binding and releasing of
Decorators might be further useful for frequent or dynamic extensions in regard to
a special need for situational adaptability.

Further specification of the mechanism is provided in the Appendix (Sect. 1.1.1).

8.1.3 Plugins

Motivation

Plugins are functional extensions of a original system through explicitly defined
interfaces [166, 167]. Plugins constitute a supplementing means for the solution of
specific business problems within a rather generic environment [167]. In contrast to
the most alternative extension means, Plugins can exist on their own, implicating
a low level of host dependency and a rather complex inner architecture. A Plugin
interface is realised by the definition of several extension points. Extension points
in programmes can be understood as dedicated code spots, where the executing
programme asks a central registration unit for respectively installed plug-ins, whose
code has to be executed.

Adaptation and Application

A meta model Plugin is understood as consistent, coherent, and conceivably inde-
pendent model that enhances the conceptual expressiveness of an EML. Plugins are
therefore useful for enhancement or augmentation. In the strongest form, Plugins
serve for the annotation of complex meta models, namely other EML meta models
(referring to [24]). In contrast to other authors from the field of Software Engineer-
ing and also in contrast to some previous work (e.g. [59]), we explicitly exclude any
mandatory Plugin extensions, i.e. associations from original meta classes to extended
meta classes with a lower cardinality value of at least one or any kind of introduced
generalisations (cf. Sect. 8.5).

The excessive application of Plugins might further lead to an over-complication
of the original meta model. This could be avoided by the definition of respectively
extensible meta model spots (extension spots, cf. [45]). It is therefore suitable to
explicitly specify EML interface parts and potential Plugins must conform to these
interfaces. Respective interface design could be facilitated by the consideration of
techniques from the field of meta model integration, for instance [168, 169, 170].

Further specification of the mechanism is provided in the Appendix (Sect. 1.1.2).

8.1.4 Aspects

Motivation

Aspect-oriented programming (AOP) serves as an innovative technique for the ex-
tension of software [171, 128]. AOP intends for the usage of generic functionalities
which exist independently of a class structure or program hierarchy. Such function-
alities are referred to as cross-cutting concerns (e.g. logging or transaction control
mechanisms). These functions are required in different parts of a programme, but an
integration of those analytical functions to the class structure of the business logic

74 8 Mechanisms

would cause class overloading, complication, and violation of separation of concern.
AOP therefore aims to identify and separate such functions in order to maintain
them in a central spot [171, 128]. Aspects represent capabilities that are required by
multiple components (cf. all technical details in [171]). While Decorators primarily
support flexible representations of the addressed area of discourse, Aspects rather
focus on analytical, domain-independent (cross-cutting) concerns. Their actual ap-
plication focus hence differs.

Adaptation and Application

Cross-cutting concerns are adapted as domain-unspecific model information, which
are useful for several parts of the meta model (e.g. for generic model operations). An
Aspect is thus understood as a rather complex extension that contains particular
extension classes, which could shape a separately existing module. Aspects can be
referenced by multiple original meta classes, which allows the combination of mul-
tiple additional concepts to one meta class. On a technical level, the annotation of
Aspects is minimal and requires very few pre-implementations in an EML [59].

Aspects constitute a special type of Plugin due to three main reasons. First,
Aspects extend exactly one original meta element (usually classes). Second, Aspects
can be applied to multiple meta classes due to their model-across, cross-cutting
features (which serves as the third reason).

Further specification of the mechanism is provided in the Appendix (Sect. 1.1.3).

8.1.5 Add-Ons

Motivation

Add-ons are similar to Plugins and Aspects, but differentiate from both types in
some aspects. Add-ons are extensions with limited capabilities that support the very
selective extension of an original. Add-ons strictly depend on the original host system
and cannot be usefully applied on their own.

Adaptation and Application

Add-ons are therefore adapted for the punctual and limited extension of original
meta model elements on the same level of abstraction and specifity. Add-ons are
therefore primarily applied for reasons of enhancement in order to provide addi-
tional attributes or detailed information within one area of discourse. Add-ons are
proposed as primarily incremental, spotty, and attribute-wise extensions of original
meta classes. The definition of multiple classes spanning extension interfaces remains
therefore optional.

Further specification of the mechanism is provided in the Appendix (Sect. 1.1.4).

8.2 Hooking (Under-Specification)

8.2.1 Motivation

The concept of Hooking is understood as intentionally leaving parts of a programme
open in order to define and specify those parts later in accordance with specific

8.3 Profiling and Stereotypes 75

requirements. Hooks are alternatively referred to as extension points [172] or hot
spots [128], but the terminology hooking is used below for reasons of clarity and
in dissociation of comparable approaches. The implementation of Hooks is usually
rather optional, which indicates that software remains executable if single Hooks are
not filled or specified (referring to [128]).

8.2.2 Adaptation and Application

Hooking is adapted in the sense of providing a certain level of under-specification
in some meta model parts for later context-specific concretisation. This intention is
generally similar to the Reference Modelling approach, especially to the instantiation
technique and the specification technique [173, 174]. Instantiation is understood
as defining explicit placeholders, which are expected to be specified in accordance
with valid placeholder values [173]. Specification is understood as concretisation or
refinement of less detailed model elements [173]. We therefore differentiate two types
of hooking: Specification and Placeholders.

Hooking by Specification represents meta model classes that are under-
specified on purpose. This might be the case in GEMLs or PSMLs. The concretisa-
tion refers to the creation of sub-types with specific attributes indicating a higher
level of specifity. The architectural effort on this type of hooking is low.

Hooking by Placeholders refers to the specification of meta model parts which
need to be specified on the same level of specifity. The specific structure of some
meta models parts is thereby left open and requires detailing on the same level
of abstraction. This hooking principle requires an architectural environment in the
original meta model in order to define those parts which are changeable, namely
hot spots and frozen spots. Language designers can therefore limit the degree of
extensibility and adaptability of an EML. It is further important to state that the
degree of under-specification can differ [45].

In case of Hooking by Specification, a concerned meta model element can still be
instantiable (with the consequences of a broader semantic variance, for instance).
Depending on the extent of the placeholder, Hooking usually requires a mandatory
pre-specification, as the original meta models might not be suitable for instantiation.

Further specification of the mechanism is provided in the Appendix (Sect. 1.1.5).

8.3 Profiling and Stereotypes

8.3.1 Motivation

Profiling is a lightweight extension technique for the definition of domain-specific
variants of the general-purpose modelling language UML [31]. Profiles are composed
of Stereotypes, which extend respectively referred host meta classes by the assign-
ment of Tag Definitions (Attributes) and OCL-based constraints [106, pp. 14, 175].
Semantically, a stereotype-based annotation of additional characteristics should not
contradict or redefine original class properties. Profiling therefore serves as a non-
invasive extension mechanism that facilitates multiple assignments of additional
properties for domain- or context-specific concretisation. Stereotypes heavily rely
on the host meta classes and cannot exist on their own.

76 8 Mechanisms

8.3.2 Adaptation and Application

The Profiling mechanisms can be applied for the concretisation of GEMLs and
PSMLs in order to concretise these languages for particularities of specific domains
[161]. The EML meta model is thereby specified and becomes more domain-specific
in some parts. Profiling is established as a widely used mechanism for UML exten-
sions as demonstrated in Pardillo [31]. Due to the generic character of UML, its
Profiles can often be interpreted as de-facto DSMLs [147]. Despite the prominence
of Profiling, very few authors analyse its generic application for other modelling
languages. Langer et al. [155] introduce a generic profile-based approach in the
EMF environment in order to facilitate operations within Model-Driven Engineer-
ing. Braun & Esswein [156] motivate a generic application of Profiling within the
MOF on the meta meta model layer and outline the multi-facetted application of
the underlying non-invasive annotation principle to different meta model types (e.g.
views, perspectives and properties). Braun [42] demonstrates the applicability of
this approach within BPMN as well as a possible integration into the BPMN syntax
extension method of Stroppi et al. [48].

Further specification of the mechanism is provided in the Appendix (Sect. 1.1.6).

8.4 Multilevel Modelling

The above presented extension mechanisms rely on the traditional four-level archi-
tecture and particular extensions are applied to the meta model level. Although
respective specialisations punctually cause lower levels of abstractions and may in-
dicate de facto intermediate levels with a certain conceptual overloading (cf. [59]),
each mechanism is purposefully located on the same meta modelling level as the
original meta model. However, limitation to only one classification level seems to be
insufficient for EM in general and with regard to the definition of EML accents on
lower classification levels in particular. Respective shortcomings of the commonly
applied fixed four-level architecture are therefore stated below by exposing major
concerns and outlining related solution attempts within the novel Multilevel Mod-
elling paradigm [162, 123]. With respect to the stated novelty and the lack of liter-
ature on Multilevel Modelling in the context of EML extensions, the approach will
be discussed in more detail than the already introduced mechanisms.

8.4.1 Motivation: Issues within Fixed Level Architectures

Rigid Classification Levels Often Contradict Ontological Classification
Levels

Although the concept of meta modelling is generally defined in a generic manner
[175], most meta modelling approaches follow a fixed four-level architecture that
is composed of a meta meta modelling level (M3), a meta modelling level (M2),
a model level (M1), and the level of the area of discourse or respective technical
instantiations (M0). The origin of this architecture lies in the structure of the UML
and the MOF [106, p. 20]. MOF is the meta modelling language of the OMG and
hence also responsible for the definition of EMLs like BPMN. Nevertheless, it has

8.4 Multilevel Modelling 77

to be stated that such rigid classification architectures reveal several shortcomings
in the context of EM, as the real world and especially the domain of enterprises
cannot be classified in four levels per se [123, p. 322], [163, p. 743]. Instead, flexible
classification levels are required in some cases due to the complexity and variety of
EM-related concepts and the varying number of classification levels [176, p. 196].
Frank [123] uses the prominent examples of product types and products variants
for the demonstration of the inherent ambivalence and flexibility of classification in
EM [123, p. 330]. Required classification capabilities are not provided by traditional
meta modelling approaches (referring to [176]), which merely focus on the relation
between classes and instances. This might be expedient for programming tasks, but
partly insufficient for conceptualising and modelling IS [177, p. 5]. Particularly re-
quired multiple classification sets are therefore often implemented with conceptually
unsatisfying workarounds, e.g. by overloading single levels [163, p. 754] or defining
de facto intermediate levels combining abstraction characteristics from two levels
(cf. [39]). The reached flattening within one level of classification is conceptually
questionable, error-prone, and lacks in clarity. It should therefore be replaced by
flexible language architectures.

Level-Skipping Instantiation and Dichotomy between Specialisation and
Instantiation

A rigid dichotomy between specialisation and instantiation is questionable in regard
to the definition of flexible level architectures, e.g. for variants of DSMLs [123,
p. 351]. Instead, it is promising to specify level-spanning features and properties in
order to enable the instantiation of class features from high abstraction layers on
lower abstraction levels [178]. This deferred instantiation of some constructs can be
realised by Powertypes [179, 180, 60], Clabjects with respective Potencies [163], or
Intrinsic Features, which enable delayed, layer-skipping instantiation and selective
specialisation of attributes, operations and associations [60].

Mitigating the Dichotomy Between GPMLs and DSMLs

GPMLs and PSMLs are rather generic and semantically unspecific, which allows cer-
tain room for interpretation of many constructs. On the other side, these languages
benefit from their high level of reusability and dissemination across domains and
industries. In contrast, DSMLs naturally have a higher level of specifity in order to
match particular needs adequately [25]. This determined dichotomy between both
poles seems to be impractical, since the analysis of enterprises and IS both requires
language concepts that are applicable and hence reusable across different domains as
well as domain-specific or organisation-specific concepts [163, p. 753], [123, p. 321].
The sheer number and diversity of observed EML extensions amplify this assump-
tion and require an investigation of appropriate domain meta classes or comparable
concepts that satisfy both needs.

8.4.2 Existing Multilevel Modelling Approaches

Flexible Meta-Modelling and Execution Language (FMMLx): FMMLx
stands for a multi-level architecture for the flexible and fine-graded definition of

78 8 Mechanisms

different types of DSMLs (e.g. Reference DSMLs, Local DSMLs, Enterprise DSMLs
[123]). The approach is motivated by reusing rather generic top-level languages and
enables their partial specification according to organisations, domains, or projects
that require semantically highly specific concepts [123, p. 336]. Therefore, the Flexi-
ble Meta-Modelling and Execution Language (FMMLx) is presented. The approach
bases on the following pillars: A flexible number of classification layers, no strict
separation between classification levels and a relaxation of the rigid dichotomy be-
tween classification and specialisation. As mentioned above, Intrinsic Features are
proposed as essential language concepts for this purpose. In contrast to Powertypes
and deep classification (cf. [163]), Intrinsic Features comprise not only attributes,
but also associations and operations. It is further possible to mark an entire class
as intrinsic, which means that all its features (attributes, operations, associations)
are intrinsic, too. Each feature can be annotated with a particular specification level
in order to support the deferred (or delayed) instantiation on lower classification
levels (similar to the Potentcy of Clabjects, for instance). Hence, Intrinsic Features
combine characteristics from instantiation and specification [123, p. 334]. Besides
the novel conceptual proposal, FMMLx further facilitates seamless integration be-
tween models and code and supports the integrated derivation of domain-specific
programming languages [123, p. 326]. FMMLx slightly adapts the Executable Meta-
Modelling Facility (XMF) of Clark et al. [181] in order to implement Multilevel
Modelling technically and facilitate language modifications and extensions at run-
time.

Orthogonal Classification Architecture (OCA): Atkinson et al. [176]
introduce an orthogonal language architecture that enables the differentiation be-
tween linguistic classification (vertical, between classification levels) and ontologi-
cal classification (horizontal, within one classification level [182]). Classes therefore
function both as classes and objects (referred as Clabjects with a specific Potency
[176, p. 197]). In contrast to the FMMLx approach, Atkinson et al. [176] primar-
ily address multiple classifications within the rigid four-layer architecture, aiming
to provide flexible modelling tools that enable run-time alterations of the underly-
ing language. This is motivated by cumbersome, time-consuming, and error-prone
alterations in current modelling tools and the uniform and level-agnostic kind of
multilevel modelling should remedy these shortcomings [176, p. 195]. However, the
differentiation between linguistic and ontological classification levels is at least de-
batable, as each “ontological” concept requires a linguistic representation [177, p. 13].
We therefore prefer FMMLx to OCA and will outline its conceptual adaptation for
the purpose of EML extensions below.

8.4.3 Core Question: Specialisation or Instantiation

The above introduced extension mechanisms markedly differ from Multilevel Mod-
elling in regard to the affected classification levels. All presented mechanisms are
more or less simple annotations of additional meta classes; either as simple spe-
cialisations, highly dependent property-like annotations indicating some kind of de-
facto specialisations (Profiling), or type annotations with differing inner complexity
(Aspects, Add-Ons, Plugins). The classification level (namely M2 within the MOF
architecture) remains fixed. With regard to the introduced EML extension frame-

8.4 Multilevel Modelling 79

work, such fixation seems to be inappropriate for some extension purposes and more
flexibility in EMLs is generally needed as discussed above.

Adapting Multilevel Modelling as extension techniques causes the precise differ-
entiation between specialisation and instantiation in order to find an appropriate
measure for creating additional classification levels. However, clear differentiation
between specialisation and instantiation is often only possible in software-oriented
modelling and becomes demanding in regard to meta modelling and language engi-
neering. This is mainly caused by the fact that both types are usually referred to
as “is a” relations in natural language and underlying conceptual peculiarities are
difficult to describe and, hence, difficult to delineate [177, p. 1].

It is therefore essential to basically analyse the difference between classifica-
tion/instantiation and specialisation/generalisation, especially in regard to the rele-
vant area of discourse that is not limited to its representation in a (software) system
with only two technical classification levels. It is hence promising to derive respective
guidelines in order to methodically support the selection of respective mechanisms.
Frank [177] elaborates detailed characteristics of both types and from scratch and
proposes some guidelines for the differentiation between them in language engineer-
ing. The main contributions of his paper are excerpted below with respect to the
prospectively designed extension method.

Aspect Generalisation/Specialisation Classification/Instantiation

General aspects
[177, p. 3]

A is superclass, B is subclass C is a class

A and B are classes D is an instance (i.e. not a class!)

Substitutability : Each instance of A
can be replaced by an instance of B
without notice (compatibility, keeping
system integrity)

Instances of D are not possible, since D
is represented as instance

Degree of determina-
tion

Not determined : Properties can be
added (monotonic extension through
subclasses, A specifies only a part of
the properties of B)

Determined : A particular instance must
conform to the set of valid instances
that is defined by the class (C specifies
all properties of D)

Concepts in logic Subordination Subsumption

Reusing characteris-
tics

Inheritance Not possible

Definition of special
characteristics

Additional class properties Instantiation of class features and class
properties

Table 8.1. Comparison of generalisation/specialisation and classification/instantiation

Table 8.1 summarises the main differences between both types. It is further impor-
tant to become aware of the different understanding of the relation between classes
and instances in logic (based on set theory) and programming, as it motivates deep
classification and, hence, Multilevel Modelling to a certain degree [177, p. 5].

In logic, a class is defined extensionally, i.e. the extension (set) of potential in-
stances of a class. Instantiation is then rather understood as selecting one instance
that fulfils particular predicates. This implicates that one instance can be valid to
different predicate sets and hence be instantiated by multiple classes. While this is
highly flexible, it is difficult in regard to abstraction quality and system analysis.
In programming, a class is defined intentionally, i.e. as kind of a template with

80 8 Mechanisms

pre-defined properties. Instances are then created from this template and implic-
itly conform to the intended and expected property ranges. However, an instance
can only be part of the instance set of exactly one class, which in turn requires
redundancy and the creation of artificial class structures [177, p. 5].

Based on the stated elaborations, Frank [177] attempts a three-step approach for
the differentiation between generalisation and classification. At first, it is necessary
to specify all properties of the meta classes which are under investigation [177, p. 14].
Thereby, the type of each property has to be determined according to Table 8.2 in
order to analyse whether a property is inherited or instantiated from a particular
meta class [177, p. 15].

Property Type Description

Class feature Characterisations of a class that cannot be applied to any instance.
Class features describe a particular inherent state of a class that
is not transferable to instances. Class features can be divided into
life-cycle features and derivable features.

– Life-cycle features E.g. class name, creation date etc.

– Derivable features Depend on the corresponding set of instances (e.g. number of in-
stances).

Class properties Characterise and differentiate specific instances. They are used for
the intentional definition of a class and a particular class property
corresponds to a feature of a particular instance.

Class invariants Constraints that apply to class properties. Invariants are valid for all
instances and do not differentiate between them. A particular feature
value must conform to these “globally defined” constraints.

Table 8.2. Property types

Two aspects mainly determine the differentiation between instantiation and spe-
cialisation: The way of reusing characteristics in a concretisation as well as the
definition of specific characterisations in a concretisation [177, p. 19ff]. This leads
to the set of guidelines indicating criteria-based differentiation that is outlined in
Table 8.3.

Request for Concretisation Implication

Representation of class features (life-cycle and derived) Instantiation only

Reuse of properties as they are Specialisation only

Specification of further characteristics

– Arbitrary Both

– Restricted (determination, cf. Table 8.1) Instantiation only

Table 8.3. Requests for concretisation

8.4.4 Principle of Adaptation for EML Extensions

Despite the missing consideration in literature, the adaptation of the multilevel
paradigm for EML extensions is indeed very promising, especially in regard to the
domain-specificity dimension. By definition, GEMLs and PSMLs provide generic
and particularly under-specified meta classes, which are promising in terms of
domain-specific concretisation, either per generalisation/specialisation or classifica-
tion/instantiation. In the context of BPMN, all process-related classes (e.g. Task,

8.4 Multilevel Modelling 81

Event, Lanes) as well as under-specified classes (e.g. Data Objects, Participants, or
Resources) can be perceived as generic and semantically under-specified. A particu-
lar instantiation of those classes to domain-specific meta classes on a lower level of
classification can enable an injection of specific domain classes that can be instan-
tiated again.

8.4.5 Adaptation Procedure

Multilevel Modelling should be used as an extension approach for the integration of
(meta) classes that are instances of meta classes from the original meta model, on
the one side, and meta classes for instances on the other side as well. Those instances
are thereby perceived as located on the same classification level as the instances of
original meta classes. Specifically, the application of the multilevel paradigm for
EML extensions should be conducted as follows. At first, respective candidates for
multilevel meta classes have to be identified. These candidates then have to be
assessed in terms of their multilevel requirements. If these candidates are perceived
as multilevel meta classes, then respective syntactical implementations have to be
applied. Below, the procedure is discussed in detail.

Step 1 – Candidate Meta Classes: The initial analysis of the extension de-
mand brings out several types of language extension. From scratch, the following
types serve as candidates for Multilevel Modelling:

1. Extension meta classes that constitute as specialisations of original meta classes.
2. Instances of original meta classes that may own type characteristics, too.
3. Somehow determined extension constructs that need further investigation in or-

der to specify it as subclass or instance.

It is then necessary to conduct an analysis of the extension construct property
types in order to elaborate a treatment as multilevel meta class within the extension.
The following scenarios are thinkable:

• An extension construct can be classified as specialisation as well as instantiation
to a certain degree. Properties are therefore both instantiated and reused from
an original meta class.

• An extension construct serves as instantiation of an original meta class, but
provides also type characteristics for further instantiation.

• An extension construct serves as specialisation of an original meta class and
determines further instantiation of classes that are perceived as types, probably
indicating delayed instantiation of particular properties, for instance.

Step 2 – Estimate Multilevel Capabilities: The particular assessment as
instance of an original meta class is supported by the following criteria:

• On the level of the original meta class, some class features are represented (i.e.
life-cycle class features and derived class features).

• Some or all properties of the original meta class are not simply re-used (indicator
for specialisation), but rather instantiated.

• Determination and restriction: Instance appears as valid set of property values
of an original meta class (i.e. within the valid, intended and determined range).

82 8 Mechanisms

An assessment of both types of multilevel candidates in regard to their meta class
capabilities should further be applied according to Frank [177] and the discussed
criteria in Sect. 8.4.3.

Step 3 – Conduct Syntactical Implementations: After identifying multilevel
classes, it is then necessary to specify their characteristics and especially define In-
trinsic Features as an annotation of original meta classes as well within the extension
constructs. The latter aspect requires a forethought of the intended further levels
of classification, thereby causing a consideration of instantiation as specialisation as
discussed above.

Further specification of the mechanism is provided in the Appendix (Sect. 1.1.7).

8.4.6 Required Redesign

Self-evidently, the integration of Multilevel Modelling in existing MOF-based lan-
guages requires pervasive architectural modifications, since both BPMN and MOF
are not capable of multilevel features. Respective concepts are entirely missing. Es-
pecially two major changes are therefore required (referring to [123, p. 333]):

• Flexible, recursive language architecture: The MOF architecture needs to be re-
vised in regard to flexible classification levels and deferred instantiation. This im-
plicates the abandonment of the strict separation of levels. For instance, FMMLx
enables the creation of (meta) models (in the sense of language defining models)
that are composed of classes from different classification levels.

• It is further necessary to implement Intrinsic Features in order to enable the
deferred instantiation of properties or entire classes (class methods are not con-
sidered in detail).

Procedurally, the original meta model as well as the entire modelling environ-
ment need to be prepared for multilevel-based extensions. More specifically, meta
classes from BPMN need to be marked with Intrinsic Features and potential ex-
tension classes need to be assessed in regard to instantiation/classification. Accord-
ingly, respective properties or entire classes have to be annotated by an “is intrinsic”
property as well as the intended level of instantiation. Afterwards, additional clas-
sification levels need to be integrated through partial specialisation of the original
meta model, leading to a “multilevelled” meta model that can be instantiated in
order to apply the extended BPMN meta model.

8.4.7 Demarcation from Other Approaches and Limitations

In regard to the Profiling techniques, extension by Multilevel Modelling differs in
terms of the fact that Profiling enables not real generalisation/specialisation but
rather an attributive annotation of meta classes. Stereotypes allow semantic ex-
tensions through additional properties (more specifically, additional features during
instantiation), but no real specialisation in the sense of dedicated and independent
types. Additionally, Multilevel Modelling also differs from all other techniques in
regard to the unique capability of creating additional classification levels and break-
ing the fixed four level architecture. Therefore, it is essentially important to assess

8.5 Simple Generalisation/Specialisation 83

whether instantiation/classification or generalisation/specialisation is more appro-
priate (cf. Sect. 8.4.3).

Multilevel Modelling represents a novel and breakthrough modelling paradigm
that is accompanied by major conceptual and, hence, technical innovations and
modifications. Frank [123] therefore emphasises requirements for modelling tools
in particular. Massive re-engineering of existing meta modelling languages like MOF
is required for the representation of multilevel concepts. This provokes the question
whether it is more feasible to integrate BPMN in FMMLx first, as proposals for MOF
revisions are hardly implementable. An extension by Multilevel Modelling further
requires an annotation of Intrinsic Features to the original meta model, which could
implicate semantic redefinitions.

Additionally, there are some fundamental issues in regard to Multilevel Modelling.
For instance, the substitution principle is broken in FMML and further research is
needed in order to find the right number of classification levels.

8.4.8 Pragmatics

Basically, the principle of flexible or localised DSML architectures PSMLs can be
adapted in order to create vertical refinements of the vocabulary of GEMLs and
PSMLs, which enables the creation of EML accents and EML dialects for a partic-
ular domain (industry), enterprise, project, or situation. Also, extensions at model
runtime are possible (cf. [123]). Multilevel Modelling hence serves as an opportunity
to reduce and potentially solve identified issues with intermediate layers in terms of
language dialect building (cf. [40, 39]). Further, it can be used for enhancement and
augmentation on lower level of classifications, i.e. if additional modelling levels are
extended with respective classes.

8.5 Simple Generalisation/Specialisation

8.5.1 Motivation

The elaboration of Multilevel Modelling reveals the importance of differing general-
isation/specialisation and classification/instantiation for extension situations. Mul-
tilevel Modelling has been adapted as a convenient method for the implementation
of classification/instantiation extensions in EMLs. Contrarily, a basic generalisa-
tion/specialisation cannot be found, although Profiling serves as a means for de
facto implementations of subclasses [42]. However, neither the definition of real
subclasses nor multiple generalisations is possible, as Stereotypes rather provide
lightweight extension means on the attribute level. Annotation approaches as well
as hooking rather support the implementation of additional classes and do not fo-
cus on specialisations. Multilevel Modelling provides specialisations implicitly, but
has a more sophisticated focus. We therefore proclaim the application of a simple
generalisation/specialisation technique in order to specify generic meta classes on
the same level of classification. Several BPMN extensions already make use of this
fundamental specification technique (e.g. [33]).

84 8 Mechanisms

8.5.2 Architecture and Application

The general implementation is rather simple: An extension class specializes an orig-
inal meta class in accordance with an elaboration of criteria from Sect. 4.3.1. Con-
sequently, the properties of the superclass are reused in the subclass and extended
by additional properties for extension. Three types of extensions are divided:

Punctual Specialisations (Type 1): This type refers to the introduction of
perhaps multiple subclasses of original meta classes. Respective subclasses own ad-
ditional properties but no references to other types. Explicitly, multiple subclasses,
i.e. subsubclasses, are feasible.

Punctual-Connected Specialisations (Type 2): This type corresponds to
the first type, but the introduced subclasses may own relations to other extension
subclasses. Consequently, the level of dependency and complexity is higher.

Hybrid of Specialisation and Annotation (Type 3): This type corresponds
to the second type, but the stated relations may also refer to original meta classes
implicating partial annotations. Due to the proclaimed need of non-invasiveness,
these references may not be mandatory (cf. Sect. 8.1).

Further specification of the mechanism is provided in the Appendix (Sect. 1.1.8).

8.5.3 Pragmatics

This basal extension type can be primarily used for enhancement in the sense of
refining generic concepts. It can be also applied in order to realise specialisations in
the domain-specificity extension. In both cases, generic meta classes are specified to
a certain degree.

8.5.4 Restrictions and Limitations

The application of this mechanism is generally unproblematic due to its simple
architecture. Punctual specialisations as well as punctual-connected specialisations
can be separated very well. Only the third type may implicate the issue of rather
complex dependencies (cf. Sect. 8.1).

8.6 Semantic Extension Techniques

8.6.1 Motivation

The presented techniques primarily address the syntactical level of EMLs and imple-
ment extensions by the introduction of additional meta model classes. This causes
an extension of the EML vocabulary and indicates some modifications of respective
modelling tools (at least recompilations of the meta model). In regard to reaching a
higher level of syntactical non-invasiveness, it might be promising to keep the EML
syntax unaffected and solely focus on its intended interpretation, namely semantics
(cf. Sect. 4.3.4). This could reduce particular implementation efforts and may en-
hance the level of specification in regard to domains or within a certain group of
stakeholders elaborating consensus on the meaning of particular EML concepts in
specific situations.

8.6 Semantic Extension Techniques 85

8.6.2 Architecture and Application

Semantic extensions cover adding and specifying operations. The limitation to these
operations is required in order to avoid language defacements and semantic modifi-
cations of the original EML [80, 73]. In particular, additional semantic mappings as
well as additional semantic constructs have to be annotated to the original semantic
structure of an EML [73]. The representation of this structure should not be ad-
dressed in detail at this point, as semantics in EMLs – both at model level and meta
model level – is still an under-investigated issue that requires extensive fundamen-
tal research [73, 9, 57]. A holistic analysis von EML semantics would go beyond the
scope of this work significantly and should be considered in further research projects
(cf. Sect. 21). Despite this limitation, ontologies seem to be promising means for the
representation of semantic concepts and mappings (cf. [100, 183]). For instance, the
Unified Enterprise Modelling Language (UEML) could serve as a powerful instru-
ment for the fundamental description of enterprise-related concepts.

In particular, adding semantics means that additional semantic constructs and
hence semantic mappings are introduced for a syntactical construct. Of course, these
additional constructs must not contradict the original semantics of a meta class.

Specifying semantics refers to the introduction of additional semantic con-
structs, which are specialisations of the originally referred to semantic constructs
(e.g. in case of under-specification). These extensions should be encapsulated within
semantic extension profiles [156]. Semantic profiles should contain references to re-
spectively extended syntactical constructs as well as the set of additional mappings
and semantic constructs. In case of specialisation, also original semantic constructs
have to be integrated as outlined in Sect. 4.3.4.

Further specification of the mechanism is provided in the Appendix (Sect. 1.1.9).

8.6.3 Pragmatics

Generally, extension by semantics can be used for specifying interpretation guidelines
of EMLs, while the original meta model remains unaltered. It is therefore useful for
sharpening the understanding of particular concepts in the context of particular
domains. Semantic extensions are therefore useful for the creation of accents, in
regard to formalisation as well as domain-specifity (cf. Sect. 5.4.3). In the first case,
semantic extensions are used for reaching a higher level of formal invariance [14,
67]. Nevertheless, additional syntactical extensions should be examined in regard
to model constrains and validity rules. In the second case, semantic extensions are
used to limit particular interpretations within a group of language users (e.g. domain
accents).

8.6.4 Restrictions and Limitations

As outlined in different papers (cf. discussion in [57]), specification of semantics
within EML meta models has been poorly implemented and a lot of specific is-
sues stemming from the semi-formality of EMLs has not been sufficiently considered
in literature so far [9]. Consequently, also the general semantic specification of ex-
tensions (cf. [73]) and respective semantic extensions is difficult due to the lack of
commonly accepted semantic description techniques. Semantic specifications could

86 8 Mechanisms

further cause massive specification efforts due to the number of related dimensions
(e.g. epistemological or lexical aspects [9]). Semantic extensions further suffer from
a certain lack of explicitness due to need for providing “interpretation help” for an
EML that can differ according to the group of readers. It is hence important to
specify the respective group of recipients.

9

Repository

9.1 Overview

The discussed extension mechanisms can generally be divided into primarily syntac-
tical and primarily semantic mechanisms, whereby only one mechanism exclusively
addresses semantic extensions. Regarding the syntactical mechanisms, three types
can be differentiated: Annotations, Specialisations, and Placeholders.

Annotations represent mechanisms which extend a meta model at specific spots
in a modular way with different degrees of complexity and dependency. Thereby, the
classification level and the level of abstraction remain stable, which can be referred
to as horizontal extensions, aiming to realise a particular detailing. Different nuances
between mechanisms are emphasised in Table 9.1.

Specialisations cover rather vertical refinements and specifications of existing
meta models; either by Hooking placeholders or by multiply specialised meta classes
with simple Generalisation/Specialisation. Both approaches foster a particular re-
finement of original language parts. In contrast to these mechanisms, Multilevel
Modelling has a special role, as it covers the creation of multiple additional classifi-
cation levels.

Placeholders take a special position due to the comprehensive preparation need
within the meta model, i.e. the EML designer actually needs to create the particular
extension areas ex ante. More precisely, meta model reference models for EM are
needed (referring to [174]) and the underlying EML needs to be pre-designed in a
special way.

Furthermore, hybrid implementations combine characteristics from multiple clas-
sification types. Indeed, Profiling provides a de facto specialisation, but it main-
tains also characteristics of simple annotations [45, 42]. Profiling rather enables the
(probably mandatory) annotation of property instances to extended meta classes.
Further, simple Generalisations/Specialisations may be combined with annotation
mechanisms.

88 9 Repository

S
y
n
ta

x
S
e
m

a
n
ti

c
s

A
n
n
o
ta

ti
o
n
s

S
p

e
c
ia

li
sa

ti
o
n
s

P
la

c
e
h
o
ld

e
rs

D
e
c
o
ra

to
r:

•
A

n
n
o
ta

ti
n
g

ro
le

s
•

F
le

x
ib

le
h
ie

ra
rc

h
ie

s
•

O
p
ti

o
n
a
l

ex
te

n
si

o
n
s

P
lu

g
in

:

•
In

te
rf

a
ce

s
h
av

e
m

u
lt

ip
le

m
et

a
cl

a
ss

es
•

D
o
m

a
in

co
n
ce

p
ts

•
C

o
m

p
le

x
st

ru
ct

u
re

,
m

o
d
u
la

r

–
A

d
d
-O

n
:

•
O

p
ti

o
n
a
l

•
P

u
n
ct

u
a
l-

co
n
ce

p
tu

a
l

ex
te

n
si

o
n

•
N

o
t

co
m

p
le

x
,

n
o
t

m
o
d
u
la

r

–
A

sp
e
c
t:

•
1

m
et

a
cl

a
ss

•
V

a
ry

in
g

co
m

p
le

x
it

y
•

C
ro

ss
-c

u
tt

in
g

co
n
ce

p
ts

•
M

o
d
u
la

r

H
o
o
k
in

g
b
y

S
p

e
c
ia

li
sa

ti
o
n
:

•
S
u
b

cl
a
ss

es
o
f

m
a
rk

ed
sp

o
ts

o
f

a
m

et
a

m
o
d
el

(p
re

d
es

ig
n

eff
o
rt

s)
•

S
a
m

e
cl

a
ss

ifi
ca

ti
o
n

le
v
el

S
im

p
le

G
e
n
e
ra

li
sa

-
ti

o
n
/
S
p

e
c
ia

li
sa

ti
o
n
:

•
S
u
b

cl
a
ss

es
o
f

n
o
t

ex
p
li
ci

tl
y

m
a
rk

ed
sp

o
ts

•
S
a
m

e
cl

a
ss

ifi
ca

ti
o
n

le
v
el

M
u
lt

il
e
v
e
l

M
o
d
e
ll
in

g
:

•
A

d
d
it

io
n
a
l

cl
a
ss

ifi
ca

ti
o
n

le
v
el

s
•

A
n
n
o
ta

ti
o
n

o
f

In
tr

in
si

c
F

ea
tu

re
s

fo
r

le
v
el

-s
p
a
n
n
in

g
cl

a
ss

ifi
ca

ti
o
n

•
D

u
a
li
ty

o
f

sp
ec

ia
li
sa

ti
o
n

a
n
d

in
-

st
a
n
ti

a
ti

o
n

H
o
o
k
in

g
b
y

P
la

c
e
h
o
ld

e
r:

•
F

il
li
n
g

o
f

le
ft

o
p

en
m

et
a

m
o
d
el

p
a
rt

s
(c

la
ss

es
,

p
ro

p
er

ti
es

,
ra

n
g
e

va
lu

es
et

c.
)

•
P

re
d
es

ig
n

eff
o
rt

s

A
d
d

S
e
m

a
n
ti

c
s:

•
A

d
d
it

io
n
a
l

se
m

a
n
ti

c
m

a
p
p
in

g
s

S
p

e
c
if

y
S
e
m

a
n
ti

c
s:

•
A

d
d
it

io
n
a
l

se
m

a
n
ti

c
m

a
p
p
in

g
s

a
n
d

sp
ec

if
y
in

g
co

n
st

ru
ct

s

H
y
b
ri

d
s

P
ro

fi
li
n
g
:

•
F

ea
tu

re
s

o
f

b
o
th

ty
p

es
,

n
o

re
a
l

sp
ec

ia
li
sa

ti
o
n

S
im

p
le

S
p

e
c
ia

li
sa

ti
o
n
/
G

e
n
e
ra

li
sa

ti
o
n

+
P

lu
g
in

s
o
r

A
d
d
-O

n
s

•
D

o
m

a
in

-s
p

ec
ifi

c
ex

te
n
si

o
n

b
y

sp
ec

ifi
ca

ti
o
n

a
n
d

a
n
n
o
ta

ti
o
n

T
a
b
le

9
.1

.
S
u
m

m
a
ry

o
f

m
ec

h
a
n
is

m
s

9.2 Comparison 89

9.2 Comparison

The analysis and consideration of respective extension types due to the intended
extension need then leads to an assessment of particular implementation conse-
quences. A detailed analysis of mechanisms is therefore necessary. Table 9.2 sum-
marises particular characterisations in order to provide an appropriate comparison.
Single criteria are briefly discussed hereinafter.

D
e
c
o
ra

to
r

P
lu

g
in

A
d
d
-O

n

A
sp

e
c
t

H
o
o
k
in

g

P
ro

fi
li
n
g

M
u
lt

il
e
v
e
l

G
e
n
./

S
p

e
c
.

S
e
m

a
n
ti

c
s

Invasiveness and
Interface Structure

– – o + + o / – – + – – + ++

Application Complex-
ity

– + + + o ++ – ++ +

Multiple Applications ++ ++ ++ ++ – – ++ ++ ++ ++

Extended Meta Types Classes Classes Classes Classes All Classes,
(All)

Classes,
Proper-

ties,
(Lan-
guage)

Classes,
(All)

All

Modularity, Level of
Independence

– – ++ – – ++ – – – – o – – – –

Representation of
complexity

o ++ – o – / + o ++ o o

Table 9.2. Comparison of mechanisms; legend: (++) very appropriate (+) appropriate (o) indifferent
(–) inappropriate (– –) very inappropriate

With regard to meta model invasiveness and required interface structures, Add-
Ons, Aspects, Profiling, Generalisation/Specialisation as well as Semantic Extension
are perceived as the most appropriate techniques, as they can simply be added to
existing meta models. In other words, only very limited preparations and pre-designs
are necessary in the original meta model. In contrast, Plugins and Hooking by Spe-
cialisation require the explicit specification of extension interfaces that can be shaped
by extensions, while Add-Ons and Aspects are rather optional. Decorators indicate
complex binding routines; Multilevel Modelling requires both a paradigmatic revi-
sion of the original meta model as well as revision in terms of annotating Intrinsic
Features, for instance. Hooking by Specialisation requires multiple explicitly under-
specified parts in the meta model. This creates the situation that the meta model
cannot be instantiated without filling in particular meta elements.

With respect to the application complexity, the introduction of Specialisations
(simple subclass building) as well as Profiling (separate Stereotype definition and
annotation) are most straightforward. Further, annotations (Plugins, Add-Ons, As-
pects) serve as rather simply applicable instruments, but require the identification
of respective integrator classes (cf. [45]) and probably merging procedures. Semantic
Extensions may suffer from the stated representation issues. The Hooking technique
requires rather extensive meta modelling works within the set boundaries and both
the Decorator and Multilevel Modelling approach indicate multiple steps in appli-
cation, which hamper a straightforward definition and application.

90 9 Repository

Nearly each of the elaborated mechanism supports multiple extension application.
Hooking presents the only exception due to the implicit one-way instantiation of the
hooking points.

The discussion on extended meta class types should be limited to the abstract
syntax, as current literature strongly focusses on this part of EML definitions, while
a concise specification of the concrete syntax is omitted (cf. the discussion in [42]).
All annotation types cover extensions with additional meta classes, but reveal fine
differences. For instance, Plugins and Aspects build a strong inner coherence, while
Add-Ons are rather appropriate for punctual class-wise extensions and Decorators
annotate some kind of roles to meta classes. Multilevel Modelling can be used for
extending classes and properties (e.g. making them intrinsic) and for extending the
entire language specification by instantiating parts of it. Both Hooking and Semantic
Extension are able to specify or extend each meta model type. Profiling is primarily
used for class annotations, but also generic applications to all meta model types
have been discussed recently [156]. Simple Generalisation/Specialisation is naturally
applied to classes, but – due to the basal character of the mechanism – application
to other meta types seems to be reasonable.

Modularity plays an important role in regard to extension re-use and potential
adaptation to other EML meta models. This implies high cohesion, low coupling to
the original meta model, and a certain complexity within the application. Only Plu-
gins and Aspects satisfy these requirements. Multilevel Modelling is tightly coupled
to the original meta model due to the instantiation relation, but may provide inde-
pendent elements on introduced classification levels. All other mechanisms reveal a
high coupling to the original language.

Consequently, the achievable level of complexity differs among the mechanisms.
Plugins and Multilevel Modelling are most prominent in terms of specifying complex
extensions, since Plugins are understood as separate meta model components (within
the same classification level) and Multilevel Modelling enables flexible architectures
with multiple classification levels. Hooking by Placeholders also supports complex
extension designs, but is limited by the set borders of the hook. Decorators, Aspects,
Profiles, Generalisations, and Semantics serve limited complexity, as they annotate
original meta model elements, but have only limited inner complexity. Add-Ons
and Hooking by Specialisation have an even lower degree of such relations or miss
them totally. The impact of their particularly produced extensions is, hence, limited
locally.

9.3 Combination of Mechanisms

Combinations of mechanisms are generally possible if extension need causes the
selection of multiple extension mechanisms. Extension mechanisms can be combined,
but the following conditions have to be respected:

• Annotation techniques can be combined among each other without any limitation.
• If the Hooking mechanism is applied, other approaches can only be applied

to those original meta model elements that are not marked as hooking points
(cf. [45]). Consequently, combinations with Hooks are implicitly limited.

9.3 Combination of Mechanisms 91

• If the Multilevel Modelling approach is selected, then all other mechanisms can
only be applied to the original classification level indicating a sequential process-
ing of extensions. At first, extensions (e.g. annotations) on the original level of
classification are applied in order to extend the meta model. Then, respective
multilevel extension can be applied to this extended version of the meta model
in order to assign respective features, for instance.

• Semantic extensions can be combined with any kind of syntactical extensions.
Self-evidently, particular semantic mappings have to be assigned to the extended
meta element first, i.e. syntactical extensions have to be applied first in any case.

The combination of single mechanisms causes the creation of an extension bundle
that consists of single extensions. Generally, these bundles serve as loose collection
of extensions, which may be associated indirectly by the meta model elements they
extend. Additionally, it might be feasible to integrated dependencies between single
extensions (e.g. combining Add-Ons and Generalisations as outlined in Table 9.1).
These aspects cause two implementation consequences.

First, it is necessary to generally explicate dependencies between extensions if
one extension refers to or uses concepts from another extension. Second, it might
be necessary to define a specific sequence of applying extensions in order to specify
respective logical dependencies in detail. For instance, the combination of Plugins
and Generalisations could require such a sequence if the Generalisation extension
specialises introduced Plugin classes.

Part IV

Semantics-Driven Justification of Extension Need

10

Relevant Publications

96 10 Relevant Publications

10.1 Publication DESRIST-2015

General Information:

Title: Proposal for Requirements Driven Design Science Re-
search

Authors: Richard Braun, Martin Benedict, Hannes Wendler,
Werner Esswein

Year: 2015
Medium: Donnellan, B., Helfert, M., Kenneally, J., VanderMeer,

D., Rothenberger, M., Winter, R. (Eds.): New Horizons
in Design Science: Broadening the Research Agenda, 10th
International Conference on Design Science Research in
Information Systems (DESRIST)

Series: Lecture Notes in Computer Science, Vol. 9073
Pages: 135-151
Reference: [79]

Rankings:

VHB-JOURQUAL-3: C
WKWI-2008: B

Contributions:

Richard Braun: 60% (introduction and motivation, requirements engi-
neering ontology, requirements-driven DSR framework,
reasons for critique, conclusion and further research)

Martin Benedict: 20% (requirements engineering)
Hannes Wendler: 10% (related work)
Werner Esswein: 10% (research conception)

Summary of Contents:

Context: Design Science Research
Motivation: Shortcomings in design-oriented research: issues regarding

operationalisation (missing concrete guidance), procedu-
ral transparency, demarcation from professional design

Input and Method: Adaptation of Requirements Engineering to Design Sci-
ence Research

Contributions: Requirements-driven DSR framework and DSR require-
ments types

10.1 Publication DESRIST-2015 97

Abstract:

Design Science Research (DSR) still reveals several methodical shortcomings, which
need to be remedied in order to enhance the maturity of DSR and its derived ar-
tifacts. For instance, there is a remarkable lack in methodical support for problem
formulation. Also, DSR does not provide detailed procedure models, which can be
operationalized appropriately. This compromises rigor within the design process and
hampers demarcation from professional practice. In order to tackle these issues, we
propose the adaptation of Requirements Engineering for structuring the problem
space and deriving design decisions systematically. Requirements are also intended
to work as glue between single design stages in order to keep the design process
comprehensible and transparent. We therefore justify an ontology-based analogy
between requirements analysis and DSR parts and provide a requirements-driven
DSR framework based on a four-part ontology that especially focuses problem anal-
ysis and design preparation. Moreover, a detailed state of the art is presented and
our approach is discussed within a critical appraisal.

98 10 Relevant Publications

10.2 Publication REBPM-2014

General Information:

Title: Requirements-Based Development of BPMN Extensions:
The Case of Clinical Pathways

Authors: Richard Braun, Hannes Schlieter
Year: 2014
Medium: Heinrich, R., Kirchner, K., Weißbach, R. (Eds.): IEEE

1st International Workshop on the Interrelations between
Requirements Engineering & Business Process Manage-
ment (RE-BPM)

Pages: 39-44
Reference: [55]

Rankings:

VHB-JOURQUAL-3: not ranked
WKWI-2008: not ranked

Contributions:

Richard Braun: 70% (introduction and motivation, BPMN extensibility,
method for extension development)

Hannes Schlieter: 30% (demonstration, conclusion, further research)

Summary of Contents:

Context: BPMN
Motivation: Extension justification and methodical guidance during

BPMN extension design
Input and Method: Requirements-driven design, domain analysis based on

ontologies
Contributions: Enhancing the BPMN extension method of [48] with re-

gard to domain analysis

Abstract:

In recent years, the Business Process Model and Notation (BPMN) has evolved to
one of the most applied modelling General Purpose Languages in the Business Pro-
cess Management discipline. Due to its application in different domains, it becomes
frequently necessary to extend the BPMN by domain-specific concepts. Extending
the BPMN fosters an adequate communication between system engineers and do-
main experts and enhances the semantically correct representation of the domain.
Therefore, the BPMN meta-model provides an extension mechanism. However, there
is a remarkable lack in procedure models for the design of such extensions. This re-

10.2 Publication REBPM-2014 99

search article outlines an extension method that focuses on domain analysis, exten-
sion requirements and the derivation of domain-specific extension concepts within
BPMN. Therefore, the method of Stroppi et al. (2011) is extended in regard to do-
main analysis. The approach is motivated and demonstrated by the case of Clinical
Pathways (CPs).

100 10 Relevant Publications

10.3 Publication BIBM-2015

General Information:

Title: Clinical Processes from Various Angles – Amplifying
BPMN for Integrated Hospital Management

Authors: Richard Braun, Martin Burwitz, Hannes Schlieter, Mar-
tin Benedict

Year: 2015
Medium: Huan, J., Miyano, S., Shehu, A., Hu, X.T., Ma, B., Ra-

jasekaran, S., Gombar, V.K., Schapranow, M., Yoo, I.,
Zhou, J., Chen, B., Pai, V., Pierce, B.G. (Eds.): 2015
IEEE International Conference on Bioinformatics and
Biomedicine (BIBM)

Pages: 837-845
Reference: [77]

Rankings:

VHB-JOURQUAL-3: not ranked
WKWI-2008: not ranked

Contributions:

Richard Braun: 50% (adapting and extending BPMN for hospital mod-
elling, BPMN extension definition)

Martin Burwitz: 30% (integrated hospital modelling)
Hannes Schlieter: 10% (conclusion and further research)
Martin Benedict: 10% (demonstration)

Summary of Contents:

Context: BPMN, EMLs
Motivation: Need for flexible perspective architecture in BPMN
Input and Method: Extended BPMN extension method, including the BPMN

extension method of [48]
Contributions: BPMN extension:

• BPMN4CP v2.1
• In-detail specification of all components and their inte-

gration spots

10.3 Publication BIBM-2015 101

Proposal for an integrated specification of the syntax of
EMLs within the OMG environment:

• MOF, MOF+
• DG, DG+
• QVT for integration

Abstract:

The design and management of information systems is driven by model-oriented
approaches on different levels of abstraction. For instance, enterprise models link
the organizational action system and corresponding information systems. Enterprise
models are generally perceived as measures to close the gap between business and
IT, as it is in the healthcare domain. Clinical Pathways (CPs) represent value-added
processes of hospitals and are typically described by respective process modeling lan-
guages like BPMN. However, a solitary focus on processes is insufficient for utilizing
the potential of the model. Instead, it is rather advisable to consider various perspec-
tives in order to completely represent the organizational action system of a hospital.
We therefore propose to extend clinical process models with accordingly required
perspectives for the representation of satellite objects, e.g. medical resources. Based
on previous work, this paper motivates the approach of (process-based) integrated
hospital modeling and presents the architecture and design of a revised BPMN ex-
tension for multi-perspective modeling. The applicability of the proposed BPMN
extension is demonstrated by modeling a CP part for the treatment of stroke pa-
tients, which explicitly integrates the process and resource perspective.

102 10 Relevant Publications

10.4 Publication EEWC-2015

General Information:

Title: Towards Multi-Perspective Modeling with BPMN
Authors: Richard Braun, Werner Esswein
Year: 2015
Medium: Aveiro, D., Pergl, R., Valenta, M. (Eds.): Advances in

Enterprise Engineering IX, Proceedings of the 5th Enter-
prise Engineering Working Conference

Series: Lecture Notes in Business Information Processing, Vol.
211

Pages: 67-81
Reference: [44]

Rankings:

VHB-JOURQUAL-3: C
WKWI-2008: B

Contributions:

Richard Braun: 90% (introduction and motivation, fundamentals, BPMN
extensibility in general, extension of the BPMN meta
model, methodical support and demonstration, conclu-
sion)

Werner Esswein: 10% (research conception)

Summary of Contents:

Context: BPMN
Motivation: Defining perspectives in BPMN as well as BPMN exten-

sions
Input and Method: Extended BPMN extension method, including the BPMN

extension method of [48]
Contributions: BPMN meta model extension:

• Perspective definitions
• Diagram definitions
• Integration with DD

10.4 Publication EEWC-2015 103

Enhancing the BPMN extension method of [48] in terms
of defining perspectives and diagrams:

• Extended CDME
• BPMN+X CS
• BPMN DG
• BPMN DI

Outlining an extension on the M3 level:

• Integrated syntax specification by associating MOF
and DD

Abstract:

BPMN is the prevalent process modeling language and a lot of domain-specific
BPMN extensions have evolved during the last couple of years. Due to the plenty of
extensions and elements within BPMN, it is promising to consider complexity reduc-
tion mechanisms in order to provide appropriate, purpose-specific views on BPMN
models. We therefore analyze capabilities of BPMN in regard of the definition of ad-
ditional perspectives and diagrams in order to provide dedicated views on aspects of
business processes (e.g., separate resource diagrams). As both BPMN and BPMN-
defining MOF reveal shortcomings regarding to the definition of perspectives, we
introduce a BPMN meta model extension in order to allow an integrated definition
of new perspectives and their respective graphical elements. We further provide me-
thodical guidance by conducting and customizing the BPMN extension method of
Stroppi et al. (2011).

104 10 Relevant Publications

10.5 Publication IDS-2015

General Information:

Title: Epistemological Foundations for the Integrated and Mul-
tifaceted Description of Stipulated Semantics in Enter-
prise Modeling Languages

Authors: Richard Braun
Year: 2015
Medium: 19. Interuniversitäres Doktorandenseminar Wirtschaftsin-

formatik
Reference: [41]

Rankings:

VHB-JOURQUAL-3: not ranked
WKWI-2008: not ranked

Contributions:

Richard Braun: 100%

Summary of Contents:

Context: EMLs
Motivation: Lack of integrated analysis of EML semantics on the

meta model level
Input and Method: Consideration of epistemology and its consequences to

semantics
Contributions: Epistemologically founded semantics framework (dimen-

sions and aspects, which influence the understanding of
meta models):

• Ontological aspects
• Subjectivist aspects
• Epistemological aspects
• Linguistic aspects

Further implications:

• Fundamental consideration of semantics in EML meta
models, research challenges

• Points for misunderstanding
• Concepts of implicit stipulated semantics and explicit

stipulated semantics

10.5 Publication IDS-2015 105

Abstract:

Enterprise modeling languages (EML) are often subject of language extensions in
order to satisfy particular stakeholder needs. While there are some publications on
syntactical aspects and techniques of EML extensions, there is a notable lack regard-
ing to semantic topics, which is tightly related to the generally under-investigated
field of EML semantics. This paper hence intends to propose an integrated and
multifaceted framework in order to derive a comprehensive view on EML seman-
tics, their parts and particular consequences. The framework covers the meta model
layer, the meta meta model layer and respective areas of discourse. Those parts are
elaborated in terms of ontological aspects, subjectivity, linguistic aspects and finally
epistemological positions, which can be taken when discussing EML semantics. This
paper hence aims to consider EML semantics from an epistemological point of view
in order to establish a stable foundation for the creation of an integrated semantic
description of EMLs in further research.

106 10 Relevant Publications

10.6 Publication HICSS-2016

General Information:

Title: BPMN4CP Revised – Extending BPMN for Multi-
perspective Modeling of Clinical Pathways

Authors: Richard Braun, Hannes Schlieter, Martin Burwitz,
Werner Esswein

Year: 2016
Medium: Bui, T.X., Jr., R.H.S. (Eds.): 49th IEEE Hawaii Interna-

tional Conference on System Sciences (HICSS)
Pages: 3249-3258
Reference: [76]

Rankings:

VHB-JOURQUAL-3: C
WKWI-2008: B

Contributions:

Richard Braun: 60% (research approach, consequences for extension evo-
lution, extension design, tool implementation)

Hannes Schlieter: 20% (introduction and motivation, conclusion)
Martin Burwitz: 10% (demonstration)
Werner Esswein: 10% (research conception)

Summary of Contents:

Context: BPMN
Motivation: Multi-perspective modelling of CPs with BPMN
Input and Method: Enhanced BPMN extension method and requirements-

driven Design Science Research
Contributions: BPMN extension:

• BPMN4CP v2.0
• Additional perspectives in BPMN

Further enhancement of the BPMN extension method:

• Domain analysis (domain ontology)
• Extension preparation (CDME)
• Extension meta model (BPMN+X, BPMN+X CS,

BPMN DG, BPMN DI)

10.6 Publication HICSS-2016 107

Abstract:

Clinical Pathways (CPs) can be seen as business processes of hospitals or clini-
cal institutions. Modeling these pathways is an emerging field of research, as it
provides promising benefits for systems integration, quality management and doc-
umentation. The Business Process Model and Notation (BPMN) provides a range
of process-related concepts but naturally lacks in representing specific aspects from
the CP domain. Therefore, the BPMN extension BPMN4CP was designed in a pre-
vious research project. In accordance with research guidelines from Design Science,
the extension ran through an iteration based on its practical application within a
telemedical project. Based on several new requirements, the extension was revised
regarding to the integration of resources, documents, objectives and quality indi-
cators. These concepts were assigned to particular perspectives and diagrams in
order to support model complexity management and provide appropriate diagrams
for respective stakeholders. In order to provide a commonly usable extension, these
enhancements were implemented as BPMN meta model extension.

108 10 Relevant Publications

10.7 Publication ZEUS-2016

General Information:

Title: SemFrameX – Towards a Framework for the Semantic
Justification of BPMN Adaptations

Authors: Richard Braun
Year: 2016
Medium: Hochreiner, C., Schulte, S. (Eds.): Proceedings of the 8th

ZEUS Workshop
Series: CEUR Workshop Proceedings, Vol. 1562
Pages: 13-20
Reference: [9]

Rankings:

VHB-JOURQUAL-3: not ranked
WKWI-2008: not ranked

Contributions:

Richard Braun: 100%

Summary of Contents:

Context: BPMN
Motivation: Semantic justification of BPMN extensions
Input and Method: Application of the generic semantics framework from

AQEMO-2016
Contributions: SemFrameX framework for BPMN

Abstract:

In recent years numerous extensions and adaptations of the BPMN evolved, since
model users aim to both exploit the benefits of the modeling standard and adapt
BPMN to particular domain peculiarities or project requirements. Methodical sup-
port for conducting such adaptations is generally rare and very focused on the
abstract syntax, which is actually insufficient, since particular semantics are more
relevant. Consequently, it seems to be reasonable to explicitly conduct semanti-
cal analysis and comparison checks before extending or adapting BPMN. However,
appropriate semantic specifications of BPMN are missing. After introducing and
motivating the entire issue, we therefore outline the SemFrameX framework that
aims to specify the BPMN meta model semantics with a special consideration of
ontic, epistemological, conceptual, linguistic and pragmatics aspects.

10.8 Publication AQEMO-2016 109

10.8 Publication AQEMO-2016

General Information:

Title: Towards a Multi-Faceted Framework for Semantics in
Enterprise Modeling Languages

Authors: Richard Braun
Year: 2016
Medium: Betz, S., Reimer, U. (Eds.): Modellierung 2016 - Work-

shopband
Series: Lecture Notes in Informatics, Vol. 255
Pages: 33-44
Reference: [57]

Rankings:

VHB-JOURQUAL-3: C
WKWI-2008: B

Contributions:

Richard Braun: 100%

Summary of Contents:

Context: EMLs
Motivation: Multi-faceted framework for EML semantics
Input and Method: Consolidation of different research streams affecting EML

semantics, esp. epistemological foundations
Contributions: SemFrame framework and types of pragmatics

Abstract:

The semantic specification of Enterprise Modeling Languages (EMLs) is a challeng-
ing task that is primarily caused by the immanent subjectivity in the context of
enterprise modeling. This covers the interpretation of respective meta model con-
structs due to their references to the reality. In contrast, EMLs may also contain
formal semantics in regard of automating specific parts. Despite the generally ac-
cepted relevance of semantics for the application of EMLs, current research lacks in
the provision of appropriate description means and largely omits semantic investi-
gations. This paper therefore proposes a multi-faceted framework for the analysis
and description of EML semantics in order to increase the awareness of relevant
influences. The framework consists of an ontic and epistemological dimension in its
core, as material semantics finally address such fundamental aspects. On this basis,
several wrapping dimensions are outlined: Conceptualization dimension, pragmatic
dimension, representation dimension and the final consensus dimension.

110 10 Relevant Publications

10.9 Publication MODELSWARD-2016

General Information:

Title: Towards Hybrid Semantics of Enterprise Modeling Lan-
guages

Authors: Richard Braun, Werner Esswein
Year: 2016
Medium: Hammoudi, S., Pires, L.F., Selic, B., Desfray, P. (Eds.):

Proceedings of the 4th International Conference on
Model-Driven Engineering and Software Development

Pages: 412-420
Reference: [67]

Rankings:

VHB-JOURQUAL-3: not ranked
WKWI-2008: not ranked

Contributions:

Richard Braun: 90% (introduction and motivation, formal semantics, ma-
terial semantics, towards hybrid semantics, conclusions
and further research)

Werner Esswein: 10% (research conception)

Summary of Contents:

Context: EMLs
Motivation: Analysing and elaborating a possible integration between

formal and material semantics
Input and Method: Consolidation of different research streams in regard to

material and formal semantics
Contributions: Framework for hybrid semantics:

• Clarification of different types of semantics and their
possible integration

• Concept of hybrid semantics
• Relevant types of semantics: Behavioural formal se-

mantics, static formal semantics, material semantics

Abstract:

Enterprise Modeling Languages (EMLs) are generally perceived as conceptual mod-
eling languages having a formal syntax and informal semantics. The non-formality of
semantics is mainly caused by the materiality of the addressed domain (enterprises
and its related aspects) and the resulting personal interpretation of syntactical con-

10.9 Publication MODELSWARD-2016 111

structs. However, EMLs may also explicitly define invariant interpretations in the
sense of possible model executions or the definition of domain-specific restrictions.
It is therefore promising to address a possible amalgamation of material semantics
and formal semantics in order to provide an integrated and comprehensive seman-
tic specification of EMLs. This position paper introduces and motivates the topic
by systematizing and consolidating approaches from both fields and introduces a
framework for so-called hybrid semantics on the meta model layer. Further, the gen-
eral relevance of semantics and semantic specifications in EMLs is emphasized and
prospective research challenges are proposed.

11

Relevant Unpublished Papers

114 11 Relevant Unpublished Papers

11.1 Paper UNPUB-MOF4EM-2016

General Information:

Title: Syntactical Enrichment of the Meta Object Facility for
the Definition of Enterprise Modeling Languages

Authors: Richard Braun
Year: 2016
Medium: Unpublished (submitted to the International Journal of

Intelligent Information and Database Systems)
Reference: [78]

Contributions:

Richard Braun: 100%

Summary of Contents:

Context: EMLs
Motivation: Enhancing the syntax of MOF for EML definition
Input and Method: Re-engineering of the current MOF version based on pe-

culiarities of the EM domain; demonstration by applica-
tion to BPMN

Contributions: MOF4EM: meta meta model extension for EML specifi-
cation, MOF+ package:

• Views and perspectives
• Diagrams and symbols
• Architectural adaptation of E3 for integrated defini-

tion

Abstract:

Recent research reveals a need for flexible Enterprise Modeling Languages (EMLs)
in order to integrate problem-specific or domain-specific concepts on the meta model
layer. The provision of generic adaptation mechanisms requires a well-defined and
integrated meta modeling language. Several approaches exist for that, differing in
terms of prevalence, vendor dependency and conceptual soundness. With regard to
the standardization efforts in the OMG environment, it is reasonable to contemplate
the OMG standards MOF and DD for the definition of EMLs, as they feature meta
modeling capabilities. However, both approaches lack in the provision of enterprise-
specific concepts and reveal some architectural issues (especially in regard of abstrac-
tion layers). Therefore, an elevation of debatable packages to the meta meta model
layer is proposed based on a rational discourse. The revised abstraction architec-
ture constitutes the fundament for the elaborated MOF4EM extension. MOF4EM
introduces views and perspectives to the meta meta model layer and provides an

11.1 Paper UNPUB-MOF4EM-2016 115

integration between abstract and concrete syntax. The proposed framework serves
as conceptual base for the later supplement of appropriate adaptation mechanism.

12

Motivation and Introduction

This Section aims to provide means for the specification of extension demand within
a potential extension situation. Therefore, a strict focus on the needs and require-
ments of EML users is proclaimed in order to provide the most adequate extensions.
Consequently, adequacy is perceived as the most relevant criteria for EML assess-
ment and, hence, the derivation of appropriate extensions based on pragmatics and
semantics. Further, the relevance of pragmatics and semantics is emphasised, as
the focus on EML users requires a deep understanding of these EML dimensions.
Then, a generic EML extension procedure is outlined and its single components are
presented in detail.

EMLs are usually defined by meta models that formulate the grammar and the
type terminology of a language [175, 13]. The grammar specifies respective rules
and constraints and determines valid expressions within an EML. The grammar
is concretised by the terminology and explicated conceptualisations of a particular
area of discourse [13]. Consequently, an EML meta model specifies the set of valid
statements (models) about a specific domain and it pre-defines and limits the pos-
sible expressiveness about an area of discourse. In the context of EML extensions,
the question arises of how the perceived quality of a meta model can be assessed
in order to justify potential language extensions. While explicit meta model quality
frameworks are missing in literature, at least the consideration of general model
quality frameworks seems to be reasonable (e.g. [184, 185, 186, 187]).

12.1 Related Work

Lindland et al. [184] propose a framework spanning the criteria semantic quality,
syntactic quality, pragmatic quality, as well as appropriateness. Syntactic quality is
the degree of correspondence between a particular model and the language. It repre-
sents the set of syntactic errors, i.e. if a particular model is not a valid instance of the
meta model. Semantic quality reflects the degree of correspondence between model
and domain by formulating the criteria feasible validity and feasible completeness.
Pragmatic quality represents the degree of correspondence between model and au-
dience interpretation. Pragmatic quality therefore indicates how a particular model
is understood by a model reader [184, pp. 44ff].

Krogstie et al. [185] extend the framework of Lindland et al. [184] and
introduce additional quality indicators, namely physical quality, knowledge qual-
ity, language quality, social quality, and perceived semantic quality [185]. Thereby,

118 12 Motivation and Introduction

perceived semantic quality is defined as the correspondence between the actor in-
terpretation of a model and his current knowledge of the domain. The criterion
relaxes the strict objective position within the framework of Lindland et al.
[184]. Pragmatic quality is quantified by the level of comprehension. Further, the
social quality indicator covers different types of agreement and implicates a certain
consensus process, or at least a discussion process.

Schütte & Rotthowe [186] introduce several guidelines for modelling. The
principle of construction adequacy reflects the degree of consensus according to the
problem domain. Language adequacy covers syntactic correctness between models
and their defining language. The principle of economic efficiency covers efficient
model design. The principles of clarity, systematic design, and comparability focus
on the comprehensive, coherent, and well-structured design of models [186].

Overhage et al. [187] present the 3QM framework for the evaluation of pro-
cess models. The framework is composed of a set of quality indicators and respective
quality metrics for each indicator. Single indicators are refined into more fine-grained
and measurable indicators. For instance, the quality indicator “semantics” is deter-
mined by the indicators relevance, correctness, completeness, and flexibility [187,
p. 222].

12.2 Pragmatics and Semantics First

The stated approaches provide general conceptual guidance regarding the creation of
good models, but omit some aspects that are highly relevant for the meta modelling
level as well as for operationalisation in the context of meta model extensions.

Epistemological Consequences for Semantics

Construction-oriented modelling generally requires a fundamental understanding
of the addressed area of discourse as well as a consideration of respectively in-
tended business actions based on a language [139, p. 59]. Moreover, the design
of EMLs requires the identification of prospective language users and their in-
tended modelling purposes [188, p. 31]. EM is therefore tightly coupled with epis-
temological and ontological considerations [41]. Despite their elementary relevance
(cf. [110, 189, 85, 41]), the positions remain unclear or tacit within the stated model
quality frameworks, which make it prone for several issues in regard to meta model
semantics, e.g. misunderstandings, mismatched understandings or conceptual dis-
agreements [190, 191, 101, 41, 57]. This lack of consideration is critical, as EMLs are
closely related to the real-world or what is perceived as reality. Different epistemo-
logical positions and foundations could make conceptualisations about considered
things incommensurable, hampering effective communication [57, p. 37].

The reflection of three main types of EM-related topics should underpin this
issue. First, there is the group of concepts that are generally perceived as funda-
mental in EM, e.g. Processes, Actors or Resources. Despite the tacit assumption
of common sense on the interpretation of these concepts, van der Linden [101]
investigates the interpretative diversity regarding to the set of these basal EM con-
cepts, which creates several sources for communication errors. Second, there might

12.2 Pragmatics and Semantics First 119

be variance according to more specific concepts of problem spaces, especially in inter-
disciplinary areas [57]. Third, normative or solution-oriented concepts within EMLs
require special consideration. These concepts represent targeted and intended con-
cepts for business solutions within the mind of single model stakeholders and their
common interpretation is therefore contingent.

Considerations on semantic constructs and semantic mappings in EM are hence
inevitably coupled with epistemological issues within the area of tension between
Methodic Constructivism and Radical Constructivism (with regarded consequences
to related positions of truths [41, 57]). This implicates a reconsideration of the
appropriateness of frequently used means for ontological analysis of EML, e.g. the
Bunge-Wand-Weber (BWW) ontology [192, 193]. The BWW ontology proclaims a
pre-existence of true and thus somehow fixed or commonly accepted concepts for
the representation of IS. A complete reliance on the existence of these concepts is
at least questionable (cf. the critique in [194]). It seems to be more reasonable to
suppose a reality (or area of discourse) that is composed of some things that are
not generally perceivable or different according to their degree of semantic variance
(personal semantics as elaborated in [101]).

It is therefore useful to conduct the frequently proposed, but rarely concretised
position of consensus theory of truth that is suitable for constructivist positions
[110, 41, 57]. The perceived semantic quality of an EML is hence determined by a
common understanding of related items. Possibly precise and comprehensive exter-
nalisation and presentation of the intended semantics are hence required (i.e. the
semantics of the EML designers) in order to facilitate respective agreement and con-
sensus processes [41, 57] and identify semantic misinterpretations, mismatches, and
misunderstandings [101].

The representation and following homogenisation of semantics should enable com-
munication about a particular domain and should facilitate the understanding of an
EML within a stakeholder group that is finally explicated in the right application
of an EML. Consequently, semantic considerations only constitute an intermediate
step within the process of applying meta model statements adequately. Pragmat-
ically, this represents a certain (user-specific) translation process from perceiving
and understanding models towards the realisation of some business-related follow-
up actions in real business life that are intended to create some added value, e.g.
optimising a business process or gaining better comprehensibility of an IS in general.

Adequacy as Indicator for Pragmatic Quality

The actual quality of an EML therefore comes from the particular appropriateness
as means for realising a corresponding purpose or objective. Consequently, quality
criteria like correctness [187] and completeness [185] are not only debatable from
an epistemological point of view (as elaborated above), but also in regard to meta
model quality in general. Instead of finding objectively correct and complete meta
models, the assessment of an EML should consequently be driven by the adequacy
of an EML in regard to a particular situation and a prospective user group. Instead
of proclaiming an absolute degree of correctness or completeness (as implicitly given
in parts of BPMN), it is rather useful to examine models and modelling languages
with a focus on the actual purpose and underlying means-end relations. This im-

120 12 Motivation and Introduction

plicates an analysis of considered users, contexts and objectives [40, pp. 433-437].
Karagiannis [68] proposes a shift from an inwards quality perspective of modelling
languages to a rather outwards perspective. This implicates a shift from criteria like
consistency, integrity or performance to user-oriented indicators, i.e. usability and
adequate language applicability. The author further pointedly formulates that “all
models are wrong, but some are useful” [68, p. 5]. The author elucidates that the
truth of a model is not relevant, but rather its usefulness for businesses. It is hence
necessary to focus on both the pragmatics dimension of EMLs and the semantics
dimension of EMLs in detail.

Consequently, the pragmatic value of an EML is the actual driver for application,
not primarily the semantics and the syntax (referring to [20]). Thereby, semantics
and pragmatics should rather correspond to each other, as thinking in solutions
(pragmatics) refers to respective conceptualisations (semantic constructs [57]). The
investigation of semantics and pragmatics is therefore very promising for extension
justification. It is hence advisable to focus on these rather user-related perspectives
instead of solely examining syntactical tasks [64, 65, 40]. The assessment of the
syntactical quality of a meta model then seems to be trivial, as it can be determined
by checking the conformance of the model instance in regard to the meta model
[184, 185, 186, 41].

Benefits for the Design of EML Extensions

In the context of EML extensions, it is therefore necessary to understand what
is intended by prospective or current EML users (intended pragmatics) and which
specific domain concepts are covered (intended semantics, referring to [9]).

Focusing on the intended semantics of users is further promising in regard to in-
dependence of any syntactical consequence or implementations in order to separate
the problem space (semantic constructs, pragmatics) and the solution space (pri-
marily syntax, semantic mappings). Specifying the intended semantics is therefore
a feasible starting point both for language extension (e.g. [55]) and the composition
of language modules (e.g. [168, 35, 24]). Extensions that are designed and planned
once on a pragmatic and semantic level may be easily transferable to other mod-
elling languages in order to re-apply them or examine correspondence (referring to
[26, 42]).

12.2.1 Methodical Consideration of Pragmatics and Semantics in EML
Extensions

Most considerations of EMLs and EML extensions are limited to syntactical in-
vestigations [68, p. 5], [40, p. 432], [33, p. 52]. Bjeković et al. [40] state that
“language engineering efforts typically overemphasise the challenges of mechanical
manipulation of models and neglect the variety of contexts, users and purposes for
which models need to be created” [40, p. 432]. This overemphasis of the syntax corre-
sponds with weak methodical support for justifying and designing EML extensions,
e.g. in the case of BPMN [59]. Insufficient procedural transparency during extension
design [33, p. 50] as well as missing semantic extension specification can be observed
[33, 9, 73].

12.2 Pragmatics and Semantics First 121

Current literature provides very few papers on methodical support for pragmatics
and semantics within extension design [9]. While a few papers address syntactical
issues (e.g. [48, 42]), semantics are rarely considered and pragmatics are completely
omitted (cf. [9]). This leads to an imprecise understanding of the actual extension
need and the negligence of the user perspective [40, p. 432], which causes missing
procedural transparency and lack of externalisation [57].

12.2.2 Consequences for Extension Design

It is therefore essentially important to focus on pragmatics and semantics first in-
stead of solely stressing syntactical structures and technical implementations. Par-
ticular grammatical rules and specifications rather come from the semantics, i.e. the
intended user scope, but not from the language itself, as EMLs do not exist for
reasons of self-purpose. As mentioned above, it is important to envision that EMLs
are artificial means for the solution of different, usually stakeholder-specific business
problems, which requires the detailed consideration, analysis, and representation of
pragmatic use cases or usage scenarios, the users themselves as well as the partic-
ular context or situation. More precisely, it is important to understand (a) native
concepts of a problem scope and (b) rather solution-oriented concepts.

This indicates a certain translation of pragmatics into intended semantics, which
shapes expectations of prospective EML users according to their needs and require-
ments. Only such a detailed domain analysis and understanding may guide the
selection of appropriate modelling languages or the extension of an EML (according
to [139, p. 41], [195, p. 212]). Semantics are important for the explication of intended
interpretations of syntactical constructs (cf. [101]) and for the justification of par-
ticular elements of the language [194, 65]. The specification of semantics is hence
essential for inter-subjective communication and appropriate language usage.

Consequently, it is necessary to outline a method, which supports extension deci-
sions based on intended pragmatics and semantics. This covers the specification and
representation of pragmatics and semantics at first. Based on a set of specified se-
mantic constructs (derived extension need), final syntactical extension mechanisms
can be derived.

12.2.3 Assumptions and Limitations

With respect to the multi-faceted complexity of semantics and the level of under-
investigation regarding pragmatics, different limitations and assumptions should be
made with regard to the topical scope of this work.

The focus of the following considerations lies on the general explication and spec-
ification of the intended pragmatics and intended semantics as well as their conse-
quences for particular extension types. This work therefore focusses on the represen-
tation of pragmatics and semantic structures and omits concrete consensus efforts as
well as different conceptual, epistemological, and linguistic questions at the current
stage due to their notable level of complexity [41, 9]. In particular, deeper aspects in
the context of semantics like lexical issues [196] or differing personal conceptualisa-
tions (e.g. [197, 198]) have not been discussed yet. This includes rather philosophical
discussions and consensus-finding within sociological processes [62, p. 68], as each
modelling language is inherently bound to the community using it [199].

122 12 Motivation and Introduction

For practical reasons, it is further assumed that the syntactical specification of
addressed EMLs is complete and consistent (although there are some syntactical
issues in BPMN, for instance [112]).

The following discussions base on the position of Methodic Constructivism, which
combines Ontic Realism and Epistemological Idealism (cf. [200]). Consequently, se-
mantics can be understood as the individual, subjective re-construction of an onti-
cally perceptible area of discourse [57, p. 36].

13

Structure for Extension Procedure

Motivated by the above considerations on the adequacy of EMLs, it is necessary
to construct a method for the systematic and transparent elaboration of EML ex-
tensions based on a profound analysis of the intended pragmatics and intended
semantics of prospective EML users. Further, the well-guided derivation of poten-
tial EML extensions need has to be addressed. Therefore, the technique of Method
Engineering is conducted.

Method Engineering is the engineering discipline to design, construct and adapt
methods, techniques and tools for the development of IS [201]. A method can be
defined as systematic derivation of specified objectives based on a dedicated set
of single tasks, decisions, and guidelines (according to [47]). Situational Method
Engineering describes the application of Method Engineering to particular situa-
tions that are specified by project characteristics [202]. This covers customisation,
tailoring, and reconfiguration of existing methods and their elements, e.g. method
chunks [203, 204, 205]. Consequently, Situational Method Engineering also comprises
method extensions and the technique should therefore be conductible to the exten-
sion of EMLs as parts of EM methods [46]. However, a straightforward adaptation
is difficult, as Method Engineering rather investigates generic, domain-independent
and language-independent methods [201, 206]. Dedicated applications to EMLs or
BPMN are missing so far (cf. the discussions in [26, 22, 39]).

In the field of domain-specific modelling, only Frank [25] discusses the method-
ically guided design of DSMLs in the EM context. The author presents a multi-
stage method for the design of DSMLs, while alternative approaches rather fo-
cus on implementation-oriented DSLs (e.g. [207, 208, 209]). They do not match
the characteristics of EM-related modelling languages as outlined in Sect. 4.1.
De Kinderen & Ma [56] propose a step-wise process that is composed of the
identification of stakeholders, the analysis and description of their concerns, the
derivation of required information, and a final language fit in order to justify respec-
tive design decisions [56, p. 31]. Considering the stated lack of operationalisation, it
is necessary to provide a pragmatic, fine-grained and detailed method for justifying
and designing BPMN extensions (according to [3, p. 23]).

Table 13.1 presents the proposal for the method. The outlined method bases on
previous works in the context of BPMN extensions, namely the BPMN4CP exten-
sion [55, 76]. These publications initially propose and revise an extension method
for BPMN that is composed of three main steps: Domain analysis, extension prepa-

124 13 Structure for Extension Procedure

ration, and the design of the extension meta model [76]. Thereby, the last step
conducts and extends the BPMN syntax extension method of Stroppi et al. [48].

This macrostructure is generally reused, but refined below. In particular, the step-
wise derivation of relevant semantic constructs based on an analysis of pragmatic
use cases is revised and extended in order to justify extension need on a semantic,
namely, ontology-driven level (according to [98]) instead of solely addressing the
syntactical dimension [48].

In order to create concise, detailed, and transparent guidance, each step of the
extension method is specified by several properties: A certain main stage describes a
comprehensive container for potential sub-stages that are understood as refinements
in order to provide precise interfaces for input and output artefacts. A sub-stage
is characterised by expected inputs, relevant methods and techniques, as well as a
generated output. Output is understood as respective artefacts that are reused in
subsequent stages as input that is somehow treated or transformed within partic-
ular methods. Thereby, results of previous work and above outlined artefacts are
integrated (e.g. extension types). The attribute focus group describes roles which
are the most relevant in single stages. Therefore, prospective EML users and EML
engineers (method engineers) are differentiated.

Below, the single main stages are presented and discussed in detail. Thereby, es-
pecially the context analysis phase is investigated, i.e. Use Case Analysis (Sect. 14),
Requirements Analysis (Sect. 15), and Concept Analysis (Sect. 16). Syntactical re-
alisations are omitted due to space limitations. Respective preliminary studies both
on implementations within the current BPMN meta model (e.g. [74, 55]) as well as
implementations within a potentially revised BPMN meta model (e.g. [59, 76]) are
directly discussed in literature.

13 Structure for Extension Procedure 125

M
a
in

S
ta

g
e

S
u
b
-S

ta
g
e

F
o
c
u
s

G
ro

u
p

In
p
u
t

M
e
th

o
d
s

O
u
tp

u
t

C
o
n
te

x
t

A
n
a
ly

si
s

U
se

C
a
se

A
n
a
ly

si
s

U
se

rs
U

se
C

a
se

s,
P

u
rp

o
se

T
y
p

es
D

o
m

a
in

A
n
a
ly

si
s

(L
it

-
er

a
tu

re
A

n
a
ly

si
s,

In
-

te
rv

ie
w

s,
O

b
se

rv
a
ti

o
n
s

et
c.

)

In
te

n
d

ed
P

ra
gm

a
ti

cs

R
eq

u
ir

em
en

ts
A

n
a
ly

si
s

U
se

rs
U

se
C

a
se

s,
P

u
rp

o
se

T
y
p

es
R

eq
u
ir

em
en

ts
E

n
g
in

ee
r-

in
g

R
eq

u
ir

em
en

ts
S

pe
ci

fi
ca

ti
o

n

•
C

o
n
ce

p
tu

a
l

R
eq

.
•

C
a
p
a
b
il
it

y
R

eq
.

•
U

se
r-

re
la

te
d

R
eq

.

C
o
n
ce

p
t

A
n
a
ly

si
s

U
se

rs
,

E
n
g
in

ee
r

R
eq

u
ir

em
en

ts
S
p

ec
ifi

ca
-

ti
o
n

S
em

a
n
ti

c
A

n
a
ly

si
s

S
em

a
n

ti
c

S
pe

ci
fi

ca
ti

o
n

•
M

a
te

ri
a
l

C
o
n
st

ru
ct

s
•

F
o
rm

a
l

C
o
n
st

ru
ct

s
•

P
er

sp
ec

ti
v
es

C
o
rr

e
sp

o
n
d
e
n
c
e

A
n
a
ly

si
s

S
em

a
n
ti

c
C

o
m

p
a
ri

so
n

E
n
g
in

ee
r,

(U
se

rs
)

S
em

a
n
ti

c
S
p

ec
ifi

ca
ti

o
n
,

E
M

L
M

et
a

M
o
d
el

O
n
to

lo
g
ic

a
l

C
o
m

p
a
ri

so
n

E
xt

en
si

o
n

P
ro

fi
le

E
x
te

n
si

o
n

P
re

p
a
ra

-
ti

o
n

M
ec

h
a
n
is

m
S
el

ec
ti

o
n

E
n
g
in

ee
r

M
ec

h
a
n
is

m
R

ep
o
si

to
ry

–
P

ro
po

se
d

M
ec

h
a

n
is

m
s

E
x
te

n
si

o
n

D
e
fi
n
it

io
n

A
b
st

ra
ct

S
y
n
ta

x
E

n
g
in

ee
r

S
el

ec
te

d
M

ec
h
a
n
is

m
s,

E
M

L
M

et
a

M
o
d
el

(M
O

F
in

st
a
n
ce

)

M
ec

h
a
n
is

m
A

p
p
li
ca

ti
o
n

A
bs

tr
a

ct
S

yn
ta

x
o

f
E

x-
te

n
d

ed
E

M
L

C
o
n
cr

et
e

S
y
n
ta

x
E

n
g
in

ee
r

D
D

In
st

a
n
ce

–
C

o
n

cr
et

e
S

yn
ta

x
o

f
E

x-
te

n
d

ed
E

M
L

S
em

a
n
ti

cs
S
p

ec
ifi

ca
ti

o
n

E
n
g
in

ee
r

E
x
te

n
d
ed

M
et

a
M

o
d
el

M
et

a
M

o
d
el

A
n
n
o
ta

-
ti

o
n
s

S
em

a
n

ti
cs

o
f

E
xt

en
d

ed
E

M
L

E
x
te

n
si

o
n

L
a
b

e
ll
in

g
P

ra
g
m

a
ti

cs
S
p

ec
ifi

ca
-

ti
o
n
,

M
a
st

er
D

a
ta

E
n
g
in

ee
r,

(U
se

rs
)

U
se

C
a
se

s
–

E
xe

m
p

la
ri

ly
A

p
p

li
ca

ti
o

n
C

a
se

s

T
a
b
le

1
3
.1

.
S
em

a
n
ti

cs
-d

ri
v
en

ex
te

n
si

o
n

p
ro

ce
d
u
re

14

Use Case Analysis

14.1 Motivation and Fundamentals

The analysis of the context of use, the early identification of addressed language
purposes, relevant user groups, and the expected utility of an EML are essential
for an adequate language design [20, 210, 211, 40]. Moreover, the formulation of
modelling use cases enables the assessment and selection of modelling languages
in general. This stage aims to identify the purposes which should be fulfilled by a
modelling language. It has to be clarified what should be done with the language.
Although it is crucial to investigate, define, and explicate the expected utility and
underlying purposes of EMLs [212, 25], there is little research on this issue [56], and
a general lack of appropriate description means for pragmatics has to be criticised
[40]. So far, only isolated approaches from different directions within EM-related
research exist. These approaches are briefly considered below in order to represent
the state of the art and identify applicable means for the specification of pragmatic
use cases in the context of EMLs.

14.2 Related Work

Patig [70] addresses the evolution of conceptual modelling languages, especially
ERMs and Petri Nets, and describes different reasons for language metamorphosis
[70, pp. 38ff, 58-62]. However, the author omits any enterprise-related aspects and
all investigations are limited to generic modelling approaches.

Frank [25] emphasises the relevance of understanding the domain during the
development process of DSMLs. The process should start with a clarification of the
covered domain scope as well as the intended purposes [25, p. 140].

Bjeković et al. [22, 40] investigate reasons for EML application in order to
better understand the occurrence of EML extensions and variants. The authors
emphasise the relevance of pragmatics for EM by focusing on the individual purposes
of EML stakeholders as the actual drivers behind language adaptation. Explicating
the modelling purpose is therefore essential important [22, 40]. However, dedicated
pragmatic types are not presented.

Karagiannis [68] introduces AMME, the Agile Modelling Method Engineering
approach. AMME adapts the agile paradigm and aims to timely respond to chang-
ing modelling requirements, which implicates an iterative evolution of modelling

128 14 Use Case Analysis

languages. Language-changing requirements should be derived from use cases [68,
p. 7], but it remains unclear how these use cases can be specified and elaborated.
Also, final consequences in regard to the meta model level are not documented.

Within the AMME project scope, Visić et al. [69] introduce a domain-specific
language, i.e. a method for agile method engineering. The extensibility of the DSL
itself is considered as a key aspect within method development. Base for DSL de-
sign is a creation phase which aims to elaborate requirements that are obtained
from questions, task identification, and respective decisions [69, p. 5]. Therefore,
methods like content analysis or structured interviews are recommended in order to
understand particular domain-specific knowledge. The AMME approach is generally
similar to the idea of extensible EMLs. However, AMME rather focusses the compo-
sitional design of DSMLs and it is rather tool-centred [213]. Modelling standards like
BPMN are not considered. The authors further propose text-based modelling based
on ENBFs, while our approach strictly bases on diagrammatic meta modelling.

De Kinderen & Ma [56] proclaim value-oriented language engineering that
focusses on the actual user value, which is generated or intended by a certain EML.
Therefore, Goal-Oriented Requirements Engineering (GORE) is adapted, which en-
compasses the initial identification of stakeholders, the clarification of their inten-
tions, and the subsequent identification of their intentions [56, p. 2].

Despite these rather generic approaches, methodical support for early stages of
language design and extension design can be found in Burwitz et al. [43], Braun
& Schlieter [55], as well as Braun et al. [76]. These works demonstrate the
specification of scenarios as base for the identification of language requirements and
concepts [43, 55, 76].

To the best of our knowledge, only one paper provides types for EM pragmat-
ics on a generic level: Motivated by considerations of different types of semantics,
Braun [57] proposes four different types of usual modelling purposes: Documenta-
tion, Documentation and Automation, Automation, and Model Analysis [57, p. 39].
These usage types are applied below.

14.3 Input, Method, Output

At first, it is important to identify current, potential, or prospective stakeholders, i.e.
the perhaps abstract mass of potential users dealing with the same class of problems
(according to [68, p. 5]). These people intend to derive some utility or expected value
by creating enterprise-related models with an EML (cf. [35, 210]). However, further
separation into human stakeholders and technical stakeholders might be helpful in
order to assess automatisation capabilities of single use cases early.

The creation of models is driven by underlying objectives and intends the final
realisation of respective purposes (according to [186]). However, such purposes and
objectives are often difficult to explicate and specify, as users are usually uncertain
about the language capabilities, on the one side, and language engineers are not
familiar with the considered area of discourse, on the other side (according to [25,
p. 134]). It is therefore promising to elaborate and describe expected use cases or
application scenarios at first in order to make the user intention more concrete and
explicit. Modelling use cases should describe what model users actually aim to do

14.3 Input, Method, Output 129

with models created by a modelling language and what tasks should be conducted
for accomplishing a certain goal.

Use cases can be derived twofold. First, by conducting empirical research, e.g.
user interviews, questionnaires, or observations of daily business actions (e.g. [214]).
It might be also useful to explicate challenges or to design prototypical models [25,
pp. 143ff]. Thereby, it is important to especially examine relevant tasks, decisions,
and underlying business objectives (referring to [69]). Second, theoretical and con-
ceptual analyses can serve as an information source, e.g. content analysis or literature
reviews. Use cases can be specified textually or by UML use case diagrams [107]. In
the next step, the gained set of use cases should be grouped and perhaps integrated
in order to identify similar ones. This facilitates the identification or homogenisa-
tion of stakeholder groups with differing perspectives, which is important for later
semantic differentiation [211, 126, 56].

Then, the purpose types of each consolidated use case has to be determined in
order to prepare the subsequent derivation of requirements and semantic constructs.
One of the following purposes should therefore be selected [57, pp. 38ff]:

• Documentation: A particular modelling use case is motivated by the idea of doc-
umentation and describing business-related aspects for inter-subjective, primarily
non-technical communication in order to manually derive respective follow-up ac-
tions based on designed models. Models therefore do not serve as a direct part of
an action system, but rather provide documentation foundation. Documentation
is suitable for organisational engineering (i.e. IS design [3]), systems engineering
(i.e. application systems design [215]), and for communication between stakehold-
ers (according to [4]). There is consequently no need for invariant model inter-
pretation, semantics are hence material and prone to the above mentioned issues
of subjective interpretations. This purpose type is therefore purely descriptive.

• Automation: A modelling use case with an underlying automation purpose de-
termines an invariant and hence formal interpretation of models [25, pp. 144ff],
implicating formal semantics with precise interpretation rules. This covers the
application of models in transformation chains within Model-Driven Engineering
(MDE [216]), or as dedicated parts within application systems (models at runtime
[217]). Models are thereby part of artificially created action systems and effect
the change of object states within these systems. Models are therefore not used
manually and this purpose type is therefore prescriptive.

• Documentation and Automation: Some modelling use cases may affect both
pure documentation aspects as well as potentially automatable aspects [67]. For
instance, a process model needs to be interpreted manually (e.g. within clinical
process modelling [77]), but some aspects of the entire model might be processed
automatically, e.g. vertical resource flows or material flows. Consequently, hybrid
semantics as a combination of material semantics and formal semantics appear as
a promising instrument. However, a concise decomposition into documentation
or automation should be examined for reasons of clarification and the current
lack of appropriate description means for hybrid semantics [67].

• Model Analysis: This purpose type reflects the analysis or assessment of re-
spectively designed models. There is consequently no direct or indirect relation
to the area of discourse, as the models themselves are perceived as objects under

130 14 Use Case Analysis

analysis. For instance, a use case for the calculation of model-related key figures
can determine this purpose type [33, p. 45].

• Model Usability: Similar to the last purpose type, model usability covers use
cases which refer to the manual application of models and their somehow per-
ceived usability. This type represents a special case, as it does not create any
concrete value, but rather supports the way of model creation by enhancing the
perceived manner of model usage [28, p. 400].

This stage finally elaborates the intended pragmatics by formulating intended
use cases and respective modelling purposes informally or by applying use case
diagrams. Further, different stakeholder groups might be ascertained. Consequences
for subsequent stages are twofold: First, the identified purpose types determined
the required semantic types and may indicate specific requirements. Second, the use
cases may provide first conceptual requirements, i.e. semantic constructs.

15

Requirements Analysis

15.1 Motivation and Fundamentals

The extension method is basically motivated by the requirements-driven Design
Science Research (DSR) approach that postulates the investigation, classification,
and description of requirements as central instruments for the rigorous analysis and
conception of innovative and relevant artefacts. This should remedy existing DSR
shortcomings like missing procedural transparency, insufficient comprehensibility,
and unclear demarcation from professional practice [79].

The elaboration of extension need is driven by pragmatics and semantics as illus-
trated in Sect. 12.2. Requirements should therefore explicate the needs of prospec-
tive EML users in order to specify the required language capabilities. Requirements
are understood as transmitters between pragmatics (explicated by rather informally
specified use cases) and semantics (finally explicated as detailed semantic con-
structs). Previously introduced use cases and corresponding purposes are therefore
decomposed into more specific requirements, which are the base for the later deriva-
tion of detailed semantic constructs.

In general, a requirement stands for a desired capability of a system or of an
artefact that is needed for solving a specific problem or reaching an objective [218].
In respect to EMLs and especially with regard to the introduced pragmatics and
semantics first approach, requirements represent two things:

• The intended conceptual expressiveness of an EML, which is finally realised by
a specification of semantic constructs.

• The expected capabilities and functionalities of an EML in order to satisfy user-
specific tasks, purposes or use cases.

Requirements should therefore support the elaboration of affected conceptualisa-
tions about things of an area of discourse, which are the base for semantic constructs
(what is the language about). This refers to original constructs of the domain, ex-
plicated by EML users. This type can therefore be seen as a set of rather problem-
oriented requirements (according to [219]).

Requirements should serve as the base for the later derivation of respectively
needed semantic constructs in order to realise particular functionalities using these
constructs. This stands for the way of solving expected issues and consequently refers
to constructs that have to be designed and specified by EML engineers, not primarily

132 15 Requirements Analysis

by EML users. This type therefore stands for rather solution-oriented requirements
(according to [219]).

Explicitly, the stated requirement types only address the semantic dimension of a
language. Specific syntactical obligations are not considered at this point, but rather
intended as the final result of a continuous translation process from pragmatics to
semantics and, finally, to the syntax.

15.2 Related Work

Analysing, defining, and explicating requirements for different kinds of modelling
languages are perceived as essential topics within method engineering, but current
research largely omits this topic so far and lacks the provision of appropriate and
commonly accepted expression instruments [212, 25, 56, 68]. It has to be bemoaned
that very little research is conducted on Requirements Engineering in the context
of EMLs and EML extensions [55, 56], which corroborates the considered over-
emphasise of syntactical and rather technical issues (cf. [40]) that might amplify the
limited dissemination of EMLs in general (according to [220, 3]).

To the best of our knowledge, only the below stated papers consider the role of
requirements within the process of developing modelling languages. The papers are
briefly summarised in order to represent the state of affairs and enable the adaptation
of single aspects.

Frank [25] presents a method for the systematically guided design of DSMLs
and emphasises the significance of generic and (domain-) specific requirements [25,
p. 142]. Generic requirements primarily refer to syntactical and technical aspects
within the design stage, while specific requirements cover semantic constructs within
the targeted domain. They can be elaborated by the analysis of usage scenarios
or by prototypically designed models, for instance [25, pp. 143ff]. The analysis of
usage scenarios should correspond to the identification of respective key terms of
the domain that are captured in glossaries [25, p. 146]. Additionally, the level of
automatisation has to be determined [25, p. 143].

De Kinderen & Ma [56] propose the definition of goal-oriented language pro-
files for the composition or design of EMLs in order to satisfy particular user pur-
poses and create expected user values. Language profiles describe inherent capabil-
ities, extra capabilities, and a list of limitations. Inherent capabilities represent the
intended semantics and can be derived by analysing documents, books, and papers,
for instance. Extra capabilities refer to non-functional expectations, e.g. it terms of
language usability [56, p. 14].

Karagiannis [68] addresses the importance of general, domain-specific, and run-
time-related requirements within the AMME framework. The author therefore pro-
poses syntactical, semantic, functional, design-time-related, and run-time-related re-
quirements as foundations for the design of modelling languages [68, p. 5]. Although
the framework mainly focusses on technical implementations, the adaptation of se-
mantic and functional requirements seems to be promising in order to differentiate
between required conceptualisations within the domain and expected functionalities
based on these concepts.

15.3 Input, Method and Output 133

Visić et al. [69] emphasise the direct relation between requirements and seman-
tic specifications. Similar to Karagiannis [68], the authors implicitly differentiate
two kinds of semantic constructs: The first type of semantic constructs comes directly
from modelling stakeholders [69, p. 1], while the second type is derived “indirectly
from required functionality (e.g. model queries, run time applications)” [69, pp. 1ff].
Thereby, the proposed modelling language requirements represent semantic domain
constructs. A differentiation between both types in the sense of translating less for-
malised requirements into detailed semantic constructs with a particular shape has
been neglected so far.

15.3 Input, Method and Output

15.3.1 Requirements Classification

The initial motivation and the consideration of the state of the art as well as the con-
sideration of use case types in Sect. 14 indicate a differentiation of requirements ac-
cording to rather vocabulary-oriented requirements and rather functionality-oriented
requirements. It is therefore reasonable to classify EML requirements in order
to prepare the structured derivation of semantic constructs in subsequent stages.
For reasons of systematisation, the generic artefact requirements classification of
Braun et al. [79] is adapted and refined in regard to the elaborated peculiarities
in Table 15.1 (cf. [79, p. 144]).

The adaptation of the following requirement types from Braun et al. [79]
was omitted: Feature-related requirements are ignored, as they represent rather gen-
eral requirements which are already specified through use cases in our extension
method. Non-functional requirements are ignored, too. Non-functional requirements
represent user-related requirements in terms of the nature and quality of an artefact
[79, p. 144]. With regard to the intended elaboration of semantics in the extension
method, this would implicate a qualitative evaluation of the final semantics in regard
to the personal semantics of EML users [101]. This could require a special consid-
eration of reducing conceptual and lexical ambiguity issues, for instance [191, 221].
Due to the complexity of these issues and missing research in this field [57], this di-
mension is hidden for now. Nevertheless, some non-functional requirements (in the
sense of usability) should be represented by user-related requirements.

The specification of all requirement types can be realised by conducting the KAOS
method [222] or the i* method [130]. Thereby, it is important to specify the respective
types of requirements. Generally, additional research regarding a modelling language
for EML design seems to be reasonable (cf. the AMME DSL approach [69]).

15.3.2 Derivation of Requirements from Use Cases

Below, the derivation of requirements from respective use case types is elaborated.
Each derivation is briefly described in terms of analytical tasks that have to be
conducted.

Documentation → Conceptual Req., Constraints: Each use case should
be analysed regarding its key terms and potential relations between them in order
to identify relevant conceptualisations about things and phenomena of the area of

134 15 Requirements Analysis

Requirement
Type

Semantics Adaptation for EMLs

Functional Specification of intended
capabilities or features of
an artefact.

Functionality in the scope of the extension method is un-
derstood as (a) conceptual expressiveness and (b) set of
functional capabilities of a language. This requirement
type is therefore divided into the two sub types (concep-
tual and capability-related requirements).

– Conceptual (not specified in [79]) This type represents required domain constructs, i.e. con-
ceptualisations within a particular area of discourse. It
covers all things about which communication should be
possible.
During the extension method, these requirements are re-
fined or translated into semantic constructs in order to
represent the original conceptual scope. Conceptual re-
quirements are rather inconcise, less detailed or specified.
Hence, they represent purely problem-oriented require-
ments (cf. [219]).
Conceptual requirements can be derived by the analysis
of key terms within use cases, for instance (according to
[25]).

– Capability-
related

(not specified in [79]) This type rather represents expectations in terms of re-
alising specific tasks or operations. Requirements of this
type focus on the solution space in the sense of artifi-
cially designed constructs that are not in the mind of
EML users. They hence represent rather solution-oriented
requirements (cf. [219]). For instance, these requirements
may cause the later specification of specific, perhaps
formal semantic constructs by the language engineer in
order to realise intended purposes.

Constraints Laws, regularities, stan-
dards (referred as con-
textual requirements [79,
p. 144])

Specific circumstances and contextual borders, which
have to be respected (in addition to initially formu-
lated use cases). Contextual requirements can deter-
mine additional conceptual requirements or may indicate
capability-related requirements.

User-related User preferences Expectations according to usability of an EML. This type
primarily affects rather soft goals and user expectations
(cf. [130]). It may implicate the later derivation of capa-
bility requirements. User-related requirements typically
address final language reductions, the modification of
the concrete syntax, or some other annotations for gen-
eral better understanding, i.e. some kind of supporting
constructs.

Table 15.1. Adapted requirements types

discourse, which have to be captured in the expressive scope of the EML. This
determines conceptual requirements. Additionally, constraints have to be identified
and described. Constrains implicate additional conceptual requirements and the
definition of specific rules on these concepts, which may further cause capability
requirements. Such restrictions can be referred to as static semantics [67] or syntactic
semantics, too [40].

Automation → Capability-related Req., Constraints: Automation use
cases determine capability-related requirements in order to realise capabilities for
formal interpretation within a language, which may require some kind of work-
ing on the above mentioned concepts of a language. This concern encompasses the
derivation of requirements for a later specification of rules as well as the specifica-

15.3 Input, Method and Output 135

tion of additional constructs for particular algorithms (according to [14, 8]). These
requirements are therefore indirectly elaborated by method engineers.

Documentation and Automation: As mentioned above, a decomposition of
these use cases should be attempted in order to derive respective requirement types.

Model Operations → Capability-related Req.: Model operations also im-
plicate capability requirements and are hence treated as outlined above. However,
they are not necessarily automatable, i.e. the derivation of formal limitations and
restrictions is not mandatory, but possible.

Model Usage→ User-related Req.: Explicated use cases for model usage can
be directly mapped to user-related requirements.

15.3.3 Output

This stage yields a set of requirements which have a higher level of detail in com-
parison to the initial use cases. In particular, three main groups of requirements can
be differentiated:

1. Conceptual requirements
2. Capability-related requirements
3. User-related requirements

These requirement classes act as input for the subsequent derivation of semantic
constructs that can be used for semantic correspondence analysis.

16

Concept Analysis

This stage aims to evolve detailed semantic constructs from requirements in order
to enable a reasonable comparison with the original EML. It is therefore neces-
sary to extract and derive relevant constructs with their characteristics first. It is
thereby important to differentiate material semantic constructs and formal seman-
tic constructs due to their different representation techniques. Particular description
instruments have to be selected accordingly. With respect to the limited scope of
this paper, the following considerations will primarily focus on material semantic
constructs. The deeper analysis and integration of formal semantics constructs in
the context of EMLs is only outlined and shifted to further research.

16.1 Motivation and Fundamentals

16.1.1 Relevance of Semantics and Current Issues

Despite obviously high relevance of semantics for EML application and dissemination
(cf. [195, p. 212], [22, p. 440]), semantics are still under-investigated and research
on EML semantics on the meta model level is largely omitted [73]. Several authors
explicitly criticise the imprecise semantic justification and specification of conceptual
modelling languages, EMLs, and their extensions [62, pp. 67-69], [63, p. 19], [64,
p. 108], [65, pp. 690, 706], [66, p. 485], [33, p. 52].

Poor semantic specifications of EMLs hamper language comprehensibility and
may cause severe issues in terms of inter-subjective communication due to differing
interpretations and conceptualisations (e.g. [223, 40, 101]). Potential problems may
occur if meta model elements are differently understood by language users, but re-
spective mismatched understandings remain undetected [190]. It is further possible
that superficially similar meta concepts are erroneously treated as being the same,
ignoring fine-grained but relevant conceptual differences [101]. Rudimentary seman-
tic specifications also hinder the emergence of commonly agreed interpretations of
meta concepts [101, pp. 3, 66, 104] and complicate the general discussion about them
[9]. The stated issues for EMLs also apply for EML extensions, which are usually
designed in an ad-hoc manner, omitting any rational and transparent justification
process (cf. [64, p. 108]). This has negative effects on the entire extension design
process [40, p. 432].

Reasons for insufficient semantic considerations are manifold [41, 57]. One reason
might be the rather formal original of some EMLs (e.g. BPMN), which often impli-

138 16 Concept Analysis

cates a naive-realistic understanding of semantics. It means that a particular meta
model element is supposed to be interpreted in exactly one way, which is generally
questionable in semi-formal modelling languages and their reliance on material se-
mantics [98]. Recipients of EMLs are mostly human beings, which in turn causes the
immanent issue of subjectivity in regard to understanding a meta model differently
[224, p. 6], [14, p. 112], [101, p. 5]. Technically spoken, the semantic mapping of a
syntactical construct to a particular semantic domain construct differs and leads to
the above mentioned issues [46, 198].

Although objectification and particular semantic harmonisation within a group
of EML users are emphasised as worthwhile objectives [225, p. 25], [25, pp. 13-14],
current research lacks in the provision of techniques for describing EML semantics
in an appropriate manner. Also methodical guidance for detecting and eliminating
misunderstandings is omitted and investigations on the integration of material and
formal semantics are rather immature [67]. On the other hand, several semantic
description approaches have evolved prototypically over the last years, e.g. UEML
[226]. But they are neither well-disseminated nor notably applied in meta models.
Instead, semantic specifications are still limited to rather simple and ambiguous
textual statements (cf. [73]). Research on semantics in the context of EMLs can
hence be assessed as rather immature, isolated, and less integrated (referring to
[62, 210, 9]).

16.1.2 Consequences for Extension Method

Considering the state of affairs reveals two major implications for the extension
method: At first, it is necessary to derive and specify semantic constructs as de-
tailed as possible in order to avoid misunderstandings and facilitate transparent
communication on EML semantics. This objective covers the initial extraction of
key terms from the elaborated set of requirements and their incremental refinement
subsequently. Due to the lack of appropriate and integrated methods, an integration
of parts of the DSML design method of Frank [25] and the EM-related ontol-
ogy language of Opdahl et al. [227] is discussed below. Therefore, ontologies are
employed as central instruments for the representation of semantics. Their basal
features are briefly outlined below.

16.1.3 Ontologies for Semantics Representation

Ontologies are well-established means for explicating domain knowledge and en-
abling semantic annotation of meta models in order to express stipulated semantics
of modelling languages [100, 223]. Ontologies are also applied within early construc-
tive stages of a language design process in order to guide the integration of domain
concepts in meta models [98, 55]. Despite its high relevance for several fields of appli-
cation within EM, the understanding of ontology characteristics differs significantly
[183].

Ontologies therefore need to provide at least the following basal types [228]:
Concepts (characterised by mutual properties), relationships (between concepts and
properties), axioms (constraints and rules for concepts), and instances as exemplarily
realisations.

16.3 UEML for the Representation of Material Semantics 139

16.1.4 From Requirements to Semantics Specification

The elaboration of required semantic concepts should be driven and structured by
decisive meta types in language engineering, namely concepts, perspectives, and
notations. Concepts refer to the contextual and functional vocabulary as discussed in
Sect. 15. Perspectives refer to stakeholder-specific or purpose-specific aggregations of
concepts or simple groupings of common understandings. Concepts and perspectives
will finally provide the base for the derivation of the abstract syntax. Notations refer
to any kind of user-related requirements in regard to the shape and appearance of
modelling elements. Below, the determination of single types is discussed based on
the above introduced requirement types.

16.2 Ontological Constructs from Conceptual Requirements

Conceptual requirements are the foundation for material semantic constructs, which
is generally considered as EML semantics [57]. The specification of these constructs
should be realised by combining the DSML design method of Frank [25] and the
UEML approach [229].

The DSML design method is primarily adapted in regard to the initial identifi-
cation of key terms as a reference for required domain concepts, as it is important
to decide whether a term is suited to be incorporated in a language [25]. Therefore,
Frank [25] proposes four essential criteria: (1) invariant semantics, (2) relevance,
(3) variance of type semantics, and (4) instance of type intuitive [25, pp. 148ff].
The assessment of these criteria then enables a decision for or against an inclusion
as meta type [138, p. 100]. The stated criteria are adapted as a set of guidelines
through which a certain term has to go through.

While the externalisation of semantic constructs remains rather vague within the
DSML method of Frank [25], we propose the application of a more detailed ap-
proach for their specification. Semantic constructs are thereby specified with UEML
in order to enable a multi-faceted and possibly complete externalisation of conceptu-
alisations about phenomena, which should support inter-subjective communication
and transparent comparison with original semantics from EMLs [226, 229, 66].

16.3 UEML for the Representation of Material Semantics

16.3.1 Introduction

Ontologies for representing material semantics should provide concept types for EM-
related aspects instead of purely generic concepts in order to facilitate the integration
of specific concepts into the EM domain. Ontologies should further not be completely
determined and fixed, but extensible. Also integration with syntactical constructs is
preferable [100]. As mentioned above, a dedicated and commonly applied ontology
for material semantics is missing. The Bunge-Wand-Weber (BWW) ontology is fre-
quently conducted for the ex-post analysis and evaluation of modelling languages,
but reveals several shortcomings as elaborated in literature [194, 230, 231]. Other

140 16 Concept Analysis

authors proclaim the application of generic ontologies like the Web Ontology Lan-
guage (OWL) [232, 100, 55], but their specific application and appropriateness for
EM remain vague.

Another approach is the Unified Enterprise Modelling Language (UEML). UEML
serves as a well-defined modelling approach for the specification of multi-faceted,
EM-related ontologies and their annotation on the meta model level [226, 229, 66].
UEML reuses some basal concepts from the BWW ontology [192, 233] in its core and
extends them with structural and functional concepts from the IS and EM domain
in order to provide a reference ontology that facilitates the integration, exchange,
and migration of EMLs [226, p. 103], [229], [66, p. 488]. Therefore, UEML provides
a reference ontology, called Unified Enterprise Modelling Ontology (UEMO), which
specifies more than 200 concepts for the domain-independent description of EM-
related syntactical constructs as languages are.

UEML aims to reduce semantic gaps in EM in order to foster the emergence
and management of model-driven organisations by a standardised, integrative, and
evolvable approach [226]. In this context, the authors of UEML stress the inher-
ent significance of semantic constructs, i.e. ontological representations (according to
[226, p. 101]) and emphasise that the meaning of a modelling language is primarily
driven by its decomposition into atomic semantic constructs (cf. [66], referring to
Frege’s Compositionality Principle [234]). The underlying paradigm hence complies
with the introduced semantics first principle.

Consequently, the well-structured and expressive UEML is proposed as a conve-
nient technique for the representation and specification of intended semantics in the
context of the extension method under consideration. The architecture and main
components of UEML are briefly introduced below.

16.3.2 Architecture

UEML is framed by three main components as presented in Figure 16.1 [66, 235]:
The abstract syntax (language layer), ontological scenes (construction description
layer), and the underlying UEMO ontology (ontology layer).

Language Layer: The language layer covers all grammatical constructs of the
EML that should be analysed and semantically annotated. This indicates that each
UEML analysis bases on already existing syntactical constructs. These constructs
are semantically enriched in two subsequent steps as stated below.

Construction Description Layer: The idea behind UEML is to describe each
syntactical construct not only as one-to-one mapping to a certain ontological con-
cept, but rather as representation of a certain phenomenon that is composed of
several roles (cf. [236]). A syntactical construct is described by a state of affairs
(scene) that is composed of one or more represented phenomena, i.e. classes, prop-
erties, states, and transformations [66, p. 487]. It is therefore possible to specify the
meaning of a language construct through decomposition into its atomic parts of phe-
nomenon representation [237, p. 9], [66, p. 490], [235, p. 56]. The modelling of a scene
therefore externalises the underlying understanding of language concepts and serves
as first reference to the perceived real-world (referring to [226, p. 104], [229, p. 165]).
The derivation and specification of represented classes, represented properties, repre-
sented states, and represented transformations is guided by answering four essential

16.3 UEML for the Representation of Material Semantics 141

Dimension Question Outcome

Static Which class(es) of things is the
construct intended to represent?

• Classes of things

Static Which properties is the construct
intended to represent?

• Intrinsic properties
• Relations
• Complex (subproperties)
• Laws (structural and behavioural re-

strictions, i.e. states and transforma-
tions)

Behavioural Which state is the construct in-
tended to represent?

• States of classes
• State laws (restriction of class proper-

ties in state)

Behavioural Which transformation is the con-
struct intended to represent?

• Transformations
• Transformation laws (from state to

another)

Usage Which instantiation level is the
construct intended to represent?

• Type
• Instance
• Both

Usage Which modality is the construct
intended to represent?

• Descriptive (objectively perceived facts)
• Normative (rules, prohibitions etc.)
• Intentional (goals, intentions etc.)

Table 16.1. Description of a state of affairs by answering six essential questions

questions in order to evolve the manifestation of a language construct [226, 229, 66].
The relationship types between the concepts have to be elaborated in addition, e.g.
generalisations, sequences, or some other kind of impact [66, p. 490]. Also the kind
of things as well as the intended kind of usage can be specified (cf. [235]). Table 16.1
summarises the stated questions and outlines the represented phenomena which
shape a particular scene. The evolved scene represents the actual interpretation
and meaning of a referred syntactical construct, indicating the semantic mapping
between syntax and semantics.

Ontology Layer: The above specified representation types are then mapped
into a generally pre-defined set of basal ontological concepts from the EM and IS
domain, the UEMO ontology. The representation types are mapped to ontological
constructs and hence operationalised according to their type [66, p. 490]. UEMO
therefore provides the following four taxonomies (e.g. [226, 235]):

• Taxonomy of Classes (e.g. AnyThing, UnchangingThing, CoupledThing)
• Taxonomy of Properties (e.g. AnyProperty, IntrinsicProperty, ComplexProperty)
• Taxonomy of States (e.g. AnyState, StableState, UnstableState)
• Taxonomy of Transformations (e.g. AnyTransformation, Event, Execution)

Each taxonomy is hierarchically structured and allows the specification of taxo-
nomical, i.e. ordered, relationships (e.g. specialised, precedes) and non-taxonomical,
i.e. unordered, relationships (e.g. define, restric, effect, prestate of, poststate of; ac-
cording to [66]). This enables generalisation hierarchies and precedence hierarchies
within the ontology (cf. [226]). Single taxonomies are further interrelated in order
to represent the interdependencies between the underlying represented concepts.

Each ontological analysis finally leads to the specification of ontological concepts
from UEMO, which enables language comparison and language across migration
via this standardised set of ontological constructs. Potential points of subjective
variance can hence be inferred as follows: First, the scene representation of a certain

142 16 Concept Analysis

Semantic Specification

Abstract
Syntax

Language
Layer

Language Constructs

Construction
Description Layer

Represented Phenomena

in Ontological Scene

Ontology
Layer

Represented Ontology

UEML Ontology

Class
Taxonomy

Property
Taxonomy

State
Taxonomy

Transformation
Taxonomy

State of Affairs
(Scene)

Classes

Properties

States

Transformations

R
ep

re
se

nt
at

io
n

 M
ap

pi
ng

Fig. 16.1. UEML architecture

syntactical construct may vary. Second, identical scenes may be differently mapped
to ontological constructs from UEMO. The resulting differences are relevant for the
later consideration of semantic comparisons.

16.3.3 Application and Adaptation

The UEML is intended to be used within the analysis stage in order to express what
a particular modelling language should represent. Current literature remains rather
vague on this aspect and considers only classes and their attributes on a very generic
level, omitting any concrete representation instruments (e.g. [25, 55]). UEML hence
provides a conceptual and methodical frame for structuring the rather imprecise area
of discourse and fostering its model-based externalisation with a specific modelling
notation as well as with the ontology representation standard OWL, for instance
(cf. [229]).

In any case, applying UEML for the extension method reveals some peculiarities.
At first, UEML strongly bases on the existence of a well-specified EML, indicating
already existing syntactical constructs that can be described (e.g. [66, pp. 492ff]).
However, the syntax is naturally missing within the proposed extension approach,
which hampers the straightforward conduction of UEML construction guidelines.

Specification of Scenes as Externalisation of Intended Semantics

Instead of considering the language syntax here, we rather proclaim scenes as exter-
nalisation instruments for describing the required language capabilities. Therefore,
the UEML scene modelling notation can be applied (referring to [227, p. 4]). It
is consequently necessary to translate the ascertained requirements into respective
scenes. Therefore, the construction guidelines of Harzallah et al. [66] may be

16.3 UEML for the Representation of Material Semantics 143

Specification of Intended Semantics

Externalisation of
State of Affairs

Standardised
Representation

UEML Ontology

Property
Taxonomy

State
Taxonomy

Transformation
Taxonomy

UEMOext

State of Affairs
(Scene)

Classes

Properties

States

Transformations

R
ep

re
se

nt
at

io
n

 M
ap

pi
ng

Class
Taxonomy

Required or
Intended

Phenomena
(Key Terms)

Requirements

Fig. 16.2. Adaptation of the UEML approach for specifying the intended semantics

conducted. For instance, if further information on scenes is missing, then the cen-
tral phenomenon for representation should be a class and respective representation
types should be annotated to this central phenomenon (cf. [66, p. 494ff]). The iden-
tification of key terms from conceptual requirements seems to be promising for this
step (according to [25]). The specification of represented phenomena hence exter-
nalises the intended material semantics, which are covered by requirements. The
scene specification is depicted in the middle of Fig. 16.2. Figure 16.3 represents the
scene modelling notation that is inferred from [227].

Standardising via UEMO Ontology and its Extension

After scene modelling, each representation phenomenon has to be mapped to the
ontology layer in order to translate and hence operationalise it for language across
comparison and analysis. It can hence be understood as a certain translation task
that has to be fulfilled in order to provide communication and concept comparison.

Class State Property Transformation

subtypeOf
possesses/

defines subpropertyOf
pre-/

postStateOf
constrains/

effects

Fig. 16.3. Notation for modelling scenes [227]

The current UEMO version bases on a reverse engineering of GEMLs and PSMLs,
namely BPMN 1.x, ARIS, UML, KAOS or IDEF (cf. [226, p. 108], [229, p. 173], [235,
p. 50]). The UEML authors themselves note that the initial reuse of some major
BWW concepts as well as the concentration on process modelling languages cause

144 16 Concept Analysis

an over-emphasise of active and interactive classes of things, while organisational
aspects and social actors are rather under-represented and hence difficult to express
[235]. With regard to the peculiarities of the EM domain, also other topics like
material flows, resource structures, or business goals may become relevant for onto-
logical considerations. There is consequently an inherent necessity of adding further
ontological concepts to UEMO (according to [226, p. 108]).

Opdahl et al. [235] suggest an adaptation of potentially useful approaches
like value modelling or language-action perspectives. In contrast, we proclaim the
situational extension of UEMO with potentially existing domain ontologies from
the area of discourse. This circumstance is represented by the introduced UEMOext
ontology part in the right side of Fig. 16.2. Although UEMO is explicitly designed
for enriching itself (cf. [226, p. 63], [66, p. 485]), its technical realisation has mostly
been left open so far [235]. The authors propose the initial selection of a taxonomy
and the subsequent integration of an additional ontological concept by applying
respective taxonomical mechanisms. Consequently, there is a need of decomposing
intended semantic constructs into classes, properties, states, and transformation, as
well as an extension of the UEMO itself.

16.4 Semantic Comparison with UEML

Due to the intended representation of material semantic constructs with UEML,
already the initial phase for semantic specification raises the issue of conducting
semantic comparisons in order to clarify potential conceptual mismatches.

16.4.1 Related Work

The evaluative comparison of meta model semantics is only sparsely investigated
in literature. Considerations on semantics are limited to the comparison of syntax
and semantics in the light of assessing their correspondence to a given ontology
(ontological analysis [193]).

Wand & Weber [192] proclaim four essential comparison types: Construct
deficit, construct redundancy, construct overload, and construct excess. Construct
deficit represents missing representation of an ontological construct in the modelling
grammar. Redundancy stands for the mapping of multiple constructs to one onto-
logical construct. Overload represents a mapping from a grammatical construct to
multiple ontological constructs. Excess represents those grammar constructs, which
have no ontological mappings [192].

Fickinger & Recker [238] expand this framework by the concepts distinct
construct redundancy and specialised construct redundancy. The first describes that
one ontological construct maps two different and unrelated grammatical constructs.
A language construct has therefore different interpretations, which might cause mis-
understandings. Specialised construct redundancy describes the mapping of one on-
tological construct to different grammatical constructs, while these constructs con-
stitute parts of a generalisation. This type is less problematic, as it keeps most
ontological features [238].

According to the semantic annotation of meta models, Guizzardi [223] intro-
duces the criteria soundness, completeness, lucidity, and laconicity. Soundness claims

16.4 Semantic Comparison with UEML 145

for the general existence of an ontological construct. Completeness describes that
each ontological construct is represented in the syntax. Lucidity stands for the un-
ambitious representation of an ontological construct and laconicity demands that a
particular ontological construct is referenced only once [223].

The presented approaches seem to be generally applicable for a rapid appraisal of
the appropriateness of an EML. However, the approaches involve the risk of ignoring
particular knowledge that is encapsulated or referred by the intended semantics, as
it directly maps to the language syntax. These mappings remain implicit, which is
detrimental for procedural transparency and comprehensibility. It is more reasonable
to conduct the initially proposed semantics first approach and focus on semantic
comparisons.

Only a few research papers explicitly address the implementation of semantic
comparisons. Gehlert & Esswein [231, 239] elaborate a formalised ontologi-
cal analysis, leading to the specification of equivalence, similarity, and differences.
Pfeiffer [240] discusses several model conflict types, e.g. homonym conflicts and
synonym conflicts. Opdahl & Henderson-Sellers [241] introduce the element
of comparison result type, which implicates that a grammar construct constitutes
an element of an ontological construct. Subtyping represents generalisations between
ontological constructs [241]. Anaya et al. [226] introduce several correspondence
types, which are discussed below.

Based on these preliminary studies, the following fine-grained correspondence
types are consolidated with a special focus on subsequent constructive actions.
Thereby, only material semantic constructs are covered.

16.4.2 Correspondence Types in UEML

Semantic comparison in the context of UEML is driven by comparing modelling
languages in order to estimate migration strategies. Language comparison is there-
fore elevated to a comparison of ontological scenes [226, p. 100]. The analysis is
thus also driven by finding respective correspondence between language constructs.
This leads to the following correspondence types which cover the comparison of
ontological scenes [226, p. 105]:

1. Equivalence: Both scenes are identical. This means that the represented phe-
nomena as well as their relations are congruent, indicating a replacement of
respectively related syntactical constructs without information loss.

2. Containment: One scene is completely covered by another scene. This means
that the covering scene specifies additional represented phenomena, while the
covered scene serves as a valid excerpt or subset of the covering scene. If one scene
covers multiple scenes, it could be described as a merge of these scenes. And a
decomposition of this scene into the covered scenes is then possible. This enables
a replacement during model-to-model translation procedures, for instance.

3. Generalisation: One scene (sub-scene) can be generalised by another scene (su-
per scene). More precisely, respective sub/super relations between represented
phenomena exist [66, p. 490]. Generalised constructs may enable model transfor-
mations with particular information loss [226, p. 105].

4. Complex: This type stands for the combination of containment and generalisa-
tion. Thus, it represents a hybrid type indicating various similarities.

146 16 Concept Analysis

5. Overlapping: This type represents partial equivalence. More precisely, some
represented phenomena are mutual, while others are exclusively owned by one
scene.

Further specification of conducting and elaborating these correspondence types
in detail is so far missing. A certain procedure can be inferred inductively from
the presented example in Anaya et al. [226]. The goal concepts from KAOS and
GRL are therefore described within the construction description level in order to
find represented classes and properties. These representation constructs are then
mapped to the UEMO ontology, enabling a construct-wise correspondence check.
However, the authors state that there is need for further research in terms of scene
comparison and the establishment of a correspondence typology [226, p. 105].

16.4.3 Proposal for Correspondence Typology

We therefore outline a more fine-grained and detailed typology that aims to gener-
ically specify comparisons within the construction description layer. The typology
bases on the assumption that both the scenes as well as their ontological represen-
tations serve as atomic units of analysis enabling the best possible externalisation
of material semantics.

OA,B

OA

OB OB

OA

SA,B

SB

SA

SA

SB

SA,B OA,B SA,B
OB

OA OA

OB

SA,B

OA,B
OB

OA OA

OB

OA

OB

SB

SA

SB

SA

SB

SA

SA

SB

SA

SB OB

OA SA

SB

OA,B

Scene
Comparison

Ontology
Comparison

Fig. 16.4. Correspondence typology representing scene comparison and ontology comparison

16.4 Semantic Comparison with UEML 147

Evaluating the difference between scenes – independent from any syntactical con-
struct – in fact determines an investigation of the underlying phenomena (what is)
and an investigation of terms referring to it (how is it labelled).

The first issue can be tackled by comparing the respectively defined and mapped
ontological constructs. The second issue rather focusses on the scene itself in order
to find homonyms that may cause semantic misunderstandings, for instance. Con-
sequently, the model structures of two scenes as well as the model structures of the
ontological representation are compared, leading to an assessment of Equivalence,
Similarity, or Difference (according to [239]).

We therefore propose a two-dimensional framework in order to establish a cor-
respondence typology. The framework is composed of a dimension describing the
comparison of respective scenes and a dimension describing the accordingly deter-
mined comparison of respective ontologies. We thereby assume that the result of
the ontology comparison also covers the respective mappings between scenes and
ontologies (despite the fact that mappings between identical scenes and identical
ontologies may differ, for instance).

• Equivalence stands for congruency between two artefacts, in regard to their
elements, their relations and their particular labels.

• Similarity stands for missing equivalence, but congruence in regard to some
elements. Naturally, the extent of congruence may differ, often leading to a situ-
ational assessment of the degree of similarity. Different degrees of similarity are
especially relevant for the derivation of syntactical consequences (cf. Sect. 18.2).

• Difference stands for the lack of any commonalities between two artefacts.

Ontology Comparison O1: Equivalence O2: Similarity O3: Difference
Scene Comparison

S1: Equivalence S1O1: Congruency S1O2: Differing Degree
of Understanding

S1O3: Homonym
Conflict

S2: Similarity S2O1: Potential
Synonym

S2O2: Indifference S2O3: Potential
Difference

S3: Difference S3O1: Synonym S3O2: Indifference S3O3: Difference

Table 16.2. Basic correspondence typology

Table 16.2 presents the fundamental structure of the framework. Single framework
elements are discussed within the analysis scenarios below. The elaborated frame-
work should support the comparison of initially derived scenes during requirements
engineering. And it should facilitate the later comparison with already existing con-
cepts of an EML. The in-detail consideration of each framework element is organised
in accordance with the scene comparison.

Analysis Scenario 1: Equivalent Scenes

This framework layer aims to clarify whether equivalently described phenomena
(things of the area of discourse) are in fact understood equivalently. From a prag-
matic point of view, this is essential for becoming aware of semantic conflicts
(homonymous understandings) or perhaps user-specific differences in the level of
detail. In accordance with Table 16.2, the following types can be divided:

148 16 Concept Analysis

• S1O1: Congruency. The ontological representation is equivalent, indicating an
identical understanding of one and the same state of affairs.

• S1O2: Differing Degree of Understanding. The understanding of one and
the same state of affairs differs, either horizontally (differently annotated charac-
teristics), vertically (different generalisation levels), or both. Particular difference
types are introduced in Table 17.2. This type may indicate the derivation of
user-specific perspectives, for instance.

• S1O3: Homonym Conflict. One and the same state of affair is understood
differently, leading to homonymous understandings that represent user-specific
misunderstandings. The lack of commonalities is therefore critical and has to be
resolved during extension design.

Different fine-grained considerations and Types of Similarity (S1O2) are in-
troduced below. The reflected types are reconsidered for correspondence analysis in
Sect. 17. We therefore refer to a need scene (need in the sense of required demand)
and an original scene as well as need ontology and original ontology in order express
correspondence analysis between the needed capabilities and the capabilities of the
original language.

• Containment : The same thing (or state of affairs) is meant, but in the original it
is semantically specified in a more detailed way. Consequently, the need ontology
is always covered by the original ontology (Fig. 16.5a).

• Coverage: The same thing (or state of affairs) is meant, but it is understood in
a more detailed way in the need ontology. Consequently, the original language
lacks in the provision of some semantic constructs (Fig. 16.5b).

• Specialisation: Within the need, something more specialised is meant. This indi-
cates that constructs of the need ontology are either equivalent to constructs of
the original ontology or they are specialisations of them (Fig. 16.5c).

• Generalisation: Within the need, something more general is meant. This indicates
that constructs of the need ontology are either equivalent to constructs of the
original ontology or they are generalisations of them (Fig. 16.5d).

• Complex (with Specialisations): Something more specific is meant, whereby some
parts of the referred state of affairs are understood in a more specialised way,
while the other parts are covered by the original ontology (i.e. containment and
specialisation, Fig. 16.5e).

• Complex (with Generalisation): Something more general is meant, whereby some
parts of the referred state of affairs are understood in a more general way, while
the other parts are covered by the original ontology (i.e. containment and gener-
alisation, Fig. 16.5f).

• Overlapping (Complete): Something is understood in the same manner, but ad-
ditional characteristics are needed. A few, but not all ontological constructs of
the need ontology match the constructs of the original ontology. These constructs
thereby represent the complete set of constructs from the original ontology (i.e.
complete coverage, Fig. 16.5g).

• Overlapping (Partial): Something is only understood in the same manner to a
certain degree. A few, but not all ontological constructs of the need ontology
match the constructs of the original ontology. These constructs thereby do not

16.4 Semantic Comparison with UEML 149

represent the entirety of constructs from the original ontology (i.e. partial cover-
age, Fig. 16.5h).

OO

ON

ON

Oo

OO

ON

ON

OO

 OO
ON

OO ON

ON

OO

OO ON

a)

b)

c)

d)

e)

f)

g)

h)

ON = Need Ontology

OO = Original Ontology

Fig. 16.5. Types of ontological similarity

Analysis Scenario 2: Similar Scenes

This framework layer represents the scenes with similarities, e.g. all cases of con-
tainment, generalisation and partial overlapping (cf. [226]). Despite the inherent
challenge of assessing similarities, the analysis should foster the identification of po-
tentially identical sets in order to become aware of actual or “de facto” matches of
understanding. We therefore propose the following types:

• S2O1: Potential Synonym. Similar scenes are understood in the same way. It
is consequently reasonable to assess the degree of similarity in order investigate
whether it is (a) rather an equivalent or (b) rather a synonym. This step, of course,
represents a situational decision in accordance with the respective elements.

• S2O2: Indifference. Similar scenes are understood in a differing detailed kind,
but have some overlapping. Further consideration in the sense of changing the
type to potential synonym (S2O1) is only reasonable if the similarity is perceived
as large.

• S2O3: Potential Difference. Partly different scenes are understood in a com-
pletely different way, without any overlapping. Therefore, it is necessary to inves-
tigate the degree of scene similarity in detail. If the similarity is rather large, then

150 16 Concept Analysis

the similarity has to be treated as a homonym conflict (S1O3). If the similarity
of the scene is rather low, then it should be treated as completely different for
reasons of clarity (S3O3).

As stated above, the case of similar ontologies may require further discussion to
identify actual strong similarities in order to better understand the kind of similarity.
The comparison of the ontological similarity should therefore indicate and justify
a probably derived assumption that the similar scenes under consideration actually
stand for identical phenomena in their core. We therefore introduce the following
types of similarity for differing scenes:

• Containment : Probably the same phenomenon is meant, but it is referred to
differently and is understood in more detail in the original ontology. All constructs
from the need ontology are therefore contained in the original ontology.

• Coverage: Probably the same phenomenon is meant, but it is referred to differ-
ently and is understood in more detail in the need ontology. All constructs from
the original ontology are therefore contained in the need ontology.

• Specialisation: Probably something more specialised is meant and referred to
differently, as each construct from the need ontology serves as a specialisation of
the original ontology.

• Generalisation: Probably something more generalised is meant and referred to
differently, as each construct from the need ontology serves as a generalisation of
the original ontology.

• Complex (with Specialisation): Probably something more specific is meant and
referred to. Thereby, something more specific is understood both as a speciali-
sation of the original ontology as well as annotating additional characteristics.
Exactly these characteristics have to be examined in detail. If they extend the
original ontology significantly, then it is rather unlikely that the same thing is
meant. In case of a slight extension, it is probably the same.

• Complex (with Generalisation): This case is similar to the Complex (with Spe-
cialisation) type, but the need ontology is more general in some parts. The same
considerations have to be conducted in order to assess real difference.

• Overlapping (Complete): This type basically corresponds to the Coverage type,
but defines additional characteristics within the need ontology, which have to be
considered as in the Complex type, for instance.

• Overlapping (Partial): Only some ontological constructs are shared between the
need ontology and the original ontology. In this case, in-depth analysis of the ex-
cluded constructs is necessary. If the non-shared constructs are non-contradictory
and if they are relatively small in comparison to the overlapping, then both scenes
probably mean the same. If the non-shared constructs are contradictory or have
a rather low proportion in relation to the entire ontology, then they should rather
be treated as differences.

It is important to note that the fine-grained analysis of similarities is limited
to the ontological level, although it might be reasonable to conduct it on the con-
struct description level, too. However, this conduction is omitted, as the construct
description layer provides rather little structural information and, even more impor-

16.5 Justifying and Modelling Intended Semantic Constructs 151

tantly, the comparison of scenes themselves is barely realisable without analysing
the ontological representation.

It is further important to mention that each comparison of similarities and
differences serves as a manual decision, especially in terms of qualitative assess-
ment (strengths of overlapping, e.g.) as well as quantitative assessment (ration
between shared and unshared ontological constructs, e.g.). As already stated in
Anaya et al. [226], further research on operationalisation of such similarity de-
grees is absolutely necessary.

Analysis Scenario 3: Different Scenes

This framework layer covers the analysis of differently represented phenomena. This
layer is important for the identification of synonyms and for the justification of clear
differences. The followings types are differentiated:

• S3O1: Synonym. Differently referred state of affairs are understood the same.
It is therefore reasonable to treat them as being the same.

• S3O2: Indifference. Differently represented state of affairs are similarity de-
scribed in the ontologies. A deeper analysis of the degree of difference could
enable a classification as a de facto synonym, if reasonable. Otherwise, such sim-
ilarities should rather be assessed as clear differences.

• S3O3: Difference. There are neither commonalities in the scene nor in the on-
tology. Consequently, totally different things are covered.

Similar to the above mentioned analysis scenarios, it is reasonable to analyse
the differences between ontological scenes in order to identify potential synonyms,
i.e. largely similar ontologies that justify de-facto equivalence of them. However, we
propose to only consider those, which allow a precise commitment and omit any
further manual decision. Therefore, the following types from Sect. 16.4.2 can be
reused: Containment, Coverage, Specialisation, and Generalisation.

16.5 Justifying and Modelling Intended Semantic
Constructs

After elaborating an appropriate description format in Sect. 16.4, the determina-
tion of respective scenes and their covered phenomena remains open. Therefore, the
DSML design method of Frank [25] is adapted and partially integrated with UEML
in order to (a) reuse the elaborated procedure of Frank [25] and (b) leverage the
manifold means of expression from UEML. Specifically, the intended semantic con-
structs are not only externalised by terms of respective “concepts”, but as scenes
with different kinds of represented phenomena. Although syntactical constructs are
missing, the specification guidelines of Harzallah et al. [66] as well as the mod-
elling notation of Opdahl et al. [227] can therefore be leveraged.

Consequently, the key terms from the conceptual requirements should be ex-
tracted and refined accordingly in order to elaborate the scenes first. In accordance
with Frank [25] and Harzallah et al. [66], we suggest using classes of things
as the starting point for analysis. This analysis can be conducted by introspective,

152 16 Concept Analysis

for instance [25]. Then, the phenomena of scenes have to be mapped to the UEMO
ontology or its extended version in order to operationalise them.

According to Frank [25], the identified scenes need to satisfy two requirements.
They should have the same meaning across all application areas and it should be
possible to define the essential meaning of each scene respectively. These require-
ments are necessary in order to avoid language overload and enable ontologically
clear extensions. The particular meaning is thereby understood as externalisation
of scenes by their ontological constructs in UEMO. The term “essential” stands for
the ability to distinguish one scene from another scene in a significant way. The
higher the levels of semantics, the more interpretations are excluded and the more
information is required about potential instances. It is therefore necessary to iden-
tify potential mismatches or misunderstandings based on the ontological analysis
of scenes. Frank [25] therefore proclaims four analysis steps: invariant semantics,
variance of type semantics, relevance, and types intuitively. These are conducted
and adapted in the light of UEML below.

16.5.1 Invariant Semantics

The criterion of invariant semantics claims an invariant interpretation of terms across
different user groups and fields of application [25]. With respect to the elaborated
adaptation of the UEML approach, it is therefore necessary to examine the onto-
logical representation of equivalent (S1) and very similar (S2) scenes in order to
identify potential misunderstandings in the sense of homonyms and largely different
understandings. At first, equivalent scenes have to be analysed and the following
results are considerable:

• Congruency (S1O1): The ontological representations of the scenes are identical.
They are hence treated as one scene. The semantics are consequently treated as
invariant.

• Differing Degree of Understanding (S1O2): The ontological representations of the
scenes are not identical, but similar. According to the stated similarity types, the
following actions are recommended:

– Containment and Coverage: In this case, identical scenes are understood with
a different level of detail. It is recommended to use the larger ontological
representation if there are no contradictions. Then, the creation of a user-
specific perspective in the sense of a reduced view on the entirety of the referred
ontological concepts should be contemplated.

– Specialisation and Generalisation: Identical scenes are understood with a dif-
ferent level of abstraction. It is recommended to use the more general ontology
and rename the more specific one in order to express its role. This more specific
ontology may serve as a potential sub-type within later syntactical considera-
tions.

– Complex and Overlapping : As mentioned above, these types require special
attention. For both types, it is recommended to examine a merger of ontologies
in order to create a common understanding. Then, user-specific perspectives
can be created later. In case of any contradictions or a low degree of similarity,
both ontologies should not be merged and rather treated as being different (see
below).

16.5 Justifying and Modelling Intended Semantic Constructs 153

• Homonym Conflict (S1O3): The ontological representation of one scene does not
have any overlap with the other scene and there are consequently no seman-
tic similarities. Despite the same terms, the scenes are interpreted in a totally
different way and hence prone for misunderstanding (cf. [101]). It is therefore
necessary to rename one scene and propagate this renaming within the addressed
user group in order to separate them.

In a second step it is necessary to examine scenes with a high degree of similarity,
i.e. these two scenes only differ marginally. A discursive analysis (with user groups)
should then elaborate if the regarded scenes can be seen as one. Then, the above
introduced rules for the case of equivalence can be conducted.

It becomes obvious that even the early analysis of same or similar scenes reveals
some syntactical hints, especially regarding sub-types and required perspectives.
These aspects should be recorded in order to apply them during extension design.

16.5.2 Variance of Type Semantics

Frank [25] further claims for variance of type semantics. Variance of type semantics,
i.e. the semantics of intended language constructs, implicates a noteworthy semantic
distance between particularly identified scenes in order to avoid redundant language
types. However, concrete operationalisation remains unclear (also in the context of
UEML). We therefore recommend comparing the ontological representation of each
scene with all other ontological representations. A particular distance is understood
as a comparison of these ontologies. It is intended to identify synonyms (S3O1)
and potential synonyms (S2O1), as these types indicate low semantic distance. Two
result types are consequently possible:

• Same meaning: Two different scenes are characterised by the same set of on-
tological constructs, causing a synonymous understanding. It is then necessary
to record these synonym structures in order to keep track of them during exten-
sion design. Synonyms should be covered by semantic specifications of potential
extension constructs.

• Slightly differing meaning: The analysis may also reveal very similar sets of
ontological concepts that would negate the criterion of significant distance (cf. [25,
p. 147]). They are rather seen as potential synonyms. In this case, reconsidera-
tion is necessary in order to find out whether different ontological phenomena are
indeed referred to or whether one phenomenon is referred with slightly different
characteristics. In the first case, we recommend keeping both scenes differently,
but treating them in different perspectives later in order to emphasise the dif-
ferent meaning. The latter case should be treated as one scene having differing
attributes in single perspectives. Similar to the above mentioned synonyms, the
(de facto) synonym should be recorded and the entire concept should be treated
as a candidate for perspectives.

As mentioned earlier, it is necessary to elaborate powerful mechanisms for on-
tological comparison on the meta model layer in order to provide better means for
assessing the degree of similarity, for instance [226].

154 16 Concept Analysis

16.5.3 Relevance

Frank [25] proclaims the integration of only those concepts into a language which
are perceived as relevant. Also other authors emphasise that only necessary domain
concepts should be considered in order to avoid over-complicated languages [211]. In
contrast to the stated works, we rather intend to relax this criterion, as the actual
relevance of a determined requirement is impossible to satisfactorily assess from
a language engineer point of view. This position might be seen as naive, but we
take the expressed conceptual requirements and constraints as granted and solely
recommend reconsidering single concepts of the above mentioned list by EML users.
Potential pre-exclusion of concepts should be avoided in order to enable the user-
centric creation of value.

16.5.4 Instances as Types Intuitively

This criterion aims to investigate, whether a particularly identified ontological scene
may act as a later language type for instances, which are intuitively perceived as
types themselves [25]. Consequently, the level of classification has to be evaluated
as outlined in Sect. 8.4.5.

Frank [25] suggests discursive evaluations for this purpose, as it depends chiefly
on reflection and introspection to find out whether a term that does not allow for fur-
ther instantiation can still be regarded as an abstraction [25]. The usage dimension
of each ontological scene can be consulted (cf. Table 16.1). Scenes with a classifi-
cation as “instance” should be excluded at this point. Scenes with a classification
as “type” can be retained. Scenes with a classification of “both” should also be re-
tained and need to be considered as potential Clabjects within language specification
(cf. Sect. 8.4).

16.5.5 Output

The elaboration of material semantic constructs brings out a consolidated set of
ontological scenes, which are respectively decomposed into UEMO ontologies. UEML
scenes and ontologies can be modelled by a lightweight domain-specific approach
and with the help of the ontology modelling language OWL [229, 227]. Further,
some scenes should be annotated with advice for required perspectives or advice for
respective synonym relations. It is further necessary to keep track of respectively
referred ontological scenes by referencing them within the scene specification.

16.6 Ontological Constructs from Capability-Related
Requirements

The above introduced concepts focus on directly expressed terms of stakeholders
that shape the addressed, somehow natural area of discourse. In contrast, capability-
related requirements cause the early derivation of concepts for realising specifically
intended capabilities within an EML. In contrast to conceptual requirements, lan-
guage engineers themselves serve as originators of such requirements (similar to
indirect requirements in [69]). Consequently, the set of already specified semantic

16.6 Ontological Constructs from Capability-Related Requirements 155

concepts can be extended arbitrarily. Elaborated concepts can thereby refer to pre-
viously introduced concepts in order to represent dependencies, as capability-related
requirements often cause a certain analytical layer (also referred as solution space
[139]) that enables some kind of invariant working “on” domain concepts (referring
to [67]).

This aspect especially encompasses the consideration of formal semantics and
approaches for their representation [14, 8, 67]. More specifically, formal semantics
requires the specification of determined and invariantly interpretable syntax trans-
formations. In addition to these formal semantic constructs, it might also be neces-
sary to integrate further material semantic constructs for design reasons.

The analysis of formal semantic constructs differs remarkably from material se-
mantics. The initial analysis of formal semantic constructs like material semantic
constructs is therefore contingent for at least two major reasons: First, the language
engineer himself designs them and additional language engineers are required for a
critical analysis, which serves as a requirement that is indeed rational but unrealistic
in engineering projects. Second, especially the above discussed variance and instance
criteria are contingent, as formal semantics invariantly map syntax to other com-
pletely known sign systems, omitting any interpretative variance [14, 8, 67]. Their
final relation to real-world phenomena, however, depends on at least one intended
mapping to material concepts (cf. [67]). Such a mapping generally serves as an in-
tegration point between material and formal semantics, representing a particular
interpretation.

There are consequently two challenges that must be tackled. It is first necessary
to find a mechanism for the specification of formal semantics, as current literature
is rather split over this topic. For instance, there is no commonly accepted speci-
fication for workflows in BPMN [15, pp. 435ff]. Second, an appropriate integration
mechanism with material semantic constructs has to be designed in terms of repre-
senting their dependencies. Additionally, the specification of a required perspective
for these analytical or strictly functional tasks should be considered if not already
done within the requirements stage (i.e. as perspective for non-human actors). This
is important for the avoidance of potential amalgamation between conceptual and
rather technical semantics, which hampers separation of concern [33].

16.6.1 DMM for the Representation of Formal Semantics

Formal semantics requires the specification of two formal syntax definitions and a
concise mapping specification between them [242, pp. 34ff], [139, p. 37]. Despite the
clarity of the challenge and frequent implementations, generic approaches are largely
missing, as demonstrated in Hausmann [63].

To the best of our knowledge, only one approach enables the generic specification
of formal semantics and mappings, the Dynamic Meta Modelling (DMM) approach
of Engels et al. [243]. DMM was originally designed for the specification of be-
havioural semantics of state charts and activity diagrams, but its theoretical foun-
dation is promising for adaptation. The application of DMM is constituted of three
major steps: In the first step, the addressed meta model has to be slightly extended
[243]. Then, the behavioural semantics are formally specified and transformed into a
typed graph structure. Particular syntactical expressions are therefore coupled with

156 16 Concept Analysis

pre-conditions (i.e. events), transformation rules (i.e. actions), and postconditions
[244]. Consequently, a particular model state is proved according to preconditions.
If these conditions are met, then the action can apply until the model satisfies the
postconditions, leading to a new valid model state [243, 245].

16.6.2 Outline and Discussion of a Possible Implementation

The idea of the DMM approach should be generally applied for the extension
method, but the concrete application causes several issues. First and foremost,
there is the problem of missing syntactical constructs that are yet undefined within
the analysis stage. Further, the introduced ontological constructs are contingent for
DMM, as formal semantics require a mapping from one formal syntax to another
formal syntax.

This issue could be tackled if an ontological scene is interpreted as a precursor
of a later specified syntactical construct, assuming a later one-to-one mapping. The
scene is therefore operationalised from the perspective of formal semantics, ignor-
ing the underlying ontological references as outlined on the right side of Fig. 16.6.
Technically speaking, an additional interpretation of the scene is added in order to
correspond to the specific invariant interpretation a technical actor grasps as se-
mantics. This could represent integration between formal and material semantics
(according to [67]). Therefore, the original semantics has to be considered in detail.

In case of Model Analysis (i.e. the intended on-top analysis of models that rep-
resent material semantics), an additional analytical layer with formal specifications
should be introduced. The particular types of the model elements are hence ex-
tended with an additional role in order to grasp them formally as input data for
some computations. In this case, the target syntax has to be specified separately,
since the state of a particular model will not be changed.

In the case of Automation, only those scenes which are explicitly considered as
automatable, can act as input for formal operations. Regarded scenes can be labelled
as automatable [25]. Also a deeper analysis of StateLaws and TransformationLaws
(cf. [235]) may allow further inferences. In this case, the “pre state” syntax corre-
sponds with the target “post state” syntax, i.e. particular transformations affect the
same state space.

However, the concrete realisation of the outlined architecture remains tricky and
is not trivial. Fig. 16.6 presents a potential implementation. Formal representation
constructs operationalise particular ontological scenes in order to define a specific
formal state. Additionally, respective preconditions, postconditions and transitions
have to be defined in a generic manner, as a specified modelling grammar is undefined
at this stage. It seems to be reasonable to introduce an additional taxonomy into
UEMO in order to provide formal operators and respective concepts. These elements
need to be transferred to the final syntax later.

In its current version, we suppose to specify formal semantics with pseudo code
that refers to elements of the scenes. The pseudo code needs to explicitly express
particular preconditions, postconditions, and state transitions. Also the components
of formal states need to be described. The entirety of these elements is understood
as formal semantic construct.

16.7 Perspectives and User-Related Requirements 157

“Formal” State

Ontological
Scene 1

Ontological
Scene 2

Ontological
Scene (…)

Ontological
Scene N

U
E

M
O

, U
E

M
O

ex
t

Formal
Representation

Construct 1

Formal
Representation

Construct 2

Preconditions

State Transitions

Postconditions

Formal
operationalisation

Further Formal
Constructs

Use Case 2: Automatisation

Use Case 1:
Model Analysis

may represent

Fig. 16.6. Outlining a potential integration between material and formal semantics by mapping DMM
and UEML

Nevertheless, it has to be stated that the early specification of formal semantics
and especially its integration with material semantics is a complicated task that
calls for massive further research (cf. [67]), which cannot be conducted within this
paper due to space limitations. However, the introduced framework should provide
guidance and orientation for respective work. Further consideration in this work will
hence focus on material semantics.

16.7 Perspectives and User-Related Requirements

16.7.1 Perspectives

Perspectives are central means within EM, as they are feasible for representing user-
specific or purpose-specific direction of views or foci on the entirety of all language
concepts [5]. Perspectives may correspond to the way of thinking about particular
concerns from different angles (according to [96]) and they may also be simply used
for reducing complexity of the entire vocabulary. They can hence be understood as
purpose-specific, pre-defined filter mechanisms (according to [47, 44]).

Perspectives should already be pre-specified at this stage in order to facilitate the
management of different semantic concepts or correspond to the initially identified
stakeholder groups. The derivation of perspectives can be consolidated as follows:

• Perspectives from different foci (conceptually driven): As stated above,
interpretations of concepts can slightly differ in regard to some facets. These
differences may be reflected in perspectives, if respective concepts are integrated
with other concepts that are represented within the final language.

• Perspectives from different stakeholders (user-driven): According to the
specified use cases, a grouping of respectively derived concepts could support
the realisation of intended purposes by focusing only on relevant ones and en-

158 16 Concept Analysis

abling complexity reduction. Of course, this type can correspond with conceptu-
ally driven perspectives.

• Perspectives from differentiation between material and formal seman-
tics (formally driven): Formal semantics should require the definition of sep-
arate perspectives for reasons of separation of concern.

Derived perspectives should be stored in a separate list of perspective candidates.
Each perspective should be labelled appropriately and all related material semantic
constructs (Sect. 16.5) and formal semantic constructs (Sect. 16.6) need to be listed.

16.7.2 User-Related Requirements

User-related requirements may cause the consideration of specific notational ele-
ments in the modelling language, as these requirements cover soft goals like specific
icons or colours that are not closely related to the semantic scope of a language.
Therefore, it is advisable to specify these requirements in terms of the following
aspects:

• Which concept should be represented in which perspective?
• What symbols, icons, colours and fonts should be utilised?
• How should the arrangement of these elements be realised and what is the relation

to other graphical elements?

Sketches and prototypical diagrams can facilitate the derivation of respectively
required graphical elements for the graphical representation (cf. [102, 246, 25]).
Graphical user expectations are subsequently considered for potential extensions
of the concrete syntax, while the abstract syntax remains unaffected. This aspect is
therefore not relevant for the discourse on semantic representations.

16.8 Output

This sub-stage should generate a consolidated set of ontological scenes, which are
represented by a particular set of ontological concepts within UEMO or annotated
ontologies (UEMOext). Ontological scenes should be specified regarding to the re-
quired (or derived) perspective, existing synonym relations, and the respectively
related scene, if necessary. Further, formal semantic constructs can be specified by
adapting DMM. Potential mappings between formal and material semantics should
be specified textually. In addition, a set of different perspectives and respectively
contained or referred concepts should be explicated. The summarised output of this
stage is summarised in Fig. 16.7.

16.8 Output 159

Material Semantic Constructs Formal Semantic Constructs

Ontological Scene UEMO
UEMOext

Synonyms

Is (Potential) Instance

DMM: Formal Syntax1

Perspectives

Design Expectations from User-Related Requirements

DMM: Formal Syntax(…)

DMM: Formal SyntaxN

related

related

Fig. 16.7. Summarised output of the semantic specification

17

Correspondence Analysis

In the previous Section, requirements were decomposed into their smallest semantic
entities by using ontologies. This procedure enables the comparison of semantic
constructs and hence serves as a convenient instrument for justifying extension need
by comparing the elaborated ontological scenes with the respective counterparts of
an addressed EML on the meta model level.

The consideration of a pair-wise scene comparison causes a particular correspon-
dence analysis between needed constructs and original constructs. The semantic
distance between them as well as the type of difference has to be identified for
this reason. This means that particular distance types have to be specified for each
needed scene and potential differences are condensed within an integrated extension
profile that facilitates the guided selection of appropriate extension mechanisms.
This fine-grained procedure should enable a well-justified extension construction.

For reasons of applicability, the following assumptions and limitations are stated:
All considerations assume the existence of a semantic specification of an EML, al-
though current research lacks in the provision of such specifications as outlined in
Sect. 16.1.1. It is further assumed that each ontological representation in the orig-
inal EML is mapped by exactly one syntactical construct (cf. [247]). Finally, we
focus on the correspondence analysis of material semantic constructs and omit any
deeper analysis of formal semantic constructs due to the limited space of this work.
Respective research – also in regard to hybrid semantics – has to be conducted in
further research.

17.1 Material Semantic Constructs

Basically, semantic comparison is conducted by comparing the scene and its on-
tological representation of the identified need (need scene, need ontology) and the
original EML under consideration (original scene, original ontology). Consequently,
the introduced comparison types from Sect. 16.4.2 are taken up again in order to
derive respective design consequences. Each comparison result type can determine
one of the following design consequences:

1. Apply Syntax and Semantics: This type represents the actual usage and
application of original language constructs, without any extension.

2. Apply Syntax: This type stands for solely application of the syntax, while the
semantics are extended (see below).

162 17 Correspondence Analysis

3. Extend Syntax: This type stands for an extension of the original syntax of
a language construct, usually causing the definition of additional semantics for
these introduced constructs.

4. Extend Semantics: This type stands for an extension of the original semantics
of a language construct, while its syntax remains unaffected. This has to be
conducted in order to refine or specify the intended interpretation of a construct.

5. Reject: Rejection means that an examined scene should neither be implemented
as an application nor extension due to semantic conflicts with the original lan-
guage and the outlined extension principles from Sect. 4.3.

6. Perspective: Additionally, it might be reasonable to specify perspectives on
language constructs in order to correspond to explicit user needs and emphasise
particular foci on constructs.

The mentioned comparison consequences correspond with the syntactical con-
structs that are referred to by particular scenes and their ontological representation.
The following analysis is aligned with the general reflections on semantic comparisons
from Sect. 16.4.3. We therefore start with equivalent scenes, subsequently consider
similar scenes, and finally consider completely different scenes.

17.1.1 Equivalent Scenes

Type Sub-Type Design Consequence

Congruency • Apply Syntax and Semantics

Differing Degree of
Understanding

Containment • Apply Syntax and Semantics
• (Perspective for covering the focussing on the

contained attributes)

Coverage Option 1:
• Apply Syntax
• Extend Semantics
Option 2:
• Extend Syntax (explication and annotation of

missing characteristics to one construct)
Option 3:
• Reject (in case of overlap with ontological repre-

sentations of other constructs)

Specialisation Option 1:
• Apply Syntax
• Extend Semantics (refinement in the sense of

specialising interpretations)
Option 2:
• Extend Syntax (explication as subtype, refining

all super properties with new terms, e.g.)

Generalisation • Reject

Complex (with Speciali-
sations)

Option 1:
• Apply Syntax
• Extend Semantics (refinement in the sense of

specialising interpretations)
Option 2:
• Extend Syntax (explication as subtype, refining

regarded super properties with new terms, e.g.)

Complex (with General-
isation)

• Reject

Overlapping (Com-
plete)

• cf. Coverage

17.1 Material Semantic Constructs 163

Overlapping (Partial) Case 1: Non-matching ontological constructs do
not contradict each other (no misunderstanding)
• Option 1:

– Apply Syntax
– Extend Semantics

• Option 2:
– Extend Syntax
– Perspective

Case 2: Non-matching ontological constructs
contradict each other (misunderstanding)
• Reject

Homonym Conflict • Reject

Table 17.1: Design consequences for equivalent scenes

Table 17.1 describes design consequences resulting from the comparison of equivalent
scenes. In case of Congruency, the extension need corresponds to already specified
language capabilities. Syntax and semantics of a referred to original construct can
be reused. If both ontological scenes have a different degree of understanding, then
an in-detail analysis is necessary.

In case of Containment, syntax and semantics of the original construct can be ap-
plied. However, the introduction of a perspective or a construct-specific view should
be examined in order to provide an appropriate, complexity-reducing view on this
construct.

In case of Coverage, some kind of extension has to be conducted, as not all
semantic features are provided by the original language. Three design alternatives
therefore exist. Option 1 covers the application of the underlying language construct
and an extension of the semantics in order to explain additional semantics. Option 2
represents a more explicit form by extending the regarded syntactical element and
annotates missing features by properties, for instance. If the coverage of the need
ontology affects ontological representations of other language constructs, then the
scene has to be rejected, as it would redefine the original language.

In case of Specialisation, all needed ontological constructs serve as specialisations
of the original ontology. Consequently, two design options exist. Option 1 represents
the application of the original syntax and the extension of its semantics by refining
it for special interpretations, i.e. the understanding is sharpened. Option 2 enables
the explication of this refined understanding by defining additional syntactical con-
structs, i.e. a sub-type with refining properties for all super properties. While this
manifestation may cause language overload (cf. [193]), the first option just causes
tacit language interpretation.

In case of Generalisation, a particular scene is understood in a more general way
than in the original language. Is has to be rejected, since any extensions for the reason
of generalisation should be avoided as mentioned in Sect. 4.3, both syntactically and
semantically.

In the cases of Complex Similarities, it is assumed that the refinement differences
(generalisation and specialisation) dominate the detailing differences, as the overlap-
ping actually represents the assumed equivalence, leading to a single consideration
of the hierarchy. Consequently, the same rules as in the case of specialisation and
generalisation have to be applied.

164 17 Correspondence Analysis

The case of Complete Overlapping can be managed as coverage, as the original
ontology is completely covered by the need ontology.

In contrast, Partial Overlapping provides three design options, depending on an
evaluation of the relation between the non-shared ontological constructs. If they do
not contradict each other (case 1), then two options are possible. Either the syntax is
applied and semantics are extended, or the syntax is extended and a perspective or
view is created in order to emphasise the need attributes. If the ontological constructs
contradict each other (case 2), then the needed scene should be rejected, as it does
not comply with the original semantics of a language.

This is also required for any Homonym Conflict, as they regard the respective
misunderstandings of things from the area of discourse. However, this would impli-
cate misunderstandings with users of the original language.

Rejected scenes should generally not be omitted and ignored after their rejec-
tion. Instead, a reconsideration of their terms might be useful in order to specify
their particular meaning. Such a revision could lead to a re-evaluation of scenes as
differences.

17.1.2 Similar Scenes

Table 17.3 summarises the design consequences resulting from the analysis of similar
scenes, which refers to the second horizontal line of the proposed correspondence
typology in Table 16.2.

In case of a Potential Synonym, the degree of similarity has to be assessed. If it
is evaluated as de facto equivalence, then the scenes can be treated as in the case
of congruency (option 1). If such an inference cannot be justified, then both scenes
are treated as synonymous scenes. This determines an application of the syntax
and an extension of semantics in regard to the postulation of alternative terms and
denotations.

As stated in Sect. 16.4, the consideration of similar scenes always requires situa-
tional analyses of the degree and extent of similarity. Consequently, the indifference
sub-types usually provide more than one design option. In particular, the Contain-
ment type requires the analysis of two dimensions, which is outlined in Table 17.2.
Thereby, the degree of similarity is only assessed as “high” or “low” for pragmatic
reasons. This enables relocation within the correspondence typology, enabling a re-
assessment of following design consequences, which are adapted from other types. It
is recommended to evaluate an aspect only then as “high” if the degree of similar-
ity is really significant (e.g. only one or two represented phenomena are different).
Otherwise, it is rather useful to treat them as being different and taking potential
redundancy as a consequence.

In case of Coverage, the application of comparison is similar. The only difference
is the derived Coverage type in case of evaluating the difference as a Differing Degree
of Understanding.

In case of Specialisation, it can be stated that the ontological similarity is already
high due to the tight binding between sub and super types. Therefore, only the
assessment of the similarity degree of the scene is required and respective options can
be derived. In case of Generalisation, the scene under consideration has to be rejected

17.1 Material Semantic Constructs 165

Ontology Similarity High Low
Scene Similarity

High De Facto Congruency (S1O1) Differing Degree of Understanding
(S1O2)

Homonym Conflict (S1O3)

Low De Facto Synonym (S3O1) Difference (S3O3)

Table 17.2. Detailed assessment of the degree of similarity for scenes and ontologies as well as respec-
tive design consequences

for reasons of possible language defacement and the avoidance of generalisation
extensions in this work.

The complex types have to be assessed in accordance with the particularly re-
ferred to types of abstraction. The case of Partial Overlapping is treated in a similar
manner as the already discussed type of coverage. The case of Complete Overlap-
ping requires a consideration of these ontological features that are not shared. If they
contradict each other, then the scene has to be treated as different. If they do not
contradict each other, then the ontological similarity can be specified as rather low in
accordance with Table 17.2, since the binding of respective ontological constructs is
not as strong as in the case of containment, coverage, or specialisation. Accordingly,
an assessment of the scene similarity determines further design consequences.

Type Sub-Type Design Consequence

Potential Synonym Option 1: Treated as equivalent
• cf. Congruency
Option 2: Treated as synonym
• Apply Syntax
• Extend Semantics (especially in regard to alterna-

tive terms)

Indifference Containment Option 1: Treated as Congruency
Option 2a: Treated as Different Degree of Under-
standing, sub-type Containment
Option 2b: Treated as Homonym Conflict
Option 3: Treated as Synonym
Option 4: Treated as Difference

Coverage Option 1: Treated as Congruency
Option 2a: Treated as Different Degree of Under-
standing, sub-type Coverage
Option 2b: Treated as Homonym Conflict
Option 3: Treated as Synonym
Option 4: Treated as Difference

Specialisation Option 1: Treated as Differing Degree of Under-
standing, sub-type Specialisation
Option 2: Treated as Difference, sub type Specialisa-
tion

Generalisation • Reject

Complex (with Speciali-
sation)

Option 1: Treated as Differing Degree of Under-
standing, sub-type Specialisation
Option 2: Treated as Difference, sub-type Specialisa-
tion

Complex (with General-
isation)

• Reject

Overlapping (Com-
plete)

cf. Coverage

166 17 Correspondence Analysis

Overlapping (Partial) Case 1: Non-matching ontological con-
structs do not contradict each other
• Option 1: Treated as Differing Degree of Under-

standing, sub type Overlapping
• Option 2: Treated as Homonym Conflict
Case 2: Non-matching ontologi-
cal constructs contradict each other
• Treated as Difference

Potential difference Option 1: Treated as Homonym Conflict
Option 2: Treated as Difference

Table 17.3: Design consequences for similar scenes

In case of a Potential Difference, dedicated investigations should be conducted on
the difference of scenes in order to elaborate potential de facto homonyms with large
scene similarities. Otherwise, it should be generally treated as different, indicating
the final introduction of new syntactical constructs. It becomes obvious that the
similarity type always requires a shift within the typology framework. Concrete
design actions can therefore be found in Tables 17.1 and 17.4.

17.1.3 Different Scenes

The consideration of different scenes assumes that different things are meant. How-
ever, respective ontological analysis has to be conducted in order to find out whether
similar or even the same things are actually being referred to. The stated corre-
spondence types from Sect. 16.4.3 can therefore be reused and Table 17.4 presents
particular design consequences for single types.

In case of Synonyms, the original syntax can be applied and the synonym term
of the presented scene should be captured within slightly extended semantics.

In case of Containment, the non-matching attributes have to be considered. If
they reveal no contradictions, then they can be treated as synonyms and proba-
bly an additional perspective should be introduced in order to focus the subset of
characteristics.

In case of Coverage, missing ontological constructs should be represented by ex-
tending the original syntactical construct by a specialisation with additional at-
tributes. If the need ontology overlays multiple ontological representations of original
elements, then the introduction of compositions or aggregations should be examined
if respective “part-of” relations can be identified.

The case of Specialisation represents the situation where differently perceived
scenes are completely related based on an ontological inheritance. Two options are
possible. In the first option, the syntax is extended by a sub-type and properties
which serve as one-to-one refinements of properties from the super type. In contrast
to this externalised implementation, the second option only conducts semantic ex-
tensions in order to state how the original syntactical construct has to be understood
and how it is alternatively referred to.

In case of Generalisation, an additional syntactical construct has to be intro-
duced. This construct “rebuilds” some ontological characteristics from an original
construct, but this type of redundancy is necessary in order to avoid generalisation-
based modification.

17.1 Material Semantic Constructs 167

In case of Complex Similarities (with Specialisations), some ontological constructs
are reused and other ontological constructs are refined by the need ontology. Two
options are possible. At first, a specialisation might be introduced in order to pro-
vide a particularly labelled syntactical construct reusing super properties. Besides,
additional properties have to be defined, which specify the refined properties either
syntactically or semantically. Instead of this rather complex implementations, the
definition of an independent syntactical construct is also possible.

In case of Complex Similarities (with Generalisations), an additional syntactical
construct should be specified due to the prohibition of generalisations on original
constructs.

Finally, the case of Overlapping (Partial) requires special consideration. At first,
it has to be evaluated if the overlapping is perceived as large. If not, then the syntax
should be extended with a new construct. If the overlapping is large and there are
no contradictions within the non-matched ontological constructs, then two design
options remain. In the first option, a specialisation is introduced which both reuses
shared as well as non-shared attributes from the original construct. In the second
option, the original construct is extended with additional properties, indicating a
particular overloading. Further, the semantics have to be extended in order to record
the needed scene terms.

Type Sub-Type Design Consequence

Synonym • Apply Syntax
• Extend Semantics (explication of synonym mean-

ing)

Indifference Containment Case 1: Non-matching at-
tributes have no contradictions
• Treated like Synonym
• Perspective
Case 2: Non-matching at-
tributes have contradictions
• Extend Syntax (new construct)

Coverage Case 1: Covering one ontological construct
• Extend Syntax (specialisation and additional

attributes)
Case 2: Covering multiple ontological constructs
• Extend Syntax (e.g. composition, if “part-of”

indications)

Specialisation Option 1:
• Extend Syntax (specialisation with additional

attributes that are refinements of inherited at-
tributes)

Option 2:
• Apply Syntax
• Extend Semantics (especially alternative terms)

Generalisation • Extend Syntax (dedicated language construct)

Complex (with Speciali-
sation)

Option 1:
• Extend Syntax (specialisation)
• Extend Semantics (refined properties on sub level)
Option 2:
• Extend Syntax (dedicated language construct)

Complex (with General-
isation)

• Extend Syntax (dedicated language construct)

Overlapping (Com-
plete)

cf. Coverage

168 17 Correspondence Analysis

Overlapping (Partial) Case 1: Non-matching at-
tributes have no contradictions
• Option 1:

• Extend Syntax (specialisation)
• Option 2:

• Extend Syntax (additional properties)
• Extend Semantics (alternative terms)

Case 2: Non-matching at-
tributes have contradictions
• Extend Syntax (new construct)

Difference • Extend Syntax

Table 17.4: Design consequences for different scenes

17.1.4 Instances

The elaborated proposal for semantic comparison on the meta model level implicitly
focusses on the identical abstraction level and, hence, supposes the same classifica-
tion level for potential extension techniques. However, the requirements analysis and
semantic specification stage may also yield type-instance relationships between in-
tended constructs and original semantic constructs (cf. Sect. 16.3.2). Due to the lack
of comparison instruments, instantiation relations cannot be represented in UEML
appropriately in the current version and it is hence difficult to systematically iden-
tify them during correspondence analysis. Thus, it is most likely that instances are
evaluated as differences or specialisations.

In regard to a potential application of the Multilevel Modelling approach, we rec-
ommend dedicatedly examining all properties of the underlying constructs according
to the presented guidelines on differentiation between generalisation and classifica-
tion from Sect. 8.4.3, which may provide reasons for type instance relations. In case
of arguments for instantiations, a respective material semantic construct has to be
recorded as an instance or potential instance in order to generally exclude it from
traditional extension design, but prove potential multilevel capabilities later, too.

17.1.5 Consolidation, Application, and Remarks

The introduced comparison types should be applied in the following regime. In the
first step, each similar scene is examined and shifted within the typology, if neces-
sary. In the second step, equivalent scenes are analysed, as they implicate a specific
and hence efficiently conductible point for comparison. In the last step, all remaining
scenes have to be examined by comparing them to each original ontological repre-
sentation. The search for the most appropriate ontological representation should be
applied in a descending manner, whereby equivalence serves as the top and differ-
ence as the bottom of comparison results. Consequently, this serves as the most
time-consuming task within the correspondence analysis.

Finally, the mentioned scene-based comparisons lead to the identification of dif-
ferent syntactical design recommendations, i.e. introducing additional properties,
additional specialisations, as well as dedicated language constructs. Furthermore,
element-specific views or perspectives are derived and also semantic specifications
are stated.

17.2 Formal Semantic Constructs and Perspectives 169

After specifying particular extension constructs, it is extremely important to
focus on their relations to other constructs. Therefore, the ontological representation
can be reconsidered in order to identify “part-of” relations (for compositions or
aggregations, e.g.) as well as directed or undirected relations (according to [235]).
These considerations should then be reused within the definition of the extension
syntax.

17.2 Formal Semantic Constructs and Perspectives

17.2.1 Formal Semantic Constructs

The consideration of correspondence checks in the area of formal semantic constructs
should be omitted in this paper and only the following guidelines are postulated in
accordance with the pragmatic usage types.

In case of Automation, defined formal algorithms and rules must not override
or contradict any formal statement, i.e. model transformation rules of the original
language (according to [80]). While this is difficult to describe formally in a generic
manner, it is important to note that each originally specified transformation of
models instantiated from the original language has to be valid after extension.

In case of Model Analysis, the in-depth analysis of potential modifications is less
critical, as these operations are understood as “on-top” analyses of the probably
extended model base.

17.2.2 Perspectives

Section 16.7 already specifies the first list of required perspectives, whereby each per-
spective associates contained semantic constructs, either motivated by user-specific
views of constructs, particular grouping of constructs, or a differentiation of mate-
rial and formal semantics. The conduction of the correspondence analysis leads to a
revision of this list as follows.

A different degree of detailed understanding of a construct may require a par-
ticular sub-view of a construct that might be captured within a perspective. The
particular ontological representation of a scene (probably of an original construct)
should therefore be added to an already specified perspective candidate or it should
determine the creation of one.

Scenes that determine additional language constructs (no specialisations) should
also be considered in regard to the perspectives they are integrated in, if it cannot
be referred from the already defined list of perspectives.

Subsequently, the specified list of perspectives should be revised. More precisely,
a homogenisation of conceptually-driven perspectives and user-driven perspectives
should be examined. These perspectives should then be compared to possibly defined
perspectives within the original language, which could result in the definition of
additional perspectives or sub perspectives (cf. [80]). Due to the rather constructivist
character of the perspective concept, it should be realised by the language engineer,
in close coordination with the prospective EML users.

170 17 Correspondence Analysis

17.3 Output

This stage finally provides a semantically justified extension profile that is composed
of material semantic constructs and their required type of implementation, respec-
tively derived perspectives, as well as their covered semantic constructs and formal
semantic constructs that are reused from the concept analysis stage. The extension
profile is summarised in Table 17.5.

Aspect Representation Specified Characteristics

Material Semantic
Constructs

Scenes (represented phe-
nomena), Ontologies (rep-
resented scenes)

• Identifier (according to central phenomenon in
scene)

• Realisation type
• Referred original construct (ontology and syn-

tactical construct)
• Relation to other constructs

– Instances • Specified as Instance or Potential Instance
• Responsive type for type instance relation

Formal Semantic Con-
structs

DMM model, computa-
tion rules and algorithms
(integration model with
scene)

• Realisation types:
• “Extend Syntax and Semantics“
• “Extend Semantics“
• Perspective

• Relation to material semantic constructs

Perspective List • Identifier (name)
• List of semantic constructs
• Relation to other perspectives
• Type of represented constructs (material, for-

mal)

Table 17.5. Structure of an extension profile

The consolidated extension profile should work as base for the following selec-
tion of appropriate extension mechanisms from the mechanism repository, which
inherently serves as engineering-oriented task.

18

Extension Preparation and Subsequent Stages

The above discussed Sections evolve a set of required language constructs by the
definition of a consolidated extension profile. It is now necessary to select an appro-
priate extension mechanism, prepare the respective application, and finally imple-
ment the extension as an applicable meta model extension. It is hence necessary to
translate the above formulated design use cases as well as the extension profile to
respective syntactical structures. Due to the characteristics of semi-formal modelling
languages, a straightforward or even automatable translation procedure is impossi-
ble. Nonetheless, it is intended to provide methodical support for this translation by
introducing some guidelines for the efficient preparation, selection, and application
of appropriate extension mechanisms.

18.1 Pragmatics-Driven Pre-Selection

The actual selection of one mechanism should not be conducted in an ad-hoc man-
ner, but rather guided by the intended extension type as introduced in Sect. 5. It
is therefore reasonable, to select one or more extension types first and respective
extension mechanisms afterwards. It is hence important to gain a black-box-view
on a particular mechanism and reconsider the actual pragmatic extension purpose
behind it.

In case of Documentation, usually the view and domain-specificity dimensions are
of interest for conducting some extensions. If the business level and the application
level are addressed, then the formalisation dimension is considered, too. In case
of Automation, the formalisation dimension is relevant, while Documentation and
Automation refers to all dimensions if particular use cases are not decomposed. In
case of Model Analysis, the formalisation dimension (in particular model operations)
is relevant. The applicable extension mechanisms for each dimension are represented
in Table 18.1 and briefly summarised below.

18.1.1 Formalisation Dimension

Within the formalisation dimension, extensions affect the level of interpretation in-
variance in regard to the tension between informal and formal model interpretation
(cf. [14, 8, 73, 67]). Technically, invariance creation requires the introduction of syn-
tactical concepts, which enables the mapping of a particular syntactical structure

172 18 Extension Preparation and Subsequent Stages

Formalisation Dimension

Behavioural-formal Semantics
/ Static-formal Semantics

• Annotation (Plugin)
• Hooking by Specialisation
• Profiling (mandatory application)
• (Simple Generalisation/Specialisation)
• (Semantic Extensions)

Model Operations • Annotations (Decorator, Plugin, Aspects)

View Dimension

Enhancement Additional features of the area of discourse:
• Annotation (Plugins, Add-Ons, Decorators)
Refinements within the area of discourse:
• Hooking by Placeholders
• Profiling
• Simple Generalisation/Specialisation
• Multilevel Modelling

Augmentation • Annotation (Plugins, Aspects)
• Hooking by Placeholders

Domain-Specificity Dimension

Domain-Specialisation Annotating:
• Additional features:

• Annotation (Add-Ons)
• Profiling
• Hooking by Specialisation

• Additional interpretation:
• Semantic Extension

Specialising:
• Simple Generalisation/Specialisation
• Hooking by Specialisation
Additional classification levels:
• Multilevel Modelling

Table 18.1. Applicable extension mechanisms within the EML framework

to another syntactical system having determined semantics (cf. [139, 67]). This usu-
ally causes non-trivial, complex syntactical transformations, i.e. interpretation rules,
which have to be represented by particular extension mechanisms. These mecha-
nisms need to realise this level of complexity (in the sense of modularity) and may
also require mandatory applications of extensions in order to implement those rules.
The following mechanisms have to be considered therefore in regard to behavioural
semantics and static semantics.

• Plugins provide complex, perhaps domain-independent modules that can be ap-
plied mandatorily if respective interfaces are pre-defined.

• Hooking by Specialisation enables element-wise instantiation of under-specified
meta elements, definition of their interpretation, and the annotation of respective
conditions (e.g. by OCL statements).

• The issue of possible non-applicability of additional properties that affect seman-
tics due to missing mandatory instantiation after extension application can be
solved by using Profiling, as Stereotypes can be applied mandatorily. The above
mentioned issue of missing generalisation turns around into an advantage in this
case.

• Also simple Generalisation/Specialisation can be used for defining stricter inter-
pretation means in the sense of creating subclasses with specific features. How-

18.1 Pragmatics-Driven Pre-Selection 173

ever, the original meta classes remain unaffected and the degree of invasiveness
is consequently lower.

• Finally, it is naturally possible to specify additional semantic mappings (cf. [67]).
However, the precise syntactical appearance and structure of the target model
(cf. [245, 63]) remains unclear at this point and needs to be specified separately.

18.1.2 View Dimension

Within the view dimension, enhancement and augmentation need to be supported
by respective mechanisms. In case of enhancement, two implementation types can
be differentiated:

• First, adding features to original concepts, without any refinement of them. This
means that additional features are introduced, independent of existing ones.
Therefore, annotations can be used in general, i.e. Decorators, Plugins, and Add-
Ons.

• In the second case, existing concepts are refined, which means that an exten-
sion concisely refers to original features and extends them within a particular
area of discourse by adding invariants, i.e. conceptual conditions, range val-
ues, or cardinalities (cf. [80]). Therefore, Profiling as well as Simple Generali-
sation/Specialisation can be used. Also the Hooking by Specialisation technique
can be applied with respective architectural pre-design work.

In case of augmentation, concepts and features of additional areas of discourse
are annotated and the EML vocabulary is thematically extended. Extension mech-
anisms therefore need to provide the module-like definition of additional concepts
that indicates high cohesion and independence of the original model. Consequently,
annotations (Plugins and Aspects) as well as Hooking by Placeholders are most
appropriate.

18.1.3 Domain-Specificity Dimension

Within this dimension, three implementation types can be identified: annotating,
specialising, and introducing additional classification levels:

• Annotating: Similar to the above mentioned case of refinement; additional fea-
tures are added in order to specify a particular concept for a problem scope.
Original concepts are thus extended directly. Add-Ons, Profiling, as well as Hook-
ing by Specialisation can be applied for that purpose, as they extend referred
concepts incrementally. Slight syntactical annotations are therefore referred to as
Additional Features. The type of Additional Interpretation covers the introduction
of additional semantic expressions in order to specify the intended interpretation
of concepts and reduce informal variance.

• Specialising: In the second case, additional features of a domain are introduced
by the generation of subclasses that encapsulate them coherently. The originally
intended interpretation of original meta classes remains unaffected, which in-
creases non-invasiveness. Simple Generalisation/Specialisation as well as Hooking
by Specialisation can be used here.

174 18 Extension Preparation and Subsequent Stages

• Classification Levels: The third case represents the introduction of additional
classification levels by the Multilevel Modelling technique. In contrast to the above
stated types, additional classification levels cause massive re-engineering due to
the paradigmatic shift.

18.2 Mechanism Selection

The pragmatics-driven selection of extension mechanisms reveals that multiple
mechanisms can be conducted for particular pragmatic types. This pre-selection
serves as helpful limitation of suitable mechanisms according to the intended prag-
matics. It is now necessary to finally select the most suitable mechanism from the
pre-selected set in accordance to the rather fine-grained structure of the actual ex-
tension concepts that are elaborated within the correspondence analysis phase.

Pre-Version of Extension

In addition to the justified construct-wise realisation types in this phase, it is hence
necessary to particularly become aware of the relationships between potential ex-
tension constructs and relationships between extension constructs and original con-
structs; probably resulting in larger, coherent modules.

It is therefore helpful to translate the extension need into a pre-version of the
intended meta model (e.g. as simple meta class diagram) in order to specify relation-
ships between single elements. The name of model elements can be adapted from the
extension profile as well as from the underlying ontological representation. Further,
generalisations or specialisations can be inferred from respective realisation types,
whereas associations, aggregations, and compositions have to be modelled and at-
tributed in accordance with the underlying scene. This especially covers cardinality
values (e.g. min, max). It is important to keep in mind that no mandatory extension
must be defined. Compositions and aggregations can be used for the definition of
constructs that aim to represent differences with coverages, for instance.

Such a pre-version of the actual extension model facilitates the analysis of in-
terdependencies between constructs and externalises some aspects that are relevant
for method selection, e.g. the kind of dependency from original constructs and the
type of complexity within extension constructs. The mentioned structuring is also
referred to in existing extension methods (cf. [48]), but specific references to seman-
tic analyses are missing and the domain models therefore come more or less out of
the blue.

With respect to the focus of this Part and the limited space of the entire work,
detailed considerations on translating semantic domain analyses to domain models,
i.e. extension pre-versions, are omitted here and should be tackled in further research.
Nevertheless, the following guidelines are proposed for a final mechanism selection
in order to conduct the required extensions.

Guidelines for “Extend Syntax”

1. For the assignment of additional properties, either use Add-Ons or Profiling.

18.3 Mechanism Application and Subsequent Steps 175

2. If additional constructs (without specialisations to original constructs) have to
be integrated, then several sub-types have to be considered in detail:
• Representation of roles and complex hierarchies : Decorators.
• Multiple applications to many original classes : Aspects.
• Complex inner structure and missing generalisation/specialisation relation to

original meta classes : Plugins.
• Complex inner structure and generalisation/specialisation relations to original

meta classes : Hybrid (Simple Generalisation/Specialisation with Plugins or
Add-Ons) or Hooking by Placeholders (if under-specified).

• Simple structure and highly dependent on a few meta classes : Add-Ons.
3. If an additional construct has to be integrated as a composition of parts, then

use hybrid approaches or Add-Ons.
4. In case of specialisation with additional properties, the Simple Generalisation/Spe-

cialisation technique can be applied.
• If specialisation with a refinement of all super properties has to be imple-

mented, then Profiling can be conducted, if no explicit extension points are
given. If those spots are explicitly pre-defined, then the Hooking by Speciali-
sation mechanism has to be applied.

5. If multiple classification levels are needed or some instances are also perceived as
types within the intended extension, then Multilevel Modelling needs to be used.

6. Formally driven syntactical extensions should be realised by annotations, namely
Plugins or Aspects.

7. In the rare situation of large under-specification of a particular meta model, i.e.
large parts are explicitly left open on purpose, then Hooking by Placeholders has
to be applied, which indicates a maximum of design freedom.

Guidelines for “Extend Semantics”

1. If alternative terms or labels (synonyms) have to be integrated, then use a Se-
mantic Extension, in particular the Add Semantics operation in order to add
semantic mappings.

2. If refinements have to be conducted, then use Semantic Extension; in particular
Specify Semantics in the form of integrating additional ontological constructs to
entire classes or properties.

3. If semantic extensions are formally driven, then use Add Semantics in the sense
of specifying additional syntactical rules for dedicated mappings to formal sign
systems (cf. [244]).

18.3 Mechanism Application and Subsequent Steps

As this Section solely focusses on the semantic preparation and selection of ex-
tension mechanisms, the actual conduction of those methods as well as syntactical
consequences are only briefly outlined below.

176 18 Extension Preparation and Subsequent Stages

18.3.1 Extension Definition in General

This stage covers the application of respectively selected extension mechanisms in
order to define the meta model extension syntactically and semantically. Extension
meta classes, extension perspectives, as well as formal statements have to be defined
with regarded meta modelling languages like MOF (e.g. [45, 76]).

In addition, the semantics of the extension has to be defined (cf. [73]). This covers
both the annotation of “extend semantics” realisation types to original meta classes
as well as the semantic specification of introduced language constructs. Already
defined UEMO ontologies from the semantic specification stage can therefore be
reused and revised. These semantic specifications are then annotated to the extension
meta model or prepared for annotation to the EML meta model.

Further, the concrete syntax of extension elements or respectively modified origi-
nal notational elements have to be specified (cf. Sect. 15.3). In the context of MOF,
the DD standard serves as a powerful and expressive instrument for the generic
specification of notational elements and containers (cf. [42, 78]). All the stated tasks
need to be realised by the EML language engineer, since all tasks require profound
constructive skills and meta modelling knowledge.

18.3.2 Extension Definition in BPMN

The specific implementation of EML extensions in the context of BPMN, for in-
stance, can be realised in two ways. The first way represents an implementation
within the current BPMN environment and the state of the art in (meta) meta
modelling with MOF. In this case, several methodical supplements have to be con-
ducted in order to realise the above stated definitions. Generally, the BPMN ex-
tension method of Stroppi et al. [48] can be applied in order to derive meta
model extensions that are compliant with the BPMN core, namely the BPMN ex-
tension mechanism. Therefore, the syntactical meta model extension can be in-
tegrated within the Conceptual Domain Model of the Extension (CDME), which
actually represents the set of required concepts for an extension. These domain
model classes are then transformed into a BPMN-compliant meta model based on
respective transformation rules [48]. Braun & Esswein [44] further demonstrate
how to integrate perspectives into this extension procedure. Figure 18.1 presents the
current standard-compliant version of the BPMN extension method that includes
the pragmatics-driven and semantics-driven enhancements within the analysis and
conception phases, which are elaborated in Part IV.

However, the entire procedure builds on the BPMN extension mechanism that
reveals several shortcomings [39]. Ascertained issues are largely caused by limited
capabilities of the applied meta modelling language MOF [78]. The second imple-
mentation option therefore builds on a particular re-engineering of parts of the MOF
as well as BPMN [42, 76, 78]. These re-engineering works mainly address the revision
of the MOF meta meta model in regard to EM capabilities as well as features for the
explicit consideration of EML extensions on the meta model layer [77]. Further, the
application of the DD standard on the meta meta model layer as well as its generic
application to EM-related meta concepts is discussed in previous works [42, 77, 78].

The pros and cons of both implementation strategies are obvious. While the
first option enables extension application within the current state of the art, it

18.3 Mechanism Application and Subsequent Steps 177

Material
(UEML),

Perspectives,
Formal (DMM)

Extension
Profile CDME BPMN+X BPMN+X CS,

BPMN DG
XML / XMI,
BPMN DI

Conceptual,
Capability,

User-Related
Requirements

Use Case
Diagrams,
Pragmatics

Types

Require-
ments

Analysis

Concept
Analysis

Corres-
pondence

Check

Extension
Domain
Model

Abstract
Syntax

Concrete
Syntax

Interchange
Specific.

Tr
an

sf
or

-
m

at
io

n
R

ul
es

S
em

an
tic

C

on
ce

pt
s

Phases 1 and 2 from Stroppi et al. (2011)

Analysis Extension Conception Extension Design

Use Case
Analysis

M
ap

pi
ng

R

ul
es

Refinement and Extension in Consolidation Essay

Fig. 18.1. Extended and refined version of the standard-compliant BPMN extension method from [76]

serves as a workaround for numerous reasons. The second option rather intends a
meta modelling language based improvement by extending MOF in terms of issues
arising from the peculiarities of EM, enabling a straightforward implementation of
EML extensions on the meta model layer. However, the proposed re-engineering
proposals have not yet been conducted nor disseminated in the EM community.

Finally, there remains the so far unsolved issue of integrating semantic specifica-
tions and (extension) meta models. While some preliminary studies outline general
principles [100, 229], it is not specifically conducted in the context of MOF and
EMLs.

18.3.3 Extension Labelling

Finally, the entire extension should be annotated with additional, rather organi-
sational information in order to facilitate re-usage and to support an appropriate
understanding of the purposes and characteristics of an extension from an outer
perspective (e.g. within an extension marketplace).

Extension labelling therefore aims to provide information about the intended
pragmatics by stating the initially derived pragmatic types as well as specific use
cases for application. Further, the syntactical structure of the extension should be
summarised by stating the main components (e.g. applied mechanisms) and respec-
tively extended original EML meta classes.

Accordingly, the semantics of each extension class has to be provided in order
to facilitate specific application decisions by other users. Finally, various types of
master data should be provided, e.g. current version, related version of the extended
meta model, and application information. Application information may cover spe-
cific sequences for conducting single components of extensions (e.g. according to
extension bundles).

19

Conclusion

Figure 19.1 depicts the proposed EML extension method that is mainly driven by the
initial analysis of the contextual scope, i.e. the intended pragmatics and semantics.
It summarizes the main steps and contributions from the considered Sections aiming
at providing an overall method understanding. Main results within the method are
emphasized by a thick borderline and the leading relations are also represented by
thicker arrows. The particular output type, i.e. the expected representation format,
is stated in square brackets underneath the label of the task name.

Within the Use Case Analysis, expected or intended modelling cases have to be
investigated. An externalization into UML use case diagrams is advisable. Addi-
tionally, respective purpose types have to be annotated to each of them in order to
prepare the subsequent derivation of requirement types in the ensuing Requirements
Analysis phase.

In case of Documentation, conceptual requirements are derived. In case of Au-
tomation or Model Operations, capability-related requirements can be specified. In
case of Model Usage, user-related requirements are recorded. With respect to the
focus on semantics, these requirements are not further considered. Besides, different
constraints may be elaborated from the initially found use cases, implicating addi-
tional conceptual or capability-related requirements. The use cases further implicitly
refer to semantic constructs by using particular terms from the area of discourse.
These terms should be reused for conceptual requirements of the language, i.e. the
required vocabulary.

Subsequently, the intended semantic constructs have to be specialised based on
these requirements in the Concept Analysis phase. Material semantic constructs
have to be elaborated from conceptual requirements, possibly implicating an in-
depth analysis of respective constructs. These semantic constructs are externalised
in UEML and mapped to the UEMO ontology or its extension (UEMOext), re-
spectively. Capability-related requirements determine formal semantic constructs,
which are specified by DMM models and respective transformation rules to addi-
tional formal systems. Also mappings to UEML models are proposed in order to
integrate both types, but further research on this issue is necessary. Moreover, a
list of potential perspectives has to be filled. Perspectives are either gained from
stakeholder-specific groupings of use cases (user driven), from slightly differing, but
non-contradictory understandings of semantic constructs (conceptually driven), or
from formal semantic constructs (formally driven).

180 19 Conclusion

Use Cases
[Use Case Diagrams]

C
on

te
xt

 A
na

ly
si

s

U
se

 C
as

e
An

al
ys

is

Purpose Types
[Textual Annotations]

Semantic Constructs
[Terms]

R
eq

ui
re

m
en

ts

An
al

ys
is

Conceptual Reqs.

Constraints

Capability-Related Reqs.

User-Related Reqs.

Documentation

Key Terms

Automation, Model Operations

Model Usage

C
on

ce
pt

 A
na

ly
si

s

Material Semantic Constructs
[UEML, UEMO, UEMOext]

Formal Semantic Constructs
[DMM + Transformations]

Perspectives
[List]

User Driven (Groupings)

Formally Driven Conceptually Driven

C
or

re
sp

on
de

nc
e

An
al

ys
is

Semantic Specification of EML
[UEML, UEMO]

Semantic Comparison
[Eqivalent Scenes, Similar Scenes, Different Scenes]

Rejected Constructs

Update
Perspective List

Reject

Extension Profile

Applied Constructs
Apply

Extend Syntax
Extend Semantics

Ex
te

ns
io

n
Pr

ep
ar

at
io

n

Mechanism Repository

Pragmatics-Driven Mechanism Selection

Mechanism Application
[Extension Meta Model Specification]

Purpose Types

Ex
te

ns
io

n
D

ef
in

iti
on

Abstract Syntax
[e.g. MOF]

Concrete Syntax
[e.g. DD]

Material + Formal Semantics
[e.g. UEML, DMM]

Ex
te

ns
io

n
La

be
llin

g

Extension Description
[Pragmatics Specification, Version Data, Examples etc.]

Fig. 19.1. Integrated EML extension method with a special focus on context analysis

This specification enables a Correspondence Analysis against the semantic specifi-
cation of an EML (which is assumed to be defined). Therefore, the ontological scenes
have to be compared, i.e. equivalent scenes, similar scenes, and different scenes. In
their simplest form, scenes may be specified by only a few classes of things and a
few attributes, indicating rather fundamental references of some state of affairs. The
actual semantic comparison is realised by conducting model-to-model comparison
between the UEMO ontologies. The correspondence analysis yields a design decision
for each semantic construct. In case of rejection, a particular construct cannot be
considered, as it contradicts the stipulated semantics of the addressed EML. In case
of application, a construct semantically maps to an original construct, implicating a

19 Conclusion 181

simple language use. In case of determined syntax extension or semantics extension,
an extension of the EML is identified. The relation between rejected constructs and
applied or extended constructs guides a decision on designing an EML extension or
rather designing a DSML (cf. [75]). Further, the list of perspectives can be updated
due to slightly differing understandings of original constructs. Perspectives and se-
mantic constructs establish an extension profile, which acts as integrated summary of
the extension need that can be further detailed within pre-versions of the extension
meta model.

In the Extension Preparation phase, the initially determined purpose types are
reused in order to choose the relevant dimension within the EML extension frame-
work and consequently select applicable extension mechanisms from the repository
according to their pragmatic scope. It is thereby important to keep track of the
concepts and the respective use cases from the beginning. Besides, the above men-
tioned pre-version of the extension meta model facilitates a better evaluation of
the dependencies between semantic constructs. Based on that, particular extension
mechanisms can finally be selected by conducting syntax-oriented and semantics-
oriented guidelines.

Afterwards, the extension is specified within the Extension Definition phase by
conducting the appropriately selected extension mechanisms and applying the de-
rived extension model to the referred EML. Thereby, the abstract syntax, the con-
crete syntax, as well as material and formal semantics has to be defined. This stage
primarily addresses syntactical operations and is hence only outlined due to the
user-focus of the proposed method.

Finally, the extension has to be described from an outside perspective within
the Extension Labelling phase in order to foster their assessment and dissemination
within the particular EML community.

Part V

Conclusion and Further Research

20

Contributions

The referred research papers as well as the consolidation essay itself provide several
contributions to the EM community. Below, the most relevant contributions are
summarised within two parts. First, specific research artefacts are stated. Second,
rather general insights and constructs are given. Afterwards, the realisation of the
research objectives is discussed.

20.1 Research Artefacts, Studies and Consolidations

In the field of BPMN, a standard-compliant BPMN extension for resource modelling
in the area of Product Engineering is proposed [36, 74]. Additionally, a revised
BPMN extension for multi-perspective hospital modelling is designed [27, 75, 77, 76].
Motivated by rigorous artefact design in DSR [79], a requirements-driven method for
integrated BPMN extension design is further elaborated (cf. [55, 77, 76]). The BPMN
extension method builds on the BPMN standard and its methodical extension [48].
It is hence standard-compliant. Additionally, several architectural enhancements are
proposed in order to overcome identified shortcomings and contradictions (cf. [42,
44]). Fig. 20.1 represents the method evolvement in the area of tension between
standard compliance and further development of the BPMN environment.

The thesis further provides contributions in regard to EMLs and EML extensi-
bility in general. For instance, a meta meta model extension for the integrated EML
specification with OMG standards is outlined [45, 77, 78]. Further, a generic reposi-
tory of EML extension mechanisms is presented (cf. Part III) and single mechanisms
are exemplarily applied to BPMN [42, 59]. In addition, an EML classification frame-
work and an EML extension typology is proposed in order to facilitate communica-
tion about EML extensions (cf. Part II). Finally, a method fragment for user-centric
EML extension design is elaborated, which focusses on a detailed domain analysis
as well as a step-by-step extension specification and justification (cf. Part IV).

The analysis of BPMN and its underlying meta modelling language MOF provides
several contributions to the knowledge base in EM. An extensive analysis of BPMN
extensions from different perspectives enables an overview of the current state of the
art [33, 73]. The proposed classification frameworks can be adapted to other EMLs
and the overview of all extensions might support the evolution of potentially official
BPMN dialects or accents (cf. [33, p. 54]). In this context, different OMG standards
that are relevant for EML specifications are critically analysed and discussed in order

186 20 Contributions

Proposal for Architectural Extensions of BPMN and MOF:
Missing Compliance with Current Versions of OMG Standards

REBPM-2014 / BIBM-2014 EEWC-2015 CBI-2015 HICSS-2016

BIBM-2015

(+) Domain Analysis,
Requirements Analysis
(+) Equivalence Check

(+) Perspectives,
Diagrams

(+) Concrete Syntax
(BPMN+X CS)

(+) Extension Profiles
(+) Concrete Syntax of

Profiles and BPMN
elements (BPMN DG)

Consolidation and
Integration

Implications for BPMN
and MOF Architecture

BPMN Standard Compliance:
BPMN 2.0 Meta Model + Extension Method of Stroppi et al. (2011)

UNPUB-MOF4EM-2016

MOF4EM
Architecture

Fig. 20.1. Evolution of the BPMN extension method in the field of existing OMG standards and pro-
posed enhancements of these standards

to elaborate current deficiencies and propose respective enhancements [39, 59, 45,
78].

Further, the state of affairs in regard to extensibility of EMLs is analysed and
discussed both on the meta model level and the meta meta model level [28]. The
consideration of extensibility also requires the in-depth analysis of semantic spec-
ifications on the meta model level, leading to a consolidation of different relevant
dimensions [57, 9], with a special focus on epistemological foundations [41]. The
concerned discussions further reveal a proposal for hybrid semantic specifications
covering a potential integration between formal and material semantics [67].

20.2 Reflection of Research Objectives

With regard to Sect. 1.3, most of the research objectives can be rated as achieved.
The state of the art of BPMN extensibility is elaborated from different perspectives,
enabling a derivation of adequate terminology and fundamentals on EML extensi-
bility in general (Research Objectives 1a and 2a). Also initial versions of two BPMN
extensions were designed and partly revised according to altered requirements (Re-
search Objective 1b). Moreover, an extension mechanism repository has been evolved
and prototypically conducted using BPMN (Research Objective 2b).

In addition, the BPMN extension mechanism was incrementally enhanced ac-
cording to domain analysis, extension justification, as well as an integrated exten-
sion specification in accordance with specifics of EM and existing standards from
the OMG environment (Research Objective 1c). In particular, the enhanced BPMN
extension method is compliant with the existing BPMN meta model by providing
respective transformation rules as outlined in [42]. In parallel, several revision pro-
posals for BPMN and the meta modelling language MOF are outlined and proposed
in accordance to Research Objective 1d [45, 44, 78]. However, their final implemen-

20.2 Reflection of Research Objectives 187

tation within the language specifications remains open and is not further discussed.
Research Objectives 1c and 1d are hence not completely achieved and need to be
further investigated.

Finally, Research Objective 2c can be seen as achieved in respect of the scope
of the thesis as it reviews, discusses and integrates different relevant topics for
pragmatics-driven and semantics-driven extension design. Nevertheless, the consid-
eration of pragmatics and semantics in EML design reveals several issues for further
research that are outlined in Sect. 21.

21

Implications for Further Research

Investigating the issue of methodically guided and integrated extensibility of EMLs
mainly using the example of BPMN brings up a range of resultant problems which
do not cover extensibility exclusively, but rather concern underlying issues and un-
solved shortcomings of EML definitions in general. The designed artefacts as well
as the consolidation essay serves as an intermediate step within a larger research
stream that covers several fundamental issues within EML design. Accordingly, sev-
eral topics for further research have evolved, requiring additional investigations and
implementation efforts in various fields. Below, those topics are outlined in regard to
the main components of modelling methods (i.e. pragmatics, semantics, and syntax)
as well as the entire method.

21.1 Pragmatics

Obviously, there is a lack of profound understanding of the actual application of
enterprise models. Accordingly, there are only a few inferences in terms of revising
an EML based on its application scope. This is generally problematic since speaking a
language (i.e. modelling with an EML) determines the real added value of a language
and its design should therefore be aligned with its pragmatic use cases. It is advisable
to conduct further research in regard to the specification of such typical use case
types and their characteristics in order to derive design consequences or to provide
respectively needed EML dialects or EML accents. An ex-post analysis of already
applied EMLs and EML extensions may support this purpose. Also, a stronger focus
on the actual language user is needed.

21.2 Semantics

The significance and complexity of semantics has already been emphasised and re-
cent works firmly elucidated the multifacetedness of semantics in the context of EML
definitions, both in regard to actual language application as well as for justifying
extension need. Accordingly, several research topics have emerged.

Consensus finding within material semantics: EML semantics are even-
tually determined by an integrated analysis of personal conceptualisations, their
externalisation, as well as particular agreement and consensus processes [248, 41, 9].

190 21 Implications for Further Research

This covers the definition of reference processes for general consensus finding re-
garding EM-related concepts in order to either homogenise different world-views or
at least highlight particular differences (cf. [101]). Naturally, a complete and multi-
layered understanding of enterprises is illusory, but a commonly accepted definition
of essential constructs from the EM domain as well as their nuancing seems to be
attainable. Such fundamental questions consequently require the analysis of fun-
damental research disciplines like Epistemology, Cognition Theory, or Linguistics
(cf. [41]). The adaptation of theories and techniques from those disciplines seems to
be promising in regard to semantic specifications, for instance, in order to investi-
gate lexical ambiguity [249, 196]. Also techniques from the field of Semantic Web
may be helpful for a sophisticated definition of material semantics.

Specifying material semantics of EMLs, e.g. with UEML: The signifi-
cance of semantics requires the comprehensive and consistent semantic specification
of EMLs like BPMN, although current research primarily focusses on the abstract
syntax [100, 226, 41]. Already started research on the semantic annotation of EMLs
(cf. [226]) has to be further extended, especially in regard of retrieving a semantic
specification for BPMN (cf. [9]). This implicates the elaboration of semantic stan-
dards as well as their adequate fusion with the syntax specification of an EML. In
case of UEML, it is necessary to design explicit mechanisms for extending UEMO
and support its integration with similar ontologies from specific domains. Applying
UEML for extension justification further reveals the need of additional taxonomies
in regard to representing generic classification features (e.g. “instance of” relations).
This aspect is closely related to the derivation of design recommendations for syn-
tactic operations. In addition, there is need for further research concerning detailed
operationalisation of correspondence types and distance measures as outlined in
Anaya et al. [226].

Hybrid semantics as integration approach between material and formal
semantics: The elaborated pragmatic types as well as existing EML specifications
motivate the partly integrated consideration of material (non-invariant) and formal
(invariant) semantics. Thereby, invariant semantics cover the intended automatisa-
tion or transformation of models, on the one side, and restrictions in regard to valid
interpretations of models, on the other side [67]. The analysis and construction of
appropriate representation techniques is therefore required (e.g. according to the
outlined integration of UEML and DMM).

21.3 Syntax

Extensibility as inherent component of meta modelling languages: Dis-
cussed papers on the extensibility of BPMN and EMLs reveal a need for consid-
eration and implementation of reference extension mechanisms on the meta meta
model level [42]. This indicates that an EML like BPMN can only then be extended
systematically and usefully if the discussed extension mechanisms are respectively
defined based on instantiation from the meta meta model level instead of creating
conflicting intermediate levels or pre-instantiations as in current meta model based
solutions [39].

21.4 Method 191

MOF for Enterprise Modelling in general: The stated need for inherent
consideration of extension mechanisms on the meta meta model level causes further
issues when MOF-based languages like BPMN are investigated, as MOF itself is
limited in terms of defining EMLs. Only those types can be extended which are
actually defined within an EML meta model (cf. the discussion in [156]). MOF
lacks in regard to capabilities for perspectives and concrete syntax, as well as partly
amalgamating conceptual and technical aspects [60, 78]. There are no means for
integrating abstract and concrete syntax on the meta model level and semantic
integration is also omitted (e.g. [42]). Potentially, some principles from other meta
modelling languages, e.g. Multilevel Modelling [250, 123], E3 [47], or MM-DSL [69],
can be leveraged in order to enhance MOF for EM, while keeping its benefits [78].

Inevitable revision of MOF and BPMN: The stated issues require two main
aspects. First, it is necessary to specify and disseminate a MOF dialect for defin-
ing extensible EMLs, as outlined in [78]. According to the proposed Standard+X
approach, this dialect needs to be defined as a non-invasive extension on the meta
meta model level. Secondly, this dialect has to be applied for EMLs like BPMN,
causing a revision of the language, which requires a request for revision within the
OMG organisation. Although several preliminary studies have been completed (e.g.
[42, 59, 77, 76, 78]), such an OMG revision submission constitutes a time-consuming
and laborious task [111]. Proposing a standard revision hence requires massive organ-
isational efforts and it is therefore necessary to carefully ponder such a fundamental
but conceptually profound revision, or rather rely on particular workarounds and
extensions methods (e.g. [48, 77]).

Definition of frozen spots and hot spots: Especially in regard to the Hooking
mechanism, it could be reasonable to mark some meta model parts as frozen spots in
order to explicitly limit the extensibility of meta models, while marked hot spots can
be intentionally under-specified and open for specification. Such kinds of limitations
may constrain massive language extensions, leading to potential “language blow
ups” on the one side, but require meta model revisions on the other side.

Extending the understanding of extensions: Extensions by generalisations
are omitted within this thesis in order to avoid mandatory type modifications of
original meta classes. However, generalising rather domain-specific language con-
structs might be a reasonable effort in regard to navigating vertically within the
domain-specificity dimension of the EML extension framework. Also “extension by
reduction” techniques should be considered in further research (cf. Sect. 4.3.2). These
extensions cover user-specific vocabulary reductions by providing particular subsets
of the original meta model, which is especially relevant for PSMLs with many con-
cepts, e.g. BPMN.

21.4 Method

This part addresses topics for further research which concern the outlined EML
extension method and the underlying integration of respective parts (i.e. pragmatics,
semantics, and syntax).

Method operationalisation and integration: The stated research papers as
well as the achievements in this consolidation essay evolve and outline an integrated

192 21 Implications for Further Research

BPMN extension method, whereby single method fragments, e.g. concept analysis
or extension design, are examined with a great level of detail. However, the inte-
gration between single phases, e.g. the integration between different specification
instruments, has to be designed and supported by an appropriate integration of the
proposed specification instruments. So far, research on single modelling method parts
within extension design is widely isolated and infrequently integrated. This concerns
especially respective description formats, e.g. for the abstract syntax (MOF [38]),
concrete syntax (DD [251]), material semantics (UEML [229]), formal semantics
(DMM [243]), as well as intended pragmatics (e.g. use case diagrams). Integrating
these parts in a reasonable manner may foster the integrated design of EMLs and
their extensions; for example, in the case of BPMN.

Evaluation: Design Science Research calls for explicit evaluation of proposed
artefacts. Within this work, designed artefacts are evaluated based on their demon-
stration, aiming to realise a particular proof-of-concept (according to [53, 83]). Ac-
cordingly, this has to be conducted for the proposed extension method, e.g. by
applying it to the BPMN and assessing its usefulness.

DSML vs. extension: Further research should also provide instruments and
metrics to support the decision of whether a DSML-based approach should be used
or an extension-based approach is more reasonable. The elaborated requirements-
based extension profiles may serve as an appropriate starting point for that.

Organisation of extensions: Besides the procedural view on an extension
method, also the meaningful specification of the outside view is important in order
to provide an extension for other potential users within an extension repository and
foster extension combination. A reference frame for extension labelling needs to be
specified and a particular marketplace or extension repository needs to be outlined
and implemented (referring to the Open Models Initiative, e.g. [252]). Establish-
ing such a marketplace further requires the definition and application of respective
mechanisms for quality assurance.

List of Figures

1.1 Consolidated research problems . 9
1.2 Research objectives and associated research problems 10
1.3 Legend for structuring research papers and the consolidation essay . . 12
1.4 Research design, relevant publications and considered Parts of the

consolidation essay in the context of Research Objective 1 15
1.5 Research design, relevant publications and considered Parts of the

consolidation essay in the context of Research Objective 2 16

4.1 Types of semantic alterations [73, p. 1124] . 39

5.1 Extension framework with a localisation of the BPMN 44

16.1 UEML architecture . 142
16.2 Adaptation of the UEML approach for specifying the intended

semantics . 143
16.3 Notation for modelling scenes [227] . 143
16.4 Correspondence typology representing scene comparison and

ontology comparison . 146
16.5 Types of ontological similarity . 149
16.6 Outlining a potential integration between material and formal

semantics by mapping DMM and UEML. 157
16.7 Summarised output of the semantic specification 159

18.1 Extended and refined version of the standard-compliant BPMN
extension method from [76] . 177

19.1 Integrated EML extension method with a special focus on context
analysis . 180

20.1 Evolution of the BPMN extension method in the field of existing
OMG standards and proposed enhancements of these standards 186

List of Tables

4.1 Characteristics of extensions . 35
4.2 Characteristics of modifications . 37

5.1 Language types . 45
5.2 Language extension types . 50

8.1 Comparison of generalisation/specialisation and
classification/instantiation . 79

8.2 Property types . 80
8.3 Requests for concretisation . 80

9.1 Summary of mechanisms . 88
9.2 Comparison of mechanisms; legend: (++) very appropriate (+)

appropriate (o) indifferent (–) inappropriate (– –) very inappropriate 89

13.1 Semantics-driven extension procedure . 125

15.1 Adapted requirements types . 134

16.1 Description of a state of affairs by answering six essential questions . . 141
16.2 Basic correspondence typology . 147

17.1 Design consequences for equivalent scenes . 163
17.2 Detailed assessment of the degree of similarity for scenes and

ontologies as well as respective design consequences 165
17.3 Design consequences for similar scenes . 166
17.4 Design consequences for different scenes . 168
17.5 Structure of an extension profile . 170

18.1 Applicable extension mechanisms within the EML framework 172

1.1 Characteristics of the Decorator mechanism . 209
1.2 Characteristics of the Plugin mechanism . 210
1.3 Characteristics of the Aspects mechanism . 211
1.4 Characteristics of the Add-On mechanism . 212
1.5 Characteristics of the Hooking mechanism . 213
1.6 Characteristics of the Profiling mechanism . 214
1.7 Characteristics of the Multilevel Modelling mechanism 215

196 List of Tables

1.8 Characteristics of the Generalisation/Specialisation mechanism 216
1.9 Characteristics of the Semantic Extension mechanism 217

References

1. Vernadat, F.: Enterprise Modelling and Integration. In Kosanke, K., Jochem, R., Nell, J.G., Bas,
A.O., eds.: Enterprise Inter- and Intra-Organizational Integration. Springer (2003) 25–33

2. Sandkuhl, K., Lillehagen, F.: The Early Phases of Enterprise Knowledge Modelling: Practices and
Experiences from Scaffolding and Scoping . In Stirna, J., Persson, A., eds.: The Practice of Enterprise
Modeling: First IFIP WG 8.1 Working Conference, PoEM 2008, Stockholm, Sweden, November 12-13,
2008. Springer (2008) 1–14

3. Frank, U.: Enterprise Modelling: The Next Steps. Enterprise Modelling and Information Systems
Architectures 9(1) (2014) 22–37

4. Lankhorst, M.: Enterprise Architecture at Work: Modelling, Communication and Analysis. Springer
(2009)

5. Frank, U.: Multi-Perspective Enterprise Modeling (MEMO) – Conceptual Framework and Modeling
Languages. In: Proceedings of the 35th Annual Hawaii International Conference on System Sciences.
(2002) 1258–1267

6. Vernadat, F.: Enterprise Modeling in the Context of Enterprise Engineering: State of the Art and
Outlook . International Journal of Production Management and Engineering 2(2) (2014) 57–73

7. Malavolta, I., Lago, P., Muccini, H., Pelliccione, P., Tang, A.: What Industry Needs from Architectural
Languages: A Survey . IEEE Transactions on Software Engineering 39(6) (2013) 869–891

8. Bork, D., Fill, H.G.: Formal Aspects of Enterprise Modeling Methods: A Comparison Framework .
In Sprague, R.H., ed.: Proceedings of the 47th Annual Hawaii International Conference on System
Sciences, Waikoloa, Hawaii, USA, January 6-9, 2014. (2014) 3400–3409

9. Braun, R.: SemFrameX – Towards a Framework for the Semantic Justification of BPMN Adaptations.
In Hochreiner, C., Schulte, S., eds.: Proceedings of the 8th ZEUS Workshop, Vienna, Austria, January
27-28, 2016. Volume 1562 of CEUR Workshop Proceedings. (2016) 13–20

10. Lankhorst, M.M., Proper, H.A., Jonkers, H.: The Architecture of the ArchiMate Language. In Halpin,
T., Krogstie, J., Nurcan, S., Proper, E., Schmidt, R., Soffer, P., Ukor, R., eds.: Enterprise, Business-
Process and Information Systems Modeling: 10th International Workshop, BPMDS 2009, and 14th
International Conference, EMMSAD 2009, held at CAiSE 2009, Amsterdam, The Netherlands, June
8-9, 2009. Proceedings. Springer (2009) 367–380

11. Sandkuhl, K., Stirna, J., Persson, A., Wissotzki, M.: Enterprise Modeling – Tackling Business Chal-
lenges with the 4EM Method . Springer (2014)

12. Frank, U.: Multi-Perspective Enterprise Modeling: Foundational Concepts, Prospects and Future Re-
search Challenges. Software & Systems Modeling 13(3) (2014) 941–962

13. Wand, Y., Weber, R.: Research Commentary: Information Systems and Conceptual Modeling – A
Research Agenda. Information Systems Research 13(4) (2002) 363–376

14. Pfeiffer, D., Gehlert, A.: A Framework for Comparing Conceptual Models. In Desel, J., Frank, U.,
eds.: Proceedings of the Workshop on Enterprise Modelling and Information Systems Architectures
(EMISA 2015), Klagenfurt, Austria, October 24-25, 2005. Volume 75 of Lecture Notes in Informatics.
(2005) 108–122

15. Object Management Group (OMG): Business Process Model and Notation (BPMN), Version 2.0 .
(2011)

16. Chinosi, M., Trombetta, A.: BPMN: An Introduction to the Standard . Computer Standards &
Interfaces 34(1) (2012) 124–134

17. The Open Group: Archimate 2.0 Specification. Van Haren Publishing (2012)
18. Scheer, A.W., Nüttgens, M.: ARIS Architecture and Reference Models for Business Process Manage-

ment . In van der Aalst, W., Desel, J., Oberweis, A., eds.: Business Process Management: Models,
Techniques, and Empirical Studies. Springer (2000) 376–389

198 References

19. Riehle, D.M., Jannaber, S., Karhof, A., Thomas, O., Delfmann, P., Becker, J.: On the De-facto Stan-
dard of Event-Driven Process Chains: How EPC is Defined in Literature. In Oberweis, A., Reussner,
R., eds.: Modellierung 2016, 2.-4. März 2016, Karlsruhe, Deutschland. Volume 254 of Lecture Notes
in Informatics. (2016) 61–76

20. Proper, H.A., Verrijn-Stuart, A.A., Hoppenbrouwers, S.: On Utility-Based Selection of Architecture-
Modelling Concepts. In Hartmann, S., Stumptner, M., eds.: Conceptual Modelling 2005, Second
Asia-Pacific Conference on Conceptual Modelling (APCCM 2005), Newcastle, NSW, Australia, Jan-
uary/February 2005. Volume 43 of CRPIT. Australian Computer Society (2005) 25–34

21. Bjeković, M., Proper, H.A., Sottet, J.S.: Towards a Coherent Enterprise Modelling Landscape. In
Sandkuhl, K., Seigerroth, U., Stirna, J., eds.: Short Paper Proceedings of the 5th IFIP WG 8.1
Working Conference on the Practice of Enterprise Modeling, Rostock, Germany, November 7-8, 2012.
Volume 933 of CEUR Workshop Proceedings. (2012) 1–12

22. Bjeković, M., Proper, H.A., Sottet, J.: Enterprise Modelling Languages – Just Enough Standardisa-
tion. In Shishkov, B., ed.: Business Modeling and Software Design - Third International Symposium,
BMSD 2013, Noordwijkerhout, The Netherlands, July 8-10, 2013, Revised Selected Papers. Volume
173 of Lecture Notes in Business Information Processing. Springer (2014) 1–23

23. Del Fabro, M.D., Valduriez, P.: Towards the Efficient Development of Model Transformations Using
Model Weaving and Matching Transformations. Software & Systems Modeling 8(3) (2009) 305–324

24. Živković, S., Karagiannis, D.: Towards Metamodelling-in-the-Large: Interface-Based Composition for
Modular Metamodel Development . In Gaaloul, K., Schmidt, R., Nurcan, S., Guerreiro, S., Ma, Q.,
eds.: Enterprise, Business-Process and Information Systems Modeling: 16th International Conference,
BPMDS 2015, 20th International Conference, EMMSAD 2015, Held at CAiSE 2015, Stockholm,
Sweden, June 8-9, 2015. Springer International Publishing (2015) 413–428

25. Frank, U.: Domain-Specific Modeling Languages: Requirements Analysis and Design Guidelines. In
Reinhartz-Berger, I., Sturm, A., Clark, T., Cohen, S., Bettin, J., eds.: Domain Engineering, Product
Lines, Languages, and Conceptual Models. Springer (2013) 133–157

26. Atkinson, C., Gerbig, R., Fritzsche, M.: Modeling Language Extension in the Enterprise Systems Do-
main. In: 17th IEEE International Enterprise Distributed Object Computing Conference, Vancouver,
BC, 2013. (2013) 49–58

27. Braun, R., Schlieter, H., Burwitz, M., Esswein, W.: BPMN4CP: Design and Implementation of a
BPMN Extension for Clinical Pathways. In Zheng, H.J., Dubitzky, W., Hu, X., Hao, J., Berrar, D.P.,
Cho, K., Wang, Y., Gilbert, D.R., eds.: 2014 IEEE International Conference on Bioinformatics and
Biomedicine, BIBM 2014, Belfast, United Kingdom, November 2-5, 2014. (2014) 9–16

28. Braun, R.: Towards the State of the Art of Extending Enterprise Modeling Languages. In Hammoudi,
S., Pires, L.F., Desfray, P., Filipe, J., eds.: MODELSWARD 2015 - Proceedings of the 3rd Inter-
national Conference on Model-Driven Engineering and Software Development, ESEO, Angers, Loire
Valley, France, 9-11 February, 2015. (2015) 394–402

29. Loos, P., Mettler, T., Winter, R., Goeken, M., Frank, U., Winter, A.: Methodological Pluralism in
Business and Information Systems Engineering . Business & Information Systems Engineering 5(6)
(2013) 453–460

30. Patig, S.: Evolution of Entity Relationship Modelling . Data & Knowledge Engineering 56(2) (2006)
122–138

31. Pardillo, J.: A Systematic Review on the Definition of UML Profiles. In Petriu, D.C., Rouquette, N.,
Haugen, Ø., eds.: Model Driven Engineering Languages and Systems: 13th International Conference,
MODELS 2010, Oslo, Norway, October 3-8, 2010, Proceedings, Part I. Springer (2010) 407–422

32. Azevedo, C.L., Almeida, J.P.A., van Sinderen, M., Quartel, D., Guizzardi, G.: An Ontology-Based
Semantics for the Motivation Extension to Archimate. In: 15th IEEE International Enterprise Dis-
tributed Object Computing Conference (EDOC), IEEE (2011) 25–34

33. Braun, R., Esswein, W.: Classification of Domain-Specific BPMN Extensions. In Frank, U., Loucopou-
los, P., Pastor, O., Petrounias, I., eds.: The Practice of Enterprise Modeling - 7th IFIP WG 8.1 Work-
ing Conference, PoEM 2014, Manchester, UK, November 12-13, 2014. Proceedings. Volume 197 of
Lecture Notes in Business Information Processing. Springer (2014) 42–57

34. Kopp, O., Görlach, K., Karastoyanova, D., Leymann, F., Reiter, M., Schumm, D., Sonntag, M.,
Strauch, S., Unger, T., Wieland, M., Khalaf, R.: A Classification of BPEL Extensions. Journal of
Systems Integration 2(4) (2011) 3–28

35. de Kinderen, S., Ma, Q., Proper, H.A.: Model Bundling: Towards a Value-Based Componential Ap-
proach for Language Engineering . In: 8th International Workshop on Value Modelling and Business
Ontology (VMBO 2014), Berlin, Germany, March 3-4, 2014. (2014) 1–9

36. Braun, R., Esswein, W.: Extending BPMN for Modeling Resource Aspects in the Domain of Machine
Tools. WIT Transactions of Engineering 87 (2014) 450–458

37. Wiemer, H., Neidhardt, L., Esswein, W., Braun, R.: Technical and Economic Benchmarking Guideline
for the Compensation and Correction of Thermally Induced Machine Tool Errors. In Großmann, K.,

References 199

ed.: Thermo-energetic Design of Machine Tools: A Systemic Approach to Solve the Conflict between
Power Efficiency, Accuracy and Productivity Demonstrated At the Example of Machining Production.
Lecture Notes in Production Engineering. Springer International Publishing (2015) 233–246

38. Object Management Group (OMG): Meta Object Facility (MOF) Core Specification, Version 2.4.2 .
(2014)

39. Braun, R.: Behind the Scenes of the BPMN Extension Mechanism – Principles, Problems and Op-
tions for Improvement . In Hammoudi, S., Pires, L.F., Desfray, P., Filipe, J., eds.: MODELSWARD
2015 - Proceedings of the 3rd International Conference on Model-Driven Engineering and Software
Development, ESEO, Angers, Loire Valley, France, 9-11 February, 2015. (2015) 403–410

40. Bjeković, M., Proper, H.A., Sottet, J.S.: Embracing Pragmatics. In Yu, E., Dobbie, G., Jarke, M.,
Purao, S., eds.: Conceptual Modeling: 33rd International Conference, ER 2014, Atlanta, GA, USA,
October 27-29, 2014. Proceedings, Springer International Publishing (2014) 431–444

41. Braun, R.: Epistemological Foundations for the Integrated and Multifaceted Description of Stipu-
lated Semantics in Enterprise Modeling Languages. In: 19. Interuniversitäres Doktorandenseminar
Wirtschaftsinformatik. (2015)

42. Braun, R.: BPMN Extension Profiles – Adapting the Profile Mechanism for Integrated BPMN Exten-
sibility . In: 17th IEEE Conference on Business Informatics, CBI 2015, Lisbon, Portugal, July 13-16,
2015 - Volume 1. (2015) 133–142

43. Burwitz, M., Schlieter, H., Esswein, W.: Modeling Clinical Pathways – Design and Application of
a Domain-Specific Modeling Language. In Alt, R., Franczyk, B., eds.: Proceedings of the 11th In-
ternational Conference on Wirtschaftsinformatik (WI2013), February 27 - March 01, 2013, Leipzig,
Germany. (2013)

44. Braun, R., Esswein, W.: Towards Multi-Perspective Modeling with BPMN . In Aveiro, D., Pergl,
R., Valenta, M., eds.: Advances in Enterprise Engineering IX - 5th Enterprise Engineering Working
Conference, EEWC 2015, Prague, Czech Republic, June 15-19, 2015, Proceedings. Volume 211 of
Lecture Notes in Business Information Processing. Springer (2015) 67–81

45. Braun, R., Esswein, W.: Towards an Integrated Method for the Extension of MOF-Based Modeling
Languages. In Bellatreche, L., Manolopoulos, Y., eds.: Model and Data Engineering – 5th Interna-
tional Conference, MEDI 2015, Rhodes, Greece, September 26-28, 2015, Proceedings. Number 9344
in Lecture Notes in Computer Science, Springer (2015) 103–115

46. Karagiannis, D., Kühn, H.: Metamodelling Platforms. In Bauknecht, K., Min Tjoa, A., Quirch-
mayer, G., eds.: Proceedings of the Third International Conference EC-Web 2002, Dexa 2002, Aix-en-
Provence, France, September 2-6, 2002. Volume 2455 of Lecture Notes in Computer Science. Springer
(2002) 182–195

47. Greiffenberg, S.: Methodenentwicklung in Wirtschaft und Verwaltung . Kovač (2004)
48. Stroppi, L.J.R., Chiotti, O., Villarreal, P.D.: Extending BPMN 2.0: Method and Tool Support . In

Dijkman, R., Hofstetter, J., Koehler, J., eds.: Business Process Model and Notation. Volume 95 of
Lecture Notes in Business Information Processing. Springer (2011) 59–73

49. Mendling, J., Neumann, G., Nüttgens, M.: Yet Another Event-driven Process Chain. In van der
Aalst, W.M.P., Benatallah, B., Casati, F., Curbera, F., eds.: Business Process Management: 3rd
International Conference, BPM 2005, Nancy, France, September 5-8, 2005. Proceedings, Springer
(2005) 428–433

50. Atkinson, C., Kühne, T.: A Tour of Language Customization Concepts. Advances in Computers 70
(2007) 105–161

51. Weller, J., Esswein, W.: Consequences of Meta-Model Modifications within Model Configuration Man-
agement . In Brockmans, S., Jung, J., Sure, Y., eds.: Proceedings of the 2nd International Workshopon
Meta-Modelling, WoMM 2006, October 12-13, 2006, Karlsruhe, Germany. Volume 96 of Lecture Notes
in Informatics. (2006) 125–139

52. Chmielewicz, K.: Forschungskonzeptionen der Wirtschaftswissenschaft . Schäffer-Poeschel (1994)
53. Winter, R.: Design Science Research in Europe. European Journal of Information Systems 17(5)

(2008) 470–475
54. Albani, A., Raber, D., Winter, R.: A Conceptual Framework for Analysing Enterprise Engineering

Methodologies. Enterprise Modelling and Information Systems Architectures 11(1) (2016) 1–26
55. Braun, R., Schlieter, H.: Requirements-Based Development of BPMN Extensions: The Case of Clinical

Pathways. In Heinrich, R., Kirchner, K., Weißbach, R., eds.: 1st IEEE International Workshop on
the Interrelations Between Requirements Engineering and Business Process Management, REBPM
2014, Karlskrona, Sweden, August 25, 2014. (2014) 39–44

56. De Kinderen, S., Ma, Q.: Requirements Engineering for the Design of Conceptual Modeling Languages
– A Goal-and Value-Oriented Approach. Applied Ontology (2015) 7–24

57. Braun, R.: Towards a Multi-Faceted Framework for Semantics in Enterprise Modeling Languages. In
Betz, S., Reimer, U., eds.: Modellierung 2016, 2.-4. März 2016, Karlsruhe - Workshopband. Volume
255 of Lecture Notes in Informatics. (2016) 33–44

200 References

58. de Kinderen, S., Gaaloul, K., Proper, H.A.: Bridging Value Modelling to ArchiMate via Transaction
Modelling . Software & Systems Modeling 13(3) (2014) 1043–1057

59. Braun, R.: Meta Model Extensibility of BPMN: Current Limitations and Proposed Improvements. In
Desfray, P., Filipe, J., Hammoudi, S., Lúıs, Pires, F., eds.: Model-Driven Engineering and Software
Development - Third International Conference, MODELSWARD 2015, Angers, France, February 9-
11, 2015, Revised Selected Papers. Volume 580 of Communications in Computer and Information
Science. (2015) 230–247

60. Frank, U.: The MEMO Meta Modelling Language (MML) and Language Architecture. ICB Research
Report 24, Universität Duisburg-Essen (2011)

61. Weisemöller, I., Schürr, A., Weisemöller, I., Schürr, A.: A Comparison of Standard Compliant Ways
to Define Domain Specific Languages. In Giese, H., ed.: Models in Software Engineering: Workshops
and Symposia at MoDELs, 2007, Nashville, TN, USA, September 30 - October 5, 2007, Reports and
Revised Selected Papers. Springer (2008) 47–58

62. Harel, D., Rumpe, B.: Meaningful Modeling: What’s the Semantics of Semantics. Computer 37(10)
(2004) 64–72

63. Hausmann, J.H.: Dynamic Meta Modeling: A Semantics Description Technique for Visual Modeling
Languages. PhD thesis, University of Paderborn (2005)

64. Siau, K.: The Psychology of Information Modeling . In Siau, K., ed.: Advanced Topics in Database
Research. Volume 1. (2003) 106–118

65. Santos, P.S., Almeida, J.P.A., Guizzardi, G.: An Ontology-Based Analysis and Semantics for Orga-
nizational Structure Modeling in the ARIS Method . Information Systems 38(5) (2013) 690–708

66. Harzallah, M., Berio, G., Opdahl, A.L.: New Perspectives in Ontological Analysis: Guidelines and
Rules for Incorporating Modelling Languages into UEML. Information Systems 37(5) (2012) 484–507

67. Braun, R., Esswein, W.: Towards Hybrid Semantics of Enterprise Modeling Languages. In Hammoudi,
S., Pires, L.F., Selic, B., Desfray, P., eds.: Proceedings of the 4th International Conference on Model-
Driven Engineering and Software Development. (2016) 412–420

68. Karagiannis, D.: Agile Modeling Method Engineering . In: Proceedings of the 19th Panhellenic Con-
ference on Informatics, ACM (2015) 5–10

69. Visić, N., Fill, H.G., Buchmann, R.A., Karagiannis, D.: A Domain-Specific Language for Modeling
Method Definition: From Requirements to Grammar . In Rolland, C., Anagnostopoulos, D., Loucopou-
los, P., Gonzalez-Perez, C., eds.: 2015 IEEE 9th International Conference on Research Challenges in
Information Science (RCIS), Athens, 2015, IEEE (2015) 286–297

70. Patig, S.: Die Evolution von Modellierungssprachen. Frank & Timme GmbH (2006)
71. Hevner, A., Chatterjee, S.: Design Science Research in Information Systems. In: Design Research in

Information Systems. Volume 22 of Integrated Series in Information Systems. Springer (2010) 9–22
72. Offermann, P., Blom, S., Schönherr, M., Bub, U.: Artifact Types in Information Systems Design

Science – A Literature Review . In Winter, R., Zhao, J.L., Aier, S., eds.: Global Perspectives on Design
Science Research: 5th International Conference, DESRIST 2010, St. Gallen, Switzerland, June 4-5,
2010. Volume 6105 of Lecture Notes in Computer Science. Springer (2010) 77–92

73. Braun, R., Esswein, W.: Semantics in the Context of BPMN Extensions – State of Affairs and
Research Challenges. In Nissen, V., Stelzer, D., Straßburger, S., Fischer, D., eds.: Tagungsband
Multikonferenz Wirtschaftsinformatik 2016, Band II. (2016) 1119–1130

74. Braun, R., Esswein, W.: Entwicklung einer BPMN-Extension für ressourcen-intensive Prozesse
im Maschinenbau. In Kundisch, D., Suhl, L., Beckmann, L., eds.: Tagungsband Multikonferenz
Wirtschaftsinformatik 2014. (2014) 1574–1586

75. Braun, R., Schlieter, H., Burwitz, M., Esswein, W.: Extending a Business Process Modeling Language
for Domain-Specific Adaptation in Healthcare. In Thomas, O., Teuteberg, F., eds.: Smart Enterprise
Engineering: 12. Internationale Tagung Wirtschaftsinformatik, WI 2015, Osnabrück, Germany, March
4-6, 2015. (2015) 468–481

76. Braun, R., Schlieter, H., Burwitz, M., Esswein, W.: BPMN4CP Revised – Extending BPMN for Multi-
perspective Modeling of Clinical Pathways. In Bui, T.X., Jr., R.H.S., eds.: 49th Hawaii International
Conference on System Sciences, HICSS 2016, Koloa, HI, USA, January 5-8, 2016. (2016) 3249–3258

77. Braun, R., Burwitz, M., Schlieter, H., Benedict, M.: Clinical Processes from Various Angles – Am-
plifying BPMN for Integrated Hospital Management . In Huan, J., Miyano, S., Shehu, A., Hu, X.T.,
Ma, B., Rajasekaran, S., Gombar, V.K., Schapranow, M., Yoo, I., Zhou, J., Chen, B., Pai, V., Pierce,
B.G., eds.: 2015 IEEE International Conference on Bioinformatics and Biomedicine, BIBM 2015,
Washington, DC, USA, November 9-12, 2015. (2015) 837–845

78. Braun, R.: Syntactical Enrichment of the Meta Object Facility for the Definition of Enterprise Mod-
eling Languages. Unpublished Paper (2016)

79. Braun, R., Benedict, M., Wendler, H., Esswein, W.: Proposal for Requirements Driven Design Science
Research. In Donnellan, B., Helfert, M., Kenneally, J., VanderMeer, D., Rothenberger, M., Winter,
R., eds.: New Horizons in Design Science: Broadening the Research Agenda - 10th International

References 201

Conference, DESRIST 2015, Dublin, Ireland, May 20-22, 2015, Proceedings. Number 9073 in Lecture
Notes in Computer Science, Springer (2015) 135–151

80. Braun, R., Esswein, W.: A Generic Framework for Modifying and Extending Enterprise Modeling
Languages. In Hammoudi, S., Maciaszek, L.A., Teniente, E., eds.: ICEIS 2015 - Proceedings of the
17th International Conference on Enterprise Information Systems, Volume 2, Barcelona, Spain, April
27-30, 2015. (2015) 277–286

81. Hevner, A.R.: The Three Cycle View of Design Science Research. Scandinavian Journal of Information
Systems 19(2) (2007) Article 4

82. Peffers, K., Tuunanen, T., Rothenberger, M.A., Chatterjee, S.: A Design Science Research Method-
ology for Information Systems Research. Journal of Management Information Systems 24(3) (2007)
45–77

83. Alturki, A., Gable, G.G., Bandara, W.: A Design Science Research Roadmap. In Jain, H., Sinha,
A.P., Vitharana, P., eds.: Service-Oriented Perspectives in Design Science Research: 6th International
Conference, DESRIST 2011, Milwaukee, WI, USA, May 5-6, 2011. Proceedings. Springer (2011) 107–
123

84. Österle, H., Becker, J., Frank, U., Hess, T., Karagiannis, D., Krcmar, H., Loos, P., Mertens, P.,
Oberweis, A., Sinz, E.J.: Memorandum on Design-Oriented Information Systems Research. European
Journal of Information Systems 20(1) (2011) 7–10

85. Frank, U.: Towards a Pluralistic Conception of Research Methods in Information Systems Research.
Technical report, University Duisburg-Essen, Institute for Computer Science and Business Informa-
tion Systems (ICB) (2006)

86. Verband der Hochschullehrer für Betriebswirtschaft e.V. (VHB): VHB-JOURQUAL 3 - Teilrating
Wirtschaftsinformatik . VHB (2016)

87. Die Sprecher der Wissenschaftlichen Kommission Wirtschaftsinformatik im Verband der
Hochschullehrer für Betriebswirtschaft (WKWI) und des Fachbereichs Wirtschaftsinformatik der
Gesellschaft für Informatik (GI-FB WI): WI-Orientierungslisten. Wirtschaftsinformatik 50(2) (2008)
155–163

88. Wilde, T., Hess, T.: Forschungsmethoden der Wirtschaftsinformatik . Wirtschaftsinformatik 49(4)
(2007) 280–287

89. Fox, M.S., Gruninger, M.: Enterprise Modeling . AI Magazine 19(3) (1998) 109–121
90. Kosanke, K., Nell, J.G.: Enterprise Engineering and Integration: Building International Consen-

sus: Proceedings of ICEIMT 97, International Conference on Enterprise Integration and Modeling
Technology, Torino, Italy, October 28–30, 1997 . Springer Science & Business Media (1997)

91. Fowler, M.: Domain-Specific Languages. Pearson Education (2010)
92. Krahn, H., Rumpe, B., Völkel, S.: MontiCore: A Framework for Compositional Development of

Domain Specific Languages. International Journal on Software Tools for Technology Transfer 12(5)
(2010) 353–372

93. Breu, K., Hemingway, C.J., Strathern, M., Bridger, D.: Workforce Agility: The New Employee Strategy
for the Knowledge Economy . Journal of Information Technology 17(1) (2002) 21–31

94. Sherehiy, B., Karwowski, W., Layer, J.K.: A Review of Enterprise Agility: Concepts, Frameworks,
and Attributes. International Journal of Industrial Ergonomics 37(5) (2007) 445–460

95. Cruse, D.A.: Meaning in Language: An Introduction to Semantics and Pragmatics. Oxford University
Press UK (2011)

96. Strecker, S., Heise, D., Frank, U.: RiskM: A Multi-Perspective Modeling Method for IT Risk Assess-
ment . Information Systems Frontiers 13(4) (2011) 595–611

97. Becker, J.: Interview with Reinhard Schütte on “Managing Large-Scale BPM Projects”. Business &
Information Systems Engineering 6(4) (2014) 1–3

98. Gehlert, A., Buckmann, U., Esswein, W.: Ontology Based Method Engineering . Proceedings of the
11th Americas Conference on Information Systems, Omaha, NE, USA, August 11-14 2005 (2005)
2824–2833

99. Pfeiffer, D., Niehaves, B.: Evaluation of Conceptual Models – A Structuralist Approach. In Bartmann,
D., Rajola, F., Kallinikos, J., Avison, D.E., Winter, R., Ein-Dor, P., Becker, J., Bodendorf, F., Wein-
hardt, C., eds.: Proceedings of the 13th European Conference on Information Systems, Information
Systems in a Rapidly Changing Economy, ECIS 2005, Regensburg, Germany, May 26-28, 2005. (2005)
459–470

100. Höfferer, P.: Achieving Business Process Model Interoperability Using Metamodels and Ontologies.
In Österle, H., Schelp, J., Winter, R., eds.: Proceedings of the Fifteenth European Conference on
Information Systems, ECIS 2007, St. Gallen, Switzerland, 2007. (2007) 1620–1631

101. van der Linden, D.: Personal Semantics of Meta-Concepts in Conceptual Modeling Languages. PhD
thesis, Radboud University Nijmegen (2015)

102. Moody, D.L.: The “Physics” of Notations: Toward a Scientific Basis for Constructing Visual Nota-
tions in Software Engineering . IEEE Transactions on Software Engineering 35(6) (2009) 756–779

202 References

103. Riehle, D.M., Jannaber, S., Karhof, A., Delfmann, P., Thomas, O., Becker, J.: Towards an EPC
Standardization – A Literature Review on Exchange Formats for EPC Models. In Nissen, V., Stelzer,
D., Straßburger, S., Fischer, D., eds.: Tagungsband Multikonferenz Wirtschaftsinformatik 2016, Band
II. (2016) 1167–1178

104. David, P.A., Greenstein, S.: The Economics of Compatibility Standards: An Introduction to Recent
Research. Economics of Innovation and New Technology 1(1-2) (1990) 3–41

105. Fomin, V., Keil, T., Lyytinen, K.: Theorizing About Standardization: Integrating Fragments of Process
Theory in Light of Telecommunication Standardization Wars. Sprouts: Working Papers on Informa-
tion Environments, Systems and Organizations 3(1) (2003) 29–60

106. Object Management Group (OMG): Unified Modeling Language, Version 2.4.1, Part 1: Infrastruc-
ture: 19505-1:2012 . OMG. (2012)

107. Object Management Group (OMG): Unified Modeling Language, Version 2.4.1, Part 2: Superstruc-
ture: 19505-2:2012 . (2012)

108. Decker, G., Puhlmann, F.: Extending BPMN for Modeling Complex Choreographies. In Meersman, R.,
Tari, Z., eds.: On the Move to Meaningful Internet Systems 2007: CoopIS, DOA, ODBASE, GADA,
and IS: OTM Confederated International Conferences CoopIS, DOA, ODBASE, GADA, and IS 2007,
Vilamoura, Portugal, November 25-30, 2007, Proceedings, Part I. Springer (2007) 24–40

109. Falkenberg, E.D., Hesse, W., Lindgreen, P., Nilsson, B.E., Oei, J.H., Rolland, C., Stamper, R.K.,
Van Assche, F.J., Verrijn-Stuart, A.A., Voss, K.: A Framework of Information Systems Concepts.
Technical report, IFIP (1998)

110. Becker, J., Holten, R., Knackstedt, R., Niehaves, B.: Epistemologische Positionierungen in
der Wirtschaftsinformatik am Beispiel einer konsensorientierten Informationsmodellierung . Wis-
senschaftstheorie in Ökonomie und Wirtschaftsinformatik – Theoriebildung und -bewertung, Ontolo-
gien, Wissensmanagement. Wiesbaden (2004) 335–366

111. Morales-Trujillo, M.E., Oktaba, H., Piattini, M.: The Making of an OMG Standard . Computer
Standards & Interfaces 42 (2015) 84–94

112. Natschläger, C.: Towards a BPMN 2.0 Ontology . In Dijkman, R., Hofstetter, J., Koehler, J., eds.:
Business Process Model and Notation: Third International Workshop, BPMN 2011, Lucerne, Switzer-
land, November 21-22, 2011. Proceedings. Springer (2011) 1–15

113. Parnas, D.L.: Designing Software for Ease of Extension and Contraction. IEEE Transactions on
Software Engineering (2) (1979) 128–138

114. Krishnamurthi, S., Felleisen, M.: Toward a Formal Theory of Extensible Software. In: Proceedings of
the 6th ACM SIGSOFT International Symposium on Foundations of Software Engineering. SIGSOFT
98/FSE-6 (1998) 88–98

115. Rytter, M., Jørgensen, B.N.: Independently Extensibile Contexts. In Babar, M.A., Gorton, I., eds.:
Software Architecture: 4th European Conference, ECSA 2010, Copenhagen, Denmark, August 23-26,
2010. Proceedings. Springer (2010) 327–334

116. Esswein, W., Weller, J.: Method Modifications in a Configuration Management Environment . In
Österle, H., Schelp, J., Winter, R., eds.: Proceedings of the Fifteenth European Conference on Infor-
mation Systems, ECIS 2007, St. Gallen, Switzerland, 2007. (2007) 2002–2013

117. Fernández, H.F., Palacios-González, E., Garćıa-Dı́az, V., Garćıa-Bustelo, C.P., Mart́ınez, O.S.,
Lovelle, J.M.C.: SBPMN – An Easier Business Process Modeling Notation for Business Users. Com-
puter Standards & Interfaces 32(1) (2010) 18–28

118. Bae, J.H., Lee, K.M., Chae, H.S.: Modularization of the UML Metamodel Using Model Slicing . In
Latifi, S., ed.: Fifth International Conference on Information Technology: New Generations, 2008,
April 7-9, 2008, Las Vegas, Nevada. (2008) 1253–1254

119. zur Muehlen, M., Recker, J.: How Much Language Is Enough? Theoretical and Practical Use of the
Business Process Modeling Notation. In Bellahsène, Z., Léonard, M., eds.: Advanced Information
Systems Engineering: 20th International Conference, CAiSE 2008 Montpellier, France, June 16-20,
2008. Proceedings, Springer (2008) 465–479

120. Fondement, F., Muller, P.A., Thiry, L., Wittmann, B., Forestier, G.: Big Metamodels Are Evil -
Package Unmerge - A Technique for Downsizing Metamodels. In Moreira, A., Schätz, B., Gray, J.,
Vallecillo, A., Clarke, P., eds.: Model-Driven Engineering Languages and Systems - 16th International
Conference, MODELS 2013, Miami, FL, USA, September 29 - October 4, 2013. Proceedings. Springer
(2013) 138–153

121. Indulska, M., Recker, J., Rosemann, M., Green, P.: Business Process Modeling: Current Issues and
Future Challenges. In van Eck, P., Gordijn, J., Wieringa, R., eds.: Advanced Information Systems
Engineering: 21st International Conference, CAiSE 2009, Amsterdam, The Netherlands, June 8-12,
2009. Proceedings, Springer (2009) 501–514

122. Recker, J.: Opportunities and Constraints: The Current Struggle with BPMN . Business Process
Management Journal 16(1) (2010) 181–201

123. Frank, U.: Multilevel Modeling . Business & Information Systems Engineering 6(6) (2014) 319–337

References 203

124. Stachowiak, H.: Allgemeine Modelltheorie. Springer (1973)
125. Esswein, W., Weller, J.: Unternehmensarchitekturen – Grundlagen, Verwendung und Frameworks.

HMD Praxis der Wirtschaftsinformatik 45(4) (2008) 6–18
126. Frank, U.: Multi-Perspective Enterprise Modelling: Background and Terminological Foundation. Tech-

nical report, University Duisburg-Essen, Institute for Computer Science and Business Information
Systems (ICB) (2011)

127. Adam, S., Esswein, W.: Untersuchung von Architekturframeworks zur Strukturierung von Un-
ternehmensmodellen. Dresdner Beiträge zur Wirtschaftsinformatik 50 (2007) 1–25

128. Kulesza, U., Alves, V., Garcia, A., de Lucena, C.J.P., Borba, P.: Improving Extensibility of Object-
Oriented Frameworks with Aspect-Oriented Programming . In Morisio, M., ed.: Reuse of Off-the-Shelf
Components: 9th International Conference on Software Reuse, ICSR 2006 Turin, Italy, June 12-15,
2006. Proceedings. Springer (2006) 231–245

129. Aagesen, G., Krogstie, J.: BPMN 2.0 for Modeling Business Processes. In vom Brocke, J., Rosemann,
M., eds.: Handbook on Business Process Management 1: Introduction, Methods, and Information
Systems. Springer (2015) 219–250

130. Yu, E.S.: Towards Modelling and Reasoning Support for Early-Phase Requirements Engineering . In:
Proceedings of the Third IEEE International Symposium on Requirements Engineering, 1997. IEEE
(1997) 226–235

131. Heaven, W., Finkelstein, A.: UML Profile to Support Requirements Engineering with KAOS . IEE
Proceedings - Software 151(1) (2004) 10–27

132. Pohl, K.: Requirements Engineering: Fundamentals, Principles, and Techniques. Springer (2010)
133. Kelly, S., Tolvanen, J.P.: Visual Domain-Specific Modeling: Benefits and Experiences of Using Meta-

CASE Tools. In Bezivin, J., Ernst, J., eds.: Proceedings of the International Workshop on Model
Engineering, ECOOP 2000. Volume 2000. (2000)

134. Kleppe, A.: Software Language Engineering: Creating Domain-Specific Languages Using Metamodels.
Pearson Education (2008)

135. Frank, U.: Outline of a Method for Designing Domain-Specific Modelling Languages. ICB Research
Report 42, University Duisburg-Essen, Institute for Computer Science and Business Information
Systems (ICB) (2010)

136. Voelter, M., Benz, S., Dietrich, C., Engelmann, B., Helander, M., Kats, L.C., Visser, E., Wachsmuth,
G.: DSL Engineering: Designing, Implementing and Using Domain-Specific Languages. dslbook.org
(2013)

137. Saleem, M., Jaafar, J., Hassan, M.: A Domain-Specific Language for Modelling Security Objectives
in a Business Process Models of SOA Applications. Advances in Information Sciences and Service
Sciences 4(1) (2012) 353–362

138. Frank, U.: Some Guidelines for the Conception of Domain-Specific Modelling Languages. In Nüttgens,
M., Thomas, O., Weber, B., eds.: Enterprise Modelling and Information Systems Architectures: Pro-
ceedings of the 4th International Workshop on Enterprise Modelling and Information Systems Archi-
tectures, EMISA 2011, Hamburg, Germany, September 22-23, 2011. Volume 190 of Lecture Notes in
Informatics. (2011) 93–106

139. Gehlert, A.: Migration fachkonzeptueller Modelle. Logos (2007)
140. Jung, J.S.: Entwurf einer Sprache für die Modellierung von Ressourcen im Kontext der

Geschäftsprozessftsprozessmodellierung . Logos (2007)
141. Heise, D., Strecker, S., Frank, U.: ControlML: A Domain-Specific Modeling Language in Support of

Assessing Internal Controls and the Internal Control System. International Journal of Accounting
Information Systems 15(3) (2013) 224–245

142. Murata, T.: Petri Nets: Properties, Analysis and Applications. Proceedings of the IEEE 77(4) (1989)
541–580

143. Overbeek, S., Frank, U., Köhling, C.: A Language for Multi-Perspective Goal Modelling: Challenges,
Requirements and Solutions. Computer Standards & Interfaces 38 (2015) 1–16

144. Frank, U., Heise, D., Kattenstroth, H., Ferguson, D., Hadar, E., Waschke, M.: ITML: A Domain-
Specific Modeling Language for Supporting Business Driven IT Management . In Tolvanen, J.P.,
Rossi, M., Gray, J., Sprinkle, J., eds.: Proceedings of the 9th Workshop on Domain-Specific Modeling
(DSM) at the International Conference on Object Oriented Programming, Systems, Languages and
Applications (OOPSLA), Orlando, Florida, USA. (2009)

145. Hamann, L., Gogolla, M.: Endogenous Metamodeling Semantics for Structural UML 2 Concepts. In:
Model-Driven Engineering Languages and Systems - 16th International Conference, MODELS 2013,
Miami, FL, USA, September 29 - October 4, 2013. Proceedings. (2013) 488–504

146. Kossak, F., Illibauer, C., Geist, V., Kubovy, J., Natschläger, C., Ziebermayr, T., Kopetzky, T.,
Freudenthaler, B., Schewe, K.D.: A Rigorous Semantics for BPMN 2.0 Process Diagrams. Springer
International Publishing (2014)

204 References

147. Selic, B.: A Systematic Approach to Domain-Specific Language Design Using UML. In de Miguel, M.,
Kalogeraki, V., Kim, D.H., eds.: 10th IEEE International Symposium on Object and Component-
Oriented Real-Time Distributed Computing. (2007) 2–9

148. Mohagheghi, P., Haugen, Ø.: Evaluating Domain-Specific Modelling Solutions. In Trujillo, J., Dobbie,
G., Kangassalo, H., Hartmann, S., Kirchberg, M., Rossi, M., Reinhartz-Berger, I., Zimányi, E., Fras-
incar, F., eds.: Advances in Conceptual Modeling – Applications and Challenges: ER 2010 Workshops
ACM-L, CMLSA, CMS, DEAER, FP-UML, SeCoGIS, WISM, Vancouver, BC, Canada, November
1-4, 2010. Proceedings. Springer (2010) 212–221

149. Oxford University Press: Oxford English Dictionary (1989)
150. Lippi-Green, R.: English with an Accent: Language, Ideology, and Discrimination in the United States.

Psychology Press (1997)
151. Petyt, K.M.: The Study of Dialect: An Introduction to Dialectology . Westview Press (1980)
152. Pierce, B.C.: Types and Programming Languages. MIT Press (2002)
153. Zor, S., Leymann, F., Schumm, D.: A Proposal of BPMN Extensions for the Manufacturing Do-

main. In Duffie, N., Westkämper, E., eds.: Proceedings of 44th CIRP International Conference on
Manufacturing Systems. (2011)

154. Lara, J.A., Lizcano, D., Mart́ınez, M.A., Pazos, J., Riera, T.: A UML Profile for the Conceptual
Modelling of Structurally Complex Data: Easing Human Effort in the KDD Process. Information and
Software Technology 56(3) (2014) 335–351

155. Langer, P., Wieland, K., Wimmer, M., Cabot, J.: EMF Profiles: A Lightweight Extension Approach
for EMF Models. Journal of Object Technology 11(1) (2012) 1–29

156. Braun, R., Esswein, W.: Designing Dialects of Enterprise Modeling Languages with the Profiling
Technique. In Hallé, S., Mayer, W., Ghose, A.K., Grossmann, G., eds.: 19th IEEE International
Enterprise Distributed Object Computing Conference, EDOC 2015, Adelaide, Australia, September
21-25, 2015. (2015) 60–67

157. Bravenboer, M., de Groot, R., Visser, E.: MetaBorg in Action: Examples of Domain-Specific Lan-
guage Embedding and Assimilation Using Stratego/XT . In Lämmel, R., Saraiva, J., Visser, J., eds.:
Generative and Transformational Techniques in Software Engineering: International Summer School,
GTTSE 2005, Braga, Portugal, July 4-8, 2005. Revised Papers. Springer (2006) 297–311

158. Zenger, M.: Programming Language Abstractions for Extensible Software Components. PhD thesis,
École Polytechnique Fédérale de Lausanne (2004)

159. Klatt, B., Krogmann, K.: Software Extension Mechanisms. TH Karlsruhe, Research Report 8 (2008)
2008

160. Bass, L., Clements, P., Kazman, R.: Software Architecture in Practice. Addison Wesley (1998)
161. Braun, R., Esswein, W.: Extending the MOF for the Adaptation of Hooks, Aspects, Plug-Ins and

Add-Ons. In Bellatreche, L., Manolopoulos, Y., eds.: Model and Data Engineering – 5th Interna-
tional Conference, MEDI 2015, Rhodes, Greece, September 26-28, 2015, Proceedings. Volume 9344
of Lecture Notes in Computer Science. Springer (2015) 28–38

162. Atkinson, C., Kühne, T.: The Essence of Multilevel Metamodeling . In Gogolla, M., Kobryn, C.,
eds.: UML 2001 – The Unified Modeling Language. Modeling Languages, Concepts, and Tools: 4th
International Conference Toronto, Canada, October 1-5, 2001. Proceedings. Springer (2001) 19–33

163. Atkinson, C., Gutheil, M., Kennel, B.: A Flexible Infrastructure for Multilevel Language Engineering .
IEEE Transactions on Software Engineering 35(6) (2009) 742–755

164. Martin, R.C.: Design Principles and Design Patterns. Object Mentor 1 (2000) 1–34
165. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of Reusable Object-

oriented Software. Pearson Education (1994)
166. Wolfinger, R.: Plug-In Architecture and Design Guidelines for Customizable Enterprise Applications.

In Harris, G.E., ed.: Companion to the 23rd Annual ACM SIGPLAN Conference on Object-Oriented
Programming, Systems, Languages, and Applications, OOPSLA 2008, October 19-23, 2007, Nashville,
TN, USA, ACM (2008) 893–894

167. Marquardt, K.: Patterns for Plug-Ins. In Dyson, P., Devos, M., eds.: Proceedings of the 4th European
Conference on Pattern Languages of Programms (EuroPLoP 1999), Irsee, Germany, July 7-11, 1999.
(1999) 203–232

168. Kühn, H., Bayer, F., Junginger, S., Karagiannis, D.: Enterprise Model Integration. In Bauknecht, K.,
Tjoa, A.M., Quirchmayr, G., eds.: E-Commerce and Web Technologies: 4th International Conference,
EC-Web, Prague, Czech Republic, September 2-5, 2003. Proceedings. Springer (2003) 379–392

169. Živković, S., Kuhn, H., Karagiannis, D.: Facilitate Modelling Using Method Integration: An Approach
Using Mappings and Integration Rules. In Österle, H., Schelp, J., Winter, R., eds.: Proceedings of the
Fifteenth European Conference on Information Systems, ECIS 2007, St. Gallen, Switzerland, 2007.
(2007) 2038–2049

170. Jossic, A., Del Fabro, M.D., Lerat, J.P., Bézivin, J., Jouault, F.: Model Integration with Model Weav-
ing: A Case Study in System Architecture. In: 2007 International Conference on Systems Engineering
and Modeling, IEEE (2007) 79–84

References 205

171. Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes, C., Loingtier, J.M., Irwin, J.: Aspect-
Oriented Programming . In Akşit, M., Matsuoka, S., eds.: ECOOP 97 – Object-Oriented Programming:
11th European Conference, Jyväskylä, Finland, June 9-13, 1997 Proceedings. Number 1241 in Lecture
Notes in Computer Science, Springer (1997) 220–242

172. Birsan, D.: On Plug-ins and Extensible Architectures. Queue – Patching and Deployment 3(2) (2005)
40–46

173. Becker, J., Delfmann, P., Knackstedt, R.: Adaptive Reference Modeling: Integrating Configurative and
Generic Adaptation Techniques for Information Models. In Becker, J., Delfmann, P., eds.: Reference
Modeling: Efficient Information Systems Design Through Reuse of Information Models. Physica-
Verlag HD (2007) 27–58

174. Becker, J., Delfmann, P.: Reference Modeling . Physica-Verlag HD (2007)
175. Strahringer, S.: Ein sprachbasierter Metamodellbegriff und seine Verallgemeinerung durch das Konzept

des Metaisierungsprinzips. In Pohl, K., Schürr, A., Vossen, G., eds.: Modellierung 1998, Proceedings
des GI-Workshops in Münster, 11.-13. März 1998. Number 9 in CEUR Workshop Proceedings (1998)

176. Atkinson, C., Gerbig, R., Kennel, B.: On-the-Fly Emendation of Multi-Level Models. In Vallecillo, A.,
Tolvanen, J.P., Kindler, E., Störrle, H., Kolovos, D., eds.: Modelling Foundations and Applications:
8th European Conference, ECMFA 2012, Kgs. Lyngby, Denmark, July 2-5, 2012. Proceedings. Volume
7349 of Lecture Notes in Computer Science. Springer (2012) 194–209

177. Frank, U.: Thoughts on Classification/Instantiation and Generalisation/Specialisation. Technical
report, University Duisburg-Essen, Institute for Computer Science and Business Information Systems
(ICB) (2012)

178. Atkinson, C., Gerbig, R., Kennel, B.: Symbiotic General-Purpose and Domain-Specific Languages.
In Glinz, M., Murphy, G.C., Pezzè, M., eds.: 34th International Conference on Software Engineering,
ICSE 2012, June 2-9, 2012, Zurich, Switzerland. (2012) 1269–1272

179. Odell, J.J.: Power Types. Journal of Object-Oriented Programming 7(2) (1994)
180. Gonzalez-Perez, C., Henderson-Sellers, B.: Metamodelling for Software Engineering . Wiley Publishing

(2008)
181. Clark, T., Sammut, P., Willans, J.: Super-Languages: Developing Languages and Applications with

XMF . CoRR (2015)
182. Kühne, T.: Matters of (Meta-) Modeling . Software & Systems Modeling 5(4) (2006) 369–385
183. Kaczmarek, M.: Categories of Ontologies’ Applications in the Realm of Enterprise Modeling . In: 17th

IEEE Conference on Business Informatics, CBI 2015, Lisbon, Portugal, July 13-16, 2015 - Volume 1.
Volume 1. (2015) 98–107

184. Lindland, O.I., Sindre, G., Solvberg, A.: Understanding Quality in Conceptual Modeling . IEEE
Software 11(2) (1994) 42–49

185. Krogstie, J., Lindland, O.I., Sindre, G.: Towards a Deeper Understanding of Quality in Requirements
Engineering . In Iivari, J., Lyytinen, K., Rossi, M., eds.: Advanced Information Systems Engineering:
7th International Conference, CAiSE 95, Jyväskylä, Finland, June 12–16, 1995 Proceedings. Volume
932 of Lecture Notes in Computer Science. Springer (1995) 82–95

186. Schuette, R., Rotthowe, T.: The Guidelines of Modeling – An Approach to Enhance the Quality in
Information Models. In Ling, T.W., Ram, S., Li Lee, M., eds.: Conceptual Modeling – ER 98: 17th
International Conference on Conceptual Modeling, Singapore, November 16-19, 1998. Proceedings.
Volume 1507 of Lecture Notes in Computer Science. Springer (1998) 240–254

187. Overhage, P.D.S., Birkmeier, D.Q., Schlauderer, S.: Quality Marks, Metrics, and Measurement Proce-
dures for Business Process Models. Business & Information Systems Engineering 4(5) (2012) 229–246

188. Weller, J.: Modellgestützte Prozessverbesserung . PhD thesis, TU Dresden (2009)
189. Becker, J., Niehaves, B., Knackstedt, R.: Bezugsrahmen zur epistemologischen Positionierung der Ref-

erenzmodellierung . In Becker, J., Delfmann, P., eds.: Referenzmodellierung: Grundlagen, Techniken
und domänenbezogene Anwendung, Physica-Verlag HD (2004) 1–17

190. Kaidalova, J., Seigerroth, U., Kaczmarek, T., Shilov, N.: Practical Challenges of Enterprise Mod-
eling in the Light of Business and IT Alignment . In Sandkuhl, K., Seigerroth, U., Stirna, J., eds.:
The Practice of Enterprise Modeling: 5th IFIP WG 8.1 Working Conference, PoEM 2012, Rostock,
Germany, November 7-8, 2012. Proceedings. Volume 134 of Lecture Notes in Business Information
Processing. Springer (2012) 31–45

191. van der Linden, D., Hoppenbrouwers, S.: Challenges of Identifying Communities with Shared Se-
mantics in Enterprise Modeling . In Sandkuhl, K., Seigerroth, U., Stirna, J., eds.: The Practice of
Enterprise Modeling: 5th IFIP WG 8.1 Working Conference, PoEM 2012, Rostock, Germany, Novem-
ber 7-8, 2012. Proceedings. Volume 134 of Lecture Notes in Business Information Processing. Springer
(2012) 160–171

192. Wand, Y., Weber, R.: On the Ontological Expressiveness of Information Systems Analysis and Design
Grammars. Information Systems Journal 3(4) (1993) 217–237

206 References

193. Rosemann, M., Green, P., Indulska, M.: A Reference Methodology for Conducting Ontological Anal-
yses. In Atzeni, P., Chu, W., Lu, H., Zhou, S., Ling, T.W., eds.: Conceptual Modeling – ER 2004:
23rd International Conference on Conceptual Modeling, Shanghai, China, November 8-12, 2004. Pro-
ceedings. Volume 3288 of Lecture Notes in Computer Science. Springer (2004) 110–121

194. Wyssusek, B.: On Ontological Foundations of Conceptual Modelling . Scandinavian Journal of Infor-
mation Systems 18(1) (2006) Article 9

195. Brinkkemper, S., Saeki, M., Harmsen, F.: Meta-Modelling Based Assembly Techniques for Situational
Method Engineering . Information Systems 24(3) (1999) 209–228

196. Pittke, F., Leopold, H., Mendling, J.: Automatic Detection and Resolution of Lexical Ambiguity in
Process Models. IEEE Transactions on Software Engineering 41(6) (2015) 526–544

197. Ullmann, S.: Semantics: An Introduction to the Science of Meaning . Barnes & Noble (1979)
198. van der Linden, D., van Zee, M.: On the Semantic Feature Structure of Modeling Concepts: An

Empirical Study . In: IEEE 16th Conference on Business Informatics, CBI 2014, Geneva, Switzerland,
July 14-17, 2014 - Volume 2, IEEE (2014) 158–165

199. Perelman, C., Olbrechts-Tyteca, L.: The New Rhetoric: A Treatise on Argumentation. University of
Notre Dame Press (1969)

200. Kamlah, W.: Philosophische Anthropologie – Sprachkritische Grundlegung und Ethik . Volume 238 of
Hochschultaschenbücher. Bibliographisches Institut, Mannheim (1972)

201. Brinkkemper, S., Saeki, M., Harmsen, F.: Assembly Techniques for Method Engineering . In Pernici,
B., Thanos, C., eds.: Advanced Information Systems Engineering: 10th International Conference,
CAiSE 98, Pisa, Italy, June 8-12, 1998 Proceedings. Volume 1413 of Lecture Notes in Computer
Science. Springer (1998) 381–400

202. Henderson-Sellers, B., Ralyté, J.: Situational Method Engineering: State-of-the-Art Review . Journal
of Universal Computer Science 16(3) (2010) 424–478

203. Harmsen, F., Brinkkemper, S., Oei, J.L.H.: Situational Method Engineering for Informational System
Project Approaches. In Verrijn-Stuart, A.A., Olle, T.W., eds.: Methods and Associated Tools for the
Information Systems Life Cycle, Proceedings of the IFIP WG8.1 Working Conference on Methods
and Associated Tools for the Information Systems Life Cycle, Maastricht, The Netherlands, 26-28
September, 1994. Volume 55 of IFIP Transactions. Elsevier (1994) 169–194

204. Karlsson, F., Ågerfalk, P.J.: Method Configuration: Adapting to Situational Characteristics while
Creating Reusable Assets. Information and Software Technology 46(9) (2004) 619–633

205. Bucher, T., Klesse, M., Kurpjuweit, S., Winter, R.: Situational Method Engineering . In Ralyté,
J., Brinkkemper, S., Henderson-Sellers, B., eds.: Situational Method Engineering: Fundamentals and
Experiences: Proceedings of the IFIP WG 8.1 Working Conference, 12-14 September 2007, Geneva,
Switzerland. Volume 244 of IFIP – The International Federation for Information Processing (IFI-
PAICT). Springer (2007) 33–48

206. Ralyté, J., Rolland, C., Deneckère, R.: Towards a Meta-Tool for Change-Centric Method Engineering:
A Typology of Generic Operators. In Persson, A., Stirna, J., eds.: Advanced Information Systems
Engineering: 16th International Conference, CAiSE 2004, Riga, Latvia, June 7-11, 2004. Proceedings.
Volume 3084 of Lecture Notes in Computer Science. Springer (2004) 202–218

207. Tolvanen, J., Rossi, M.: MetaEdit+: Defining and Using Domain-Specific Modeling Languages and
Code Generators. In Crocker, R., Steele, G.L., eds.: Companion of the 18th Annual ACM SIGPLAN
Conference on Object-Oriented Programming, Systems, Languages, and Applications, OOPSLA 2003,
October 26-30, 2003, Anaheim, CA, USA, ACM (2003) 92–93

208. Gray, J., Neema, S., Tolvanen, J., Gokhale, A.S., Kelly, S., Sprinkle, J.: Domain-Specific Modeling .
In Fishwick, P.A., ed.: Handbook of Dynamic System Modeling. Chapman and Hall/CRC (2007)

209. Kelly, S., Tolvanen, J.: Domain-Specific Modeling – Enabling Full Code Generation. Wiley (2008)
210. Thalheim, B.: Syntax, Semantics and Pragmatics of Conceptual Modelling . In Bouma, G., Ittoo,

A., Métais, E., Wortmann, H., eds.: Natural Language Processing and Information Systems: 17th
International Conference on Applications of Natural Language to Information Systems, NLDB 2012,
Groningen, The Netherlands, June 26-28, 2012. Proceedings. Volume 7337 of Lecture Notes in Com-
puter Science. Springer (2012) 1–10

211. Karsai, G., Krahn, H., Pinkernell, C., Rumpe, B., Schindler, M., Völkel, S.: Design Guidelines for
Domain Specific Languages. CoRR 1409.2378 (2014)

212. Mernik, M., Heering, J., Sloane, A.M.: When and How to Develop Domain-Specific Languages. ACM
Computing Surveys 37(4) (2005) 316–344

213. Fill, H.G., Karagiannis, D.: On the Conceptualisation of Modelling Methods Using the ADOxx Meta
Modelling Platform. Enterprise Modelling and Information Systems Architectures 8(1) (2013)

214. Schultz, M., Radloff, M.: Modeling Concepts for Internal Controls in Business Processes – An Em-
pirically Grounded Extension of BPMN . In Sadiq, S., Soffer, P., Völzer, H., eds.: Business Process
Management: 12th International Conference, BPM 2014, Haifa, Israel, September 7-11, 2014. Pro-
ceedings. Volume 8659 of Lecture Notes in Computer Science. Springer International Publishing
(2014) 184–199

References 207

215. Micouin, P.: Model Based Systems Engineering: Fundamentals and Methods. John Wiley & Sons
(2014)

216. Schmidt, D.C.: Model-Driven Engineering . Computer 39(2) (2006) 25–31
217. Blair, G., Bencomo, N., France, R.B.: Models@ Run. Time. Computer 42(10) (2009) 22–27
218. Institute of Electrical and Electronics Engineers (IEEE): Systems and Software Engineering – Vo-

cabulary . (2010)
219. Wieringa, R.J.: Requirements Engineering: Problem Analysis and Solution Specification (Extended

Abstract). In Koch, N., Fraternali, P., Wirsing, M., eds.: Web Engineering: 4th International Confer-
ence, ICWE 2004, Munich, Germany, July 26-30, 2004. Proceedings. Volume 3140 of Lecture Notes
in Computer Science. Springer (2004) 13–16

220. Frank, U., Strecker, S., Fettke, P., vom Brocke, J., Becker, J., Sinz, E.: The Research Field “Modeling
Business Information Systems”. Business & Information Systems Engineering 6(1) (2014) 39–43

221. Pittke, F., Nagel, B., Engels, G., Mendling, J.: Linguistic Consistency of Goal Models. In Bider,
I., Gaaloul, K., Krogstie, J., Nurcan, S., Proper, H.A., Schmidt, R., Soffer, P., eds.: Enterprise,
Business-Process and Information Systems Modeling: 15th International Conference, BPMDS 2014,
19th International Conference, EMMSAD 2014, Held at CAiSE 2014, Thessaloniki, Greece, June 16-
17, 2014. Proceedings. Volume 175 of Lecture Notes in Business Information Processing. Springer
(2014) 393–407

222. Nwokeji, J.C., Clark, T., Barn, B.S.: Towards a Comprehensive Meta-Model for KAOS . In Moreira,
A., Mussbacher, G., Araújo, J., Bencomo, N., Sánchez, P., eds.: International Workshop on Model-
Driven Requirements Engineering, MoDRE 2013, Rio de Janeiro, Brasil, July 15, 2013. (2013) 30–39

223. Guizzardi, G.: On Ontology, Ontologies, Conceptualizations, Modeling Languages, and (Meta)Models.
In Vasilecas, O., Eder, J., Caplinskas, A., eds.: Databases and Information Systems IV - Selected Pa-
pers from the Seventh International Baltic Conference, DB&IS 2006, July 3-6, 2006, Vilnius, Lithua-
nia. Volume 155 of Frontiers in Artificial Intelligence and Applications. IOS Press (2006) 18–39

224. Searle, J.R.: Minds, Brains and Science. Harvard University Press (1984)
225. Schütte, R.: Grundsätze ordnungsmäßiger Referenzmodellierung: Konstruktion konfigurations- und

anpassungsorientierter Modelle. Gabler (1998)
226. Anaya, V., Berio, G., Harzallah, M., Heymans, P., Matulevičius, R., Opdahl, A.L., Panetto, H., Verde-

cho, M.J.: The Unified Enterprise Modelling Language – Overview and Further Work . Computers in
Industry 61(2) (2010) 99–111

227. Opdahl, A.L.: Semantic Annotations for Modelling Language Interoperability . In Akerkar, R., ed.:
Proceedings of the International Conference on Web Intelligence, Mining and Semantics, WIMS 2011,
Sogndal, Norway, May 25-27, 2011, ACM (2011) 1–9

228. Kluth, M.: Semantisches Benchmarking von Geschäftsprozessen: Konzeption, Evaluation und An-
wendungspotenziale. Books on Demand (2013)

229. Opdahl, A.L.: Anatomy of the Unified Enterprise Modelling Ontology . In van Sinderen, M., Johnson,
P., eds.: Enterprise Interoperability: Third International IFIP Working Conference, IWEI 2011, Stock-
holm, Sweden, March 23-24, 2011. Proceedings. Volume 76 of Lecture Notes in Business Information
Processing. Springer (2011) 163–176

230. Guarino, N., Guizzardi, G.: In the Defense of Ontological Foundations for Conceptual Modeling .
Scandinavian Journal of Information Systems 18(1) (2006) 1–12

231. Gehlert, A., Esswein, W.: Toward a Formal Research Framework for Ontological Analyses. Advanced
Engineering Informatics 21(2) (2007) 119–131

232. McGuinness, D.L., Van Harmelen, F.: OWL Web Ontology Language Overview . W3C Recommenda-
tion 10(10) (2004)

233. Wand, Y., Weber, R.: On the Deep Structure of Information Systems. Information Systems Journal
5(3) (1995) 203–223

234. Pelletier, F.J.: The Principle of Semantic Compositionality . Topoi 13(1) (1994) 11–24
235. Opdahl, A.L., Berio, G., Harzallah, M., Matulevicius, R.: An Ontology for Enterprise and Information

Systems Modelling . Applied Ontology 7(1) (2012) 49–92
236. Opdahl, A.L., Henderson-Sellers, B.: A Template for Defining Enterprise Modelling Constructs.

Journal of Database Management 15(2) (2004) 39–73
237. Harzallah, M., Berio, G., Opdahl, A.L.: Incorporating IDEF3 into the Unified Enterprise Modelling

Language. In: Workshops Proceedings of the 11th International IEEE Enterprise Distributed Object
Computing Conference, ECOCW 2007, 15-16 October 2007, Annapolis, Maryland, USA. (2007) 133–
140

238. Fickinger, T., Recker, J.C.: Construct Redundancy in Process Modeling Grammars: Improving the
Explanatory Power of Ontological Analysis. In: 21st European Conference on Information Systems,
ECIS 2013, Utrecht, The Netherlands, June 5-8, 2013, Association for Information Systems (2013)
1–12

208 References

239. Gehlert, A., Esswein, W.: Toward More Rigor in Ontological Analyses. In Ljungberg, J., Andersson,
M., eds.: Proceedings of the Fourteenth European Conference on Information Systems, ECIS 2006,
Göteborg, Sweden, 2006. (2006) 984–994

240. Pfeiffer, D.: Constructing Comparable Conceptual Models with Domain Specific Languages. In Österle,
H., Schelp, J., Winter, R., eds.: Proceedings of the Fifteenth European Conference on Information
Systems, ECIS 2007, St. Gallen, Switzerland, 2007. (2007) 876–888

241. Opdahl, A.L., Henderson-Sellers, B.: Ontological Evaluation of the UML Using the Bunge-Wand-
Weber Model . Software and System Modeling 1(1) (2002) 43–67

242. Kühn, H.: Methodenintegration im Business Engineering . PhD thesis, University of Vienna (2004)
243. Engels, G., Hausmann, J.H., Heckel, R., Sauer, S.: Dynamic Meta Modeling: A Graphical Approach

to the Operational Semantics of Behavioral Diagrams in UML. In Evans, A., Kent, S., Selic, B.,
eds.: UML 2000 - The Unified Modeling Language, Advancing the Standard, Third International
Conference, York, UK, October 2-6, 2000, Proceedings. Volume 1939 of Lecture Notes in Computer
Science. Springer (2000) 323–337

244. Soltenborn, C., Engels, G.: Towards Test-Driven Semantics Specification. In: Model Driven Engi-
neering Languages and Systems, 12th International Conference, MODELS 2009, Denver, CO, USA,
October 4-9, 2009. Proceedings. (2009) 378–392

245. Engels, G., Küster, J.M., Heckel, R., Groenewegen, L.: A Methodology for Specifying and Analyzing
Consistency of Object-Oriented Behavioral Models. In Tjoa, A.M., Gruhn, V., eds.: Proceedings of the
8th European Software Engineering Conference held jointly with 9th ACM SIGSOFT International
Symposium on Foundations of Software Engineering 2001, Vienna, Austria, September 10-14, 2001,
ACM (2001) 186–195

246. Stark, J., Esswein, W.: Rules from Cognition for Conceptual Modelling . In Atzeni, P., Cheung, D.,
Ram, S., eds.: Conceptual Modeling: 31st International Conference ER 2012, Florence, Italy, October
15-18, 2012. Proceedings. Volume 7532 of Lecture Notes in Computer Science. Springer (2012) 78–87

247. Guizzardi, G., Ferreira Pires, L., van Sinderen, M.: An Ontology-Based Approach for Evaluating the
Domain Appropriateness and Comprehensibility Appropriateness of Modeling Languages. In Briand,
L., Williams, C., eds.: Model Driven Engineering Languages and Systems: 8th International Confer-
ence, MoDELS 2005, Montego Bay, Jamaica, October 2-7, 2005. Proceedings. Volume 3713 of Lecture
Notes in Computer Science. Springer (2005) 691–705

248. Esswein, W., Lehrmann, S.: About the Need for Semantically Enriched Reference Models. In: 19th
Americas Conference on Information Systems, AMCIS 2013, Chicago, Illinois, USA, August 15-17,
2013. (2013)

249. Leopold, H.: Natural Language in Business Process Models. Volume 168 of Lecture Notes in Business
Information Processing. Springer (2013)

250. Clark, T., Gonzalez-Perez, C., Henderson-Sellers, B.: A Foundation for Multi-Level Modelling . In
Atkinson, C., Grossmann, G., Kühne, T., de Lara, J., eds.: Proceedings of the Workshop on Multi-
Level Modelling co-located with ACM/IEEE 17th International Conference on Model Driven Engi-
neering Languages & Systems (MoDELS 2014), Valencia, Spain, September 28, 2014. Volume 1286
of CEUR Workshop Proceedings. (2014) 43–52

251. Object Management Group (OMG): Diagram Definition (DD), Version 1.0 . (2012)
252. Karagiannis, D., Grossmann, W., Höfferer, P.: Open Model Initiative: A Feasibility Study . University

of Vienna, Department of Knowledge Engineering (2008)

1

Appendix

1.1 Overview of Extension Mechanisms

1.1.1 Decorators

User Perspective:

General Scope: Different concepts can be multiply wrapped with additional capabilities
in order to represent complex classification hierarchies or roles at run-
time.

Dissemination and Occurrence: Not applied in EM
Pragmatics: Representation of hierarchies, combinations and variants
Appropriate Extension Type: • Model Operations

• (Enhancement)
Main Benefits: • Representation of multiple roles
Limitations and Problems: • Complex wrapping logic, binding and releasing

• Rather useful for runtime-related annotations

Technical Perspective:

Syntactical Macro View:

Invasiveness and Architectural
Predesign:

Highly invasive, decorating logic requires complex environment

Implementation and Applica-
tion:

• Decorator definition (runtime)
• Binding (merging of meta elements)
• Instantiation
• Unbinding, releasing

Multiple Application: Possible (explicitly intended by definition)
Host Dependency: High

Syntactical Mirco View:

Extension Elements: Meta classes
Modularity: Low (high coupling, low cohesion, separate instantiation rather useless)
Inner Complexity and Design
Freedom:

Low (simple conceptual structures)

Interface Structure: • Not explicit
• M-N relation (host meta class can have multiple decorators, a deco-

rator can be assigned to multiple host meta classes)

Consequences for Meta Modelling and Meta Meta Modelling:

Redesign Consequences (if
required):

General implementation of the Decorator Pattern on type level

Table 1.1: Characteristics of the Decorator mechanism

210 1 Appendix

1.1.2 Plugins

User Perspective:

General Scope: Provision of complex modules for the solution of specific business prob-
lems

Dissemination and Occurrence: • Not explicitly defined
• Similar approaches in the field of meta model composition and meta

model integration [168, 169]
Pragmatics: Annotation of additional expressiveness from other areas of discourse,

both syntactically and semantically
Appropriate Extension Type: • Augmentation, enhancement (syntax and semantics)

• Formal Semantics, model operations (semantics)
Main Benefits: • Separation of concern, modularisation
Limitations and Problems: • Interface specification

Technical Perspective:

Syntactical Macro View:

Invasiveness and Architectural
Predesign:

High (e.g. definition of interfaces in host meta model)

Implementation and Applica-
tion:

• Definition of extension interfaces (if required)
• Plugin definition
• Merge and application

Multiple Application: Possible
Host Dependency: Low

Syntactical Mirco View:

Extension Elements: Meta classes (single class or set of classes)
Modularity: Maximum (high cohesion, low coupling, separate instantiation is possi-

ble)
Inner Complexity and Design
Freedom:

High

Interface Structure: • 1-M (extension interface can have multiple adaptive Plugins, a par-
ticular Plugin corresponds to exactly one interface)

Consequences for Meta Modelling and Meta Meta Modelling:

Redesign Consequences (if
required):

Definition of interfaces

Table 1.2: Characteristics of the Plugin mechanism

1.1 Overview of Extension Mechanisms 211

1.1.3 Aspects

User Perspective:

General Scope: Central provision of generic supporting concepts and capabilities
Dissemination and Occurrence: Not applied in EM
Pragmatics: Annotation of generic and reusable capabilities for model analysis
Appropriate Extension Type: • Model operations

• Augmentation (often required attributes, without generalisations)
Main Benefits: • Cross-cutting reuse of rather generic concepts
Limitations and Problems: • Potential amalgamation of conceptual and analytical concepts

Technical Perspective:

Syntactical Macro View:

Invasiveness and Architectural
Predesign:

Medium (low coupling, but integration and merge logic is required)

Implementation and Applica-
tion:

• Aspect definition
• Merge and application

Multiple Application: Possible
Host Dependency: Low

Syntactical Mirco View:

Extension Elements: Meta classes (one particular)
Modularity: High (high cohesion, low coupling, separate instantiation is possible)
Inner Complexity and Design
Freedom:

Differs

Interface Structure: • Not explicit
• M-N (host meta class can have multiple Aspects, a particular As-

pect can be assigned to multiple meta classes)

Consequences for Meta Modelling and Meta Meta Modelling:

Redesign Consequences (if
required):

Simple (merging of additional concepts)

Table 1.3: Characteristics of the Aspects mechanism

212 1 Appendix

1.1.4 Add-Ons

User Perspective:

General Scope: Provision of supplemented information with a limited complexity in or-
der to enhance existing concepts incrementally for specific purposes

Dissemination and Occurrence: Not explicitly applied in EM
Pragmatics: Annotation of additional information within the existing area of dis-

course, both syntactically and semantically
Appropriate Extension Type: • Enhancement

• Domain specialisation (by detailing on the same level of abstrac-
tion)

Main Benefits: • Incremental, marginal extension
Limitations and Problems: • Interface specification

Technical Perspective:

Syntactical Macro View:

Invasiveness and Architectural
Predesign:

High (e.g. definition Plugin interfaces in host meta model)

Implementation and Applica-
tion:

• Definition of extension interfaces
• Add-On definition
• Merge and application

Multiple Application: Possible
Host Dependency: High

Syntactical Mirco View:

Extension Elements: Meta classes (single class or set of classes)
Modularity: Low (low cohesion, high coupling, separate instantiation is not possible)
Inner Complexity and Design
Freedom:

Simple, supplementing

Interface Structure: • Explicit
• 1-M (extension interface can have multiple adaptive Add-Ons, a

particular Add-On corresponds to exactly one interface)

Consequences for Meta Modelling and Meta Meta Modelling:

Redesign Consequences (if
required):

Interface design

Table 1.4: Characteristics of the Add-On mechanism

1.1 Overview of Extension Mechanisms 213

1.1.5 Hooking

User Perspective:

General Scope: Parts are left open or remain under-specified on purpose
Dissemination and Occurrence: • Not explicitly defined

• Single approaches in the context of reference modelling [173, 174]
Pragmatics: Specialising: Implementation of intentional extensibility in some sorts of

generic EMLs
Appropriate Extension Type: • Placeholder: Enhancement, augmentation

• Specialisation: Domain-specification, (formal semantics)
Main Benefits: • Explicit specification opportunity

• Design freedom
Limitations and Problems: • Level of predesign (especially for Hooking by Specialisation)

• Need for specialisation (parts of original meta model may not be
applicable)

• Abstraction differences in case of Hooking by Specialisation

Technical Perspective:

Syntactical Macro View:

Invasiveness and Architectural
Predesign:

• Placeholder: Low (definition of hooking hot spots that can be spe-
cialised)

• Specialisation: High (explicitly prepared meta model)
Implementation and Applica-
tion:

• Definition of hot spots for specialisation and placeholders
• Hook definition
• Merge and thus pre-instantiation of the meta model in order to

establish a revised meta model version
Multiple Application: Not possible
Host Dependency: Very high

Syntactical Mirco View:

Extension Elements: • Placeholder: All meta types
• Specialisation: Usually on meta class level: attribute values, ranges,

constraints, particular terms and atomic values (cf. [161])
Modularity: • Placeholder: Low (high cohesion, but high coupling)

• Specialisation: Very low (low cohesion, very high coupling)
Inner Complexity and Design
Freedom:

• Placeholder: Various
• Specialisation: Rather simple

Interface Structure: • Explicit
• 1-1 (hooking spot or area is replaced by exactly one hooking exten-

sion)

Consequences for Meta Modelling and Meta Meta Modelling:

Redesign Consequences (if
required):

Large [161]

Table 1.5: Characteristics of the Hooking mechanism

214 1 Appendix

1.1.6 Profiling

User Perspective:

General Scope: Attribute-wise annotation of concepts within well-defined packages (Pro-
files)

Dissemination and Occurrence: Common UML extension mechanism [31], few adaptations to
engineering-oriented modelling languages [155], BPMN [42] and EMLs
in general [156]

Pragmatics: Specifying rather generic concepts for particular domains, industries or
enterprises

Appropriate Extension Type: • Domain-specialisation
• Enhancement (by refinements)
• Formalisation (e.g. by annotation of constraints)

Main Benefits: • Well established mechanism, reuse of well-known meta concepts
from MOF, lightweight integration opportunities

• Generic property-wise extension (cf. [156])
• Combination of different Profiles
• Profile concept as packaging instrument

Limitations and Problems: • Basic approach (extending meta classes): No real type creation, no
subclasses

• Advanced approach (extending all meta types [156]): The creation
of “top level” Stereotypes indicates huge language extensions in the
sense of the creation of additional meta model classes, for instance
[156, p. 64], which actually does not correspond to the localised
“specification” character of Profiling.

Technical Perspective:

Syntactical Macro View:

Invasiveness and Architectural
Predesign:

Low

Implementation and Applica-
tion:

• Stereotype definition
• Instantiation of the stereotyped meta class requires the optional

or mandatory instantiation of the annotated Stereotype, indicat-
ing a certain post processing of the instantiated meta classes (e.g.
validation checks)

Multiple Application: Possible
Host Dependency: Very high

Syntactical Mirco View:

Extension Elements: Meta classes (application to different meta types is possible [156])
Modularity: Low (low cohesion, high coupling, separate instantiation is not possible)
Inner Complexity and Design
Freedom:

• Basic approach: Simple, structure depends on host meta classes
• Complex approach: The degree of design freedom depends on the

meta class type that is extended [156, p. 64]. For instance, the cre-
ation of view stereotypes could lead to entirely new diagrams based
on a stable conceptual set. In contrast, stereotypes of meta model
classes have a rather limited expressiveness, as it must conform to
the conceptual boundaries of the stereotypes class.

Interface Structure: • Implicit
• 1-M (one meta class could apply multiple Profiles, a particular

Profile corresponds to a particular set of meta classes, shaping an
implicit interface)

Consequences for Meta Modelling and Meta Meta Modelling:

Redesign Consequences (if
required):

Lifting the profiling mechanism to the meta meta level [42]

Table 1.6: Characteristics of the Profiling mechanism

1.1 Overview of Extension Mechanisms 215

1.1.7 Multilevel Modelling

User Perspective:

General Scope: Introduction of additional classification levels
Dissemination and Occurrence: • Novel approach, limited to dedicated modelling environments

(FMMLx)
• Not integrated in common meta modelling languages like MOF

Pragmatics: Localising EMLs for domains, enterprises and situations
Appropriate Extension Type: • Domain-Specialisation

• (Enhancement, augmentation on lower classification levels)
Main Benefits: • Flexible derivation of localised languages

• Separation of classification levels according to conceptualisations
(avoidance of flattening)

Limitations and Problems: • Expensive technical implementation due to paradigmatic novelty
• Invasiveness: Annotation of attributes and classes in regard to

defining Intrinsic Features and particular levels of instantiation

Technical Perspective:

Syntactical Macro View:

Invasiveness and Architectural
Predesign:

High (multilevel paradigm actually contradicts traditional meta mod-
elling)

Implementation and Applica-
tion:

• Selection and annotation of Intrinsic Features
• Definition of additional classification levels
• Instantiation of the multilevelled meta model

Multiple Application: Possible
Host Dependency: High (instantiation from original meta classes)

Syntactical Mirco View:

Extension Elements: • Meta classes
• (Entire classification level)

Modularity: Low (different degree of cohesion, high coupling, separate instantiation is
not useful due to “instance of”-relation to original host meta classes)

Inner Complexity and Design
Freedom:

• Inner complexity could range from simple specialisations to complex
inner-level structures

• Design freedom is principally high (within additional classification
levels), but naturally restricted by the existing meta classes

Interface Structure: • Not explicit
• 1-M (meta classes can be “extended” by multiple classes on differ-

ent classification levels, while an introduced class serves as instance
of an original meta class)

Consequences for Meta Modelling and Meta Meta Modelling:

Redesign Consequences (if
required):

Comprehensive redesign efforts due to the paradigmatic novelty

Table 1.7: Characteristics of the Multilevel Modelling mechanism

216 1 Appendix

1.1.8 Generalisation/Specialisation

User Perspective:

General Scope: Specialisation by additional subclasses
Dissemination and Occurrence: Often implicitly applied (cf. [33, p. 52])
Pragmatics: Specifying rather generic concepts for particular domains, industries or

enterprises
Appropriate Extension Type: • Domain-specialisation

• Enhancement (refinement)
Main Benefits: • Simple application and clear structure

• Simple combination with other approaches (especially Plugins and
Add-Ons)

Limitations and Problems: • Precise separation in hybrid forms

Technical Perspective:

Syntactical Macro View:

Invasiveness and Architectural
Predesign:

• Type 1 and 2: Low (extension by specialisation)
• Type 3: Differs according to “min” cardinality of the introduced

association
Implementation and Applica-
tion:

• Definition of subclasses (and associations in case of type 3)
• Merge and instantiation

Multiple Application: Possible
Host Dependency: Very high

Syntactical Mirco View:

Extension Elements: Meta classes (application to other meta types, e.g. perspectives, is also
possible)

Modularity: Minimum (low cohesion, high coupling, separate instantiation is not
possible due to lack of super properties)

Inner Complexity and Design
Freedom:

• Type 1: limited
• Type 2: differs according to number of associations
• Type 3: usually high (hybrid type, Plugins and Add-Ons)

Interface Structure: • Implicit
• 1-M (meta class can be specialised by multiple extension classes,

one extension class refers to or specializes one meta class)

Consequences for Meta Modelling and Meta Meta Modelling:

Redesign Consequences (if
required):

None

Table 1.8: Characteristics of the Generalisation/Specialisation mecha-
nism

1.1 Overview of Extension Mechanisms 217

1.1.9 Semantic Extension

User Perspective:

General Scope: Extending the interpretation of an EML meta model
Dissemination and Occurrence: Not explicitly specified and applied
Pragmatics: Specifying the interpretation of an EML according to a domain or stake-

holder group
Appropriate Extension Type: • Accent building

• (domain-specialisation, formalisation)
Main Benefits: • Syntax remains unaffected

• Flexible stakeholder-dependent interpretation of one language
Limitations and Problems: • Lack of explicitness

• Specification efforts

Technical Perspective:

Syntactical Macro View:

Invasiveness and Architectural
Predesign:

No invasiveness (syntax remains unaffected)

Implementation and Applica-
tion:

• Specification of additional semantic mappings and semantics con-
structs

• Specification of the relation to original semantic constructs in case
of specialisation

Multiple Application: Possible
Host Dependency: Very high

Syntactical Mirco View:

Extension Elements: Each syntactical construct (single classes as well as combinations)
Modularity: Low (naturally high coupling of semantic relations, differing degree of

cohesion, separate instantiation is contingent)
Inner Complexity and Design
Freedom:

• Inner complexity: could vary, depending of the set of introduced
semantic mappings

• Design freedom: limited to the semantic borders of the extended
constructs

Interface Structure: • Not explicit nor required
• 1-M (meta element can be extended multiply, while an additional

semantic mappings refers to exactly one meta element)

Consequences for Meta Modelling and Meta Meta Modelling:

Redesign Consequences (if
required):

Semantic representation techniques

Table 1.9: Characteristics of the Semantic Extension mechanism

	Part I Motivation and Introduction
	Research Design
	Context and Motivation
	Research Problems
	Extensibility in the Context of BPMN and MOF
	Extensibility for EMLs in General
	EML Definitions in General

	Research Objectives
	Research Approach
	Research Papers and Consolidation Essay
	Application of Design Science

	Organisation of the Consolidation Essay

	Part II Fundamentals
	Relevant Publications
	Publication POEM-2014
	Publication MODELSWARD-2015-A
	Publication MODELSWARD-2015-B
	Publication ICEIS-2015
	Publication MKWI-2016

	Terminological and Conceptual Foundations
	Peculiarities of Enterprise Modelling Languages
	Discussion on Standard Enterprise Modelling Languages
	Pro Standardisation
	Contra Standardisation
	Towards Extensible Standard EMLs

	Terminology
	Extension
	Pseudo Reduction
	Hybrid
	Semantic Extensions and Modifications

	Summary and Conclusion

	Extension Types of Enterprise Modelling Languages
	Criteria for EML Classification
	Formalisation
	Focus
	Domain-Specificity

	Framework Architecture
	Types of Enterprise Modelling Languages
	Consequences for EML Extension Types
	Formalisation
	Views
	Domain-Specificity

	Language Extension Types
	Accents – Semantic Extensions
	Dialects – Syntactic and Semantic Extensions

	Consolidation and Conclusion

	Part III Extension Mechanisms
	Relevant Publications
	Publication WIT-2014
	Publication MKWI-2014
	Publication BIBM-2014
	Publication WI-2015
	Publication CCIS-2015
	Publication MEDI-2015
	Publication CBI-2015

	Introduction
	State of Affairs
	Classification and Specification

	Mechanisms
	Annotations
	Leveraging Principles from Software Engineering
	Decorators
	Plugins
	Aspects
	Add-Ons

	Hooking (Under-Specification)
	Motivation
	Adaptation and Application

	Profiling and Stereotypes
	Motivation
	Adaptation and Application

	Multilevel Modelling
	Motivation: Issues within Fixed Level Architectures
	Existing Multilevel Modelling Approaches
	Core Question: Specialisation or Instantiation
	Principle of Adaptation for EML Extensions
	Adaptation Procedure
	Required Redesign
	Demarcation from Other Approaches and Limitations
	Pragmatics

	Simple Generalisation/Specialisation
	Motivation
	Architecture and Application
	Pragmatics
	Restrictions and Limitations

	Semantic Extension Techniques
	Motivation
	Architecture and Application
	Pragmatics
	Restrictions and Limitations

	Repository
	Overview
	Comparison
	Combination of Mechanisms

	Part IV Semantics-Driven Justification of Extension Need
	Relevant Publications
	Publication DESRIST-2015
	Publication REBPM-2014
	Publication BIBM-2015
	Publication EEWC-2015
	Publication IDS-2015
	Publication HICSS-2016
	Publication ZEUS-2016
	Publication AQEMO-2016
	Publication MODELSWARD-2016

	Relevant Unpublished Papers
	Paper UNPUB-MOF4EM-2016

	Motivation and Introduction
	Related Work
	Pragmatics and Semantics First
	Methodical Consideration of Pragmatics and Semantics in EML Extensions
	Consequences for Extension Design
	Assumptions and Limitations

	Structure for Extension Procedure
	Use Case Analysis
	Motivation and Fundamentals
	Related Work
	Input, Method, Output

	Requirements Analysis
	Motivation and Fundamentals
	Related Work
	Input, Method and Output
	Requirements Classification
	Derivation of Requirements from Use Cases
	Output

	Concept Analysis
	Motivation and Fundamentals
	Relevance of Semantics and Current Issues
	Consequences for Extension Method
	Ontologies for Semantics Representation
	From Requirements to Semantics Specification

	Ontological Constructs from Conceptual Requirements
	UEML for the Representation of Material Semantics
	Introduction
	Architecture
	Application and Adaptation

	Semantic Comparison with UEML
	Related Work
	Correspondence Types in UEML
	Proposal for Correspondence Typology

	Justifying and Modelling Intended Semantic Constructs
	Invariant Semantics
	Variance of Type Semantics
	Relevance
	Instances as Types Intuitively
	Output

	Ontological Constructs from Capability-Related Requirements
	DMM for the Representation of Formal Semantics
	Outline and Discussion of a Possible Implementation

	Perspectives and User-Related Requirements
	Perspectives
	User-Related Requirements

	Output

	Correspondence Analysis
	Material Semantic Constructs
	Equivalent Scenes
	Similar Scenes
	Different Scenes
	Instances
	Consolidation, Application, and Remarks

	Formal Semantic Constructs and Perspectives
	Formal Semantic Constructs
	Perspectives

	Output

	Extension Preparation and Subsequent Stages
	Pragmatics-Driven Pre-Selection
	Formalisation Dimension
	View Dimension
	Domain-Specificity Dimension

	Mechanism Selection
	Mechanism Application and Subsequent Steps
	Extension Definition in General
	Extension Definition in BPMN
	Extension Labelling

	Conclusion

	Part V Conclusion and Further Research
	Contributions
	Research Artefacts, Studies and Consolidations
	Reflection of Research Objectives

	Implications for Further Research
	Pragmatics
	Semantics
	Syntax
	Method

	List Of Figures
	List Of Tables
	References
	Appendix
	Overview of Extension Mechanisms
	Decorators
	Plugins
	Aspects
	Add-Ons
	Hooking
	Profiling
	Multilevel Modelling
	Generalisation/Specialisation
	Semantic Extension

