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Abstract

Domain Specific Modeling Languages (DSMLs) tend to play a central role in modern
design processes as they enable the effective involvement of domain experts by focusing
on a particular problem domain while abstracting away technical details. In this thesis,
we investigate the specification of DSMLs with a particular focus on domain expert driven
validation. Mainly, we are interested in developing Alloy-based approaches, allowing the
definition of specifications from which instances can be generated and given to the domain
experts for the sake of validation.
The work we present in this thesis can be divided into three parts:

The first part concerns the definition and execution of model transformations defined
in Alloy. While Alloy analysis can be used as an execution engine for model trans-
formations, the analysis process is time consuming. Model transformations playing a
central role in DSML definitions, the development of a new model transformation lan-
guage, named F-Alloy, retaining the benefits of Alloy with the added property of being
efficiently computable was necessary.

The second part focuses on validation. In that domain, our first contribution is a
novel approach to the validation of model transformations called Visualization-Based
Validation (VBV). VBV relies on the review by domain experts of intuitive depictions
of model transformation traces to validate model transformation specifications. The
whole process is made efficient by the usage of hybrid analysis, a combination of Alloy
analysis and F-Alloy interpretation, allowing to reduce the time needed to analyze model
transformations to the time needed to analyze its source. Our second contribution in
the validation area is the definition of an Alloy-based approach to the specification and
validation of DSMLs and of a design process defining how DSMLs can be validated
using Alloy analysis at each iteration of the process. More precisely, we present how the
abstract syntax, concrete syntax and operational semantics of a DSML can be defined
using Alloy and F-Alloy, and show that the validation of a DSML’ s abstract syntax and
semantics benefits from the application of its concrete syntax.

The third and last part aims at bringing those contributions to the practical world.
To achieve this we developed a tool named Lightning implementing the aforementioned
contributions. This tool, which belongs to the category of language workbenches, has
been successfully used in an inter-disciplinary collaboration to define the Robot Percep-
tion System Language (RPSL). Based on this definition of RPSL, a framework has been
developed to allow the execution of so called design space explorations. This framework
represents a successful application of our approach to the real world problem of having
RPSL specifications validated by experts in robotics.
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CHAPTER 1. INTRODUCTION

Chapter 1

Introduction

This introductory chapter aims at motivating and framing the work that has been ac-
complished during this thesis. We start by motivating our work in Section 1.1. In Section
1.2, we list the research objectives we aspire to fulfill. This aspiration led us to develop
several contributions, listed in Section 1.3, leading to the publications listed in Section
1.4. The final section presents the outline of this thesis.

1.1 Motivation

Software engineering as the science of producing techniques aiming at easing the design,
implementation and maintenance of software systems is very recent: only half a century
old [6]. The complexity of software engineering problems is somehow proportional to the
power of the machine they are meant to be run on [7], and the processing power of those
machines grew exponentially in the past decades [8].

To cope with this overwhelming increase of complexity, software engineering tech-
niques evolved quickly and a ramification of research fields ensued. This work places it-
self in the model driven engineering field, studying the use of models as means to provide
solutions to some of the most recurrent problems in software engineering like optimiza-
tion [9,10], validation and verification [11,12], consistency [13,14], reusability [15,16] and
scalability [17,18] of software systems. Models are abstractions defining chosen aspects of
a systems in terms of concepts, relations and constraints [19]. These abstractions provide
an organized and sound way of designing systems and have various applications, from
verification to code generation [20]. A recurrent challenge when it comes to defining a
system is to handle the gap between the abstraction – i.e., the model – and the reality
it defines – i.e., the system. Namely:

1. The customers for whom the system is developed have particular needs, proper to
their domain of expertise, that they try to express in so-called requirements [21].
They are generally not familiar with the formalisms used to model their system
and are hence unable to detect design errors before the latest stage, i.e., when they
get hold of the system developed.

2. (Model) engineers are experts who model the system based on customers’ require-
ments. Modeling is an error-prone exercise since by thinking abstractly of a given
system, it is easy to overlook important details. Validation should thus be an
integral part of a modeling process [22].

In this work we attempt to close this gap by combining the two following high-level
approaches:
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1. Domain-specific modeling languages (DSMLs) [23] are languages that can be used
to present models in a form that customers (domain experts) are accustomed with.

2. Alloy [24] is a formalism in which systems can be modeled and that allows validating
at any time models through automated analysis.

The motivation behind using DSML originates from the consensus [25, 26] that in-
tuitive languages are required to enable effective communication between technical and
non-technical experts. A plethora of work [27–29] show that DSML can be designed to
let domain experts specify certain aspects of a system. From this popularity of DSMLs
emerged new approaches to the verification and validation of DSML designs [30–32]. Yet
those approaches (1) focus on specific aspects of a DSML definition (e.g., abstract syn-
tax, or semantics) rather than considering a DSML as a whole and (2) are directed to
modeling experts hence leaving a gap between the DSML specification and reality.

To tackle those drawbacks, we propose to build a language engineering framework
atop of Alloy, a formal language used to specify and validate models ([33–36]), allowing
the consideration of all components of a DSML specification to enable domain expert to
validate them through the review of graphical visualizations and simulations of language
models.

In this work, we choose to use Alloy as a main formalism to (1) focus on the essence
of DSML, the language allowing us to make abstractions of platform specific concepts
and (2) to use Alloy analysis as a foundation to our validation approaches.

Few works [37, 38] have investigated the use of Alloy in the specification of DSMLs,
however, all limit themselves to the specification and validation of a single component of
the DSML (generally abstract syntax and semantics alone).

In this thesis we investigate the use of Alloy in the specification and validation of
DSMLs to provide a framework in which model engineers and domain experts can easily
collaborate to validate model designs. This framework will allow the specification of
all component of a DSML and will enable an efficient validation process relying on the
usage of all the components specified.

A recent PhD thesis [39] also addresses the challenge of closing the gap between model
engineers and domain experts in the specification of DSMLs. Yet, the focus of that thesis
is on enabling the domain experts to provide partial specifications of the system to be
modeled (through the automatic derivation of metamodels from sketches) rather than
on the validation of specifications written by model engineers. This bottom-up approach
to DSML specification requires multiple sketches as well as a model engineer fine tuning
generated metamodels. Compared to this approach, we choose to leave the task of DSML
specification to model engineers and rely on the domain experts for validation only.
This choice allows us to escape challenges inherent to “modeling by demonstration” [40]
(addressed in [39] by restraining the set of DSMLs that can be defined that way) while
still actively involving domain experts in the DSML engineering processes.

1.2 Research Objectives

The thesis aims at addressing the common problem of model validation by allowing the
involvement of domain experts at the earliest stage of design process. To do so, we focus
on DSMLs specifications, DSML being by essence modeling languages domain experts
are acquainted with. Our main objective is thus the development of an approach and
implementing tool with which model engineers and domain experts can work hand in
hand to specify and validate DSMLs. Achieving this goal requires the completion of the
following main objectives:
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O.1 Definition of an approach enabling the specification of DSMLs in Alloy.
The definition of a DSML validation process relying on Alloy analysis requires that
the structure of Alloy DSML specifications is well defined.

O.2 Development of a new design process relying on domain experts’ knowl-
edge to validate Alloy specifications. The main focus of this thesis is to
enable the involvement of domain expert in the validation of DSML specifications.
This new design process should thus rely on the intuitive concrete syntax of the
DSML to bridge the gap between Alloy and domain experts.

O.3 Implementation of a tool based on the results obtained by completing
O.1 and O.2. This tool is meant to enable the validation of our approach.

The definition of DSMLs has been thoroughly studied in the past. Notably, Kleppe,
in her book [41], provides an extensive state of the art on DSMLs. Specifically, she shows
that a DSML can be expressed exclusively in terms of models and model transformations.

Alloy can be used to model systems and model transformations and has proven par-
ticularly effective at seamlessly validating designs, as highlighted in [42, 43]. Its ability
to generate instances (example models conforming to the metamodel defined by the an-
alyzed Alloy module) is a mechanism perfectly suited to involve domain experts in the
validation process, provided that those instances are presented in an intuitive syntax.
This is why this thesis focus on the fulfillment of the previously listed objectives rely-
ing mainly on Alloy. A drawback of using Alloy to specify every aspects of a DSML is
when it comes to execute model transformations. Though Alloy can be used to specify
model transformations, model transformations expressed in Alloy cannot be efficiently
computed (as we will see in Chapter 3). Improving the usability of the tool developed
in fulfillment of objective O.3 hence necessitates the development of an Alloy-based so-
lution (to fulfill objectives O.1 and O.2) to the specification of efficiently computable
model transformations. From this follows the last objective we propose to address in this
thesis:

O.4 Development of an Alloy-based solution to the specification of efficiently
computable model transformations.

1.3 Contributions

The research that has been conducted on the combined use of DSMLs and Alloy has led
to several contributions. Those contributions are:

• in the domain of model transformations:

C.1 The definition of F-Alloy , a new model transformation language allowing the
specification of efficiently computable model transformations. F-Alloy has
the specificity of being a variant of Alloy in the sense that its syntax is a
subset of the Alloy syntax and in the sense that its semantics only differ
by the fact that, in F-Alloy, constraints related to the normal behavior of
model transformations are left implicit. A translation procedure (from F-
Alloy to Alloy) is defined as a sequence of constraints to be added to the F-
Alloy specification. This simple translation defines the semantics of F-Alloy
in terms of Alloy, making of F-Alloy a formal language. F-Alloy has been
designed to enable the specification of endogenous in-place, exogenous and
compound model transformations.

3



1.3. CONTRIBUTIONS

C.2 The definition of hybrid analysis as a novel approach to the analysis of F-
Alloy model transformation. Hybrid analysis relies on the Alloy analysis of
the transformation’s source metamodel and on the F-Alloy interpretation of
the transformation specification. It has been proven that hybrid analysis
is equivalent to Alloy analysis in the sense that it yields the same set of
instances, yet, complexity-wise, it has been shown that the completion time
of a transformation’s hybrid analysis is reduced to the completion time of its
source metamodel’ s Alloy analysis.

C.3 The design of a novel approach to the validation of model transformation
called Visualization Based Validation (VBV ) enabling the involvement of do-
main experts. It relies on Hybrid analysis to efficiently generate traces of F-
Alloy model transformation specifications, and on a graphical concrete syntax
specification (defined as a compound model transformation from the model
transformation specification to validate to a Visual Language Model) to intu-
itively represent the trace’s source and target model. We show that this has
as effect to enable the involvement of those domain experts familiar with the
domain modeled by the transformation’s source and target metamodel.

• in the domain of Software Language Engineering:

C.4 The definition of an approach to the engineering of DSMLs in Alloy. We show
that DSMLs abstract syntax, concrete syntax and operational semantics can
all be specified using Alloy (and F-Alloy for efficiency’s sake) in a way that
allows, provided an abstract syntax’s instance, the seamless application of
both concrete syntax and operational semantics.

C.5 The design of an agile DSML engineering design process enabling at each
design iteration the seamless validation, using Alloy analysis, of DSML com-
ponents. To enable domain experts to get involved in this design process,
validation relies on the concrete syntax and operational semantics defined to
provide the domain experts with intuitive visualization and simulation fea-
tures.

C.6 The implementation of the Lightning tool, an eclipse plug-in allowing the spec-
ification and validation of DSMLs following our proposed approach. This tool
is also packed with the F-Alloy interpreter and provides all the feature essen-
tial to the specification and usage of DSMLs, hence allowing its qualification
as a full fledged language workbench.

C.7 The application of Lightning to a real world case study. Lightning has been
used to specify a robotic DSML called RPSL, following our DSML engineer-
ing design process with the creator of RPSL itself acting as domain expert.
Lightning not only allowed to validate specifications of the RPSL language,
but also was used to develop a framework to validate so called design alter-
natives (modeled by RPSL specifications.)

Relations between contributions and the research objectives they fulfill are drawn
in Table 1.1. Table 1.1 also associates to each contribution the chapter in which it is
presented in this thesis.
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Research Objectives Contributions Chapters
O.1 C.4 Chapter 5

O.2 C.3 Chapter 4
C.5 Chapter 5

O.3 C.6 Chapter 6C.7

O.4 C.1 Chapter 3
C.2 Chapter 4

Table 1.1: Table mapping each research objectives to the contribution fulfilling them
and to the chapter in which those contributions are presented

1.4 Publications

The work described in this thesis has led to several journal and conference publications. In
the following, we list and provide concise overviews of those publications in chronological
order. For each listed publication, we refer the reader to the chapter of this thesis covering
the same material.

2014. Domain-Specific Visualization of Alloy Instances, by Loïc Gammaitoni and
Pierre Kelsen is published in the proceedings of the International Conference on
Abstract State Machines, Alloy, B, TLA, VDM, and Z (ABZ 2014) [44].

This paper demonstrates that big Alloy instances are generally hard to comprehend
due to the genericness of the visualization provided by the Alloy analyzer. An
approach to depict Alloy instances in a more intuitive manner is proposed. This
approach is given in Section 5.2.2.

2014. Verifying Modelling Languages Using Lightning: a Case Study, by Loïc
Gammaitoni, Pierre Kelsen and Fabien Mathey is published in the proceedings of
the Workshop on Model-Driven Engineering, Verification and Validation (MoD-
EVVa 2014) [45].

This paper gives the first hints that DSMLs can be defined in Alloy. It demonstrates
how the Lightning tool can be used to define and verify the Structured Business
Process Language. Material presented in this paper is covered by Chapter 5

2015. F-Alloy: An Alloy Based Model Transformation Language, by Loïc
Gammaitoni and Pierre Kelsen published in the proceedings of the International
Conference on Model Transformations (ICMT 2015) [46].

This paper introduces the F-Alloy model transformation language which is based
on a subset of the Alloy language. It is given a translational semantics to Alloy,
enabling the use of Alloy analysis for validation/verification’ sake, as well as an
interpretation procedure enabling efficient computations. Note that the notion of
functional Alloy module is coined in this paper. This paper hence covers parts of
Chapter 3.

2015. Designing Languages Using Lightning by Loïc Gammaitoni, Pierre Kelsen
and Christian Glodt published in the proceedings of the ACM SIGPLAN Interna-
tional Conference on Software Language Engineering (SLE 2015) [47].

This tool paper provides a more in-depth introduction of Lightning, an Alloy-based
language workbench. It is mainly shown that Lightning supports the definition of
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abstract syntax, concrete syntax and operational semantics of DSMLs using Alloy
and F-Alloy. The Lightning tool is presented in Chapter 6.

2016. Agile Validation of Higher Order Transformations Using F-Alloy, by
Loïc Gammaitoni, Pierre Kelsen and Qin Ma published in the proceedings of the
International Conference on Theorecitcal Aspects of Software Engineering (TASE
2016) [48].

This paper coins the notion of hybrid analysis, a combination of Alloy analysis and
F-Alloy interpretation enabling the efficient analysis of F-Alloy specifications. This
is covered in Chapter 4.

2016. RPSL meets lightning: A model-based approach to design space explo-
ration of robot perception systems, by Loïc Gammaitoni and Nico Hochgeschwen-
der published in the proceedings of the Workshop on Simulation, Modeling, and
Programming for Autonomous Robots Proceedings (SIMPAR 2016) [49].

This paper, an application of our work on a real world case study, proposes a design
space exploration framework, based on Lightning, enabling robotic experts to sys-
tematically explore the design space of robot perception systems. This contribution
is summarized in Section 6.2.

2017. Agile Validation of Model Transformations using Compound F-Alloy
Specifications, by Loïc Gammaitoni, Pierre Kelsen and Qin Ma published in a
special issue of the Science of Computer Programming (SCP) Journal [50].

In this extended version, proofs are more detailed and VBV, a new approach to
the validation of model transformation based on compound model transformation,
is introduced. This publication covers the same material as Chapter 4.

2017. F-Alloy: A Relational Model Transformation Language Based on Al-
loy, by Loïc Gammaitoni, Pierre Kelsen to be published in a special issue of the
Software and Systems Modeling Journal.

This work presents an extension of F-Alloy enabling the expression of endogenous
model transformations. This is covered in Chapter 3.

1.5 Thesis Outline

We now present the structure of this thesis.

Chapter 2 introduces the context of our work. It provides an overview of the research
domains our work is ranging over and introduces the Alloy language as our work
heavily relies on it.

Chapter 3 is dedicated to the introduction of a new language, F-Alloy that is based on
Alloy and allow the specification of efficiently computable model transformations.

Chapter 4 presents an F-Alloy language extension allowing the specification and exe-
cution of so called compound transformations. This extension paves the way to
a domain specific validation approach of F-Alloy transformations, named VBV,
which is also presented in this chapter.

Chapter 5 presents an approach to the definition of DSMLs based exclusively on Alloy
and F-alloy specifications and proposes a design process allowing to seamlessly find
and fix design errors at the earliest stage of the language definition.
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Chapter 6 presents the Lightning tool, implementing the previously introduced ap-
proach. A real world application of the tool is also given.

Chapter 7 concludes this thesis by a providing a summary of contributions and future
work proposals.
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CHAPTER 2. BACKGROUND

Chapter 2

Background

The research synthesized in this work is situated at the junction of Model Driven Engi-
neering and Software Language Engineering. We present those fields in Section 2.1 and
2.2, respectively. Our contributions relying heavily on Alloy, we provide an extensive
introduction to this language in Section 2.3and show how the language can be used to
specify model transformations in Section 2.4.

2.1 Model Driven Engineering

During the last decade, mankind has become more and more dependent on software sys-
tems. Most of those systems are complex entities, that are difficult to be comprehended
in their entirety [51]. It is thus natural that methodologies aiming at reducing the de-
velopment, maintenance and verification complexity of such systems emerged. Model
Driven Engineering (MDE) consists of those methodologies relying on representative ab-
stractions called models [52].

2.1.1 Models

In the context of software engineering, models can be encountered in various forms in
a multitude of different contexts. Their main use is to adapt the representation of a
complex system putting forward essential information one might be interested in [51].
For this purpose, models are making abstraction of all details which are irrelevant for
the particular purpose we want to use them for.

As we humans have limited perceptions and processing capabilities [53], we resort
to models to describe and interact with our world even without us noticing. Sentences
spoken or written in a given language are as many models of thoughts. Mathematical
equations are used in physics, finance, and a plethora of other disciplines as models on
which calculations and reasoning can be performed.

While the use of models in the software engineering field is not recent, a lot of interest
was shown for this field in the last decade as modeling can play a key role in the creation
of reliable software systems [54].

An interesting fact is that if a model can be used to represent a set of possible systems,
it can also be used to represent a set of possible models. A model defining an abstract
representation of models is called a metamodel. The Object Management Group [55]
identified 3 levels of abstractions on top of a reality layer as depicted in Fig.2.1. At the
top of this pyramid is the Meta Object Facility [56] (MOF), an OMG standard defining a
set of essential concepts needed to define models (and sufficient to define itself, i.e., MOF
is a metamodel of itself). MOF (M3) can hence be used to define modeling languages
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M1

M0

M2

M3

metamodel(UML, SPEM...)

model(UML models...)

"real" world

metametamodel(MOF)

Figure 2.1: The OMG four-layer pyramid (taken from [1])

(M2) which can themselves be used to define models (M1) which are representations of
systems in the real world (M0).

The Alloy language that will extensively be used in this paper has the particularity of
spanning three levels. The real world (M0) is represented by Alloy instances. The model
(M1) providing an abstract definition of those instances is given as an Alloy module. The
set of possible Alloy modules (in M1) can be defined by an Alloy module (in M2).

2.1.2 Model Transformations

We have previously seen that models can be used to provide a concise representation
of complex systems. Model transformations further pushes the usefulness of models by
allowing the specification of operations to be performed on given models hence allowing
the production of derived artifacts.

The structure of model transformations in their most common form is depicted in fig.
2.2.

A model transformation is written in a well suited transformation language conform-
ing to, just like any modeling language, a meta-metamodel. The transformation itself
is specified at the M2 level between the source and target meta-model. It generically
describes how the transformation is to be executed given source models (conforming to
the source metamodel) in order to obtain the expected target models (conforming to the
target metamodel).

A variety of model transformation kinds have been developed to match the needs one
might have when working with models [57]. In the following, we introduce a selected few
types of model transformations that the reader might encounter in this work.

• M2T(Model to Text): A model transformation specification is said to be an M2T
model transformation when its execution produces text rather than models. Those
transformations are mainly used to generate code from given models. To explicitly
declare that a model transformation is not M2T, one can qualify it as M2M (Model
to Model) transformation. In this work, we focus on M2M model transformations.

• Endogenous & Exogenous: A model transformation is said to be endogenous
when its source and target models conform to the same meta-model. It is said to be
exogenous otherwise. Endogenous transformations are mainly used for refinement
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Figure 2.2: The big picture of model transformations (adaptation of [2] given in [3])

and refactoring purposes while exogenous transformation are used to export models
into another formalism.

• In-place & out-place: A model transformation is said to be in-place if the target
model is obtained by performing changes to the source model. A model trans-
formation is said to be out-place if, on the contrary, it creates the target model
from scratch, given the source model. In-place transformations commonly follow
a CRUD approach [58] to the specification of changes to be brought to the source
model. Hence, in-place transformation specifications are often expressed in terms
of create, update and delete operations.

• HOT (Higher Order Transformation): Coined in [59], these are transformations
whose source or target metamodels are transformation languages themselves.

• Compound Model Transformation: A model transformation whose source or
target metamodels are transformation specifications themselves. To our knowledge
no prior work explores their uses and properties. We discuss this kind of transfor-
mations in chapter 4 when introducing Visualization Based Validation as a novel
approach to validate model transformations.

• Bx (Bidirectional): Bidirectional model transformations [60] have the property of
being executable both from source to target and from target to source models with
consistent results.

In this work, we restrict ourselves to the study of exogenous out-place and endogenous
in-place model transformations. We ignore endogenous out-place transformations as
we regard them as a special application of exogenous out-place transformations, where
the target meta-model is a duplicate of the source metamodel, considered as different
though declaring the exact same concepts. Throughout this thesis, we therefore mean by
endogenous transformation, if not stated otherwise, endogenous in-place transformation.
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2.2 Software Language Engineering

The Software Language Engineering (SLE) research field aims at developing techniques
to ease the creation, verification and usage of domain specific languages [61].

2.2.1 Domain Specific Languages

A Domain Specific Language (DSL) is a language meant to be used on a restricted
set of problems [62]. The specificity of those languages enable their creators – namely,
language engineers – to come up with very lightweight and intuitive syntaxes that users
of the language – namely, domain experts – can use with no or little prior training. One
of the challenges faced by language engineers when developing a new DSL is thus to get
familiar with the domain knowledge so as to leave it implicit to the user [63].

Interaction between language engineers and domain expert is thus manifest in the
process of defining a new DSL.

We note that this thesis focuses on the engineering of those DSLs aimed at represent-
ing certain aspects of a system by models. This class of DSLs is called Domain-specific
modeling languages (DSMLs)s 1 (Domain Specific Modeling Languages).

A DSL definition generally consists of [61]:

• an abstract syntax defining the set of models that can be expressed in that language.

• a concrete syntax defining the notation with which models of the language are to
be expressed.

• a semantics, giving a meaning to models expressed in that language.

We introduce those components in the following three subsections.

2.2.2 Abstract Syntax

The abstract syntax of a language defines the structure, in terms of concepts and rela-
tions, of models expressible by the language. Abstract syntax is commonly induced for
textual DSLs by the accompanied Abstract Syntax Tree (AST) used to parse textual
inputs, i.e., identify the concept embodied by each sequence of characters. Yet one can
also use metamodels to define the static structure of an ASM. This latter approach is
used in the definition of DSMLs where the need of word by word parsing, inherent to
textual DSLs, is inexistent. The abstract syntax then defines the set of all valid models
expressible by the language. We call those models language models.

2.2.3 Concrete Syntax

The concrete syntax defines how language models are to be visualized and how one is
meant to edit a language model through its visualization.

The concrete syntax of a textual DSL is often defined at the same time as the abstract
syntax using Backus-Naur Form (BNF) notation from which existing tools (e.g. xText
[64]) allows the generation of both AST and editor.

For DSMLs, a definition of the graphical symbols to be used in the visualization
of language models is needed. It can generally be provided as a meta-model that we
propose to call Visual Language Meta-model(VLM ). The concrete syntax can then be
defined as a transformation from abstract syntax to VLM. Such a transformation is

1Diagrammatic DSML is a term that can also be encountered
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generally bidirectional to support edition of language models through their graphical
representation.

2.2.4 Semantics

There exist several approaches to providing a meaning to a DSL. The semantics of a DSL
is said to be

• Operational if it has been given the definition of an abstract state machine show-
ing how language models are meant to be executed

• Denotational if each syntactic construct of the language has its meaning defined
in terms of mathematical objects

• Translational if has been provided a transformation from its abstract syntax to
the abstract syntax of a language whose semantics is well defined.

• Pragmatic if the language comes with a tool whose behavior dictates the meaning
of each language model.

2.2.5 Language Workbenches

We give here a basic introduction of the term language workbench. More details are
provided in Section 6.3, where our own tool Lightning is compared to existing language
workbenches.

The term “language workbench” was made popular by Martin Fowler [65]; it denotes
a tool that supports the efficient definition, reuse and composition of languages and their
IDEs [5].

Those tools have generally in common the following set of features:

1. editor support for the notation used to define concepts of the language and their
representation, i.e., the abstract and concrete syntax, respectively.

2. generation of editor from defined language, allowing the assisted creation and edi-
tion of language models.

3. means to express the semantics of the language, through the generation of code,
translation to another language whose semantics is well-defined, or direct interpre-
tation/simulation of language models.

2.3 The Alloy Language

Alloy [24] is a formal language based on a first-order relational logic with transitive
closure. It is based on a small set of core concepts, the main one being mathematical
relations. It was originally developed to support agile modeling of software designs.
It does this by allowing fully automatic analysis of software design models using SAT
solving. To reduce the computational complexity, Alloy performs SAT solving in a finite
domain bounded by cardinalities associated to each concept declared. Those cardinalities
are called scopes.

In the context of model driven software engineering, Alloy and its accompanying tool,
the Alloy Analyzer, have been used to validate properties of models [33–36] and model
transformations [42, 66]. In this section we provide an extensive introduction to this
language.
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2.3.1 An Informal Alloy Introduction Based on Ecore

Before introducing in detail the Alloy notions necessary to the good understanding of
our work, we draw, for the sake of our readers familiar with Ecore, a parallel between
Alloy and Ecore’ s main concepts.

• Alloy modules correspond to Ecore metamodels enhanced with OCL in the sense
that they are entities used to define structural constructs and their well-formedness
rules

• Signatures correspond to EClass in the sense that they allow the definition of
concepts. Signatures can also be abstract and inherited. Signatures, to the contrary
of EClasses, do not support multiple inheritance per-se but support the broader
notion of set inclusion: each signature representing a set of atoms in Alloy, a
signature can be defined as a subset of several others. Note that when a signature
A extends a signature B in Alloy it does not only enforce that atoms in A are
contained in B. It also enforces that the set of atoms defined by A is disjoint from
any other set of atoms defined by signatures extending the same class as A (in
short, inheritance declared using the extend keyword is a stronger notion than set
inclusion defined using the in keyword).

• Fields are more expressive than any corresponding EStructuralFeature (EReference,
EAttribute, ...) in the sense that they allow the definition of relations of any arity.
Yet a field has no properties as opposed to, e.g., EReferences, hence properties like
containment or EOpposite are to be defined through constraints.

• Alloy Instances are the equivalent of Ecore instantiations represented by an XMI
file.

• Atoms and Tuples are elements of an Alloy instance just like objects and links are
of an Ecore instance.

2.3.2 Alloy Modules and Instances

A metamodel can be designed in Alloy in one or several Alloy modules, each module
being associated to a single (.als) file.

An Alloy module optionally starts by a module declaration enabling elements herein
declared to be reused by other modules.

The module declaration starts by the keyword module followed by a relative path to
the file the module is contained in. This path defines the scope in which the module can
be imported – i.e., it is available for import for any other Alloy module contained in the
root of that path. An import is then performed by using the open keyword followed by
the relative path of the module to import.

As an example, let us consider the directory tree given in fig. 2.3:

• In order to allow the Alloy module a1 to import module a3 but not a2, then the
module declaration of a1 and a3 should be module A/A1/a1 and module A/A2/a3, respec-
tively. The module a1 would then contain the import instruction open A/A2/a3.

• In order to allow a2 to import both a1 and (transitively) a3, it is necessary that
the three module declarations contain the common parent directory Project. The
header of those three modules can thus be as depicted in Fig. 2.4.
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Figure 2.3: Example of a directory tree containing Alloy files

module Project/B/a2

open Project/A/A1/a1

module Project/A/A1/a1

open Project/A/A2/a3
module Project/A/A2/a3

Figure 2.4: Headers of Alloy module a1, a2 and a3 corresponding to the directory tree
given in fig.2.3

Importing a module enables the use of all constructs declared in it: signatures, fields,
facts, predicates, functions, assertions, let expressions and commands. All those terms
will be introduced in the following.

Given an Alloy module, the Alloy Analyzer is a tool yielding a set of Alloy instances
– models whose elements are typed by concepts and relations of the metamodel defined
by the Alloy module and that satisfy constraints of the module.

An instance is called counter-example, if it is obtained by checking an assertion.
Counter-examples are instances in which the checked assertion is violated.

Note that instances obtained by analysis of an Alloy module a are generally called
“instances of a” and can be shortened “a-instances”.

In the following we give detailed information on declarable constructs composing an
Alloy module while giving hints on how they impact the analysis carried by the Alloy
Analyzer.

2.3.3 Signatures and Fields

An Alloy module is primarily composed of signatures and fields, which single-handedly
define the set of elements that can compose any Alloy instance obtainable by the Alloy
analyzer: instances are composed of non-dividable entities called atoms, whose type is
given by signatures, and of atom tuples, whose type is given by fields.

The declaration of a signature is made using the keyword sig followed by the name
of the signature and a block containing a set of field declarations relating this signature
with others. A signature can also extend another signature to define subtypes. A set of
modifiers can precede any signature declaration:

• Multiplicity keywords such as lone, one and some enforce the number of atoms
typed by the declared signature to be at most one, exactly one or at least one,
respectively. Without multiplicity keyword, there can be any number of atoms
typed by the signatures.

• The abstract keyword enforces that no atom is directly typed by that signature1.
1This modifier is ignored by the analyzer if the signature on which it is applied is not extended by
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Figure 2.5: Alloy instance of the Alloy module given in Listing 2.1

The declaration of a field consists of a label used as identifier, followed by a sequence
of arrow-separated signatures. Multiplicity can be specified at each arrow end.

In Listing 2.1, we provide a sample Alloy module describing concepts and relations
of a family.

abstract sig Person{

mother: lone Woman,

father: lone Man

}

sig Man extends Person{}

sig Woman extends Person{}

Listing 2.1: sample of an Alloy module defining parental relations between persons

Instances of this module will be composed of atoms typed by either the Man or the
Woman signatures and of tuples typed by either the mother or the father fields. An
example of such instance is given in fig.2.5. As suggested by this instance, structural
information is not sufficient to accurately define families. Constraints are needed to
enforce a set of properties on instances, e.g., a woman cannot be her own mother nor the
mother of her father.

2.3.4 Facts

Facts are used to specify constraints, properties that should always hold in instances of
the Alloy module they are declared in.

A fact declaration starts by the keyword fact followed optionally by a name (used for
documentation purpose solely) and a block containing a boolean valued Alloy expression.

As an example, the fact depicted in Listing 2.2 would prevent instances of the Alloy
module given in Listing 2.1 to contain persons who are their own ancestors.

fact noSelfAncestor{

all p:Person| p not in p.^(father+mother)

}

Listing 2.2: An Alloy fact stating that no person should be its own ancestor

When specifying invariants proper to a given signature, it is possible to declare what
is called a signature fact. A signature fact takes the form of a block succeeding a cho-
sen signature which automatically becomes its context. By context, we mean that the
invariant defined in the fact is applying to each atom typed by the given signature. We
provide in Listing 2.3 a refined version of the noSelfAncestor fact, this time expressed
as a signature fact of Person. We note that in a signature fact, the key word this is
used to refer to the context (any given person) and the operator @ is used to refer to
fields declared in the signature Person outside of the context.

any other signature.
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abstract sig Person{

mother: lone Woman,

father: lone Man

}{

this not in this.^(@father+@mother)

}

Listing 2.3: An example of signature fact expressing the same invariant as the
noSelfAncestor fact given in Listing 2.2

2.3.5 Predicates and Functions

Predicates and functions are both parameterizable Alloy expressions, the former being
boolean-valued and the latter being set-valued (return a set of atoms or tuples of atoms).

Predicates and functions are declared using the keyword pred and fun, respectively,
followed by an identifier, optional parameters and a block containing Alloy expressions
(with possible occurrences of those previously mentioned parameters).

Those parametrized expressions are illustrated in Listing 2.4 where the function
getSiblings returns the set of persons who have the same father or mother than the
person given in parameter and the predicate atLeastOneGrandPa holds in any instances
containing a grandfather.
fun getSiblings(p:Person): set Person{

p.(mother+father).~(mother+father) - p

}

pred atLeastOneGrandPa{

some m:Man | m.~father.~(mother+father) != none

}

Listing 2.4: example of Alloy function and predicate

2.3.6 Assertions and Commands

Assertions are special predicates (declared with the keyword assert) in the sense that
they are used solely in commands. An example of an assertion is given in Listing 2.5.
assert GrandPaTest{

atLeastOneGrandPa implies #Person <= 3

}

Listing 2.5: example of an Alloy assertion asserting that instances containing a grandpa
should have at least 3 Persons

A command is mandatory for the Alloy analyzer to be able to generate instances for a
given Alloy module. It starts by a keyword providing information on the kind of analysis
to be performed: Those are :

• run: given a predicate, generate a sample of instances in which the predicate holds.

• check: given an assertion, generate a sample of counter-examples in which the
assertion is violated.

Both kind of commands should also provide information on the domain space in which
the analysis is to be performed, the Alloy analysis being decidable only because it is
performed on a finite domain.

This is achieved by associating a scope to each signature of the module, i.e., an upper
bound to the number of atoms typed by each signature of the module.
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By default the scope for all signatures is set to 3. This global scope can be modified
using the keyword for. It is also possible to assign a scope for each signature separately
or provide both global and specific scopes using the but keyword. The use of commands
is illustrated in Listing 2.6.
/* looking for instances with 0 to 2 Man and 0 to 5 Person */

run{} for 5 but 2 Man

/* looking for instances with 0 to 4 Man and exactly 2 Woman */

run{} for 4 Man, exactly 2 Woman

/* looking for instances with 0 to 5 Person in which the predicate atLeastOneGrandPa holds */

run atLeastOneGrandPa for 5

/* looking for counter examples with 0 to 10 Person in which the assertion GrandPaTest is violated */

check GrandPaTest for 10

Listing 2.6: example of Alloy commands (commented)

2.4 Expressing Model Transformations in Alloy

Model transformation playing a central role in model driven engineering approaches, we
present in this section a generic approach to the specification of model transformations
in Alloy. We then discuss it under the light of related work before synthesizing a list of
benefits and limitations that the use of Alloy brings when used in the specification of
model transformations.

We start out by adapting the model transformation terminology given in Section
2.1.2 to the Alloy world, namely, Alloy modules being specification of metamodels and
instances being representation of models, we call:

• Source module and target module the source and target metamodels of a model
transformation specified in Alloy

• Source and target instances the source and target model of a model transformation
specified as Alloy modules

2.4.1 A Generic Approach to the Expression of Model Transformations
in Alloy

Overview

In Section 2.3, we have seen that relations between concepts are defined in Alloy through
the declaration of fields.

A natural approach to define a transformation from a source module asrc to a target
module adst as an Alloy module a is thus to declare, in a signature, fields relating sig-
natures of asrc to signatures of adst. Those fields, that we call mappings from now on,
should then be suitably constrained so that in any a-instance, the presence of certain
asrc-elements (atoms and tuples typed by signatures or fields declared in asrc) enforces
the presence of their expected images (w.r.t. the transformation defined). Given such an
Alloy module a, executing the transformation it defines on an asrc-instance xsrc consists
in using the Alloy analyzer to find a-instances in which the asrc-sub-instance is xsrc. This
approach is illustrated in Fig.2.6.

In this figure, we see that any instance conforming to a (white rounded rectangle) is
composed of two sub-instances representing the source instance (green rounded rectangle)
and its corresponding target instance (red rounded rectangle). Tuples typed after the
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Figure 2.6: Illustration of the approach to represent a model transformation in Alloy

mappings declared in a (red arrows) relate the atom in the source instance to their
image in the target instance. The constraints to be added to an Alloy module so that its
instances denote effectively an execution of the transformation defined can be categorized
as follows: Given an Alloy module defining a transformation from asrc to adst:

C_PRE : Constraints defining when atoms of the source instance are to be mapped
to atoms of the target instance. They can be seen as defining a “preconditions” for
mappings.

C_POST : Constraints defining how atoms of the target instance relate to each other.
They can be seen as defining a “postcondition” for mappings.

C_TRACE : Constraints ensuring that each instance represents an actual execution
of the transformation defined, that is, one can, from it, obtain the source instance,
the target instance, and traceability links, showing from which mapping and for
which elements of the source instance an element of the target instance has been
created.

We note that this general approach can be applied to both exogenous and endogenous
transformations. In the next two subsections, we give a more specific description of
how the C_TRACE constraints can be implemented with respect to the nature of the
transformation defined.

Expressing Exogenous Transformations in Alloy

Let us consider an Alloy module a defining an exogenous transformation from asrc to
adst following the previously given approach. To ensure that any instance of a effec-
tively represents an execution of the transformation defined, it is necessary to prevent
the presence of adst elements which have no counterpart in asrc (as for a transformation
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to be relevant, the yielded target instance should depend exclusively on the source in-
stance given). The C_TRACE constraints enforcing a-instances to effectively represent
transformation executions should thus be for exogenous transformation:

C_TRACE_EX Constraints ensuring that atoms typed by signatures declared in adst
are all part of a mapping (hence preventing the presence of adst atoms without asrc
counterparts).

We then have, given an a-instance x:

• the source instance of the transformation being the set of elements in x typed by
asrc signatures and fields

• the target instance of the transformation being the set of elements in x typed by
the adst signatures and fields

• the traceability links being the tuples in x typed by mappings declared in a.

Expressing Endogenous Transformations in Alloy

The specification of endogenous transformations differ from the specification of exogenous
transformations in the sense that mappings do not specify a correspondence between
elements in the source and target instances but specify operations to be applied on the
source instance in order to obtain the target instance. Those operations, identified in
Section 2.1 as create, update and delete operations, can also be represented by mappings,
with the following effects:

• a mapping representing a create operation maps elements of the source instance
satisfying a certain precondition to a new element respecting a certain postcondition

• a mapping representing an update operation maps elements to be updated (iden-
tified by a precondition) to a new element respecting a certain postcondition, with
the effect that the latter replace the former.

• a mapping representing a delete operation marks those element identified by a given
precondition for deletion (deletion is the implicit postcondition).

We choose, in order to differentiate mappings by their purpose, that is, by the na-
ture of the operation they represent, to declare them in three different signatures, each of
them containing mappings of a same nature. For that reason, our Alloy-based representa-
tions of endogenous model transformations will always contain three signatures, namely
CREATE, UPDATE and DELETE, each containing mapping declaration of their respective
kind.

In this context, the C_TRACE constraints enforce instances of the Alloy module
defining an endogenous transformation to effectively represent transformation executions
as a source instance and a set of “operation traces” from which it is possible to derive the
target instance. These constraints can be detailed as follows. Considering an endogenous
transformation refining asrc-instances defined in an Alloy module a opening asrc:

C_TRACE_EN_1 : To enable a clear separation between source and target instance,
elements of the source instance cannot be “created from” or “be an updated version
of” other source elements.

20



CHAPTER 2. BACKGROUND

C_TRACE_EN_2 : To enforce source and target instance derivable from a-instances
to be asrc-instances, constraints enforcing asrc-invariants to hold in the source and
target instance are needed.

We then have, given an a-instance x:

• the source instance of the transformation being the set of elements in x minus those
tuples typed by mappings minus atoms which are “created from” or “an updated
version of” source elements as specified by CREATE and UPDATE mappings.

• the target instance of the transformation being the source instance, minus atoms
marked for deletion by DELETE mappings, in which atoms marked for update by
UPDATE mappings are replaced by their “updated version” and in which atoms
“created from” source elements by CREATE mappings are present.

• the traceability links being the tuples in x typed by mappings declared in a.

2.4.2 Related Work on the Use of Alloy in the Specification of Model
Transformations

We introduced in the previous section a generic approach towards the specification of
model transformations in Alloy. Similar approaches, exploiting the relational nature of
Alloy, have been used in several related works to specify exogenous model transforma-
tions (to our knowledge, no prior work studied the use of Alloy in the specification of
endogenous in-place model transformations).

We discuss those related works in the following.
In [42], Anastasakis et al. use Alloy to analyze the correctness of model transfor-

mations. They resort to their tool UML2Alloy [67] to transform the source and target
metamodels into Alloy and manually translate QVT transformation rules into an Alloy
module containing mappings and predicates. It becomes then possible to use the Alloy
analyzer to verify transformation properties by either generating random traces to be
validated or by checking assertions. While this work opens the possibility of applying
Alloy analysis to model transformations, the manual specification of a QVT model trans-
formation in Alloy is an error prone exercise. In a similar line of work Baresi et al. [66]
use Alloy to represent graph transformations represented in the AGG formalism. Though
authors give hints on how AGG specifications are to be translated into an Alloy module,
the translation is not formally defined and no translators have been implemented. To
our knowledge, the first work supporting the fully automatic verification, based on Alloy,
of model transformations expressed in another model transformation language is [43],
where Alloy is used as an execution engine for QVTr model transformations. Indeed,
this work also describe an approach to translate QVTr specification to Alloy and a tool
named echo [68] implements this translation.

2.4.3 Benefits and Limitations of Alloy in the Specification of Model
Transformations

All those presented related works motivate their use of Alloy by the following benefits:

B.1 Alloy is a formal language [69] allowing the precise specification of systems

B.2 The automatic analysis provided by the Alloy Analyzer is a lightweight yet effective
verification mean [36,70,71].
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However, approaches relying on Alloy analysis suffer limitations inherent to the use
of the Alloy Analyzer. Those limitations are the following:

L.1 Despite many advances in the performance of SAT solvers [72], the analysis of Alloy
specifications does not scale. Indeed, while the analysis of simple models in a small
scope terminates almost instantaneously, termination is not guaranteed when the
model analyzed is complex1 or requires a larger scope to find suitable instances
(increasing scopes leading to a combinatorial explosion).

L.2 The task of finding a minimal sufficient scope is by itself non-trivial. This is partic-
ularly problematic for complex Alloy specifications as every constraints and fields
are to be taken into considerations while defining the scope of each signatures. As
of today, no heuristics currently exist to automatize this task.

L.3 Enforcing “transformation behaviors” require the addition of verbose constraints,
we identify in this work as C_PRE, C_POST and C_TRACE constraints.
Those constraints can prove hard to maintain in the case of any changes to the
transformation specification.

Alloy modules defining a model transformation are inherently complex as they are a
combination of two modules with extra constraints.

The previously listed limitations should thus be addressed before making Alloy a
viable language alternative to specify model transformations.

In the next section, we propose a solution tackling the scalability issues of Alloy while
retaining the aforementioned benefits. This solution takes the form of an Alloy-based
DSL called F-Alloy.

1by the amount of concept declared and the complexity of constraints expressed
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Chapter 3

The F-Alloy Language

In this chapter we introduce a new language called F-Alloy, designed for the sole purpose
of specifying model transformations. This language, based on Alloy, is meant to retain in
the context of model transformation specification all the benefits of Alloy specifications
while overcoming its limitations. This chapter is structured as follows: after motivating
the design of the F-Alloy language in Section 3.1, we present in Section 3.2 two model
transformation case studies along with their implementations in both F-Alloy and other
existing model transformation languages. Through the comparison of those implementa-
tions, readers can get a first intuition of F-Alloy’s syntax and semantics. This intuition
should facilitate the comprehension of extensive details on the syntax and (translational)
semantics of the language provided in Sections 3.3 and 3.4, respectively. We then show
in Section 3.5 how F-Alloy specifications can be efficiently computed via a process called
interpretation, and compare in Section 3.6 the performance of F-Alloy’s interpretation
with the performance of Alloy analysis and the execution performance of other transfor-
mation languages. Finally, we conclude this chapter by discussing some related work
on model transformations in Section 3.7 and summarizing this chapter’s contributions in
Section 3.8.

3.1 From Alloy to F-Alloy

In this Section, we motivate the creation of a new language called F-Alloy to enable
the specification in an Alloy syntax of efficiently computable model transformations.
Also, we give an overview of the desired expressiveness of this new language F-Alloy by
defining the set of Alloy modules F-Alloy aims at specifying, the so called functional
Alloy modules.

3.1.1 Motivation

We have seen in Section 2.3 that the formal language Alloy is designed to define and
reason about relations. Model transformations embodying a set of relations – from
elements of their source model to elements of their target model –, Alloy is a suitable
language to specify model transformations (as illustrated in Section 2.4). In Section
2.4.3, we have identified a set of limitations and benefits related to the use of Alloy in
the specification of model transformations, namely:

L.1 Despite many advances in the performance of SAT solvers [72], the analysis of Alloy
specifications does not scale. Indeed, while the analysis of simple models in a small
scope terminates almost instantaneously, termination is not guaranteed when the
model analyzed is complex1 or requires a larger scope to find suitable instances

1by the amount of concept declared and the complexity of constraints expressed
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(increasing scopes leading to a combinatorial explosion).

L.2 The task of finding a minimal sufficient scope is by itself non-trivial. This is partic-
ularly problematic for complex Alloy specifications as every constraints and fields
are to be taken into considerations while defining the scope of each signatures. As
of today, no heuristics currently exist to automatize this task.

L.3 Enforcing “transformation behaviors” require the addition of verbose constraints,
identified in this chapter as C_PRE, C_POST and C_TRACE constraints.
Those constraints can prove hard to maintain in the case of any changes to the
transformation specification.

B.1 Alloy is a formal language [69] allowing the precise specification of systems

B.2 The automatic analysis provided by the Alloy Analyzer is a lightweight yet effective
verification mean [36,70,71].

In order to overcome those limitations while still retaining the benefits, we are in-
terested in designing a domain specific language (to tackle limitation L.3) allowing the
specification of efficiently computable model transformations (to tackle limitations L.1
and L.2). This new language, named F-Alloy, is based on a subset of the syntax of Alloy
but its associated semantics differs in the sense that every Alloy construct is interpreted
in the context of model transformations. This semantics “alteration” can be translated
into explicit Alloy constraints hence allowing to easily translate F-Alloy specifications
into Alloy and thus retaining Alloy benefits B.1 and B.2.

Knowing that the preservation of Alloy’s benefits is achieved through a well defined
translation, one could wonder if designing a new language was really necessary, as there
exists a plethora of efficiently computable model transformation formalisms (e.g., ATL
[73], TGG [74], QVTr [75]). Two main motives drove us to develop F-Alloy instead of
reusing existing model transformation languages:

1. While the definition of translations between formalisms is a non-trivial (and hence
error-prone) exercise – due to variation in the expressiveness of each language [76,
77], and the difference in approaches followed by each formalism ( [78, 79]) – the
F-Alloy language was designed so as to allow the definition of a simpler translation
into Alloy. This simplicity is achieved by reusing structural concepts of Alloy
and by differing from Alloy’s semantics solely by leaving the constraints presented
in Section 2.4.1 implicit. Those constraints can be generated from any F-Alloy
specification in a fairly straightforward fashion (as we will see in Section 3.4.2).

2. In this thesis, we are interested in defining an approach to the engineering of DSML
based on Alloy. It is thus assumed that any user of our approach is well acquainted
with the Alloy language. The fact that F-Alloy reuses the syntax of Alloy while
only slightly altering its meaning should enable any Alloy user to intuitively specify
model transformations. On the other hand, no assumption can be made on the
familiarity of potential users of our approach with standard model transformation
languages.

For the computation of F-Alloy specification to be efficient, we want them to be
interpreted rather than analyzed, so that computation is performed incrementally and
in a straightforward manner.

To achieve this goal, we restrict the set of model transformations we aim at specifying
in F-Alloy to non-deterministic single output model transformations, i.e., functions.
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In this section, we first introduce a simple mathematical framework allowing to reason
about Alloy modules and instances, before introducing the concept of functional Alloy
module, i.e., an Alloy module defining functions. In the next Chapter, we provide a
detailed introduction of F-Alloy, a DSL allowing the specification of functional Alloy
modules.

3.1.2 AMathematical Framework to Reason About Alloy Modules and
Instances

We recall from Section 2.3 that a metamodel can be expressed in one or several Alloy
modules, each module being associated to a single file. A module may import other
modules, in which case the importing module can use features of the imported modules.

We formalize those notions of module, signature and fields, already presented infor-
mally in Section 2.3, as follows:

Definition 1 (Alloy Module, Signature, Field). An Alloy module is a tuple (S, F, ϕ)
with S and F being the sets of signatures and fields declared in the module or any of its
(recursively) imported modules, respectively. Signatures may be defined as subsignatures
of other signatures (using the extends keyword). Fields of F have as type a sequence of
signatures in S, the first one being the signature that contains it. ϕ is a first-order logic
formula (possibly containing the transitive closure operators1ˆand ∗) representing the set
of constraints, called facts, expressed in the module.

Considering now A, a set of indivisible entities called atoms, T , a set of atom tuples,
and a module a = (S, F, ϕ), we call typed atoms pairs (x, s) where x ∈ A and s ∈ S. A
typed atom (x, s) is also denoted xs (read “atom x of type s”). A typed tuple is a pair
(t, f) where t ∈ T and f ∈ F . A typed tuple (t, f) is also denoted tf (read “tuple t of
type f ”). Note that for a typed tuple tf the following needs to hold: if the type of the
field is (X1, . . . , Xn), then the i-th component of the tuple needs to have as type Xi or a
(direct or indirect) subsignature of Xi.

We call xs an s-atom and tf an f-tuple and extend the superscript notation so that
sets of s-atoms A and of f-tuples T are denoted As and T f , respectively.

Definition 2 (Alloy Instance). An Alloy instance of an Alloy module a, also called a-
instance, is a triplet x = (X,Y, a) where a = (S, F, ϕ), X is a set of atoms typed by
signatures of a and Y is a set of tuples typed by fields of a and composed of atoms in X.
We write x � ϕ if an instance x of a satisfies ϕ and call valid instances2 of a the subset
of instances of a satisfying ϕ.

We denote the set of valid instances of a by Z(a). Formally:
Z(a) = {(X,Y, a)|∀xs ∈ X, s ∈ S∧

∀yf ∈ Y, f ∈ F ∧ (X,Y, a) � ϕ}

An instance (X,Y, a) is an (a-)sub-instance of (X ′, Y ′, a′) if X ⊆ X ′ , Y ⊆ Y ′ and a′
is equal to a or a′ imports a.

Alloy comes with its dedicated tool, the Alloy analyzer, enabling the automatic anal-
ysis of Alloy modules. This analysis returns for a given Alloy module a the subset of
valid instances of Z(a) that fit within a given scope s. To simplify the notation and the
subsequent reasonings using it, we consider only global scopes, that is, s is a natural

1R̂ returns the smallest relation R′ containing R and being transitive while ∗R returns the smallest
relation R′ containing R and being both transitive and reflexive

2While in Alloy any instance is valid (as obtained by Alloy analysis), we relax this assumption as we
will reason about instances built by interpretation whose validity is not ensured
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Figure 3.1: Illustration of the usage of transformation functions w.r.t. the definition of
functional Alloy modules

number defining the maximal occurrence of atoms of each type1. We then use the fol-
lowing notation to denote the set of valid a-instance obtained by Alloy analysis of a in a
scope s.

Notation 1 (Alloy Analysis). We denote the set of instances obtained by Alloy analysis
of an Alloy module a within a global scope s ∈ N by Z(a, s).

We then have Z(a) =
∞⋃
s=0
Z(a, s).

3.1.3 Functional Alloy Modules

We now introduce a set of concepts and notation used to reason about model transfor-
mations expressed in Alloy.

We start by introducing the notion of transformation functions which may be viewed
as the mathematical representation of a deterministic single-output model transformation
expressed in terms of Alloy instances.

Definition 3 (Transformation Function). Let a and a′ be two Alloy modules. A trans-
formation function f from a to a′, noted f : Z(a) → Z(a′), is a function that takes as
input a valid a-instance and returns as output a valid a′-instance.

We then call functional Alloy modules Alloy modules specifying such transformation
functions. We define them as follows:

Definition 4 (Functional Alloy Module). Let a, asrc and adst be Alloy modules2 and let
fin : Z(a)→ Z(asrc) and fout : Z(a)→ Z(adst) be two transformation functions. We say
that a is a functional Alloy module with respect to fin and fout if the following holds:

∀x, x′ ∈ Z(a), fin(x) = fin(x
′) =⇒ fout(x) = fout(x

′)

We then say that a specifies a (possibly partial) transformation function f : Z(asrc)→
Z(adst), such that

∀x ∈ Z(a), f(fin(x)) = fout(x)

We typically use Definition 4 in the following context: module a imports asrc and adst
and define a transformation from the former to the latter. Function fin and fout then

1We thus exclude for convenience (and as it does not have an impact on future reasonings), cases
where scopes are defined individually for each signature

2with the possibility that asrc = adst
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return given an a-instance the asrc and adst sub-instance corresponding to the source
instance and target instance of the transformation expressed in a, respectively. We
illustrate this use of those functions in Fig. 3.1.

We note that the nature of the transformation (endogenous or exogenous) influences
the way those source and target instances are obtained from an a-instance. An informal
description of procedures yielding the source and target instance from instances of an
exogenous or endogenous model transformation specification has already been given in
Section 2.4.1. A formal definition of the transformation functions denoting those proce-
dures will be given in Section 3.4.3.

To give a first intuition of the behaviors and benefits of the F-Alloy language –
designed to succinctly specify functional Alloy modules – we present in the next section
two model transformations and their implementations in both F-Alloy and languages
well known by the model transformation community.

3.2 Case Studies

We present in this section two model transformations used as case studies to provide a
soft introduction to F-Alloy — by drawing a parallel between F-Alloy implementations
and implementations in languages well-known to the model transformation community —
and as a mean to evaluate and illustrate our model-transformation-related contributions.

The first model transformation — referred to as CD2RDBMS — is an exogenous model
transformation from Class Diagram to Relational Database Management System. The
second model transformation — referred to as CDRefinement — is an endogenous model
transformation on Class Diagrams.

We start by introducing the source and target metamodels of those transformations
using both Alloy and Ecore notations.

3.2.1 The CD and RDBMS Alloy Modules

The CD and RDBMS modules in Listing 3.1 and 3.2, define the same structure than
the metamodels given in Figure 3.2 and 3.3. In those modules, extra well-formedness
constraints were added such as:

• In the CD module,

– disj, line 5, enforces that different CDElements cannot have the same name.

– disj, line 8, prevents the same Attribute from being declared in different
Classes.

– the signature fact, line 12, enforces the parent relation to be acyclic, that is,
no Class can be its own ancestor.

– the signature fact, line 13, prevents the same Attribute from being declared
in both a Class and an AssociationClass.

– the signature fact, line 18, enforces each Attribute to be either declared in a
Class or in an AssociationClass (hence preventing the presence of orphan
Attributes).

– disj, line 24, prevents two AssociationClasses from being linked to the
same Association.

– disj, line 25, prevents the same Attribute from being declared in different
AssociationClasses.
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Figure 3.2: CD metamodel (adapted from [2])

Figure 3.3: RDBMS metamodel (adapted from [2])

1 module CD

2 open util/boolean

3

4 abstract sig CDElement{

5 name: disj String

6 }

7 sig Class extends CDElement{

8 attrs : disj set Attribute,

9 parent: lone Class,

10 is_abstract: Bool

11 }{

12 this not in this.^@parent

13 attrs & AssociationClass.attributes =none

14 }

15 sig Attribute extends CDElement{

16 is_primary: Bool,

17 type:PrimitiveDataType

18 }{ this in Class.attrs+AssociationClass.attributes

}

19 sig Association extends CDElement{

20 src : Class,

21 dest : Class

22 }

23 sig AssociationClass{

24 association: disj Association,

25 attributes: disj set Attribute

26 }{attributes.is_primary=False}

27 sig PrimitiveDataType extends CDElement{}{

28 PrimitiveDataType.@name= "String"+"int"

29 }

Listing 3.1: CD Alloy module

1 module RDBMS

2

3 abstract sig RDBMSElement{

4 name: disj seq String

5 }

6 sig Table extends RDBMSElement{

7 cols: disj some Column,

8 pkeys: some Column,

9 fkeys: set FKey

10 }{

11 pkeys in cols

12 }

13 sig Column extends RDBMSElement{

14 dataType: String

15 }{

16 this in Table.cols

17 dataType in "TEXT"+"NUMBER"

18 }

19 sig FKey{

20 references: Table,

21 columns: some Column

22 }{

23 this in Table.fkeys

24 columns in this.~fkeys.cols

25 }

Listing 3.2: RDBMS Alloy module

28



CHAPTER 3. THE F-ALLOY LANGUAGE

– the signature fact, line 26, prevents an Attribute declared in an AssociationClass

from being primary.

– the signature fact, line 28, coupled with the constraint on line 5, enforces the
presence of exactly two PrimitiveDataType named “String” and “Int”.

• In the RDBMS module,

– disj, line 4, enforces that different RDBMSElements cannot have the same name.

– disj, line 7, prevents the same Column from being contained in different
Tables.

– the signature fact, line 11, enforces columns composing the primary key (pkeys)
of a Table to be a subset of the Columns contained in the said table.

– the signature fact, line 16, enforces each Column to be contained in a Table

(hence preventing the presence of orphan Column).

– the signature fact, line 17, enforces the type of any Column to be either “TEXT”
or “NUMBER”.

– the signature fact, line 23, enforces each FKey to be contained in the set of
foreign key of a Table (hence preventing the presence of orphan FKey).

– the signature fact, line 24, enforces columns composing an FKey to be con-
tained in the Table to the foreign key belongs to.

3.2.2 CD2RDBMS: A Class Diagram to Relational Database Manage-
ment System Model Transformation

The CD2RDBMS model transformation is the defacto standard case study when it comes
to benchmarking a model transformation language [2].

Informal Specification

The source and target metamodels of this model transformation (CD and RDBMS, re-
spectively) are shown as UML class diagrams in Fig. 3.2 and 3.3, respectively. Well-
formedness constraints of those metamodels can be found in their respective Alloy rep-
resentations, given in Listing 3.1 and 3.2.

We now give an informal specification of this transformation.
For each class c without a parent, a table is created. This table is populated with

columns (1) representing the attributes of c or of its inheriting classes, (2) issued from
associations having c as their source.

In case (1), the column is typed and named after the represented attribute. If the class
declaring the attribute has a parent, names of all the parents of the declaring class
have to appear in the name of the representing column.

In case (2), a column is created for each primary key of the table representing the class
at the destination of the association, and is named after the association and the
attribute it represents.

To better grasp the expected behavior of the transformation, we provide a visual-
ization of a CD2RDBMS application in Fig. 3.4. We invite the reader to pay particular
attention to the traceability links (dashed arrows). In this figure we see that two tables
are created from the two topmost classes A and B. The columns a and C_c of table A and
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the column b1 of table B are obtained as per rule (1). The column x_b1 composes the
foreign key of table A, representing association x and referring to table B, and is obtained
as per rule(2).

TGG implementation

TGG [80] (Triple Graph Grammar) is a well-known formalism allowing the declarative
specification of model transformations. TGG specifications are composed of rules, each
of them being expressed using three graphs. The source graph represents the subgraph
whose match will trigger the rule. The target graph represents the subgraph which will
be generated when the rule is triggered. A third graph called correspondence graph
keeps track of relations between source and target elements for future reference. In this
work, we reuse the partial1 TGG implementation of the CD2RDBMS provided in [4]. We
prefer this solution over others for the concise overview of the CD2RDBMS transformation
it provides.

Figure 3.5 provides an overview of the solution and of the kind of traces (nodes of
the correspondence graph) used to relate elements of CD (source graph) to elements of
RDBMS (target graph).

The rules composing the transformation are given in Fig. 3.6. We note that those
rules are bi-directional, i.e., they can be read either from left to right or right to left. We
are only interested in going from CD to RDBMS (left to right) and thus provide a reading
in that direction solely:

• C2T enforces, via the CT correspondence node, the creation of a table for every class
so that table and related class share the same name.

• SC2T enforces inheriting classes to be related to the same table as their parents (via
CT as well).

• PA2C enforces the creation of a primary column for each primary attribute of a
class. The column is named and typed after the attribute it has been created from
and is contained in the table related to the class declaring the attribute.

• A2FK enforces the creation of an FKey for each association and of a column for each
primary column of tables related to associations’ destination classes. The created
columns are typed after those primary key columns’ type and are named after those
columns and the association that led to their creation. Those created columns are
also composing the foreign key created from the association and referring to the
table representing its destination class.

F-Alloy Implementation

In Listing 3.3, we give an F-Alloy specification of the CD2RDBMS transformation. This
F-Alloy specification is more concise than the equivalent Alloy specification presented in
Annexe A.

The CD2RDBMS module (declared on line 1) from CD (imported on line 2) to RDBMS

(imported on line 3) is composed of four CREATE mappings (lines 6 to 9). CREATE
mappings are used to model the creation of elements in the output of the transformation.
A mapping declaration consists of a sequence of arrow-separated signatures, the last one
being the type of elements the mapping can produce. The pre and post conditions of a
mapping are formulated in the guard and value predicates.

1Persistence is abstracted away and columns name does not reflect inheritance
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1 module CD2RDBMS

2 open CD

3 open RDBMS

4

5 one sig CREATE{

6 class2table: Class -> Table,

7 attribute2column: Attribute -> Column,

8 association2column: Association ->

Attribute -> Column,

9 association2FKey: Association -> FKey,

10 }

11

12 pred guard_class2table(c:Class){

13 c.parent=none

14 }

15 pred value_class2table(c:Class , t:Table){

16 t.name[0]=c.name

17 }

18

19 pred guard_attribute2column(a:Attribute){

20 a not in AssociationClass.attributes

21 }

22 pred value_attribute2column(a:Attribute , c:

Column){

23 c.dataType=(a.type.name="String" implies "

TEXT" else "NUMBER")

24 c.name[0]= a.name

25 c.name[1]=((a.~attrs.parent)!=none implies a

.~attrs.name else none)

26 all i:Int| i>=1 and i< #(a.~attrs.^parent)

implies c.name[add[i,1]]= c.name[i].~name.

parent.name

27 a.is_primary=True implies c in CREATE.

class2table[a.~attrs.*parent].pkeys

28 c in CREATE.class2table[a.~attrs.*parent].

cols

29 }

30

31 pred guard_association2column(ass:Association,

att:Attribute){

32 att.is_primary=True and att in ass.dest.

attrs

33 }

34 pred value_association2column(ass:Association

, att:Attribute, c:Column){

35 c.dataType=(att.type.name="String" implies "

TEXT" else "NUMBER")

36 c.name[0]=ass.name

37 c.name[1]=att.name

38 c in CREATE.class2table[ass.src].cols

39 }

40

41 pred guard_association2FKey(a:Association){}

42 pred value_association2FKey(a:Association , f:

FKey){

43 f.references=CREATE.class2table[a.dest]

44 f.columns=CREATE.association2column[a,

Attribute]

45 f in CREATE.class2table[a.src].fkeys

46 }

Listing 3.3: F-Alloy specification of the
CD2RDBMS transformation

We draw a parallel between the given F-Alloy specification (mappings with their
respective pre and postconditions) and the previously listed TGG rules in the following:

1. class2table: enforces the creation of a Table for each top-most Class (line 13)
so that the Table is named after the Class (line 16). This mapping covers the C2T
rule defined in TGG.

2. attribute2Column: models the creation of a Column for each Attribute which
is not declared in an AssociationClass(line 20). The Column is typed (line 23)
and named (line 24) after the Attribute. The name of the Column also contains
the name of the Classes in the inheritance hierarchy of the Class declaring the
Attribute if this latter has a parent (lines 25 and 26). Note that this requirement
of including the name of inherited classes in the column’s name is lacking in the
provided TGG implementation. The Column composes the set of columns of the
Table representing the top-most Class affiliated to the Attribute (line 28), and is
also in the set of primary keys of the said Table if the Attribute is primary (line
27). This mapping covers the PA2C rule defined in TGG.

3. association2column: enforces the creation of a Column for each primary Attribute

of a given Association’s target Class (line 32). The Column is typed after the
Attribute (line 35) and named after both the Association (line 36) and the
Attribute (line 37). The Column has to be in the set of columns of the Table repre-
senting the Class at the source of the Association (line 38). The association2column
mapping covers the Column creations of the A2FK rule.

4. association2FKey: enforces the creation of an FKey for each Association (line
41). The FKey references the Table representing the Association’s target Class
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(line 43). It is composed of the column mapped to the represented association by
the association2column mapping (line 44) and is in the set of foreign keys of the
Table associated via the class2table mapping to the class at the source of the
Association (line 45). The association2FKey mapping covers the FKey creations
of the A2FK rule.

We note that SC2T is not represented as a mapping in F-Alloy as it is not used to
create any element in the output. The use of SC2T is to relate inheriting classes to the
table representing their topmost ancestors. In (F-)Alloy we use the expression c.*parent
(where c is an expression of type class) to return the set of all parents of c. The expression
Create.class2table[c.* parent] then returns the table associated to the ancestors of
c, just as defined by SC2T.

Figure 3.4 shows traces corresponding to each of the aforementioned mappings. In
this figure, we can see amongst other details that tables A and B are created from classes A
and B via the class2table mapping, respectively. No table C is created from class C, as it
inherits class A. Column a , b1 , b2, and C_c are all created from the attribute2column

mapping. Column x_b1 composing the foreign key created by the association2FKey

mapping is created by the association2column mapping.

3.2.3 CDRefinement: A Class Diagram Refinement Scenario

The CDRefinement endogenous model transformation is the specification of a refinement
transformation applied to class diagrams with association classes. We choose this case
study because it exercises the three elemental operations commonly used in endogenous
model transformation, i.e., creation, deletion and update of elements (see [57]).

Informal Specification

The CDRefinement transformation consists in:

1. replacing all association classes by regular classes,

2. turning non-inherited abstract classes into non-
abstract classes.

The purpose of (1) is to adapt the source model to languages in which association
classes cannot be represented (e.g. Ecore), while (2) adapts the source model to lan-
guages where non-inherited abstract classes are not supported as such (e.g., in Alloy,
non-inherited abstract classes are considered non-abstract1).

The manipulations to achieve (1) consist (as described in [81]) in removing each
association class and its associated association, and in creating a new class containing
the same attributes than the removed association class as well as two new associations,
both connecting the originally associated classes to the newly created class. To achieve
(2) it is sufficient to update the abstract modifier of concerned classes.

Henshin Implementation

We have chosen to use the graph based model transformation language Henshin [82] over
other languages for its popularity and intuitive graphical syntax. Henshin’s graphical

1http://stackoverflow.com/questions/27335623/sig-is-abstract-but-alloy-analyzer-make-an-instance-
of-it
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Figure 3.7: Execution of the CDRefinement transformation

Figure 3.8: CDRefinement transformation defined using Henshin

syntax, as opposed to TGG’s one, enables the concise depiction of in-place operations,
notably through the use of colors and labels.

A possible Henshin implementation of our case study is given in Fig. 3.8.
Two rules and a sequentialUnit defining in which order the rules are to be executed are

depicted in Fig. 3.8. The first rule, namely AssociationClass2Class, defines that every
AssociationClass and connected association are to be deleted. It also enforces that for
each such deletion, a new class is created, containing those attributes declared in the
deleted AssociationClass, and named after the two previously associated classes. Two
associations are created as well, each connecting one of the previously associated classes
to the newly created class. Those associations are named after the deleted association
and the classes they are associating to the new class.

The second rule, namely fixAbstract, simply changes the value of is_abstract from
true to false, for each class that has no children.

F-Alloy Implementation

We provide in Listing 3.3 a possible F-Alloy specification of the CDRefinement model
transformation. This F-Alloy specification is more concise than the equivalent Alloy
specification presented in Annexe B.

We explain it, basing ourselves on the Henshin implementation given earlier, as fol-
lows:

The CD2Refinement module (line 1) describes an endogenous transformation as it
imports only one module (CD)(line 2). It is composed of the three signatures CREATE (line
4), UPDATE (line 26) and DELETE (line 37).
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1 module CDRefinement

2 open CD

3

4 one sig CREATE{

5 associationClass2Class: AssociationClass ->

Class,

6 newAssociations: Class-> Association ->

Association

7 }

8

9 pred guard_associationClass2Class(a:

AssociationClass){}

10 pred value_associationClass2Class(a:

AssociationClass,y:Class){

11 y.name= a.association.name

12 y.attrs=a.attributes

13 y.is_abstract=False

14 y.parent=none

15 }

16

17 pred guard_newAssociations(c:Class,a:Association){

18 c in a.(src+dest) and a.~association!=none

19 }

20 pred value_newAssociations(c:Class,a:Association,y

:Association){

21 y.name= a.name+c.name

22 y.src=(c=a.src implies c else CREATE.

associationClass2Class[a.~association])

23 y.dest=(c=a.dest implies c else CREATE.

associationClass2Class[a.~association])

24 }

25

26 one sig UPDATE{

27 fixAbstract: Class -> Class

28 }

29

30 pred guard_fixAbstract(c:Class){

31 c.is_abstract=True and c.~parent=none

32 }

33 pred value_fixAbstract(c:Class,y:Class){

34 y.is_abstract=False

35 }

36

37 one sig DELETE{

38 associationWithClass:Association,

39 associationClass :AssociationClass

40 }

41

42 pred guard_associationWithClass(a:Association){

43 a.~association!=none

44 }

45 pred guard_associationClass(a:AssociationClass){

46 }

Listing 3.4: F-Alloy specification of the
CDRefinement transformation

The CREATE signature contains two mappings. The first, associationClass2Class,
enforces the creation of a new Class for any AssociationClass present in the source
model (line 9). This newly created Class is named (line 11) after the AssociationClass
it represents and contains the same attributes (line 12). This newly created class is not
abstract (line 13) and has no parents (line 14).

The second one, newAssociations, ensures the creation of an Association for each
combination of Class and Association (c, a) present in the source model with a linked
to c and adorned by an AssociationClass (line 18). The created Association is named
“a_c”(line 21) and then linked to either c or the Class replacing the AssociationClass

previously adorning a depending on whether the source association was pointing to or
was coming from an AssociationClass (line 22 and 23).

The previously adorned associations as well as all the association classes are removed
from the source model as specified by the two DELETE mappings (line 38 and 39).

All those aforementioned mappings express the Henshin rule AssociationClass2Class.
The Henshin rule fixAbstract is represented by the UPDATE mapping of the same

name.
The UPDATE mapping fixAbstract simply enforces that each abstract class without

children (line 31) should have their is_abstract field set to False (line 34). Other fields
of Class remain unchanged (and are thus not assigned in the value predicate).

In this chapter, we present our work on adapting Alloy to the specification of functions
so that they can be computed efficiently – i.e., a target instance can be obtained in
polynomial time given an source instance – while retaining the possibility of using Alloy’s
automatic analysis on those function for validation and verification’ s sake.

The solution we propose to solve this problem takes the form of a new language,
named F-Alloy.

F-Alloy’s syntax is a restriction of the Alloy syntax which, in the context of a model
transformation specification and given a source instance, can be imperatively processed
to obtain an instance of the transformation specification. Though F-Alloy specifications
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Figure 3.9: An overview of the F-Alloy approach

are syntactically valid Alloy specification, the semantics of F-Alloy differ from Alloy in
the sense that redundant constraints specific to model transformation expressed in Alloy
(previously identified as C_PRE, C_POST, C_TRACE in Section 2.4) remains implicit
in F-Alloy, hence enabling a more concise formulation of transformations.

In short, F-Alloy is designed to have the following properties:

• F-Alloy is a domain specific language specifically designed to define model trans-
formations. An F-Alloy model transformation specification is called an f-module.

• F-Alloy’s syntax is a restriction of the Alloy syntax in the sense that any f-module
is a syntactically valid Alloy module

• F-modules can be efficiently computed (by a process we call interpretation)

• The semantics of F-Alloy is given as a translation to Alloy, thus allowing f-modules
to be subject to Alloy analysis.

The way F-Alloy integrates with Alloy is depicted in Fig. 3.9. In this figure, we are
interested in specifying a function f from a source to a target metamodel. To do so,
we produce an f-module “denoting” f . This f-module can be interpreted, given a valid
asrc-instance xsrc , to efficiently build the instance xf corresponding to the application of
f on xsrc. The f-module can also be analyzed using Alloy’s analysis by first translating
it to an Alloy module denoting the same transformation.

3.3 Syntax of F-Alloy

This section aims at providing a formal yet comprehensive introduction to the F-Alloy
syntax. We first define the syntax of F-Alloy reusing Alloy’s syntactic constructs. We
then give the purpose of each F-Alloy syntactic construct defined and finish by showing
that those constructs are all syntactically valid Alloy constructs.
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3.3.1 F-Alloy’s Syntax

To avoid confusion and for this work to be self contained, we reuse the BNF notation
used in [24] to define Alloy’s syntax. This notation is introduced as follows:

“The grammar uses the standard BNF operators:

• x∗ for zero or more repetitions of x;

• x+ for one or more repetitions of x;

• x|y for a choice of x or y;

• [ x] for an optional x.

In addition,

• x,∗ means zero or more comma-separated occurrences of x;

• x,+ means one or more comma-separated occurrences of x;

To avoid confusion, potentially ambiguous symbols – namely parentheses, square
brackets, star, plus and the vertical bar – are set in bold type when they are to be
interpreted as terminals rather than as meta symbols. The string name represents an
identifier and number represents a numeric constant, ...” [24].

The F-Alloy BNF is given in Listing 3.6. It reuses syntactic constructs of the Alloy
BNF given in Listing 3.5.

We split the BNF definition of F-Alloy into two parts in order to ease its understand-
ing. While the first part reveals the structure of f-modules – i.e., modules expressed in
F-Alloy – the second part defines the subset of boolean-valued Alloy expressions, called
rules. We bring the reader’s attention to the fact that the syntactic constructs expr,
name, qualName, decls, moduleDecl, and import present in the BNF are coming from
the Alloy BNF given in Listing 3.5.

The presented F-Alloy BNF allows the expression of both endogenous and exogenous
specifications. We note the presence of UPDATE and DELETE signatures, which together
with CREATE are used to define endogenous transformation following the approach pre-
sented in Section 2.4.1.

The nature of an f-module specification is determined by the number of open state-
ments it contains (one for endogenous, two for exogenous) and by the presence or absence
of the UPDATE and DELETE signatures (those are only allowed in endogenous specifications).
We say that an f-module from asrc to adst defines a transformation from asrc to adst and
introduce the following notation.

Notation 2 (F-module). An f-module f from asrc to adst is denoted by f : asrc → adst
or more concisely, f if the domain and range of the function it defines are known or
irrelevant.

In this thesis, we use f to range1 over f-modules and a to range over Alloy modules.

3.3.2 A Formal Definition of Mappings

Before illustrating the usage of the previously introduced F-Alloy’s syntax, we provide a
formal definition to mappings and their surrounding concepts as we often refer to those
in the remaining sections.

1non exclusively: f can also used to denote functions.
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1 alloyModule::= [moduleDecl] import∗ paragraph∗

2 moduleDecl::= module qualName [[ name,+]]

3 import::= open qualName [[ qualName,+]] [ as name]

4 paragraph::= sigDecl | factDecl | predDecl | funDecl | assertDecl | cmdDecl

5 sigDecl::= [abstract] [mult] sig name,+ [sigExt] { decl,∗} [block]

6 sigExt::= extends qualName | in qualName[+qualName]∗

7 mult::= lone | some | one

8 decl::= [disj] name,+: [disj] expr

9 factDecl::= fact [name] block

10 predDecl::= pred [qualName.]name[paraDecls] block

11 funDecl::= fun [qualName.]name[paraDecls] : expr {expr}

12 paraDecls::= ( decl,∗)|[ decl,∗]

13 assertDecl::= assert [name] block

14 cmdDecl::= [name :] [run|check] [qualName|block][scope]

15 scope::= for number [ but typescope,+] | for typescope,+

16 typescope::= [exactly] number qualName

17 expr::= const | qualName | @name | this | unOp expr | expr binOp expr

18 | expr arrowOp expr | expr[expr,∗] | expr [!|not] compareOp expr

19 | let letDecl,+ blockOrBar | quant decl ,+ blockOrBar

20 | {decl,+ blockOrBar} | (expr)| block

21 const::= [-] number | none | univ | iden|

22 unOp::= ! | not | no | mult | set | # | ˜ | * | ˆ

23 binOp::= || | or | && | and | <=> | iff | => | implies | & | + | - | ++ | <: | :> | .

24 arrowOp::=[mult|set] -> [mult|set]

25 compareOp::= in | = | < | > | =< | >=

26 letDecl::= name = expr

27 block::= {expr∗}

28 blockOrBar::= block | bar expr

29 bar::= |

30 quant::= all | no | sum | mult

31 qualName::= [this/] (name/)∗ name

Listing 3.5: Alloy BNF as given in [24]

1 fmodule::= moduleDecl import [import] fparagraph∗

2 fparagraph::= fsigDecl | guardDecl | valueDecl

3 fsigDecl::= one sig sigName { mappingDecl,∗}

4 sigName::= CREATE | UPDATE | DELETE

5 mappingDecl::= name : qualName(->qualName)∗,

6 guardDecl::= pred guard_name[paraDecls] block

7 valueDecl::= pred value_name[paraDecls] rBlock

8 rBlock::= {rule∗}

9
10 rule::= strict | loose | step | conditional

11 conditional::= expr implies rule

12 strict::= name.name[[expr]]= expr

13 loose::= name in image.name[[expr]]

14 image::= sigName.name[expr]

15 step::= all i:Int| range implies name.name[add[i,1]] = expr

16 range::= i (>|>=) expr and i (<|<=) expr

Listing 3.6: F-Alloy BNF
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Definition 5 (Mappings, domain, range). Considering an f-module f : asrc → adst, we
call the fields declared in f relating signatures of asrc to signatures of adst mappings.
For a mapping map: X1 -> . . . -> Xn -> Y the domain denotes the tuple of signatures
(X1, . . . , Xn) and the range denotes the signature Y. Mappings declared in a DELETE
signature being of the form map: X, they do not have range.

To illustrate this definition, let us consider the following mappings

• from the CD2RDBMS transformation given in Listing 3.3:

– association2column : Association -> Attribute -> Column

The domain of the create mapping association2column is the tuple of signa-
ture (Association, Attribute) and the range is the signature Column

• from the CDRefinement transformation given in Listing 3.4:

– associationClass2Class : AssociationClass -> Class

The domain of create mapping associationClass2Class is the signature
AssociationClass and the range is the signature Class

– fixAbstract : Class -> Class

The domain and range of update mapping fixAbstract is the signature Class.
– associationClass : AssociationClass

The domain of the delete mapping associationClass is the signature AssociationClass.
This mapping being declared in the DELETE signature, it does not have any
range.

3.3.3 F-Alloy’s Syntax Usage

To help the reader understand why F-Alloy’s syntax is defined the way it is, and to give
a short introduction on how the syntax is used, we list in the following itemization the
intentions behind each concept declared in Listing 3.6, and exemplify their usage using
excerpts of the CD2RDBMS and CDRefinement case studies given in Listing 3.3 and 3.4:

• f-module: Any specification written in F-Alloy is called an f-module and consists of
an Alloy module declaration (moduleDecl)(identifying the module), some import

declarations corresponding to the transformation’s source and target modules and
of a body composed of several fparagraph.

Example: The CDR2RDBMS specification given in Listing 3.3 is a syntactically valid
f-module

• fparagraph: A paragraph in F-Alloy takes either the form of a signature declaration
(fsigDecl), a guard declaration (guardDecl) or a value declaration (valueDecl).
Guards and values are both Alloy predicates.

Example: The CDR2RDBMS specification given in Listing 3.3 is composed of 9 fparagraph
(a CREATE signature, four guard and four value predicates)

• fsigDecl: In F-Alloy, signatures are declared as singleton (one) and have as sole
purpose to act as container for the mappings (mappingDecl) composing the trans-
formation. In exogenous transformations, only one signature, named CREATE is
allowed. In endogenous transformations, there are three signatures named CREATE,
UPDATE and DELETE after the different kind of operations used in endogenous trans-
formations:
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– CREATE mappings are used to express the creation of atoms typed by their
range for given tuples typed by their domain.

– UPDATEmappings have their domain and range bound to be the same signature.
They are used to express a substitution: if an atom a is mapped via an update
mapping to an atom b, then a will be replaced by b. All the tuples referring
to a will then refer to b instead.

– DELETE mappings do not have a range and are used to express that an element
is to be deleted from an instance.

Example: The following excerpt from Listing 3.3 consists of a signature declaration
and four mapping declarations.
one sig CREATE{

class2table: Class -> Table,

attribute2column: Attribute -> Column,

association2column: Association -> Attribute -> Column,

association2FKey: Association -> FKey,

}

• guardDecl: A guard predicate contains the precondition under which a mapping is
to be triggered. The sequence of parameters it takes (paraDecls) corresponds to
the domain of the mapping it is associated to. The association between mapping
and guard predicate is done by name, i.e., the guard of a mapping called g will be
named “guard_g”.

Example: The following excerpt from Listing 3.3 shows the guard predicate of
the association2column mapping. We can see that the types of the declared
parameters ass and att match the type of the signatures in the domain of the
association2column mapping.
pred guard_association2column(ass:Association, att:Attribute){

att.is_primary= True and att in ass.dest.attrs

}

This guard states that the association2column mapping will be trigged for any
pair of association and attribute such that the attribute is primary and such that
association’s destination is the class in which the attribute is declared.

• valueDecl: A value predicate contains a set of rules (rule) defining the values
of fields of the elements created by the mapping it is associated with. Association
between mapping and value predicate is done by name, just like for guard predicate.
The sequence of parameters (paraDecls) a value predicate takes corresponds to the
domain and range of the associated mapping.

Example: The following excerpt from Listing 3.3 shows the value predicate associ-
ated to the class2table mapping. Parameters c and t are typed after the domain
and range of the class2table mapping.
pred value_class2table(c:Class , t:Table){

t.name[0]= c.name

}

This value predicate simply enforces that any table created through the class2table
mapping should be named after its associated class.

• rule: Rules in F-Alloy are Alloy expressions that restrict the value of fields in the
target module.
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– conditional rules enable each rule to be preceded by a condition with effect
that the rule is applied if and only if the condition is satisfied.
Example: a loose rule here is to be applied if and only if the attribute a given
as parameter is primary.
a.is_primary= True implies c in CREATE.class2table[a.~attrs.*parent].pkeys

– strict rules are direct restrictions of the value of a created or updated atom’s
field.
Example: We restrict the name of a table t1 to be the name of the class c.
t.name[0]= c.name

– loose rules are restrictions on the value of fields of an atom created or updated
by another mapping.
Example: The created column c composes the set of pkeys of the table created,
through the class2table mapping, from the parents of the class declaring a
(or the class itself if its has no parent).
c in CREATE.class2table[a.~attrs.*parent].pkeys

– step rules are used to inductively restrict a field of a created or updated atom
to be composed of certain tuples.
Example: each entry in the name of the column c corresponds to the name of
the parent of the previous entry, with the first entry (index 0) being already
defined through the use of a strict rule.
all i:Int| i>=1 and i< #(a.~attrs.^parent) implies

c.name[add[i,1]]= c.name[i].~name.parent.name

For completeness sake, we now give well-formedness constraints for the BNF given in
Listing 3.6.

3.3.4 F-Alloy’s Well-Formedness Constraints

Let us consider an f-module defining a transformation from asrc to adst. That f-module
is syntactically valid if the following constraints hold.

• Constraints ruling F-Alloy’s overall structure:

ImportWF In the fmodule rule, there is exactly one import occurrence in the case
the f-module defines an endogenous transformation and exactly two import

occurrences in the case the f-module defines an exogenous transformation. In
these import rules, qualName should refer to an Alloy module. In the case
of an exogenous transformation, the two referred Alloy modules should be
distinct. Those modules are named source module and target module, respec-
tively (as they represent the source and target metamodels of the specified
transformation).

SigWF There is exactly one signature declaration (produced by fsigDecl) with
name CREATE in an f-module defining an exogenous transformation, and ex-
actly three signature declarations (produced by fsigDecl) with name CREATE,
UPDATE and DELETE in an f-module defining an endogenous transformation.

1at index 0 as name is declared as a sequence of string
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GuardWF For each mapping declaration produced by the mappingDecl rule,
there exists exactly one guard declaration (produced by the guardDecl rule)
whose name is the name of the mapping prefixed by “guard_”. The guard
declaration defines a predicate describing what should hold in the source in-
stance in order for the mapping to take effect. The parameters of the guard
predicate should be typed by the domain of the mapping. In a guard’s block,
expr occurrences are boolean valued Alloy expressions that may solely con-
tain features of asrc and input parameters of the enclosing predicate, guards
having as role to define patterns to be matched in the input instance. A guard
predicate is the F-Alloy equivalent of QVT’s checkonly pattern.

ValuedWF Similarly, for each mapping declaration produced by the mappingDecl
rule (except for those present in a DELETE signature), there exists exactly one
value declaration (produced by the valueDecl rule), whose name is the name
of the mapping prefixed by “value_”. The value declaration defines a predicate
describing what should be in the target instance after applying the mapping.
The parameters of the value predicate should be typed by the domain and
range of the mapping. A value predicate is the F-Alloy equivalent of QVT’s
enforce patterns.

CreateWF In the CREATE signature, mappings denotes n-ary relation. The last
occurrence of qualName should refer to a signature defined in the target mod-
ule, while other occurrences of qualName refer to signatures defined in the
source module. There is one guard and one value predicate associated to each
create mapping with effect that atoms in the source instance satisfying the
guard predicate will lead to the creation of an atom typed by the range of the
mapping whose value is defined by the value predicate.

UpdateWF In the UPDATE signature, mappings are binary relations having the
same signature as domain and range. They are also associated to one guard
and one value predicate each. The intention is to relate each atom typed by
the domain of the mapping and satisfying the guard to a new output atom
of same type to express that the former is to be replaced by the latter. The
values of the fields of the updated atom are defined by the value predicate.
Unassigned fields are left unchanged.

DeleteWF In the DELETE signature, “mappings” are unary relations that represent
atoms to be deleted. They are hence solely associated to a guard predicate
with the intention that each atom typed by the domain of the mapping and
satisfying the guard, as well as all references to that atom, are removed from
the instance.

• Constraints governing F-Alloy’s rules:

ExprWF expr is an Alloy expression that may contain features of asrc and input
parameters of the enclosing predicate as well as occurrences of image. This
restriction allows to enforce that the value of fields in the target instances
solely depends on the source instance (as we will prove in Section 3.4.3).

StrictWF In strict rules, the first name occurrence is the name of the output
parameter (i.e., typed after the range of the mapping), and the second is the
name of a field declared in the signature typing that parameter. The expr in
square brackets is to appear if and only if this field has an arity greater than
2.
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LooseWF In loose rules, the first name is the name of the output parameter and
the second name is a field of the signature typing the image. The expr in
square brackets is to appear if and only if this field has an arity greater than
2.

StepWF step rules are used to express inductive assignments. They are thus
always preceded by a strict rule, composing the base of the induction, and
featuring an integer-valued index. In step, the first name occurrence is the
name of the output parameter and the second is the name of the field assigned
in the preceding strict rule. The right-hand side – expr – of step should
then contain an occurrence of name.name[i].

RangeWF In range, the two expr are integer-valued and the first expr value is
bound to be equal to the index value of the strict rule composing the base
of the induction for well-formedness sake.

3.3.5 F-Alloy to Alloy Correspondences

We finish this introduction to the F-Alloy syntax by showing, based on the given Alloy
and F-Alloy BNFs, that any F-Alloy syntactic construct is also a valid Alloy syntactic
construct (in other words an f-module is a syntactically valid Alloy module).

Correspondences between F-Alloy’s syntactic constructs and their Alloy counterparts
are detailed in the following itemization:

• range is a syntactically valid expr of the form expr compareOp expr binOp expr

compareOp expr

• step is a syntactically valid expr of the form quant decl bar expr binOp expr

compareOp expr

• image is a syntactically valid expr of the form expr binOp expr

• loose is a syntactically valid expr of the form expr compareOp expr binOp expr

• strict is a syntactically valid expr of the form expr compareOp expr

• strict is a syntactically valid expr of the form expr compareOp expr

• conditional is a syntactically valid expr of the form expr binOp expr

• rule is a syntactically valid expr

• rBlock is a syntactically valid block

• valueDecl is a syntactically valid predDecl

• guardDecl is a syntactically valid predDecl

• mapDecl is a syntactically valid decl taking into account that expr -> expr is
itself a syntactically valid expr

• sigName is a syntactically valid name

• fsigDecl is a syntactically valid sigDecl

• fparagraph is a syntactically valid paragraph

• fmodule is thus a syntactically valid alloyModule
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F-module
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Module af
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src
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Figure 3.10: Relation between Alloy and F-Alloy’s semantics

3.4 Translational Semantics of F-Alloy

3.4.1 Overview

To ease the reading of this section, we picture the relation between Alloy and F-Alloy’s
semantics in Fig. 3.10.

The semantics of Alloy is given in [24] using a denotational approach – each syntactic
construct being mapped to a function from instance to boolean value, with the effect of
defining which properties are enforced in an instance by the construct in question. In
short, an Alloy module denotes a set of instances – edge number 1 of Fig. 3.10.

One of the great advantages in reusing the syntax of Alloy in the definition of the
F-Alloy transformation language is the ease of translation between F-Alloy specifications
and Alloy. Indeed, f-modules are by essence valid Alloy modules. Yet the meaning we
give to f-modules differs from their original Alloy meaning. This difference stems from
our design choice of leaving out (for conciseness sake) redundant constraints, identified
in Section 2.4.1, needed in Alloy to enforce a “functional behavior”.

In the next subsection we thus define a translation function T : Falloy → Alloy, with
Falloy and Alloy being the set of all possible f-modules and Alloy modules, respectively,
– corresponding to edge number 2 of Fig. 3.10 – and set the meaning of an f-module f
to be that of the Alloy module T (f) (as defined in [24]).

In a nutshell, the f-module f denotes the same set of instances as the Alloy module
T (f).

In Section 3.4.3, we will show that for any f-module f , T (f) is a functional Alloy
module, hence showing that instances of T (f), and thus transitively f , represent indeed
a transformation function – corresponding to edge number 4 of Fig. 3.10.

3.4.2 Translating F-Alloy to Alloy

In this subsection, we define the translational semantics of F-Alloy by defining a transla-
tion function T mapping each f-module f , defining either an endogenous or an exogenous
model transformation, to an Alloy Module af . We define then the meaning of f to be
the one Alloy gives to af .

When considered as an Alloy module (we recall that f-modules are syntactically valid
Alloy modules), an f-module f only defines relations from signatures of the source to
signatures of the target module. Those relations provide enough structure to obtain
transformation instances from analysis. Yet, the way elements are related is not con-
strained. Only some predicates are present to give information on how elements of the
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source and target should relate to each other. Constraints enforcing the transformation
behavior (identified in Section 2.4.1) as well as other expected functional assumptions
such as disjointness of the source and target instance, necessary to the simplification of
the interpretation process, should thus be made explicit as Alloy facts to convey the real
intent of the F-Alloy specification.

We thus define T by listing procedures defining how to systematically add those
constraints to an f-module in order to obtain the Alloy module defining its meaning. We
recall from definition 5 that for a mapping map: X1 -> . . . -> Xn -> Y, the domain
denotes the sequence of signatures (X1, . . . , Xn) and the range denotes the signature Y.
We introduce the term of input tuple and output atom here to denote the set of tuples
typed after the domain of a mapping and satisfying its associated guard and those atoms
typed after the range of a mapping and who have been mapped to input tuples through
that mapping, respectively.

We now list the constraints to be added to an f-module f in order to obtain af :

• Constraints to be added to any f-module f

– Map Disjunction. Mappings declared in CREATE and UPDATE signatures
define partial functions which have disjoint ranges.
The intent is to ensure that for any rule, the triggering of a guard will lead
to the creation of a new atom. This constraint enables, when interpreting
f-modules (see Section 3.5), to consider mappings one at a time when creating
output elements, hence simplifying the interpretation process.
Example (CD2RDBMS): columns representing attribute and association should
be disjoint.

CREATE.attribute2column[Attribute] & CREATE.association2column[Association,Attribute] =

none

Map Disjunction constraints can be generated following the present procedure:
LET a_dst= m.getImportedModule(2) //2nd open statement

IF a_dst= null THEN //endogenous case

a_dst= m.getImportedModule(1)

FI

FOR EACH signature Y DECLARED IN a_dst DO

LET M = FIND ALL mappings having Y as range IN m

FOR EACH mapping map IN M DO

WITH map: "map: X1 -> .. -> Xn -> Y"

LET sig= signature in which map is declared

FOR EACH mapping map2 IN M DO

IF map != map2 THEN

WRITE IN MapDisjunction fact

"map[X1,..,Xn] & map2[X1,..,Xn] = none"

WROTE

FI

DONE

DONE

DONE

– Map Injectiveness. Functions defined by CREATE and UPDATE mappings
are injective. The intent is again to simplify the process of creating output
elements when interpreting f-modules. This time, this constraint enables us to
consider candidates to trigger a mapping one at a time, a new output element
being created at any triggering.
Example (CD2RDBMS): distinct attributes should be mapped to distinct columns,
at most one attribute being mapped to a given column.
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all y: Column | lone CREATE.attribute2column.y

Map Injectiveness constraints can be generated following the present proce-
dure:
LET M = FIND ALL CREATE and UPDATE mappings DECLARED IN m

FOR EACH mapping map IN M DO

WITH map: "map: X1 -> .. -> Xn -> Y"

LET sig= signature in which map is declared

WRITE IN MapInjectiveness fact

"all y:Y| lone sig.map.y"

WROTE

DONE

– Predicate Association. For each CREATE and UPDATE mapping there is an
output atom exactly for those tuples in the domain that satisfy the guard
predicate . The values of fields of the output atom are defined in the value
predicate. For a DELETE mapping there is a tuple of the form (d, s) where d is
a single DELETE atom for each atom s in the domain of the mapping satisfying
the guard predicate.
The intent is to ensure that guard and value predicates play their expected
role of pre- and post-conditions for the mappings they are associated to, hence
filling the role of the C_PRE and C_POST constraints identified in Section
2.4.1.
Example (CD2RDBMS): a column y is associated to an attribute x if and only if
the guard predicate is satisfied for x. In that case, the value predicate has to
hold for x and y as well.
all x : Attribute{

(guard_attribute2column[x] and one CREATE.attribute2column[x] and

value_attribute2column[x, CREATE.attribute2column[x]])

or

(not guard_attribute2column[x] and no CREATE.attribute2column[x])

}

Predicate Association constraints can be generated following the present pro-
cedure:
LET M = FIND ALL mappings DECLARED IN f

FOR EACH map IN M DO

WITH map: "map: X1 -> .. -> Xn -> Y"

LET sig= signature in which map is declared

IF sig="CREATE" or sig="UPDATE" THEN

WRITE IN PredicateAssociation fact

"all x1:X1|..|all xn:Xn{"

"( guard_map[x1,..,xn] and one sig.map[x1,..,xn] and value_map[x1,..,xn,sig.map[x1

,..,xn]] )"

"or ( not guard_map[x1,..,xn] and no sig.map[x1,..,xn]) }"

WROTE

ELSE IF sig="DELETE" THEN

WRITE IN PredicateAssociation fact

"all x1:X1 {"

"(guard_map[x1] and x1 in DELETE.map"

"or (not guard_map[x1] and x1 not in DELETE.map) }"

WROTE

FI

DONE

– Minimal Assignment. The values of the fields of output atoms are limited
to those explicitly specified through rules, except for UPDATE mappings, in
which case values of fields which are not specified through rules are equal to
the values of the same fields prior to update.
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The intent of this constraint is to provide an upper-bound to fields for which
values where partially specified, e.g., using “in” instead of strict equality. The
extra clause of this constraint concerning UPDATE mappings is here to make
endogenous transformations less verbose. The idea is to avoid rewriting ex-
isting values by limiting the transformation to the expression of what has to
change.
Example (CD2RDBMS): The name of a column in the range of the association2column
mapping is a sequence of strings whose size (obtained by using the Alloy op-
erator #) is equal to the number of elements returned by all the expressions
explicitly assigned through rules.
#c.name=add[#att.name,#ass.name]

Example (CDRefinement): isAbstract is the only field present in the noUselessAbstract
value predicate. Constraints are thus added to force other fields to keep their
original values.
pred value_noUselessAbstraction(c:Class,y:Class){

y.isAbstract=False

y.attrs=c.attrs //added constraint

y.parent=c.parent //added constraint

y.name=c.name //added constraint

}

Minimal Assignment constraints can be generated following the present pro-
cedure:
FOR EACH mapping map DECLARED IN f DO

WITH map: "map:X -> .. -> Xn -> Y"

LET sig= signature IN which map is declared

LET y = last parameter of value_map

FOR EACH field g DECLARED IN signature Y DO

LET constraint=""

FOR EACH rule r CONTAINING g IN value_map DO

IF r NOT CONTAINING loose THEN

IF constraint="" THEN

constraint=COUNT[r]

ELSE

constraint="add["+COUNT[r]+","+constraint+"]"

FI

FI

DONE

WRITE IN value_map

"#y.g="+COUNT[r]

WROTE

LET flag=false

FOR EACH mapping map2 IN f DO

WITH map2: "map2: X -> .. -> Xn -> Y"

IF map != map2 THEN

FOR EACH rule r IN value_map2 DO

IF r CONTAINS loose THEN

flag=true

WRITE IN value_map2

"#f.g="+COUNT[r]

WROTE

FI

DONE

FI

DONE

IF sig="UPDATE" THEN

IF NO rule r CONTAINS g IN any value predicate of f THEN

WRITE IN value_map

"y.g = x.g"

WROTE

FI

ELSE IF flag=false
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WRITE IN value_map

"y.g = none"

WROTE

FI

DONE

DONE

FUNCTION COUNT[rule r] RETURNS expr

IF r IS strict THEN

WITH r: "y.g[[expr1]]=expr2"

IF expr1 = "" OR expr1 IN INT THEN

RETURN "#expr2"

ELSE

RETURN "mult[#expr1,#expr2]"

FI

FI

IF r IS step THEN

WITH r: "all i:Int|range implies y.g[add[i,1]] = expr"

WITH range: "i > expr1 and i < expr2"

LET c="max[sub[#expr2,#expr1]+0]"

RETURN "mult[#expr,c]"

FI

IF r IS conditional THEN

WITH c: "expr1 implies r2"

RETURN "not expr1 implies 0 else "+COUNT[r2]

FI

IF r IS loose THEN

WITH r: "y in image.name[expr]"

IF expr = "" OR expr IN INT THEN

RETURN "#image"

ELSE

RETURN "mult[#expr,#image]"

FI

FI

END FUNCTION

• Constraints to be added to any f-module f defining an endogenous model transfor-
mation:

– IO Disjunction. The set of all atoms in the input tuples of CREATE, UPDATE,
and DELETE mappings are disjoint with the set of all output atoms of CREATE
and UPDATE mappings.
The intent is to clearly separate through constraints the source instance from
the target instance hence filling the role of the C_TRACE_EN constraint
identified in Section 2.4.1. We note that these constraints are only needed
for endogenous transformations as the type of atoms in an exogenous are
signatures being declared either in the source or in the target module of the
transformation, hence naturally dissociating atoms belonging to the source
instance from those in the target instance.
Example (CDRefinement): the set of classes which are output atoms in the
range of the mapping associationClass2Class and the set of classes in input
tuples in the domain of the mapping newAssociation should be disjoint.
no associationClass2Class[AssociationClass] & newAssociations.Association.Association

IO Disjunction constraints can be generated following the present procedure:
FOR EACH mapping map DECLARED IN f DO

WITH map1: "map1: X1 -> .. -> Xn -> Y"

LET sig1=signature in which map1 is declared

FOR EACH mapping map2 DECLARED IN f DO

WITH map2: "map2: A1 -> .. -> An -> B"

LET sig2=signature in which map2 is declared

FOR EACH i IN RANGE [1, n]
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IF Ai = Y THEN

WRITE IN IODisjunction fact

no sig1.map1[X1,..,Xn] & sig2.map2[A1,..,Ai-1].Ai+1.(..).An.B

WROTE

FI

DONE

DONE

DONE

– Constraints Framing Transformation instances of an endogenous f-module
are composed of a source instance and of tuples, typed by CREATE, UP-
DATE and DELETE mappings, embodying the operations to be performed
(see Fig. 3.12). This become problematic when considering the constraints
declared in the source module of the transformation. Indeed, when running
an analysis on such an endogenous specification, those aforementioned con-
straints should be satisfied in the transformation instance yet this later con-
tains source module elements other than those present in the source instance
given as input. This particularity of endogenous transformation makes it likely
that analysis fails to obtain all expected transformation instances. A solution
to this problem is to add a context to those source module constraints, so
as to apply them on the source and target instance, respectively (instead of
the transformation instance). To do so, all facts of the source module are
to be rewritten as predicates, taking as parameter the set of atoms they are
to be applied on. Those predicates are then called in a fact in the transfor-
mation module, where the parameter given correspond to the set of atoms
composing the source instance (returned by fin) and the target instance (re-
turned by fout), respectively. Constraints Framing hence covers the role of
C_TRACE_EN_2 constraints identified in Section 2.4.1.
Example (CDRefinement): the attribute disjointness constraint is bound to be
violated when updating a class without updating its set of attributes (as a
result two classes with the same set of attributes will appear in the transfor-
mation instance). To prevent this violation and still ensure that attributes of
classes are disjoint in the source instance and target instance, the disjointness
constraint in the source module is replaced by the following predicate:
pred attrDisj(context:set univ){

no disj x,y: ((Class+AssociationClass) & context) | x.(attrs& context->context) & y.(

attrs& context->context) !=none

}

In this predicate, all the sets and tuples of atoms present in the formula are
restricted to the context given as parameter.
This predicate is then called in the transformation module with parameters
consisting of all the atoms present in the source and target instance, respec-
tively. Those set of atoms can be defined in Alloy, following the definition of
fin and fout given in definition 7 and 8. Following is how those sets of atoms
are defined for our CDRefinement case study:
let input = univ - (CREATE + DELETE + UPDATE + UPDATE.fixAbstract[Class] + CREATE.

associationClass2Class[AssociationClass] + CREATE.newAssociations[Class, Association

])

let output = univ - (CREATE + DELETE + UPDATE + DELETE.(associationWithClass +

associationClass) + UPDATE.fixAbstract.Class)

Those modifications entailed by Constraints Framing can be generated follow-
ing the present procedure:

49



3.4. TRANSLATIONAL SEMANTICS OF F-ALLOY

LET in = " let input= univ - ( CREATE + DELETE + UPDATE "

LET out = " let output= univ - ( CREATE + DELETE + UPDATE "

FOR EACH mapping map declared IN f DO

WITH map: "map: X -> ... ->Xn -> Y"

LET sig= signature in which map is declared

IF sig = "CREATE" or sig = "UPDATE" THEN

in+= "+ sig.map[X,...,Xn]"

FI

IF sig = "UPDATE" THEN

out+= "+ sig.map.X.(...).Xn"

FI

IF sig = "DELETE" THEN

out+= "+ sig.map"

FI

DONE

in += ")"

out += ")"

WRITE IN ConstraintFraming fact

in

out

WROTE

REPLACE facts by predicates in a_src

LET P be the set of added predicates

FOR EACH predicate p IN P DO

LET n = p’s name

WRITE IN ConstraintFraming fact

p[input] and p[output]

WROTE

DONE

Note that replacing facts by predicates is done by creating, for each fact, a
predicate taking an argument named context and of type set of univ (Alloy
equivalent of Object) and by replacing each term t of the Alloy expression
composing the fact by t & context -> .. -> context, the number of arrow
separated context depending on the arity of expression t. We note that
multiplicity constraints and other keywords such as “disj" should also be
replaced by such predicates. The translation of those keywords into facts is
given in [24].

• Constraints to be added to any f-module f defining an exogenous model transfor-
mation:

– Minimum Output. For an f-module f : asrc → adst, we enforce that the
set of atoms typed by signatures declared in adst should be limited to the
output atoms of CREATE mappings declared in f . The intent is for the output
of the transformation to be composed of only those elements defined through
mappings, hence filling the role of the C_TRACE_EX constraint identified
in Section 2.4.1. We note that this constraint does not apply to endogenous
transformations because any asrc element not present in the range of a mapping
is considered as part of the transformation’s source instance.
Example (CD2RDBMS): RDBMS elements are limited to the output atoms of
declared mappings.

RDBMSElem= class2table[Class] + primAttr2column[Attribute] + classAttr2column[Attribute,

Attribute] + association2column[Association,Attribute]

Minimum Output constraints can be generated following the present proce-
dure:

FOR EACH signature Y declared IN a_dst DO

LET M = FIND ALL mapping IN f having Y as range
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LET constraint= "Y = "

IF M is empty THEN

constraint += "none"

FI

FOR EACH map IN M DO

WITH map: "map: X -> .. -> Xn -> Y"

LET sig= signature in which map is declared

constraint+= "sig.map[X,..,Xn]"

IF not last iteration of this loop THEN

constraint +="+"

FI

DONE

WRITE IN Minimum Output fact

constraint

WROTE

DONE

For any given f-module f , af = T (f) is the Alloy module composed of signatures
fields and predicates declared in f and including the aforementioned constraints. We
will see in the next subsection that those added constraints enforce f-modules to denote
functions, that is, any Alloy module T (f) is a functional Alloy Module.

3.4.3 From F-modules to Functional Alloy Modules

We are now interested in proving that the Alloy module af obtained from the translation
of an f-module f is a functional Alloy module. This enables us to ensure that F-Alloy
specifications indeed denote functions.

To achieve our goal, we first define the transformation functions fin and fout used to
obtain from an af -instance the source and target of the transformation denoted by f (See
Definition 4). Next we examine the influence of rules defined in value predicates on the
af -instance. We then show by construction that for any af , there cannot be two distinct
af -instances xf and x′f s.t. fin(xf ) 6= fin(x

′
f ) which will allow us to finally conclude that

any Alloy module af obtained from the translation of an f-module f is a functional Alloy
module (with respect to the transformation functions fin and fout defined).

Exogenous transformation functions

In the present subsection we define these functions for the exogenous case. In the next
subsection we then deal with the endogenous case.

In the exogenous case we call the operation those functions embody instance projec-
tion and define it as follows:

Definition 6 (Instance Projection). The projection of an instance x : (X,Y, a) on a
module a′ : (S′, F ′, ϕ′), with a′ being in the import hierarchy of a, is the a′-instance
composed of the atoms and tuples present in x and typed by signatures and fields of a′,
respectively. We denote projections using the evaluation symbol ⇓: x ⇓ a′ reads “the
projection of x on a′”.
Formally : x ⇓ a′ = (X ′, Y ′, a′) with X ′ = {as ∈ X|s ∈ S′} and Y ′ = {yf ∈ Y |f ∈ F ′} .

Thus for exogenous transformations:

fin(x) = x ⇓ asrc and fout(x) = x ⇓ adst

We illustrate this application of instance projection in Fig. 3.11.
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nameClass2

Class1

"Food"

"Product"

parent

nameClass3 "Meat"

parent

name

attrs

class2table

CREATE

Attribute name "origin"

Table

name

Column attribute2column

cols
pkeys

is_primary

True

name[0]

name[1]

name[2]

"Text"

dataType

type

PrimitiveType name "String"

Figure 3.11: A CDRDBMS-instance x with fin(x) highlighted in red and fout highlighted
in bold

Endogenous transformation functions

We now define the functions fin and fout that extract the source instance and target
instance from a af -instance in the endogenous case. We first give informal definitions
and then provide formal definitions.

The function fin extracts the source instance of the transformation from a given
af -instance, namely, the subinstance made up of atoms typed by signatures in asrc and
tuples typed by fields in asrc, with all atoms in the range of a CREATE or UPDATE mappings
(and their associated tuples) being removed.

The function fout extracts the target instance of the transformation from a given
af -instance, namely, the subinstance made up of atoms typed by signatures in asrc and
tuples typed by fields in asrc in which elements in the domain of UPDATE mappings are
replaced by their images, preserving links to the replaced element, and where elements
in the domain of DELETE mappings are removed.

We call those operations embodied by fin and fout “transformation-aware input pro-
jections” and “transformation-aware output projections”, respectively, and define them
bellow.

in the following two definitions, we denote by min and mout the set of input tuples
and output atoms composing tuples typed by mapping m, respectively. We also write
as ∈ tf if the atom a typed by signature s is contained in the tuple t typed by field f .

Definition 7 (transformation-aware input projection). Given an instance xf : (X,Y, af ),
with af : (S, F, ϕ) being a functional Alloy module expressing an endogenous transfor-
mation on asrc : (S′, F ′, ϕ′), the f -aware input projection of xf , denoted xf ⇓f in is the
projection of xf on asrc from which are subtracted output atoms of mappings in F .

Formally : xf ⇓f in= xf ⇓ asrc − (X ′, Y ′, af ) with :

• X ′ = {as ∈ X : ∃m ∈ F s.t. as ∈ mout}

• Y ′ = {tf ∈ Y : ∃as ∈ X ′ s.t. as ∈ tf}
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(a) A CDRefinement-instance x
with fin(x) highlighted in bold
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(b) fout(x) (with x depicted in (a))

Figure 3.12: A CDRefinement-instance, and the input and output of the transformation
CDRefinement specifies as defined by fin and fout, respectively.

In the following definition, we denote C, U and D the set of CREATE, UPDATE and
DELETE mappings declared in af , respectively.

Definition 8 (transformation-aware output projection). Given an instance xf : (X,Y, af )
– with af : (S, F, ϕ) expressing an endogenous transformation on asrc : (S′, F ′, ϕ′) – the
f -aware output projection of xf , denoted xf ⇓outf is the projection of xf on asrc from
which are subtracted input tuples of UPDATE and DELETE mappings in F .

Formally : xf ⇓outf = x ⇓ asrc − (X ′, Y ′, asrc) + (∅, Y ′′, asrc) with :

• X ′ = {as ∈ X : ∃tm ∈ Y s.t. m ∈ U ∪D ∧ as ∈ min)}

• Y ′ = {tf ∈ Y : ∃as ∈ X ′ s.t. as ∈ tf )}

• Y ′′ =
⋃

tm:(x1,..,xn)∈Y :m∈U∧∃as∈min:as=xi
(x1, .., f(xi), .., xn)

We then define for endogenous transformations:

fin(x) = x ⇓inm and fout(x) = x ⇓outm

We illustrate the application of transformation-aware projections in Fig. 3.12. In
those visualizations, atoms are represented by nodes and tuples by links. Note that the
tuples typed by the UMLElement’s field name have been filtered out for readability’s sake.

The meaning of rules

Considering an f-module f : asrc → adst, its associated Alloy module af = T (f) and
xf ∈ Z(af ), the predicate association constraints defined previously enforce that, given a
mapping µ declared in f , only those input tuples for which the guard predicate associated
to µ is satisfied are associated through µ to an output atom. Moreover, the value predicate
associated to µ holds in xf when given as parameter any such pair of input tuples and
output atom.
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Each rule inside a value predicate represents a boolean expression that may use the
parameters of the value predicate. In the following lemma we prove that each rule can
be rewritten in the form

V in f

where V is an Alloy expression denoting a relation, in denotes set inclusion, and f is
a field of adst. Since V , seen as a set of tuples, generally depends on the rule r, the source
instance fin(xf ), and the parameters x1, . . . , xn and y of the enclosing value predicate,
we refer to V as V (r, fin(xf ), x1, . . . , xn, y).

To understand the importance of this lemma, note that the value predicate is a con-
junction of rules, each stating that a set of tuples is contained in the relation representing
a field of af . This will imply that the relation of each field can be written as the union
of the V -sets of the contributing rules, since no other tuples can be in the relation of
the field due to the minimal assignment constraints. This fact will be used to derive an
explicit formula for the “shape” of a valid instance of af in Lemma 2.

Lemma 1. Each rule r can be rewritten as a logically equivalent formula

V (r, fin(xf ), x1, . . . , xn, y) in f

where V is an Alloy expression denoting a relation, in denotes set inclusion, and f is a
field of adst.

Proof. We describe how to rewrite each type of rule in the required form. In the following,
occurrences of name in each syntactic construct are replaced by y when they denote the
output atom (according to the well-formedness of F-Alloy), or by f if they denote the
field the rule is contributing to. The rewriting of rules is done as follows:

• For strict rules:

1. y.f[[expr1]] = expr2

2. [expr1-> ]expr2 in y.f

3. y-> [expr1-> ]expr2 in f

• For loose rules:

1. y in image.f[[expr]]

2. [expr-> ]y in image.f

3. image-> [expr-> ]y in f

• For step rules:

1. all i:Int|range implies y.f[add[i,1]] = expr

2. all i:Int|range implies [add[i,1]]-> expr in y.f

3. all i:Int|range implies y-> [add[i,1]]-> expr in f

We list in table 3.1 the set of tuples returned by the function V . For strict rules
expr1 and expr2 may use input parameters as well as features of asrc (by the well-
formedness constraints ExprWF given in Section 3.3.4). Thus the V -set for strict rules
only depends on the source instance and the parameter values. For loose rules, image
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Type of Rule r Syntax followed by r value of V (r, xf , (x1, ..., xn), y)

strict y.f[[expr1]] = expr2 {y, expr1, expr2)f}
loose y in image.f[[expr]] {(image, expr, y)f}

step
all i:Int|range implies

y.f[add[i,1]] = expr

⋃
{i∈range}

{(y, i+ 1, expr)f}

conditional expr implies rule

{
V (rule, xf , (x1, ..., xn), y), if xf � expr

∅ otherwise

Table 3.1: Valuation of V for the different rule constructs identified in Listing 3.6

denotes the output atom for an input tuple given by the specified expressions, which
depends only on the source instance and values of input parameters. Therefore, the
tuples in the V -set for loose rules depend only on the source instance and the parameter
values as well. The same holds for step rules since the expr satisfy similar restrictions
and the range is given by an expression that depends on the source instance and values of
input parameters. Since the conditional expression in conditional rules satisfy the same
restrictions, the corresponding V -set only depends on the source instance and the values
of the parameters.

We now exemplify the valuation of t given in table 3.1 by explicitly listing the tuples
assigned through rules of the value predicate associated to the mapping attribute2column
(taken from the CD2RDBMS case study). To do so, let us consider the CD2RDBMS-instance
xf depicted in Fig. 3.11. Given the two parameters a= Attribute$0 and c=Column$0

and xsrc = fin(xf )we have:

• With r being the strict rule

c.dataType=(a.type.name="String" implies "TEXT" else "NUMBER")

V (r, xsrc, a, c) ={c, a.type.name="String" implies

"TEXT" else "NUMBER"}dataType

={Column$0, "TEXT"}dataType

• With r being the strict rule

c.name[0]= a.name

V (r, xsrc, a, c) ={c, 0, a.name}name

={Column$0, 0, "origin"}name

• With r being the strict rule

c.name[1]=((a.~attrs.parent)!=none implies a.~attrs.name else none)

V (r, xsrc, a, c) ={c, 1, ((a.~attrs.parent)!=none implies

a.~attrs.name else none)}name

={c, 1, (Class$1!=none implies

Class$2.name else none)}name

={Column$0, 1, "Meat"}name

• With r being the step rule
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all i:Int| i>=1 and i< #(a.~attrs.^parent) implies c.name[add[i,1]]= c.name[i].~name.parent.

name

V (r, xsrc, a, c) =
⋃

{i∈[1,#(a.~attrs.^parent)[}

{(c, i+ 1,

c.name[i].~name.parent.name)name}

=
⋃

i∈[1,2[
{(c, i+ 1,

c.name[i].~name.parent.name)name}
={(c, 2, "Meat".~name.parent.name)name}
={(c, 2, Class$2.parent.name)name}
={(Column$0, 2, "Food")name}

• With r being the conditional rule

a.is_primary=True implies c in CREATE.class2table[a.~attrs.*parent].pkeys

V (r, xsrc, a, c) =


V (r2, xsrc, a, c)

if xsrc � a.is_primary=True

∅
otherwise

= V (r2, xsrc, a, c)

with r2 being the loose rule:

c in CREATE.class2table[a.~attrs.*parent].pkeys

V (r, xsrc, a, c) ={(class2table[a.~attrs.*parent], c)pkeys}
={(Table$0, Column$0)pkeys}

• With r being the loose rule:

c in CREATE.class2table[a.~attrs.*parent].cols

V (r, xsrc, a, c) ={(class2table[a.~attrs.*parent], c)cols}
={(Table$0, Column$0)cols}

Module af is a functional Alloy module

Let us consider an f-module f : asrc → adst specifying an exogenous or endogenous
transformation. The following lemma proves that valid instances of af have a particular
“shape”, namely, they can be written as the union of the source instance, atoms and
tuples representing the mappings, as well as the union of V -sets of contributing rules.
This lemma constitutes the final stepping stone that will allow us to prove (in Theorem
1) that af is a functional Alloy module.

In the following, we introduce the notation ~x as a shorthand for tuples of the form
(x1, ..., xn)
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Lemma 2. Any valid instance xf : (X,Y, af ) satisfies the equation:

xf = fin(xf ) ∪A ∪
⋃

b∈A,µ∈Mb

F (µ)

where

F (µ) =
⋃

(b,~x,y)µ∈Y

(
{y} ∪ {(b, ~x, y)} ∪

⋃
r∈µ

V (r, fin(xf ), ~x, y)

)

with

• A being the set of singleton atoms typed after the signatures declared in f (CREATE,
and possibly UPDATE and DELETE),

• Mb being the set of mappings declared in the signature typing b,

• (b, ~x, y)µ ∈ xf denoting that tuple (b, ~x, y) ranges over all tuples in xf typed by the
mapping µ with first component equal to b,

• r ∈ µ denoting that rule r is declared in the value predicate associated to µ,

• V (r, fin(xf ), ~x, y) as defined in the previous subsection.

Note that tuples typed by delete mapping are of the form (b, ~x). Moreover no value
predicate is associated to the mapping. This is why we can simply replace Vr by ∅ in the
given equation. Hence we would have for any µ declared in a value DELETE signature:

F (µ) =
⋃

(b,~x)µ∈xf

{(b, ~x)}

Proof:

• fin(xf ) yields a subinstance of xf by construction, in both endogenous and exoge-
nous cases.

• The presence of elements of A in xf is due to a syntactic constraint of F-Alloy.
Indeed each signature declaration is preceded by the keyword one ensuring the
presence of exactly one atom typed by it.

• The rest of the formula is enforced by predicate association constraints stating that
for each signature in af , for each mapping, for each input tuple, an output atom y
should be part of the mapping (hence the addition of tuple (b, ~x, y)). This output
atom y also enters in the composition of tuples conforming to fields declared in the
signature typing y. Those tuples are returned by the V -set of each rule r declared
in the value predicate associated to the mapping. Note that Map Injectiveness,
Map Disjunction and IODisjunction constraints enforce every y to be disjoint from
fin(xf ) and from each other.

• Minimum Output constraints prevent xf from being composed of any other ele-
ments in the case of an exogenous transformation. In the case of an endogenous
transformation, any other element which is not part of a mapping is in fin(xf ).

We have shown by construction that the equation given in Lemma 2 is bound to hold
in any instance of an Alloy module af obtained by translation of an f-module. �
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Theorem 1 (F-modules translate to functional Alloy modules). For any f-module f ,
the translated module af is a functional Alloy module with respect to the transforma-
tion functions fin and fout defined in Section 3.4.3 for both exogenous and endogenous
transformations.

Proof. Let xf and x′f be two instances of af with fin(xf ) = fin(x
′
f ).

Let us take a look at the terms on the right-hand side of the top equation in Lemma
2.

The first term is the same for xf and x′f by the above assumption.
The second term A is the same for xf and x′f .
For the third term select a mapping µ. Note that the set of argument tuples ~x that

satisfy the guard of µ is the same in both cases because fin(xf ) = fin(x
′
f ). Now fix one

such argument tuple ~x. The tuple (b, ~x, y) is the same in xf and x′f . Finally the set of
tuples V (r, fin(xf ), ~x, y) is the same, for any rule r in xf and x′f .

We conclude that xf and x′f are identical. It follows that fout(xf ) = fout(x
′
f ) and

hence af is a functional Alloy module. �

3.5 Interpreting F-Alloy Specifications

We have seen in the previous section that any instance xf of an Alloy module af = T (f)
(with f being an f-module) can be computed from its subinstance fin(xf ) (see Lemma
2). In this section, we present the procedure for performing this computation, a process
we call interpretation.

3.5.1 Definition

We start by introducing the notation used to denote interpretation:

Notation 3 (Interpretation). We denote the set of instances obtained by interpretation
of an f-module f : asrc → adst, given an asrc-instance xsrc, by I(f, xsrc).

Bellow we give an F-Alloy interpretation procedure, showing how I(f, xsrc) can be
computed, in Listing 3.7. The interpretation of rules is given as a subprocedure in Listing
6.2.5.

We note that in the following pseudo-code, the function Eval(AlloyExpression e,

Instance x) represents the method A4Solution.eval provided in the Alloy API1. This
method evaluates an expression e in an A4Solution (object representation of an instance)
x and returns a set of atoms, tuples or a boolean value depending on the type of expression
given as parameter.

We now prove, by the two following lemmas, that such interpretation indeed conforms
to the translational semantics of F-Alloy (defined in Section 3.4).

Lemma 3 (Interpretation Soundness). Consider an f-module f : asrc → adst, and let
xsrc be a valid instance of asrc. The instance returned by I(f, xsrc) is a valid instance of
T (f). Formally: for all natural number s, there exists a natural number s′, such that,

∀xsrc ∈ Z(asrc, s), I(f, xsrc) ⊆ Z(T (f), s′)

Proof. Line 56 of the interpretation pseudocode (Listing 3.7) ensures that the instance
yielded by the interpreter is a valid instance of the Alloy module af yielded by T (f) (by
checking that constraints ϕf of af hold in the returned instance xf ). The lemma thus
trivially holds.

1http://alloy.mit.edu/alloy/documentation/alloy-api/index.html
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1 /*INPUT : an f-module f : asrc → adst and an asrc-instance xsrc
2 *OUTPUT: a valid f-instance xf : (A, T, af ) s.t. fin(xf ) = xsrc or NONE */

3 FUNCTION Interpretation(F-module f, Instance xsrc)
4 WITH xsrc : (Asrc, Tsrc, asrc)
5 LET c = new Atom(CREATE) , u = null , d = null

6 LET asrc = f.getImportedModule(1) //1st open statement

7 WITH asrc = (Ssrc, Fsrc, ϕsrc)
8 LET adst = f.getImportedModule{2) //2nd open statement

9 WITH adst = (Sdst, Fdst, ϕdst)
10 IF adst = none THEN //endogenous case

11 u = new Atom(UPDATE)

12 d = new Atom(DELETE)

13 FI

14 // We will return xf : (A, T, af )
15 LET A = c+ u+ d+Asrc
16 LET T = Tsrc
17 FOR EACH mapping map IN f DO

18 LET sig = signature in which map is declared

19 IF sig = "CREATE" THEN

20 WITH map: "map: X1 -> .. -> Xn -> Y"

21 FOR EACH tuple (xX11 , .., x
Xn
n ) WITH xXii IN Asrc DO

22 IF Eval(guard_map(xX11 , .., x
Xn
n ), xsrc) THEN

23 y = new Atom(Y)

24 A = A+ y
25 T = T + (c, x1, .., xn, y)map

26 FI

27 DONE

28 ELSE IF sig = "UPDATE" THEN

29 WITH map: "map: X -> Y"

30 FOR EACH atom aX in xsrc DO

31 IF Eval(guard_map(aX), xsrc) THEN

32 y = new Atom(Y)

33 A = A+ y
34 T = T + (u, s, y)map

35 FI

36 DONE

37 ELSE IF sig = "DELETE" THEN

38 WITH map: "map: X"

39 FOR EACH atom aX in xsrc DO

40 IF Eval(guard_map(aX), xsrc) THEN

41 T = T + (d, s)map

42 FI

43 DONE

44 FI

45 DONE

46 FOR EACH mapping map IN f DO // CREATE or UPDATE mappings

47 FOR EACH tuple tmap IN T DO

48 WITH t: (b, x1, ..., xn, y) // b is either a create or update atom

49 FOR EACH rule r IN value_map DO

50 T = T+ ProcessRule(r, xf , (x1, ..., xn), y)
51 DONE

52 DONE

53 DONE

54 LET xf = (A, T, af )
55 LET af = (Sf , Ff , ϕf )
56 IF Eval(ϕf , xf) THEN

57 RETURN xf
58 ELSE

59 RETURN NONE

60 END FUNCTION

Listing 3.7: F-Alloy Mapping Interpretation pseudo code
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1 /*INPUT : r the rule to be processed

2 xf instance in which expressions are evaluated

3 (x1, ..., xn) and y parameters given to the value predicate containing the rule

4

5 *OUTPUT: a set of tuples typed by the field assigned in r*/

6 FUNCTION ProcessRule(Rule r, Instance xf, Tuple (x1, ..., xn) , Atom y)

7 LET solution=none // tuples to return

8 IF r IS strict Rule THEN

9 WITH r: "y.f[[expr1]]=expr2"

10 LET val = Eval(expr1,xf)
11 LET val2 = Eval(expr2,xf)
12

13 FOR EACH v IN val DO

14 FOR EACH v2 IN val2 DO

15 solution = solution + (y, v , v2 )f

16 DONE

17 DONE

18 FI

19 IF r IS step THEN

20 WITH r: "all i:Int|range implies y.f[add[i,1]] = expr"

21 LET val = Eval(range,xf)
22 LET t = none // set of tuples

23 FOR EACH v IN val DO

24 LET val2 = Eval(expr,xf)
25 LET i = Eval(add[v,1])

26 FOR EACH v2 In val2 DO

27 t = t + (y, i, v2 )f

28 DONE

29 DONE

30 RETURN t

31 FI

32 IF r IS conditional THEN

33 WITH c:"expr implies r2"

34 IF Eval(expr,xf) = True THEN

35 RETURN ProcessRule(r2, xf, (x1, ..., xn) , y)

36 FI

37 FI

38 IF r IS loose THEN

39 WITH r: "y in image.f[expr]"

40 LET val1 = Eval(image,xf)
41 LET val2 = Eval(expr,xf)
42 FOR EACH v1 IN val1 DO

43 FOR EACH v2 IN val2 DO

44 RETURN (v1,v2,y)f

45 DONE

46 DONE

47 FI

48 END FUNCTION

Listing 3.8: F-Alloy Rule Interpretation pseudo code
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Lemma 4 (Interpretation Completeness). Consider an f : asrc → adst. Any instance xf
obtained by analysis of T (f) can be constructed by interpretation of f given fin(xf ).

Formally: for all natural number s, we have,

∀xf ∈ Z(T (f), s), I(f, fin(xf )) = {xf}

Proof. The interpretation closely follows the structure of the equation given in Lemma 2,
which holds in all valid instances of T (f). Furthermore the ProcessRule function closely
follows the definition of the V -sets given in Lemma 1. By construction, interpretation
will thus yield an T (f)-instance xf in which the equation given in the aforementioned
lemma holds.

3.5.2 Complexity Analysis

Let us analyze the time complexity of interpretation. Let n denote the number of atoms
in xsrc. There are two outer for-loops in the interpretation code. The first outer for-
loop (l.17 –l.45) involves a polynomial number of evaluations (in terms of n) of Alloy
expressions (guard predicates). If we assume that the evaluation of Alloy expressions
can be done in polynomial time in n - which can be shown by structural induction - then
the overall time for the first outer loop will be at most polynomial in n. The second outer
for-loop entails a polynomial number of invocations of the ProcessRule function. We
claim that each call to ProcessRule terminates in polynomial time. To see this, note that
ProcessRule itself evaluates at most a polynomial number of Alloy expressions, hence
yielding our claim. We conclude that interpretation takes at most time polynomial in n.
We thus expect interpretation to be more efficient than analysis. This will be confirmed
empirically in the next section.

3.6 F-Alloy Interpretation Performance

In this section, we provide a first step towards evaluating our approach by answering
through empirical means the following questions:

1. What are the benefits of F-Alloy, performance-wise, compared to Alloy?

2. How does F-Alloy compare to other existing model transformation approaches in
terms of performance?

We note that the following experiments were performed on a machine running an Intel
i5 CPU (3.20Ghz) with 16GB of RAM, and that all the files necessary at the reproduction
of those experiments can be found online1.

3.6.1 F-Alloy vs Alloy

To answer the first question, we compare the time needed by the Alloy analyzer and the
F-Alloy interpreter to compute the CD2RDBMS and CDRefinement transformations. The
manipulations performed to compute the transformations are the following:

First, a sample of CD instances of various size is generated using the Alloy analyzer.
Then for each CD instance x of this sample:

1https://goo.gl/fyvqRg
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Figure 3.13: Time needed by the Alloy analyzer, the F-Alloy interpreter and the ATL
engine to compute the CD2RDBMS transformation, given the same set of random

CD-instances composed of 10 to 50 elements

In the case of Alloy analysis: we first add constraints to the CD module so that for
any instance y of the analyzed transformation, fin(y) = x. We then measure the
time needed by the Alloy Analyzer (configured to use SAT4J) to obtain an instance
of the CD2RDBMS and of the CDRefinement functional Alloy module, respectively.
Functional Alloy modules are obtained by adding constraints to their f-modules
counterparts following the procedures defined in Section 3.4.2.

In the case of F-Alloy interpretation: we measure the time needed by the F-Alloy
interpreter to return an instance given as input the instance x and the CD2RDBMS

and the CDRefinement f-module, respectively.

3.6.2 Comparing F-Alloy with Existing Model Transformations

To answer our second question, we compare the time needed by the F-Alloy interpreter to
compute the CD2RDBMS and CDRefinement transformations to that of ATL (specification
given in Annexe C) and Henshin (specification given in Section 3.2.3), respectively. The
sample of source instances used is the same than the one on which the manipulations of
the previous experiment were carried out.

3.6.3 Results

The time needed by the Alloy analyzer, the F-Alloy interpreter and commonly used trans-
formation engines (ATL engine and Henshin interpreter) to compute the CD2RDBMS
and CDRefinement transformation is plotted in Figures 3.13 and 3.14, respectively. The
measurements were performed on CD-instances containing up to 50 atoms.

Observations: From those measurements, we clearly see that the F-Alloy interpreter
drastically outperforms the Alloy analyzer in the exercise of computing both endogenous
and exogenous model transformations. The F-Alloy interpreter ’s performance is actually
of the same order than those of the ATL engine and the Henshin interpreter hence
providing empirical evidence that the F-Alloy interpreter can be used in practice to
compute model transformations. We observe though that compared to Henshin and
ATL which are mature model transformation languages, the time needed by F-Alloy to
complete its tasks is less “stable” and varies more in function of the source instance’s
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Figure 3.14: Time needed by the Alloy analyzer, the F-Alloy interpreter and the
Henshin interpreter to compute the CDRefinement transformation, given the same set

of random CD-instances composed of 10 to 50 elements

size. This can be explained by the difference of maturity between the tools supporting
those languages and may also be partly attributed to the current lack of effort spent in
optimizing the F-Alloy interpreter’s code.

3.7 Related Work on Model Transformation Languages

We can consider the F-Alloy language as a relational model transformation language.
Relational model transformation languages (such as those given in [83], [75] and [84])
are those where the main concept is that of a mathematical relation [85]. Note that
in F-Alloy the mathematical relations, represented by mappings, are in fact injective
functions. In their pure form (e.g., [83]) relational specifications are not executable. In
other cases (e.g., [75]) they are executable in principle but still lack proper tool support.
In the case of QVTr there are some tools that execute QVTr specifications but none of
them take into account all the features of the QVTr language yet. Note however that the
QVTd project is working on a soon-to-be-finished implementation of QVTr1. This is an
indication that providing execution semantics for a relational language is a non-trivial
task, especially if some semantic inconsistencies exist as is the case for QVTr ( [43]). In
this chapter we have shown that F-Alloy specifications are efficiently executable.

In the case of endogenous transformations, in-place transformations – defining how
to obtain the target model of the transformation via operations to be applied on a given
source model – are often considered as syntactic sugar for their out-place counterparts
– defining how to build the target model from scratch given a source model. To il-
lustrate this trend, the ATL refining mode, which allows the specification of in-place
transformation, is executed as an out-place transformation (source model not modified,
elements copied from source to target model) by the ATL 2004 compiler. Our motivation
to make in-place constructs an integral part of our functional Alloy modules, and con-
sequently of F-Alloy is to directly provide a formal ground to F-Alloy’s in-place syntax,
thus preventing any ambiguities in the semantics of each operation. Another language
that natively supports endogenous in-place transformations is Henshin [82], which was

1https://projects.eclipse.org/projects/modeling.mmt.qvtd
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used in the case study section as well as in the evaluation section and supports a formal
graph transformation semantics.

One distinguishing feature of F-Alloy is that it inherits a formal semantics from
the host language Alloy (although one could argue that the use of pseudo-code in the
translation procedure yields a semi-formal description of the semantics of F-Alloy). Not
all model transformation languages are formal. For instance the previously mentioned
model transformation language ATL [86] was defined semi-formally. A formal semantics
in terms of rewriting logics was later given by [87]. Even if a formal semantics is given
there is in general no guarantee that the implementation does indeed conform to the
semantics. A good illustration of this is the case of the triple graph grammar approach
[74, 88], used in Section 3.2, for which the authors of [89] describe an approach to show
conformance of an existing implementation to the formal semantics.

3.8 Summary

In this chapter we have introduced a new language named F-Alloy enabling the concise
expression of functional Alloy modules and allowing the efficient computation of the
transformation they define through a process we called interpretation.

We have given evidence of F-Alloy benefits, namely conciseness and efficient com-
putation, by experimenting on two case studies, the previously defined CD2RDBMS and
CDRefinement transformations. We have defined the semantics of F-Alloy through
the specification of a translation into Alloy and have shown that the F-Alloy interpreta-
tion conforms to this translation in the sense that interpretation of an f-module (given a
source instance) yields the same instance than the analysis of its semantically equivalent
functional Alloy module (fixing the source instance).

F-Alloy inherits the formal semantics of Alloy, thus making the specified model trans-
formations analyzable. This contrasts with other approaches where a separate formal
semantics has to be defined. It is worth mentioning that Alloy based analysis, though
successfully applied to a plethora of domains – from software architecture [90, 91] to in-
formation security [92,93] –, still lack the ability of producing intuitive visual feedbacks,
necessary to enhance review-based validation experiences. In the next chapter, we pro-
pose a solution to enhance the intuitiveness of those visual feedbacks used in the context
of model transformation specifications debugging.
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Chapter 4

On Model Transformation Validation

In the previous chapter, we have introduced the F-Alloy language as an Alloy-based DSL
aiming at concisely specifying efficiently interpretable model transformations. In this
Chapter, we introduce hybrid analysis, an approach combining F-Alloy interpretation
and Alloy analysis so as to speed up the analysis of F-Alloy specifications. We also pro-
pose a novel approach to the validation of model transformations, namely Visualisation
Based Validation (VBV), relying on hybrid analysis and allowing domain experts to be
part of the transformation validation process. This approach requires the introduction of
a new kind of transformation, namely compound transformations, also introduced in this
chapter. The extension of F-Alloy to support the specification of compound transforma-
tions is defined in Section 4.2. We then coin the notion of hybrid analysis in section 4.3
and introduce Visualization Based Validation in Section 4.4. An illustration of this novel
validation approach is provided in section 4.5, and an evaluation of hybrid analysis per-
formance is given in Section 4.6. Finally, we conclude this chapter by discussing related
work on model transformation validation in Section 4.7 and by providing a summary of
this chapter’s contribution in Section 4.8.

4.1 Validation of F-Alloy Specifications

In the previous chapter, we have introduced F-Alloy, an Alloy-based DSL designed to
enable the concise expression of functional Alloy modules. We have also introduced
the F-Alloy interpreter, which enables, given a source instance the efficient computation
of a target instance. The semantics of F-Alloy being defined through a translation to
Alloy, Alloy-based validation techniques (relying on the Alloy analyzer) can be seamlessly
applied to F-Alloy specifications. Indeed, to validate an f-module, the naive approach
would be add constraints to that f-module to obtain the corresponding functional Alloy
module on which Alloy analysis can be performed. This approach suffers two limitations.

• The domain space in which analysis of functional Alloy modules is performed is
inherently big hence preventing analysis completion in reasonable time. This lim-
itation has already been mentioned (see L.1 Section 2.4.3) when reasoning about
the fitness of Alloy analysis in computing model transformations.

• The visual feedback returned by Alloy analysis can hardly be used to validate the
transformation as its readability is (1) hindered by the amount of elements present
in the visualization and (2) independent of the domain the transformation is used
in.

In this chapter, we address those two limitations as follows:
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• To improve the efficiency of F-Alloy specification analysis, we define an approach,
named hybrid analysis combining Alloy analysis with F-Alloy interpretation.

• To improve the effectiveness of F-Alloy specification analysis, we propose a new
process, called Visualization Based Validation (VBV), which relies on defining a
visualization for those instances returned by hybrid analysis. This allows (1) a
more concise and more intuitive representation of transformation executions and
(2) the definition of domain specific visualization so as to involve domain experts
in the model transformation validation process.

The proposed VBV approach relies on an F-Alloy extension which enables the specifi-
cation of compound transformations, that is, transformations that take a transformation
specification (in our case an f-module) as input. We note that compound transformations
are not to be mistaken with higher-order transformations as introduced in [94], which are
transformations taking a metamodel of a transformation language (e.g., the ATL meta-
model) as source or target metamodel. We do not study higher-order transformations in
this work as the metamodels defining a transformation language can be expressed as an
Alloy module, making their expression natively supported by F-Alloy.

We note that solely exogenous transformations are used to illustrate this chapter
for conciseness sake. Nevertheless all contributions, namely compound transformations,
hybrid analysis and VBV, can also be applied to endogenous transformations.

4.2 Extending F-Alloy to Specify Compound Transforma-
tions

F-Alloy, as defined in previous chapter, only supports the specification of transformations
having as source and target modules Alloy modules. In this section, we extend F-Alloy to
allow the specification of compound transformations, having f-modules as source and/or
target modules. This extension will, in addition to enabling the reuse of existing model
transformation specifications, constitute the cornerstone of a new approach to model
transformation validation (see Sect. 4.4).

4.2.1 Syntactic Extension

Fig. 4.1, from left hand side to right hand side, conceptually summarizes the conse-
quences of the syntactic change brought to F-Alloy. This syntactic change is realized by
modifying the ImportWF well-formedness constraint from the F-Alloy definition given

Figure 4.1: Extending F-Alloy (from left to right) to support both basic and compound
f-modules
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in Section 3.3.4. We give in the following the refined version of the ImportWF well-
formedness constraint highlighting, using strikeout and boldfaced fonts, parts that are
removed from and added to the constraint, respectively:

ImportWF (reworked) In the fmodule rule, there is exactly one import occurrence in
the case the f-module defines an endogenous transformation and exactly two import
occurrences in the case the f-module defines an exogenous transformation. In these
import rules, qualName should refer to a module being either expressed in
Alloy or in F-Alloy an Alloy module. In the case of an exogenous transformation,
the two referred Alloy modules should be distinct. Those modules are named source
module and target module, respectively (as they represent the source and target
metamodels of the specified transformation).

F-modules and Alloy modules are now unified under a common supertype referred
to as modules. In the following, we keep using a and f to range over Alloy modules
and f-modules, respectively, and use m to range over both of them m. An f-module
f : msrc → mdst can thus either be a basic or compound f-module.

We now distinguish two kinds of f-modules:

Basic f-modules are f-modules specifying a model transformation whose source and
target modules are both Alloy modules.

Compound f-modules are f-modules specifying a compound model transformation,
i.e., whose source and/or target modules are themselves f-modules.

Updating the ImportWF constraints drives us to update the translational semantics
of F-Alloy so as to preserve the intended meaning of the imported f-module.

4.2.2 Semantic Extension

In the previous chapter, we have defined a translational semantics to F-Alloy, defining
how to transform a basic f-module f : asrc → adst to a plain Alloy module af . We recall
that this translation is denoted by T (•) and that it amounts to the systematical addition
of constraints following the templates identified in Section 3.4.2.

This translational semantics needs to be adapted to successfully define the intended
meaning of compound f-modules. To avoid ambiguity, from now on, we refer to the
translational semantics previously defined for basic f-modules (denoted T (•)) as the
basic translation.

Definition 9 (Extended Translational Semantics). Let [•]T denote the extended seman-
tics. Given a module m – m being an Alloy module, basic f-module or compound f-module
– [m]T denotes the Alloy module giving its meaning to m. Depending on whether m is
an Alloy module, a basic f-module or a compound f-module, we define:

[f : msrc → mdst]T
def
= T (f : [msrc]T → [mdst]T )

[a]T
def
= a

Briefly, in case m is a basic f-module, the basic translation (T (•)) is applied. In case
m is a compound f-module, the imported modules need to be translated recursively (by
applying [•]T ) prior to applying the basic translation. Based on this extended transla-
tional semantics, we define instances of a module m as follows:
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Definition 10 (Module Instances). Given a modulem, an instance x is a (valid) instance
of m if and only if x is a (valid) instance of [m]T . We then call x an m-instance.

We recall the existence of transformation functions fin and fout yielding the source and
target instance of a transformation defined by a module m, given an m-instance. Those
transformations are defined for exogenous and endogenous transformations in Section
3.4.3 and 3.4.3, respectively. Let us keep in mind for the remainder of this section that
the function fin has the following property:

Lemma 5 (fin Property). Given an f-module f : msrc → mdst, a scope s and an f -
instance x ∈ Z([f ]T , s) , the following property holds:

fin(x) ∈ Z([msrc]T , s)

Proof. The computation of fin(x) consists, in both the case of exogenous (defined in
Section 3.4.3) and endogenous (defined in Section 3.4.3) transformations, in removing
elements from x. Thus, it holds by construction that any instance yielded by fin(x) is a
sub-instance of x.

The F-Alloy interpretation procedure, already defined in Section 3.5 can be used as
is1 on compound f-module while still being sound and complete w.r.t. F-Alloy’s refined
translational semantics.

We provide a uniform definition of soundness and completeness for (basic and com-
pound) f-modules in the following lemma.

Lemma 6 (Soundness and Completeness of Compound f-module interpretation). The
interpretation of an f-module f : msrc → msrc is (1) sound and (2) complete. That is,
for all natural number s, there exists a natural number s′, such that:

(1)
∀xsrc ∈ Z([msrc]T , s), I(f, xsrc) ⊆ Z([f ]T , s′)

(2)
∀xf ∈ Z([f ]T , s), I(f, fin(xf )) = {xf}

Proof. Soundness has been proven for the interpretation of basic f-modules in Lemma 3.
Concerning the soundness of compound f-module interpretation, occurrences of af in the
interpretation pseudo code (Listing 3.7) denote the Alloy module giving its meaning to
f . The translational semantics of F-Alloy being redefined, it is understood that in the
case of f being a compound f-module, af = [f ]T and not T (f). The check performed on
line 56 of the interpretation pseudo code thus also effectively ensures the soundness of
compound f-module interpretation.

Completeness has been proven for the interpretation of basic f-modules in Lemma 4
by showing that the interpretation follows the constraints defined in the basic semantics.
Interpretation following the exact same process for compound model transformation, it
still follows those constraints. Completeness thus also holds for compound f-modules.

Interpretation working for both basic and compound f-modules, we use the same
notation (Notation 3) to denote the interpretation of basic f-modules and compound
f-modules.

1Considering the pseudocode given in Listing 3.7, the only adaptation required by the interpretation
of compound f-module is to replace f : asrc → adst by f : msrc → mdst so that the imported modules
can now also be f-modules )
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4.3 Hybrid Analysis of (Compound) Model Transformations

In the previous section, we have introduced the extended semantics of F-Alloy through the
definition of the translation function [•]T . With this translation yielding an Alloy module,
it is possible to generate the set of instances of an f-module for validation purposes. The
straightforward, but time consuming, way of obtaining this set of instances consists in
first translating the f-module to the corresponding augmented module, then performing
Alloy analysis on the latter.

In this section, we propose a more efficient approach to the problem of instance gener-
ation. Instead of relying on pure SAT-based analysis like the Alloy analyzer, we propose
a hybrid strategy that combines both SAT-based analysis and F-Alloy interpretation.

4.3.1 Definition

We recall that the goal of this section is to define an efficient way to obtain instances con-
forming to f-modules for validation purposes. We achieve this goal by proposing a hybrid
strategy combining Alloy analysis with the previously introduced F-Alloy interpretation.
We call this new hybrid approach hybrid analysis and define it as follows:

Definition 11 (Hybrid Analysis). We denote the set of instances obtained by hybrid
analysis of a module m within a scope s by the mathematical function H(m, s), defined
as follows:

H(m, s) =

Z(m, s) if m is an Alloy module⋃
xsrc∈H(msrc,s)

I(m,xsrc) if m is an f-module

Briefly, given a module m, if m is an f-module from msrc to mdst, the set of m-
instances is obtained by first applying the hybrid analysis on msrc, then applying the
F-Alloy interpretation on m for each instance of msrc obtained previously. Otherwise, if
m is a plain Alloy module, the set of m-instances is obtained by applying Alloy’s analysis
to m.

We demonstrate the correctness of the hybrid analysis strategy by the following the-
orem, which basically states that the result obtained by applying the hybrid analysis is
equivalent to the result obtained by applying Alloy’s analysis.

Theorem 2 (Correctness of Hybrid Analysis). Given a module m and its corresponding
augmented module [m]T , for every natural number s, there exists another natural number
s′, such that H(m, s) = Z([m]T , s

′).

Proof. By Definition 11 the hybrid analysis of an f-module is a recursive process, i.e., in
case of an hybrid analysis of a compound f-module from msrc to mdst a hybrid analysis of
msrc is performed first. Knowing that the import hierarchy is acyclic (property inherited
from Alloy), we prove the correctness of the above theorem by structural induction.

• If m is a plain Alloy module, then:

1. H(m, s) = Z(m, s) (Definition 11)
2. m = [m]T (Definition 9)
3. H(m, s) = Z([m]T , s) (1. and 2.)
4. the theorem holds (3.)

• If m is a basic f-module from asrc to adst, then:
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1. H(m, s) =
⋃

xsrc∈H(asrc,s)

I(m,xsrc) (Definition 11)

2. H(asrc, s) = Z(asrc, s) (Definition 11)

3. H(m, s) =
⋃

xsrc∈Z(asrc,s)

I(m,xsrc) (1. and 2.)

4. ∀xsrc ∈ Z(asrc, s), I(m,xsrc) ⊆ Z([m]T , s
′) (equation (1) of Lemma 6)

5. H(m, s) ⊆ Z([m]T , s
′) (3. and 4.)

6. ∀x ∈ Z([m]T , s
′), {x} = I(m, fin(x)) (equation (2) of Lemma 6)

7. Z([m]T , s
′) ⊆

( ⋃
x∈Z([m]T ,s′)

I(m, fin(x))

)
(6.)

8.

( ⋃
x∈Z([m]T ,s′)

{fin(x)}

)
⊆ Z(asrc, s

′) (Lemma 5 )

9.

( ⋃
x∈Z([m]T ,s′)

{fin(x)}

)
⊆

( ⋃
xsrc∈Z(asrc,s′)

{xsrc}

)
(8.)

10.

( ⋃
x∈Z([m]T ,s′)

I(m, fin(x))

)
⊆

( ⋃
xsrc∈Z(asrc,s′)

I(m,xsrc)

)
(9.)

11. Z([m]T , s
′) ⊆

( ⋃
xsrc∈Z(asrc,s′)

I(m,xsrc)

)
(7. and 10.)

12. Z([m]T , s
′) ⊆ H(m, s′) (3. and 11.)

13. H(m, s) = Z([m]T , s
′) (5 and 12.)

14. the theorem holds

• If m is a compound f-module from msrc to mdst, then:

1. H(m, s) =
⋃

xsrc∈H(msrc,s)

I(m,xsrc) (Definition 11)

2. H(msrc, s) = Z([msrc]T , s
′) (induction hypothesis)

3. H(m, s) =
⋃

xsrc∈Z([msrc]T ,s′)

I(m,xsrc) (1. and 2.)

4. let [msrc]T = asrc ([msrc]T being an Alloy module).

5. H(m, s) =
⋃

xsrc∈Z(asrc,s′)

I(m,xsrc) (3. and 4.)

6. The equation in 5. is the same than the one given in point 3. of the reasoning
for basic f-module. Hence, following the same reasoning as for basic f-modules,
the theorem holds for compound f-modules.

We have proven, case by case, that the hybrid analysis of any module, independently
of its nature, is equivalent to the Alloy analysis of its corresponding augmented
module (in the sense that it produces, for given scopes, the same set of instances).
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f1

a11 a12

f2

a22

fn

an2

......

Figure 4.2: Import Hierarchy of an f-module

4.3.2 Complexity Analysis

Compared to pure Alloy based analysis, hybrid analysis substantially reduces compu-
tational complexity. Let fn be an f-module with its transformation hierarchy depicted
in Fig. 4.2. Instead of analyzing [fn]T using the Alloy Analyzer, which is very resource
consuming especially in case of big scopes, one only needs to analyze the left-most leaf
Alloy module a11 and all the rest can be built by applying the F-Alloy interpretation to
f1, . . . , fn, each taking polynomial time (see Section 3.5.2). In addition, the problem of
finding an optimal scope for a given analysis is also reduced accordingly: one only needs
to define a scope for a11 instead of fn which is much more complex. More specifically,
the time complexity of hybrid analysis is given below.

Proposition 1 (Hybrid Analysis Complexity). The time needed for hybrid analysis of an
f-module f from msrc to mdst is a polynomial function of the time needed for the hybrid
analysis of msrc.

Proof. Let t(msrc) denote the time needed for the hybrid analysis of msrc and let t(f)
denote the time needed for the hybrid analysis of f . From Definition 11 it follows that:

t(f) ≤ c ·
∑

xsrc∈H(msrc,s)

tI(msrc, xsrc)

where tI(msrc, xsrc) is the time for the interpretation of f on input xsrc and c is a constant.
By the results of the complexity analysis performed in Section 3.5.2, and the fact that
interpretation is independent of the nature of the imported modules, there exists a poly-
nomial p such that tI(msrc, xsrc) ≤ p(|xsrc|) where |xsrc| is the size of instance xsrc. The
instance xsrc being obtained from hybrid analysis of msrc, it follows that |xsrc| ≤ t(msrc).
Therefore:

t(f) ≤ c ·
∑

xsrc∈H(msrc,s)

p(t(msrc))

Since |H(msrc, s)| ≤ t(msrc), we conclude that:

t(f) ≤ c · t(msrc) · p(t(msrc))

thus implying the proposition.

4.4 Visualization-Based Validation of Model Transforma-
tion

In the previous section, we have introduced hybrid analysis as a way to efficiently obtain
the set of all instances of a given f-module. The fact that hybrid analysis can be applied
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to compound transformations of any depth paves a new way to the validation of F-
Alloy transformations, namely Visualization-Based Validation (VBV), complementing
the other existing model transformation validation techniques [95].

Given a transformation f specified in F-Alloy, the VBV of f relies on the definition
of a compound transformation called f_viz from f to VLM as depicted in Fig. 4.3, to
give a domain specific visualization to f -instances.

m1 m2

f_viz

VLMf

Figure 4.3: Import Hierarchy of f_viz

VLM, standing for Visual Language Metamodel, is an Alloy module (provided in
Annexe D) defining a set of graphical concepts such as shapes (e.g., RECTANGLE,ELLIPSE),
colors, layouts, and arrows/lines allowing to connect shapes (i.e., CONNECTOR). A tool, that
we will present in the next chapter, can be used to parse a VLM-instance and render
accordingly the graphical representation it denotes. We note that in the following, given
a module m (specified in Alloy or F-Alloy), the notation m_viz denotes a transformation
from m to VLM that provides a domain specific visualization to m-instances.

In Fig. 4.4, we provide an iterative process prescribing an effective application of
VBV to a model transformation f : msrc → mdst. We note that two actors are part of
this process:

• The Domain Expert is acquainted with what is modeled by the source and target
metamodel of the transformation to be validated and knows which target model
should the transformation yield for a given source model.

• The Transformation Engineer is an expert in Alloy and F-Alloy and implements the
transformation f following his/her understanding of the transformation as conveyed
by the domain expert.

The first step of this process is to define the f_viz transformation. It is composed
of a set of mappings defining (1) the domain specific visualization of msrc and mdst, and
(2) the visualization of applications of mappings declared in f – e.g., traces relating msrc
elements to mdst elements.

For (1), the domain expert provides instructions on how msrc and mdst instances
should be represented to the transformation engineer. The transformation engineer then
specifies the transformations msrc_viz (step 1.1) and mdst_viz (step 1.2). Note that
those transformations might already exist under certain circumstances (e.g., a transfor-
mation from (or to) msrc (or mdst) has already been validated using VBV).

For (2), we propose a default visualization of traces: dashed arrows with distinct
colors linking elements of msrc to the elements of mdst. This default visualization can be
automatically defined by the following rules :
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Figure 4.4: Visualization-Based Validation (VBV) of the model transformation
f : msrc → mdst

• For each mapping µi : X → Y of f , a mapping vi : X → Y → CONNECTOR is added
to the f_viz transformation.

• The guard predicate associated to mapping vi specifies that only pairs of elements
of X and Y that are part of mapping µi yield a new CONNECTOR.

pred guard_vi(x:X,y:Y){
CREATE->x->y in µi

}

• The value predicate associated to mapping vi specifies that each created CONNECTOR

has as source the graphical representation of x as defined in msrc_viz and as target
the graphical representation of y as defined in mdst_viz. Moreover the CONNECTOR

is labeled and colored accordingly to indicate that it represents a trace of µi.

/* mapping XtoViz (resp. YtoViz) is defined in msrc_viz (resp. mdst_viz)

and provide a graphical representation of x (resp. y) */

pred value_vi(x:X,y:Y,c:CONNECTOR){
c.source = CREATE.XtoViz[x]

c.target = CREATE.YtoViz[y]

c.color = RED

c.label = "µi"
}

Once f_viz is defined, one has to decide how VBV will be performed (step 2). VBV
can be performed either (1) on concrete test case, or (2) on random instances within a
finite scope.

In case of (1), the transformation engineer adds constraints to msrc so that the only
possible msrc-instances satisfying those constraints are the ones described in the test
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cases (step 3). Those constraints can be systematically generated given the test cases to
enforce (see an example given in Listing 4.3).

In case of (2), the transformation engineer provides a scope to elements of msrc (or
the left-most leaf Alloy module in the import hierarchy of msrc in case msrc is also an
f-module). Note that the effectiveness of this case is based on the small scope hypothesis
[96] claiming that most of design errors can be reproduced in small instances.

Once the msrc module has been constrained as per step 3, a hybrid analysis is per-
formed on f_viz (step 4), resulting in the production of the set of f_viz-instances whose
msrc-sub-instances satisfy those constraints.

VLM-sub-instances present in the obtained f_viz-instances are then rendered accord-
ingly by the Lightning tool (step 5) to produce a visualization similar to those depicted
in Fig. 4.7-4.10.

The visualization of those instances is then shown to the domain expert for validation.
If it hinders the comprehension of a given instance, the domain expert can ask f_viz
to be refined (step 6). If on the contrary the visualization is sufficiently intuitive, the
domain expert carries on his review. As soon as an anomaly is found (step 7), it is
communicated to the transformation engineer who refines f accordingly (step 8). We note
that the visualization of traces can also help the transformation engineer in determining
which mapping is faulty. Any structural changes brought during the refinement of f
(i.e., changes in the mapping names and types) should be propagated to f_viz (step
9). Hybrid analysis can then once again be applied on f_viz for the domain expert to
validate the changes brought to f by the transformation engineer (back to step 4). If
no anomalies are found after reviewing the newly produced instances, the domain expert
can request (step 10) another iteration of VBV (on other test cases or using a different
scope) or accept the transformation as valid (if a certain degree of confidence has been
reached).

In the next section, we show how this process can be applied to validate the CD2RDBMS
transformation.

4.5 Application of VBV to CD2RDBMS

In this section, we exemplify the process introduced previously. We show how we validate
an F-Alloy implementation of the benchmark CD2RDBMS transformation using VBV.

4.5.1 CD2RDBMS Specification and First F-Alloy Implementation

In this section, we are interested in providing a correct F-Alloy implementation of the
CD2RDBMS transformation whose requirements are given in [2]. Compared to the
description of the CD2RDBMS transformation given in Section 3.2, the requirements
given in [2] encompass the notion of class persistence1 which, as we will see, might
hinder the good understanding of the said requirements.

In the remainder of this section we focus on the validation of the most error prone
mapping , namely association2column, that defines how associations are to be trans-
formed.

The statements, taken from [2], that are relevant to the implementation of this map-
ping are the following:

1It is thus assumed in this section that a field is_persistent:Bool is declared in the signature Class
of Listing 3.1 to represent this detail
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1 module CD2RDBMS

2 open CD

3 open RDBMS

4

5 one sig CREATE{

6 class2table: Class -> Table,

7 attribute2column: Attribute -> Column,

8 association2column: Association -> Attribute -> Column,

9 association2FKey: Association -> FKey

10 }

11 pred guard_association2column(ass:Association,att:Attribute){

12 ass.src.is_persistent = True and att.is_primary = True and att.~attrs in ass.dest

13 }

14 pred value_association2column(ass:Association , att:Attribute, c:Column){

15 c.dataType = (att.type = STRING implies Text else Number)

16 c.label[0] = ass.name

17 all i:Int| i >= 0 and i<= sub[#(ass.dest.^(~src.dest)),1] implies c.label[add[i,1]] = ( c.label[i

].~name.dest != att.~attrs and c.label[i] != none implies c.label[i].~name.dest.~src.name

else none)

18 c.label[#(ass.dest.*(~src.dest))] = att.name

19 c in CREATE.class2table[ass.src].cols

20 ass.dest.is_persistent = False implies c in CREATE.class2table[ass.src].pkey

21 att.~attrs.is_persistent = False or att.is_primary = True implies c in CREATE.association2FKey[ass

].columns

22 }

Listing 4.1: Extract of the CD2RDBMS transformation to be validated using VBV

Rule 1 “... The resultant table (obtained from a persistent class) should contain ... one
or more columns for every association for which the class is marked as being the
source ..."

Rule 2 “... for each association whose dst is such a class (i.e., for each association
whose destination class is non-persistent), each of the classes attributes should be
transformed as per rule 3. The columns should be named name_transformed_attr

where name is the name of the association in question, and transformed_attr is
a transformed attribute ... The columns will be placed in tables created from
persistent classes."

Rule 3 “Attributes whose type is a primitive data type (e.g. String, Int) should be
transformed to a single column whose type is the same as the primitive data type."

Rule 4 “Attributes whose type is a persistent class (resp., association whose dst is a
persistent class) should be transformed to one or more columns, which should be
created from the persistent classes’ primary key attributes. The columns should be
named name_transformed_attr where name is the attributes’ name. The resultant
columns should be marked as constituting a foreign key, the FKey element created
should refer to the table created from the persistent class. (The columns will be
placed in tables created from persistent classes.)"

Rule 5 “Attributes whose type is a non-persistent class (resp., association whose dst is
a non-persistent class) should be transformed to one or more columns as per rule 2.
Note that the primary keys and foreign keys of the translated non-persistent class
need to be merged in appropriately, taking into consideration that the translated
non-persistent class may contain primary and foreign keys from an arbitrary number
of other translated classes."

Listing 4.1 shows the first attempt of the transformation engineer in implementing
the association2column mapping, namely prior to VBV.
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The guard_association2column predicate enforces:

Line 14: for each association whose src class is persistent (as per Rule 1) and for each
primary attribute att contained in its dst class the creation of a column (according
to Rule 4, resp. Rule 5, if the dst class is persistent, resp. non-persistent).

The value_association2column predicate enforces:

Line 17: the type of the created column to be equivalent to the type of att (Rule 3),

Line 18-20: the name of the created column to follow Rules 2 and 4,

Line 21: the placement of the created column in the table representing the src class of
ass (Rule 2 and 4),

Line 22: the created column to become a primary key of its table if the dst class is
non-persistent (Rule 5),

Line 23: the created column to be part of a foreign key that refers to the table repre-
senting dst class if dst class is persistent and att is primary (Rule 4).

With the CD2RDBMS transformation defined, we now show how to validate it using
VBV.

4.5.2 Definition of CD2RDBMS_viz

CD RDBMS

CD2RDBMS_viz

VLMCD2RDBMS

Figure 4.5: Import Hierarchy of CD2RDBMS_viz

According to the process given in Fig. 4.4, when applying VBV to CD2RDBMS the
first step is the definition of a visualization for CD2RDBMS. This visualization is ex-
pressed, as seen earlier in Sect. 4.4, by a compound f-module called CD2RDBMS_viz
(depicted in Fig. 4.5) from CD2RDBMS to an Alloy module called VLM (Visual Lan-
guage Model) that defines the set of graphical concepts recognized by the supporting
tool (i.e., Lightning). To this end, a set of mappings defining the visualization for CD
and RDBMS is first implemented (in CD_viz and RDBMS_viz, respectively) by the
transformation engineer following the domain experts guidance. The set of mappings
defining the default visualization of traces (as described in Sect. 4.4) is then added to
obtain the final CD2RDBMS_viz f-module.

We provide in Listing the CD_viz f-module in Listing 4.2 to illustrate how such a
visualization is defined.

The mapping class2Rect defines that each class is represented by a RECTANGLE. This
RECTANGLE contains a TEXT, defined by the class2Txt mapping, carrying the name of
the class it represents as well as a “persistent” stereotype if that class is persistent. Each
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module CD_viz

open CD

open VLM

one sig CREATE{

class2Rect: Class -> RECTANGLE,

class2Txt: Class -> TEXT,

attr2Txt: Attribute -> TEXT,

ass2Connector: Association -> CONNECTOR,

}

pred guard_class2Rect(c:Class){}

pred value_class2Rect(c:Class,r:RECTANGLE){

r.layout=VERTICAL_LAYOUT

r.composedOf[0]=CREATE.class2Txt[c]

}

pred guard_class2Txt(c:Class){}

pred value_class2Txt(c:Class,t:TEXT){

t.textLabel[0]=c.name

t.textLabel[1]=(c.is_persistent=False

implies none else "<<Persistent>>")

t.color=BLACK

t.isBold=True

}

pred guard_attr2Txt(a:Attribute){

a.type in PrimitiveDataType

}

pred value_attr2Txt(a:Attribute,t:TEXT){

t.textLabel[0]=a.name

t.textLabel[1]=":"

t.textLabel[2]=a.type

t.color= (a.is_primary=False implies

BLACK else RED)

t in CREATE.class2Rect[a.~attrs].

composedOf[1]

}

pred guard_ass2Connector(a:Association){}

pred value_ass2Connector(a: Association ,c:

CONNECTOR){

c.connectorLabel[0]=a.name

c.source=CREATE.class2Rect[a.src]

c.target=CREATE.class2Rect[a.dest]

c.color=RED

}

Listing 4.2: The CD_viz f-module
defining how CD instances are to be

graphically rendered

Figure 4.6: Example of Class Diagram that can be given as input to the CD2RDBMS
Transformation

attribute is represented by a TEXT in the RECTANGLE representing the class containing it,
as defined by the attr2Txt mapping. This TEXT is of the form “att:type” where att

is the name of attribute and type its type. Furthermore, TEXTs representing primary
attributes are highlighted in red. Finally, the ass2Connector mapping defines that each
association is represented by a CONNECTOR from the RECTANGLE representing its source
class to the RECTANGLE representing its destination class.

4.5.3 Example of VBV Iteration Using a Specific Test Case

In the first iteration, we use the example provided in [2] as test case. More specifically, the
class diagram depicted in Fig. 4.6 is used as input to test the behavior of the CD2RDBMS
transformation.

To enforce the use of this input, additional constraints are appended to the original
CD module (introduced in Listing 3.1). Those constraints are given in Listing 4.3, where,
e.g., one class (Class1) is constrained to be named "Order", to be persistent, and to have
a primary attribute named "order_no" of type INT. After constraining the CD module
an hybrid analysis on CD2RDBMS_viz is performed. Following Definition 11, the hybrid
analysis of CD2RDBMS_viz starts by applying Alloy analysis on CD, yielding the CD-
instance depicted in Fig. 4.6. It then performs an F-Alloy interpretation on CD2RDBMS
given the CD-instance, yielding the corresponding CD2RDBMS-instance. Finally, it
builds a CD2RDBMS_viz-instance from the interpretation of CD2RDBMS_viz given
the CD2RDBMS-instance.
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// ASSOCIATIONS

one sig Ass1 extends Association{}{

name="customer"

src=Class1

dest=Class2

}

one sig Ass2 extends Association{}{

name="address"

src=Class2

dest=Class3

}

// CLASSES

one sig Class1 extends Class{}{

name="Order"

is_persistent=True

attrs=Attr1

}

one sig Class2 extends Class{}{

name="Customer"

is_persistent=True

attrs=Attr2

}

one sig Class3 extends Class{}{

name="Adress"

is_persistent=False

attrs=Attr3

}

// ATTRIBUTES

one sig Attr1 extends Attribute{}{

name="order_no"

is_primary=True

type=INT

}

one sig Attr2 extends Attribute{}{

name="name"

is_primary=True

type=STRING

}

one sig Attr3 extends Attribute{}{

name="addr"

is_primary=True

type=STRING

}

Listing 4.3: Alloy snippet appended
to the CD module to enforce the

testcase given in [2]

After hybrid analysis this CD2RDBMS_viz-instance is rendered graphically as shown
in Fig. 4.7 and submitted to the domain expert for validation.

The domain expert finds that the transformation is not behaving properly: the
columns in the foreign key FKEY do not cover all the primary keys of the Customer

table. Communication between domain expert and transformation engineer leads to the
conclusion that Rule 4 is ambiguous. More specifically, the use of the terms “primary
key attribute" was unclear: the transformation engineer understood from Rule 4 that a
column is to be created for each primary attribute of the persistent dst class while the
domain expert meant that a column is to be created for each primary key in the table
corresponding to the persistent dst class.

To resolve this error, the domain expert rephrases Rule 4 and the transformation
engineer accordingly refines the F-Alloy guard predicate in line 14 as follows:

14 ass.src.is_persistent=True and att.is_primary=True and

(att in (ass.dest.*(~src.dest & Class ->False.~is_persistent)).attrs)

Listing 4.4: F-Alloy Rule Interpretation pseudo code

Columns are now not only created for each primary attribute of the dst class but also
for all the other primary attributes which would lead to the creation of primary keys in
the table corresponding to the dst class.

Hybrid analysis is performed again on CD2RDBMS_viz after this modification. This
time, the correct instance is produced as shown in Fig. 4.8.
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Figure 4.7: Visualization of a bug in the computation of the CD2RDBMS
transformation: FKey missing for primary key columns obtained from associations.

Figure 4.8: Visualization of the case depicted in Fig.4.7 after refinement of the
CD2RDBMS transformation.
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Figure 4.9: Visualization of a bug in the computation of the CD2RDBMS
transformation: non-primary attribute of non persistent classes are lost in the

transformation

Figure 4.10: Visualization of the case depicted in Fig.4.9 after refinement of the
CD2RDBMS transformation.
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4.5.4 Example of VBV Iteration Using Random Instance Generation

A second iteration of VBV is then performed. This time, the domain expert requests to
add random CD elements to the previous test case to see how the transformation would
perform. The transformation engineer hence alters constraints in the CD module to fulfill
this request.

A hybrid analysis of CD2RDBMS_viz is then performed and resulting instances are
rendered and provided to the domain expert. Figure 4.9 depicts one of those instances
containing an anomaly found by the domain expert, namely, there is no column corre-
sponding to the zip_code attribute (emphasized in the visualization by the absence of
connector originating from zip_code).

The lack of corresponding column for an attribute of a non-persistent dst class –
zip_code is an attribute of the non persistent class Address which is the destination of
the association address – is a violation of Rule 2. After discussion, the transformation
engineer realizes that he mistakenly applied Rule 4 to the case of non-persistent classes,
ignoring completely the directives of Rule 2. To fix this error, the transformation engineer
refines the guard predicate guard_association2column. This time, two distinct cases
are implemented, to cater for the two rules, respectively. This refinement leads to the
following modification of line 14:
14 (ass.dest.is_persistent=False implies att in ass.dest.attrs)

and

(ass.dest.is_persistent=True implies

(att in (ass.dest.*(~src.dest & Class ->False.~is_persistent)).attrs and att.is_primary=True))

Listing 4.5: F-Alloy Rule Interpretation pseudo code

This new version of the guard now checks first whether the dst class of association ass

is persistent or not:

• In case the association dst class is persistent, the behavior stays the same as in
previous version: a column is created for each primary attribute which would lead
to the creation of primary keys in the table corresponding to the dst class (Rule
4).

• In case the association dst class is not persistent, a column is now created for each
attribute of the dst class (Rule 2).

Hybrid analysis is performed again on CD2RDBMS_viz after this modification yield-
ing a set of instances which do not reproduce this error.

In this set, the instance containing the same class diagram as the one shown in Fig. 4.9
is shown in Fig. 4.10.

4.6 Evaluation of Hybrid Analysis

Alloy analysis can be used throughout model driven software development processes for
validating models, where instances of models are automatically generated and reviewed
for potential errors. Such a scenario can be found in case of agile software development
where the designer incrementally improves his models after spotting errors in instances
obtained by analysis [45].

In this section, we evaluate the efficiency of hybrid analysis by comparing its perfor-
mance with Alloy analysis on two f-modules introduced in previous sections: the basic
transformation from class diagrams to relational databases (i.e., the CD2RDBMS exam-
ple), and the compound transformation CD2RDBMS_viz that defines a visualization for
CD2RDBMS.

81



4.7. RELATED WORK ON MODEL TRANSFORMATION VALIDATION

Alloy
analysis
Scope

CD CD2RDBMS CD2RDBMS_viz

Alloy
Analysis

Alloy
Analysis

Hybrid
Analysis

Alloy
Analysis

Hybrid
Analysis

5 26 1720 95 3078 229
10 53 7251 181 15862 386
15 76 24671 173 ∞ 337
20 1844 ∞ 1918 ∞ 2053

Table 4.1: Comparative table: Time needed in milliseconds to find the first instance

According to Definition 11, the hybrid analysis of module CD2RDBMS_viz performs
as follows:

1. CD2RDBMS_viz being an f-module, hybrid analysis is performed on the CD2RDBMS
module.

(a) the CD2RDBMS module being an f-module, hybrid analysis is performed on
the CD module.

(b) the CD module being an Alloy module, CD-instances are generated using the
Alloy analyzer.

(c) For each instance obtained in step b, an interpretation of CD2RBDMS is
performed – resulting in a set of CD2RDBMS-instances.

2. For each instance obtained in step c, an interpretation of CD2RDBMS_viz is per-
formed – resulting in a set of CD2RDBMS_viz-instances.

Note that steps (a) to (c) also correspond to the hybrid analysis of CD2RDBMS.
Time measurements of Alloy and hybrid analysis applied to the CD2RDBMS and

CD2RDBMS_viz modules, as well as the time needed for the Alloy analysis of the CD
module can be found in Table 4.1 (times given in ms). Note that the symbol ∞ has
been used to mark operations that failed to finish. All experiments were carried out on a
computer with a Quad-Core Intel i7 CPU and 8 GB memory. Measurements show that
the time needed to perform an Alloy analysis increases substantially with the scope and
the size of the model. They also show that the time needed to find the first instance of
module CD2RDBMS and of module CD2RDBMS_viz using hybrid analysis, is of the
same order of magnitude as the time needed to find the first instance of the CD module,
for a given scope. These observations provide us with positive support for Proposition 1.

Note that the hybrid analysis of CD2RDBMS and CD2RDBMS_viz surprisingly took
less time to complete for a scope of 15 than for a scope of 10. This is due to the fact that
the time needed for interpretation to complete is proportional to the size of the instances
given to the interpreter and to the fact that the first instance obtained by the analysis
of CD with a scope of 10 was bigger than the one obtained with a scope of 15.

4.7 Related Work on Model Transformation Validation

On the Improvement of Alloy Analysis Performances: Our work takes its root
in the general problem of speeding up the analysis of Alloy specifications. Different
approaches have been proposed for this in the literature. To understand these approaches,
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we need to recall how the Alloy Analyzer works. The analysis is based on transforming
the Alloy model into a propositional formula that is fed into an off-the-shelf SAT solver.

Alloy analysis can be optimized by improving the transformation from Alloy model
to propositional formula. In [97] traditional compiler optimizations are used to improve
this transformation, resulting in some cases in time reductions of an order of magnitude.

A different class of optimization techniques is based on applying slicing techniques
to Alloy models. In [98] a sub model is identified, called a base slice, that is simpler and
more efficiently solvable. Such a base slice can either be proven unsolvable, or extended in
a systematic fashion into a full solution. This second approach is closer to our proposed
approach: in our case the extension of a partial instance to a complete instance is done
via interpretation, while in [98] it is done using a constrained analysis (guaranteeing that
a solution for the whole model satisfies the constraints of the base slice).

Yet another type of approach, described in [99], proceeds by annotating Alloy models
with meta-information that allows to use domain-specific solvers (e.g., String and Integer
solvers) to solve sub-models and combine the output of those solvers with the SAT-based
back-end of the Alloy Analyzer.

Rather than improving the speed of the analysis one can attempt to improve its
applicability. More specifically, an approach based on SMT solvers allows to drop the
finite scope assumption of Alloy’s analyzer and actually prove properties of a model
regardless of the scope [100]. The drawback of such an approach is the possible need for
manual intervention.

On the Verification of Model Transformations: As mentioned in Section 2.4.2
Alloy has been used in the past to verify model transformations. Anastasakis et al. [42]
use Alloy to analyze the correctness of model transformations. They resort to their
tool UML2Alloy [67] to transform the source and target metamodels into Alloy and
translate the transformation rules into mapping relations and predicates at the Alloy
level. The goal of their work is to check that the target instances represent indeed models
conforming to the target metamodel of the transformation. This is done by checking an
Alloy assertion using the Alloy analyzer. In a similar line of work Baresi et al. [66] use
Alloy to represent graph transformations represented in the AGG formalism. They use
the Alloy analyzer to verify the correctness of the transformation by generating possible
traces. We can similarly use Alloy’s analysis features to verify model transformations
represented in F-Alloy with the added value of being able to use the more efficient hybrid
analysis introduced in Section 4.3.

On Visualization Based Validation: In this chapter we proposed an approach to
enable the systematic validation of f-modules through the domain specific visualization
of a sample of instances. The main incentive to support visualization based validation is
to involve domain experts in the process of validation by providing them with material
they are familiar with. Validation based on visual feedbacks is not something new,
and can be encountered in various other domains [101–104]. As an example, we have
seen earlier that the Alloy language comes with a tool, the Alloy Analyzer, allowing
the generation and visual rendering of instances as graphs (where atoms are nodes and
links are edges). This tool and approach has been successfully applied in the validation
of software systems [105, 106], and generally contributed to close the gap between the
engineer modeling the system in Alloy, and their client, the domain expert for which
the system is designed [107]. However, it has been highlighted in [44] that despite recent
advances in Alloy instances representations [108], intuitive visualization of large instances
can only be achieved using the knowledge of their domain of application, namely domain
specific visualization.

In this work, we proposed to apply the domain specific visualization based validation
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approach to the engineering of model transformations. Compared to other domains
reported in earlier work, this domain is inherently more complex, (because the validation
targets are now transformations themselves, and we need compound transformations from
them to VLM to enable the validation process), hence more error-prone to implement. We
have seen in Sect. 4.5 that errors can not only come from transformation engineers, e.g.,
when they failed to respect the transformation specifications written in natural language,
but can also come from domain experts, e.g., when they failed to be precise with the
intention of the transformations. As a consequence, the involvement of domain experts in
the validation process becomes even more necessary. This work is, to our knowledge, the
first that thoroughly goes in this direction for validating model transformations. In [109],
a visualization technique was proposed to visualize traceability links in (chains of) model
transformations, to facilitate the tracking of the origin of errors in transformation chains.
However, the absence of domain specific visualization of the source and target models
prevents the effective involvement of domain experts in the loop. On the contrary, in
our approach, the visualization of traces is not only a way to track the origin of errors
in a transformation output, but also together with the domain specific visualization of
both the source and target models, it offers additional means to the domain experts to
validate the transformation themselves (as seen in Sect. 4.5).

4.8 Summary

In this chapter, we have presented an extension of F-Alloy enabling the expression of
compound model transformations, i.e., model transformation specifications whose source
or target metamodel are themselves model transformation specifications. We have shown
the usefulness of compound model transformations by presenting a new approach to the
validation of model transformations entirely based on them.

This novel approach, called VBV (Visualization Based Validation), relies on com-
pound model transformations and on Alloy analysis to produce visual traces to be re-
viewed by a domain expert.

A requirement critical to the usability of this VBV approach is the efficiency of
compound model transformations analysis. To fulfill this requirement, we defined hybrid
analysis as a combined use of Alloy analysis and F-Alloy interpretation enabling to reduce
the complexity of F-Alloy specification analysis to that of its left-most source module,
and have shown semantic equivalence between Alloy analysis and hybrid analysis.

In the next chapter, we present an approach to the specification of DSMLs using
exclusively the Alloy and F-Alloy language and present a design process relying on visual
feedbacks (like VBV) to enable the seamless validation of the designed DSML, at each
iteration.
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Chapter 5

An Approach Towards Defining DSMLs Using Alloy

In the two previous chapters, we have investigated the use of Alloy in the specification
and verification of model transformations. From this investigation came two major con-
tributions, namely (1) F-Alloy, a new Alloy-based language allowing the specification of
efficiently computable model transformations and (2) VBV, a new validation approach
reducing the gap between formal verification and its main stakeholders: domain experts.

In this chapter, we propose an approach to the definition of domain specific modeling
languages based on those two contributions. The chapter is structured as follows. In
the first section, we introduce the Structured Business Process language, which we use as
case study to illustrate our approach. Section 5.2 presents an approach to the definition
of languages in Alloy. An agile design cycle (consisting of small iterations) allowing to
validate each component of the language with the help of the domain expert is presented
in Section 5.3. Finally, we discuss how our approach compares to other attempts to
use Alloy in the definition of DSLs in Section 5.4 before concluding the chapter with a
summary of the contribution.

5.1 The Structured Business Process Case Study

In this part, we illustrate language design with the help of a concrete language, the
Structured Business Process (SBP) language [110].

Structured business processes consist of tasks representing actions performed towards
the completion of the process and of control nodes structuring the process. Those tasks
and control nodes are interconnected using transitions so that the following holds:

1. The process has a unique start and end, represented by the Start and End control
nodes, so that no transition is incoming to Start or outgoing from End.

Figure 5.1: A Structured Business Process
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2. Each task has exactly one incoming and one outgoing transition.

3. XOR and AND are control nodes used to delimit blocks representing the nesting
of processes. The difference between XOR and AND is purely semantical: while
AND means that all sub-processes (outgoing transitions) need to be processed,
XOR specifies that exactly one of them has to be processed.

4. XOR and AND control nodes have one incoming and more than one outgoing
transition if they are used to open a new block (in which case they are called XOR
split and AND split), or more than one incoming and one outgoing transition if
they are used to close a new block (in which case they are called XOR join and
AND join).

5. A block opened by an AND split or XOR split needs to be closed by an AND join
or XOR join, respectively.

6. The process is acyclic (all tasks are traversed at most once).

An example of a business process expressed in this language is given in fig. 5.1 (adapted
from [111]). The representation used in this figure relies on traditional notation from the
business process community.

This choice of case study is based on the fact that:

• The SBP’s specification has been formalized in [111], thus providing a precise de-
scription of the syntax and semantics of this language.

• It has sufficient complexity to illustrate the usefulness of our tool.

• It is practically relevant since many existing business processes are expressible in
this form [111].

5.2 An Alloy-based Language Definition

As defined in Section 2.2.1, a domain specific modeling language definition is composed
of three components, namely abstract syntax, concrete syntax and semantics. In this
section, we detail how each of those components can be defined using Alloy.

An overview of the proposed approach is given in Figure 5.2.

5.2.1 Abstract Syntax

We have seen in Section 2.2.1 that the abstract syntax of a language aims at defining the
set of valid language model in terms of concepts, relations, and constraints. The Alloy
language being perfectly suited to define such structure, we propose in our approach to
define the abstract syntax of languages by an Alloy module. We call this module Abstract
Syntax Model (ASM).

As the abstract syntax aims at defining the set of valid language models, we define
language models as follows:

Definition 12 (Language model). Given a language L, we call language model of L any
instance of L’ s abstract syntax model.
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Figure 5.2: Overview of an Approach to the Alloy-based Definition of Domain Specific
Modeling Languages

Figure 5.3: Overview of our approach to the definition and rendering of a language’s
concrete syntax
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5.2.2 Concrete Syntax

We recall from Section 2.2.1 that the concrete syntax of a language defines the domain
specific representation of language models. It is commonly understood that this definition
can be used to:

1. visualize given language models.

2. create and edit language models.

In the present approach, we do not consider the creation and edition of language
models and thus assume that the concrete syntax solely aims at defining a domain specific
visualization. This choice is motivated by the fact that our primary motive is the
intuitive validation of DSML specifications for which only the visualization is necessary.
Moreover, we will see in Chapter 6 that visualization can be used to ease the edition
of language models when used in combination with a non-graphical editor. Finally, we
believe that our approach can be extended to also provide editor support the moment
F-Alloy enables the expression of bidirectional transformations.

In Section 4.4, we have already presented an approach to the definition of model
and model transformation’s domain specific visualizations. This approach consists in
defining an F-Alloy model transformation from the language model (ASM-instance) to
be visualized, to a VLM-instance. In this work, we have defined our own VLM (given in
Annexe D), and have developed a tool called Lightning, introduced in the next chapter,
which enables the visual rendering of VLM-instances. This approach to the definition
of a concrete syntax (depicted in Figure 5.3) follows the approach that Kleppe describes
in [41].

5.2.3 Semantics

We have seen in Section 2.2.1 that semantics aims at providing meaning to language
models, and that there exists four main approaches to its definition.

We choose to focus on the definition of operational semantics. This choice is moti-
vated by (1) the fact that the mathematical objects composing a denotational semantics
definition can hardly be presented in an intuitive form to domain expert, by (2) the
fact that pragmatic semantics validation is naturally performed by domain experts when
they get hold of the tooling derived from the DSML definitions, and by (3) the fact that
translational semantics simply consists in defining a transformation between two abstract
syntax models, which is already supported by F-Alloy.

Defining the operational semantics of a language consists in defining an abstract state
machine whose execution on a given language model gives its meaning. The definition of
such an abstract state machine consists in:

• A semantic domain model defining the notion of semantic state (state of the ab-
stract state machine). The semantic domain model is given as an Alloy module
importing the ASM (abstract syntax model) so as to define the concept of semantic
state reusing concepts of the ASM.

• A semantic step transformation defining, given a semantic state (semantic domain
model instance), how to obtain the next semantics state. The semantic step trans-
formation is thus defined as an F-Alloy endogenous model transformation from/to
the Semantic Domain Model.
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Each semantic domain model instance representing a semantic state, it is necessary
for visualization-based validation purpose to define a domain specific visualization of in-
formations relative to the semantic state. A semantic domain model is thus in generally
accompanied by its own concrete syntax definition, taking the form of a f-module trans-
formation, from the semantic domain model to the VLM. The semantic model (SM) of
a language L consists thus of the semantic domain model, its concrete syntax, and the
semantic step transformation.

5.3 An Agile Design Cycle

We now define an agile design cycle to be followed when defining languages as introduced
in Section 5.2, and illustrate its use with our SBP case study.

We note that two actors are involved in this design cycle:

• The Domain Expert is acquainted with the language to be designed. He has strong
expectations on how language models are to be represented and executed.

• The Language Engineer is an Alloy and F-Alloy expert who follows our approach
to define a language, following her/his understanding of the language specification.

This cycle, depicted in Fig. 5.4 is “agile” in the sense that it consists of very short
iterations followed by validations, hence allowing to track down design errors at the
earliest stages.

5.3.1 Designing the Abstract Syntax

The Language Engineer starts the design of the SBP language by defining its ASM (ASM
playing a central role in the language definition). To do so, (s)he designs an Alloy module
from the specification of the language given in Section 5.1. We give in Listing. 5.1 an
excerpt of the ASM designed.

After producing this first version of the ASM, the language engineer performs an Alloy
analysis to validate that the Alloy specification conforms to the requirements. This Alloy
analysis yields a set of valid instances (one is given in Figure 5.5), that can be used by the
language engineer to evaluate the correctness of her/his ASM specification. Designing
the ASM and validating it using Alloy corresponds to the cycle labeled 1 in Fig. 5.4.

Validating an ASM specification by reviewing instances graphically rendered by the
Alloy analyzer can be a tedious exercise due to the fact that those representations of

Design
 ASM Language model

generation

error
detection

Design
 CSM

Design
SM Legend

ASM: Abstract Syntax Model
CSM: Concrete Syntax Model
SM  : Semantics Model

1

2
3

Figure 5.4: Spiral diagram depicting how languages defined following the proposed
approach can be incrementally designed
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Figure 5.5: Raw visualization of a language model (using Alloy’s Magic Layout)

abstract sig Node{}

abstract sig Control extends Node{}

one sig Start extends Node{}{this not in Flow.target}

one sig End extends Node{}{this not in Flow.source}

sig Task extends Node{}

sig AND_JOIN,AND_SPLIT,XOR_JOIN,XOR_SPLIT extends Control{}

sig Flow{

source: Node,

target: Node

}

fact acyclic{

all n: Node | n not in n.^((~target).source)

}

Listing 5.1: excerpt of the SBP’s abstract syntax model

instances are direct reflections of the abstract syntax model structure (as imagined by
the language engineer). More precisely:

1. The lack of variations in the way concepts are represented (all are nodes of a graph)
leads to an unnecessary verbose representation that can quickly become hard to
process [53].

2. The fact that the language model representation is heavily influenced by design
choices made by the language engineer (as they follow the structure of the ASM
produced) hinders the efficient involvement of the domain expert in the validation
process.

To improve the readability of the generated instances (1) and to allow the involvement
of the domain expert in the validation process (2), it is thus necessary for the language
engineer to proceed to the concrete syntax design.

In a nutshell, proceeding to the concrete syntax design, cycle 2 in Figure 5.4, is
advised once at least one of the following conditions holds:

• the language engineer is, after multiple round of Alloy analysis, confident of his
ASM design.

• the instances yielded by the Alloy analyzer are too complex to be used as a valida-
tion mean.

• the language engineer is uncertain about his implementation of a given requirement
and would like to consult the domain expert.

5.3.2 Designing the Concrete Syntax

The concrete syntax design consists, as seen in Section 5.2 in defining a model transfor-
mation from the previously defined Abstract Syntax Model (ASM) to a predefined visual
language metamodel (VLM), similarly to the definition of a domain specific visualization
as defined in Section 4.4.
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/* Each task is represented by a rectangle, and each node has its corresponding label */

one sig CREATE{

mapTask: Task -> RECTANGLE,

mapNodeText: Node -> TEXT

}

// Each Task is represented by a white-filled rectangle containing its name

pred guard_mapTask{}

pred value_mapTask(n:Task, r:RECTANGLE) {

r.layout = VERTICAL_LAYOUT

r.color = WHITE

r.composedOf[0] = CREATE.mapNodeText[n]

}

// Each node is mapped to a label representing its name in black without style

pred guard_mapNodeText{}

pred value_mapNodeText(n:Node, t:TEXT) {

t.color = BLACK

t.isItalic = False

t.isBold = False

t.textLabel[0] = n

}

Listing 5.2: excerpt of the SBP to VLM transformation

Figure 5.6: Visualization of the instance depicted in fig. 5.5 using its concrete syntax
definition

In Listing 5.2, we provide an excerpt of such a transformation defining how tasks are
to be rendered.

Once such a concrete syntax is defined, it becomes possible to provide a domain
specific visualization to each generated instance and thus to involve the domain expert
in the design validation. We provide in Figure 5.6 the representation, using the concrete
syntax defined by the language engineer, of the language model previously shown in fig.
5.5. Through this visualization, it is obvious to the domain expert that the language
specification is erroneous as two XOR splits cannot possibly be converging to a single
AND join. After discussions with the domain expert, the language engineer introduces a
new concept (s)he arbitrarily calls control box aiming at pairing matching split and join
nodes together. This fix is given in Listing 5.3.

Repeating the instance generation after this modification shows that the introduction
of this new concept has indeed corrected the design error previously identified. The error
processing we just presented illustrates a transit from cycle 2 to cycle 1 in fig. 5.4, i.e.,
to the case where an error found in the visualization reveals an error in the underlying
abstract syntax model. Of course the transformation model describing the visualization
may be faulty itself. In this case the error in the visual representation may point to an
error in the concrete syntax model. This situation corresponds to another iteration of
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sig ControlBox {

split: Control,

join: Control

}{

// SPLIT AND JOIN HAVE SAME NATURE

(split in AND_SPLIT and join in AND_JOIN) or (split in XOR_SPLIT and join in XOR_JOIN)

// PAIRING EACH SPLIT WITH A GIVEN JOIN

all s: (succ[split]) | s in (preds[join]) and all j: (pre[join]) | j in (succs[split])

}

Listing 5.3: excerpt added to the ASM by the language engineer to enforce well
formedness of split and join nestings

cycle 2, leading to a refinement of the concrete syntax design.
The language engineer starts working on defining the operational semantics of the

language once the domain expert is satisfied with the defined concrete syntax.

5.3.3 Designing the Operational Semantics

We recall from Section 5.2 that defining an operational semantics consists in defining an
abstract state machine whose execution on a given language model defines the language
model’s meaning. In our approach, this abstract state machine definition consists of two
artifacts: the semantic domain model and the semantic step transformation.

Designing the Semantic Domain Model

Defining the Semantic Domain Model consists in answering the following questions:

1. If a language model would be executed, what would characterize a state of execu-
tion?

2. What would then be the first state of execution?

A quick discussion with the domain expert allows the language engineer to ascertain
the answer of those two questions for the SBP language: (1) An execution state consists
of a set of active nodes, and (2) the first state of execution should have as single active
node the start node.

The semantic domain of the SBP language is thus implemented accordingly as given
in Listing 5.4.

Designing the Semantic Step Transformation

Once the semantic domain model is defined, the language engineer proceeds to the defi-
nition of the semantic step transformation.

The semantic step transformation is an endogenous transformation from/to the se-
mantic domain model aiming at defining valid state transitions. The language engineer
thus has to answer the following two questions before implementing the transformation:

1. How to compute, given a state of execution, the valid subsequent state?

2. When does the execution end?

The language engineer, after consulting the domain expert, provides the following
answers:
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module SBP/Semantics/Semantics

open SBP/AbstractSyntax/ASM

one sig State{

activeNodes: set Node

}

pred init [s:State] {

s.activeNodes = Start

}

run init

Listing 5.4: the semantic domain
model of the SBP language

1 module SBP/Semantics/Step

2 open SBP/Semantics/SDM

3

4 one sig UPDATE{

5 map: State -> State

6 }

7 pred guard_map(s: State) {

8 not s = End.(~activeNodes)

9 }

10 pred value_map(s1: State, s2: State) {

11 s2.activeNodes = nextActiveNodes[s1.

activeNodes]

12 }

Listing 5.5: Semantic Step
Transformation of the SBP language as

defined by the language engineer

1 fun nextActiveNodes(n: set Node): set Node {

2 //return nextNodes in general except :

3 nextNodes[n - AND_JOIN - XOR_SPLIT] +

4 //if and_join: wait no nodes in n are preceding it

5 nextNodes[{x: n & AND_JOIN | n & predecessors[x]=none}]+

6 //if xor_split: return solely one successor .

7 {x: Node | some y: n & XOR_SPLIT | x= order/max[successors[y]]}

8 }

9

10 fun nextNodes (n: set Node) : set Node { n.(~source).target }

11 fun successors (n: set Node) : set Node { n.^((~source).target) }

12 fun predecessors (n: set Node) : set Node { n.^((~target).source) }

Listing 5.6: Function computing the set of next active nodes expected in the
execution of an SBP language model given a set of active nodes

1. given a set of active nodes, the set of next active nodes can be computed by following
the flows and by respecting the following two rules: (1) an AND join node should
stay active until no preceding nodes are active and (2) successors of an XOR split
node cannot be active at the same time.

2. the execution stops once the end node is reached.

Following those answers, the transformation given in Listing 5.5 is defined.
The transformation updates the activeNodes value of the execution State only if the

End node is not contained in the set of activeNodes (line 8). The new set of activeNodes
(line 11) is computed by the function nextActiveNodes1 given in Listing 5.6 following
the answer previously formulated.

The operational semantics is now clearly defined, but to be able to visualize an actual
execution of an SBP language model, it is necessary to define how active nodes are to be
visualized.

Visualizing Semantics

To enable the visualization of an SBP execution as defined by the previously presented
operational semantics, the language engineer has to define a transformation from the

1This function is to be added to the semantic domain model as such an helper function can’t be
declared in syntactically valid F-Alloy specifications as enforced by the F-Alloy syntax defined in Section
3.3
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pred value_mapTask(n:Task, r:RECTANGLE) {

r.layout = VERTICAL_LAYOUT

r.color = (n in State.activeNodes implies GREEN else WHITE)

r.composedOf[0] = Bridge.mapNodeText[n]

}

Listing 5.7: updated version of the mapTask mapping allowing to render semantic
domain specific informations

(a) Starting State (b) State 1 (c) State 2

Figure 5.7: Faulty semantics execution of an SBP language model containing XORs

Semantic Domain Model to the Visual Language Metamodel. This transformation gen-
erally reuses mappings of the transformation used as a concrete syntax (as the semantic
domain model imports the abstract syntax) and just contains additional rules mapping
those execution state related properties to a proper visualization. The language engineer
decides to differentiate active nodes from others by highlighting them in green. This is
achieved by refining the concrete syntax transformation as illustrated in Listing 5.7. An
execution of the operational semantics defined can, thanks to this newly defined trans-
formation, be rendered graphically as depicted in Fig. 5.7. This execution visualization
reveals an error since one of the task nodes needs to become active between the activation
of XOR_SPLIT and XOR_JOIN.

More precisely, the visualization allowed to uncover a small error in the nextActiveNodes
function line 7 of Listing 5.6, where a call to the successors function (yielding the set
of all nodes preceded by the ones given in parameter) is used instead of the nextNodes

function (yielding the set of nodes directly preceded by the ones given as parameters).
Repeating this cycle after accordingly replacing the erroneous call to the successors

function by a call to the nextNodes function shows that the bug has been fixed.

5.4 Related Work on DSML Engineering Approaches

In this section, we discuss related work connected to the DSML engineering approach
presented in this chapter.
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5.4.1 Alloy-based DSML Engineering Approaches

With the emergence of DSML engineering as a popular research topic and the already
numerous successful applications of Alloy in the verification and validation of models,
investigations on the use of Alloy in the validation and verification of DSML engineering
took place. We put here our approach to DSML engineering into perspective with those
investigations.

In [112], authors unveil the potential of Alloy in the verification of DSML designs.
They define in Alloy modules the abstract syntax and operational semantics of the Maze
Game DSML [113]. Verification is then performed by checking assertions on those mod-
ules. This verification technique, being natively supported by Alloy, is applicable to
DSMLs specified following the approach we presented in this chapter. It is to be noted
though that f-modules cannot yet be verified using assertions without being translated
first in an Alloy module (following the procedure defined in Section 3.4.2). Hence in our
case, the verification of a DSMLs operational semantics using assertion checking requires
the semantics step transformation to be translated in Alloy and relevant assertions to
be added in the resulting Alloy module. Our approach presents two advantages when
compared to the one presented in [112], namely (1) our DSML definition also takes into
consideration concrete syntax which can be used to ease the validation of the abstract
syntax and semantics and (2) the use of F-Alloy instead of Alloy in the specification
of the operational semantics makes semantics execution less time consuming and hence
more scalable.

Work in [37] shows that Alloy analysis can play a central role in the iterative (agile)
specification of a DSML’s abstract syntax. The authors provide empirical evidence that
for a given DSML specification, it is possible to identify missing well formedness con-
straints from the simple observation of generated instances. Our approach extends this
practice to all the components of a DSML definition. Work in [37] corresponds precisely
to the first cycle of the agile design process we provide in fig.5.4 which was first published
in [45] (a year before [37]).

5.4.2 Example-Based Validation Approaches in the OMG World

One of the greatest benefits retained from Alloy in our approach is the ability to generate
instances from a DSML design. In the following, we introduce other methodologies relying
on instance generation to validate specifications. We then present DSML engineering
techniques relying on those methodologies and compare them, when applicable, to the
DSML engineering approach we presented in this chapter.

In the OMG world, UML [114] and OCL [115] constraints can be used to define
structures and well formedness rules, respectively. The modeling environment USE [116]
was designed to enable the validation of specifications expressed in UML/OCL. To do so,
it relies on the generation of so called snapshots using SAT-solvers [117], hence following
the same approach than Alloy. The difference with Alloy is that snapshots can also be
constructed manually, and that USE provides a small DSL called ASSL [118] enabling
to list modifications to be brought to a given snapshot. The execution of an ASSL
procedure would then return those snapshots resulting from applying a selection of those
modification, so as to still conforming to the metamodel.

USE hence paved the way to instance-based validation support to the numerous
already existing UML tooling [119] and to existing approaches to DSML engineering
relying on UML ( [120,121]).

In a very recent work, USE has been successfully used in a modeling environment
called metaBest [122] to validate DSMLs. MetaBest is an eclipse-based framework [123]
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whose central tool, metaBup, enables the definition of DSMLs following a bottom-up
approach [124]. MetaBup takes as input graphical sketches of language models produced
by domain experts, in which every graphical element are consistently labeled. From
these sketches are derived both the abstract syntax and concrete syntax of the DSML
used to express the language models. Models of those syntaxes can then be viewed and
corrected if needed. MetaBest also provides two home-brewed DSLs, mmUnit [125] and
mmSpec [126] to define well-formedness constraints. The first one, mmUnit, is to be used
in combination with sketches representing invalid language model. It allows to textually
define why the invalid language model sketched is indeed invalid. From those mmUnit
specifications can be derived constraints that should be satisfied in any language model.
Those constraints are expressed in the mmSpec language. MmSpec is less expressive
than OCL and Alloy but is assumed to be more intuitive. The semantics of mmSpec is
defined as a translation to OCL.

The metamodel obtained by metaBup along with the translation of mmSpec con-
straints translated to OCL can be given as input to USE to generate instances for val-
idation’s sake [127]. ASSL being judged too complex and plaftorm dependent to fit in
the metaBest framework, yet another language called mmXtens is designed, aiming at
defining properties that should hold in instances generated using USE.

To summarize, metaBest can be used to define the abstract and concrete syntax of
a DSML following a bottom up approach, which is a drastically different approach than
the one we proposed. Yet, the validation of the DSML specification thus obtained can be
validated through instance generation, each instance generated being rendered using the
concrete syntax of the language. This DSML validation technique is similar to the one
we propose. Semantics definition seems to be out of metaBest’s scope, yet the abstract
syntax model being exportable to UML or Ecore, one can imagine that a variety of
tooling [128, 129] can be used to define it, the only drawback being that in case of an
operational semantics definition, the concrete syntax defined using metaBest cannot be
directly reused to visualize semantics execution.

5.4.3 On Concrete Syntax Definitions

In the last decades, multiple works addressed the problem of defining graphical concrete
syntaxes. In the following, we present the two most prominent approaches to their
definition.

The first approach consists in associating to each concept of the abstract syntax
a graphical template. This approach, adopted by Atom3 [130], MetaEdit+ [131], GME
[132] and DOME [133] for its simplicity, comes with a major disadvantage. The approach
indeed induces structural dependencies between the abstract syntax and the defined con-
crete syntax. This tends to push the language designer to violate separation of concerns
as each abstract syntax concept has to be representable by one graphical construct and
vice-versa.

The second approach alleviates this limitation by enabling the language engineer to
define relations between abstract syntax concept and their representations as a model
transformation from the abstract syntax to a visual language metamodel. This is the case,
e.g., of GenGed [134], defining concrete syntax by a TGG model transformation, and of
our approach in which concrete syntax is defined as an F-Alloy model transformation.
Though separation of concerns is no longer a problem following this approach, using
model transformations to define concrete syntax is generally shun as language engineers
are assumed to lack expertise in model transformation engineering. In our case, language
engineers are assumed to be Alloy specialists as the proposed DSML engineering approach
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revolves around the use of Alloy. The F-Alloy language being by definition inherently
close to Alloy, this limitation is hence not applicable to our approach.

5.5 Summary

In this chapter, we demonstrated that the abstract syntax, concrete syntax and opera-
tional semantics of a DSML can be expressed as a combination of Alloy modules and
F-Alloy transformations. We have also shown that DSMLs can be defined following an
agile design process in which analysis can be applied at each iteration for validation’s
sake. We illustrated this design process through the definition and validation of the SBP
(Structured Business Process) language.

In the next Chapter we present a tool named Lightning, implementing the approach
to DSML engineering we presented in this chapter.
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Chapter 6

The Lightning Language Workbench

In this chapter we present the Lightning language workbench, a tool implementing the
approach previously introduced in Chapter 5 to enable the agile design of DSMLs. In
Section 6.1, we provide an overview of the tool and of its major features. A successful
application of the Lightning tool is then given in Section 6.2, where a Robotic DSML
has been designed and used. Finally, we conclude this chapter by comparing Lightning
to existing language workbenches in Section 6.3 and by summarizing the contributions
of this chapter in Section 6.4.

6.1 Tool Presentation

The Lightning language workbench is distributed as an Eclipse plug-in so as to ease
future integration with already existing model driven techniques.

Fig.6.1 gives an overview of the tool’s graphical user interface. In the following we
rely on this figure to introduce Lightning’s properties and features.

6.1.1 Lightning Languages

Lightning’s primary purpose is to help in the definition of languages following the ap-
proach presented in Chapter 5. In the Project Explorer view (Fig. 6.1 left), we can see
that a language definition in Lightning takes the form of a directory composed of the
following four sub-directories:

AbstractSyntax : contains the set of Alloy modules used in the definition of the ab-
stract syntax of the language. One Alloy module can be marked 1 as the ASM of
the language with effect that language model are instances of the marked ASM.
The ASM module may import other modules in this directory.

Semantics : contains Alloy modules defining the semantic domain of the language and
f-modules defining valid semantic steps. A given Alloy module should be marked1

as the SDM of the language (semantic domain model) and an f-module should
be marked1 as the SST of the language (semantic step transformation) in order
to enable the simulation of a language model execution by (1) obtaining the first
state of execution by analyzing the SDM and by (2) advancing step by step in the
execution by repeatedly executing the SST transformation.

ConcreteSyntax : contains the set of f-modules defining visualizations of ASM-instances
and SDM-instances. It also contains the default LightningVLM 2 Alloy module,

1through the right click context menu
2This LightningVLM module is automatically added to the concrete syntax directory during the

language creation

99



6.1. TOOL PRESENTATION

Figure 6.1: An overview of the Lightning Graphical User Interface

declaring the set of visual constructs whose rendering is supported by the tool. In
this directory, an f-module should be marked as CSM to enable the visualization of
instances of selected ASM. An f-module should also be marked as semantics CSM
to enable the visualization of instances of the selected SDM.

Instances : is the default location in which instances of a language can be saved for
future uses. Saved language models can be visualized if a CSM is selected, executed
if an SDM and SST are selected or even edited as presented in the next subsection.

6.1.2 Editor

The Lightning tool provide its users with an Alloy and F-Alloy textual editor. An Alloy
editor is depicted in the center of Fig.6.1. Those editors are paired with a metamodel view
(Fig.6.1, right) providing an overview of the model designed and so that any structural
change1 introduced through the editor is rendered instantly.

Those editors also provide:

• syntax highlighting, coloring keywords in blue and comments in green,

• an outline view, depicted in Fig.6.2, enabling easy access to anything declared in
the edited module,

• syntax checking, allowing to ensure that any Alloy module and f-module specified
is syntactically correct,

• syntax error marking, enabling to locate which part of the specification is not
syntactically correct. The part will be underlined in red, and in some cases, e.g.,
F-Alloy guard or value predicate missing, quick fixes will be provided (e.g., auto-
generation of missing predicate following types in the mapping declaration).

6.1.3 Instance Viewer

From the moment the ASM of a language is defined, it is possible to generate language
instances using the execution button( ). Those instances will be available for browsing

1changes impacting signatures and fields (and not constraints)
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Figure 6.2: Outline view associated to the Alloy editor (currently editing the SBP Alloy
module). Clicking an entry of this outline will have as effect to highlight where it has

been declared in the editor.

in what we call an instance viewer (See Fig.6.1, bottom part). The instance viewer
comes with his own tool-bar allowing the user to perform various actions on the instance
displayed. We list here elements composing this tool-bar:

• The instance viewer displays a single language model at a time. If several language
models are available for display, it is possible to browse through them using the first
set of arrows( ). The pointer between those two arrows shows the index
attributed to the language model currently visualized. The left and right arrow
are disabled when there is no more preceding and succeeding language models,
respectively.

• Toggling on the semantics mode ( ) will have as effect to display the
first state of execution of the language model displayed. The instance denoting this
first state of execution is automatically obtained by:

1. An automatic refinement of the ASM consisting in the addition of constraints
so that the only instances obtainable by analyzing the refined ASM is the
language model displayed.

2. An Alloy analysis of the language’s SDM importing the refined ASM.

We note that activating the semantics mode locks the browsing of language in-
stances and activates the otherwise locked semantic steps executions.

• If the semantics mode is active, then it is possible to execute steps of the semantics
on the language model visualized using the second set of arrows ( ). The
right arrow executes a step as defined by the SST of the language. The left arrow
has as effect to “undo” already performed steps. The index displayed between the
two arrows allows to keep track of the number of steps that has been performed in
order to reach the semantic state currently visualized.

101



6.1. TOOL PRESENTATION

• At any time, it is possible to configure the instance viewer to use the concrete
syntax of the language to view language models and semantic states. This is done
by toggling the use CS checkbox ( ). This has the following effects:

– If the semantics mode is disabled: the CSM (transformation from ASM to
VLM ) is applied on the language model displayed so as to obtain a VLM-
instance. This VLM-instance is then automatically processed by the Lightning
tool in order for the instance viewer to display the language model through
its domain specific visualization.

– If the semantics mode is enabled: the Semantics CSM (transformation from
SDM to VLM ) is applied on the execution state displayed so as to also obtain
a VLM-instance. Again, this is later processed and rendered graphically by
the Lightning tool.

• It is possible to transform a language model into a model of another language
(e.g., CD to RDBMS, SBP to PetriNet, ...) by selecting a transformation in the
transformation drop-down list ( ). By default this drop-down list contains all
the f-modules having as source the ASM of the language model displayed and as
target the ASM of another language. It is possible to apply multiple transfor-
mations at once (e.g., Ecore to CD and CD to RDBMS) and to memorize the
chain of transformation using the save button next to the drop-down list. Saving
a transformation chain has as effect to make the chain directly accessible in the
transformation drop-down list (e.g. Ecore to RDBMS) for future use. We note
that toggling on semantics mode or use CS once a transformation is applied will
have as effect to display the semantic state or the concrete syntax visualization of
the transformed language model as defined by the target language.

• The displayed language model can be saved as XML or exported to XMI using the
rightmost buttons ( ).

– Language models are saved by default in the instance folder and following
the format set by the Alloy analyzer. The consequence is that any instance
obtained and saved from Lightning can be opened in the Alloy analyzer and
vice-versa.

– Language models can be exported to XMI, the default format in which Ecore
models are stored. This functionality is experimental (not fully functional)
and requires an Ecore translation of the language’s ASM.

6.1.4 Instance Editor

To create/edit language models, Lightning offers to its users a very simple editor support.
The instance editor is depicted in Fig. 6.3:

• On the left hand-side of this figure is the editor view that depicts in an editable
tree the edited language model. Any non top-level node of the tree can be renamed
and removed. The top level nodes represent signatures. Through the right-click
context menu, it is possible to create an atom as a child of the given signature.
Right-clicking an atom, allows to add tuples typed by fields declared in the signature
typing the given atoms, e.g., in Fig. 6.3, adding a tuple of type source whose first
atom is Flow$0 is done by right clicking Flow$0 and by selecting source in the
context menu. The second atom composing the created tuple is to be selected in a
drop-down list when creating the tuples.
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Figure 6.3: An overview of the Lightning Tree-based instance editor

• On the right hand-side, an instance viewer enables the visualization of the edited
language model (using the concrete syntax definition if use CS is ticked). This
instance viewer is paired to the tree editor so that any changes brought to the in-
stance triggers an update of the instance viewer. This contributes to increasing the
intuitiveness of the instance editor as users can directly measure the impact of their
changes. Note as well that every change in the instance triggers a validation check
consisting in verifying that the edited language model is indeed a valid instance of
the language’ s abstract syntax model. A small flag ( or ) will let the user know
whether or not the language model is a valid ASM-instance.

6.2 RPSL Meets Lightning, a Success Story

This section is dedicated to report a successful application of the Lightning tool in the
frame of an interdisciplinary collaboration with Nico Hochgeschwender, at the time PhD
candidate in robotic engineering at the University of Bonn in Germany. Nico is the
creator of a language called RPSL allowing the specification of Robot Perception Systems.
Lightning was used to formalize this language in Alloy and to perform so called “design
space explorations”.

6.2.1 The RPSL Language

An inherent challenge to be faced when developing complex robotic systems – i.e., soft-
ware systems deployed on robots – is the high variability [135, 136] of the environment
in which the systems have to operate.

To deal with the complexity of considering multiple variabilities in the design of such
system, it becomes more and more common for robotic engineers to adopt model driven
approaches, one of them being the use of domain specific modeling languages.

One such language, named RPSL [137] (Robot Perception System Language), aims at
considering two natures of variabilities affecting the design of robot perception systems,
namely functional and architectural variabilities. In a nutshell, functional variability
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Figure 6.4: A youBot robot performing an insertion task at a service area.

refers to the vast amount of ways in which systems achieve their goal, each way being
relevant in a fixed context, while architectural variability refers to the variation of goals
themselves, robots operating in a dynamic environment.

To illustrate functional and architectural variability, let us consider the example of a
robot performing an insertion task in an industrial environment (see Fig. 6.4). In order
to perform this task, a robot perception system needs to, e.g., identify an object to grab
for insertion.

An example of functional variability would then be to select the best strategy to
identify the object. E.g., if the object is moving, object tracking should be used, else
object detection is sufficient. An example of architectural variability would then be to
propose different implementations of object detection based on different features of an
object, be it color or shape.

In RPSL, functional variability is represented using feature models and architectural
variability is represented using so called perception graphs (directed acyclic graph where
nodes are sensor and processing components1 and where two components are connected
by an edge if the output of one can be used as the input of the other). The intent of
RPSL is for each leaf feature representing a perception capability to be realized by one
or several perception graphs. This feature to perception graph mapping is given in a so
called Resolution Model.

RPSL specifications define what we call a domain model. A domain model is com-
posed of a feature model, of a set of perceptual graphs and of a resolution model.

We then call design alternative a selection of features and perception graphs so that

1. the feature selection respects the dependencies declared in the feature model

2. exactly one perception graph is selected for each selected feature, respecting the
mapping of the resolution model

For a given design alternative:

The configuration is the set of features and perception graphs selected.

The super graph is a well-formed composition of all the perception graphs in a con-
figuration.

Relations between RPSL and design alternatives concepts are depicted in Fig. 6.5.
In short, a design alternative represents a possible implementation of the system

defined by the domain model.
1processing component require input while sensor only produces outputs
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Figure 6.5: Structural overview of an RPSL domain model and its conforming design
alternative.

Given an RPSL specification, it is necessary to ensure that all design alternatives
conforming to a given domain model are relevant. The exercise of reviewing all design
alternatives to identify those whose implementation are not desired is called design space
exploration.

In the next section we illustrate the use of the RPSL language with a small case
study.

6.2.2 The Pick & Place Case Study

The Pick & Place case study has been implemented using RPSL in the context of a
recent robot competition, namely RoboCup@Work [138]. In this case study, a youBot
mobile manipulation robot (see Fig. 6.4) is deployed in a factory-like environment which
is composed of service areas. Each service area represents a region of the factory having
a specific purpose for a particular task. For example, areas to load objects, to insert
objects into object-specific cavities and to place objects into containers. Depending on
a goal specification given by some factory worker the task of the robot is to pick objects
such as screws, nuts and profiles from containers and to place and eventually insert them
at corresponding service areas.

The functional variability of this scenario is given in RPSL in Listing 6.1 and depicted
graphically in the upper-part of Fig. 6.6.

rpsl.feature_model do

name "Pick and Place"

add_feature "Application", :is_root

add_feature "ServiceArea", :is_mandatory ,

:child_of = "Application"

add_feature "ObDetection", :child_of = "Application"

add_feature "ObRecognition", :requires = "ObDetection",

:child_of = "Application"

add_feature "ContRecognition", :child_of = "Application"

add_feature "CavRecognition", :child_of = "Application"

end

Listing 6.1: Feature Model used in the Pick & Place case study specified in RPSL

The feature model contains five leaf features representing in the same order the fol-
lowing perceptual functionality required for the pick and place task:

• The service area detection feature allows to delimit the service area by detecting
the dominant plane in the surroundings of the robot. This information is required
by all other features as objects, container and cavities are all lying on this dominant
plane.
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rpsl.sensor_component do

name "Kinect"

add_port :out, "outCloud", "xyzRGB"

end

rpsl.processing_component do

name "PlaneDetect"

add_port :in, "inCloud", "xyzRGB"

add_port :out, "outPlane", "Plane"

end

rpsl.perception_graph do

name "Service Area 1"

connect "Kinect", "outCloud", "PlaneDetect", "inCloud"

end

Listing 6.2: a Perception Graph implementing the Service Area feature expressed in
RPSL

• The object detection feature provides a bounding box for each object present in
the service area.

• The object recognition feature provides, when possible, a pose and a label for each
detected object. Object detection is thus required by this feature.

• The container recognition feature provides, when possible, a pose and a bounding
box for each container present in the service area.

• The cavity recognition feature provides, when possible, a pose for each cavity
present in the service area.

The RPSL specification of a perception graph associated to the Service Area feature
is given in Listing 6.2.

This perception graph specification proposes to perform the service area detection by
using a kinect and a plane detection algorithm (e.g. RANSAC). Note that the kinect is
declared as a sensor component whose output port is called outcloud (typed xyzRGB)
and the plane detection algorithm is declared as a processing component whose input
port is called inCloud (typed xyzRGB) and output port is called outPlane (typed Plane).

We note that this perception graph composes the super graph depicted in Fig. 6.6 as
it is a possible implementation of the selected feature ServiceArea.

In the next section, we present how an RPSL design space exploration framework has
been embedded in Lightning, before illustrating its use with the above case study.

6.2.3 A Lightning-Based Design Space Exploration Framework

The key to efficient design space exploration resides in (1) being able to derive the set
of all design alternatives conforming to a given domain model and (2) in being able to
review those design alternatives through an intuitive visualization. Lightning, allowing
(1) the generation of instances using Alloy analysis and (2) the domain specific visualiza-
tion of such instances, is thus a suitable environment in which to perform design space
exploration.

A framework consisting of a set of models and scripts has hence been developed
around Lightning to enable the seamless performance of design space exploration by
RPSL domain experts. This framework consists of:

1. Alloy models formalizing:
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Figure 6.6: Visualization of a given Pick & Place configuration obtained with the
framework. The feature model in which selected features are highlighted in green is at
the top. At the bottom is a possible super graph for the given feature selection, with
input and output ports displayed in green and red, respectively, and with components

being either white or yellow depending on their associated weights.

(a) RPSL’s metamodel, by defining RPSL feature trees, perception graphs and
resolution models.

(b) Design Alternatives, by modeling the concepts of configuration and super-
graph reusing concepts of the RPSL metamodel.

2. F-Alloy transformations providing:

(a) a domain specific visualization of RPSL specifications.

(b) a domain specific visualization of Design Alternatives.

3. a script translating RPSL textual specifications into Alloy models (instantiating
RPSL’s metamodel concepts).

This framework is depicted in Fig.6.7, each component being labeled after the indices
given in the above enumeration.

In the following we give details on the implementation of some of those components.

Feature Tree Metamodel

The feature tree metamodel defines the set of valid feature models expressible in RPSL.
In RPSL, a feature model is a tree of features where each child feature is a realization of
its parent. Features can be mutually exclusive or require one another. The relationship
between parent and children in an RPSL feature model are of two kinds, specification or
containment. Their semantics differ when it comes to feature selection. When a parent
feature is selected to be part of a design alternative, any children feature can be selected
in the case of a containment relationship, while exactly one should be selected in the case
of a specification relationship.

The Alloy model defining the feature tree metamodel is given in Listing 6.3.
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Figure 6.7: An overview of the Lightning-based Framework designed to facilitate the
design space exploration of the RPSL specification. Note that boxes represent Alloy
modules, hexagones represent f-modules and the dashed arrows represent import

relations between modules.
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module FeatureTreeMetamodel

abstract sig FeatureTree{

root: Feature

}{

root.~(contain+spec)=none // no incoming edges

}

abstract sig Feature{

spec: lone Feature,

contain: set Feature,

excluded: set Feature,

required: set Feature

}{

some contain implies no spec

some spec implies no contain

let rel= (@spec+@contain){ // rel is the set of all edges composing the feature tree

this not in this.^rel // prevent loops in the feature tree

this.~*rel & required.@excluded =none // given a feature f, features required by f can’t exclude

f and f’s parents

one (this.*~rel & FeatureTree.root) // there’s only one root feature in the parents of a given

feature.

lone (this.~@contain + this.~@spec )// any feature has at most one parent.

excluded & required = none // a feature can’t exclude and require the same feature

excluded & this.*rel=none // a feature can’t exclude itself or its children

excluded & this.*~rel=none // a feature can’t exclude itself or its parent

required & this.*rel=none // a feature can’t require itself or its children

required & this.*~rel=none // a feature can’t require itself or its parent

no disj f1,f2:FeatureTree | this in f1.root.*rel and ((excluded+required) & f2.root.*rel) !=none

// features of one feature tree can’t exclude or require features of another feature tree.

all x: excluded+required | some f:Feature | some disj f2,f3 :Feature | f2+f3 in f.@contain and

(this+x) in (f2+f3).*rel and (this & f2.*rel) +(x & f3.*rel) =none // a feature can require or

exclude another one only if both have ancestors which are (or are themselves) different

alternatives of a same containment

// for a given feature "this", let x be the set of excluded and required feature. We don’t want

another feature that is not an ancestor of this but which is a specialisation alternative of an

ancestor of this and an ancestor of x.

all x:excluded+required | no f:Feature | f not in this.*~rel and one f.~@spec and f.~@spec in

this.*~rel and x in f.*rel // required and excluded features should be in the same

specialisation branch.

}

}

Listing 6.3: The RPSL feature tree metamodel expressed in Alloy
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Perception Graph Metamodel

The perception graph metamodel defines the set of valid perception graphs expressible
in RPSL. A perception graph in RPSL is a directed acyclic graph whose nodes represent
sensor and processing components. Each component has output ports, while processing
components also have input ports, both of arbitrary type1. Input and output ports can
be connected by an edge only if they share the same type. It is possible to define graphs
containing solely one or several processing components in which case some input ports
might not be connected. However, the composition of two (or more) such graphs is said
to be well-formed if and only if all input ports are connected to some output ports. Each
component can be assigned integer-valued weights as a discriminating factor with respect
to a given property. The weight of a graph is the sum of weights of its components.

The Alloy module defining the Perception graph metamodel is given in Listing 6.4.

Resolution Metamodel

The resolution metamodel simply defines the concept of mapping between an RPSL
feature and its implementing RPSL perception graphs. The resolution metamodel is
given in Listing 6.5.

This resolution metamodel enables the generic definition of design alternatives (see
below).

6.2.4 Alternatives Metamodel

The alternatives metamodel defines for given RPSL specification (generated by the RPSL
to Alloy script) the set of valid design alternatives.

The alternatives metamodel is hence defined in terms of concepts defined in the
feature tree, perception graph, and resolution metamodel. It thus imports the resolution
metamodel (as shown in Figure 6.7). However we note that changing the import from the
resolution metamodel to a resolution model corresponding to a given RPSL specification
will enable, as we will see in section 6.2.5, the generation of design alternatives conforming
to the said RPSL specification.

In Listing 6.6 we give the Alloy representation of the alternatives metamodel, defining
the notions of configuration and super graph.

A domain specific visualization has been defined for each metamodel following the
approach presented in Section 2.2.3. In Listing 6.7 we provide an excerpt of the F-
Alloy transformation, named AlternativeViz, defining how instances of the alternatives
metamodel have to be visualized.

6.2.5 A Design Space Exploration Scenario

An overview of how an RPSL domain expert can interact with the framework is given in
Fig.6.8. In the following we illustrate each of those interactions through the help of the
Pick & Place case study introduced in Section 6.2.2.

Step1: RPSL to Alloy

The first step toward the use of our design space exploration framework is the translation
of the RPSL specifications to explore, like the ones given in Listing 6.1 and 6.2 , into
Alloy models.

1We assume the existence of different types associated to each port. For more details about types
we refer the reader to [137]
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module PerceptionGraphMetamodel

abstract sig PerceptualGraph{

components: set Component,

connections : set Output -> Input,

compGraph : set Component -> Component

}{

// all Input and output in connections belongs to the components of the graph.

all port:connections[Output] + connections.Input | port in components.(input+output)

// connections between input and output only possible if type is the same

all out : connections.Input | out.type = connections[out].type

// ensure that compGraph ( a convenience field ) relfects the actual IO connections

all disj c1,c2 : components| c2 in compGraph[c1] <=> c2 in connections[c1.output].~input

no c:components| c in c.^compGraph // we don’t want loops in our perceptual graph

compGraph[Component]+ compGraph.Component in components // components in compgrah are actual

components of the perceptual graph.

}

abstract sig Concept{}

abstract sig Port {

type:Concept

}

abstract sig Input extends Port {}{

this in Component.input

}

abstract sig Output extends Port {}{

this in Component.output

}

abstract sig Component {

input: disj set Input,

output: disj set Output,

weight: Int

}{

weight in 1+2+3

this in PerceptualGraph.components

}

abstract sig SensorComponent extends Component {}{

#(input) = 0 and #(output) > 0

}

abstract sig ProcessingComponent extends Component {}{

#(input) > 0 and #(output) > 0

}

// graph utility pred/functions

pred PerceptualGraph::contains(g: PerceptualGraph){

g.components in this.components

g.connections in this.connections

}

fun PerceptualGraph::getWeight():Int{

sum c:this.components| c.weight

}

Listing 6.4: The RPSL Perception Graph metamodel expressed in Alloy

module ResolutionMetamodel

open FeatureTreeMetamodel

open PerceptionGraphMetamodel

one sig feature2Graph{

mapping: Feature one -> some PerceptualGraph

}

Listing 6.5: The RPSL Resolution metamodel expressed in Alloy
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module AlternativeMetamodel

open ResolutionMetamodel

one sig Configuration{

selectedFeatures: set Feature,

selectedGraph: set PerceptualGraph,

}{

all f:selectedFeatures | one p:PerceptualGraph| f->p in feature2Graph.mapping and p in

selectedGraph

no disj x,y:selectedFeatures.~*(spec+contain) | x.excluded=y

selectedFeatures.required in selectedFeatures.~*(spec+contain)

selectedFeatures.(contain+spec)=none

}

one sig SuperGraph extends PerceptualGraph{

}{

no c : components| c.input not in connections[Output]

components=Configuration.selectedGraph.@components

this.contains[Configuration.selectedGraph]

}

Listing 6.6: The RPSL alternatives metamodel expressed in Alloy

module AlternativeViz

open AlternativeMetamodel

open LightningVLM

one sig CREATE{

mainFrame : Component -> INVISIBLE_CONTAINER,

inputFrame: ProcessingComponent -> INVISIBLE_CONTAINER,

component : Component -> RECTANGLE,

inputPort: Input -> RECTANGLE,

outputFrame: Component -> INVISIBLE_CONTAINER,

outputPort: Output -> RECTANGLE,

arc: Output -> Input -> CONNECTOR,

}

pred guard_component(c:Component) {

c in SuperGraph.components

}

pred value_component(c:Component, r:RECTANGLE) {

r.color=(c.weight=1 implies WHITE else (c.weight=2 implies YELLOW else ORANGE))

}

pred guard_arc(o:Output, i:Input) {

o->i in SuperGraph.connections

}

pred value_arc(o:Output, i:Input, c:CONNECTOR) {

c.source=CREATE.outputPort[o]

c.target=CREATE.inputPort[i]

c.color=RED

}

Listing 6.7: Excerpt of an F-Alloy transformation from the alternatives metamodel to
the visual language metamodel defining how the supergraph is to be rendered
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Figure 6.8: Overview of the usage of the Lightning-based framework in the performance
of design space exploration. Here, a domain expert (bottom-left) can provide the
framework with RPSL specifications, interact with the framework , and inspect

graphically rendered design alternatives

The translation is done automatically as it is very straightforward: each element of
the RPSL specification is declared as a singleton signature extending a type declared in
of the relevant framework metamodel (e.g. a type declared in the FeatureTreeMetamodel
if the translated RPSL specification is a feature model).

We illustrate this translation by giving in Listing 6.8 the Alloy model derived from
the RPSL specification of the perception graph given in Listing 6.2.

module Service1Graph

open PerceptualGraphMetamodel

one sig Service1Graph extends PerceptualGraph{}{

components = PlaneDetect + Kinect

connections = outCloud -> inCloud

compGraph = Kinect -> PlaneDetect

}

one sig inCloud extends Input {}{

type=xyzRGB

}

one sig outPlane extends Output {}{

type=Plane

}

one sig outCloud extends Output {}{

type=xyzRGB

}

one sig Kinect extends SensorComponent{}{

input = none and output = outCloud

}

one sig PlaneDetect extends ProcessingComponent {}{

input = inCloud and output = outPlane

}

Listing 6.8: Alloy translation of the RPSL snippet given in Listing 6.2

Step 2: Generation and Visualization of Design Alternatives

Once Alloy modules – representing the feature tree, perception graph and resolution
model of the RPSL specification to explore – are obtained as per Step 1, we can obtain
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using Alloy analysis on the alternatives metamodel (e.g., Listing 6.6) the set of all design
alternatives. To do so, the alternatives metamodel is automatically refined to import the
Resolution Model obtained in Step 1 rather than the Resolution Metamodel (imported
initially to express the Alternative Metamodel in terms of resolution, feature tree and
perception graph model concepts).

Given the alternatives metamodel instances obtained by Alloy analysis and the AlternativeViz
transformation defined in the framework (see Listing 6.7), domain specific visualizations
of the design alternatives, such as the one given in Fig. 6.6, are returned to the domain
expert.

The tree in the upper part of the visualization represents the feature tree of this
case study, in which selected features are highlighted in green. For readability’s sake the
alternatives metamodel to Visual language transformation was modified to mask require-
ment arrows. The lower part of the visualization depicts the super graph resulting from
the composition of perception graphs mapped in the resolution model to the highlighted
selected features. Note that this super graph was not specified in RPSL and is resulting
from the Alloy analysis of those well constrained models.

The red and green squares surrounding each component are their output and input
ports, respectively. Note that, the PlaneDetect component appears in yellow as it is
assigned a weight of 2 in the RPSL specifications. The black box in the top left corner
lists additional properties of the selected configuration (here the total weight of the super
graph implementing the features selected).

Step 3: Guiding the Design Space Exploration

Domain experts can further guide the exploration by defining additional constraints in the
alternatives metamodel or by changing the weights assigned to each component. Adding
constraints has as effect to reduce the number of possible instances of the Alternative
model, thus narrowing the set of design alternatives to be considered. This mechanism
becomes useful when the domain expert is interested in design alternatives showcasing
specific properties. We list in the following some examples of constraints used to guide
the design space exploration of our case study:

• Specific Feature/Component Selection: we were interested in reviewing all the de-
sign alternatives implementing the ObRecognition feature and whose supergraph
contains a sensor providing xyzRGB data in order to ensure that ObjRecognition
can be carried out for this kind of input data. The Alloy constraint used to express
this is:

ObRecognition in Configuration.selectedFeatures and some (SensorComponent & xyzRGB.~type.~

output ) & SuperGraph.components

• Optimal Solution Selection (with respect to the attributed weights): we were in-
terested in reviewing design alternatives with exactly three features implemented
and having a minimal weight.

#Configuration.selectedFeatures = 3 and SuperGraph.getWeight[] < n

with n incrementally increasing until a design alternative is found.

6.3 Related Work on Language Workbenches

To understand what Lightning brings to the software language engineering scene, we
compare its features to those of existing language workbenches. We base our comparison
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Figure 6.9: Generic Language Workbench Feature Model proposed in [5] with
highlighting of the features covered by Lightning

on the domain analysis performed by [5] which resulted in the feature tree shown in
fig. 6.9. We mark by a lightning symbol ( ) all the features of this tree which are also
provided by the Lightning tool and detail those features below.

Notation: The notation that Lightning uses for presenting models to the user is
graphical: models are either shown in a concrete syntax notation (defined by a transfor-
mation of the abstract syntax model to a visual language) that is not editable, or in the
form of a tree representation that can be edited.

Editor: The only editor support that Lightning currently offers is a tree based editor,
supplemented by a graphical view of the model being edited (based on the concrete syntax
of the language). Compared to mature language workbenches Lightning is clearly lacking
comfortable editor support. This is shown in the lack of syntactic and semantic editor
services. In contrast, the language workbenches MetaEdit+ [131], MPS [139], Spoofax
[140], and Xtext [141] offer the full range of syntactic editor services – highlighting,
outline, folding, syntactic completion, diff, and auto formatting. These same language
workbenches also offer a range of semantic editor services such as reference resolution,
semantic completion, refactoring and error marking.

While many existing workbenches offer advanced editor support, features that sup-
port validation and testing are less commonly found. Lightning offers at this point
limited validation of models: upon saving a language model that does not conform to
the language definition (i.e., the saved ASM-instance is not valid), an error is shown.
On the other hand the MPS workbench, for instance, offers extended support for model
validation, namely, structural, naming, types and programmatic validation.

Validation: The strength of Lightning lies in the validation mechanisms made avail-
able at the level of the language definition. The entry in the feature tree under DSL
testing (see fig. 6.9) insufficiently reflects this support. At the level of the language
definition Lightning offers advanced syntactic validation via Alloy. More importantly Al-
loy’s automatic analysis verifies the consistency of the language definition by generating
sample instances. If no instances can be found, the abstract syntax definition is incon-
sistent. A similar validation can be carried out at the level of the semantics definition.
For both syntax and semantics the visualization based on the concrete syntax definition
aids in understanding the generated instances and the ensuing problems in the current
specification.

Testing: Although some workbenches such as MPS offer support for testing at the
level of the language definition, the SAT based analysis of Alloy is arguably more com-
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plete since it exhaustively tests all instances up to a given size. Assuming that the
small scope hypothesis which Alloy is based on - stating that errors usually admit small
counterexamples - does indeed hold for language definitions, then the Lightning tool will
indeed uncover problems in the language specification.

Composability: Regarding the last category of features, composability, Lightning
at this point offers mostly syntactic composition via module import in Alloy. Other work-
benches such as Metaedit+ and Spoofax offer a complete set of composability features
covering all aspects of a language: syntax, validation, semantics, and editor services. In
the eclipse world, the Melange language workbench enables to define new DSMLs as a
composition of pre-existing ones. This is mainly achieved through the specification in
the Melange DSL [142] of how Ecore models and Kermeta3 aspects [143], defining the
abstract syntax and semantics of each language, respectively, are to be merged [144].

Formal Methods: An aspect that is not covered in the feature tree given in Fig. 6.9
is whether or not the language workbench is based on formal methods in the sense that
those play an integral part in the design process of the language. The formal underpinning
of Lightning is a distinguishing characteristics. The workbenches reviewed in [5] do not
have a direct formal foundation. The ATOM3 tool [130] (only mentioned in [5]) is the
only formal language workbench presented as it relies mainly on graph transformations.
Having formal methods involved in the design of DSLs at the earliest stage is a way to
have increased confidence on the correctness of one’s design.

6.4 Summary

In this Chapter, we have introduced Lightning, a tool enabling the design of DSMLs using
Alloy and F-Alloy. We have seen that Lightning can be considered as a language work-
bench as it provides all the essential features (identified in [5]) of a language workbench.
Lightning is to our knowledge one of the only language workbenches heavily focusing
on design validation and natively supporting it. A current limitation of Lightning is its
lack of integration with other works, mainly due to the choice of using Alloy to design
languages. Despite this, we have proven the usefulness of Lightning by successfully de-
signing RPSL and validating its design following the feedbacks of his creator. From this
definition of RPSL, we successfully implemented a framework to so called design space
exploration.
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Chapter 7

Conclusion

In this concluding chapter, we provide a summary of our contributions in Section 7.1 and
propose in Section 7.2 different research directions which can be followed to extend the
work presented in this thesis.

7.1 Contributions

This thesis aimed at improving the current practices of Software Language Engineering
with a particular focus on domain specific modeling languages and review-based valida-
tion. To reach this objective, we investigated the use of Alloy in the design of DSMLs.
The use of the formal language Alloy in this exercise was motivated by (1) its high-level
minimalist syntax allowing us to focus on system abstractions in a platform independent
fashion and (2) by the ability of its accompanying tool, the Alloy analyzer, to generate
instances from any Alloy specification, hence allowing seamless review-based validation.
Those investigations had several outcomes, first of which is a novel approach to the
definition of DSMLs based exclusively on Alloy. More precisely, we define how each com-
ponent of a DSML definition (abstract syntax, concrete syntax and semantics) can be
expressed by models and model transformations specified in Alloy, respectively. Based on
this approach to DSMLs specification we introduced a design process tailored to enable
the involvement of domain experts in their validation.

The Lightning language workbench, a tool implementing the aforementioned ap-
proach and allowing the performance of its associated design process, is introduced.
The process of computing model transformations using Alloy analysis being quite time
consuming, the Lightning language workbench in its first release suffered great usability
issues.

To tackle those limitations, we identified a subset of the Alloy language having the
property of being interpretable. From this subset we created a new model transformation
language called F-Alloy.

We also coined the notion of hybrid analysis, an analysis process relying both on Alloy
analysis and F-Alloy interpretation to efficiently generate instances from F-Alloy specifi-
cations. We have shown that hybrid analysis enables to reduce the analysis time of any
(possibly compound) transformation to that of the Alloy analysis of its (leftmost) source
module. Based on this hybrid analysis, we introduced a novel approach to the validation
of model transformations named VBV (Visualization Based Validation), consisting in
generating domain specific traces of execution from the transformation specification to
validate.

Finally we have presented a real world experience from using Lightning in the defini-
tion and validation of RPSL (a robotic DSML) specifications. This experience comforts
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the claim that our contributions are of significance to those aspiring to formally specify
and validate their DSMLs.

7.2 Future Work

Limited by time, several research tracks related to the use of Alloy in the context of
domain specific modeling languages engineering remain to be explored. In this section,
we list the two tracks we believe are the most relevant.

7.2.1 The F-Alloy Track

The F-Alloy language is the end-result of our investigations in the domain of model trans-
formations. The scope of these investigations was, in the frame of this thesis, limited to
the textual specifications of functions. This scope could be broadened in the future as
suggested in the following.

Graphical Concrete Syntax: One of the potential limitations of F-Alloy is the
prerequisite of being familiar with Alloy in order to use the language. A possible future
work could thus be to provide an alternative graphical syntax to F-Alloy to make the
exercise of specifying model transformations accessible to domain experts. A work in
progress attempting to represent F-Alloy specifications graphically is provided in [145].
Following this line of work, a graphical concrete syntax for F-Alloy could ultimately be
defined so as to allow the automatic visualization of F-Alloy specifications.

Bidirectional Model Transformations: Another area of investigation concerns bidi-
rectional transformations. These are transformations that allow forward and backward
transformations to be generated from a unique transformation specification. Bidirec-
tional transformations are useful in the context of synchronization between models. In
the context of our work, there is a need for F-Alloy to allow the specification of bidirec-
tional transformation. Indeed, being able to synchronize abstract and concrete syntax
will enable Lightning to provide a more advanced language model editor support, as it
would then be possible to seamlessly reverberate any changes brought to the concrete
syntax (through editing) back to the abstract syntax. Future work should thus deter-
mine if the F-Alloy language can be adapted to enable the specification of efficiently
computable bidirectional transformations.

Expressiveness: Finally, despite having an handful of academic case studies already
implemented using F-Alloy1, a more thorough evaluation of the language’s expressiveness
could be provided, possibly by implementing industrial cases studies.

7.2.2 The Lightning Track

Lightning is the embodiment of our advancements in the domain of Alloy-based DSML
engineering. Reviewing missing Lightning features is thus a way to identify relevant fu-
ture work related to that domain.

Full Editor Support: We have seen in Chapter 6 that the editor support provided
by Lightning is limited to a tree editor whose structure depends on the abstract syn-
tax. This limitation is due to the concrete syntaxes being defined in Lightning through

1http://lightning.gforge.uni.lu/examples
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a unidirectional F-Alloy transformation (from the abstract syntax to a VLM). Conse-
quently synchronization between abstract syntax and concrete syntax is non trivial. A
master thesis [146] aimed at identifying ways of synchronizing abstract and concrete
syntax (other than defining the concrete syntax as a bidirectional transformation). The
objectives of this master thesis were to (1) determine the possibility of deriving a partial
definition of a backward transformation (from VLM to ASM) from a concrete syntax de-
fined using Lightning (as an F-Alloy transformation from ASM to VLM), to (2) identify
the information missing in the concrete syntax definition to derive the complete corre-
sponding backward transformation and (3) to implement a web editor deployable from
a Lightning language definition, allowing the edition of language model through their
concrete syntax (using the derived backward transformation). It turned out that the 3rd
objective of implementing an easily deployable web-based language model editor was a
non-trivial task that required the full thesis time to be completed, hence leaving open
the research questions addressed by the thesis. Future work should thus focus on bring-
ing answers to those questions. It is to be noted that once synchronization is achieved,
such editor would natively support advanced features such as validation and model com-
pletion. Validation could be performed on the fly by evaluating facts declared in the
language’s abstract syntax model. Generation of intuitive error messages when a fact is
violated could be achieved by simply annotating each fact of the abstract syntax. The
auto-completion feature (building on demand a valid language model from an invalid one
by applying the least amount of changes) could also easily be implemented by relying on
KodKod [147,148], the relational model finder Alloy is based on.

Collaboration Support While Lightning enables domain experts and language en-
gineers to work hand in hand in the specification of DSMLs, only limited collaboration
features are available – i.e., those provided by existing Eclipse plug-ins [149]. The lack
of an unified platform in which all actors of the DSML design process could communi-
cate and work on the DSML design concurrently prevents fluid remote collaborations.
A recently developed platform called Collaboro [150] shows the benefits of enabling a
collaborative design process through powerful collaborative features like live communi-
cation, vote-based decision, a.s.o... One can imagine that a collaborative design process
could also be supported by Lightning the moment the aforementioned online editor de-
ployment feature is implemented. Indeed, the deployed online editor could be used by
domain experts to test language designs and publish instant feedback to the attention
of language engineers working on eclipse. Such feedback mechanism could easily rely on
an existing ticketing system, already well integrated to Eclipse. The collaborative design
process would then be composed of short test-fix iterations.

Integration With Other Existing Tools: The Lightning language workbench’s
main focus is on validation of DSML designs, somehow to the detriment of other activ-
ities revolving around DSMLs like textual concrete syntax definition [151, 152], DSML
composition [153, 154], code generation [155, 156], collaborative design [157, 158], and so
on. Instead of implementing home-brewed features enabling those activities to be under-
taken in Lightning, it would be interesting to investigate ways of connecting Lightning
to already existing solutions. Lightning has been released as an Eclipse plug-in having
this work direction in mind. The main challenge of connecting Lightning to other so-
lutions is to translate Alloy models and instances produced using Lightning to Ecore
models and XMI instances (and vice versa). While this challenge is already addressed
by works in [77, 78], we believe that another interesting problem to consider is the in-
vestigation of ways to integrate those external tools into Lightning and its agile design
process capability. As a concrete example, let us consider the problem of defining textual
concrete syntaxes. The nowadays leading eclipse-based tool dedicated to this purpose
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is Xtext [141]. Currently, to validate a DSL designed in Xtext, one has to compile the
Xtext specifications to generate the editor as an Eclipse plug-in project, then launch
the generated eclipse project, and finally start fiddling with the editor to see if syntax
validation indeed works as expected. Such a heavy validation process could greatly ben-
efit from the more lightweight analysis based validation provided by Lightning, which
could consist in simply taking as input the Xtext specification and returning examples
of syntactically valid/invalid code for the purpose of validating them.
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TRANSFORMATION

Annexe A

Functional Alloy Module Expressing the
CD2RDBMS Transformation

module CD2RDBMS

open CD

open RDBMS

one sig CREATE{

class2table: Class -> Table,

attribute2column: Attribute -> Column,

association2column: Association -> Attribute -> Column,

association2FKey: Association -> FKey,

}

pred guard_class2table(c:Class){

c.parent=none

}

pred value_class2table(c:Class , t:Table){

t.name[0]=c.name

}

pred guard_attribute2column(a:Attribute){

a not in AssociationClass.attributes

}

pred value_attribute2column(a:Attribute , c:Column){

c.dataType=(a.type.name="String" implies "TEXT" else "NUMBER")

c.name[0]= a.name

c.name[1]=((a.~attrs.parent)!=none implies a.~attrs.name else none)

all i:Int| i>=1 and i< #(a.~attrs.^parent) implies c.name[add[i,1]]= c.name[i].~name.parent.name

a.is_primary=True implies c in CREATE.class2table[a.~attrs.*parent].pkeys

c in CREATE.class2table[a.~attrs.*parent].cols

}

pred guard_association2column(ass:Association,att:Attribute){

att.is_primary=True and att in ass.dest.attrs

}

pred value_association2column(ass:Association , att:Attribute, c:Column){

c.dataType=(att.type.name="String" implies "TEXT" else "NUMBER")

c.name[0]=ass.name

c.name[1]=att.name

c in CREATE.class2table[ass.src].cols

}

pred guard_association2FKey(a:Association){}

pred value_association2FKey(a:Association , f:FKey){

f.references=CREATE.class2table[a.dest]

f.columns=CREATE.association2column[a,Attribute]

f in CREATE.class2table[a.src].fkeys

}

fact C_PRE_C_POST{

all x : Class {

(guard_class2table[x] and one CREATE.class2table[x] and value_class2table[x, CREATE.

class2table[x]])
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or

(not guard_class2table[x] and no CREATE.class2table[x])

}

all x : Attribute{

(guard_attribute2column[x] and one CREATE.attribute2column[x] and value_attribute2column[x,

CREATE.attribute2column[x]])

or

(not guard_attribute2column[x] and no CREATE.attribute2column[x])

}

all x : Association {

(guard_association2FKey[x] and one CREATE.association2FKey[x] and value_association2FKey[x,

CREATE.association2FKey[x] ])

or

(not guard_association2FKey[x] and no CREATE.association2FKey[x] )

}

all x:Association,x1:Attribute{

(guard_association2column[x,x1] and one CREATE.association2column[x,x1] and

value_association2column[x,x1, CREATE.association2column[x,x1]])

or

(not guard_association2column[x,x1] and no CREATE.association2column[x,x1])

}

}

fact C_TRACE_EX{

RDBMSElement = CREATE.class2table[Class] + CREATE.attribute2column[Attribute]+ CREATE.

association2column[Association,Attribute]

FKey=CREATE.association2FKey[Association]

}
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CDREFINEMENT TRANSFORMATION

Annexe B

Functional Alloy Module Expressing the
CDRefinement Transformation

module CDRefinement

open CD

one sig CREATE{

associationClass2Class: AssociationClass -> Class,

newAssociations: Class-> Association -> Association

}

pred guard_associationClass2Class(a:AssociationClass){}

pred value_associationClass2Class(a:AssociationClass,y:Class){

y.name= a.association.name

y.attrs=a.attributes

y.is_abstract=False

y.parent=none

}

pred guard_newAssociations(c:Class,a:Association){

c in a.(src+dest) and a.~association!=none

}

pred value_newAssociations(c:Class,a:Association,y:Association){

y.name= a.name+c.name

y.src=(c=a.src implies c else CREATE.associationClass2Class[a.~association])

y.dest=(c=a.dest implies c else CREATE.associationClass2Class[a.~association])

}

one sig UPDATE{

fixAbstract: Class -> Class

}

pred guard_fixAbstract(c:Class){

c.is_abstract=True and c.~parent=none

}

pred value_fixAbstract(c:Class,y:Class){

y.is_abstract=False

y.attrs=c.attrs

y.name=c.name

y.parent=c.parent

}

one sig DELETE{

associationWithClass: set Association,

associationClass : set AssociationClass

}

pred guard_associationWithClass(a:Association){

a.~association!=none

}

pred guard_associationClass(a:AssociationClass){

}

fact C_PRE_C_POST{
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all x : AssociationClass {

(guard_associationClass2Class[x] and one CREATE.associationClass2Class[x] and

value_associationClass2Class[x, CREATE.associationClass2Class[x]])

or

(not guard_associationClass2Class[x] and no CREATE.associationClass2Class[x])

}

all x : Class |all y: Association{

(guard_newAssociations[x,y] and one CREATE.newAssociations[x,y] and value_newAssociations[x

,y, CREATE.newAssociations[x,y]])

or

(not guard_newAssociations[x,y] and no CREATE.newAssociations[x,y])

}

all x : Class{

(guard_fixAbstract[x] and one UPDATE.fixAbstract[x] and value_fixAbstract[x, UPDATE.

fixAbstract[x]])

or

(not guard_fixAbstract[x] and no UPDATE.fixAbstract[x])

}

all x : Association {

(guard_associationWithClass[x] and x in DELETE.associationWithClass)

or

(not guard_associationWithClass[x] and x not in DELETE.associationWithClass)

}

all x : AssociationClass {

(guard_associationClass[x] and x in DELETE.associationClass)

or

(not guard_associationClass[x] and x not in DELETE.associationClass)

}

}

fact C_TRACE_EN_1{

no CREATE.associationClass2Class[AssociationClass] & CREATE.newAssociations.Association.

Association

no CREATE.associationClass2Class[AssociationClass] & UPDATE.fixAbstract.Class

no UPDATE.fixAbstract[Class] & CREATE.newAssociations.Association.Association

no UPDATE.fixAbstract[Class] & UPDATE.fixAbstract.Class

no CREATE.newAssociations[Class , Association] & CREATE.newAssociations[Class].Association

no CREATE.newAssociations[Class , Association] & DELETE.associationWithClass

}

fact C_TRACE_EN_2{

let input = univ - (CREATE + DELETE + UPDATE + UPDATE.fixAbstract[Class] + CREATE.

associationClass2Class[AssociationClass] + CREATE.newAssociations[Class, Association]){

let output = univ - (CREATE + DELETE + UPDATE + DELETE.(associationWithClass +

associationClass) + UPDATE.fixAbstract.Class) {

attrDisj[input] and attrDisj[output]

acyclicInheritence[input] and acyclicInheritence[output]

nameDisj[input] and nameDisj[output]

noOrphanAttr[input] and noOrphanAttr[output]

AssociationFact[input] and AssociationFact[output]

}

}

}
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APPENDIX C. ATL IMPLEMENTATION OF THE CD2RDBMS
TRANSFORMATION

Annexe C

ATL Implementation of the CD2RDBMS
Transformation

1 module cd2rdbms;

2 create OUT : RDBMS from IN : CD;

3

4 rule PersistentClass2Table{

5 from

6 c : CD!Class (

7 c.is_persistent and c.parent->oclIsUndefined()

8 )

9 using ...

10 to

11 t : RDBMS!Table (

12 name<-c.name,

13 cols<-primary_key_columns->union(foreign_key_columns)->union(rest),

14 pkeys<-primary_key_columns,

15 fkeys<-foreign_keys

16 ),

17

18 primary_key_columns : distinct RDBMS!Column foreach (primAttr in primary_attributes)

19 (

20 name<-primAttr.name,

21 dataType<-primAttr.type.name

22 ),

23

24 foreign_keys : distinct RDBMS!FKey foreach (persAttr in persistent_features)

25 (

26 references<-persAttr.class.topParent,

27 columns<-persistent_features->iterate(tuple;

28 acc : Sequence(Sequence(RDBMS!Column))=Sequence{} |

29 acc->append(foreign_key_columns.subSequence(

30 tuple.offcet,

31 tuple.offcet + tuple.nofAttrs-1)))

32 ),

33 foreign_key_columns : distinct RDBMS!Column foreach (attr in foreign_key_attributes)

34 (

35 name<-attr.name,

36 dataType<-attr.type.name

37 ),

38 rest : distinct RDBMS!Column foreach (attr in rest_of_attributes)

39 (

40 name<-attr.name,

41 dataType<-attr.type.name

42 )

43 }

Listing C.1: a CD2RDBMS transformation expressed in ATL(adapted from [159])
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This transformation is composed of a single rule named PersistentClass2Table (line
4). The rule is executed for each topmost persistent class c (line 7). This rule produces
a table (line 11) named after class c (line 12), containing a set of column(line 13), some
of which are primary keys (line 14), foreign keys (line 15) or neither. The set of primary
key columns produced from a class c is defined in lines 18-22. The set of foreign keys
produced from a class c is defined in lines 24-32, and the columns these contain in lines
33-37. Columns that are neither primary nor foreign keys are obtained from line 38-42.
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APPENDIX D. A VISUAL LANGUAGE MODEL EXPRESSED IN ALLOY: THE
LIGHTNINGVLM

Annexe D

A Visual Language Model Expressed in Alloy: the
LightningVLM

module LightningVLM

open util/ternary

open util/boolean

abstract sig Layout{}

one sig VERTICAL_LAYOUT extends Layout{}

one sig HORIZONTAL_LAYOUT extends Layout{}

abstract sig VisualElement{

color : Lightning_Color

}

abstract sig Symbol extends VisualElement{

composedOf: seq VisualElement,

layout:Layout

}

abstract sig Shape extends Symbol{}

sig INVISIBLE_CONTAINER extends Shape{}

sig RECTANGLE extends Shape{}

sig TRIANGLE extends Shape{}

sig ELLIPSE extends Shape{}

sig RHOMBUS extends Shape{}

sig CYLINDER extends Shape{}

sig ACTOR extends Shape{}

sig CLOUD extends Shape{}

sig HEXAGON extends Shape{}

sig DOUBLE_ELLIPSE extends Shape{}

sig IMAGE extends Symbol{

url: String

}

sig TEXT extends VisualElement {

textLabel: seq univ,

isBold : Bool,

isItalic :Bool,

}{ #textLabel=#(textLabel.elems)}

fact compositionSanity{

all s : Symbol | s not in s.^(composedOf.select13)

all ve: VisualElement| #(ve.~(composedOf.select13))<2

}

abstract sig Lightning_Color{}

one sig RED extends Lightning_Color{}

one sig GREEN extends Lightning_Color{}

one sig BLUE extends Lightning_Color{}

one sig ORANGE extends Lightning_Color{}

one sig YELLOW extends Lightning_Color{}

one sig PURPLE extends Lightning_Color{}

one sig BROWN extends Lightning_Color{}

one sig BLACK extends Lightning_Color{}

one sig GRAY extends Lightning_Color{}

one sig WHITE extends Lightning_Color{}

Listing D.1: A Visual Language Model defined in Alloy. Instances of this model can
be parsed by the Lightning tool and rendered accordingly
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Glossary

Glossary

Abstract Syntax A part of a DSL definition defining the set of valid language models.
12
Abstract Syntax Model (ASM) A representation of the abstract syntax as an Alloy
module. 86
Alloy A lightweight formal language allowing the declarative specification of systems in
term of concepts, relations and constraints. 2
Alloy Expression There are two main categories of expressions in Alloy: Boolean-
valued (used to define constraints) and set-valued (yielding a set of atoms/tuples).
16
Assertion A checkable Alloy expression. Checking it leads to the generation of
counter-examples. 15
Command An instruction defining what kind of analysis is to be performed on the
module it is declared in as well as within what scope. 15
Fact An constraint expressed in Alloy that should always be satisfied . 15
Field The declaration of a relation between concepts in Alloy. 15
Function A parametrized, set-valued, Alloy expression . 15
Let instruction assigning an expression to a variable than can either be used locally
(inside a block) or globally (throughout the module) . 15
Predicate A parametrized, boolean-valued, Alloy expression . 15
Scope Scopes define the size of instances that can be generated from an Alloy module.
Concretely, they are upper-bound to the number of atoms typed by each signature. 13
Signature The declaration of a concept in Alloy. 15

Alloy Instance A generated model conforming to the metamodel specified by an Alloy
module. 15
Atom Representation of an object taking its type from a signature . 15
Conforming A model is said to conform to a metamodel if it follows the structure
and satisfies the constraints defined by it. 3
Counter Example Obtaining from checking an assertion, counter-examples are in-
stances (satisfying all invariants) in which the checked assertion is violated. . 15
Tuple Representation of a relation between objects taking its type from a field. 15

Analysis A process allowing to obtain conforming models (or counter-examples) from a
given metamodel. 2
Alloy Analysis Analysis preformed by the Alloy Analyzer on given Alloy modules.
It relies on SAT-solving to generate instances and counter-examples. 17

Concrete Syntax A part of a DSL definition defining how to represent language models.
12
CRUD is an acronym used to refer to the four basic operations performable on persistent
storages, namely: Create, Read, Update, Delete. This term is also used in the model
transformation community when describing endogenous in-place operations . 11
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Domain Expert Given a system, the domain expert is familiar with its domain of
application, but has no knowledge of the technology used to design it. 2
Domain Specific Language (DSL) A language specifically designed to solve a limited
set of problems. They are to put in contrast with general purpose languages like Java,
which have a wider expressiveness. 12
Domain-specific modeling languages (DSMLs) A DSL whose specific aim is to
model systems. 2, 12

Engineer We call engineer someone who has technical knowledge. 1
Language Engineer An engineer specialized in the definition of DSLs. 12
Transformation Engineer An engineer specialized in model transformation tech-
nologies. 72

F-Alloy A sublanguage of Alloy allowing the specification of efficiently computable
functions. 3
Guard Predicate A predicate specifying the condition under which source and target
elements are to be part of a mapping. 30
Mappings Backbones of an F-Alloy transformation, they define relations between
source and target module. 18
Rule An F-Alloy expression having the property of being interpretable . 37
Traceability Links Tuples typed after mappings . 19
Value Predicate A predicate, containing rules, specifying what must hold for ele-
ments that are part of a mapping . 30

Function A non-deterministic single-output model transformation. 24

Language Model an occurrence of the language. Compared to a model, it is understood
that a language model can be viewed and executed using the language’s well defined
concrete syntax and semantics, respectively. 12
Language Workbench A tool specialized in the definition and usage of DSLs. 13
Lightning An Alloy-based language workbench prototype, proof of concept of this
thesis’ work. 4
LightningVLM The default Visual Language Metamodel provided by Lightning. 99

Model A conceptual representation of chosen aspects of the system in which details
irrelevant to those aspects are abstracted away. 1
Model Transformation Executable specifications enabling to automatically modify or
create from a model, various artifacts, from model to code..
compound A transformation whose source or target metamodels are transformation
specifications. 3
Endogenous transformations whose source and target metamodels are the same. 3,
10
Exogenous transformations whose source metamodel differ from their target meta-
model. 3, 10
Higher Order A transformation whose source or target metamodels are themselves
transformation languages. 11
In-place the transformation defines how to modify the source model in order to obtain
the target model. 3, 11
Out-place the transformation defines how to build from scratch the target model from
the source model. 11

Module A file containing a metamodel specification expressed in the Alloy language.
14
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Alloy Module metamodel specification expressed in Alloy. 14
F-Module function specification expressed in F-Alloy. 36
Functional Alloy Module function specification expressed in Alloy. 25
Source Module source of an F-Alloy transformation . 18
Target Module target of an F-Alloy transformation . 18

Semantics A part of a DSL definition providing meaning to language models. 12
Denotational Associate mathematical objects to language models. 13
Operational Define how language models are to be executed as a sequence of seman-
tics steps. 13
Pragmatic Language model’s meaning are defined by the execution of a tool pro-
cessing them. 13
Translational Enables the translation of a language model into another language
whose semantics is well defined. 13

UML The Unified Modeling Language emerged from an effort of standardizing model
representations. It comprises a set of standard languages allowing to model every aspects
of a system.. 95

Validation the exercise of ensuring that a design represents effectively the desired
system. 1
Verification the exercise of ensuring that a design is correct, that is, it is devoid of
design errors. 1
Visualization Based Validation (VBV) A validation process relying on graphically
reviewing instances . 4
VLM A Visual Language Metamodel aims at defining a graphical language in terms of
concepts and relations. . 12
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