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Abstract

Model-Driven Engineering (MDE) has been extensively studied. Many directions have

been explored, sometimes with the dream of providing a fully integrated approach for

designers, developers and other stakeholders to create, reason about and modify models

representing software systems.

Most, but not all, of the research in MDE has focused on general-purpose languages

and models, such as Java and UML. Domain-specific and cross-cutting concerns, such

as security, are increasingly essential parts of a software system, but are only treated as

second-class citizens in the most popular modelling languages. Efforts have been made

to give security, and in particular access control, a more prominent place in MDE, but

most of these approaches require advanced knowledge in security, programming (often

declarative), or both, making them difficult to use by less technically trained stakeholders.

In this thesis, we propose an approach to modelling, analysing and automatically fixing

role-based access control (RBAC) that does not require users to write code or queries

themselves. To this end, we use two UML profiles and associated OCL constraints that

profide the modelling and analysis features. We propose a taxonomy of OCL constraints

and use it to define a partial order between categories of constraints, that we use to

propose strategies to speed up the models’ evaluation time. Finally, by representing OCL

constraints as constraints on a graph, we propose an automated approach for generating

lists of model changes that can be applied to an incorrect model in order to fix it. All

these features have been fully integrated into a UML modelling IDE, IBM Rational

Software Architect.
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“Being abstract is something profoundly different from being vague . . . The purpose of

abstraction is not to be vague, but to create a new semantic level in which one can be

absolutely precise.”

— Edsger W. Dijkstra
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4 Introduction

1.1. Motivation

Model-Driven Engineering (MDE) is a software engineering paradigm whose basic as-

sumption is “the consideration of models as first class entities. A model is an artifact that

conforms to a metamodel and that represents a given aspect of a system” [18]. The Object

Management Group (OMG) is an organisation that proposes a set of standards to imple-

ment MDE, such as the Unified Modeling Language (UML) [76], the Meta-Object Facility

(MOF) [73], and the Object Constraint Language (OCL) [75]. The OMG uses these

standards to propose its Model-Driven Architecture (MDA), an approach for “specifying a

system independently of the platform that supports it”, “specifying platforms”, “choosing

a particular platform for the system”, and “transforming the system specification into one

for a particular platform” [67]. Specifications that are independent of the platform are

called Platform-Independent Models (PIM), while specifications for a particular platform

are called Platform-Specific Models (PSM).

In their empirical assessment of MDE in industry, Hutchinson et al. [46] have surveyed

experienced modellers in companies that “have been using models as a primary devel-

opment artefact” [46, p. 471]. They found that “MDE users employ multiple modeling

languages. Almost 85% of respondents make use of UML and almost 40% use a DSL

[Domain-Specific Language] of their own design. [...] A quarter of respondents [...] use

a DSL provided by a tool vendor” [46, p.474]. This shows that UML is widely adopted

amongst MDE practitioners, and that domain-specific languages (DSL) are also used

by a significant proportion. By far the most used type of diagrams are class diagrams

(almost 90% of respondents), followed by activity diagrams (around 55%) and use case

diagrams (almost 40%). DSL diagrams come in sixth position with less than 10%, after

sequence diagrams and state machine diagrams [46, p.474].

In her study of UML in practice, Petre [83] interviewed 50 software engineers from

“a wide range of industrial settings” [83, p. 3]. It emerged from the interviews that the
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majority of them do not use UML at all (70%), 22% of them use it selectively, and 6%

use it for code generation [83, p. 3]. Class, sequence and activity diagrams were found

to be the most widely used, which confirms Hutchinson et al.’s findings. Two of the

criticisms against UML identified by Petre are particularly important for this work: the

first one is that some practitioners note that “the complexities of the notation limited its

utility - or demanded targeted use - in discussions with stakeholders [...] The best reason

not to use UML is that it is not ‘readable’ for all stakeholders” [83, p. 4], and the second

one is that “there is no check on consistency, redundancy, completeness or quality of the

model what so ever” [83, p. 5].

Selic gives directions on what is required to increase industry adoption of MDE [96].

He discusses cultural and social factors, economic factors, and technical factors. In this

dissertation, we focus on the technical factors. Amongst the challenges in this category, he

identifies scalability, usability, model validation and synchronisation, modelling language

design and specification, and model transformations.

Most of the research conducted in MDE has focused on general-purpose models,

and ways of transforming them, evolving them, analysing them, or turning them into

code. General-purpose models, just like their general-purpose language counterparts,

do not always make it very easy to represent domain-specific concepts. Addressing this

problem in the context of MDE can be done in two different ways. The first one uses

domain-specific annotations on general-purpose models. Here languages used for these

annotations are called domain-specific modelling annotations languages (DSMAL). The

other school of thought ignores the general-purpose models, and favours models that

exclusively represent the domain-specific concepts, much like domain-specific programming

languages. These are called domain-specific modelling languages (DSML).
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In this dissertation, we argue that both approaches can complement each other, and

apply them to represent a very important concern in software development: security, and

in particular access control.

Security is a growing concern in the software engineering community [68]. With

software systems being increasingly connected and handling large amounts of data, both

the attack surface of software systems and the potential value of the data they contain

to prying eyes have gone up dramatically. Now more than ever, it is essential to protect

access to data in order to prevent it from being leaked to unauthorised third parties.

Access control is the part of computer security that deals with this issue of deciding who

gets access to what data and operations, and under which circumstances. Getting access

control policies exactly right is hard, if not impossible [94]. Giving users too much access

to data or processes increases the risk of leaks and misuse of information, whilst not

giving them enough permissions will prevent them from using the system as they should

be able to.

Leaving security concerns to the end of the development cycle often leads to poorly

protected systems. Hence, Fernandez-Medina et al. [30] argue that security would benefit

from being taken into account from the first stages of the development process, e.g. as

part of an MDE process. This would make it easier to keep track of security requirements

and make sure that the security measures actually enforce those requirements, to handle

change and its impact on security, and to communicate the security measures to the

stakeholders.

Beyond the “simple” definitions of DSMLs or DSMALs, there exist many approaches

that attempt to make domain-specific concepts first class citizens in MDE. This is certainly

true of security, and access control in particular, where approaches such as SecureUML [8],

UMLsec [48] and others allow for the modelling of access control properties, and sometimes

their analysis with regard to security requirements. Most of these approaches use the
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role-based access control (RBAC) model, in which users are not directly given permissions.

Instead, they are assigned roles, and roles are assigned permissions.

While these approaches do allow one to take RBAC concerns into account early in the

development cycle, they still suffer some limitations. Some of them do not support the

entire RBAC standard, although others may support it entirely, and even support further

constructs that are not available in the standard. These approaches also often require

users to write queries themselves, or to interpret complex outputs, which could make

adoption by users with little technical background more difficult. Finally, while these

approaches are good at identifying errors in RBAC models, they do not help users in

fixing those errors, which can be a difficult and time-consuming process if done manually.

1.2. Research Objectives

The purpose of this dissertation is to explore and propose an approach for the modelling,

evaluation, analysis and fixing of domain-specific models, using both a DSML and a

DSMAL. The focus will be on the design compliance to RBAC, a widely-used and

standardised access control model. We will be looking at the following research question:

How can we design, analyse and fix RBAC concepts as part of an MDE process, in a

way that does not require users to write complex queries or code themselves, and using

(almost) exclusively OMG standards?

In particular, we will explore three MDE-related activities:

Modelling Perhaps the most important activity is the ability to model RBAC-specific

concerns;

Model analysis The ability to analyse the models against user-defined requirements

expressed as a form of tests that we call scenarios, and to perform further analysis
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on the model for well-formedness, scenario coverage, model completeness, scenario

satisfiability, and the identification of redundancies;

Fixing incorrect models When the evaluation of the models exposes errors, correcting

them can be very difficult to do manually: fixing an error in one place may raise

new errors, creating a long and error-prone cycle of error fixing. Therefore, an

automated discovery of possible solutions to an erroneous model may be of great

help to the stakeholders.

Because it is arguably the most widely known modelling language, and because of

its extension mechanism called profiles and the availability of UML modelling tools and

platforms, we selected UML to develop our approach. Bran Selic’s methodology for DSML

development [95] can be used not only to develop DSMLs, but also DSMALs, which is

why it has been selected for the development of both languages. Selic’s methodology

proposes a systematic way of developing a UML profile to implement a DSML, from a

model of the domain-specific concepts to be represented. The choice to develop both a

DSML and a DSMAL was made because each of them is better suited for some activities.

Many stakeholders are likely to use models produced as part of an MDE approach:

developers of course, as well as model designers, but also customers and other stakeholders,

who may not all have experience and knowledge in software engineering. Similarly, in

the case of domain-specific models, not all the stakeholders are necessarily au fait with

the specifics of the particular domain being studied. This is especially true of security,

which is a notoriously hard domain. It is therefore crucial for the proposed approach to

be accessible to non-experts. In particular, users should not be required to write any

code or queries themselves. Instead, the analysis of models should be automated, and

the queries and code should be hidden from the users.

This dissertation proposes four contributions:
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Modelling and analysing RBAC concerns using two UML profiles;

A classification of OCL constraints and the use of said classification to define a partial

order between the categories, to improve the evaluation speed and the user feedback

by only evaluating constraints if preconditions are satisfied;

The automated generation of fixes that can lead an incorrect model into a correct

state;

Two performance evaluations, one of the efficiency of the evaluation strategies pro-

posed, and one of the automated generation of model fixes.

We present rbacUML, an approach for modelling and analysing RBAC properties and

requirements on UML models. At the core of rbacUML are two UML profiles (rbacUML

and rbacDSML) that extend the UML meta-model. The focus is on using standard UML

technologies that designers may already know, in order to make the rbacUML approach

as easy to use as possible. Whilst the rbacUML profile defines a DSMAL, the rbacDSML

profile defines a DSML, both to express the access control properties and requirements.

Requirements can be expressed in the following forms:

scenarios specific actions that a particular user, given a set of active roles, must be able

to perform;

anti-scenarios specific actions that a particular user, given a set of active roles, cannot

perform.

Both profiles are made of three parts:

The configuration defines domain concepts (users, role hierarchies, etc.);

The policy identifies protected resources and defines their access requirements;
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The scenarios and anti-scenarios ensure that the model enforces the expected access

control requirements.

The first two follow traditional access control specifications, while the last one is required

solely for testing and verification purposes.

To address the“breadth of evaluation” issue, rbacUML provides the following evaluation

capabilities:

well-formedness Are there any syntactic or type errors in the model?

verification Are the scenarios and anti-scenarios enforced by the model?

completeness Is there anything missing in the model, e.g. are there users that have

been assigned no roles, or permissions that are not associated with any role?

coverage Which parts of the model are covered by access control (anti-) scenarios?

satisfiability Are some resources impossible to access, or some scenarios impossible to

complete, no matter which user carries them out?

redundancy Are there access control elements that are redundant, and could safely be

merged?

All the above analyses are implemented using OCL queries, the OMG’s standard

language for model queries. The last four allow users to identify “model smells”, areas

where the model may require some attention, but that are not necessarily errors.

As models grow, so does the number of OCL queries to evaluate, therefore increasing

the evaluation time. Moreover, the result of the evaluation of some constraints may

not always be useful to the designers. Moreover, lots of feedback can be given to the

designers, which may be confusing. By introducing a categorisation of OCL queries, and

by providing a partial order between the different categories, the proposed strategies will
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not only increase the verification speed by only evaluating the constraints required, but

also reduce the amount of unwanted feedback given to the designers.

In order to fix erroneous models in a way that is useful to stakeholders, two properties

need to be guaranteed:

Correctness Any solution generated must produce a correct model;

Completeness All possible solutions must be proposed, for the stakeholders to be able

to choose the most appropriate solution.

The performance of the rbacUML models analysis is evaluated, as well as the perfor-

mance of the time reduction strategies proposed. The different fixing strategies proposed

are also evaluated and compared.

1.3. Organisation of this Dissertation

This dissertation comprises 6 chapters. The first one is this introduction. Chapter 2

provides background and a review of the existing literature appropriate for this work.

Chapter 3 presents, discusses and compares the rbacUML DSMAL and the rbacDSML

DSML. rbacDSML is used in Chapter 4 to propose a solution to fix incorrect models.

Chapter 5 then presents the implementation of rbacUML and rbacDSML, and evaluates

the performance of the proposed model analysis and fixing approach. Chapter 6 suggests

future work and ends with concluding remarks.

As stated earlier in the declaration, some of the material in this dissertation has been

published in peer-reviewed venues. Material from our tool paper [64] can be found in

Chapter 5; material from our paper on challenges in model-based evolution and merging

of access control policies [63] is available in Chapters 2 and 6; material from our paper

on the representation of domain-specific concerns in MDE [66] is in Chapters 3 and 6;
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material from our paper on plug-in development on modelling platforms [65] is found in

Chapter 5.
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14 Literature Review

This chapter reviews the literature relevant to this dissertation in three sections. The

first section introduces the concepts of model-driven engineering (MDE). The second

section is focused on access control, and how access control models evolved over time.

It also discusses the latest advances in the evaluation of access control policies. Finally,

the third section unites both areas by discussing existing approaches that attempt to

integrate access control concerns into MDE approaches. The strengths and weaknesses

of these approaches are discussed, highlighting the gap that this dissertation attempts to

fill.

2.1. Model-Driven Engineering

The use of models to reduce software complexity has been advocated for decades in the

software engineering community [93]. The OMG, for example, proposes a four-layer

architecture [13], summarised in Table 2.1. The lowest level (M0), at the bottom of the

table, is an instance of a model, i.e. the real system. The next level (M1) is the model level,

which conforms to a meta-model on level M2, itself conforming to the meta-meta-model

on the highest level (M3) [13]. According to Bézivin, a model conforms to a meta-model

“if and only if each model element has its metaelement defined in the metamodel” [14].

In the same manner, a meta-model conforms to a meta-meta-model if and only if each

meta-model element has its meta-element defined in the meta-meta-model.

Table 2.1.: Table of the OMG organisation in a four-level architecture

Level Name Description

M3 Meta-meta-model describes meta-models

M2 Meta-model describes the elements of a model, conforms to M3

M1 Model describes a system, conforms to M2

M0 Instance describes an instance of the model, conforms to M1
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Several organisations and companies have proposed platforms to support MDE, such

as Microsoft’s Software Factories [37] or OMG’s MDA [102]. The focus of this dissertation

will be on OMG’s set of standards, which includes the widely known Unified Modelling

Language (UML).

In this dissertation, we focus on the design level. The argument made by Ferandez-

Medina et al. [30] is that, since design often comes before implementation, at least in

traditional development models such as the waterfall or the V model, a way of taking

security into account early in the software development cycle is to express it at the design

level. Furthermore, the design level already provides sufficient detail (e.g. the resources

that need to be protected) to reason about access control, making it a sensible choice

for early analysis. In some software engineering practices, the design level comes after

the elicitation of requirements. Therefore, we assume that the specific access control

requirements to be enforced have already been defined. While expressing and verifying

access control requirements could perhaps already be done at that level, it is out of the

scope of our approach. Such a solution would not replace our approach, but complement

it. First, because the design level contains more details than the requirements level.

Second, because while security should be taken into account as early as possible [30],

traceability of security concerns throughout all the phases of the software development

process is also essential.

The proposed approach is clearly solution-oriented, and assumes that the solution to

a real world problem has been defined. The focus is on how to gain confidence in the

fact that the software actually enforces that solution, i.e. conforms to the access control

requirements, not how the solution has been found or whether or not it actually solves

the real world problem.
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2.1.1. MDE using OMG Standards

The Object Management Group (OMG) [74] is a not-for-profit consortium that “develops

enterprise integration standards for a wide range of technologies”. In 2001, the OMG

launched its own initiative to support model-driven engineering: Model-Driven Architec-

ture (MDA) [102]. MDA is “the realisation of model engineering principles around a set

of OMG standards” [13]. Such standards include the Unified Modeling Language (UML),

the Object Constraint Language (OCL), and the Meta-Object Framework (MOF).

MDA introduces a key distinction between platform-independent models (PIM) and

platform-specific models (PSM). The former are the higher-level representations of a

software system, which are meant to be later specialised into PSMs as the choice of

platform is made. The OMG defines PIM as “a formal specification of the structure and

function of a system that abstracts away technical detail”, while PSM is defined as “a

specification model of the target platform”. It is an intermediate step between the PIM

and the implementation. This distinction has been introduced as the OMG was facing a

rise in the number of frameworks and middlewares that their members were using. By

specifying PIM models, one could describe a system without taking its implementation

into account, leaving the PSM details for when the target platform was chosen. This

allows one to easily change the platform as well, without affecting the PIM at all.

Steve Cook retraces the history of UML and states that it finds its roots in the

development of object-oriented languages, as well as the graphical design languages

of the early 1990s [22]. In 1994, a study commissioned by the OMG concluded that

standardisation of these languages was required. A consultation process was then

engaged, that led to a submission by Rational Software Corporation of the Unified

Modeling Language 1.0. The first specification published by OMG was UML 1.1 [77], the

result of a compromise over the several submissions to the consultation. In particular,

OCL was integrated into the publication, but actually came from IBM/ObjectTime’s
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Table 2.2.: The 4-layer structure of the UML architecture [55]

Level Name Content

M3 meta-meta-model MOF meta-meta-model

M2 meta-model UML meta-model

M1 model UML analysis model (e.g. class diagrams)

M0 instance UML instance model (e.g. object diagrams)

submission [112]. At the time, UML 1.1 supported 8 types of diagrams. Several

refinements of UML were later published, until UML 1.4 in 2001 [78]. UML quickly

became the most prominent modelling language in industry and academia [22]. A bigger

overhaul of the UML standard was published in 2005, called UML 2.0 [79]. UML 2

was meant to address the issues of UML 1.x that had been raised by practitioners and

academics. In particular, MOF [73] was introduced as “a modelling language for specifying

meta-models”, and used to formally define UML 2. UML loosely followed the 4-layers

architecture from Table 2.1, as pointed out by Kobryn [55] and summarised in Table 2.2.

The UML 2.x revision process continues to this day.

One important feature of UML is profiles [21]. Whilst UML is a general-purpose

language, it can be extended with new constructs using the profile mechanism, which

is essentially an extension of the UML meta-model using stereotypes and stereotype

attributes, also called tagged values. UML profiles allow one to define domain-specific

constructs to use with UML models. The OMG has released a few standardised UML

profiles, such as the System Modeling Language (SysML) [80], or the profile for Modeling

and Analysis of Real-time Embedded Systems (MARTE) [81].

UML 2.3 [76], the latest release, has 14 types of diagrams, divided largely into two

categories: structural diagrams and behavioural diagrams. There is also a sub-category

of behavioural diagrams called interaction diagrams:

• Structural diagrams
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– Profile diagrams

– Class diagrams

– Composite structure diagrams

– Component diagrams

– Deployment diagrams

– Object diagrams

– Package diagrams

• Behavioural diagrams

– Activity diagrams

– Use case diagrams

– State machine diagrams

– Interaction diagrams:

∗ Sequence diagrams

∗ Communication diagrams

∗ Interaction Overview diagrams

∗ Timing diagram

2.1.2. Model Transformations as Graph Transformations

Mens et al. have proposed a taxonomy of model transformations [60], and applied

it to graph transformation tools [61]. This makes a lot of sense, since models are

typically very much graph-like: in UML, for example, model elements are nodes, and
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associations between elements are edges between nodes. It therefore makes sense to treat

models as graphs, which allows one to apply graph theory principles and techniques

to analyse and transform models. The graph-based model transformation tools they

analysed are VIATRA [23], a model checking and verification tool; GReAT [104], a model

transformation tool; Fujaba [17], a re-engineering tool; and AGG [1], a general-purpose

graph transformation tool. The authors claim that their taxonomy is general enough to

apply to other graph transformation tools as well.

Bergmann et al. [12] have successfully used graph transformations for several purposes,

including live incremental transformations and model transformations by example. The

former is really useful in a situation where several models need to be kept in sync.

Instead of doing batch transformations to reflect changes from the source model to the

target models, live incremental transformations provide an efficient way of performing

the transformations continuously, by analysing the impact of each change to the model

elements, and identifying which target elements may potentially be affected by each

change. The latter allows one to semi-automatically define model transformations. The

analysis of a few example transformations provided by the user allow the engine to derive

possible transformation rules, that can then be applied to entire graphs.

2.1.3. Inconsistency Detection and Resolution

During the MDE development cycle, it is likely that inconsistencies between parts of the

models will occur. It is important to be able to detect those inconsistencies and resolve

them. One should note that the process of inconsistency handling is very similar to the

process of software merging, and therefore, some techniques developed for the former

have been used in the latter, and vice-versa. By inconsistencies, we specifically mean

contradictions, often between two different diagrams, in the same model. For example,

Figure 2.1 shows a class diagram as well as a sequence diagram. The sequence diagram



20 Literature Review

represents a call from an object of type A to an object of type B, using its operation

getAddress() that is not listed in the class diagram.

(a) Class diagram

(b) Sequence diagram

Figure 2.1.: A sample inconsistency between a sequence diagram and a class diagram

The first attempt at inconsistencies detection has been suggested by Finkelstein et al.

[33] with their ViewPoints framework that allows each actor to have its own view of the

system, consisting of only the diagrams that make sense to him/her.

Van Der Straeten et al. propose a two dimensional classification of inconsistencies

[110] between class, sequence and state diagrams. The first dimension describes the

type of affected model, according to MDA as described in section 2.1.1. Conflicts can

arise between a model and a model, between a model and an instance, or between an

instance and an instance. The second dimension describes which aspects of the model
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are affected: behavioural or structural. Figure 2.3 presents the classification of the types

of inconsistency conflicts Van Der Straten et al. detected.

Table 2.3.: Classification of inconsistency conflicts [110]

Behavioural Structural

Model-Model dangling (type) reference, in-
herited association conflict

Model-Instance incompatible definition instance definition missing

Instance-Instance invocable behaviour conflict,
observable behaviour conflict,
incompatible behaviour con-
flict

disconnected model

Van Der Straeten et al. only describe two types of conflicts: instance definition

missing, that “occurs when an element definition does not exist in the corresponding class

diagram”, and incompatible behaviour, that “indicate conflicting behaviour definitions

between state diagram(s) and sequence diagram(s)” [110].

Their proposal is not limited to a classification of inconsistencies, as they also propose

to use description logic to maintain consistency between those diagrams (class, sequence

and state) during software evolution [110]. They first define a UML profile to support

consistency, and then translate it into description logic, which is a decidable subset of

first order predicate logic. Their approach is limited as it only works on three types of

UML diagrams.

Mens and Van Der Straeten later propose another approach, based on graph transfor-

mations and critical pair analysis [59]. Their proposal is an iterative process to detect

and resolve inconsistencies by representing them as graph transformation rules. To detect

inconsistencies, they define possible inconsistencies using graph transformation rules,

and search the model for occurrences of structures, or the absence of some others. To

resolve those inconsistencies, they specify several possible resolution rules. They use an

extension of the AGG tool [1] to implement those graph transformations. The process
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is incremental because resolving one inconsistency might lead to other inconsistencies

(induced inconsistencies), or because several resolution rules might interfere with each

other (conflicting resolutions). To avoid infinite iterations, they use critical pair analysis

to avoid cycles in the resolution process.

Yet another approach to detecting inconsistencies is proposed by Blanc et al., and

uses operation-based model construction [16], which “represents models by sequences

of elementary construction operations, rather than by the set of model elements they

contain” [16]. This approach has the advantage of being independent of any metamodel.

It is, therefore, not limited to some types of UML diagrams like the solutions discussed

earlier. It is inspired by the work of Lippe and Van Oosterom [57] in software merging

that proposed an operation-based approach to software merging. By defining only four

operations (create, delete, setProperty and setReference), one can build any model

conforming to any metamodel using a sequence of atomic operations. Blanc et al. consider

two kinds of consistency rules ([16]):

structural consistency rules define relationships that should hold between model ele-

ments regardless of how they have been constructed;

methodological consistency rules are constraints over the construction process itself.

Rules of both types are defined using predicate logic, and then checked using a Prolog

engine. While this is a sound and well understood solution, it has the drawback of

potentially leading to infinite loops. As opposed to Van Der Straeten et al. [110] who

chose to use a subset of first order logic to avoid infinite loops, Blanc et al. decided

to transfer the responsibility of ensuring that infinite loops will not happen to the

transformation rule developers.

Another drawback of Blanc’s approach is that the inconsistency checking process

has to be run as a batch job, while it would be desirable for the application developer



Literature Review 23

to get instant feedback while the model is built. They addressed this problem later

by providing an incremental detection approach that still uses operation-based model

construction [15]. By using an incremental checking strategy instead of checking the

whole model as a batch, the number of consistency rules to check is drastically reduced.

To do so, they use equivalence class partitioning to classify the rules, and select those

which are actually impacted by the changes that have been made. An impact matrix is

then constructed to point out which operations might impact inconsistency rules. Since

the inconsistency checking process is now much faster, it has been integrated into the

Eclipse GMF modelling environment, as well as Rational Software Architect.

Realising that, even though progress had been made in inconsistency detection, those

techniques were not really used by industry professionals, Egyed observed that the main

obstacle to wide adoption of inconsistency detection was feedback, which was too slow

and of poor quality [28]. To get useful feedback, professionals need it instantly and in a

useful way, i.e. they want to know which model elements are involved in an inconsistency

problem. To achieve instant and useful feedback, Egyed uses incremental consistency

checking. To find out what the impact of changes are on the model, he compares three

solutions: the “what happens if . . . ” approach, the type-based scope approach, and the

instance-based scope approach. The first one simply asks the question “What happens if

this element changes?” The problem is that each change in an element is likely to have

impact on a lot of other elements, and it is very hard to identify all possible impacted

elements. The type-based method uses the type of the modified element to find out

which other types of elements might be impacted. Finally, the instance-based method is

similar to the type-based method, but instead of working on element types, it works on

instances of those elements. The last method is the one chosen by Egyed in his approach.

Combined with a profiler that monitors the changes to the model, he can identify very

quickly which consistency rules need to be reevaluated after each change. His approach
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has been tested on models involving tens-of-thousands of elements and consistency rules,

and it was shown to provide “instant” response even on the largest examples.

Later, Egyed et al. built on top of their inconsistency checking method a technique to

generate a set of concrete changes to fix those inconsistencies, and providing information

about each change’s impact on other consistency rules [29]. Instead of using fixing rules

that, together with the consistency rules, propose possible solutions, Egyed et al., after

generating all possible fixes, test them one after the other to determine which ones

are actually valid. A valid solution is a solution that actually solves the inconsistency,

without introducing a new one. Once again, empirical evidence has shown that, even on

very large models, the feedback to the user comes “instantly” [29].

Egyed’s approach has two limitations. First, it will only generate potential fixes that

do not involve the creation of new model elements. Second, it only supports fixes that

involve change in only one location.

It would be greatly beneficial to have such a technique for access control properties,

as changes in the model, or in the access control properties themselves could also lead to

inconsistencies, that could harm the efficiency of the access control model. Just as for

UML models in general, incremental detection of inconsistencies would offer professionals

a much faster and therefore more interesting feedback on the consequences of their

changes in terms of access control.

2.2. Access Control

Access control is an old problem, that probably appeared with the development of

multi-user operating systems. Concerns have quickly grown over who should be able to

access, create or modify resources and data. It became apparent that access to data

and processes had to be restricted. In 1985, the US Department of Defense released
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the Trusted Computer System Evaluation Criteria (TCSEC) [54], defining two models

for access control: Discretionary Access Control (DAC) and Mandatory Access Control

(MAC). They are still used today, but have shown their limits, and since then, new

models of access control, such as Role-Based Access Control (RBAC) or the more recent

Attribute-Based Access Control (ABAC) have been developed to address those limits.

This section first highlights the distinction between authentication and authorisation,

and then discusses the most important authorisation models.

2.2.1. Authentication and Authorisation

Access control is a term that encompasses two complementary yet rather different concepts:

authentication and authorisation. The US Committee on National Security Systems

(CNSS), in its National Information Assurance Glossary [20], defines authentication as

follows:

Definition 1. Authentication. The process of verifying the identity or other attributes

claimed by or assumed of an entity (user, process, or device), or to verify the source and

integrity of data.

It also defines authorisation as follows:

Definition 2. Authorisation. Access privileges granted to a user, program, or process

or the act of granting those privileges.

Another way of looking at those two concepts is that authentication is the process of

making sure that the user is actually who (or the device is actually what) they claim to

be, and authorisation is the process that determines whether or not a user (or device)

has the access to a resource.
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This thesis only discusses authorisation. The models presented are indeed only

concerned with authorisation, even though their name may suggest that they also touch

on authentication issues.

2.2.2. Discretionary Access Control

Discretionary Access Control is one of the access control models defined in 1985 by the

TCSEC [54] as “a means of restricting access to objects based on the identity of subjects

and/or groups to which they belong. The controls are discretionary in the sense that a

subject with a certain access permission is capable of passing that permission (perhaps

indirectly) on to any other subject (unless restrained by mandatory access control)”.

A well known example of DAC is the permission system in UNIX systems, which

defines read, write and execute permissions on every file, for its owner, its group and

all the other users.

2.2.3. Mandatory Access Control

Mandatory Access Control is the other access control model defined by the TCSEC. The

TCSEC defines MAC as “a means of restricting access to objects based on the sensitivity

(as represented by a label) of the information contained in the objects and the formal

authorisation (i.e., clearance) of subjects to access information of such sensitivity” [54].

Compared to DAC, MAC is more expressive as it allows the administrator to limit the

objects owner’s ability to perform some operations. For example, an administrator might

want to forbid a range of users from making their files executable.

Multi-Level Security (MLS) [11] can also be achieved with MAC. MLS allows one to

define several clearance levels. Each object would get a security level, and only users

having a clearance level equal or higher to the object’s security level would be able to
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perform read operations on said objects, whilst only users having a clearance level lower

or equal to the object’s security level would be able to perform write operations on said

objects.

2.2.4. Role-Based Access Control

Role-Based Access Control (RBAC) differs from MAC and DAC as it does not directly

assign permissions to users. Instead, it introduces the concept of roles. Roles are

assigned a set of permissions, and each role can be assigned to as many users as necessary.

Permissions in RBAC cannot be assigned to users directly. RBAC was first formalised

as a general-purpose access control model by Ferraiolo and Kuhn [32], and then refined

by Ferraiolo et al. [31]. Later, Sandhu et al. proposed a decomposition of RBAC into

4 different levels, each one adding new features on top of the previous one [92]. The

authors then combined their efforts to produce a NIST standard proposal [91], that has

since been accepted [72]. Table 2.4 summarises the 4 levels of the standard.

Table 2.4.: The 4 levels of the RBAC standard

Level Name Features

0 flat users, roles, permissions, sessions

1 hierarchical role hierarchies

2 constrained constraints

3 symmetric review

Level 1

Level 1 is called flat RBAC (or RBAC1), and is illustrated in Figure 2.2. The notation

used in the figure and the subsequent ones that relate to the RBAC standard comes

from the standard. The oval shapes are RBAC elements: users, roles, permissions and
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sessions. The arrows represent assignments, and are bidirectional (e.g. a user can be

assigned roles, and roles can be assigned to users).

Flat RBAC introduces the basic RBAC concepts, i.e. users, roles, permissions and

session. It may look like flat RBAC is equivalent to standard user-group-permission

assignments typical of Unix systems, but as the NIST’s RBAC FAQ [70] points out,

there are two essential differences. First, whilst groups are collections of users, roles

are collections of permissions. The distinction is important: indeed, in a classic user-

group-permission model, users as well as groups can be assigned permissions directly,

whilst in RBAC, they cannot. Second, the concept of sessions is introduced in RBAC

and does not exist in a classic user-group-permission model. Sessions allow users to only

activate a subset of their assigned roles, and therefore to only use a subset of the available

permissions.

Figure 2.2.: Level 1 of the RBAC standard

Level 2

Level 2 is called hierarchical RBAC, and it introduces role hierarchies on top of flat

RBAC, as illustrated in Figure 2.3. The notation is identical to the notation in the

previous figure, with the addition of labelled arrows to represent role hierarchies. With

level 2, parent-child relationships can be defined between roles. A role will then inherit

its ancestors’ permissions, and of course any user assigned a role can also use the role’s
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ancestors’ permissions. Level 2 is actually divided in two sub-levels that are carried on

in the next levels: level 2a allows for arbitrary hierarchies between roles, whilst level 2b

only supports limited hierarchies. What “limited” actually means is not specified by the

standard, and it is left to product vendors to specify which limitations are built into their

product.

Figure 2.3.: Level 2 of the RBAC standard

Level 3

Level 3 is called constrained RBAC, as illustrated in Figure 2.4. Once again, the notation

is identical to the notation in the previous two figures, with the addition of constraints,

represented by rectangles, and their application, represented by arrows. Level 3 adds on

top of level 2 the ability to express and enforce separation of duty (SoD) constraints. The

standard’s understanding of separation of duty is closest to Ferraiolo et al.’s work [31],

and includes two types of constraints: static separation of duty (SSoD) and dynamic

separation of duty (DSoD).

A separation of duty constraint, whether static or dynamic, is a relationship between

two roles whose aim is to make sure that users will never be able to acquire too much

power through the combination of the permissions assigned to each of those two roles.



30 Literature Review

Static separation of duty constraints impose rules on user-role assignments. If there

is an SSoD rule involving roles A and B, then users cannot be assigned A and B. They

can be assigned A and not B, or B and not A, or neither A nor B. Formally, SSoD can

be expressed as follows:

∀u : user, ri,j : roles : i 6= j :

u ∈ roleMembers(ri) ∧ u ∈ roleMembers(rj)⇒ ri 6∈ ssod(rj)

where roleMembers(ri) denotes the set of users that have been assigned the role ri, and

where ssod(rj) denotes the set of roles that participate in an SSoD rule with rj [31].

Dynamic separation of duty constraints are a bit more relaxed, as they do not impose

any restriction on role assignments, but only on their activation. Indeed, if there is a

DSoD rule involving roles A and B, then users can be assigned both A and B, but they

cannot activate them together. This will prevent users from using the permissions from

both A and B at the same time. Formally, DSoD can be expressed as follows:

∀s : subject, ri,j : roles : i 6= j :

ri ∈ activeRoles(s) ∧ rj ∈ activeRoles(s)⇒ ri 6∈ dsod(rj)

where s denotes a subject, i.e. the state of a user at a particular point during a session,

where activeRoles(s) denotes the set of roles activated by s, and where dsod(rj) denotes

the set of roles that particitate in an DSoD rule with rj [31].

The two types of SoD constraint behave differently in the presence of role hierarchies.

With SSoD, two roles cannot be assigned to the same user if two of their ancestors

participate in a SSoD rule, as illustrated in Figure 2.5. In the figure, each node whose

name starts with R represents a role, whilst the nodes named U1 represent a user. The

white headed arrows between roles represent role hierarchies, and the black headed arrows
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between users and roles represent role assignments. The straight lines labelled with SSoD

represent SSoD rules. With DSoD however, the ancestors’ participation in DSoD rules

does not prevent simultaneous activation, as illustrated in Figure 2.6. The notation is

similar to the previous figure, except that the node named S1 represents a scenario,

the black headed arrows between scenarios and roles represent role activations, and the

straight lines labelled with DSoD represent DSoD rules. The differences between SSoD

and DSoD are due to the fact that, when a role is assigned to a user, its ancestors are

assigned too, but when a role is activated by a user, its ancestors are not activated.

Figure 2.4.: Level 3 of the RBAC standard

Level 4

Level 4 is the last level of the RBAC standard, called symmetric RBAC. It is illustrated in

Figure 2.7. The notation is the same as the notation for the three previous figures. It adds

a permission to role reviewing requirement, in order to help organisations in maintaining

their RBAC policies according to the principle of least privilege. The standard defines

the permission to role review requirement as follows:



32 Literature Review

(a) SSoD violation (b) SSoD violation (c) SSoD violation

Figure 2.5.: SSoD and role hierarchies

(a) DSoD: no violation (b) DSoD: no violation (c) DSoD: no violation

Figure 2.6.: DSoD and role hierarchies



Literature Review 33

Definition 3. To effectively maintain permission assignments an organization must be

provided with the ability to identify and review the assignments of permissions to roles

regardless of where they might reside in the organization. When maintaining permission

assignments, special attention is taken to abide by the principle of least privilege. [91]1

The principle of least privilege mandates that every program and every user should

operate using the least set of privileges required to complete their job [89].

The motivation behind this level of RBAC is to allow system administrators to easily

review which roles, and therefore which users, have a specific permission. This can be

helpful when dealing with access control policies that have complex role hierarchies. The

level 4 requirements allow system administrator to be satisfied that their policy actually

behaves as they expect by verifying that a particular user is indeed granted a particular

permission.

Figure 2.7.: Level 4 of the RBAC standard

1This quote is reproduced here in its original American English spelling
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Limitations of RBAC

RBAC is a model for access control configurations that only rely on roles. It is possible

to “bend” the roles in RBAC to represent other concepts, such as time. For example, an

organisation may only give some permissions during working hours. It can be represented

in RBAC by creating new roles for operations that can only be carried on during working

hours. Similarly, one can introduce other attributes such as the user’s location or the

type of connection to the system (i.e. company LAN, internet, VPN, etc.). The problem

with this approach is that it quickly increases the number of roles, making them more

difficult to manage effectively. Two types of solutions have been proposed to address

these shortcomings: extensions of RBAC, and attribute-based access control.

2.2.5. Extensions to RBAC

Many extensions of RBAC have been proposed over the years, some of which even before

the RBAC standard was finalised. In this section, we briefly describe two of them, to

illustrate the extensibility of the RBAC model, and how it has been used as the basis for

more expressive models.

Organisation-based Access Control

Organisation-based Access Control (OrBAC) was proposed in 2003 by Kalam et al. [51]

in order to overcome some of the limitations of RBAC, by considering organisations

together with context. The most important entity is the organisation, and it can be

seen as “an organised group of active entities, i.e. subjects, playing some role or other”.

OrBAC also defines other concepts, such as: objects, which are inactive entities; views,

which are “sets of objects that satisfy a common property”; actions like read, write,

update, etc; and activities, which abstract actions in the same way as views abstract
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objects and roles abstract subjects. Finally, contexts are circumstances under which

certain permissions will be granted.

Security policies in OrBAC allow one to define permissions, obligations, prohibitions

and recommendations. To our knowledge, there is not a standardised definition of

OrBAC.

GEO-RBAC

GEO-RBAC is an extension of the RBAC standard that adds location information to

the RBAC standard [24]. Both users and resources can be given a location. The user’s

location will affect the roles he can activate, while the resource’s location will affect

the permissions that are required to access it. Interestingly, GEO-RBAC follows the

RBAC standard’s four-level structure, adding new constructs as required to support their

location-aware extension of RBAC. SoD constraints are also extended to allow for the

definition of spatial conditions.

2.2.6. Attribute-Based Access Control

Attribute-Based Access Control (ABAC) refers to a family of access control models

that are inspired by RBAC but more flexible. As Sandhu points out, there is no single,

standardised ABAC model [90], but instead several proposals, such as Park and Sandhu’s

UNCONABC [82] or Wang et al’s logic-based ABAC framework [111].

Where RBAC defines roles between users and permissions, ABAC defines attributes,

that can be required or forbidden in order to give users access to resources. Attributes

could be roles of course, but also time, location, or any other criteria used to decide

whether or not access to resources should be granted. Typically, an access control rule will

specify a series of attributes and their required values to allow for a particular resource
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to be accessed. For example, an ABAC rule could state that all bank clerks can read

customers’ balance from the branch they work at, between 9am and 4pm on weekdays, and

between 9am and 1pm on Saturdays. The attributes are a role (bank clerks), a location

(the branch where the user works), and a time (between 9am and 4pm on weekdays,

between 9am and 1pm on Saturdays). The resource whose access is protected is the

customers’ balance, in read mode. Any user that satisfies the rule will be granted access

by the ABAC system, and any user that does not satisfy the rule will be refused access

by the ABAC system.

XACML

XACML stands for eXtensible Access Control Markup Language[71], a standard for

ABAC policies, in XML. Its third version has been standardised by OASIS in January

2013 [71].

2.2.7. Access Control Properties Analysis

A lot of research has also been conducted on verifying the conformance of access control

policies to some properties or requirements, often using XACML. Fisler et al. propose to

transform XACML policies into decision-diagrams to answer queries about said policies,

and support evolution of those policies through semantic differencing [34]. Hughes and

Bultan take a different approach, as they use a SAT solver to verify properties on XACML

policies [45]. Their work is not limited to RBAC, but applies to any policy defined using

XACML. Gofman et al. propose RBAC-PAT [36], a tool for analysing RBAC and

ARBAC policies. ARBAC is an extension of RBAC that allows one to specify what

parts of the policy each administrator is allowed to change. This leads to potentially

complex questions about the effects of changes by the administrators. Extending ARBAC
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further, Stoller et al. propose Parameterised ARBAC (PARBAC) [106], which supports

parameters in order to improve the scalability and applicability of ARBAC policies,

and propose an analysis algorithm for PARBAC policies. Dougherty et al. [26] define a

framework for reasoning about dynamic access control policies, while focusing on goal

reachability and contextual policy containment.

Another access control framework was built around Ponder, a policy specification

language developed at Imperial College in London [25]. Ponder2 is its current version,

a complete re-write of the Ponder language and its associated framework. The name

“Ponder2”, just like “Ponder”, is used to refer to both the language and the framework

built around it [109]. Ponder2 allows one to define access control policies according to

an ABAC model. Both obligation policies and authorisation policies can be expressed,

as well as constraints on role assignments. Obligation policies are expressed in an

Event-Condition-Action manner, to specify the system’s response to events under certain

conditions. Authorisation policies are defined to specify what a subject can or cannot do

on a particular target [25]. Ponder2 is a very complete framework that provides a lot of

analysis capabilities such as resolving conflicts in policies [88]. It uses event calculus to

formalise and analyse the policy specifications [6].

The approaches described in this section, and the tools that implement them, all work

on the artefact level (M0 in the OMG architecture decomposition), while the approach

we propose focuses on the model level (M1 in the OMG architecture decomposition).

Generally, the approaches described in this section focus on the ability to evaluate various

aspects of access control policies, and to verify any property that can be expressed using

the language provided. This often means that users need to write queries on the policy,

or constraints that the policy should satisfy.

The approach we propose in this dissertation differs not only by the level (M1) at

which we operate, but also by the way our users analyse their models. We want to let
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them express requirements without having to write constraints or queries themselves,

unless they explicitely want to. The consequence is that we have written the constraints

ourselves, which necessarily limits the number of constraints that can be evaluated. In

other words, we have decided to compromise on the expressiveness in order to lower the

technical knowledge requirements, and to tightly integrate our approach with MDE.

2.3. Access Control and MDE

Many approaches have been proposed for representing RBAC as part of a Model-Driven

Engineering approach.

2.3.1. Shin and Ahn’s RBAC Representation

Perhaps the first solution for representing RBAC concerns on UML models is Shin and

Ahn’s representation [97], whose purpose was to reduce the gap between security models

and system developments. They define three views for representing RBAC models: the

static view, using class diagrams, to represent users, roles, permissions and sessions, and

to define their assignments and hierarchies; the functional view, using use case diagrams,

to represent functions that the RBAC model should enforce; the dynamic view, that

refines the functional view by making the interactions between objects explicit.

On top of this extension of the UML meta-model, they define several access control

constraints expressed using OCL, such as separation of duty, prerequisite and cardinality

constraints [5]. These constraints are model-specific, as they include, for example, the

sets of users participating in separation of duty constraints. Therefore, they need to be

adapted by the designer to each particular model.
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2.3.2. UMLsec

UMLsec [48] is an extension of UML 1.4 designed to allow one to express security

properties, annotate a UML design, and check the annotated design against said properties.

UMLsec uses the standard UML extension mechanisms: stereotypes and tagged values,

and provides a tool implementation [3]. Whilst it is not limited to RBAC or even access

control, it includes an RBAC profile [48, 62] allowing one to model and verify RBAC

concepts on an activity diagram only. Furthermore, UMLsec provides a mechanism that

allows one to represent attacker profiles (profile here means the capabilities of an attacker,

not the UML extension mechanism), but as far as we know, this has not been implemented

for the RBAC part of UMLsec, specifically. UMLsec’s use of UML 1.x tagged values

makes it difficult to use with large models, as all assignments are represented using tuples

in a list. Whilst the RBAC profile only covers the first 2 levels of the RBAC standard,

related work by Höhn and Jürjens [43] uses Prolog to verify authorisation rules against

business requirements, including separation of duty constraints. Their tool supports

the SAP system, and can be extended to support other software as well [44]. Another

component of UMLsec is related to access control: the analysis of permissions delegations,

using class and sequence diagrams [49]. This is however out of the scope of the RBAC

standard.

2.3.3. SecureUML

Basin et al’s research in Model-Driven Security (MDS) [8] has touched on many compo-

nents of MDE, such as modelling, analysis, model transformation and code generation.

The focus here is on the first two aspects. SecureUML [58, 10, 7] is their illustration of

MDS. It is a security modelling language that can be combined with a system design mod-

elling language such as ComponentUML [58], ControllerUML [10, 8] or ActionGUI [9, 8],
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using a dialect that glues the two languages together, allowing SecureUML to add ac-

cess control annotations to the system design modelling language. As a consequence,

SecureUML can be applied to a large set of models.

The constraints definition and the analysis in SecureUML are interesting: indeed,

SecureUML supports analysis through OCL constraints written by the designers, at

the model level. With the help of a few handy helper functions, designers can define a

large set of authorisation constraints, that go beyond the RBAC standard. They can

also write model-level OCL constraints to query the model, therefore providing analysis

features only limited by the designer’s imagination and technical abilities. However, an

OCL constraint is not affected by the existence of another OCL constraint on the model.

Therefore, if an analysis query is created, any authorisation constraint that may affect it

will have to be integrated in the analysis query, even though it has already been defined

elsewhere in the model. On a model with lots of authorisation constraints, this can make

analysis queries difficult to write and maintain, and increases the likelihood of errors.

2.3.4. Cirit and Buzluca’s RBAC Profile

Another proposed UML profile for representing RBAC on UML models is Cirit and

Buzluca’s [19], which is very similar to SecureUML. On top of the standard RBAC

constraints, it also allows one to represent prerequisite roles, time-based constraints and

critical permissions, which can be assigned to only one role. The profile allows designer to

annotate class diagrams only, and is supported by a list of OCL constraints that ensure

the model’s well-formedness as well as the enforcement of constraints.
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2.3.5. RBAC Patterns on UML

Kim et al take a different approach as they suggest to represent RBAC policies as patterns

that are later instantiated on a particular model, using UML template diagrams [53].

They also provide the ability to define scenarios and anti-scenarios using object diagrams.

The model is then checked against these in order to find potential violations. They also

propose to use the same approach to visualise constraints [86] and to detect constraint

violations by matching the model against a collection of violation patterns. There does

however not seem to be any tool to support their approach, hence it relies on manual

inspection of the models, which, especially on large models, can be a time-consuming

and error-prone process.

2.3.6. Representing RBAC using Aspect-Oriented Modelling

Access Control is an excellent candidate to be implemented using aspect-oriented pro-

gramming [52], because it is a cross-cutting concern, whose implementation is very likely

to be scattered all over the code base. Recognising that this is also the case for RBAC

models, Ray et al propose an approach similar to their pattern-based solution [86], where

RBAC aspects are created and later woven into the UML model. This allows one to keep

the RBAC model separate from the functional model.

Song et al. [103] later expanded the technique to provide support for verifying

properties that the model should hold. The weaving process then produces proof

obligations that, if verified, ensure that the original property is verified on the target

model. The weaving process and the proof obligation creation are, however, manual,

which can be time-consuming and error-prone.
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2.3.7. UML to Alloy

Instead of using OCL queries to find RBAC property violations on UML models, Sun et

al. [108] take a different approach and translate the access control policy expressed in

UML into an Alloy model that is then analysed using a SAT solver. The analysis tool

produces violation traces that are translated back into UML object diagrams for the user

to easily identify the issues on the model. They illustrate their approach using LRBAC

(Location aware RBAC), an extension of RBAC that adds the concept of location to

make decisions about the users’ permissions [85]. While models are created using UML,

their verification is delegated to Alloy. This requires the development of a mapping

between UML and Alloy’s format.

2.3.8. Constraint-Focused Approaches

Sohr et al’s Approach

Sohr et al. also propose an UML-based RBAC modelling solution, but they take a different

angle from the other solutions discussed in this section. Instead of focusing on modelling

access control concerns directly on an application’s model, they focus on organisation-wide

access control policies and on separation of duty constraints [99]. Their approach allows

one to represent the entire RBAC standard, and to express separation of duty constraints

in OCL [99]. History-based constraints, e.g. constraints that restrict a user from using a

role A after having used another role B in the same session, can be expressed in TOCL,

an extension of OCL to support temporal constraints [98], or in LTL [100]. Their tool

can validate RBAC policies against the user-defined separation of duty constraints, but

it can also identify conflicting constraints and detect missing constraints. The tool can

also manage an authorization policy implemented as a web service, where the tool makes

sure that only valid changes can be applied to the policy [101].
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In follow-up work, Kuhlmann et al provide a complete DSML for RBAC, still with

a focus on constraints, and in particular, dynamic, time-based constraints [56]. Their

DSML is made of two levels: the policy level, where the usual RBAC elements such as

users, roles, permissions and their assignments are represented, as well as the various

constraints, on object diagrams; and the user-access level, which defines the scenarios to

be checked against the policy level, and are also represented on object diagrams. They

developed a tool called OCL2Kodkod to transform the OCL constraints that are used to

analyse models into a SAT problem solved by a SAT solver, in order to speed up the

verification process. We are, however, not aware of any performance analysis on case

studies or examples larger than those presented in their paper.

OCL for Time Constraints

Access Control models such as RBAC have often been complemented with time constraints,

for example to allow some users to activate a specific role only at designated times, or

only for a certain amount of time. Li et al propose to implement those constraints using

OCL [84]. They define four types of constraints: time span constraints, restricting the

period of time during which a role can be activated (e.g. “between 9am and 5pm”); time

length constraints, restricting the amount of time during which a role can be activated

(e.g. “up to one hour”); time interval constraints, restricting the time interval between

two activations (e.g. “the user will not be able to connect within 15 minutes of the

termination of his previous session”); average active duration constraints, restricting the

average duration of a user session (e.g. “the average duration of a user session between

9am and 5pm will not exceed 10 minutes”). They also combine these constraints with

other access control constraints such as separation of duty or prerequisite constraints.
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Business Processes

Access Control is an important component of business processes modelling, and research

has been conducted to model RBAC concerns on UML for business processes. Rodriguez et

al propose an extension of UML to express security requirements on activity diagrams [87].

Available requirements include non repudiation, integrity, privacy, access control and

others. The requirements are expressed using stereotypes, and have OCL queries attached

to enforce them.

Strembeck and Mendling focus their approach on RBAC itself [107] instead of the

more general security requirements proposed by Rodriguez et al. They use activity

and interaction diagrams to represent RBAC elements as well as constraints such as

separation of duty or binding of duty (i.e. a user that has performed a specific task must

also perform another one). OCL queries are used to ensure well-formedness of the process

model.

2.3.9. Discussion

In this chapter we have reviewed the main approaches for modelling access control

concerns as part of an MDE approach. While they all propose very interesting ways of

representing and analysing access control concerns on models, none of them completely

satisfies all the requirements described in the introduction: modelling RBAC, analysis

without having to write code or queries, reliance on OMG standards, and automated

help for fixing incorrect models.

Shin et al’s approach (Section 2.3.1) requires designers to write their own OCL

constraints, which is difficult for non-experts, and thus does not fit the “ease of use”

requirement. Furthermore, they do not provide a verification mechanism for well-

formedness or conformance of the static model to the functional and dynamic views.
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UMLsec (Section 2.3.2) provides interesting analysis features, but does not completely

support the RBAC standard, as it is limited to level 2. Furthermore, the use of tagged

values for the definition of users, roles, permissions and their assignments does not scale

with large models. The size of the tagged values will grow with the number of users, roles

and permissions, as well as with the number of assignments, quickly making the tagged

values difficult to read for humans. Finally, the “ease of use” requirement is somewhat

undermined by the limited diagram support, since everything is done on activity diagrams.

To extend that support to other diagrams is of course possible with UMLsec, but that,

too, makes it only available to expert users, as they will have to implement their own

verification routines.

SecureUML (Section 2.3.3) is another excellent approach, but it requires users to

write their own OCL constraints, although with the help of handy helper functions.

Furthermore, care must be taken when writing analysis constraints, to take into account

existing constraints such as SoD, because of the constraint “awareness” problem described

in the SecureUML section. Also, the way permissions are represented, using association

classes, also makes it difficult to visualise large models.

Cirit and Buzluca’s profile (Section 2.3.4) is interesting, but limited to class diagrams,

making it difficult to work with other types of UML diagrams, which violates the “ease

of use” requirement.

The RBAC patterns approach (Section 2.3.5) relies on manual inspection of models

in the absence of tool support, which is error-prone.

The aspect-based approach (Section 2.3.6) is also partially manual, when it comes to

the weaving process and the creation of proof obligations.

The UML to Alloy approach (Section 2.3.7) does not fully use OMG standards, which

requires an additional step of translating the results to present them to users.
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Sohr et al.’s constraint-focused approach (Section 2.3.8) is focused on separation of

duty only. It also requires designers to write their own constraints.

Similarly, the OCL for time constraints approach (Section 2.3.8) is also only focused

on constraints, and requires designers to write their own constraints.

Finally, the business processes approaches (Section 2.3.8) are obviously focused on

business processes, and therefore not generally applicable.

As we can see, no single approach satisfies all our requirements. It is therefore

necessary to gather the best ideas out of each approach and to combine them with new

developments in order to come up with an answer to the challenge discussed in the

introduction.
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In the previous chapter, we have reviewed existing approaches that integrate access

control concerns, and RBAC in particular, with MDE. We have discussed their limitations,

and the need for an approach that does not require stakeholders to write code or queries

to express their requirements and to verify their access control models against those

requirements, as well as allowing designers to model access control concerns on all relevant

types of UML diagrams.

Several types of stakeholders are likely to be using an approach that integrates

RBAC with MDE: designers and developers of course, but also system administrators,

or even decision makers, and others. These groups have varying degrees of technical

knowledge, will likely perform varying activities, and will be interested in different types

of information. System administrators, for example, will probably only be interested

in the RBAC policy itself, i.e. the users, roles, permissions, and their assignments and

constraints. Developers, on the other hand, may want to see how the access control

restrictions put in place affect the software they are building.

In this chapter, we propose two ways of modelling RBAC concerns, both derived from

the same domain meta-model. The first one is a DSML, which we call rbacDSML. It allows

stakeholders to model RBAC concepts, independently of any implementation questions.

rbacDSML is well suited for stakeholders that do not want or need to worry about the

impact of the RBAC policy on the implementation of the software, such as system

administrators. The second way of modelling RBAC concerns is a DSMAL, which we

call rbacUML. Instead of looking at RBAC concepts in isolation like rbacDSML, rbacUML

puts these concepts in context by integrating them with the model of the software on

which the RBAC policy is applied. This, for example, allows developers to assess the

impact of the RBAC policies on the software they are building or maintaining. Since

both rbacDSML and rbacUML are derived from the same meta-model, there are strong

similarities between them, as we will see in this chapter.
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Using these two modelling languages, a typical workflow could be similar to the

following. A company wishes to create a new piece of software that users will have to

access, with different access rights depending on complex rules. The company decides

to use RBAC to express its access control policy, and chooses our approach for the

development and maintenance of their solution. At the start of the project, the system

administrators use rbacDSML to create their access control policy, and in particular to

create and assign roles and permissions, set SoD constraints, and verify that the policy

meets their requirements. In parallel, developers and designers use UML to create a

detailed model of the software to be built. Once the model is reasonably stable and the

RBAC policy has been validated, the designers, developers and system administrators

then use rbacUML to annotate the UML model with the RBAC policy and requirements

that the system administrators have described in rbacDSML. This way, developers know

which operations in their classes will have their execution restricted to authorised users.

The software is developed, and eventually is deployed in production. Then, the system

administrators still use rbacDSML to maintain the RBAC policy, as users come and go,

responsibilities changes, and rules and regulations are updated. At the same time, the

designers and developers keep using rbacUML to maintain the software and fix the bugs

that are reported by the users.

We have implemented both languages using UML profiles. Profiles are UML’s

extension mechanism, allowing one to define concepts that are not present in the official

UML meta-model. The choice of UML was made because it is arguably widely known

(although, as Petre’s research [83] indicates, it is often used selectively and in a way that

is adapted to the context and to the developers’ needs), and because the availability of

UML modelling and UML profile creation tools allowed us to implement our approach

while reusing a lot of existing components. Many other approaches that integrated RBAC

into MDE also use UML, such as SecureUML or UMLsec. Of course, rbacDSML could

have been defined as a brand new DSML using MOF instead of a UML profile. The tool
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availability and the ability to reuse existing code ultimately drove our decision to develop

a profile for rbacDSML. Since rbacUML is a DSMAL, i.e. consists of annotations made to

an existing model, a UML profile was the only suitable solution.

DSML vs. DSMAL Selic makes a distinction between profiles where “it is possible

to arbitrarily combine stereotyped elements with non-stereotyped elements in the same

model” [95, p.4], and profiles where “modelers may need to limit their models to only

those UML concepts allowed by a profile” [95, p.4]. He calls the latter a strict application

of a profile. His distinction is at the profile application level, i.e. any profile can be strictly

applied or not, depending on the modeller’s decision. The distinction between strictly

applied profiles and not strictly applied profiles will remind the reader of the distinction

between rbacDSML and rbacUML. Indeed, the rbacDSML profile is applied strictly, i.e. only

rbacDSML constructs are allowed on rbacDSML models, while rbacUML isn’t, i.e. other

UML constructs are allowed on rbacUML models. However, rbacDSML and rbacUML are

different languages. This is where we differ slightly from Selic’s approach. The reason

is that, in rbacDSML, we do not want the same concept (e.g. a user) to be represented

more than once, whilst in rbacUML, we want the same concept to appear wherever it can

be useful to the stakeholders using the model. Hence, the profiles have to differ, and the

differences between rbacDSML and rbacUML are more than a decision to strictly apply a

profile or not.

OCL constraints It this chapter, we use OCL to provide analysis capabilities. We

also propose a classification of OCL constraints, define a partial order between those

categories, and use it to improve the OCL evaluation speed and the feedback given to

the users.
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Why RBAC We have decided to limit our approach to RBAC models. RBAC is a

well-known access control model that has been extensively studied, and has even been

standardised. It is therefore very well understood and very well defined. Furthermore,

RBAC is the basis on which other access control models expand, such as OrBAC or

GEO-RBAC, or even ABAC, as we have discussed in the previous chapter. These models

generally add new capabilities to RBAC models. Therefore, an approach that works

for RBAC is already a step in the right direction and could potentially be extended to

support these RBAC extensions. Furthermore, it is always possible to edit the rbacDSML

and rbacUML profiles in order to add the missing constructs and constraints for each

access control model. Future work will be focused on ABAC modelling, and will build

upon the approach presented here for RBAC.

Organisation of this Chapter In the remainder of this chapter, we introduce our

approach for modelling RBAC concepts using OMG standards, namely UML, UML

profiles, and OCL constraints. We do so by using a sample application for a students

marking system, and a workflow that could realistically be applied in a real-life setting: on

an existing application, one wants to implement access control to restrict access to some

functionalities. We first present our application without any access control considerations,

in Section 3.1. Then, we follow Selic’s methodology for DSML development using UML

profiles [95], in Section 3.2. Since both profiles come from the same meta-model, we first

present the meta-model, as well as its associated OCL constraints. We introduce our

categorisation of OCL constraints and present the two categories (out of six) that fit

into Selic’s methodology. We then proceed to describe how we derived the rbacDSML

profile from the domain meta-model, and show how one can apply rbacDSML to create an

RBAC policy for our sample application, in Section 3.3. After that, Section 3.4 describes

how we derived the rbacUML profile from the same domain meta-model, and shows how

we can combine the sample application and the rbacDSML model into an rbacUML model.
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After that, we describe the other four categories of OCL constraints, and discuss how one

can use the categorisation of OCL constraints to speed up the evaluation of rbacDSML

and rbacUML models, and how it affects the feedback given to users, in Section 3.5. We

conclude this chapter with a discussion of the contributions, in Section 3.6.

3.1. A Sample UML Model

To illustrate our approach, a small UML model is developed for a system that could be

used in a university. It is first introduced without any consideration for access control, as

per the workflow described below.

The model allows students’ marks to be recorded and accessed. Figure 3.1 shows

a class diagram and a simple sequence diagram, using Rational Software Architect’s

notation. There are small differences between that notation and the standard UML

notation used by the OMG, such as the use of icons to represent the operations and

attributes’ visibility.

The Mark class is where the students’ marks are recorded. The class StudentInfo

represents students, and each student can have any number of marks. A mark, however,

is always assigned to exactly one student. A mark also relates to exactly one module,

represented by the class Module, but a module can of course have any number of marks.

A module is taught by exactly one professor, represented by the class ProfessorInfo.

The professor can have any number of teaching assistants to help them, represented

by the class TAInfo. Of course, a professor can teach several modules, and so can a

TA. Both ProfessorInfo and TAInfo are subclasses of StaffInfo, which represents

members of staff.

All attributes and methods are hidden to save space and improve readability, except

for the Mark class since it will be used to introduce access control.



Modelling Domain-Specific Concerns 53

(a) Class diagram

(b) Sequence diagram

Figure 3.1.: Class and sequence diagrams from the sample model
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The workflow we will use to illustrate our approach is the following. We start with

the above model, that does not contain any access control information. We will then use

rbacDSML to create a separate model of the access control concepts to be integrated in

the software. Then, we will use rbacUML to merge the rbacDSML model and the UML

model. In the end, both the rbacDSML and the rbacUML models will represent the exact

same access control concepts, and the rbacUML model will be identical to the original

UML model, but with access control information added. We believe that this workflow,

which includes the refinement of the rbacDSML model into and rbacUML model, is quite

realistic. It is, after all, related to MDA’s distinction between PIM and PSM.

3.2. A Methodology for DSML Development Using

UML Profiles

Selic’s methodology for the development of UML Profiles into DSMLs [95] is made of

two parts: first, the construction of the meta-model, carried out in this section; and then,

the mapping of the domain meta-model to the actual profile.

3.2.1. The Meta-Model

Fig. 3.2 represents the proposed domain meta-model, using MOF. It includes Selic’s key

elements: the fundamental language constructs, and the set of valid relationships. All

the standard RBAC concepts are included, as well as scenarios, which are tests that are

meant to ensure that the model meets the stakeholders’ requirements, and resources,

to which access is restricted by the use of permissions. Scenarios involve one user, and

any number of roles (those, of course, need to have been assigned to the user through

user-role associations), in order to access any number of resources, using the permissions
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Figure 3.2.: The proposed RBAC domain meta-model (using MOF)

given to the user through the roles associated to the scenario. Together, the users,

roles, permissions and the associations between them represent the configuration. The

resources, together with their permission assignments, form the policy. The scenarios

are composed of the scenario elements together with their associations to users, roles

and resources. It is the navigability that determines access to resources. For example, a

user has access to a resource if there is a navigation path from the user to each of the

permissions associated to the resource, through roles and role hierarchies. The activation

of roles within a session is done through the scenarios, and in particular the associations

between scenarios and roles, named activates. A scenario is therefore a snapshot of

a particular moment during a session, where a subset of the user’s assigned roles are

activated.

The concrete syntax of the languages will be derived from UML through the profiles.

The semantics of users, roles, permissions, their associations and the constraints and

hierarchies are exactly those of the RBAC standard [91]. A user can have any number of

roles; a role can have any number of parents, and can participate in any number of SSoD
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and DSoD rules. It can also be assigned any number of permissions. Resources can be

accessed if and only if the user trying to access them has activated a set of roles that

gives them all the permissions required to access said resources. Two types of scenarios

are defined: in the Granted scenario, the user’s activated roles must cover the required

permissions to access all the resources associated to the scenario; in the Forbidden

scenario, the user, having activated the scenario’s roles, must not have all the required

permissions: at least one resource is inaccessible because of a missing permission. The

Forbidden scenarios are called anti-scenarios.

3.2.2. OCL Constraints

To specify how the language concepts can be combined, Selic’s approach requires a set of

constraints that complement the meta-model. He strongly suggests to have them written

in OCL, since it was designed to be used with MOF [95]. In this dissertation, we use

OCL 2.3, which introduced the transitive closure operator, closure().

There are five constraints that specify how the language concepts may be combined.

We discuss them all in this section.

Activated Roles and Assigned Roles

In RBAC, users are only allowed to activate roles that have been assigned to them. In

other words, the set of active roles for a user at any point in time must be a subset of

the set of assigned roles for that user. With our approach, active roles are represented as

part of scenarios. Therefore, the OCL constraint to enforce the role activation property

is the following:
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Listing 3.1: Only assigned roles can be activated

c on s t r a i n t Scenar io inv :

s e l f . user . r o l e−>c l o s u r e ( parent )

−>union ( s e l f . use r . r o l e )

−>i n c l ud e sA l l ( s e l f . r o l e )

SSoD

If two roles participate in a static separation of duty rule, then no user can be assigned

both roles. This can be translated in OCL as the following:

Listing 3.2: SSoD constraint

c on s t r a i n t User inv :

s e l f . r o l e−>c l o s u r e ( parent )

−>union ( s e l f . r o l e )

−>e x i s t s ( ro l e1 , r o l e 2 | r o l e 1 . sSoD = ro l e 2 ) = f a l s e

DSoD

If two roles participate in a dynamic separation of duty rule, then no user can activate

both roles at the same time. This can be translated in OCL as the following:

Listing 3.3: DSoD constraint

c on s t r a i n t Scenar io inv :

s e l f . r o l e−>e x i s t s ( ro l e1 , r o l e 2 | r o l e 1 . dSoD = ro l e 2 ) = f a l s e

Granted Scenarios

We have discussed earlier the Granted scenario requirements: the permissions required

to access all the scenario’s resources must be provided by the active roles. This can be

translated into the following OCL constraint:
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Listing 3.4: Granted constraint

c on s t r a i n t Granted inv :

s e l f . r o l e

−>c l o s u r e ( parent ) . permis s ion

−>union ( s e l f . r o l e . permis s ion )

−>i n c l ud e sA l l ( s e l f . r e s ou r c e . permis s ion )

Forbidden Scenarios

The Forbidden scenarios are the negation of the Granted scenarios: at least one of the

required permissions must be missing. This leads to the following OCL constraint:

Listing 3.5: Forbidden constraint

c on s t r a i n t Forbidden inv :

s e l f . r o l e

−>c l o s u r e ( parent ) . permis s ion

−>union ( s e l f . r o l e . permis s ion )

−>i n c l ud e sA l l ( s e l f . r e s ou r c e . permis s ion ) = f a l s e

3.3. The rbacDSML Profile

3.3.1. UML Profiles Notation

UML profiles, as we have discussed before, are created by extending the UML meta-model

with stereotypes. Stereotypes can have attributes, as well as associations. Stereotypes can

be applied, or attached, to existing UML elements. UML profiles are defined using MOF.

However, it is not necessary to represent the entire UML meta-model in MOF, together

with the constructs introduced by the profile. It is sufficient to only represent those UML

meta-model elements that are being extended, and all the others are assumed to be left

untouched. For example, Figure 3.3 is the meta-model of the rbacDSML profile, discussed
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below. The notation used is the following. Stereotypes are annotations on UML elements

placed between French quotation marks, such as this: «Stereotype». In the figure,

the UML meta-model elements that are extended are represented as classes with the

«Metaclass» stereotype. New stereotypes added by the profile are also represented as

classes, but with the «stereotype» stereotype. Those classes can have attributes, but no

operations. Black-headed arrows represent the extension of a UML metaclass by a profile

stereotype. For example, in Figure 3.3, the stereotype User extends the metaclass Class,

which means that the stereotype User can be applied on a Class element. A stereotype

can extend more than one metaclass, and it will then be possible to apply it to several

types of UML elements. Blank arrows represent class inheritance, which is valid between

stereotypes too. Open arrows, like the arrow between User and rbacRole, represent

associations between stereotypes, or between stereotypes and associations. They have

multiplicities, just like normal UML associations.

3.3.2. Meta-Model

The rbacDSML profile is a DSML derived from the RBAC domain meta-model in Figure 3.2.

Once the domain meta-model and its associated constraints have been defined, Selic

recommends the following guidelines to derive a UML profile [95]:

1. Select a base UML metaclass whose semantics are closest to the semantics of the

domain concept;

2. Check all queries that apply to the selected base metaclass to verify it has no

conflicting constraints;

3. Check if any of the attributes of the selected base metaclass need to be refined;

4. Check if the selected base metaclass has no conflicting associations to other meta-

classes.
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Table 3.1.: Correspondence between the meta-model and rbacDSML constructs

Meta-model Concept UML Metaclass Stereotype

User Class User

Role Class rbacRole

Permission Class Permission

Resource Class Resource

Scenario Class Scenario

Granted Class Granted

Forbidden Class Forbidden

U-R assignment Association none

SSoD Association SSoD

DSoD Association DSoD

parent Class generalisation none

R-P assignment Association none

guards Association none

accesses Association none

involves Association none

activates Association none

These guidelines, however, only make sense for what we call in this dissertation a

DSMAL, i.e. if one wants to annotate a UML model with domain-specific concepts. In

the case of rbacDSML, we want instead to create a domain-specific language for the sole

purpose of modelling RBAC concerns. Therefore, the choice of base UML metaclasses

is not determined by its proximity to the semantics of the domain concept, but instead

are based on purely syntactical considerations. For rbacDSML, we use UML classes to

represent our meta-model elements, and associations between those classes to represent

the assignments. Table 3.1 shows, for each element and for each assignment in the

meta-model, the chosen metaclass and stereotype in rbacDSML. Several assignments do

not have a stereotype. This is fine because, since rbacDSML is meant for RBAC concepts

only, there are no ambiguities for these associations, even without stereotypes - their

meaning will be determined by the elements they are attached to. For example, U-R

assignment is represented by any association between a user and a role, and guards is

represented by any association between a resource and a permission.
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Figure 3.3.: DSML meta-model

Figure 3.3 is the rbacDSML meta-model. As one can see, it is a direct translation of

the domain meta-model to a UML profile meta-model. This is exactly the point of the

rbacDSML DSML, and will also be reflected in the OCL constraints. One will note that

Role has been replaced with rbacRole. This is because, in UML, role is already used to

refer to the name of an association end. To avoid confusion, and errors with the OCL

evaluation engine, we therefore renamed Role into rbacRole.

3.3.3. OCL Constraints

Just like the rbacDSML profile meta-model is very similar to the domain meta-model, so

are the OCL constraints. Indeed, the same number of constraints is provided.
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Roles Activation The first constraint makes sure that roles activated by a scenario,

whether a «Granted» or a «Forbidden» one, have been assigned to the user associated

to said scenario.

Listing 3.6: rbacDSML roles activation constraint

c on s t r a i n t rbacDSML : : Scenar io inv :

s e l f . user . rbacRole−>c l o s u r e ( parent )

−>union ( s e l f . use r . rbacRole )

−>i n c l ud e sA l l ( s e l f . rbacRole )

Static Separation of Duty The second constraint deals with the static separation

of duty, and makes sure that no user is assigned two roles that participate in a SSoD

relationship.

Listing 3.7: rbacDSML SSoD constraint

c on s t r a i n t rbacDSML : : User inv :

s e l f . rbacRole−>c l o s u r e ( parent )

−>union ( s e l f . rbacRole )

−>e x i s t s ( ro l e1 , r o l e 2 | r o l e 1 . ssod = ro l e 2 ) = f a l s e

Dynamic Separation of Duty The third constraint deals with the dynamic separation

of duty, and makes sure that no user activates two roles that participate in a DSoD

relationship for the same scenario.

Listing 3.8: rbacDSML DSoD constraint

c on s t r a i n t rbacDSML : : Scenar io inv :

s e l f . rbacRole−>e x i s t s ( ro l e1 , r o l e 2 | r o l e 1 . dsod = ro l e 2 ) = f a l s e
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Granted The first verification constraint makes sure that the «Granted» scenarios are

satisfied by the rest of the model - i.e. that the user who performs the scenario is indeed

able to access all the required resources.

Listing 3.9: rbacDSML Granted constraint

c on s t r a i n t rbacDSML : : Granted inv :

s e l f . rbacRole

−>c l o s u r e ( parent ) . permis s ion

−>union ( s e l f . rbacRole . permis s ion )

−>i n c l ud e sA l l ( s e l f . r e s ou r c e . permis s ion )

Forbidden The second verification constraint makes sure that the «Forbidden» sce-

narios are satisfied by the rest of the model - i.e. that the user who performs the scenario

is indeed unable to access at least one of the required resources.

Listing 3.10: rbacDSML Forbidden constraint

c on s t r a i n t rbacDSML : : Forbidden inv :

s e l f . rbacRole

−>c l o s u r e ( parent ) . permis s ion

−>union ( s e l f . rbacRole . permis s ion )

−>i n c l ud e sA l l ( s e l f . r e s ou r c e . permis s ion ) = f a l s e

3.3.4. RBAC Modelling with rbacDSML for the Sample

Application

We can now use the rbacDSML DSML to define the RBAC policy for the sample application

we use to illustrate this chapter. Figure 3.4 shows a possible RBAC policy for the

application, with two Granted scenarios, three users, three roles, two permissions, two

resources, and one SSoD constraint. On the top left are the users, roles and permissions,

and their assignments. On the top right are the two resources that are protected,

Mark_getMark and Mark_setMark. At the bottom are two «Granted» scenarios. The
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Figure 3.4.: Sample model with rbacDSML

first one requires that user Smith, with the Professor role activated, must be able to

access the Mark_setMark resource. The second one requires that user Doe, with the

Student role activated, must be able to access the Mark_getMark resource.

3.4. The rbacUML Profile

The other profile that we derive from the domain meta-model is rbacUML. As opposed

to rbacDSML, rbacUML is what we call a DSMAL, i.e. a language used to annotate a

general-purpose model, which is a UML model in this case. Selic’s approach applies

better for rbacUML than it did for rbacDSML, since in this case, it actually makes sense to

select syntactically close UML elements to match the domain-specific elements. Because

the same domain-specific element can sometimes be useful on several types of diagrams,
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we have introduced some redundancies in the rbacUML meta-model. Indeed, we want

access control information to appear in every type of UML diagram where it is relevant.

3.4.1. Meta-Model

The result of the application of Selic’s methodology for rbacUML is the UML meta-model

extension on Fig. 3.5. Users, roles and permissions are represented as UML classes (resp.

«RBACUser», «RBACRole» and «Permission»). Class inheritance can then be used to

represent role hierarchies, and associations can be used to represent user-role assignments,

role-permission assignments, static separation of duty (SSoD) and dynamic separation of

duty (DSoD) constraints. The resources to be protected are UML operations: indeed, it

is convenient to implement access control on their code-level implementation, methods.

The call to the access control framework can simply be added at the beginning of the

method body to decide whether or not the current user can execute the method. The

«Restricted» stereotype, therefore, marks operations whose access must be restricted.

It also marks messages passed in a sequence diagram, when they are calls to those

operations. In the rbacUML meta-model, the Interaction metaclass represents a UML

interaction, perhaps better known under its representation as a sequence diagram. Put

simply, an interaction is an ordered sequence of messages exchanged between objects

represented with their swimlanes on a sequence diagram.

The scenarios are a bit more complex. Actions (represented as round-cornered

rectangles) in activity diagrams are used to represent scenarios (either «Granted» or

«Forbidden»), because they lie in an activity partition (represented as a rectangle with

a name, in which actions and other activity diagram element lie) that can represent the

user. A partition therefore represents one user («RBACUser»), and contains a list of roles

that are simultaneously active for that user. That list must, of course, be a subset of the

list of roles assigned to the user. These roles are active for all actions within the activity
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Figure 3.5.: Extension of the UML meta-model for access control modelling

partition. Individual actions can have more or fewer roles through «ActivateRoles»

and «DeactivateRoles», to support the activation and deactivation of assigned roles

by a user during a session. Finally, actions contain a set of operations, which are the

resources for which access by the user must be tested. Table 3.2 shows how each element

and assignment of the domain meta-model has been implemented in rbacUML.
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Table 3.2.: Correspondence between the meta-model and rbacUML constructs

Meta-model Concept UML Metaclass Stereotype

User Class, Activity Partition RBACUser

Role Class RBACRole

Permission Class Permission

Resource Operation, Message Resticted

Scenario none none

Granted Action, Interaction Granted

Forbidden Action, Interaction Forbidden

U-R assignment Association none

SSoD Association SSoD

DSoD Association DSoD

parent Class generalisation none

R-P assignment Association none

guards Association none

accesses Association none

involves Association none

activates Association ActivateRoles, DeactivateRoles

Table 3.3.: Correspondence between rbacDSML and rbacUML constructs

Concept rbacDSML rbacUML

stereotype metaclass stereotype metaclass

User «User» Class «User» Class

«User» ActivityPartition

Role «rbacRole» Class «rbacRole» Class

Permission «Permission» Class «Permission» Class

Resource «Resource» Class «Restricted» Operation

Message

Granted «Granted» Class «Granted» Action

Forbidden «Forbidden» Class «Forbidden» Action
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Table 3.3 highlights the differences between the stereotype annotations for rbacDSML

and rbacUML. One will immediately notice that the User concept is represented by only

one construct in rbacDSML, but by two constructs in rbacUML. The same goes for the

Resource concept, represented by only one construct in rbacDSML, but two in rbacUML.

This is due to the different nature of both profiles. On one hand, rbacDSML is a DSML,

and as such it needs to be concise and to avoid duplicating the same information in

several places. On the other hand, rbacUML is a DSMAL, and as such it needs to annotate

models with RBAC-related concepts at every appropriate place, even at the price of

duplication.

There are a few other differences between rbacDSML and rbacUML that do not appear

in Table 3.3. First, in rbacUML only, there are associations between «User» stereotypes

applied on Classes and «User» stereotypes applied on activity diagrams. The same goes

between «Restricted» stereotypes applied on Operations, and those applied on Messages.

Furthermore, the multiple ways of activating roles in rbacUML are merged into only one

type of association in rbacDSML, between the scenario (either «Granted» or «Forbidden»)

and the role. This is due to the fact that rbacDSML does not handle activity diagrams,

whilst rbacUML does. The last difference is in the hierarchy relationships between roles.

Whilst rbacUML uses the Class element’s generalisation construct, rbacDSML uses a simple

association. The reason is, as stated before in this section, that the use of UML by

rbacDSML is merely a choice of convenience, and that therefore the semantics of UML

Classes are ignored.

3.4.2. OCL Constraints

The rbacUML profile comes with constraints that enforce the same properties as the

domain meta-model and rbacDSML, and a few additional ones. Indeed, a consequence of

allowing one to annotate a UML model with RBAC construct as opposed to allowing one
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Figure 3.6.: Configuration for the sample model

to only build an RBAC model, is that constraints will be more complex. The duplication

of the elements also requires additional well-formedness constraints: one needs, for

example, to make sure that the name of a user in an activity diagram is identical to its

associated user in the access control diagram. There are 32 well-formedness constraints for

rbacUML, plus the two constraints that verify that the model conforms to the scenarios. In

order to keep this chapter concise, we have included all the constraints in Appendices B.1

and B.2.

3.4.3. Sample application with rbacUML

With rbacUML defined, we can now complete the sample application, by applying the

last step of the proposed workflow: merging the application model with the rbacDSML

model, or, to describe it differently, to extend the rbacDSML model with the application

model. The result is a model made of four types of UML diagrams, with access control

annotations that express exactly the same RBAC concepts as the rbacDSML model.
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By annotating the sample model using the rbacUML profile, the configuration (Fig. 3.6)

defines 3 users, 3 roles and 2 permissions, their assignments, the role hierarchies and the

SoD constraints. Professor is a subclass of TA, which means it will inherit all of TA’s

permissions. The SSoD constraint between Professor and Student means no user can

be assigned both roles.

Let us move on to the policy, with the class and sequence diagrams. One will

immediately notice that Figure 3.7a includes a few red classes, which are actually part

of a different diagram discussed earlier: the diagram shown on Figure 3.6. The colour

distinction has been added to the figure to clearly show the limit of the class diagram.

The reason behind this presentation is that there are associations between two different

diagrams. We therefore chose to represent, for each association, the target element on

the other diagram.

The resources to protect are the marks: students should be able to read their marks,

but only professors and TAs should be able to edit them. The class diagram in Fig. 3.7a is

the rbacUML-annotated version of the class diagram in Fig. 3.1a. Two operations have been

annotated with the «Restricted» stereotype: Mark::setMark() and Mark::getMark().

As one can see, the «Restricted» stereotype applied on Mark::setMark() is associ-

ated to the Create Marks permission, which means that the Create Marks permission

will be required for anyone to execute the Mark::setMark() operation. Similarly, the

«Restricted» stereotype applied on the Mark::getMark() operation is associated to

the Access Marks permission. The sequence diagram on Fig. 3.7b is the same as the

diagram of Fig. 3.1b, but the «Restricted» stereotype has been added to the message,

since it is a call to a method whose access is restricted, Mark::getMark().

One still need to define the scenarios to ensure that the model meets the designer’s

requirements. This is done with activity diagrams to make sure that a Professor

can create new marks, and that a Student can read them. In the activity diagram of
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Fig. 3.8a, each activity partition stereotyped with «RBACUser» represents a user in the

access control diagram. Here it has two users: Smith, and Doe. Each user is also given

a set of roles that will be active for the whole activity: for Smith, it is Professor, and

for Doe, nothing, to illustrate role activation during a session. This means that Smith

will have the Professor role active for all the actions performed in the activity (unless

specifically deactivated for a particular action), and that Doe will not have any role active.

The activity itself is quite simple, and is made of only two actions. First, Smith performs

Create Marks, and then Doe reads his marks, using Read Mark. One can see that both

actions are stereotyped with «Granted», which means that the users should have the

necessary permissions to perform all the operations associated to those actions. Only

one operation is associated to the Create Marks action: Mark::setMark(), and only

one operation is associated to the Read Mark action: Mark::getMark(). Furthermore,

the Read Mark action is also stereotyped with «ActivateRoles», which means that the

associated roles will be activated for the user on top of those already active. In this case,

Doe gets the Student role, on top of his empty list of active roles.

To further illustrate the capabilities of rbacUML, an activity diagram is created to

define an anti-scenario: actions that a user should not be able to perform. Fig. 3.8b has

only one partition, stereotyped with «RBACUser» to represent a user in the access control

diagram: Doe. He is assigned the Student role for the whole activity, and there is only

one action, Create Mark, stereotyped with «Forbidden», which means that Doe, with

his set of active roles, should not be able to perform all the corresponding operations.

The action is associated to only one operation, Mark::setMark().

One can now verify whether the model enforces the scenarios: in order to be able to

perform the Create Marks action, Smith must be able to perform the Mark::setMark()

operation, which requires the Create Marks permission. Smith has the Professor role

active, which gives him, through its hierarchical relationship with the TA role, the Create
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Marks permission. The model thus enforces the first scenario. Similarly, the second

scenario, Read mark, requires Doe to be able to execute the Mark::getMark() operation,

which requires the Access Marks permission: through the Student role he has activated

especially for that action, he gets the Access Marks permission, and the model enforces

the second scenario. The anti-scenario requires that Doe, with the Student role, must not

be able to perform the Create Mark action, which is associated to the Mark::setMark().

As seen before, that operation requires the Create Marks permission, which is not

available through the Student role. Therefore, Doe cannot perform the Create Mark

action, and the anti-scenario is enforced.

3.5. A Taxonomy of OCL Constraints

We have presented earlier several OCL constraints, whose purpose was to complement

the proposed meta-models in order to describe how the languages’ constructs could be

combined. In this section, we propose more types of constraints, as well as a categorisation

of all the constraints in six categories. In this section, we focus on rbacUML, but of course,

the taxonomy presented here also applies to rbacDSML, and the constraints could easily

be translated to rbacDSML as well, since rbacUML is essentially a refinement of rbacDSML.

Selic only mentions one kind of OCL query: well-formedness queries that, together

with the extension of the meta-model, form the DSMAL’s abstract syntax. Here, however,

further support is provided for designers to find out what has not been modelled and

detect redundant elements. Besides the definition of an annotations language with its

syntax and semantics (enforced by well-formedness and verification OCL constraints),

the rbacUML profile provides further modelling support, with OCL constraints to check

the completeness, coverage and redundancy of the configuration and policy, and the

satisfiability of the scenarios. All these queries are implemented as part of the rbacUML
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(a) Class diagram

(b) Sequence diagram

Figure 3.7.: Policy for the sample model
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(a) Scenario

(b) Anti-scenario

Figure 3.8.: Scenarios for the sample model
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Table 3.4.: Summary of severity and type of OCL queries for each category

well-formedness verification satisfiability coverage completeness redundancy

severity error error warning warning warning warning

type constraint constraint query query query query

profile, which means that they are hidden from the designers, who will not have to write

OCL queries themselves for the particular models they work on using the profile. Instead,

they can run the profile queries automatically, and will get feedback if their evaluation

fails.

This section proposes a taxonomy of OCL queries for profiles and describes each

disjoint category. These categories are guidelines to make sure that no queries have been

forgotten, and they complement Selic’s work, since they are not limited to the definition

of a DSMAL. Each category is illustrated by rbacUML, indicating how to systematically

check that no queries have been forgotten. Each category of OCL queries also receives

a severity level, either error or warning. This is because violations of some categories

of queries do not necessarily make a model incorrect. As a general rule, a query should

always be broken down into smaller queries if possible, making it easier to diagnose what

the problem is when a query is violated. Table 3.4 summarises the categories of OCL

queries, their severity level and their type, which can be either a constraint returning a

boolean or a query returning model elements.

3.5.1. Well-formedness

Well-formedness is the first category of OCL queries. It is similar to Egyed’s UML

consistency [28] as discussed in Chapter 2. We focus only on the well-formedness of

the annotations added by the profile. The goal is to ensure that the profile annotations

that define the access control specification on the model are syntactically correct. These
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queries are expressed on the configuration, the policy and the scenarios: they must

consider the entire profile to be effective. The rules include well-formedness (some

well-formedness rules described by Selic [95] correspond to Egyed’s consistency rules [28])

between different stereotypes, elements and/or associations. For example, one may want

to make sure that if a class element is stereotyped with A, then it cannot be stereotyped

with B, and vice-versa. Well-formedness queries are the first ones to be defined during

the profile development process, since all the other categories assume a well-formed model

with regard to the UML profile. Well-formedness queries are always constraints.

To make sure that no constraint has been forgotten, profile developers should pay

particular attention to the following:

1) if two stereotypes, or the same stereotype applied on different UML elements,

represent the same domain concept or requirement, well-formedness constraints are

likely to be necessary to enforce that both the elements on which the stereotypes are

applied share some common characteristics, e.g. having the same name. For example,

Section B.1.27 of the appendix shows a constraint that makes sure that the name of an

activity partition on which the «RBACUser» is applied is the same as the name of the

class on which the «RBACUser» is applied and that is linked to the activity partition

using an association;

2) if a stereotype can be applied to more than one type of UML element, multiplicities

in the meta-model may not be correctly enforced, and should therefore be completed

with well-formedness constraints. For example, Section B.1.26 of the appendix shows a

constraint that makes sure that, if the «RBACUser» stereotype is applied on a class, then

there is no alias association from that stereotype. Another constraint, in Section B.1.25

of the appendix, makes sure that if the same stereotype is applied on an activity partition,

then there is exactly one alias association from that stereotype. This cannot be enforced

using the meta-model alone, and therefore, OCL constraints are required;
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3) in the case of indirect associations, one may have to check indirect multiplicities

and enforce them through well-formedness constraints, when the indirect multiplicity

must be more restrictive than what the meta-model allows to model through direct

multiplicities. There is no example of such a constraint in rbacUML, but the following

scenario can be considered to illustrate this point: if the number of permissions that each

user can get is limited to N , then one would have to write an OCL constraint that will,

for each user, build the set of roles assigned to them. Then, for each role assigned to the

user, the constraint would build the set of permissions assigned to the role. Finally, the

constraint would merge all the sets of permissions, eliminate duplicates, and make sure

that the size of the set is not larger than N .

In total, rbacUML has 32 well-formedness constraints, listed in Appendix B.1.

3.5.2. Verification

Verification, according to the Capability Maturity Model (CMMI) [2], is “the process

of evaluating software during or at the end of the development process to determine

whether it satisfies specified requirements”. If the DSMAL meta-model allows to express

scenarios, they must be verifiable.

Having specified well-formedness rules will guide the profile developer to implement the

verification queries, which are typically more complex than well-formedness constraints,

and the failure in the evaluation of an instance of such a query must raise an error that

designers have to resolve. Like with the well-formedness queries, verification queries are

actually constraints: either they succeed and the configuration and the policy satisfy

the access control requirements, or they fail and they don’t satisfy the access control

requirements.
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In rbacUML, one has two types of scenarios: a user should, or should not, be able to

perform a series of operations with a set of activated roles. Each scenario is an action,

stereotyped with either «Granted» or «Forbidden», within a specific activity partition

representing a user, and given a set of active roles that are a subset of the roles assigned

to said user. Two verification constraints (Appendix B.2) are derived to check whether

the configuration and policy enforce the scenarios: the first one verifies that «Granted»

actions can be performed by the user with the activated roles, and the second one verifies

that «Forbidden» actions cannot be performed by the user with the activated roles.

The first one constructs two sets of permissions: the set of permissions required by the

operations that are part of the considered action, and the set of permissions that the

user has, through the roles s/he has activated. The former set must be a subset of

the latter. The verification constraint for «Forbidden» actions works in a similar way,

but the former set must not be a subset of the latter, i.e. there must be at least one

permission that is required but that the user does not have.

3.5.3. Satisfiability

Satisfiability queries are related to verification queries. Satisfiability queries help answering

the following question: when a scenario is not enforced by the model, is there a particular

element that will always make the scenario fail? For example, an operation stereotyped

with «Restricted» could require more permissions than any user has, or an action

could require more permissions than the user that runs it could get. The evaluation of

satisfiability queries only makes sense if a verification constraint has failed, and therefore

satisfiability queries should be developed after verification constraints. Satisfiability here

is similar to the concept of satisfiability in logic, where a formula is satisfiable if there is

at least one interpretation that verifies it. In rbacUML, a scenario will be satisfiable if
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there is at least one user that can execute it, and an anti-scenario will be satisfiable in

there is at least one user that cannot execute it.

In rbacUML, 3 satisfiability queries are specified (Appendix B.3) to help one identify

where the problem lies in case one of the verification constraints is violated.

3.5.4. Completeness

A completeness query identifies areas where elements or annotations are missing, either

intentionally (modelling everything does not always make sense) or not (it is then useful

to point out where something is missing). A completeness problem does not mean that

the model is not correct, so the severity level is warning. Completeness queries deal

with the configuration and the policy, but not the scenarios, as those are dealt with by

coverage constraints (see below).

To find all the possible completeness queries, the associations in the profile must be

considered. If an association has a multiplicity of 0..x, where x could be any integer

or *, then a completeness query is needed: not having any association there might be

intentional, but it may also be a mistake.

In rbacUML, 5 completeness queries are defined in Section B.4 of the appendix.

3.5.5. Coverage

Coverage queries are a kind of completeness queries, but focused on scenarios. As with

the completeness queries, just because scenarios do not cover the entire model does not

mean that the model is incorrect. Therefore, the appropriate severity level is warning.

In software testing, coverage measures the amount of source code that has been tested.

There are several coverage criteria, like the blocks covered, decisions executed or variables
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used [35]. In the context of access control, scenarios can be seen as the tests of the

configuration and policy. The definition of coverage is adapted to the context of profile

development: coverage becomes therefore a measure of the degree to which a policy

and a configuration are covered by the scenarios. Indeed, some parts of the policy or

the configuration may not be involved in the verification of any scenarios. This is not

necessarily bad, as it would usually be overly time-consuming to model scenarios to

cover the entire model, but it is still important to know which areas of the policy and

configuration are covered by scenarios, and which areas are not. Coverage queries assume

that the model and the profile annotations are consistent. Therefore they should be

defined after the well-formedness constraints have been developed. Furthermore, the

result of the coverage analysis will only be meaningful if the well-formedness queries

succeed.

In rbacUML, scenarios (resp. anti-scenarios) are defined as actions that represent a

set of operations that a user must (resp. must not) be able to perform using a given

subset of the roles assigned to them. In Section 3.4.3, we have 3 users, 3 roles, and

2 operations. In order to cover all possible combinations, one should have at least 72

(= users × (℘(Operations) − 1) × ℘(Roles) = 3 × 3 × 8) scenarios to reach complete

coverage. Clearly, one cannot model all possible scenarios, especially on large models.

In order to make sure that no coverage queries are missed, one needs to looks at

each verification constraint, and see which stereotyped elements are visited through

associations. Those elements, if they exist but are not visited, should raise a coverage

warning.

In rbacUML, 2 coverage queries are identified and detailed in Section B.5 of the

appendix. Both the «Granted» and the «Forbidden» verification constraints visit the

same elements: «Users», «Roles», «Permissions» and «Restricted» operations. The
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coverage queries check which of those model elements are not visited by the verification

constraints.

3.5.6. Redundancy

Redundancy appears when the same concept instance is repeated in the model, i.e.

removing one of them will not affect the evaluation of any of the OCL queries in the

profile. Redundant elements increase the number of elements in the models, which

increases the time necessary to evaluate all the OCL queries and makes the model more

difficult to understand. Redundancies should therefore be eliminated. A redundancy

query is used to find such redundancies, allowing the designer to safely delete one of the

redundant elements, after making sure that the associations pointing to said element are

redirected to the redundant element that will not be deleted, if appropriate. For example,

in rbacUML, if two users, A and B, are found to be redundant, then one of them can be

deleted. If A is to be deleted but an activity partition stereotyped with «User» refers to

A, then this association must be transferred to B and the activity partition’s name must

be changed to B. For the example in Section 3.4.3, if one finds out that two users are

redundant and remove one, the number of necessary scenarios to achieve full coverage is

reduced from 72 to 48.

Redundancy applies to the configuration only. It does not make sense on the policy,

since two operations are never exactly the same, nor does it on the scenarios: if the

same action appears in several places in an activity diagram, or even in several activity

diagrams, this is because of the functional requirements expressed by said diagrams.

Therefore, redundancies should not be removed. The configuration, however, should be

kept as small as possible.
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Just as with coverage and completeness queries, redundant elements do not make the

model incorrect, and therefore redundancy queries have a severity level of warning. Yet,

it is recommended to eliminate redundancy as soon as possible.

With rbacUML, 2 redundancy queries are specified in Section B.6 of the appendix.

3.5.7. User-Defined Queries

In addition to the queries provided by rbacUML, users can of course define their own. This

can be useful in several cases. A user could be using a particular authorisation library

that enforces constraints that are not part of the RBAC standard. One such constraint

could be that any role can only have one parent, or that dynamic separation of duty

is not implemented. Designers may also want to provide their own constraints if they

want to perform different types of scenarios in the verification category. For example,

one may want to design a scenario that makes sure that a “default” user does not have

more roles than any other user, or that any user with a specific role also has another one.

Since one uses standard UML technologies, adding a new query or updating an existing

one only requires the designer to edit the relevant OCL queries in the rbacUML profile,

which will be trivial for someone familiar with UML and OCL. If the new query is added

to a particular category, the ordered and selective evaluation strategies will be applied

automatically.

3.5.8. Evaluation of OCL Queries

UML modelling tools typically evaluate all OCL queries on an entire model when the

validation is triggered, which can cause several problems, especially on large models:

• it takes a long time to evaluate all those queries;
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• when many errors arise, it is hard to make sense of the output and to know where

to start;

• the result of the evaluation of some queries is only useful if other queries have been

validated, otherwise meaningless results are scattered over the output, making the

above point worse;

• the developer might not always be interested in all the categories of queries.

This section presents two evaluation strategies to increase the performance of OCL

queries: ordered evaluation and selective evaluation. They can be used individually or

combined together. Their performance is discussed in Chapter 5.

Ordered Evaluation

Dependencies between the categories of queries listed previously have been identified.

In other words, for the result of the evaluation of queries from a particular category to

make sense, the evaluation of the queries from the categories it depends on must have

succeeded. For example, rbacUML has a well-formedness constraint that says that roles

activated by a user in an activity partition must also be assigned to the corresponding

user in the configuration. One can imagine a scenario where this query fails: there is at

least one activated role that the user actually does not have. Now, imagine that inside

the activity partition, there is a «Granted» action, and that one of the related operations

requires a permission that is only provided by the role that is activated but not assigned

to the user. The verification query will evaluate to true, but that result is meaningless

since there is an active role that the user cannot actually have. This leads the designer

to mistakenly think that the model is more secure than it actually is. Moreover, checking

all constraints simultaneously may overwhelm the user with useless information, hiding

important results in a sea of meaningless ones.
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Ordering the evaluation of OCL queries brings several benefits:

1. fewer meaningless results;

2. potentially reduced evaluation time, especially when errors are caught early on;

3. possibility of selectively evaluating some categories: for example, one may want to

evaluate verification and completeness queries only, not being interested in coverage

and redundancy queries.

We call this approach ordered OCL query evaluation, as it has similarities with the

ordered evaluation of boolean expressions in some programming languages.

Selective Evaluation

As opposed to ordered evaluation that automatically skips the evaluation of queries

whose result would be meaningless because of the result of other queries further up the

dependency graph, query selection allows the designer to manually select which queries,

or categories of queries, to evaluate at a particular time. For example, a designer might

only be interested in well-formedness queries at some point because he has not given

much thought about the scenarios yet, and therefore it is pointless to run verification

queries. He can then select the well-formedness category only, and only those queries

will be evaluated, no matter what the result of the evaluation is. Similarly, at a later

stage the designer may only be interested in a particular coverage query, that reports

roles that have not been assigned to any user. He can select it and deselect all the other

ones, so no time will be spent on evaluating other coverage queries such as the query

that finds permissions that have not been assigned to any role. This is also a way of

coping with too many errors or warnings resulting from the evaluation of queries that

the designer is not interested in at a particular moment.
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3.6. Discussion

This chapter has presented the rbacUML DSMAL and the rbacDSML DSML, both derived

from the same domain meta-model using Selic’s methodology. Both profiles provide a

fully standard-compliant RBAC language, as well as the ability to model two types of

scenarios to check the model against access control requirements. We have illustrated our

approach using an example application and a workflow that makes use of both profiles.

The rbacUML profile targets users, such as developers, that need to understand the

details of how the access control policy and configuration interacts with the software

to be built. Therefore, the relevant model elements can be annotated with RBAC

concepts. This introduces necessary redundancy, because UML elements themselves can

be redundant.

The rbacDSML profile, however, targets users that only need to focus on the access

control part of the system, e.g. system administrators or stakeholders without a pro-

gramming background. The DSML is much smaller and comes with significantly fewer

OCL constraints, which necessarily decreases its validation time.

A categorisation of OCL constraints is used later to provide two ways of speeding up

the validation of a model and improving the quality of its feedback.

If the proposed approach were to be re-framed in Basin’s Model-Driven Security

framework, rbacDSML would be the security modelling language, UML the system design

modelling language, and the combination of both would be rbacUML.

Compared to the other approaches for RBAC modelling presented in Chapter 2, this

proposal is closest to UMLsec and SecureUML. The scenarios here will remind the reader

of UMLsec’s activity diagrams, but instead of using tagged values to represent lists of users,

roles, permissions and their respective assignments, classes, operations and associations
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are used. This is an improvement over UMLsec’s representation, as its lists of assign-

ments (e.g., for a simple user - role assignment: {(user1, role1), (user1, role3),

(user2, role2), (user2, role3), (user2, role4), (user3, role1)}) grow very

quickly and are therefore difficult for humans to parse. Using classes, operations and

associations is both clearer and more concise.

The proposed approach also has similarities with SecureUML + ComponentUML: both

use classes to represent users and roles, and resources to be protected are represented

in similar ways. However, the similarities stop there: whilst SecureUML represents

permissions as association classes attached to role-resource assignments, rbacUML uses

classes, which allows for the same permission to be reused across multiple roles and

resources. Since SecureUML uses association classes and since the UML standard

mandates that an association class can only be attached to one association, a permission

will have to be repeated for each role to resource assignment. The way SoD constraints are

represented is also different: SecureUML uses model-level, user-defined OCL constraints,

whilst rbacUML uses associations between roles. Similarly, SecureUML allows users to

define themselves model-level OCL constraints for analysis purposes, while rbacUML uses

actions in activity diagrams to represent them, and meta-model-level OCL constraints,

that users do not need to write themselves, to perform the analysis itself. SecureUML,

however, is more flexible in the sense that users are able to express more complex

constraints than using the proposed approach. This comes at the cost of added complexity.

The proposed approach for RBAC modelling meets the requirements set out in the

introduction:

Modelling RBAC concerns RBAC concepts can be modelled by stakeholders. All

the RBAC concepts, as well as the scenarios, can be modelled using either of the proposed
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profiles. There is no requirement for stakeholders to write any code or OCL constraint

themselves. Both profiles also support the entire RBAC standard.

Analysing models Once they have created their RBAC models and requirements,

stakeholders are allowed to analyse said models in one click. The OCL constraints that

implement these analysis features are written at the meta-model level and are part of

the profile.

Classification of OCL constraints and evaluation speed improvements We

provide a classification of OCL constraints in six categories: well-formedness, verification,

satisfiability, completeness, coverage, and redundancy. These categories provide a range of

analysis capabilities. Using this classification, we define a partial order between categories,

allowing us to only evaluate constraints when it makes sense to do so. Therefore, the

number of constraints to evaluate can sometimes be reduced, but is never increased. This

can lead to faster evaluation times. We also provide users with the ability to manually

select which categories of constraints to evaluate, which can also reduce the evaluation

time.

Fewer useless results in the evaluation feedback The partial order between

constraints relies on assumptions made during the constraints creation, e.g. verification

constraints assume that the model is well-formed. The ordered evaluation allows us to

only evaluate constraints if such assumptions are met. Not only does this reduce the

evaluation time, as discussed above, it also removes any feedback on constraints whose

assumptions have not been met, and whose results are therefore meaningless.
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It is not uncommon for the evaluation of rbacDSML or rbacUML models to fail. In fact,

this is true of models in any similar DSML or DSMAL. Especially with large models,

small errors can easily go unnoticed until the evaluation of the OCL constraints points

them out. Furthermore, the very nature of the evaluation engine, where model elements

must satisfy several constraints, makes it rather difficult for designers to manually fix

erroneous models. A change that fixes an error on one instance of an OCL constraint can

result in other instances of the same, or even other, OCL constraints, to raise new errors

that were not there in the first place. These errors will then have to be fixed, potentially

causing more errors elsewhere, until a model that satisfies all instances of all constraints

is produced.

Moreover, by manually fixing their models, designers are likely to overlook or “miss”

possible changes, which would lead them to select a suboptimal or overly complicated

solution to their problem.

Automatically generating a list of valid models that can be derived from an incorrect

one would address these two problems. It would make the designer’s life much easier, as

he would only have to review several correct alternatives, and choose the one that suits

him best. It would also present him with the options he may not have considered had he

tried to manually fix the model.

In this chapter, a graph-based solution for the correction of erroneous models is

presented, discussed and evaluated, under several angles such as completeness, correctness,

and performance. A reference implementation for rbacDSML is also discussed.

4.1. Overview of the Solution

To fix a model is to fix each of the errors raised during its evaluation. However, fixing

an error may introduce another error somewhere else. Furthermore, there usually are
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several ways of fixing a particular error, and therefore, several ways of fixing the entire

model. In this chapter, the fixing of individual errors is first considered, regardless of

whether or not a particular fix causes other errors elsewhere on the model.

In rbacDSML, errors can be classified in three categories that will be described in this

chapter, and expressed using graph theory. For each instance of a constraint that needs

to be verified, a graph can be constructed using the elements and associations that are

navigated during the instance’s evaluation. In this graph, nodes are model elements and

edges are associations between elements. The evaluation of the constraint instance is

equivalent to checking a particular property in the graph - such as the presence or the

absence of a cycle. Solutions can then be generated on the graph, by adding or deleting

edges and/or nodes. As there is a one-to-one mapping between the model elements and

the graph nodes, and a one-to-one mapping between the model associations and the graph

edges, it is straightforward to mirror the changes in the graph back to the model. If the

model is a graph, which is the case with UML, then the solutions can be implemented

directly on the model. The fixing of individual errors is described in Section 4.2.

Each error can have several solutions, and in many cases, more than one error will

have to be fixed before the model satisfies all the instances of all the constraints. To fix

the entire model, a tree is created to explore the combined effect of several fixes. The

tree is rooted on the model to be fixed. Each node represents a version of the model,

which can be correct or contain a number of errors. For each model that contains at

least one error, one error is selected and solved. Each generated solution becomes a child

of this node. A solution to fix the entire model is therefore a path from the root to a

leaf that represents a correct model. The solution tree construction and properties are

discussed in Section 4.3.

The number of generated solutions can be a problem, especially on large models

with lots of errors. The more solutions are proposed, the harder it is for designers to
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select the best solution. It is therefore crucial to order them in a meaningful way so the

designer will first see the solutions he is most likely to select. The ordering is achieved

by categorising solutions depending on the parts of the model they modify, and on the

number of changes they require. The number of changes in a solution is not the same as

the length of the path between the root and the solution, as fixes for individual errors

can require several changes. This is taken into account when computing the “size” of

each solution, as described in Section 4.4.

The easiest way of constructing the tree is to use a breadth-first or a depth-first

approach. However, this is not the most efficient solution if one wants to get the smallest

solutions as early as possible. In Section 4.5, improvements made to the tree construction

algorithm are discussed, including:

• ordering the fixing of errors depending on the category of the constraints violated,

an approach that is very similar to the ordering of OCL constraints discussed in

Chapter 3;

• allowing users to eliminate some possible solutions that would modify elements or

associations that they are not willing to modify;

• using heuristics to try to find the smallest solutions first.

In Section 4.6, the presentation of the solutions to the designer is examined.

4.2. Generating Fixes for Individual Constraints

4.2.1. Graph Representation of Constraints

DSML models can be seen as graphs whose nodes are elements and edges are associations

between elements. Therefore, the validation of an OCL constraint against a particular
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element can be treated as a graph problem. In rbacDSML, the OCL constraints can been

classified in two categories: constraints whose evaluation succeeds when a particular

cycle is found in the graph representation of the model, and constraints whose evaluation

succeeds when a particular cycle is not found in the graph representation of the model.

Changing the model to make it comply to a particular instance of an OCL constraint

can then be reduced to creating or breaking cycles in a graph.

Of course, just because all rbacDSML OCL constraints happen to be classifiable in one

of those two categories does not mean that all possible OCL constraints can be classified

in one of those two categories. However, UML models are graphs, and therefore, all

constraints can be seen as graph-related properties. More categories may need to be

created for other DSMLs so each constraint can fit in at least one category.

Type I - Finding Cycles in the Graph

Constraints in the first category look for a particular cycle in the graph. If the cycle

exists then the constraint returns true, and if not, false. In fact, we look for some specific

paths A that start from the constraint’s context, and for each one we expect that there

exists at least one specific path B from the end of A back to the context, such that A;B

forms a cycle.

Two rbacDSML constraints fall into that category: the constraint that makes sure that

activated roles have been assigned to the user (constraint 3.6), and the constraint that

verifies that the model conforms to «Granted» scenarios (constraint 3.9). In general,

constraints falling into this category can be defined as follows:

Definition 4. A constraint from the “finding cycles” category is a constraint for which, if

a particular path A is found from its context, then the path continues to form a particular

kind of cycle - i.e. there is another path B from the end of the first path back to the
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(a) Correct - path A dotted, path B con-
tinuous

(b) Incorrect - path A dotted, no path B,
no cycle

(c) Correct - three cycles formed by A and B paths

Figure 4.1.: Examples for the Granted OCL constraint

context. In other words, ∀A∃B : A;B : start(A) = end(B), end(A) = start(B), where

start(A) denotes the first node of path A, and end(B) denotes the last node of path B.

The first OCL constraint from rbacDSML to be expressed as a graph is constraint 3.9,

that evaluates the model against «Granted» requirements. For the constraint to be satis-

fied, the set of permissions required by the resources used in the scenario (SPerm required)

must be a subset of the set of permissions activated for the scenario (SPerm activated):

SPerm required ⊆ SPerm activated. Translated to the graph representation, it means that the

path A is a path from the context (i.e. a granted node) to a permission node that passes

through a resource node. The path B completes the cycle by going back to the context

through a role node.
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The definition of the constraint can be expressed as the following specialisation of

Definition 4:

Definition 4.1. Given a «Granted» scenario node in the graph representation of the

model, for every path A of length 2 from the scenario to a permission node and through

a resource node, there must be a path B of length 2 from the permission node back to the

scenario, through one role node. Together, these two paths form a cycle.

Figure 4.1 illustrates the constraint for several simple examples. In that figure as

well as in subsequent figures in this dissertation, the following notation applies: nodes

represent UML model elements, except for associations that are represented by edges

between associated nodes. The type of a node is given by the stereotype above its name.

A dotted line represent an association that is part of an A path, while a continuous line

represents an association that is part of a B path. Furthermore, a black border has been

added to those nodes that represent a context element for the OCL constraint considered.

One should also note that the graphs displayed in the figures are subsets of models, where

all elements that are not relevant to the OCL constraint considered have been ignored.

By definition, the context element is also the start of path A and the end of path B.

Figure 4.1a is the smallest correct case: there is one path A between the scenario

and a permission, and there is another path B from the permission back to the scenario,

through a user.

Figure 4.1b is the simplest incorrect case: there is one path A between the context

and the permission, but no path from the permission back to the scenario. Therefore,

the cycle is absent, and the constraint evaluates to false.

Figure 4.1c shows another correct model: there are two paths A1 and A2 between the

scenario and different permissions, and each of these roles is the starting point of a path

B, back to the scenario. There are then two cycles, and the constraint evaluates to true.
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The second OCL constraint from rbacDSML in this category is constraint 3.6: to be

satisfied, the set of roles activated by a scenario (either «Granted» or «Forbidden») must

be a subset of the set of roles assigned to the user performing the scenario. Translated to

the graph representation, it means that path A is a path of length 1 from the context (a

scenario) to a role. Path B is a path of length n|n ≥ 2, from the role back to the context

and through a user. The length of the path can be greater than 2 if parent-child edges

have to be followed between roles.

The definition of the constraint can be expressed as the following specialisation of

Definition 4:

Definition 4.2. Given a «Granted» or «Forbidden» scenario as the context in the

graph representation of the model, for every path A of length one from the context to a role

node, there must be a path B of length 2 or more from the role node to the context, through

a user node, and possibly through several roles following parent-child edges. Together,

these two paths form a cycle.

Figure 4.2 illustrates the constraint for several simple examples. The first one

(Figure 4.2a) shows the simplest correct case: the graph contains one path A from a

«Granted» scenario to a role, and one path B from said role back to the scenario through

a user. The constraint’s evaluation returns true.

A counter-example is presented in the second example (Figure 4.2b). There is still

one path A between the scenario and the role, but this time there is no path B from the

role back to the scenario through a user. Therefore, the cycle is broken, and the OCL

constraint’s evaluation returns false.

The third example (Figure 4.2c) shows a more complex correct model. There are

two paths A (dotted) between a «Granted» scenario and two roles. Each path A has a

corresponding path B (plain lines), from the role back to the scenario and through a

user, completing both cycles. The constraint’s evaluation returns true.



Fixing Models 97

(a) Correct - there is a cycle (b) Incorrect - path A dotted, no path B

(c) Correct - paths A dotted, paths B con-
tinuous

Figure 4.2.: Graph representation of the rbacDSML constraint ActivateRoles
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Absence of Cycles

Constraints in the second category differ from constraints in the first category as they

look for the absence of cycle, instead of their presence. This category can be divided in

two sub-categories. The first one includes the constraints where, for every path A, there

is no path B to complete a cycle. The second one includes the constraints where at least

one path A has no path B to complete its cycle.

Type II - No Cycle at all Constraints in the first sub-category succeed if, for every

path A, there is no corresponding path B to complete the cycle.

Two rbacDSML constraints fall into this sub-category: the SSoD (constraint 3.7) and

DSoD (constraint 3.8) constraints, that ensure that models do not violate separation of

duty constraints. In general, constraints falling into this sub-category can be defined as

follows:

Definition 5. A constraint from the “no cycles” category is a constraint for which, if

a path A is found from its context, then the path does not continue to form a specific

cycle - i.e. there is no path B from the end of the first path back to the context. In other

words, ∀A 6 ∃B : A;B : start(A) = end(B), end(A) = start(B), where start(A) denotes

the first node of path A, and end(B) denotes the last node of path B.

The first OCL constraint from rbacDSML in this sub-category is the SSoD constraint.

Its context is a user. For the constraint to be satisfied, there cannot exist an SSoD

relationship between two roles assigned to the user used as the context. Translated to

the graph representation, it means that the path A is a direct path from the context

to a «rbacRole» node. The path B completes the cycle by going back to the context

through another «rbacRole» node using a SSoD edge, possibly following one or several

child-parent edges before the SSoD edge.
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The definition of the constraint can be expressed as a specialisation of Definition 5:

Definition 5.1. Given a user node in the graph representation of the model, for every

path A of length 1 from the user to a role node, there cannot be any path B of length

n|n ≥ 2 from the role node back to the user, through any number of child-parent edges,

and through one SSoD edge. There cannot be a cycle formed by A and B.

Figure 4.3 illustrates the constraint with simple examples. Figure 4.3a is the easiest

correct case: there are two A paths, but no B path.

Figure 4.3b is correct too. There are the same two paths A as in Figure 4.3a. Athough

there is one SSoD edge, it is not part of a B path back to the user.

Figure 4.3c is the simplest incorrect model. The path A, represented by the dotted

line, has a corresponding path B that completes the cycle. Therefore, the constraint

evaluates to false.

Figure 4.3d is another incorrect model. Here, there are not one, but two cycles, each

formed of a path A and a path B.

Figure 4.3e is an incorrect model involving a role hierarchy. Because RO3 is a

descendant of RO1, it inherits its SSoD constraints. There is therefore a path A from the

context to RO3, and a path B from RO3 back to the context, through RO1 and RO2.

The second constraint from rbacDSML in this sub-category is the DSoD constraint.

It is very similar to the SSoD constraint, except that the context is a scenario node

(either «Granted» or «Forbidden»), and role hierarchies are ignored. For a discussion

of separation of duty and role hierarchies, see Section 2.2.4 in the literature review.

The definition of the constraint is therefore very similar to Definiton 5.1, and is also

a specialisation of Definition 5:

Definition 5.2. Given a scenario (either «Granted» or «Forbidden») node in the

graph representation of the model, for every path A of length 1 from the scenario to a
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(a) Correct (b) Correct

(c) Incorrect (d) Incorrect - 2 cycles

(e) Incorrect - role hierarchy

Figure 4.3.: SSoD graph examples
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(a) Correct (b) Correct

(c) Incorrect (d) Incorrect - 2 cycles

(e) Correct - role hierarchy

Figure 4.4.: DSoD graph examples

role node, there cannot be any path B of length 2 from the role node back to the scenario,

through another role node by way of a DSoD edge. There cannot be a cycle formed by A

and B.
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Figure 4.4 illustrates the constraint with simple cases. They are all very similar to

Figure 4.3 illustrating the SSoD constraint, except that the context is a scenario instead

of a user in Figure 4.3. The first two Figures (4.4a and 4.4b) are correct models, whilst

the last two Figures (4.4c and 4.4d) are incorrect, because they do include cycles. The

last one differs more from the SSoD version. The activation of RO3 does not mean that

its parent RO1 is activated as well, and therefore the DSoD constraint between RO1 and

RO2 is not part of a B path. The constraint thus evaluates to true.

Type III - At Least one Path Without a Cycle Constraints in the second sub-

category succeed if at least one path A has no corresponding path B to complete the

cycle.

Only one rbacDSML constraint falls into this sub-category: the constraint that ensures

that the «Forbidden» scenarios are enforced by the model (constraint 3.10). In general,

constraints falling into this sub-category can be defined as follows:

Definition 6. A constraint from the “at least one path without a cycle” category is a

constraint for which, of all the paths A starting from its context, at least one of them

does not continue to form a specific cycle - i.e. there is at least one path A that does

not have a path B back to the context. In other words, ∃A : 6 ∃B : A;B : start(A) =

end(B), end(A) = start(B), where start(A) denotes the first node of path A, and end(B)

denotes the last node of path B.

The only constraint of this type in rbacDSML is in constraint 3.10, that evaluates the

model against «Forbidden» requirements. The constraint’s satisfaction requirements are

easily derived from the «Granted» constraint (listing 3.9). The set of permissions required

by the resources used in the scenario must not be a subset of the set of permissions

activated for the scenario, i.e. at least one of the required permissions must not be

part of the permissions acquired through the activated roles. Translated to the graph
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representation, it means that A is a path from the context (i.e. a «forbidden» node)

to a permission node that passes through a resource node. Path B completes the cycle

(except for at least one path A where there cannot be a path B) by going back to the

context through a role node.

The definition of the constraint can be expressed as the following specialisation of

Definition 6:

Definition 6.1. Given a «Forbidden» scenario node in the graph representation of the

model, there must be at least one path A of length 2 from the scenario to a permission

node and through a resource node, that does not have a corresponding path B of length

n|n > 2, from the permission back through the context, through one role, and possibly

more roles along child-parent edges.

Figure 4.5 illustrates the constraint with a simple example. Figure 4.5a has two

paths A, A1 and A2, but only A1 has a corresponding B path. Therefore, the constraint

evaluates to true.

Figure 4.5b, however, has a B path for each of the A paths, and hence the constraint

evaluates to false.

4.2.2. Generating Possible Fixes

The previous section discussed how to express OCL constraints as graph problems where

specific cycles must be either found or not for the constraint to evaluate to true. Therefore,

a constraint that evaluates to false will either have a cycle where there shouldn’t be

one, or no cycle where there should be one. Fixing a model for it to satisfy a particular

constraint then becomes a matter of either completing or breaking cycles. This section

explores how this can be done, and shows how to generate all the possible fixes for

a particular instance of a constraint only by examining the OCL constraint and the
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(a) Correct - path A2 has no corresponding path B2

(b) Incorrect - no path A without a corresponding path B

Figure 4.5.: «Forbidden» graph example
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profile meta-model. Whilst this section focuses on fixing the model so they conform to a

particular instance of a particular OCL constraint, the next section will combine these

fixes to generate a series of changes that make entire models correct.

Anatomy of a Fix

A fix is, as it has been indicated earlier in this chapter, a change to a model that will

make the model satisfy a particular instance of a particular OCL constraint. There

are two ways of changing a model: either adding elements, or removing elements. One

could argue that there is a third way of changing a model, namely modifying an element,

but this can be emulated by removals and additions. In particular, removing a class is

removing it and all its associations.

In a single fix, several elements can be added or removed from the model. This section

will provide numerous examples of fixes that involve more than one change. Change and

fix can then be defined as the following:

Definition 7. A change is a single unit of modification in a model. It can either be the

addition of a new node or edge, or the removal of an existing one.

When considering a list of several changes to the same model, one needs to make sure

that the changes are coherent, e.g. that the same edge is not deleted twice. A coherent

list of changes is defined as follows:

Definition 8. A list of changes C0, . . . , Cn is coherent, if and only if, for each change

Ci, 0 ≤ i < n in the list, Ci can be applied to the model resulting from the consecutive

and ordered application on the initial model of all Cj, 0 ≤ j ≤ i− 1.

We can then define a fix as the following:

Definition 9. A fix for an instance of an OCL constraint on a model is an ordered,

non-empty list of coherent changes made to the model that leads the model to a state
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(a) Left hand side: an erroneous model,
according to an imaginary OCL con-
straint

(b) Right hand side: the model, fixed by
the addition of a new node, and then
the addition of a new edge

Figure 4.6.: A simple example that illustrates why a fix needs to contain an ordered list of
changes

where the instance of the OCL constraint evaluates to true. A fix only exists for a

particular model if said model, before the fix, causes the instance of the OCL constraint

to evaluate to false.

The above definition specifies that a fix needs to be an ordered list of changes. Consider

the following example, illustrated on Figure 4.6. The model on the left hand side (4.6a)

is the original, and the model on the right hand side (4.6b) is the result of an imaginary

fix for an instance of an imaginary OCL constraint. The fix consists of two changes:

first, adding a new node, and second, adding a new edge between the new and the

existing nodes. It is clear that adding the new node must be done before adding the

edge, otherwise the latter would have a dangling end.

Fixes can be as small as one change, or they can contain a very long list of changes.

Furthermore, depending on the DSML, not all changes are necessarily equal. For example,

in rbacDSML, adding a new role to a model could be treated as a more “expensive”

change than adding a user - role assignment, since presumably, creating a new role in

an organisation is a more serious and less frequent operation than giving someone one

existing role. Therefore, it is interesting to provide a way of computing the weight, or cost,

of a fix. This function is called fcost(F ), for any fix F . The definition of the function

depends on the DSML, and possibly depends on the designer too. A change can have a

cost function too, ccost(C) for any change C, that can be used to compute the cost of

a fix. The simplest cost function would be fcost(F ) = 1, and all fixes, no matter how
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Figure 4.7.: There are an infinite number of ways to fix this model

many changes or what kind of changes they contain, would have the same cost. Another

option would be to use the sum of each change in a fix: fcost =
∑s

i=1 ccost(Ci), where s

is the number of changes in the fix.

Completeness and Correctness

It is essential for the generation of fixes to satisfy two properties, correctness and

completeness.

Definition 10. Correctness: every fix generated must lead to a model that satisfies

the instance of the OCL constraint considered.

Definition 11. Completeness: the fixes generation algorithm must generate all the

possible changes that would satisfy the correctness criterion.

Verifying correctness is relatively easy: after the model has been changed according

to the proposed fix, the instance of the OCL constraint considered must evaluate to true,

i.e. the model must then satisfy the graph-based definition of the constraint. Verifying

completeness is a bit more challenging. In fact, it is necessary to somewhat restrict the

notion of completeness in order to only generate a finite amount of possible fixes, when

adding elements to the model 1. The problem can be illustrated with an example such

as the example on Figure 4.7. It depicts a rather simple model. The reader will easily

1The deletion of elements from the model (without any addition) is necessarily finite: at most, all the
elements will be deleted.
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spot the error with the «Granted» constraint: P1 is required by RE1, but not given to

RO1. There are an infinite number of ways to fix this constraint: first, one could assign

P1 to RO1. Alternatively, one could create a new role, RO2, activate it from GR1, and

assign P1 to it. That new role could have any name that has not already been given to

another element: RO2, RO42, Arthur, teapot, etc. However, depending on the profile

considered, the name may or may not be important. With rbacDSML for example, the

name of an automatically created role, or the name of an automatically created element,

does not matter the slightest. If a meaningful name has to be chosen, then it cannot be

done automatically, and the designer will have to choose it himself. The consequence is

that one can define, for rbacDSML, an equivalence class that encompasses all the possible

new elements generated by a fix to a model, that only differ by their name. When

creating new nodes or edges for the purpose of a fix, the name of the new element does

not matter, and two elements of the same type and with edges to the same nodes are

indistinguishable.

Another way in which an infinite number of changes could potentially be generated is

if fixes that are not minimal are generated. A minimal fix is defined as follows:

Definition 12. A fix is minimal if there does not exist any strict subset of its changes

that would also make a valid fix.

Figure 4.8 illustrates the minimal fix property on an imaginary model. The constraint

to fix in this case says that every node Nx should have at least one edge to a node Ly.

The first model is the incorrect model. The second model is the minimal fix: only one

edge has been added, and the constraint is now satisfied. The third model shows a fix

that is not minimal: two edges have been added. The reader will immediately notice

that the first fix is a subset of the second one. If such non-minimal fixes are allowed, an

infinite number of fixes could be generated.
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(a) Incorrect model (b) Minimal fix (c) Non-minimal fix

Figure 4.8.: Minimal and non-minimal fixes

These two properties guarantee that the number of possible fixes for any error is a

finite number. We already know that fixes that only differ by the name of the new nodes

will be counted as only one fix, and Definition 12 guarantees that only minimal fixes will

be generated, therefore forbidding the generation of an infinite number of non-minimal

fixes.

Breaking Cycles - Fixing Type II Constraints

Breaking cycles is the easiest type of fix that can be applied. Constraints that fall into

the category where no cycles of a certain type can be found are all expressed as follows:

“If there exists a path A, then there cannot exist another path B that completes a cycle”.

If a cycle is found, there are therefore two solutions: either break A, or break B. These

two solutions can be merged into one: break the cycle formed by A; B.

Of course, breaking a cycle only involves removing a single edge, which represents an

association. Completeness is guaranteed: since there is a finite number of associations in

a model, there is also a finite number of combinations of associations (one for each cycle

to break) to remove.
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Since only edges are removed, the order of the changes in a fix do not matter. And

because of the minimal fixes requirement, the number of fixes to generate to break a

cycle is n, a much more manageable number of possibilities. There are n fixes made of

exactly one change, and all other fixes are supersets, and therefore should be discarded.

A generic algorithm that generates minimal fixes for breaking paths2 is Algorithm 1.

Algorithm 1 Generating fixes by breaking a path

function BreakPath(path)
fixes← ∅
for all edge in path do

fix← new Fix()
change← new DeleteChange(edge)
Append(fix, change)
Append(fixes, fix)

end for
return fixes

end function

Sometimes, several cycles need to be broken in order to create a fix. Fixes can be

generated for breaking each cycle individually then merged together. A merged fix will

be the concatenation of a fix for each cycle to be broken. Because there can only be

edge removals, there is no need to worry about potential conflicts or order. However,

duplicates are possible, as illustrated in Figure 4.9. In that case, only one of the duplicate

changes is kept in the merged fix. The figure shows the case where both cycles are broken

by deleting the same edge. Figure 4.9a is the incorrect model, which has two cycles.

Figure 4.9b shows a possible fix for the first cycle, whilst Figure 4.9c shows a possible fix

for the second cycle. Instead of merging both fixes into one fix with the same edge to be

deleted twice, there will only be one change in the fix, and the edge will only be deleted

once. The result is shown on Figure 4.9d. Algorithm 2 can be used to merge two fixes.

Algorithm 3 minimises a list of fixes, i.e. removes from the list the fixes that are supersets

of another fix in the list. More fixes can be merged by applying the merging algorithm

2Note that a cycle is a path whose origin and target are the same node.



Fixing Models 111

(a) Incorrect model: two cycles detected (b) Possible fix for the first cycle

(c) Possible fix for the second cycle (d) One fix breaks both cycles

Figure 4.9.: Duplicates when breaking several cycles

several times. Two lists of fixes can be merged with Algorithm 4, while Algorithm 5 will

generate all the fixes for an error, no matter how many cycles there are.
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Algorithm 2 Merging two breaking cycle fixes

function Merge(fix a, fix b)
fix m← fix a
for all change in fix b do

if ¬ Contains(fix a, change) then
Append(fix m, change)

end if
end for
return fix m

end function

Algorithm 3 Removing non-minimal fixes from a list

function Minimise(fixes)
for all fix a in fixes do

for all fix b in fixes do
if Contains(fix a, fix b) then

Remove(fixes, fix a)
end if

end for
end for
return fixes

end function

Algorithm 4 Combining the fixes from two lists

function Combine(fixes a, fixes b)
fixes← ∅
for all fix a in fixes a do

for all fix b in fixes b do
fix← Merge(fix a, fix b)
if ¬ contains(fixes, fix) then

Append(fixes, fix)
end if

end for
end for
fixes← Minimise(fixes)
return fixes

end function
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Algorithm 5 Generating fixes by breaking all cycles

function GenerateFixesBreakAll(root)
fixes← ∅
cycles← FindCycles(root)
for all cycle in cycles do

fixes tmp← BreakPath(cycle)
fixes← Combine(fixes, fixes tmp)

end for
return fixes

end function

The case of rbacDSML is quite simple when it comes to breaking cycles. The two OCL

constraints whose fix generation strategy involves breaking cycles are those that ensure

that the model conforms to the SSoD and DSoD constraints. As both constraints have

similar graph representations, they also have similar cycle breaking strategies.

The SSoD constraint is illustrated in Figure 4.10. The first model is the original

model showing a violation of the SSoD constraint represented by the two cycles. The

other models are the five possible minimal fixes that solve the problem and make the

model conform to the SSoD constraint. Other fixes are possible when combining the fixes

to break each individual cycle, but they all involve deleting the edge between U1 and

RO2 as well as deleting another edge. Since deleting the edge between U1 and RO2 is,

alone, a solution to break both cycles, these other fixes are not minimal, and therefore

should be discarded.

The DSoD constraint is very similar (the context is a «Granted» element instead of

a «User» element), and illustrated in Figure 4.11.

Breaking Cycles - Fixing Type III Constraints

The case of the «Forbidden» constraint is a bit different. It is of the type “There is at

least one path A for which there is no path B so the combination of A and B forms a

cycle”, i.e. the constraint is violated if ∀A∃B. Two types of fixes are possible here. One
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(a) Incorrect model: two cy-
cles detected (b) Solution 1 (c) Solution 2

(d) Solution 3 (e) Solution 4 (f) Solution 5

Figure 4.10.: All the minimal ways of fixing an SSoD error
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(a) Incorrect model: two cy-
cles detected (b) Solution 1 (c) Solution 2

(d) Solution 3 (e) Solution 4 (f) Solution 5

Figure 4.11.: All the possible ways of fixing a DSoD error
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Figure 4.12.: Breaking a path B to fix an error in a «forbidden» constraint. Either of the
two dotted edges can be removed to break the path

of the paths B could be broken, which would leave an “orphaned” path A. Alternatively,

a new path A could be created so that there is no corresponding path B. It is worth

examining each option separately.

The first option is to break one B path (breaking more than one B path would violate

the minimal fix requirement). This is fairly easy and can be done in a way that is very

similar to Algorithm 5. Note that breaking A would not be an acceptable solution:

that path would simply “disappear” from the constraint evaluation, leaving only cycles.

Algorithm 6 shows how the fixes can be generated. The GetPathB function depends, of

course, on the constraint being considered.

Algorithm 6 Generating fixes; each fix breaks only one cycle

function GenerateFixesBreakOne(context)
fixes← ∅
cycles← FindCycles(context)
for all cycle in cycles do

path← GetPathB(cycle)
fix← Break(path)
Append(fixes, fix)

end for
return fixes

end function

Figure 4.12 shows an example of how to fix an error in a «Forbidden» constraint by

breaking one of the paths B.
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The second option is to create a new path A that has no path B to complete its cycle.

There are two kinds of fixes to add a path A: the fixes that only create new edges, and

the fixes that also create new nodes.

In the first case, the goal is to create a path A between the context and a target

node that is not already reachable by a path A, while making sure that there is no

path B from that node, by deleting said paths B if necessary. The solution therefore

comes down to adding all the possible combinations of edges that will create such a path.

Each fix should only create one path to avoid violating the minimal changes requirement.

Figure 4.13 is an example of such an operation, on a model that violates a «Forbidden»

constraint. Paths A can be created between the context and one of the following nodes:

P3 or P4. For example, to add a path to P3 (as show in the Figure), the following fixes

are possible:

• add edge between RE1 and P3;

• add edge between RE2 and P3;

• add edge between FO1 and RE3, and add edge between RE3 and P3;

• add edge between FO1 and RE4, and add edge between RE4 and P3.

Of course, on the same example, a path A could be created between the context and

P4, in a similar way. It is not shown on the Figure in order to keep it readable.

Once this is done, there are two possibilities: either there is no path B from P3 back

to the root, and the fix is valid. Or there is a path B, and it should be broken, and the

two fixes should be merged, using the algorithms described in the previous section.

In the second case, the goal is to create a new node, and then to create a path from

the root to it. This works in the same way as the previous case, except that one does not

need to worry about an hypothetical B path: the node is new so there cannot be any.
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Figure 4.13.: Fixing error by creating new paths A to P3 (dotted lines are possible additions)

Figure 4.14 is an example of such an operation. Here, permission P5 is added, and all the

possible paths are generated as separate fixes. The following fixes are therefore possible:

• add P5, and add edge between RE1 and P5;

• add P5, and add edge between RE2 and P5;

• add P5, add edge between FO1 and RE3, and add edge between RE3 and P5;

• add P5, add edge between FO1 and RE4, and add edge between RE4 and P5;

• add P5, add RE5, add edge between FO1 and RE5, and add edge between RE5

and P5.

Interestingly, in this sub-category of constraints, there is always only one cycle to break

or one path A to create: any more would violate the minimal changes rule. Therefore, it

is not necessary to merge different fixes.
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Figure 4.14.: Fixing error by creating new nodes (dotted lines are possible additions)

Creating Cycles - Fixing Type I Constraints

The last type of fix to be applied is completing cycles. Constraints that fall into the

category where cycles have to be found are all expressed as follows: “If there exists a

path A, then there must exist a path B that completes a cycle”. Therefore, a violation

appears if and only if there is a path A without a path B. This is very similar to the

fixing generation for constraints such as the «Forbidden» verification constraint, except

that the solution is the other way around: either a path A is deleted, or a path B is

created.

Creating a path B can be done using the exact same algorithm as the one used to

create a path A in the previous section. Conversely, deleting a path A can be done using

the exact same algorithm as the one used to delete a path B in the previous section.
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Figure 4.15.: Fixing error for «Granted» (possible additions dotted)

In rbacDSML, two constraints can be fixed by creating cycles. The first one is the

«Granted» scenario verification constraint, for which an example is provided in Figure 4.15.

The following operations can be performed to fix the broken cycle problem:

• add edge between P1 and RO2 (shown on figure);

• add edge between RO1 and GR1 (shown on figure);

• add RO3, add edge between P1 and RO3, and add edge between RO3 and GR1;

• delete edge between RE1 and P1;

• delete edge between GR1 and RE1.

The other constraint is the one that makes sure that roles activated by a scenario

have been assigned to the user. This constraint requires a subtle change to the algorithm.

The meta-model extension of UML for rbacDSML defines that there must be exactly

one association from a scenario (either «Forbidden» or «Granted») to a user. This

association could also be represented by an edge on a potential path B. Therefore, the

algorithm that generates path B must be adapted to avoid the creation of a second user,

as it would violate the meta-model. The replacement of a user with another one is made

of two changes: the deletion of the old edge and the addition of the new one. It will be
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Figure 4.16.: Creating path B with a meta-model multiplicity constraint (possible addition
dotted)

referred to as a replacement for clarity. Figure 4.16 shows a sample model that violates

the constraint. There is a path A from the context to RO1 but not path B from RO1

back to the context. The possible solutions are the following:

• add edge between U2 and RO1 (shown on figure as a dotted line);

• remove edge between GR1 and RO1;

• remove edge between U2 and GR1, and create edge between U1 and GR1.

• create node U3, replace edge between U2 and GR1 with edge between U3 and GR1,

and add edge between U3 and RO1.

The last two possibilities illustrate the change in the algorithm: every addition of an

edge between a user and a scenario must come with the removal of the existing edge

between another user and the scenario, since the scenario can only be associated to one

user.

4.3. Fixing an Entire Model

Fixing an entire model is a complex task: an incorrect model may violate OCL constraints

in many places, and each and every fix to a particular instance of a constraint can in

turn cause other constraint errors that did not exist before. In this section, a general
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solution is discussed and analysed. The next section then focuses on how to improve the

algorithm to make it faster.

Any algorithm to generate fixes for an entire model must satisfy several properties,

some of which are similar to the properties that a solution for generating fixes for

individual errors must satisfy:

• Correctness: All the generated fixes must lead to a model that does not violate

any instance of any OCL constraint;

• Completeness: All the possible fixes must be generated, for the designer to be

able to choose the most appropriate one;

• Termination: The generation process must always terminate: it cannot run forever.

4.3.1. Building a Solution Tree

To fix an entire model is to progressively fix individual errors of instances of OCL

constraints, until a model that does not violate any instance of any constraint is produced.

Since there might be several ways to fix each individual error, many different branches

must be explored. In fact, a tree structure is a very way practical to represent the search

for a solution. Figure 4.17 is a very abstract view of the solution. The model to be fixed

is the root of the tree. Each node of the tree is a model, and each edge represents a fix

of a single instance of an OCL constraint. Each node has a state, which is either correct

if the model satisfies all the constraints, in which case that node is a leaf, or incorrect if

there is at least one violation of a constraint. Therefore, each path from the root to a

leaf represents the successive fixes that lead to a correct model.

A naive implementation would therefore use either a depth-first search (DFS) or

a breadth-first search (BFS) approach to progressively construct the tree of possible
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Figure 4.17.: Abstract view of the solution tree construction approach

solutions. Algorithm 7 sketches the BFS version of the algorithm. In the algorithm, the

GetModel function creates a model from a node, by successively applying fixes to the

model from the root node down to the node being considered. The GenerateNodes turns

a list of fixes into new nodes that are children of the node passed as the first argument.

The implementation of these two functions depends on the implementation of nodes,

and is not provided here. The GenerateFixes function is not shown in this dissertation

either, as its implementation is trivial but depends on the particular constraints in the

profile, and their categorisation. The function simply detects the constraint that caused

the error, then infers the category it belongs to. It then calls the appropriate function

for the category, e.g. GenerateFixesBreakAll (Algorithm 5).

The DFS version of Algorithm 7 can of course be obtained by replacing the queue

with a stack in the BFS algorithm.

In Algorithm 7, the PickError(Model model) function chooses one of the instances

of OCL constraints that are violated by the model.

The algorithm is simple: starting from the initial model as the root, it progressively

generates all the fixes for a particular instance of an OCL constraint. It stops when all

solutions have been found.
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Algorithm 7 Naive BFS implementation of the model fixing algorithm

function FixModel(root)
queue← ∅
Enqueue(queue, root)
while ¬ IsEmpty(queue) do

node← Dequeue(queue)
model← GetModel(node)
if ¬ Correct(model) then

error ← PickError(model)
fixes← GenerateFixes(error)
childrenNodes← GenerateNodes(node, fixes)
EnqueueAll(queue, childrenNodes)

else
//A solution has been found

end if
end while

end function

Let us examine how the algorithm behaves with regard to the three essential properties

expressed earlier in this section. The algorithm is correct: each step involves the

verification of the entire model, it only stops when correct solutions are found. The

algorithm is complete: for each error of an instance of an OCL constraint, it explores

all the possible fixes, recursively. The algorithm has no guarantee to terminate. The

following scenario is possible, as illustrated in Figure 4.18: at some point in the resolution

tree, there is an incorrect model, and an error e1 is selected to be resolved. All the

children of that model are therefore models that do not include e1, since the corresponding

instance of OCL constraint now evaluates to true. One of these children has one error,

e2, that was not part of the parent model. The generation of all the solutions to fix e2

includes a model that raises e1 again. The algorithm will not prevent this scenario to

continue indefinitely, and the algorithm will never terminate.
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Figure 4.18.: An endless series of changes

4.3.2. Termination Guarantee

To solve this problem, a maximum depth MAX D, defined by the designer, is introduced.

It provides a limit on the depth of the tree. Since the tree has a maximum depth of

MAX D and each node has a finite number of children, the algorithm will necessarily

terminate. This, however, affects the completeness criterion: solutions comprising more

than MAX D fixes will not be explored. Completeness then has to be redefined as the

following:

Definition 13. Completeness (revisited): the fixes generation algorithm must generate

all the possible solutions up to a maximum tree size of MAX D, where MAX D is a

designer-defined constant.

This depth-restricted definition of completeness has a practical benefit: Defining

MAX D enables designers to manage execution time. Since large and complex models

can produce enormous solution trees and computational resources are usually limited,

keeping execution time within limits can be crucial. It may therefore be practical for

designers to start the execution with a low MAX D and gradually increase the constant

in repeated executions until a satisfactory solution is found.
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Algorithm 8 is the adapted version of Algorithm 7 with the restriction on the size of

the tree. It still satisfies the correctness criterion, it is complete according to the limited

definition above, and it is guaranteed to terminate.

Algorithm 8 Size-limited, BFS implementation of the model fixing algorithm

function FixModel(root, MAX D)
queue← ∅
Enqueue(queue, root)
while ¬ IsEmpty(queue) do

node← dequeue(queue)
model← GetModel(node)
if (¬ Correct(model)) and (GetDepth(model) < MAX D) then

error ← PickError(model)
fixes← GenerateFixes(error)
childrenNodes← GenerateNodes(node, fixes)
EnqueueAll(queue, childrenNodes)

else if Correct(model) then
PrintSolution(model) //A solution has been found

else
//MAX D reached

end if
end while

end function

4.3.3. Avoiding Duplicate Effort

This algorithm may satisfy all the required properties, but it is not very efficient. A

particular weakness is that two different nodes may in fact represent the same model,

obtained through different steps. Figure 4.19 illustrates this scenario. R is the root, and

N3 and N4 are identical models. The former is obtained by applying fix a and then fix b,

whilst the latter is obtained by applying fix b and then fix a. The problem in this case is

that, if N3 and N4 are not correct, the search for solutions will be duplicated. Instead,

both nodes could be merged into a single one. This can be easily achieved by slightly

modifying the algorithm. The updated algorithm is Algorithm 9. Whenever a new node

is created, it is compared with the list of existing nodes. If the new node represents a
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Figure 4.19.: Duplicate changes in fixing

model identical to the model of another node, then the new node is discarded. Note

that the function GenerateNode is similar to the function GenerateAllNodes described

earlier, but only takes one fix as its second argument, and only returns one node.

Algorithm 9 Size-limited, no duplicate models, BFS implementation of the model fixing
algorithm

function FixModel(root, MAX D)
queue← ∅
Enqueue(queue, root)
nodes← ∅
Append(nodes, root)
while ¬ isEmpty(queue) do

node← Dequeue(queue)
model← GetModel(node)
if (¬ Correct(model)) and (GetDepth(model) < MAX D) then

error ← PickError(model)
list← GenerateFixes(error)
for all fix in list do

newNode← GenerateNode(node, fix)
if ¬ Contains(nodes, newNode) then

Append(nodes, newNode)
Enqueue(queue, newNode)

end if
end for

else if Correct(model) then
PrintSolution(model) //A solution has been found

else
//MAX D reached

end if
end while

end function
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This solution is still correct, as the update in the algorithm does not affect the

correctness of fixes. It is still complete, since only identical nodes are merged. It still

terminates, as there will be fewer nodes generated.

4.4. Solutions Ordering

The above algorithm will produce the set of all the possible changes made of a designer-

defined maximum number of fixes. That set may be large, especially on large models

with many errors. It is therefore important to order the generated solutions to help

the designer select the most appropriate solution. What the “best” solution is will of

course depend on the DSML being used, and ultimately will come down to the designer’s

specific requirements. However, it is still possible to provide some ordering that will

put the solutions most likely to be selected at the top. Three ordering strategies have

been identified. They can be used independently, or combined together: the cost of fixes,

the type of changes, and the location of changes. In this section, each strategy is first

described and then applied to rbacDSML.

4.4.1. Number of Fixes

The number of fixes is the simplest way of sorting the solutions, and it is independent of

the DSML used. It simply sorts solutions depending on the number of fixes they contain,

i.e. the length of the path between the root and the correct model for each solution in

the solution tree. The solution with the smallest number of fixes will come first, and the

solution with the largest amount of fixes will come last. The idea is that the designer is

likely to select a solution that is not too different from the original model over another

solution that differs more widely from the original model. This is also the order in which,

by definition, the BFS strategy will generate solutions.
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However, this strategy is not perfect. It treats all the fixes equally, regardless of

how many changes a fix contains. Therefore, this strategy will not necessarily sort the

solutions from the one that produces a model closest to the original to the one that

produces a model furthest from the original in terms of the number of changes. It does,

however, provide an approximation that might be good enough in some cases.

4.4.2. Cost of Fixes

The cost of fixes is a refinement of the number of fixes approach to sorting the solutions.

Instead of using the number of fixes, it uses the cost of a solution. The cost of a solution

is simply the sum of the costs of each fix: ∀S = {f1, . . . , fn} scost(S) =
∑n

i=1 fcost(fi).

Compared to the BFS strategy, this one has the advantage of being more precise: the

cost of each fix will be considered. However, it requires the DSML developer to specify

the fcost() functions.

4.4.3. Type of Changes

The third strategy consists of ordering solutions according to the types of changes that

are part of it. It is different from using the cost strategy with a ccost() function that

returns a different cost for different changes. Instead, it is about classifying solutions in

categories depending on the changes it contains. Changes can be the addition or deletion

of a node, or the addition or deletion of an edge. In some DSMLs such as rbacDSML, this

is an important distinction: adding new roles or permissions may in some cases be out

of the question, but reorganising some assignments may be more acceptable. Ordering

solutions by type of changes allows the designer to focus his attention in priority on the

solutions that include the changes that he finds most acceptable, whilst ignoring those

he does not necessarily approve of.
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4.4.4. Location of Changes

The last strategy classifies solutions according to “where” the changes are made. Some

DSMLs such as rbacDSML define models that are made of several “parts” or “locations”.

These can be the type of diagram or elements where the changes are made, or, like in

rbacDSML, a domain-specific distinction such as the difference between the policy, the

configuration and the scenarios. Each solution can be classified in one or several of these

categories, a choice that is made by the developer. It then comes down to the designer

to choose which categories he wants to focus on, and which ones he wants to ignore.

4.4.5. Ordering rbacDSML Models Solutions

rbacDSML is an interesting case study for the ordering of solutions, because it has

three clearly identified, domain-specific “locations”: the policy, the configuration and

the scenarios. These locations can be used to classify the solutions according to their

location.

Within a category, it is possible to sort the solutions according to their cost. In

rbacDSML, the cost of adding a new node is arguably higher than the cost of adding

or deleting an edge (there is no deletion of nodes in rbacDSML, as it would violate the

minimal fix principle). It is then possible to define the cost of a change as follows. If

we consider cn as the addition of a node, and ce the addition or deletion of an edge, we

can define: ∀cn, ccost(cn) = 2, and ∀ce, ccost(ce) = 1. These values can of course be

adapted by the designer if necessary.

In addition to a categorisation by location and the cost-based ordering within cate-

gories, a filter can be defined that shows or hides solutions. The filter comes after the

solutions generation and ordering, and is useful for the designer to only see the solutions

he wants, based on his own criteria, such as whether or not a solution includes the
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addition of new nodes. This does make sense in rbacDSML: users, roles, permissions and

resources may very well be a given, and the designer may decide that he does not want to

see solutions that include node additions, or that he does not want to give them priority.

4.5. Improvements

The approach for fixing models described in the previous section may be slow, especially

on large models with lots of errors. It is a great generic solution that applies to any

DSML, but if one is prepared to make use of specific properties of the DSML they are

using, the algorithm can be made much more efficient. In this section, several approaches

are described that aim at reducing the completion time of the algorithm, or at finding

the best solutions faster. The improvements can be used individually or together, and

include the prioritisation of error fixing; the elimination of some specific changes; and

the search for good solutions in priority.

4.5.1. Error Prioritisation

An error arises when an instance of an OCL constraint returns false. It has also been

discussed in Chapter 3 that dependency relationships can be defined between OCL

constraints, and used to more efficiently evaluate a model against a set of constraints.

A similar approach can be taken for the generation of solutions. When selecting which

error to solve, the algorithm could be adapted to take those dependencies into account.

If there is a dependency between constraint A and constraint B such that the result of

the evaluation of B is only meaningful when A evaluates to true, then it should generate

fixes for A first. This will avoid the exploration of some unnecessary branches, by making

sure that only actual errors are fixed.
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This approach can be easily implemented by adapting the function that selects the

next error to fix, but it assumes that the dependency graph for the OCL constraints has

been provided by the DSML developer.

4.5.2. Elimination of Undesirable Solutions

Sometimes, while designing his model, the designer knows that there are some changes

he is not willing to perform, either because he does not want to or because he actually

cannot. He may not be willing to add any role in a rbacDSML model. He may not be

willing to change any of the scenarios. He may not want to remove a particular user-role

assignment. Or any other requirement that defines certain solutions as unsatisfactory.

Yet, in ignorance of those requirements, the approach described above will explore those

unsatisfactory solutions anyway. This is a waste of time and computing resources, as the

designer already knows that he will not implement such a solution. Therefore, providing

the designer with a way of describing the changes he does not want to perform, and

adapting the algorithm to take them into account and not waste time exploring those

options, could be a huge time saver.

One way for the designer to express which elements he does not want to see changed

and in what way is through the use of annotations - or, in UML language, through a

profile. This section proposes a set of annotations to attach to elements and associations,

and defines NoChangeUML, a UML profile that implements these annotations. Of course,

the profile can be adapted to other modelling languages than UML, as long as they

provide some sort of annotation mechanism.

The annotations provided by such a language include, but are not necessarily limited

to, the following:

• an association cannot be deleted;
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Figure 4.20.: UML meta-model extension defining the NoChangeUML profile

• an element cannot be deleted (this never happens with rbacDSML anyway, but

another profile may need it);

• no association can be added to an element;

• no association can be removed from an element.

Figure 4.20 defines the UML profile that provides those annotations. The «keep»

stereotype can be attached to an association, a class or any other element to make sure

that it is not deleted; the «noAdd» stereotype can be attached to an element, to make sure

that no new association will be attached to that element; and the «noDelete» stereotype

can be attached to an element, to make sure that no existing association will be detached

from that element. This is, in fact, a shortcut to adding «keep» to all the associations

that have the element as one end.

This set of annotations can of course be extended to support more fine-grained

annotations that depend on the DSML considered. For example, it is possible to ex-

tend NoChangeUML into NoChangeRbacDSML to support rbacDSML-specific annotations,

as expressed in Figure 4.21. The «noAdd» and «noDelete» stereotypes still exist, but

other, more precise stereotypes have also been defined: «noAddRole», «noAddResource»,

«noAddPermission», «noDeleteRole», «noDeleteResource», and «noDeletePermis-

sion». Table 4.1 provides a succinct description of each stereotype’s purpose.
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Figure 4.21.: UML meta-model extension defining the NoChangeRbacDSML profile

4.5.3. Searching for Good Solutions First

The algorithm presented in Section 4.3 has been designed with the assumption that the

algorithm runs to discover all the possible solutions, then returns them, and they are all

displayed to the designer at the same time, after possibly being sorted according to the

sorting strategies described in Section 4.4. The order in which the solutions are explored

therefore does not matter.

One may however improve the designer’s experience by displaying solutions as they

are discovered. The main advantage of this approach is that the designer would see the

first generated solutions much more quickly, and if he finds one that suits him, might

even decide to stop the algorithm before all other solutions have been explored.

However, the order in which solutions are explored becomes important. In other

words, it may make more sense to use a more sophisticated approach than a FIFO queue

or a LIFO stack to select which node to analyse next while constructing the solutions

tree. Several heuristics can be defined to choose which path to explore in priority. These

include the number of errors, the reduction of errors, or the cost of a partial solution.

These can be easily implemented by using Algorithm 9 with a priority queue instead of a

FIFO queue. Each heuristic will then be implemented by a different key computation
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Figure 4.22.: Number of errors in intermediate nodes

algorithm for the nodes to insert in the queue. Four heuristics are discussed in this

section. It is also possible to combine several heuristics together.

Heuristic 1: Number of Errors

The first heuristic is fairly simple. Instead of following a BFS or DFS ordering, one could

select, from the set of incorrect model nodes, the one with the smallest number of errors.

The idea behind this heuristic is that models with less errors are likely to be closer to a

correct state, and should therefore be explored in priority. However, this heuristic only

selects a local optimum, which will not necessarily lead to the best solution: a good

solution could involve an increase in the number of errors at some point on its path, and

would then be discarded by the heuristic.

Figure 4.22 shows an example of a fictional model. The number of errors is displayed

next to each incorrect node. We are in the situation where all the nodes have already

been generated, and we need to select one of the leaves to continue fixing errors. Node

N4, which has the smallest number of errors, is the one that will be selected.

This heuristic can be expressed as follows, provided that N represents the set of

incorrect leaf nodes in the tree under construction:

select1(N) = nx|error(nx) = min(error(n0), error(n1), . . . , error(ns)),

where {n0, n1, . . . , ns} = N and x ∈ {0, . . . , s}
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Heuristic 2: Reduction of Errors

The second heuristic is similar to the previous one, but instead of looking at the number

of errors in a node, the algorithm looks at the difference between the number of errors in

the parent node and the number of error in the node considered. This way, priority is

given to those nodes that represent models that come closer to a correct state.

The reduction of errors can be expressed as follows, for any n representing an incorrect

leaf node (except the root of the tree): red(n) = errors(parent(n))− errors(n). The

heuristic can then be expressed as:

select2(N) = nx|red(nx) = max(red(n0), red(n1), . . . , red(ns)), where

{n0, n1, . . . , ns} = N and x ∈ {0, . . . , s}

Heuristic 3: Cumulative Cost

The third heuristic considers the cumulative cost of each node. It simply selects the

incorrect leaf node with the lowest fcost(node). This guarantees that the cheapest partial

solution is selected. Assuming that solutions that are closer to the original model are

generally preferable, this is a sound strategy. However, a solution higher up in the tree

will be more likely to be selected: as it has fewer fixes, fcost() is also likely to be lower.

Therefore, in practice, this heuristic will only be a small improvement over the BFS

approach. The heuristic can be expressed as:

select3(N) = nx|fcost(nx) = min(fcost(n0), fcost(n1), . . . , fcost(ns)), where

{n0, n1, . . . , ns} = N and x ∈ {0, . . . , s}
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Heuristic 4: Average Cost

In order to address the potential shortcomings of the previous heuristic, one could use

the average cost per node of a path, instead of the cumulative cost. Therefore, short

paths would be less likely to be preferred over longer ones, as long as the latter have an

average cost by node that is smaller than the former’s.

The average costs of errors can be expressed as follows: acost(n) = fcost(n)/length(root, n),

where length(root, n) is the length of the path between the root of the tree and the node

n. The heuristic can then be expressed as:

select4(N) = nx|acost(nx) = min(acost(n0), acost(n1), . . . , acost(ns)), where

{n0, n1, . . . , ns} = N and x ∈ {0, . . . , s}

Combining Heuristics

It is of course possible to combine heuristics into new ones. For example, the number of

errors and the cumulative cost could be used together to decide which node to analyse

next. The score of a node could be computed using a function such as kvv + kfcfc, where

kv and kfc are constant weights, v the number of errors, and fc the cumulative cost. The

node with the lowest score could then be selected.

4.6. How to Present Solutions

Once the solutions have been generated, they need to be returned to the designer in a

meaningful way. The designer must be able to easily identify what each solution consists

of, which problems it solves and which elements have been modified.
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In Section 4.4, the order in which the solutions should be presented to the user has

already been discussed. This section, therefore, focuses on how to represent individual

solutions. Designers should be able to visualise each proposed solution individually.

There can be a textual as well as a graphical representation of a solution. They would

include the following information:

• the number and the list of errors in the original model;

• the number of fixes, and the number of changes;

• the list of fixes that lead to the correct model;

• the locations where changes have been made.

With the graphical representation, it is also important to show to the user a diagram

that highlights the differences between the original model and the correct model. Change

description systems, such as UMLChange [50], can be used in this context.

The «addition» stereotype can be attached to the elements or associations that have

been added to the original model, whilst the «remove» stereotype can be attached to

the elements or associations that have been removed from the original model. This is

sufficient to represent all changes, since a change is either an addition or a deletion.

Once the original model has been annotated with UMLChange, its graphical rep-

resentation is a matter of choice to be made by the developer of the tool. One could

simply display the model with the UMLChange stereotypes, or one could also colour the

elements and associations depending on the stereotypes attached (e.g. additions in green

and deletions in red).

Currently, the graphical interface to UMLChange has not been implemented. Only a

textual representation has been implemented. Once the algorithm has stopped, and if

it has found at least one solution, it will present a list of all the possible solutions, in
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Figure 4.23.: An incorrect rbacDSML model

the order in which they have been found. Each solution is itself made of a list of fixes,

and each fix is a list of changes. Applying the changes in the order in which they are

displayed on the incorrect model will bring it to a correct state. Below is an example

that describes two possible solutions for the incorrect model shown in Figure 4.23.
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Solution:

Fix is made of 3 changes.

Stereotype association change: Deletion of an association be-

tween Eve and Eve_Create Marks named null.

Stereotype association change: Addition of an association be-

tween Eve_Create Marks and Bob named null.

Stereotype association change: Addition of an association be-

tween Professor and Bob named null.

Solution:

Fix is made of 4 changes.

Addition of a Class named Class1 and stereotyped with User.

Stereotype association change: Deletion of an association be-

tween Eve and Eve_Create Marks named null.

Stereotype association change: Addition of an association be-

tween Eve_Create Marks and Class1 named null.

Stereotype association change: Addition of an association be-

tween Professor and Class1 named null.
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The features described in Chapters 3 and 4 (except the UMLChange interface that

provides a graphical representation of proposed changes to fix a model), as well as a few

additional ones, are implemented in the tool described in this chapter. The tool is a

suite of plug-ins for the UML modelling IDE, Rational Software Architect (RSA), from

IBM. The source code is released under the Eclipse Public Licence (EPL), and is freely

available online [4]. The implementation for the evaluation and analysis features is a mix

of OCL and Java code.

This chapter is divided into six sections. The first one discusses the choice of developing

a plug-in rather than a standalone tool as well as the choice of the platform. The second

one examines the implementation details. The third section reports on the experience of

working with RSA in particular, and with a modelling platform in general. The following

two sections are dedicated to two studies: the first one compares the various options

for evaluating rbacUML models presented in Chapter 3, and the second one compares

the various options for fixing rbacDSML models presented in Chapter 4. Finally, the last

section presents a real-life case study where we applied rbacUML to ChiselApp, a web

application for hosting and sharing projects with the Fossil distributed version control

system.

5.1. Choosing the Right Platform

In this section, we justify our choice of developing a plug-in for an existing MDE tool,

and our choice of RSA as a modelling tool. We elaborate on the reasons behind those

choices and on the alternatives that we considered. We then elaborate on the architecture

of the selected platform.
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5.1.1. Plug-In rather than Standalone

At the core of rbacUML, is the desire to integrate rbacUML as much as possible into

designers’ existing activities, processes and tools. Since the DSML and DSMAL parts

of the rbacUML approach are defined as UML profiles, tight integration with existing

UML modelling tools was greatly valued. A plug-in seemed to be the right choice, and it

was confirmed by a few other considerations. Developing a plug-in would allow to use

existing diagramming capabilities, instead of having to implement it ourselves. Since

OCL constraints were a big part of the approach, reusing an existing OCL evaluation

engine was also a great argument in favour of a plug-in over a standalone tool.

5.1.2. Comparing Available Modelling Environments

Once it was clear that a plug-in was going to be developed instead of a dedicated tool, the

platform to build it on had to be chosen. Three platforms were selected for evaluation,

according to the following list of requirements:

• UML modelling capabilities: the tool must support the UML 2.x standard;

• OCL queries evaluation engine: since rbacUML’s analysis capabilities are based on

OCL, an efficient and expressive engine, i.e. a full OCL implementation, is a must;

• Support for custom UML profiles: the rbacUML DSML and the rbacDSML DSMAL

are represented as UML profiles, so the ability to define custom profiles and to use

them within the platform is crucial;

• UML diagrams creation support: models in rbacUML are represented using several

types of diagrams: class diagrams, sequence diagrams and activity diagrams. It is

therefore essential that the platform allows one to easily create at least those three

types of diagrams;
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• File format: ideally, the perfect tool should use, or at least allow import from and

export to, a standardised file format such as the OMG’s XML Metadata Interchange

(XMI) format, which is an XML extension;

• UML profile tooling generation: an optional, but highly appreciated feature, is the

ability to create tooling palettes in order to make the creation of rbacUML models

easier;

• Licence: an open source tool would be preferable as it would allow for a broader

distribution of our plug-in.

The three tools considered, around 2009 - 2010, were Papyrus, an open-source Eclipse

plug-in for UML modelling [39], ArgoUML, an open-source UML modelling software, and

IBM Rational Software Architect (RSA), a proprietary UML modelling solution built on

top of Eclipse [47]. Table 5.1 provides a comparison of the three platforms for each of

the requirements identified. It is clear from the table that RSA was the only platform

that seemed to satisfy most of the requirements. The only issue was that it is proprietary

software. It was thus selected. While they all have evolved since the comparison was

done, our remarks regarding these three tools still hold as these lines are written.

Table 5.1.: Comparison of MDE environments

Name UML OCL UML profile UML diag. Tooling gen. file format open source

Papyrus
√ √

partial buggy no XMI
√

ArgoUML 1.4 only partial no partial no zargo & XMI
√

RSA
√ √ √ √ √

EMX & XMI no

Papyrus was, at the time, still in its early days. Although it was built on solid Eclipse

foundations, such as EMF and its associated OCL evaluation engine, the diagramming

part provided by Papyrus was quite slow and buggy. In particular, activity diagrams

were very unstable and caused frequent crashes. It had to be ruled out, but it has since

made a lot of progress.
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ArgoUML is the only of the three platforms not to be based on Eclipse. It is a stable

product, but only supports UML 1.4, does not support profiles and has limited OCL

support. It had to be ruled out as well.

RSA was the last platform considered. Like Papyrus, it is built on Eclipse and uses

EMF and the associated OCL evaluation engine. RSA comes as a layer on top of Eclipse,

providing different features, the most notable one being a very mature UML modelling

and diagram editing environment. Furthermore, RSA was the only tool allowing one to

very easily create tooling palettes for our profile. It uses EMX to store models, an XML

format that looks very similar to XMI, and allows for export to and import from XMI.

Whilst it is not an open source project, IBM has an “academic initiative” programme

giving academics free access to its products, including RSA.

The RSA platform is built on top of Eclipse, and makes extensive use of the Eclipse

Model Development Tools (MDT) project. It provides many features, but in this section

the focus is on those directly relevant to our work.

RSA provides a diagram edition layer on top of Eclipse UML, as well as the ability to

define UML profiles and automatically generate code for editors that include said profiles.

RSA’s extensive use of Eclipse MDT technologies makes UML-related projects developed

for RSA relatively easy to port to other Eclipse-based tools that also make use of MDT.
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5.2. The rbacUML Plug-In

In this section, we describe the implementation of the rbacUML plug-in [64], and discuss

which Eclipse and RSA technologies the plug-in uses.

5.2.1. The Rational Software Architect Modelling Stack

At the bottom of the UML modelling stack is the Eclipse Modeling Framework (EMF),

which uses the Ecore meta-model. On top of EMF is UML2, an EMF implementation

of the UML 2.x standard using UML. In other words, the UML meta-model is defined

using EMF, and Ecore is therefore used as UML’s meta-meta-model.

Eclipse also includes an implementation of an OCL engine, also built on top of EMF,

allowing one to parse OCL constraints and use them to evaluate EMF models. In the

last few years, the Eclipse project underwent an important change in the implementation

of the OCL engine, and two separate implementations co-existed for the duration of

the transition [27]. The mature OCL meta-model provides a parser and an evaluation

engine for both Ecore and UML2 model. It is, however, tightly coupled to Ecore, causing

some performance issues and making it difficult to stick to the OCL 2.2 standard. In

particular, it makes it very difficult to create and evaluate OCL constraints that work on

annotations provided by UML profiles. The new OCL meta-model, called pivot OCL,

addresses the shortcomings of the mature OCL meta-model, and complies to the OCL

2.2 standard.

On top of Eclipse MDT comes RSA, which uses the UML modelling and mature

OCL meta-model features to provide additional features. The most obvious one is a

very efficient UML diagramming capability, allowing one to represent UML2 models as

diagrams (class, sequence, activity, etc.) instead of “simply” the trees provided by the

Eclipse UML2 project. Another feature is the profile tooling generator, that allowed us
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to easily create UML profiles and automatically generate a RSA plug-in to use the profile

in UML models.

5.2.2. The UML Profiles

Building the UML profiles was the first step in the tool’s implementation. We were able

to make use of RSA’s profile tooling project capabilities, which allowed us to (1) create

the stereotypes, specify the types of elements on which they can be attached, and define

the associations between the stereotypes, graphically; (2) for each stereotype, specify

the appropriate OCL constraints; (3) generate the tooling model and customise it; and

(4) generate the tooling code, producing a usable RSA plug-in with a tooling palette

allowing designers to directly create stereotyped elements.

rbacUML, the DSMAL

The rbacUML DSMAL has been implemented according to its description in Chapter 3,

and contains all the OCL queries in Appendix B. There has been no modification at all.

rbacDSML, the DSML

The rbacDSML DSML, on the other hand, differs slightly from its description in Chapter 3.

The reason for the differences comes down to implementation problems, and limitations

or bugs of the RSA and Eclipse platforms.

Firstly, instead of associations between stereotypes, UML associations have been used.

The reason for this change is that associations between stereotypes are not treated by

RSA as “real” UML model elements, which has a few annoying consequences:
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• it is not possible to attach stereotypes to associations between stereotypes, making

it impossible to annotate fixed models with UMLChange annotations;

• the navigation of associations between stereotypes is unidirectional. Whilst it is

possible to navigate them in the opposite direction, it is complex

• the visual representation of the associations between stereotypes is separated from

their existence on the model. As a consequence, it is possible to delete an arrow from

a diagram without deleting the corresponding association on the model. Similarly,

it is possible to add an association without the arrow appearing on the relevant

diagrams. This is likely to be a bug in RSA, and does not appear with “real” UML

associations.

For these reasons, the stereotype associations have been replaced by UML associations.

Another issue arose from the role hierarchies. The OCL standard provides a transitive

closure operator, closure(), but only since its version 2.3. RSA having been released

before then, it will flatly refuse to even parse an OCL constraint with the closure operator,

if it is included in a profile. There is at least one partial workaround to overcome this

limitation, but it is not perfect. Fortunately, RSA happily provides the allParents()

operation, which gives the transitive closure of a Class’s superclasses. It has then been

decided to represent role hierarchies in this fashion, exactly like it is done with rbacUML.

Because of these two changes, the OCL constraints for the rbacDSML implementation

slightly differ from their description in Chapter 3. The implemented version of the

constraints can be found in Appendix A.
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5.2.3. Visualisation of Large Configurations

Any diagrammatic modelling approach suffers from problems with the visualisation of

models with many elements. However, two measures mitigate this problem for rbacUML.

The first one comes from rbacUML’s design, where the RBAC configuration and the

business logic are clearly separated and represented on two different diagrams: the access

control diagram for the configuration, and a standard class diagram for the business

logic, including the annotations that indicate which operations must have their access

restricted to authorised users only.

The second one is a visualisation feature we implemented in the plug-in, namely the

designer has the ability to select from the model a list of users, roles and permissions,

and to transfer them to the access control diagram in one click. Not only will the selected

users, roles and permissions appear on the diagram, but so will all the roles assigned to

the selected users, all the users, permissions, parents and children of the selected roles,

and all the roles assigned to the selected permissions. Through a smaller diagram, it

provides a clear picture of the relationships between the selected elements. Since the

verification is made on the model and not on the diagrams, this has no impact on the

result of the evaluation of OCL queries.

5.2.4. Import from LDIF

Often, an organisation will use the same user directory for several applications. This

saves a lot of time in user administration, and helps prevent a lot of conflicts and update

problems. LDAP and Active Directory are very popular solutions, and both export

in the LDIF format. rbacUML is capable of reading an LDIF file to populate a model

automatically. Users in the file are mapped to users in the model, while groups in the
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file are mapped to roles in the models. If a group A is a member of a group B, then in

the rbacUML model, A will be a child of B.

It is quite likely that several users in the file will have the same set of groups. They

can be regarded as redundant for modelling purposes, and rbacUML will suggest to merge

them into one single user in the model. Information about all the merged users is

kept on the model in order to allow for the LDIF file to be regenerated from the model

if necessary. Our importer directly translates the content of the LDIF file into XML

Metadata Interchange (XMI), the format used for representing UML models, and is

therefore usable by any UML modelling tool.

5.2.5. Selective Evaluation of OCL Queries

We have implemented the selective OCL query evaluation, giving designers full control

over which OCL queries to evaluate by simply selecting the queries or categories of

queries to evaluate. Designers can also chose if they want to run an ordered evaluation or

not. Since our OCL constraints are defined in a UML profile, it is easy for developers to

edit the profile in order to add, remove or modify OCL constraints. Their classification

in one of the categories that we have defined is done on the basis of the query name:

well-formedness queries start with WF, verification queries with VER, satisfiability queries

with SAT, coverage queries with COV, completeness queries with COMP, and redundancy

detection queries with RED. Therefore, developers can easily place their new or updated

query in the category of their choice by giving them an appropriate name. Queries will

then automatically be picked for evaluation in the correct category. Currently, it is not

possible for developers to create a new category or to change the dependency relationships

between categories, unless of course they are willing to modify the tool’s source code.
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5.2.6. Model Generator

Another feature of the rbacUML plug-in is the model generator. It has been developed

as part of a performance study of the tool. Its purpose is to generate random rbacUML

models, either correct or incorrect depending on the user’s choice, of a specified size.

We used it to calculate the evaluation time of increasingly large models, as well as to

compare the “full” evaluation of a model with the ordered evaluation.

Unlike the LDIF import filter, the model generator has not been implemented by

directly generating XML documents. Instead, we made use of Eclipse UML’s features,

that allow one to very easily create UML model elements - including stereotypes from an

existing UML profile.

5.2.7. Fixing Incorrect Models

Finally, the last feature of the tool is the fixing of incorrect rbacDSML models. Implemented

in Java but using the rbacDSML OCL constraints to verify the model, the fixing feature

generates solutions to fix incorrect models, as described in Chapter 4. Designers have

the opportunity to choose from a selection of traversal strategies as well as constraint

selection strategies, to set the maximum height of the solutions tree, and to set the

maximum number of solutions to return.

5.3. Working with Rational Software Architect

This section contains a discussion of the advantages and disadvantages of working with

RSA. The positive aspects are presented as well as the negative aspects, in the hope that

it may be useful for developers of DSMLs or DMSALs on top of UML, as well as for

further improvements of the platform.
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5.3.1. The Good

There were many advantages in using the Eclipse platform in general, and RSA in

particular, to build the rbacUML tool.

The Profile Builder

Using the UML profile builder to create rbacUML proved to be a huge time saver. Indeed,

the ability to define the stereotypes and their associations graphically, but also to use

the built-in editor to define the OCL constraints, all without writing a single line of

non-OCL code, was a much faster way to develop and test our profile than having to

manually write the profile as an XMI document. It also made it very easy to come back

to the profile to fix a bug, add a new feature or test several alternatives for a particular

construct.

The Profile Tooling Generator

The profile tooling generator was probably one of RSA’s features that saved us the most

time. The ability to generate in one click a tooling palette to help designers create

rbacUML models, and generate a RSA-based environment dedicated to rbacUML were

incredibly valuable, as the alternative would have been to write all that code manually.

The generator also allows for many parameters to be configured before the code is

generated, allowing us to tailor the generated tool to our exact needs and requirements.

The OCL Engine

To evaluate OCL constraints, we used Eclipse’s OCL validation engine, a much better

solution than writing our own engine. Eclipse’s OCL engine is very powerful and highly
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configurable. RSA even provides a button to evaluate all the OCL constraints associated

to a model in a single click, and when we had to dive deeper into the code to write our

own evaluation procedure for selective and ordered evaluations, the OCL engine could be

configured to do what we wanted it to do.

Creating UML Elements

Programmatically creating UML elements, but also navigating elements through associ-

ations, was greatly facilitated by the Eclipse UML component, which does a great job

at hiding the underlying complexity of the model. This provided numerous advantages

compared to directly editing the EMX files (like we did for the LDIF import filter), or

even the EMF or Ecore representations.

The Use of Standard Tools and Formats

The fact that both Eclipse and RSA use (mostly) standard technologies and formats was

very useful to keep the tool generic enough that it could be ported to other platforms. In

fact, the LDIF import filter is even platform-independent: thanks to RSA’s usage of the

standard XMI format, any tool that also uses XMI can read models created from the

filter.

The standard-compliant OCL engine is also worth noting: since it supports the OCL

standard, the OCL constraints we wrote can be copied verbatim to another tool with

a standard compliant OCL evaluation engine. Furthermore, since RSA uses Eclipse’s

engine, rbacUML should be relatively easy to port to other Eclipse-based tools such as

Papyrus.
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All these Features Come “for Free”

The last advantage of using a plug-in, and RSA in particular, are the features that came

“for free” and that didn’t have to be implemented: the diagramming capability; the error

reporting, in the tree-like model explorer, on the diagrams themselves, and in a textual

form in a dedicated view; etc.

It would be almost impossible to list all the platform’s time saving features. In this

section, the most salient positive points have been pointed out.

5.3.2. The Bad, and the Ugly

Now the focus is on the less positive parts of the development of rbacUML - things that

didn’t go very well, bugs or difficulties that were encountered. This section is not meant

to be understood as criticism towards the tools or the team behind them, but instead, it

points plug-in developers to areas they need to pay particular attention to, where they

are likely to encounter difficulties, and it provides the platform developers with pointers

on how to improve the platform to make third-party developers’ work easier.

The Profile Tooling Generator

Whilst the profile tooling generator saved huge amounts of time, it is not perfect, and

there were situations where it was necessary to dive into the generated code to fix some

issues.

The first issue was a bug in the code generation of stereotypes attached to Action

elements. One of the subtypes of the Action type in UML was causing the generated

code to produce a very unstable tool. Fortunately the stereotypes applied on Action

elements didn’t really need to be applied on that particular subtype, and it could simply
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be removed from the list of elements on which the stereotypes could be applied - and the

tooling code could then be regenerated.

The second issue was not a bug, but had to do with the way the code generator works,

and with the incremental way we developed the UML profile. Usually we were adding

new elements at each iteration, but occasionally we had to delete elements as well, as we

realised that a particular RBAC construct could be better or more succinctly expressed

with another construct. The tooling code generator works in a quite conservative way,

to make sure that user-defined code is not overwritten unless necessary. Therefore,

re-running the generator after it has already run at least once will not result in the

generator wiping out the existing code and replacing it by its own, but instead, it will

only overwrite files that it generates, and leave the others alone. This means that, if an

element is removed, the implementation of the related features will be left in the code

(since they are not generated anymore), and cause compilation problems. It is then the

users’ responsibility to go through all the compilation errors and remove the now useless

classes and references to elements that do not exist anymore. This is a problem we are

trying to solve using bidirectional transformations to synchronise user changes with the

generated models [114].

Bugs

We encountered a few annoying bugs in the platform, that forced us to develop workarounds

and/or dive into the lower layers of the platform. In particular, known bugs in the OCL

evaluation engine made it more difficult to navigate associations between stereotypes.

Furthermore, parts of the evaluation engine couldn’t actually deal with OCL queries that

returned non-boolean values, even though the documentation indicates otherwise. This

prompted us to rewrite these queries so they would return boolean values, or to use a

lower level of abstraction to get around the problem.
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There were also bugs that made it impossible to navigate stereotype associations in

Java using the UML abstraction level, and we had to use the underlying representation.

The Size of the Platform

The Eclipse platform is huge, and so is the RSA platform. Combined, they form a

gargantuan set of technologies, built to work on top of or in combination with each

other. While this obviously provides immense benefits, it also comes with its faults and

weaknesses. It can be very difficult and intimidating for developers that are new to the

platform to get a working understanding of how all the pieces fit together. RSA includes

some documentation, which frequently refers to the Eclipse documentation, but dead

links are not uncommon. Furthermore, the IBM academic initiative does not include

any support from IBM or Rational, so we were left on our own to figure out how the

platform works and what its limitation are, only with the help of the documentation,

which is often incomplete. We also used the community support, via the IBM forums or

websites such as Stackoverflow [105], but got very few (if any) answers on some of the

most advanced questions. It seems that there is not a massive community of advanced

OCL users, or if it exists, we have yet to find it.

Learning how to use the platform requires a large time investment, especially for

developers that do not have an Eclipse/RSA expert handy. We had to learn about the

Eclipse platform, about plug-in development for Eclipse, about the Eclipse MDT project

and its limitations, and about RSA. We then had to put all that information together

and figure out how these projects relate to each other. It took us months, and we are

still learning every day. We are documenting our experience to make it easier for the

community to develop similar modelling plug-ins for the Eclipse or RSA platforms.
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Limitations to Dissemination

Our choice of RSA as a platform did most probably limit the potential for dissemination

of rbacUML. Indeed, whilst RSA is available for free to academics, few are willing to

make the effort to deploy it, most notably because of the rather large amount of online

paperwork to fill, the obligations that come together with the IBM academic initiative,

and the lack of support for Mac OS X (although there is now a preview version of RSA

8.5 for Mac OS X). Non-academics were understandably reluctant to invest in costly

RSA licence fees, which made it very difficult to reach out to industry.

In order to mitigate this issue, we tried to avoid using RSA-specific APIs as much as

possible, and instead try to rely on Eclipse MDT alone whenever possible. We have been

much more successful at this with our most recent developments, and one of the added

benefits is that there is less documentation to deal with. While currently RSA is still

required to run our plug-in, we hope that, by further diminishing our reliance on IBM’s

proprietary APIs, and thanks to the progress of open-source tools such as Papyrus, we

will be able to migrate to a fully open source platform in the near future, which will

doubtlessly make it easier for third parties to use, and perhaps contribute to or build

upon our plug-in.

5.3.3. Discussion

This section has focused on the implementation of the rbacUML approach. The choice of

implementing the tool as a plug-in of an existing MDE platform was quite straightforward

as it allowed for a very tight integration of our approach with existing practice. From the

experience reported above, the following suggestions can be derived to help individuals

or organisations willing to take on a similar route.
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• Plug-Ins are definitely the way to go to achieve excellent integration very quickly.

The amount of time saved by the ability to reuse existing components is perhaps

the best argument in favour of using a plug-in;

• If interoperability is a concern, one should be very careful about the platform’s

support of standards;

• Sufficient time will have to be allocated to acquire in-depth knowledge of the

platform. Even the lower layers may have to be used to get around bugs and

problems;

• If the tool is meant to be used by a large public, the platform must be carefully

chosen to make it as easy as possible to adopt.

Overall, the rbacUML experience has been positive, and further development is under

way to integrate the rbacUML approach even more with designers’ MDE workflow.

5.4. rbacUML Evaluation Performance

In order to assess the scalability of rbacUML, we measured the query evaluation time.

We focused on four variables: the size of the model (the number of elements + the

number of associations), the result of the evaluation (success or failure), the usage of our

ordered evaluation and/or selective evaluation approaches, and the usage of parallelised

evaluation for categories of queries that have the same dependencies.

For the first variable, we wrote a model generator that can generate random and

correct models (i.e. models that pass all well-formedness and verification queries) of a

specified size. The generator is available online with the rbacUML plug-in [4]. It allows

one to create rbacUML models in both the XMI and the EMX formats. The user provides an

XML file that describes the size of the model he wants to generate. Several parameters
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can be set, such as the number of users, roles, permissions, «Restricted» operations,

«Granted» and «Forbidden» actions, etc. Ranges can also be provided for each type

of association, e.g. one can specify that each user should have between 3 and 10 roles.

The generator user can simply use the sample XML configuration file available on the

website [4] and adapt it to his needs. Using that XML file, the generator tries to generate

a model that satisfies the user’s requirements. Due to implementation constraints and

in order to keep the generation time to a minimum, it can happen that the number of

elements or associations will be a bit lower than specified. The generator does however

provide the number of elements and associations actually created. By default, the

generator will create models that pass both the well-formedness and the verification

queries. An example of a generated model is available in Section C.1 of the appendix,

together with an example XML configuration file used for the generation of the model.

One may wonder how realistic those auto-generated models are. We have encountered

anecdotal evidence that access control models generally contain a large number of users

(depending on the organisation’s size), but many less roles, for example. Since the model

generator allows us to set the number of elements of each type, we have tried to match

these numbers with real access control policies we have encountered. However, the degree

of realism of our auto-generated models is not really a threat to the validity of this

analysis. Indeed, what we are looking at is the impact of the selective and ordered

evaluations on the total evaluation time. Therefore, we compare several ways of analysing

the same model, and the results are interesting even if said models are not realistic.

Similarly, one will notice that the auto-generated models may contain lots of «Granted»

scenarios, but very few «Forbidden» ones. Again, this is not an issue at all: since the

OCL constraint used for verifying «Forbidden» scenarios is simply the negation of the

OCL constraint used for verifying «Granted» scenarios, the type of scenario has very

little influence on the verification performance.
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The evaluation was performed on a Linux system with an Intel Core i5 CPU at

2.53GHz, with 4GB RAM, using IBM RSA v8.0.4. Each measurement has been taken

three times, and we have selected the fastest one, in order to minimise the disruption

created by the scheduler and other running applications. For each model size, we have

generated 5 random models, and used the average evaluation time. Detailed tables of

the evaluation times are described in Appendix C.1, and the entire evaluation data,

including the generated models, is available online with the rbacUML tool and the model

generator [4].

We have also computed the number of reported errors and warnings, to compare how

our proposed improvements affect the number of reported problems. These have been

computed once for each model, and the average of the 5 models of comparable size is

reported. Our aim was to show how many errors and warning are reported, and how to

reduce their number to make it easier for the designer to act on the meaningful ones.

The OCL query validation service in RSA works as follows. There is a set of OCL

queries that are registered with the validation service, which includes rbacUML’s queries.

One can define a filter that will select the queries to be evaluated. Then the evaluation

service is called with said filter and a collection of UML elements on which the queries

will be run. The evaluation service then returns the result.

5.4.1. Evaluation of each Type of Query

We broke down the evaluation into several phases, each one evaluating a particular category

of rbacUML OCL queries discussed in Chapter 3. Figure 5.1 shows the evaluation time for

models of increasing size. As we discussed in Chapter 2, in Egyed’s work on incremental

evaluation of OCL constraints, the larger industry models involved “tens-of-thousands”

of elements [28], so our evaluation goes up to the lower end of that order of magnitude.
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Figure 5.1.: Evaluation time (in seconds) for models of increasing size, broken down by OCL
query category, and compare to the full evaluation time

There is one curve for the evaluation of all the constraints in one single call to the

evaluation service, called full. There is also one curve for the evaluation of each category

of OCL queries, called WF, VER, SAT, COV, COMP and RED. Finally, the sum curve

is the sum of the evaluation times of each category individually. It differs from full in

the number of calls to the evaluation service: while full evaluates all the constraints in

one go, sum is the sum of the evaluation of each category individually.

Several observations can be made. First, the well-formedness and verification queries

are evaluated quite quickly compared to the other types of queries. This is good news,

as they are the most important ones to the designer. Indeed, designers are likely to be

willing to keep a close look at whether their model is syntactically correct, and whether it

passes the scenarios they have modelled in the Activity diagrams. The other constraints,

while important, merely provide analysis on the quality of the model - its completeness,

coverage, redundancy and satisfiability. One could easily imagine having designers
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regularly evaluate well-formedness and verification queries on their development platform,

while leaving the other types of constraints to a server, e.g. as part of a continuous

integration process, where the time and memory required for their evaluation is less of a

problem. Another observation to be made is that the overhead cost of evaluating each

type of query separately is almost zero, as one can see by comparing the full and sum

curves.

5.4.2. Correct v. Incorrect Models

The next step was to compare the evaluation of correct and incorrect models. We used

the model generator to generate three types of models: correct models, that do not

raise any errors or warnings for their well-formedness and verification queries; malformed

models, that do raise errors for their well-formedness queries; and incorrect models, that

do not raise any errors or warnings for their well-formedness queries, but that do raise

errors for their verification queries.

To generate malformed models, the model generator assigns roles to activity partitions

that have not been assigned to the corresponding user, breaking one of the well-formedness

queries. To generate incorrect but well-formed models, we simply took correct models,

and changed all the «Forbidden» stereotypes into «Granted» stereotypes, as well as

all the «Granted» stereotypes into «Forbidden» stereotypes. Since the original models

were correct, the actions stereotyped with «Forbidden» were guaranteed to require at

least one permission that was not activated by the user. Since the actions have been

stereotyped with «Granted» instead, this guarantees that the corresponding verification

query fails. Similarly, the actions originally stereotyped with «Granted» were guaranteed

to succeed, and therefore all the required permissions were available to the user. When

the stereotype has been changed to «Forbidden», the verification query fails, since there

are no permissions missing.
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Table 5.2.: Number of warnings raised in each category for increasingly large correct models

correct 250 500 750 1000 1250 2500 3750 5000 7500 10000

completeness (W) 0 0 0 0 1 1 2 4 5 7

coverage (W) 10 20 32 46 59 122 185 243 365 490

redundancy (W) 0 0 0 0 0 0 0 0 0 0

total (W) 10 20 32 46 60 123 187 247 370 497

In Figure 5.2, we compare, for each type of model, the total evaluation time for a full

evaluation and for an ordered evaluation. While the full evaluation results are similar

across the three graphs, the ordered evaluation times vary. Indeed, on a correct model,

the ordered evaluation will first evaluate the well-formedness constraints. No errors

or warnings will be raised so the verification, coverage, completeness and redundancy

constraints will be evaluated. Since the verification constraints do not produce any errors

or warnings, the satisfiability constraints are not evaluated. The result is an evaluation

time slightly below the full evaluation time, as all types of queries but the satisfiability

queries are evaluated. The incorrect models evaluation is similar to the correct evaluation,

except that, since the verification fails, the satisfiability constraints are evaluated too.

The ordered evaluation time is therefore the same as the full evaluation time. The

malformed models evaluation is quite different. With the ordered evaluation, when the

well-formedness evaluation fails, no other types of queries are evaluated, which leads to a

significant improvement on evaluation time compared to the full evaluation. Therefore,

the ordered evaluation is never slower than the full evaluation, and in some cases, it is

significantly faster.

Table 5.2 shows the number of errors and warnings raised for each size of model,

broken down by OCL query category, for correct models. Tables 5.3 and 5.4 do the same

for malformed and unverified models.

In Table 5.2, we have ignored well-formedness, verification and satisfiability constraints.

Indeed, since the models are correct, they will not raise any errors or warnings in these



166 Tool Support

 0 20 40 60 80 100 120 140 160 180 200 220

 2000  4000  6000  8000

ti
m

e
 (

se
co

n
d

s)

model size (elements + associations)

Correct

full
lazy

 0
 50

 100
 150
 200
 250

 2000  4000  6000  8000

ti
m

e
 (

se
co

n
d

s)

model size (elements + associations)

Malformed

full
lazy

 20
 40
 60
 80

 100
 120
 140
 160
 180
 200
 220

 2000  4000  6000  8000

ti
m

e
 (

se
co

n
d

s)

model size (elements + associations)

Incorrect

full
lazy

Figure 5.2.: Evaluation time (in seconds) for correct and incorrect models of increasing size
(see Tables C.1, C.2 and C.3 in Appendix C.1 for actual numbers)

Table 5.3.: Number of errors/warnings raised in each category for increasingly large malformed
models

malformed 250 500 750 1000 1250 2500 3750 5000 7500 10000

well-formedness (E) 1 2 3 2 2 3 3 3 2 3

verification (E) 0 0 0 0 0 0 0 0 0 0

satisfiability (W) 3 13 21 41 64 143 223 300 450 600

completeness (W) 0 0 1 0 0 2 3 3 5 6

coverage (W) 9 21 33 47 59 118 181 241 369 489

redundancy (W) 1 0 0 0 0 0 0 0 0 0

total (E/W) 1/13 2/34 3/55 2/88 2/123 3/263 3/407 3/544 2/824 3/1095

Table 5.4.: Number of errors/warnings raised in each category for increasingly large unverified
models

unverified 250 500 750 1000 1250 2500 3750 5000 7500 10000

verification (E) 5 15 22 24 25 50 75 100 150 200

satisfiability (W) 3 14 25 42 64 146 223 300 450 600

completeness (W) 0 0 0 0 1 1 2 4 5 7

coverage (W) 10 20 32 46 59 122 185 243 365 490

redundancy (W) 0 0 0 0 0 0 0 0 0 0

total (E/W) 5/13 15/34 22/57 24/88 25/124 50/269 75/410 100/547 150/820 200/1097
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categories. For the same reason, we ignored the well-formedness category in Table 5.4,

since the models are well-formed.

It is quite clear that, even on relatively small models, the number of errors, and

especially the number of warnings, goes up very quickly. This is partly due to the fact

that the models are generated randomly, as we have discussed earlier.

5.4.3. Discussion

It appeared from the above evaluation that evaluating the entire set of rbacUML OCL

queries has a more-than-linear complexity with regard to the size of the model, and

that the number of errors and warnings produced grows quickly too. Breaking down

the evaluation into each category highlighted the fact that the well-formedness and

verification queries are faster to evaluate than the other types, which is good news for

the designers using rbacUML, as they are likely the two types of OCL queries they want

to evaluate most often. Finally, ordered and selective evaluation strategies can be used

separately or together to further decrease the worse-case evaluation time and reduce

the amount of meaningless and/or uninteresting warnings and errors raised. Indeed, as

one can see in Tables 5.2, 5.3 and 5.4, if some categories are not evaluated because the

user has chosen not to evaluate them or because of the ordered evaluation strategy, the

number of errors and warnings produced will be lower, and concentrated only on those

categories that are of interest for the designer.

5.5. Fixing Performance

An analysis of the performance of the solution proposed in Chapter 4 for fixing incorrect

models is done in this section. The evaluation is performed from three distinct angles:
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the comparison of the constraint selection criteria, the comparison of the tree traversal

strategies, and the assessment of the effect of the NoChangeRbacDSML profile. In its current

state, the fixing algorithm does not scale very well. Indeed, for each node it creates,

the entire model needs to be re-evaluated. Future work is discussed in the conclusion

to improve the algorithm’s efficiency. As a consequence, we have only evaluated it on

relatively small models.

Four models are used to perform the evaluation.

The first one is the students’ marks system that has been used in the previous chapters.

To make it incorrect, the role hierarchy between the role Professor and the role Student

has been removed, leading to the model represented in Figure 5.3. The model validation

raises one error, a violation of the Granted constraint on the Smith_Create Marks

element.

The second model is a larger model, created for the very purpose of this evaluation.

It is made of 10 users, 3 roles, 15 permissions, 15 resources, 5 Granted scenarios and 5

Forbidden scenarios, for a total of 53 elements. It raises 6 errors: 5 on Granted scenarios,

and 1 on a Forbidden scenario.

The third model is a modified version of the second one, with only one error, on a

Forbidden scenario.

The fourth model is also a modified version of the second one, with one error on a

Forbidden scenario, and one error on a Granted scenario.

To make sure that the algorithm eventually stops, a tree depth limit has been set

to 20 for all models. It was necessary to have a tree depth at least as large as the

number of errors on each model, to increase the chances of finding perfect solutions. Still,

the evaluation sometimes takes a very, very long time, so two additional termination

constraints were introduces: only the first five solutions are returned, and if they have not
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Figure 5.3.: Incorrect model for the student marks system used for evaluating the model
fixing performance
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been found within 30 minutes, the evaluation is stopped. Furthermore, each evaluation

was carried out three times and the lowest values were selected, to account for differences

caused by the OS process scheduler or other services and software running on the testing

machine. The evaluation was carried out using the same machine as for the rbacUML

evaluation performance study.

It has been argued in Chapter 4 that designers are likely to be more interested

in solutions that are closer to the original model, i.e. solutions that minimise the

changes made to the model. A function scost(x) has been defined that computes

the cost of a solution as the sum of the costs of each fix that constitute the solution:

scost(S) =
∑

fcost(fixi),∀fixi ∈ S, where S represents a solution, which is a list of fixes.

The cost of a fix, as discussed in Chapter 4, can be computed in various ways depending

on the designer’s preference and the specificities of the DSML considered. For this study,

it is important to try to be as precise as possible while still being general enough for the

results to apply broadly. The following function is proposed with an aim to generate a cost

that is simple to compute and relevant to rbacDSML: fcost(F ) =
∑

ccost(c1),∀ci ∈ F ,

where F is a fix, or a set of changes. The cost of changes is then defined as follows:

ccost(c) = 1 if the change is the atomic addition or deletion of an association, and

ccost(c) = 2 if the change is the atomic addition of a new element. In rbacDSML, elements

are never deleted, so there is no need to define a cost for that operation.

The rationale behind the difference in cost between the addition/deletion of an

association and the addition of an element stems from the very nature of rbacDSML: it

is indeed reasonable to expect that, in an organisation, the creation of a new role or a

new permission is a decision that is less likely to happen (the organisation’s structure

presumably changes less often than its members and their position in the structure),

and that is taken much more seriously, than the addition or deletion of a particular

assignment. Indeed, as roles are supposed to match the organisation’s structure, the
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addition of a new role would mean a modification of the company’s structure, a decision

unlikely to be made by a single designer in order to get rid of an annoying violation of

an OCL constraint.

5.5.1. OCL Constraint Selection

Evaluation Criteria

In every node in the solution tree that has a model that violates several instances of

the OCL constraints, a choice must be made over which instance of which constraint to

fix. In Section 4.5.1 it is argued that an ordering of the selection of the next error to fix

based on the categories of the OCL constraints will lead to fewer unnecessary branches

to be considered.

The evaluation performed here compares three constraint selection strategies. The

first one will evaluate the Granted constraints first, then Forbidden, roles activation,

DSoD and finally SSoD. The second one is the opposite, i.e. SSoD first, followed by DSoD,

roles activation, Forbidden, and finally Granted. The third one follows the categories

order, i.e. the SSoD, DSoD and role activation constraints first (in no particular order),

then Granted and Forbidden (in no particular order). When the name of the violated

constraint is not enough to select an error to fix, the lexicographic order over the context’s

name is used.

Results

The results of the evaluation on model 2 are summarised on Table 5.5. Model 2 was

chosen for its large number of errors, highlighting the importance of carefully selecting

which error to fix first.
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Table 5.5.: Comparison of constraint selection strategies (time in ms)

Name Granted first Granted last Categories

cost time cost time cost time

Sol 1 6 312982 7 1346355 6 321610

Sol 2 8 328293 7 1348707 8 337580

Sol 3 7 331114 7 1358302 7 340628

Sol 4 8 335359 7 1360655 8 345015

Sol 5 8 343904 7 1370317 8 353800

Total - 343998 - 1370394 - 353897

It appears immediately that the first and the last approaches return solutions of the

same cost in about the same time, whilst the second approach returns different solutions,

and takes much longer. The reason is fairly straightforward: fixing errors for constraints

of types I and II generates more possible solutions than fixing errors for constraints

of type III, because of the need to create lots of new paths, which is not necessary in

type III. Therefore, the evaluation shows that the choice of the next error to fix should

depend on the corresponding constraint’s type, more than on the dependencies between

constraints.

5.5.2. Traversal Strategies

Evaluation Criteria

Since the traversal strategies described in Section 4.5.3 are similar to Harman and

Jones’ search-based software engineering [40], the evaluation of their performance is done

following the methodology they propose.

Harman and Jones describe base line validity as follows:
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Definition 14. “To achieve a measure of base line acceptability a meta-heuristic technique

must out-perform a purely random search. That is, meta-heuristics should find better

solutions or find them with less computational effort than random search.” [40, p.3]

In the case of the traversal strategies for fixing models, the BFS traversal strategy

is used as the random search that the meta-heuristics must outperform. Whilst not

exactly random, it is the most naive approach, and any acceptable meta-heuristic must

outperform it. The representation of a solution is a path from the root of the tree to a

leaf that represents a correct model. The path gives a list of fixes that bring the root

model to a correct state. The fitness function is the cost of a solution, and it needs to be

minimised, i.e. solutions with a lower cost are better than solutions with a higher cost.

The efficiency of each solution is also assessed, by calculating the time it takes to find 5

solutions that make the model correct.

Results

Table 5.6.: Comparison of traversal strategies for the student marks system (time in ms)

Name BFS DFS Num. Errors Red. Errors Avg. Cost Combined Cost

cost time cost time cost time cost time cost time cost time

1st Sol 1 3112 1 4278 1 3982 1 3285 1 4087 1 3957

2nd Sol 1 4259 1 5453 1 5149 1 4376 1 5197 1 5101

3rd Sol 1 7523 1 8765 1 8329 1 7534 1 8282 1 8546

4th Sol 4 14410 10 13202 4 11362 10 11539 4 11188 4 11611

5th Sol 7 15340 10 15287 7 12322 10 13612 7 12133 7 12622

Total 14 15379 12 15393 10 12384 12 13708 10 12185 10 12668

The first model, the students marks system, has been evaluated using each of the

traversal strategies from Chapter 4. The results of the evaluation are presented in

Table 5.6. For each solution found, the cost and the time it took to find it are available.

The total running time, as well as the number of nodes created in the tree, are available
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at the bottom of the table. Each and every strategy managed to produce 5 solutions

within about 15 seconds. In fact, looking at the total line at the bottom of the table, it

comes immediately that all the strategies except DFS did complete faster than BFS, and

they all did so using less nodes than BFS. This would be particularly important with

larger models, as each node requires the evaluation of the model, which can be long.

Looking at individual solutions shows a more mixed picture: no strategy could beat

BFS for the time to reach the first solution, but they catch up later. Moreover, both the

DFS and the reduction of errors strategies did produce solutions that are less fit than

BFS.

Table 5.7.: Comparison of traversal strategies for a large model (time in ms)

Name Num. Errors Avg. Cost

cost time cost time

1st Sol 12 311133 6 321610

2nd Sol 12 312498 8 337580

3rd Sol 12 313840 7 340628

4th Sol 12 315217 8 345015

5th Sol 12 316582 8 353800

nodes time nodes time

Total 234 316778 254 353897

The evaluation of the second model is summarised in Table 5.7. The table is smaller,

because most of the strategies failed to produce 5 solutions in less than 30 minutes. In

fact, the BFS strategy was left running for over 12 hours and still did not manage to

produce 5 solutions. This, of course, highlights the need for carefully chosen strategies.

The only two strategies to return solutions in under 30 minutes were the number of errors

strategy and the average cost strategy. They returned solutions in less than 6 minutes.
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As one can see from the table, the average cost strategy did find fitter solutions, but

it took a bit longer, and used a few more nodes than the number of errors strategy, which

was also faster at finding a first solution.

Table 5.8.: Comparison of traversal strategies for the third model (time in ms)

Name BFS DFS Num. Errors Red. Errors Avg. Cost Combined Cost

cost time cost time cost time cost time cost time cost time

1st Sol 1 7891 1 7884 1 8399 1 8222 1 7981 1 8059

2nd Sol 2 13597 2 13657 2 14457 2 14317 2 13668 2 13873

3rd Sol 2 16609 2 16388 2 17199 2 17137 2 16751 2 16658

4th Sol 2 19489 2 19170 2 19966 2 19912 2 19626 2 19313

5th Sol 3 23956 3 23356 3 24110 3 24059 3 24069 3 23413

Total 15 23996 15 23412 15 24146 15 24100 15 24111 15 23452

The evaluation of the third model is summarised in Table 5.8. It is very interesting

to notice that all strategies perform almost the same. In fact, the differences between

them are so small that they cannot be ranked. This is due to the fact that they did not

have to be used at all, as at least five solutions were generated with just one fix.

Table 5.9.: Comparison of traversal strategies for the fourth model (time in ms)

Name BFS Num. Errors Red. Errors Avg. Cost Combined Cost

cost time cost time cost time cost time cost time

1st Sol 3 171210 3 150511 3 153819 2 272244 2 157088

2nd Sol 4 176641 4 155599 4 158778 4 292412 4 171545

3rd Sol 4 179404 4 158122 4 161296 3 296023 3 174161

4th Sol 4 182140 4 160693 4 163830 4 301794 4 178125

5th Sol 5 186437 5 164599 5 167715 4 313282 4 186124

Total 123 186491 123 164656 123 167812 134 313922 134 186161

The evaluation of the fourth model is summarised in Table 5.9. Compared to the

previous model, one immediately notices that the strategies produce less similar results.

Indeed, both the average cost and the combined cost strategies produce fitter solutions,
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even though the other strategies all produce equally fit solutions. The time information

is more interesting: indeed, the reduction of errors and number of errors perform better

than BFS, while the combined cost strategy performs similarly to BFS, and average cost

performs much worse. DFS did not terminate on time, hence it is not included in the

table.

Summary

The comparison of the traversal strategies did not highlight one particular strategy as

performing consistently better than the other ones, either in terms of time or in terms of

the order in which solutions are found. These conflicting results seem to indicate that

the choice of one strategy over another may depend on some properties of the incorrect

model, such as the number of errors or their type, for example. The validation of this

hypothesis would require a deeper evaluation, using larger models. This can only be done

once the fixing algorithm’s scalability has been addressed.

5.5.3. The NoChangeRbacDSML extension of the rbacDSML Profile

Evaluation Criteria

The last evaluation criteria in this section is the use of the NoChangeRbacDSML profile.

The profile is described and discussed in Chapter 3, Section 4.5.2, and allows designers

to make sure that any solution proposed will not delete some associations or add some

element, according to the designer’s annotations on a model.

Here the time it takes to generate 5 acceptable solutions is measured, according

to three scenarios: the first one is a model without any NoChangeRbacDSML stereotype

applied; the second one is a model where the policy, i.e. the assignment of permissions to
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resources, cannot be modified; the third one is a model where the scenarios cannot be

modified.

Results

Table 5.10.: Effect of the NoChangeRbacDSML stereotype on the student marks system (time
in ms)

Solution No NoChangeRbacDSML Policy Scenarios

cost time cost time cost time

Sol 1 1 4087 1 3242 1 3111

Sol 2 1 5197 1 6501 1 6453

Sol 3 1 8282 4 9786 - -

Sol 4 4 11188 6 10807 - -

Sol 5 7 12133 7 16986 - -

nodes time nodes time nodes time

Total 10 12185 15 17112 6 7815

The first model to be evaluated was the student marks system, as summarised in

Table 5.10. One immediately notices that the third test, where scenarios cannot change,

only produces two solutions, and finishes much faster than the other two tests. Indeed,

all other solutions that exist involve at least one change to the associations attached to a

scenario, and are therefore forbidden.

It is also worth noting that the second test, where the policy does not change, takes

longer to generate solutions than the first test, which does not use the NoChangeRbacDSML

profile. One could also claim that the second test’s solutions are less fit than the first

test’s, but one must keep in mind that, in the second test, the designer has specifically

indicated that he is not interested in certain solutions. Therefore, he gets 5 potentially

interesting solutions, instead of having to discard a number of them immediately after

test 1, since they do not conform to his requirements.
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Table 5.11.: Effect of the NoChangeRbacDSML stereotype on a large model (time in ms)

Solution No NoChangeRbacDSML Policy Scenarios

cost time cost time cost time

Sol 1 6 321610 6 151998 9 220370

Sol 2 8 337580 8 166106 9 221806

Sol 3 7 340628 7 168698 9 230340

Sol 4 8 345015 8 172641 9 231738

Sol 5 8 353800 8 180460 9 237307

nodes time nodes time nodes time

Total 254 353897 135 180563 170 237430

The evaluation of the second model is shown in Table 5.11. In this case, each test

produced five solutions. One will notice, however, that the second and the third test,

both of which use the NoChangeRbacDSML profile, took significantly less time to complete

than the “vanilla” test, and used much fewer nodes. This is due to the fact that branches

that involve a modification forbidden by the NoChangeRbacDSML annotations are not

explored, making the discovery of the other, acceptable solutions much faster.

5.5.4. Discussion

The three criteria used in the above evaluation show some promising results and highlight

some interesting differences between the several approaches used. The comparison of the

error selection strategies shows that choosing the best strategy, i.e. the one that keeps

the tree as narrow as possible, especially in the beginning, avoids the multiplication of

nodes and the increase in solution generation time.

The comparison of the traversal strategies highlights the differences between several

strategies, and the need to balance a search for the best solutions with time efficiency.
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The study of the NoChangeRbacDSML profile then shows that using the profile not only

ignores useless results for the designer, but may also dramatically speed up the solution

discovery time.

Perhaps the biggest weakness of this evaluation is the small number of models

considered. However, even with this small number of models, the evaluation has shown

that a solution adapted for one model might not be adapted for another, hence it is

probably impossible to draw conclusions that would apply to all rbacDSML models, let

alone all models of any DSML, even with a large number of models considered. The

evaluation indicates that expert knowledge will be required to select the most appropriate

settings for a particular model, if one needs solutions to be generated relatively quickly.

The evaluation has also shown that the more errors there are on a model, the longer the

generation of solutions takes. Hence, one would recommend that designers evaluate their

models frequently, in order to take remedial actions as soon as possible. This further

stresses the need for improvements in the evaluation speed.

Finally, it is worth pointing out that the plug-in was by no means optimised, and

should indeed be treated as an early product rather than a stable and optimised solution.

The generation time, especially on large models with lots of errors, would greatly benefit

from optimisations that reduce the number of nodes to consider, and from optimisation

that reduce the evaluation time of models. Egyed’s approach for incremental evaluation

of models [28] could possibly bring massive time savings here.

5.6. A Real-Life Case Study

We illustrate the utility of rbacUML with a real example, the cloud-based repository

hosting service chiselapp.com. ChiselApp is a server-side PHP program that allows

software developers to host and share projects using the Fossil distributed version
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control system. There are two layers of access controls: at the account layer, the PHP

program manages the authentication of developers through a set of roles for the website;

at the repository layer, the built-in web subsystem of Fossil manages the access to the

repositories through a database table inside the Fossil repository.

The account-managed repositories are classified into private and public. The public

repositories are openly accessible to any visitor of the website. The private repositories

are only exposed to the account owners. Without logging into chiselapp.com, even

the owner cannot access these private repositories. Because the Fossil repositories are

distributed, once granted access by the owner, the repository-level access control allows

additional guests, committers or administrators to pull, sync, edit or even delete the

repository.

In order to verify the RBAC properties of a system that does not provide its design

in UML, we applied the reverse engineering toolkit PHP_UML 1 to recover the deployment

view of the system from the source code (Figure 5.4). Notice that PHP programs are

not purely object-oriented, some of the high-level functions in the .php artefacts are not

necessarily encapsulated by PHP classes. Therefore, pseudo UML classes with a single

operation are created to represent those functions. The recovered XMI model provides

the traceability links between the low-level PHP classes and the high-level .php artefacts,

which are not shown here for clarity.

According to the implementation, we modelled the access control configuration as

shown in Figure 5.5. In this diagram, we identify three typical users Alice, Bob, and

Charles and associate them with representative roles such as Account Guest, Account

Owner, Site Admin for the account management, and Repository Guest, Repository

Committer, and Repository Owner for the repository management. The relations between

these roles indicate the inheritance of permissions from the parent roles.

1http://pear.php.net/package/PHP UML
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Figure 5.5.: Concepts of users, roles, and permissions are instantiated as an access control
class diagram.
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Figure 5.6.: The activity diagram shows two actions that violate OCL constraints

After modelling the RBAC concepts, we added stereotypes to those operations in

the class diagram (Figure 5.4) that require a permission as a precondition in the code,

e.g. the edit() operation of the edit.php artefact class is restricted by the EditRepo

permission (see Figure 5.5). To illustrate the business logic, Alice creates a repository

that is subsequently listed and pulled by Bob and Charles, until sometime later Charles

removes it (Figure 5.6). After the modelling exercise, we obtained 32 classes, 85

operations (67 of them in the low-level classes not shown in Figure 5.4) and 6 actions

(Figure 5.6) in the business logic, and 3 users, 6 roles and 7 permissions in the access

control configuration (Figure 5.5).

With RSA, we validated the RBAC constraints using the rbacUML plug-in, and found

2 errors in the ChiselApp model. Figure 5.6 shows the red marks that indicate where

the errors were found.
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First, the Login action was marked as restricted by the permission of ListRepo.

However, the PHP implementation never checks such a permission. It was our misun-

derstanding as modellers when creating the activity diagram that the login needs to be

protected. Indeed, every user of ChiselApp is allowed to login by the business logic of

the PHP program. Therefore, rbacUML found an error in the manually annotated model

that wrongly represents the implementation in the code.

Second, Bob was not allowed to edit the repository, even though he has been assigned

as the owner of the repository. This is a more remarkable error. In the access control

configuration diagram, Bob has the role Repository Committer with the permission

EditRepos. In the Activity diagram corresponding to the program execution at runtime,

however, this role was not activated. Therefore, it is important to check whether Bob is

the committer to allow him to edit the repository. The implementation of ChiselApp

delegates such a check to the Fossil toolkit. However, one can construct a test scenario

whereby Bob is the AccountOwner but not a RepositoryCommitter. Using this test case,

we have demonstrated that ChiselApp should not delegate the verification to the other

tool, otherwise there is an inconsistency in the access control configuration. In other

words, this is confirmed as a bug in the original implementation of ChiselApp. The bug

had already been reported on the ChiselApp issue tracking system, but the maintainer

argued that the bug is, in fact, a feature. We disagree with the maintainer’s opinion,

because the default settings for new users violate the access control property we verified.

In brief, modelling the access control properties of a real-life cloud-based repository

hosting service showed that rbacUML can be useful to fix design issues even after the

implementation has been done. It requires some reverse engineering effort, but the cost

is justified if security errors are found.
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5.6.1. Lessons Learned

The ChiselApp case study was our first try at using rbacUML on a real application. We

learned valuable lessons during the process, and were able to identify a few aspects of

rbacUML that could be improved.

Recovering the class diagram for ChiselApp was very easy, thanks to PHP_UML.

Recovering the activity diagram was however more complex, as it required manual

inspection of the code. It may be a good idea to investigate how to automate the process,

at least partially.

Another issue that we encountered has to do with UML itself: as soon as a UML

model grows to a realistic size, it becomes very difficult to navigate in its diagram form.

The tree form provided by RSA’s model explorer often proved a more practical solution.

We think that the ability to select at runtime which elements to include in a diagram

may help the navigation of large models.

On the positive side, once we had found the issue, the graphical representation makes

it very easy to visualise. The ability to tweak the model and re-verify it after making a

few changes was also very useful to explore the possible ways to solve the error.
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In this dissertation, we have proposed a new Model-Driven Engineering approach

for modelling, analysing and fixing RBAC concerns by extending UML models. The

proposed approach comprises a DSML as well as a DSMAL, allowing stakeholders to

select the most appropriate language for the specific activities they want to perform. The

contributions build and improve on existing approaches on several points.

Our approach is general because it has been designed using the standard UML exten-

sion mechanisms: stereotypes, associations and OCL queries. This allows designers,

on the one hand, to adopt the approach with having to learn new languages, tools

or methodologies, if they are already familiar with UML; and on the other hand

to port our approach to other UML tools if necessary. While our approach was

implemented as plug-ins for IBM Rational Software Architect, we have provided all

the necessary information to port it to any other modelling tool that supports the

UML standard, its extension mechanism, and OCL queries evaluation.

Our approach is systematic because it is centred on two UML profiles that define a

Domain-Specific Modelling Annotations Language (DSMAL) as well as a Domain-

Specific Modelling Language (DSML), which have been developed following Selic’s

guidelines for systematic DSML development [95].

Our approach does not require stakeholders to write code or queries themselves be-

cause the queries have already been defined as part of the two profiles. However,

should they want to expand the profiles’ capabilities or even run model-level queries,

they have the possibility to do so.

The rbacUML provides a general categorisation of OCL queries to better understand

the different types of analyses that can be run on models created using DSMALs or

DSMLs.
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Strategies for reducing the analysis time were developed on the basis of a proposed

categorisation of OCL queries and the dependencies identified between them. An

evaluation of those strategies has found them to be effective.

An integration with organisational repositories is considered through the LDIF im-

port filter from existing user directories.

rbacDSML models can be automatically fixed when one or several errors are detected.

The set of generated solutions is both correct and, under some assumptions, complete.

6.1. Future Work

The work presented in this dissertation can be extended in several area, as discussed

below, to improve designers’ experience when dealing with domain-specific concerns, and

access control in particular.

6.1.1. Transformations

Both representations are derived from the same domain meta-model. Since the choice

of profile to use depends on the circumstances, designers need transformations from

one profile to the other, and back. It must be possible to reflect changes made to one

representation on the other one, in order to keep both models synchronised. Since

changes could happen in both representations, it is important to define a bidirectional

transformation that would allow designers to transform a DSMAL model into a DSML,

and back. Since the DSML contains a subset of the information contained in the DSMAL,

tools such as GRoundTram [41] allow one to define a transformation from the DSMAL

to the DSML, and the transformation from the DSML back to the DSMAL comes “for

free”. If both models can change before being synchronised, then the problem is similar
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to model-code synchronisation problems that MDE approaches face [114]. A similar

approach to what is needed in this case is Guerra and de Lara’s use of triple graph

transformations to derive views from models [38]. However, their views are not editable.

The Problem with DSMALs

The transformations called for in this dissertation differ from transformations between

“ad-hoc” DSMLs and DSMLs implemented as UML profiles, such as those described by

Wimmer [113]. The latter are produced semi-automatically. Wimmer assumes that a

transformation can “destroy” the target model and entirely replace it with the newly

generated model. This is a fair assumption when dealing with DSMLs only, as there is no

more information in one representation than in the other. But in the case of a DSMAL,

such an approach will destroy all the information in the model that is not related to

the DSML. In the example in Chapter 3, a destructive approach would completely erase

the Student, Module, Professor and TA classes, as well as the Mark::getDate() and

Mark::setDate() operations, in the class diagram (Chapter 3, Figure 3.7a) alone. This

problem would not occur with bidirectional transformations defined with GRoundTram,

as it keeps track of the information that was removed during the forward transformation

between the DSMAL and the DSML.

Yet, Wimmer’s approach can still partially apply here, especially his discussion of

the mapping between both languages. Since both languages stem from the same domain

meta-model, it is likely that many concepts will have a one-to-one mapping. However,

the necessary redundancy in the DSMAL means that some mappings will be one-to-many,

which further complicates the creation of the transformation.



Conclusions 191

Multiple Profiles

Annotating UML models with concepts from one domain is already challenging, but what

if one wants to annotate it with concepts from several domains? There may be many

interesting ways of using DSMLs to model some aspects of the software: RBAC is one of

them, but there are others, such as performance, specific business rules, persistence, etc.

It would make sense to have a DSML as well as a DSMAL for each of them. The same

general-purpose model could then be annotated with stereotypes from several profiles,

which brings new challenges to keep the general-purpose model and the DSMLs in sync,

and to prevent conflicts from happening.

If the same general-purpose model is annotated with concepts from several profiles,

there is a chance that synchronisation problems will occur. Indeed, if a model is annotated

with both access control and performance annotations, and changes are done concurrently

to their respective DSML views, then the transformation that reflects these changes

back to the general-purpose model will be more difficult. This problem is similar to the

model-code synchronisation problem typically encountered in MDE [114].

It is possible that two DSMALs will bring conflicting annotations, and therefore a

mechanism will be necessary to detect them. For example, let’s assume two DSMALs,

one for performance and one for persistence. If a particular element is marked with a

performance requirement, and then marked with a persistence stereotype that involves

saving the element’s state in a database, the persistence will have a negative effect on

the performance. These potential conflicts between stereotypes will have to be identified

on a case by case basis. OCL constraints could be used to detect potential conflict and

bring them to the designer’s attention.

Mussbacher et al’s work [69] addresses this problem of detecting interactions between

different aspects. Their approach captures aspects as UML sequence diagrams and Aspect-
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oriented Use Case Maps (AoUCM). Domain-specific annotations as well as influence

models are then used to automatically analyse how different aspects influence each other.

Several case studies have already been considered, but it would be very interesting to

study how their approach applies to rbacUML and rbacDSML.

6.1.2. Translating OCL Constraints

In Chapter 3, we have defined OCL constraints for both rbacUML and rbacDSML. Since

the same domain-level properties need to be guaranteed, it is reasonable to expect that

one could create their OCL constraints on the DSML, which is the simplest model and

therefore requires relatively simple constraints, and have them translated to be used with

the DSMAL. After all, there is already a mapping between the concepts in the DSML

and the concepts in the DSMAL.

However, the redundancy and the division of one concept into several ones will make

this process more difficult. Not only is it necessary to create new OCL constraints

to ensure consistency between redundant and spread out concepts, but the existing

constraints may also have to take those into account, which would make them even more

complex. An automated conversion process that would, given both profiles, the mapping

of concepts from one to the other, and the OCL constraints for the DSML, produce the

OCL constraints for the DSMAL, would be incredibly useful, as it would save time and

reduce the occurrence of errors from the manual translation process. With GRoundTram,

one could do this automatic conversion by giving a filter- promotion transformation for

the transformation language UnQL+ [42]. Let T be the mapping from DSMAL to DSML

in UnQL+ and C be a constraint on DSML. The filter promotion transformation is to

transform filter C ◦ T to T ◦ filter C ′ to promote the condition C on the output of T to

a new condition C ′ on the input.
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In rbacUML, there is a one-to-one mapping for most concepts, which is relatively

obvious from the two extensions of the UML meta-model. Three concepts, however,

require a one-to-many mapping: the user, represented in the DSMAL by one class in

the access control diagram and by any number of partitions in activity diagrams; the

resources, represented in the DSMAL by an operation in a class diagram, and by any

number of messages in a sequence diagram; the role activation, spread in the DSMAL as

«ActivateRoles» and «DeactivateRoles» on scenarios, and over partitions.

This makes translating the OCL constraints from the DSML to the DSMAL quite

difficult. For example, the split of the user concept into several elements means that

a new constraint must be introduced to make sure that all user annotations that are

supposed to represent the same user are consistent, i.e. they must have the same name.

This also makes the OCL constraint that checks that roles activated by a user are also

assigned to him more complicated. In the DSML, the constraint looks like:

context rbacDSML::Scenario inv:

self.user.rbacRole

->includesAll(self.rbacRole)

but in the DSMAL, it looks like:

context rbacUML::Granted inv:

self.base_Action.inPartition

.extension_RBACUser.aliasUser.rBACRole

->includesAll(self.rBACRole)

Because of the separation of the user in two concepts, another OCL constraint is also

necessary to ensure well-formedness:
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context rbacUML::User inv:

(self.base_Partition <> null)

implies (self.name = self.user.name)

6.1.3. Support for other Access Control Models

In this dissertation, the proposed access control approach is limited to RBAC. As shown

in Chapter 2, it made sense because numerous access control models are built on top of

RBAC, such as OrBAC or GEO-RBAC. Even ABAC is a superset of RBAC. Each of

these access control models brings new challenges that may be addressed by extending

the rbacUML and rbacDSML profiles. In particular, ABAC models will make profile design

as well as modelling much more challenging, if one wants to keep true to our commitment

to provide an easy to use approach: the fact that any attribute could be used will make

it difficult, if not impossible, to manually write meta-model-level OCL constraints that

work for all models. Alternative solutions will probably have to be explored in order to

allow users to model ABAC concepts without writing any code or queries.
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212 rbacDSML OCL Constraints

This section contains the OCL constraints for rbacDSML, as implemented in the tool.

For a discussion of the differences between the constraints in the tool and the constraints

as described in Chapter 3, see Chapter 5.

A.1. Well-Formedness

A.1.1. Activated roles must be assigned to the user

Finds roles that are activated by a scenario without having been assigned to the corre-

sponding user.

context rbacDSML : : Scenar io inv :

s e l f . g e tA l lA t t r i bu t e s ( ) . oppos i t e . owner

−>s e l e c t ( user | user . ge tAppl i edStereotype ( ’ rbacDSML : : User ’ ) <> nu l l ) . oclAsType (

Class )

. g e tA l lA t t r i bu t e s ( ) . oppos i t e . owner

−>s e l e c t ( r o l e | r o l e . ge tAppl i edStereotype ( ’ rbacDSML : : rbacRole ’ ) <> nu l l )

−>union ( s e l f . g e tA l lA t t r i bu t e s ( ) . oppos i t e . owner

−>s e l e c t ( user | user . ge tAppl i edStereotype ( ’ rbacDSML : : User ’ ) <> nu l l ) . oclAsType (

Class )

. g e tA l lA t t r i bu t e s ( ) . oppos i t e . owner

−>s e l e c t ( r o l e | r o l e . ge tAppl i edStereotype ( ’ rbacDSML : : rbacRole ’ ) <> nu l l ) .

oclAsType ( Class ) . a l lPa r en t s ( ) )

−>i n c l ud e sA l l ( s e l f . g e tA l lA t t r i bu t e s ( ) . oppos i t e . owner

−>s e l e c t ( r o l e 2 | r o l e 2 . ge tAppl i edStereotype ( ’ rbacDSML : : rbacRole ’ ) <> nu l l ) )
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A.1.2. SSoD

Finds role assignments that violate SSoD constraints.

context rbacDSML : : User inv :

s e l f . g e tA l lA t t r i bu t e s ( ) . type . oclAsType ( Class )−>union ( s e l f . g e tA l lA t t r i bu t e s ( ) . type .

oclAsType ( Class ) . a l lPa r en t s ( ) . oclAsType ( Class ) )−>s e l e c t ( e l t | e l t . oclAsType ( Class ) .

ge tAppl i edStereotype ( ’ rbacDSML : : rbacRole ’ ) <> nu l l ) . oclAsType ( Class )

−>e x i s t s ( ro l e1 , r o l e 2 | r o l e 1 . oclAsType ( Class ) . g e tA l lA t t r i bu t e s ( )−>s e l e c t ( prop | prop .

oclAsType ( Property ) . a s s o c i a t i o n . getAppl i edStereotype ( ’ rbacDSML : : SSoD ’ ) <> nu l l ) .

type . oclAsType ( Class )

−>i n c l ud e s ( r o l e 2 . oclAsType ( Class ) ) ) = f a l s e

A.1.3. DSoD

Finds role activations that violate DSoD constraints.

context rbacDSML : : Scenar io inv :

s e l f . g e tA l lA t t r i bu t e s ( ) . oppos i t e . owner−>s e l e c t ( r o l e | r o l e . ge tAppl i edStereotype ( ’

rbacDSML : : rbacRole ’ ) <> nu l l )

−>e x i s t s ( ro l e1 , r o l e 2 | r o l e 1 . oclAsType ( Class ) . g e tA l lA t t r i bu t e s ( )

−>s e l e c t ( dsod | dsod . oclAsType ( Property ) . a s s o c i a t i o n . getAppl i edStereotype ( ’

rbacDSML : : DSoD ’ ) <> nu l l ) . oppos i t e . owner−>i n c l ud e s ( r o l e 2 ) ) = f a l s e
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A.2. Verification

A.2.1. VER Granted

Finds «Granted» scenarios that the model does not conform to.

context rbacDSML : : Granted inv :

s e l f . g e tA l lA t t r i bu t e s ( ) . oppos i t e . owner

−>s e l e c t ( r o l e | r o l e . ge tAppl i edStereotype ( ’ rbacDSML : : rbacRole ’ ) <> nu l l ) .

oclAsType ( Class )

−>union ( s e l f . g e tA l lA t t r i bu t e s ( ) . oppos i t e . owner−>s e l e c t ( r o l e | r o l e .

ge tAppl i edStereotype ( ’ rbacDSML : : rbacRole ’ ) <> nu l l ) . oclAsType ( Class ) .

a l lPa r en t s ( ) . oclAsType ( Class ) ) . oclAsType ( Class ) . g e tA l lA t t r i bu t e s ( ) . oppos i t e

. owner

−>s e l e c t ( permis s ion | permis s ion . getAppl i edStereotype ( ’ rbacDSML : : Permiss ion ’ )

<> nu l l )

−>i n c l ud e sA l l ( s e l f . g e tA l lA t t r i bu t e s ( ) . oppos i t e . owner

−>s e l e c t ( r e s ou r c e | r e s ou r c e .

ge tAppl i edStereotype ( ’

rbacDSML : : Resource ’ ) <>

nu l l ) . oclAsType ( Class ) .

g e tA l lA t t r i bu t e s ( ) . oppos i t e

. owner

−>s e l e c t ( permis s ion |

permis s ion .

getAppl i edStereotype ( ’

rbacDSML : : Permiss ion ’ ) <>

nu l l ) )
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A.2.2. VER Forbidden

Finds «Forbidden» scenarios that the model does not conform to.

context rbacDSML : : Forbidden inv :

s e l f . g e tA l lA t t r i bu t e s ( ) . oppos i t e . owner

−>s e l e c t ( r o l e | r o l e . ge tAppl i edStereotype ( ’ rbacDSML : : rbacRole ’ ) <> nu l l ) .

oclAsType ( Class )

−>union ( s e l f . g e tA l lA t t r i bu t e s ( ) . oppos i t e . owner−>s e l e c t ( r o l e | r o l e .

ge tAppl i edStereotype ( ’ rbacDSML : : rbacRole ’ ) <> nu l l ) . oclAsType ( Class ) .

a l lPa r en t s ( ) . oclAsType ( Class ) ) . oclAsType ( Class ) . g e tA l lA t t r i bu t e s ( ) . oppos i t e

. owner

−>s e l e c t ( permis s ion | permis s ion . getAppl i edStereotype ( ’ rbacDSML : : Permiss ion ’ )

<> nu l l )

−>i n c l ud e sA l l ( s e l f . g e tA l lA t t r i bu t e s ( ) . oppos i t e . owner

−>s e l e c t ( r e s ou r c e | r e s ou r c e .

ge tAppl i edStereotype ( ’

rbacDSML : : Resource ’ ) <>

nu l l ) . oclAsType ( Class ) .

g e tA l lA t t r i bu t e s ( ) . oppos i t e

. owner

−>s e l e c t ( permis s ion |

permis s ion .

getAppl i edStereotype ( ’

rbacDSML : : Permiss ion ’ ) <>

nu l l ) )

= f a l s e
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In this section, we provide a complete list of all the OCL queries in rbacUML, organised

in categories. For a discussion of the categories, refer to Section 3.5.

B.1. Well-formedness

B.1.1. WF Activated roles cannot have been activated in the

user partition

In an action stereotyped with «ActivateRoles», any role activated through the stereo-

type cannot also be activated through the «RBACUser» stereotype on the activity partition

in which the action lies.

context rbacUML : : Act ivateRole s inv :

s e l f . base Act ion . i nPa r t i t i o n . extension RBACUser . rBACRole−>i n t e r s e c t i o n ( s e l f . rBACRole )−>

isEmpty ( )

B.1.2. WF Activated roles must be assigned to the user

In an action stereotyped with «ActivateRoles», any role activated through the stereo-

type must also be assigned to the user corresponding to the activity partition in which

the action lies.

context rbacUML : : Act ivateRole s inv :

s e l f . base Act ion . i nPa r t i t i o n . extension RBACUser . a l i a sU s e r . rBACRole

−>union ( s e l f . base Act ion . i nPa r t i t i o n . extension RBACUser . a l i a sU s e r . rBACRole .

base C la s s . a l lPa r en t s ( ) . oclAsType ( Class ) . extension RBACRole )

−>i n c l ud e sA l l ( s e l f . rBACRole )



rbacUML OCL Constraints 219

B.1.3. WF ActivateRoles must be applied to an action inside a

user partition

The stereotype «ActivateRoles» can only be applied to an action that lies in an activity

partition stereotyped with «RBACUser».

context rbacUML : : Act ivateRole s inv :

s e l f . base Act ion . i nPa r t i t i o n . getAppl i edStereotype ( ’rbacUML : : RBACUser ’ ) <> nu l l

B.1.4. WF ActivateRoles can only be applied on a Granted or

a Forbidden action

The stereotype «ActivateRoles» can only be applied to an action stereotyped with

either «Granted» or «Forbidden».

context rbacUML : : Act ivateRole s inv :

( s e l f . base Act ion . getAppl i edStereotype ( ’rbacUML : : Granted ’ ) <> nu l l )

or ( s e l f . base Act ion . getAppl i edStereotype ( ’rbacUML : : Forbidden ’ ) <> nu l l )

B.1.5. WF At least one role must be activated from

ActivateRoles

If the «ActivateRoles» stereotype is applied on an action, then at least one role must

be activated using the «ActivateRoles» stereotype.

context rbacUML : : Act ivateRole s inv :

s e l f . rBACRole−>s i z e ( ) > 0
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B.1.6. WF ActivateRoles cannot violate DSoD constraints

If roles are activated through the «ActivateRoles» stereotype, then the union of these

roles with the set of roles activated in the user partition, minus the set of roles deactivated

through the «DeactivateRoles» stereotypes if it is applied, cannot contain two roles

that have a DSoD constraint between them.

context rbacUML : : Act ivateRole s inv :

( s e l f . rBACRole

−>union ( s e l f . base Act ion . i nPa r t i t i o n . extension RBACUser . rBACRole )−>asSet ( )

−>symmetr i cDi f f e rence ( i f ( s e l f . base Act ion . ex t en s i on Deac t i va t eRo l e s =

nu l l ) then Set{} else s e l f . base Act ion . ex t en s i on Deac t i va t eRo l e s .

rBACRole endif ) )

−>f o rA l l ( ro l e1 , r o l e 2 | r o l e 1 . dsod1−>exc ludes ( r o l e 2 ) )

B.1.7. WF At least one role must be deactivated from

DeactivateRoles

If the «DeactivateRoles» stereotype is applied on an action, then at least one role must

be deactivated using the «DeactivateRoles» stereotype.

context rbacUML : : Deact ivateRoles inv :

s e l f . rBACRole−>s i z e ( ) > 0

B.1.8. WF Deactivated roles must be assigned to the user

In an action stereotyped with «DeactivateRoles», any role deactivated through the

stereotype must also be assigned to the user corresponding to the activity partition in

which the action lies.
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context rbacUML : : Deact ivateRoles inv :

s e l f . base Act ion . i nPa r t i t i o n . extension RBACUser . a l i a sU s e r . rBACRole

−>union ( s e l f . base Act ion . i nPa r t i t i o n . extension RBACUser . a l i a sU s e r . rBACRole .

base C la s s . a l lPa r en t s ( ) . oclAsType ( Class ) . extension RBACRole )

−>i n c l ud e sA l l ( s e l f . rBACRole )

B.1.9. WF Deactivated roles must have been actived in the

user partition

In an action stereotyped with «DeactivateRoles», any role deactivated through the

stereotype has been activated through the «RBACUser» stereotype on the activity partition

in which the action lies.

context rbacUML : : Deact ivateRoles inv :

s e l f . base Act ion . i nPa r t i t i o n . extension RBACUser . rBACRole

−>i n c l ud e sA l l ( s e l f . rBACRole )

B.1.10. WF DeactivateRoles must be applied to an action

inside a user partition

The stereotype «DeactivateRoles» can only be applied to an action that lies in an

activity partition stereotyped with «RBACUser»

context rbacUML : : Deact ivateRoles inv :

s e l f . base Act ion . i nPa r t i t i o n . getAppl i edStereotype ( ’rbacUML : : RBACUser ’ ) <> nu l l
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B.1.11. WF DeactivateRoles can only be applied on a Granted

or a Forbidden action

The stereotype «DeactivateRoles» can only be applied to an action stereotyped with

either «Granted» or «Forbidden».

context rbacUML : : Deact ivateRoles inv :

( s e l f . base Act ion . getAppl i edStereotype ( ’rbacUML : : Granted ’ ) <> nu l l )

or ( s e l f . base Act ion . getAppl i edStereotype ( ’rbacUML : : Forbidden ’ ) <> nu l l )

B.1.12. WF Forbidden action must be inside a user partition

Actions stereotyped with «Forbidden» must lie in an activity partition stereotyped with

«RBACUser».

context rbacUML : : Forbidden inv :

s e l f . base Act ion . i nPa r t i t i o n . getAppl i edStereotype ( ’rbacUML : : RBACUser ’ ) <> nu l l

B.1.13. WF Forbidden action must have at least one

Restricted operation

Actions stereotyped with «Forbidden» must have associations to at least one operation

stereotyped with «Restricted».

context rbacUML : : Forbidden inv :

s e l f . operat ion−>e x i s t s ( op | op . getAppl i edStereotype ( ’rbacUML : : Re s t r i c t ed ’ ) <> nu l l )
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B.1.14. WF The same role cannot be both activated and

deactivated on the same Forbidden action

In an action stereotyped with «Forbidden», the same role can’t be both activated with

«ActivateRoles» and deactivated with «DeactivateRoles».

context rbacUML : : Forbidden inv :

( ( s e l f . ge tAppl i edStereotype ( ’rbacUML : : Act ivateRo le s ’ ) <> nu l l )

and ( s e l f . ge tAppl i edStereotype ( ’rbacUML : : Deact ivateRoles ’ ) <> nu l l ) )

implies s e l f . base Act ion . ex t en s i on Act i va t eRo l e s . rBACRole

−> i n t e r s e c t i o n ( s e l f . base Act ion . ex t en s i on Deac t i va t eRo l e s . rBACRole )

−>isEmpty ( )

B.1.15. WF the interaction must refer to exactly all the

operations, no more, no less

If an interaction is associated to an action stereotyped with «Forbidden», the set of

messages in the interaction must be the same as the set of operations in the action.

context rbacUML : : Forbidden inv :

s e l f . i n t e r a c t i o n <> nu l l implies

s e l f . i n t e r a c t i o n . allOwnedElements ( )

−>s e l e c t ( e l t | e l t . oc l IsTypeOf (Message ) ) . oclAsType (Message )

−>s e l e c t (msg | msg . getAppl i edStereotype ( ’rbacUML : : Re s t r i c t ed ’ ) <> nu l l ) .

s i gnature−>asSet ( )

= ( s e l f . ope ra t i on )

B.1.16. WF Granted action must be inside a user partition

Actions stereotyped with «Granted» must lie in an activity partition stereotyped with

«RBACUser».
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context rbacUML : : Granted inv :

s e l f . base Act ion . i nPa r t i t i o n . extension RBACUser <> nu l l

B.1.17. WF Action cannot be stereotyped with both Granted

and Forbidden

An action can’t be stereotyped with both «Granted» and «Forbidden».

context rbacUML : : Granted inv :

s e l f . base Act ion . getAppl i edStereotype ( ’rbacUML : : Forbidden ’ ) = nu l l

B.1.18. WF Forbidden action must have at least one

Restricted operation

Actions stereotyped with «Granted» must have associations to at least one operation

stereotyped with «Restricted».

context rbacUML : : Granted inv :

s e l f . operat ion−>e x i s t s ( op | op . getAppl i edStereotype ( ’rbacUML : : Re s t r i c t ed ’ ) <> nu l l )

B.1.19. WF The same role cannot be both activated and

deactivated on the same Granted action

In an action stereotyped with «Granted», the same role can’t be both activated with

«ActivateRoles» and deactivated with «DeactivateRoles».
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context rbacUML : : Granted inv :

( ( s e l f . ge tAppl i edStereotype ( ’rbacUML : : Act ivateRo le s ’ ) <> nu l l )

and ( s e l f . ge tAppl i edStereotype ( ’rbacUML : : Deact ivateRoles ’ ) <> nu l l ) )

implies s e l f . base Act ion . ex t en s i on Act i va t eRo l e s . rBACRole

−> i n t e r s e c t i o n ( s e l f . base Act ion . ex t en s i on Deac t i va t eRo l e s . rBACRole )−>

isEmpty ( )

B.1.20. WF the interaction must refer to exactly all the

operations, no more, no less

If an interaction is associated to an action stereotyped with «Granted», the set of

messages in the interaction must be the same as the set of operations in the action.

context rbacUML : : Granted inv :

s e l f . i n t e r a c t i o n <> nu l l implies

s e l f . i n t e r a c t i o n . allOwnedElements ( )

−>s e l e c t ( e l t | e l t . oc l IsTypeOf (Message ) ) . oclAsType (Message )

−>s e l e c t (msg | msg . getAppl i edStereotype ( ’rbacUML : : Re s t r i c t ed ’ ) <> nu l l ) .

s i gnature−>asSet ( )

= ( s e l f . ope ra t i on )

B.1.21. WF A class can only be stereotyped with one of

RBACUser, RBACRole or Permission

A class cannot have more than one of the «RBACUser», «RBACRole» and «Permission»

stereotypes.

context rbacUML : : Permiss ion inv :

s e l f . ge tAppl i edStereotype ( ’rbacUML : : RBACUser ’ ) = nu l l

and

s e l f . ge tAppl i edStereotype ( ’rbacUML : : RBACRole ’ ) = nu l l
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B.1.22. WF A class can only be stereotyped with one of

RBACUser, RBACRole or Permission (2)

A class cannot have more than one of the «RBACUser», «RBACRole» and «Permission»

stereotypes.

context rbacUML : : RBACRole inv :

s e l f . ge tAppl i edStereotype ( ’rbacUML : : RBACUser ’ ) = nu l l

and

s e l f . ge tAppl i edStereotype ( ’rbacUML : : Permiss ion ’ ) = nu l l

B.1.23. WF A class can only be stereotyped with one of

RBACUser, RBACRole or Permission (3)

A class cannot have more than one of the «RBACUser», «RBACRole» and «Permission»

stereotypes.

context rbacUML : : RBACUser inv :

s e l f . ge tAppl i edStereotype ( ’rbacUML : : RBACRole ’ ) = nu l l

and

s e l f . ge tAppl i edStereotype ( ’rbacUML : : Permiss ion ’ ) = nu l l

B.1.24. WF A user cannot be assigned two roles if there is an

SSoD constraint between them

If there is an SSoD constraint between two roles, they cannot be both assigned to a user

context rbacUML : : RBACUser inv :

s e l f . rBACRole

−>union ( s e l f . rBACRole . base Class−>asSet ( ) . a l lPa r en t s ( ) . oclAsType ( Class ) .

extension RBACRole )−>asSet ( )

−>f o rA l l ( r l e1 , r l e 2 | r l e 1 . ssod1−>i n c l ud e s ( r l e 2 ) = f a l s e )
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B.1.25. WF RBACUser applied on a user partition must have

exactly one alias

If the stereotype «RBACUser» is applied on an activity partition, it must have exactly

one alias association.

context rbacUML : : RBACUser inv :

( s e l f . b a s e Ac t i v i t yPa r t i t i o n <> nu l l )

implies ( s e l f . a l i a sUse r−>s i z e ( ) = 1 and s e l f . a l i a sU s e r

−>f o rA l l ( base C la s s <> nu l l ) )

B.1.26. WF RBACUser applied on a class cannot have any

alias

If the stereotype «RBACUser» is applied on a class, it cannot have any alias association.

context rbacUML : : RBACUser inv :

( s e l f . ba se C la s s <> nu l l )

implies ( s e l f . a l i a sUse r−>s i z e ( ) = 0)

B.1.27. WF A user partition and its corresponding user must

have the same name

If an activity partition is stereotyped with «RBACUser», then it must have the same name

as the class stereotyped with «RBACUser» and associated to the partition through the

alias association.

context rbacUML : : RBACUser inv :

( s e l f . b a s e Ac t i v i t yPa r t i t i o n <> nu l l )

implies ( s e l f . a l i a sU s e r

−>f o rA l l ( base C la s s . name = s e l f . b a s e Ac t i v i t yPa r t i t i o n . name) )
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B.1.28. WF Roles activated on a user partition cannot break a

DSoD constraint

The roles activated on a user partition cannot break any DSoD constraint. Therefore, if

two roles participate in a DSoD constraint, they cannot be both activated on the same

user partition.

context rbacUML : : RBACUser inv :

s e l f . rBACRole−>f o rA l l ( ro l e1 , r o l e 2 | r o l e 1 . dsod1−>exc ludes ( r o l e 2 ) )

B.1.29. WF Roles activated on a user partition must be

assigned to the corresponding user

In an activity partition stereotyped with «RBACUser», all the associations to roles must

be of roles that have been assigned to the partition’s corresponding user.

context rbacUML : : RBACUser inv :

( s e l f . b a s e Ac t i v i t yPa r t i t i o n <> nu l l )

implies ( s e l f . a l i a sU s e r . rBACRole

−>union ( s e l f . a l i a sU s e r . rBACRole . base Class−>asSet ( ) . a l lPa r en t s ( ) .

oclAsType ( Class ) . extension RBACRole )−>asSet ( )

−>i n c l ud e sA l l ( s e l f . rBACRole . base C la s s . extension RBACRole ) )

B.1.30. WF A message referring to Restricted operations must

be Restricted

All messages referring to operations stereotyped with «Restricted» must themselves be

stereotyped with «Restricted».



rbacUML OCL Constraints 229

context rbacUML : : Re s t r i c t ed inv :

( s e l f . base Operat ion <> nu l l ) implies ( s e l f . al lOwningPackages ( )−>s e l e c t ( pkg | pkg .

al lOwningPackages ( )−>isEmpty ( ) ) . allOwnedElements ( )−>s e l e c t ( e l t | e l t . oc l IsTypeOf (

Message ) ) . oclAsType (Message )

−>s e l e c t (msg | msg . getAppl i edStereotype ( ’rbacUML : : Re s t r i c t ed ’ ) = nu l l ) .

oclAsType (Message ) . s i gna tu r e . oclAsType ( Operation )

−>s e l e c t ( op | op = s e l f )−>s i z e ( ) = 0)

B.1.31. WF A Restricted operation must be assigned at least

one permission

An operation stereotyped with «Restricted» must have at least one association to a

permission.

context rbacUML : : Re s t r i c t ed inv :

( s e l f . base Operat ion <> nu l l ) implies ( s e l f . permiss ion−>s i z e ( ) > 0)

B.1.32. WF A Restricted message must refer to a Restricted

operation

Messages stereotyped with «Restricted» must refer to operations stereotyped with

«Restricted».

context rbacUML : : Re s t r i c t ed inv :

( s e l f . base Message <> nu l l )

implies

( s e l f . base Message . s i gna tu r e . ge tAppl i edStereotype ( ’rbacUML : : Re s t r i c t ed ’ ) <> nu l l )
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B.2. Verification

B.2.1. VER Forbidden verification

If an action is stereotyped with «Forbidden», then the roles activated by the user

cannot give him/her enough permissions to perform all of the «Restricted» operations

referenced by the action.

context rbacUML : : Forbidden inv :

s e l f . base Act ion . i nPa r t i t i o n . extension RBACUser . rBACRole

−>union ( s e l f . base Act ion . i nPa r t i t i o n . extension RBACUser . a l i a sU s e r . rBACRole .

base C la s s . a l lPa r en t s ( ) . oclAsType ( Class ) . extension RBACRole )

−>union ( i f ( s e l f . base Act ion . ex t en s i on Act i va t eRo l e s = nu l l ) then Set{} else

s e l f . base Act ion . ex t en s i on Act i va t eRo l e s . rBACRole endif )−>asSet ( )

−>symmetr i cDi f f e rence ( i f ( s e l f . base Act ion . ex t en s i on Deac t i va t eRo l e s = nu l l )

then Set{} else s e l f . base Act ion . ex t en s i on Deac t i va t eRo l e s . rBACRole endif ) .

permis s ion

−>i n c l ud e sA l l ( s e l f . ope ra t i on . e x t en s i on Re s t r i c t ed . permiss ion−>asSet ( ) ) = f a l s e

B.2.2. VER Granted verification

If an action is stereotyped with «Granted», then the roles activated by the user must give

him/her enough permissions to perform all of the «Restricted» operations referenced

by the action.

context rbacUML : : Granted inv :

s e l f . base Act ion . i nPa r t i t i o n . extension RBACUser . rBACRole

−>union ( s e l f . base Act ion . i nPa r t i t i o n . extension RBACUser . a l i a sU s e r . rBACRole .

base C la s s . a l lPa r en t s ( ) . oclAsType ( Class ) . extension RBACRole )

−>union ( i f ( s e l f . base Act ion . ex t en s i on Act i va t eRo l e s = nu l l ) then Set{} else

s e l f . base Act ion . ex t en s i on Act i va t eRo l e s . rBACRole endif )−>asSet ( )

−>symmetr i cDi f f e rence ( i f ( s e l f . base Act ion . ex t en s i on Deac t i va t eRo l e s = nu l l )

then Set{} else s e l f . base Act ion . ex t en s i on Deac t i va t eRo l e s . rBACRole endif ) .

permis s ion

−>i n c l ud e sA l l ( s e l f . ope ra t i on . e x t en s i on Re s t r i c t ed . permiss ion−>asSet ( ) )
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B.3. Satisfiability

B.3.1. SAT A Granted action should be executable by at least

one user

Detects actions stereotyped with «Granted» that no user, with all their roles activated,

can perform.

context rbacUML : : Granted inv :

s e l f . getNearestPackage ( ) . allOwnedElements ( )

−>s e l e c t ( usr | usr . oc l IsTypeOf ( Class ) and usr . ge tAppl i edStereotype ( ’rbacUML : :

RBACUser ’ ) <> nu l l ) . oclAsType ( Class )

−>e x i s t s ( usr | usr . oclAsType ( Class ) . extension RBACUser . rBACRole . permiss ion−>

asSet ( )

−>union ( usr . oclAsType ( Class ) . extension RBACUser

. rBACRole . base C la s s . a l lPa r en t s ( ) . oclAsType

( Class ) . extension RBACRole . permiss ion−>

asSet ( ) )

−>i n c l ud e sA l l ( s e l f . ope ra t i on . e x t en s i on Re s t r i c t ed . permiss ion−>asSet ( ) ) )
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B.3.2. SAT A Forbidden action should not be executable by

every user

Detects actions stereotyped with «Forbidden» that every user could perform.

context rbacUML : : Forbidden inv :

s e l f . getNearestPackage ( ) . allOwnedElements ( )

−>s e l e c t ( usr | usr . oc l IsTypeOf ( Class ) and usr . ge tAppl i edStereotype ( ’rbacUML : :

RBACUser ’ ) <> nu l l ) . oclAsType ( Class )

−>f o rA l l ( usr | usr . oclAsType ( Class ) . extension RBACUser . rBACRole . permiss ion−>

asSet ( )

−>union ( usr . oclAsType ( Class ) .

extension RBACUser . rBACRole .

base C la s s . a l lPa r en t s ( ) . oclAsType (

Class ) . extension RBACRole .

permiss ion−>asSet ( ) )

−>i n c l ud e sA l l ( s e l f . ope ra t i on . e x t en s i on Re s t r i c t ed . permiss ion−>asSet ( ) ) )

B.3.3. SAT Restricted operations should be executable by at

least one user

Detects operations stereotyped with «Restricted» that no user can perform, because

they require too many permissions.

context rbacUML : : Re s t r i c t ed inv :

s e l f . al lOwningPackages ( )−>s e l e c t ( pkg | pkg . al lOwningPackages ( )−>isEmpty ( ) ) .

allOwnedElements ( )

−>s e l e c t ( usr | usr . oc l IsTypeOf ( Class ) and usr . ge tAppl i edStereotype ( ’rbacUML : :

RBACUser ’ ) <> nu l l ) . oclAsType ( Class )

−>e x i s t s ( usr | usr . oclAsType ( Class ) . extension RBACUser . rBACRole . permiss ion−>

asSet ( )

−>union ( usr . oclAsType ( Class ) . extension RBACUser . rBACRole .

base C la s s . a l lPa r en t s ( ) . oclAsType ( Class ) . extension RBACRole

. permiss ion−>asSet ( ) )

−>i n c l ud e sA l l ( s e l f . pe rmis s ion ) )
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B.4. Completeness

B.4.1. COMP permission should be assigned to at least one

role

Finds permissions that have not been assigned to any role.

context rbacUML : : Permiss ion inv :

s e l f . al lOwningPackages ( )−>s e l e c t ( pkg | pkg . al lOwningPackages ( )−>isEmpty ( ) ) .

allOwnedElements ( )

−>s e l e c t ( r l | r l . oc l IsTypeOf ( Class ) and r l . ge tAppl i edStereotype ( ’rbacUML : :

RBACRole ’ ) <> nu l l ) . oclAsType ( Class )

−>s e l e c t ( r l | r l . extension RBACRole . permiss ion−>e x i s t s ( per | per . base C la s s .

name = s e l f . name) )

−>s i z e ( ) > 0

B.4.2. COMP permission should be used by at least one

Restricted operation

Finds permissions that are not used by any «Restricted» operation.

context rbacUML : : Permiss ion inv :

s e l f . al lOwningPackages ( )−>s e l e c t ( pkg | pkg . al lOwningPackages ( )−>isEmpty ( ) ) .

allOwnedElements ( )

−>s e l e c t ( op | op . oclIsTypeOf ( Operation ) and op . getAppl i edStereotype ( ’rbacUML : :

Re s t r i c t ed ’ ) <> nu l l ) . oclAsType ( Operation )

−>s e l e c t ( op | op . e x t en s i on Re s t r i c t ed . permiss ion−>e x i s t s ( base C la s s . name = s e l f

. name) )

−>s i z e ( ) > 0
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B.4.3. COMP A role should be assigned at least one direct

permission

Finds roles that have not been assigned any permissions.

context rbacUML : : RBACRole inv :

s e l f . permiss ion−>s i z e ( ) > 0

B.4.4. COMP A role should be assigned to at least one user

Finds roles that have not been assigned to any user.

context rbacUML : : RBACRole inv :

s e l f . al lOwningPackages ( )−>s e l e c t ( pkg | pkg . al lOwningPackages ( )−>isEmpty ( ) ) .

allOwnedElements ( )

−>s e l e c t ( usr | usr . oc l IsTypeOf ( Class ) and usr . ge tAppl i edStereotype ( ’rbacUML : :

RBACUser ’ ) <> nu l l ) . oclAsType ( Class )

−>s e l e c t ( usr | usr . extension RBACUser . rBACRole−>e x i s t s ( r l | r l . ba se C la s s . name

= s e l f . name) )

−>s i z e ( ) > 0

B.4.5. COMP A user should be assigned at least one role

Finds users that have not been assigned any role.

context rbacUML : : RBACUser inv :

( s e l f . ba se C la s s <> nu l l ) implies ( s e l f . rBACRole−>s i z e ( ) > 0)



rbacUML OCL Constraints 235

B.5. Coverage

B.5.1. COV Restricted operations should be used by at least

one action

Finds «Restricted» operations that are not used in any action.

context rbacUML : : Re s t r i c t ed inv :

s e l f . base Operat ion <> nu l l implies

s e l f . al lOwningPackages ( )−>s e l e c t ( pkg | pkg . al lOwningPackages ( )−>isEmpty ( ) ) .

allOwnedElements ( )

−>s e l e c t ( act | act . oc l I sKindOf ( Action ) and act . ge tAppl i edStereotype ( ’rbacUML : :

Granted ’ ) <> nu l l ) . oclAsType ( Action )

−>s e l e c t ( act | act . extens ion Granted . operat ion−>e x i s t s (name = s e l f . name) )

−>union (

s e l f . al lOwningPackages ( )−>s e l e c t ( pkg | pkg . al lOwningPackages ( )−>isEmpty ( ) ) .

allOwnedElements ( )

−>s e l e c t ( act | act . oc l I sKindOf ( Action ) and act . ge tAppl i edStereotype ( ’rbacUML : :

Forbidden ’ ) <> nu l l ) . oclAsType ( Action )

−>s e l e c t ( act | act . extens ion Forb idden . operat ion−>e x i s t s (name = s e l f . name) )

)−>s i z e ( ) > 0

B.5.2. COV A user should be represented on at least one user

partition

Finds users that are not referenced in any activity partition.

context rbacUML : : RBACUser inv :

s e l f . ba se C la s s <> nu l l implies

s e l f . al lOwningPackages ( )−>s e l e c t ( pkg | pkg . al lOwningPackages ( )−>isEmpty ( ) ) .

allOwnedElements ( )

−>s e l e c t ( act | act . oc l I sKindOf ( Ac t i v i t yPa r t i t i o n ) and act . ge tAppl i edStereotype (

’rbacUML : : RBACUser ’ ) <> nu l l ) . oclAsType ( Ac t i v i t yPa r t i t i o n )

−>s e l e c t ( act | ( act . name = s e l f . name) and ( act . extension RBACUser . a l i a sU s e r .

base C la s s = s e l f ) )

−>s i z e ( ) > 0
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B.6. Redundancy

B.6.1. RED Redundant roles detected

Finds redundant roles. Roles are redundant if they have the same parents, the same

children, the same permissions and the same SSoD and DSoD constraints.

context rbacUML : : RBACRole inv :

s e l f . al lOwningPackages ( )−>s e l e c t ( pkg | pkg . al lOwningPackages ( )−>isEmpty ( ) ) .

allOwnedElements ( )

−>s e l e c t ( r l | r l . oc l IsTypeOf ( Class ) and r l . ge tAppl i edStereotype ( ’rbacUML : :

RBACRole ’ ) <> nu l l ) . oclAsType ( Class ) . extension RBACRole

−>s e l e c t ( r l | r l . permiss ion−>i n c l ud e sA l l ( s e l f . pe rmis s ion )

and r l . permiss ion−>s i z e ( ) = s e l f . permiss ion−>s i z e ( )

and r l . ba se C la s s . name <> s e l f . ba se C la s s . name)

−>s e l e c t ( r l | r l . a l lPa r en t s ( ) = s e l f . a l lPa r en t s ( ) )

−>s e l e c t ( r l | r l . ssod1 = s e l f . ssod1 )

−>s e l e c t ( r l | r l . dsod1 = s e l f . dsod1 )

−>s i z e ( ) = 0

B.6.2. RED Redundant users detected

Finds redundant users. Users are redundant if they have the same roles.

context rbacUML : : RBACUser inv :

s e l f . rBACRole−>s i z e ( ) > 0 and s e l f . ba se C la s s <> nu l l implies

s e l f . al lOwningPackages ( )−>s e l e c t ( pkg | pkg . al lOwningPackages ( )−>isEmpty ( ) ) .

allOwnedElements ( )

−>s e l e c t ( usr | usr . oc l IsTypeOf ( Class ) and usr . ge tAppl i edStereotype ( ’rbacUML : :

RBACUser ’ ) <> nu l l ) . oclAsType ( Class ) . extension RBACUser

−>s e l e c t ( usr | usr . rBACRole−>i n c l ud e sA l l ( s e l f . rBACRole )

and usr . rBACRole−>s i z e ( ) = s e l f . rBACRole−>s i z e ( )

and usr . base C la s s . name <> s e l f . ba se C la s s . name)

−>s i z e ( ) = 0
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C.1. Performance Evaluation Details

This section provides detailed tables for our performance analysis in Section 5.4. For each

model size, 5 different models have been generated. The results were then aggregated by

taking, for each model size, the average evaluation time. Here, we provide the data used

for Figs 5.1 and 5.2.

Table C.1 details the evaluation time of verified models, Table C.2 details the evaluation

time of malformed models, i.e. those that have failed the evaluation of well-formedness

queries, and Table C.3 details the evaluation time of unverified models, i.e. models that

have passed the well-formedness queries, but failed the verification queries. In those

three tables, size is the size of the model (number of elements + number of associations),

Full is the evaluation time of all the rbacUML queries in one pass, WF is the evaluation

time of well-formedness queries only, VER is the evaluation time of verification queries

only, SAT is the evaluation time of satisfiability constraints only, COV is the evaluation

time of coverage queries only, COMP is the evaluation time of completeness constraints

only, RED is the evaluation time of redundancy constraints only, SUM is the sum of the

evaluation times of WF, VER,SAT, COV, COMP and RED, and finally, LAZY is the

evaluation time of all the rbacUML queries using the lazy evaluation strategy.

Table C.1.: Evaluation times (in seconds) for verified models

Size Full WF VER SAT COV COMP RED SUM LAZY

221 27.992 11.525 2.977 4.126 2.474 3.851 3.315 28.270 23.975

433 26.547 10.867 2.639 3.844 2.451 3.892 3.300 26.994 22.973

645 18.637 7.271 1.900 2.953 1.818 2.916 2.404 19.265 16.123

837 19.857 7.491 1.632 3.012 2.037 3.518 2.745 20.438 17.163

1033 21.290 7.800 1.196 3.026 2.320 4.295 3.187 21.826 18.572

2057 30.110 7.752 1.224 5.728 3.240 8.122 4.762 30.830 24.767

3074 44.378 7.622 1.231 10.194 4.728 14.511 7.357 45.644 34.873

4116 69.415 9.637 1.531 16.949 7.296 24.126 11.556 71.097 53.432

6168 134.108 12.627 1.922 35.267 13.900 50.458 22.644 136.819 100.211

8211 214.269 10.557 1.552 59.711 21.645 85.316 36.249 215.033 154.812
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Table C.2.: Evaluation times (in seconds) for malformed models

Size Full WF VER SAT COV COMP RED SUM LAZY

222 15.486 4.026 1.062 1.578 1.018 1.443 1.342 10.471 6.229

429 15.603 3.948 0.979 1.558 1.060 1.573 1.392 10.512 6.170

638 12.437 2.862 0.702 1.317 0.936 1.474 1.215 8.508 4.600

836 13.884 3.231 0.517 1.411 1.136 2.011 1.527 9.835 4.934

1039 12.261 2.511 0.456 1.613 1.068 2.127 1.472 9.249 5.249

2066 23.543 3.190 0.542 4.133 2.023 5.767 3.076 18.733 4.811

3090 38.925 3.419 0.588 8.213 3.376 11.441 5.447 32.486 5.069

4115 61.505 4.233 0.704 14.018 5.356 19.488 8.865 52.665 6.237

6156 122.027 4.878 0.750 30.415 10.761 42.340 18.270 107.416 6.344

8212 210.898 7.030 1.003 52.865 18.275 74.372 31.620 185.167 9.604

Table C.3.: Evaluation times (in seconds) for well-formed but unverified models

Size Full WF VER SAT COV COMP RED SUM LAZY

221 27.754 11.532 2.978 4.096 2.428 3.830 3.284 28.151 27.877

433 27.422 11.271 2.621 3.905 2.527 4.044 3.405 27.775 27.552

645 30.157 12.162 3.149 4.623 2.686 4.419 3.612 30.653 30.370

837 29.178 11.526 2.417 4.301 2.788 4.791 3.787 29.612 29.366

1033 27.081 10.340 1.564 3.934 2.776 5.023 3.815 27.455 27.183

2057 38.823 11.505 1.763 7.838 3.842 8.859 5.552 39.360 39.190

3074 45.507 7.957 1.257 12.832 4.355 13.134 6.780 46.316 45.901

4116 72.536 10.761 1.666 21.856 6.827 21.881 10.843 73.836 73.151

6168 132.454 11.000 1.666 45.517 12.042 44.321 20.031 134.579 133.296

8211 217.618 11.745 1.699 78.667 19.303 75.391 32.892 219.699 218.322
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C.2. Generated Model

We reproduce in this section a small model generated by our model generator [4]. Below is

the configuration we passed to the code generator to create the model. Many parameters

can be set, and the model generator will aim to create a model with the specified number

of elements and associations.

<models>

<model name=”l i n0001”>

<wel l−formedness en fo rced=”true ” />

<v e r i f i c a t i o n en fo rced=”true ” />

<completeness en fo rced=”true ” />

<coverage en fo rced=”true ” />

<redundancy en fo rced=”true ” />

< s a t i s f i a b i l i t y en fo rced=”true ” />

<use r s num=”10”>

<r o l e s min=”5” max=”5”/>

</users>

<r o l e s num=”10”>

<ssod min=”0” max=”0” />

<dsod min=”0” max=”0” />

<h i e r a r c h i e s min=”0” max=”0” />

<permi s s i ons min=”5” max=”5” />

</ro l e s>

<permi s s i ons num=”10”>

</permiss ions>

<p a r t i t i o n s num=”3” />

<a c t i on s num=”10” granted=”5” forb idden=”5”>

<ope ra t i on s min=”5” max=”5” />

<r e s t r i c t e d−ope ra t i on s min=”5” max=”5” />

</act ions>

<ope ra t i on s num=”10” r e s t r i c t e d =”10”>

<permi s s i ons min=”5” max=”5” />

</operat ions>

<c l a s s e s num=”3” />

<a c t i v i t i e s num=”1” />

</model>

</models>
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Table C.4.: List of inter-diagram associations for the randomly generated model

Origin End

restrictedOperation0 permissions 1, 2, 3, 8 and 10

restrictedOperation1 permissions 2, 3, 5, 6 and 8

restrictedOperation2 permissions 1, 2, 6, 7 and 9

restrictedOperation3 permissions 3, 4, 5, 6 and 8

restrictedOperation4 permissions 1, 3, 5, 6 and 8

restrictedOperation5 permissions 1, 2, 4, 7 and 8

restrictedOperation6 permissions 4, 7, 8, 9 and 10

restrictedOperation7 permissions 3, 4, 6, 7 and 9

restrictedOperation8 permissions 1, 2, 4, 6 and 7

restrictedOperation9 permissions 2, 3, 6, 7 and 10

User4 (partition) no roles

User5 (partition) roles 1, 2, 4, 6 and 7

User9 (partition) roles 4 and 9

GrantedAction1 «Restricted» operations 2, 4 and 6

GrantedAction4 «Restricted» operations 3 and 7

ForbiddenAction4 «Restricted» operations 7 and 9

The model is made of 10 users, 10 roles and 10 permissions. It actually is one of

the models we used for the performance evaluation in Section 5.4. Elements are named

according to their type and a counter. Fig. C.1 is the access control diagram, Fig. C.2 is

the class diagram, and Fig. C.3 is the activity diagram.

The associations between the diagram are not visible. We have grouped them in

Table C.4.
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Figure C.1.: Access Control diagram for a small, randomly generated model
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Figure C.2.: Class diagram for a small, randomly generated model

Figure C.3.: Activity diagram for a small, randomly generated model
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