
XMLText: From XML Schema to Xtext

Patrick Neubauer, Alexander Bergmayr, Tanja Mayerhofer,
Javier Troya, and Manuel Wimmer

Business Informatics Group
Vienna University of Technology, Austria

{neubauer,bergmayr,mayerhofer,troya,wimmer}@big.tuwien.ac.at

Abstract
A multitude of Domain-Specific Languages (DSLs) have
been implemented with XML Schemas. While such DSLs
are well adopted and flexible, they miss modern DSL editor
functionality. Moreover, since XML is primarily designed as
a machine-processible format, artifacts defined with XML-
based DSLs lack comprehensibility and, therefore, maintain-
ability. In order to tackle these shortcomings, we propose
a bridge between the XML Schema Definition (XSD) lan-
guage and text-based metamodeling languages. This bridge
exploits existing seams between the technical spaces XML-
ware, modelware, and grammarware as well as closes iden-
tified gaps. The resulting approach is able to generate Xtext-
based editors from XSDs providing powerful editor func-
tionality, customization options for the textual concrete syn-
tax style, and round-trip transformations enabling the ex-
change of data between the involved technical spaces.

We evaluate our approach by a case study on TOSCA,
which is an XML-based standard for defining Cloud deploy-
ments. The results show that our approach enables bridging
XMLware with modelware and grammarware in several
ways going beyond existing approaches and allows the auto-
mated generation of editors that are at least equivalent to
editors manually built for XML-based languages.

Keywords:

 DSL, Language Engineering, Markup Language, Language
Modernization, XSD, Xtext

1. Introduction
XML has been primarily designed as a machine-process-
ible format following the fixed angle-bracket syntax. While
for prominent XML-based languages, such as OASIS’s TO-
SCA [8], advanced editors have been handcrafted, for others,
like Artificial Intelligence Markup Language (AIML) [19],
no dedicated editor is available. In the latter case, language
users are bound to the angle-bracket syntax that is verbose
and complex in terms of human-comprehension and there-
fore impedes maintainability [3].

Tackling these major limitations requires breaking out
of inflexible XML syntax by providing support to con-
struct a fully-customizable concrete syntax and language
workbench. While state-of-the-art Model-Driven Language
Engineering (MDLE) frameworks, such as Xtext [9], al-
low the development of Domain-Specific Modeling Lan-
guages (DSMLs) as well as accompanying customized con-
crete syntax and rich language workbenches, manually re-
creating existing XML-based languages with such frame-
works is a complex, error-prone, and time-consuming task
requiring language-engineering skills. Additionally, model-
ing languages that ought to replace XML-based languages
leave behind backward-compatibility issues with the usually
comprehensive set of applications built for the XML-based
language.

To overcome these issues, our approach—the Model-
Driven Language Modernization (MDLM) approach which
is instantiated through the XML to Xtext (XMLText) frame-
work1—facilitates the modernization of XSD-based lan-
guages with modelware and grammarware [14] by (i) trans-
forming existing XSD-based languages to metamodels, (ii)
adapting those metamodels to facilitate the production of
effective language grammars, (iii) generating both custom-
ized language grammars and workbenches from the adapted
metamodels, and (iv) enabling round-trip transformations
between the original XSD-based language and the modern-
ized DSML by generic serializers and parsers.

1 Access to XMLText is provided on the paper’s website at http://
xmltext.big.tuwien.ac.at.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by idUS. Depósito de Investigación Universidad de Sevilla

https://core.ac.uk/display/157762416?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

By supporting round-trip transformations, our frame-
work inherently merges benefits of both XMLware and
grammarware, namely machine-processibility and re-use of
extensive XMLware applications of the former and high-
customizability, enabling to target human-comprehensibility
and therefore maintainability, of the latter. XMLText is eval-
uated based on a reproduction study on the XML-based lan-
guage TOSCA, in particular, the framework’s ability to pro-
duce complete DSMLs from XML Schemas.

The remainder of this paper is organized as follows. Sec-
tion 2 provides an overview of gaps between XMLware,
modelware, and grammarware as exposed by our case study.
Section 3 introduces the MDLM approach as well as the
XMLText framework. Section 4 evaluates the findings based
on a reproductive study concerning an industrial strength
language. Finally, Section 5 discusses related work before
Section 6 concludes with a perspective on future work.

2. Gaps between XMLware, Modelware, and
Grammarware

MDLE frameworks like Xtext accelerate the development
of DSMLs and DSML environments to a great extent. They
cover all aspects of a textual language infrastructure, includ-
ing the default generation of a lexer, parser, as well as an ed-
itor featuring rich editing capabilities, such as, syntax high-
lighting, error indication, and content assisting. At the same
time, they provide language engineers with the power to
completely customize the look-and-feel, i.e., the textual con-
crete syntax, of DSMLs and therewith to construct DSMLs
tailored to optimize human-comprehensibility—a customiz-
ation not possible in XML due to its fixed concrete syntax.

For the purpose of modernizing XSD-based languages
by transforming them to metamodel-based DSLs, we seek
for a fully automated approach that produces from a given
XSD a language grammar that fulfills our needs for human-
comprehensibility. As we describe in the next paragraphs,
we build upon existing tools that are integrated in EMF,
namely the EMF XSD Importer and the Xtext Grammar Gen-
erator. First, the EMF XSD Importer is employed to pro-
duce an Ecore Metamodel from an existing XML Schema.
Secondly, the Ecore Metamodel is used as input for the Xtext
Grammar Generator, which transforms it to a corresponding
Xtext Grammar as well as to a corresponding Xtext Work-
bench. However, our investigations have shown that chaining
these tools together (into what is from now on referred to as
Default Transformation Chain) leaves many gaps between
the technical spaces of XMLware, modelware, and gramm-
ware open.

In the next paragraphs we dig into specific gaps dis-
covered through a case study on the TOSCA cloud topo-
logy and orchestration language. Version 1.0 of the TO-
SCA XSD2 contains 791 lines of code, 99 complex types,

2 http://docs.oasis-open.org/tosca/TOSCA/v1.0/os/schemas/

TOSCA-v1.0.xsd.

11 simple types, 54 global types, 10 wildcards, 2 abstract
types, and 2 global elements. Table 1 depicts an overview
of XML Schema concepts currently processed by the De-
fault Transformation Chain focusing on language concepts
used in typical TOSCA instances. The column “Supported”
denotes whether a particular XML Schema concept can be
transformed to a DSML grammar rule able to represent the
original XML Schema concept. In the following we summar-
ize the concepts which are currently unsupported by the De-
fault Transformation Chain.

XML Schema
concepts Definition Supported Notes

Element xs:element Grammar rule is created

Attribute xs:attribute Feature in grammar rule is created

Containment (through nesting) Grammar rule is created and rule call
stated

Mixed content mixed="true" Ecore feature map is neglected in
grammar generation

Wildcard xs:any,
xs:anyAttribute

Ecore feature map is neglected in
grammar generation

Restriction xs:restriction Different interpretations

Data type type="xs:string",
type="..."

Placeholder terminal and a to-do
comment replace data types

Identifier and identifier
reference

type="xs:ID",
type="xs:IDREF"

Placeholder terminal replaces identifier
value

Table 1. Overview of XML Schema language concepts and
their support by the Default Transformation Chain

Gap 1: Mixed Content and Wildcards. XML Schema al-
lows to define mixed complex type elements, i.e., allowing
character data to appear within the body of the element. Fur-
thermore, the use of xs:any (cf. line 4 in Listing 1), i.e., a
wildcard element, allows to specify any type of markup con-
tent in XML instances (cf. line 3-4 in Listing 2). The EMF
XSD Importer translates such types to metaclasses contain-
ing feature maps that represent ambiguous language con-
cepts whose handling is delegated to the underlying parser
and serializer implementations. However, since the Xtext
Grammar Generator neglects the occurrence of such impli-
citly modeled language concepts, they become unavailable
at grammar level as well as on instance level.

1 <x s : e l e m e n t name="Properties" minOccurs="0">
2 <xs :complexType>
3 <x s : s e q u e n c e>
4 <x s : a n y namespace="##other" p r o c e s s C o n t e n t s ="

↪→lax" />
5 </ x s : s e q u e n c e>
6 </ xs :complexType>
7 </ x s : e l e m e n t>

Listing 1. TOSCA XML Schema (excerpt)

Gap 2: Data Types and Restrictions. The W3C Re-
commendation on XML Schema data types [6] describes a
set of built-in data types for different kinds of data, such
as numbers, dates, strings, identifiers, and references. The
EMF XSD Importer successfully transforms XML Schema
data types to custom data types mapped to Java types at
metamodel level. However, the Xtext Grammar Generator
transforms any metamodel data type to a placeholder ter-
minal symbol replacing the actual data type. Therefore,

the Xtext Grammar created by the Default Transformation
Chain does not allow to construct instances able to store val-
ues for variables of any kind of data type. Moreover, this lim-
itation also impacts XML Schema restrictions. For example,
in case of a restricted XSD attribute of type xs:string,
even if we correct the type definition of the resulting gram-
mar attribute to the STRING terminal rule provided by Xtext,
the attribute created in the Xtext grammar is interpreted dif-
ferently: a String in XML Schema and Ecore is interpreted
by excluding its surrounding quotes and in Xtext it is inter-
preted by including its surrounding quotes.

Gap 3: Identifiers and Identifier References. The EMF
XSD Importer transforms attributes of type xs:ID (cf. id
attributes in Listing 2) to Ecore attributes of type java.

lang.String having set the ID property to true. Attributes
of type xs:IDREF are also transformed to Ecore attributes
instead of references. Hence, even if the gap related to data
types is closed, the Xtext Grammar Generator still handles
xs:IDREF equally to attributes – capable of holding primit-
ive values not referring to other elements.

1 <nodeTempla te i d ="ApacheWebServer" t y p e ="
↪→ApacheWebServerType" name="Apache Web Server">

2 <p r o p e r t i e s i d ="ApacheWebServerProperties">
3 <numCpus>1</ numCpus>
4 <memory>1024</ memory>
5 </ p r o p e r t i e s>
6 </ nodeTempla te>

Listing 2. TOSCA Moodle XML instance (excerpt)

Gap 4: Customizing Concrete Syntax. XML has been
primarily designed as a machine-processible format com-
posed of immutable concrete syntax. Therefore, users of
XML-based languages are bound to angle-bracket syntax
that is described as verbose and complex in terms of human-
comprehension and therefore impedes maintainability [3].

3. XMLText
Our approach proposes bridging XMLware, Modelware, and
Grammarware. Therefore, our goal is to provide a frame-
work that automatically modernizes XSD-based languages
to metamodel-based languages providing flexible syntax,
rich language workbenches, and model-based techniques
such as transformation, validation, and code generation. We
achieve this goal by improving the transformations of the
Default Transformation Chain as well as introducing new
transformations that overcome the issues discussed in Sec-
tion 2. Figure 1 depicts a conceptual overview of our XML
to Xtext (XMLText) framework. Details are discussed in the
following subsections.

Like in the Default Transformation Chain, the first step
is to transform a given XML Schema to an Ecore Meta-
model by employing the EMF XSD Importer 1 . In order
to tackle the issue of feature maps causing the production
of empty grammar rules, we adapt the Ecore Metamodel by
replacing feature maps with generic concrete constructs (cf.
2 in Figure 1). Next, the adapted metamodel is used as

Modeling Language

Ecore
Metamodel

Model API

Ecore Model1
(abstract syntax)

DSML Model1
(concrete syntax)

XML to Xtext Framework2

B

Markup Language

XML Schema

EMF XSD
Importer

1

XMLware

XML Instance1
A

Le
ge
nd

:

conforms
to

transformed
to

redefined
transformation

introduced
transformation

Modelware

Textual Modeling
LanguageXtext

Workbench

Xtext Grammar

Grammarware
Xtext

Grammar
Generator

3

Figure 1. Overview of the XMLText framework

input for generating the Xtext Grammar. However, to store
actual values for attributes we enhance the Xtext Grammar
Generator (cf. 3 in Figure 1) by creating, importing, and
referencing a library of data types. Moreover, we enable the
automated customization of the textual concrete syntax of
the target DSML by providing a configurable grammar rule
template.

For the adaptions of the Ecore Metamodel introduced by
the XMLText framework, it is necessary to customize exist-
ing transformations (cf. A in Figure 1) to act upon them
on instance level. Therefore, we customize (i) the deserial-
izer that reads XML Instances and creates in-memory Ecore
Model representations conforming to the adapted Ecore
Metamodel and (ii) the serializer that stores Ecore Models
as XML Instances. As a result of keeping the Xtext Gram-
mar coupled to the Ecore Metamodel, we are able to reuse
the existing transformation B . With the introduction of
transformation 2 and the adaption of the transformations
3 and A , our XMLText framework overcomes limitations

of existing bridges between XMLware and Grammarware
and thus allows an improved automated modernization of
XML-based languages to metamodel-based DSMLs. In the
following, we detail these transformations. Listing 3 shows
the result of applying the XMLText framework on the exem-
plary XML-based language instance used in Listing 2.

1 TNodeTemplate ApacheWebServer {
2 name : "Apache Web Server"
3 type : ApacheWebServerType
4 P r o p e r t i e s ApacheWebServerProperties {
5 NumCpus : "1"
6 Memory : "1024"
7 }
8 }

Listing 3. TOSCA Moodle DSML model (excerpt)

3.1 Mixed Content and Wildcards
The definition of mixed content as well as wildcards causes
the EMF XSD Importer to create an attribute of type EFe-

atureMapEntry. However, since the Xtext Grammar Gen-
erator neglects feature maps, such XSD concepts cannot be
represented with the resulting Xtext Grammar. To success-
fully cope with the occurrence of feature maps, we replace
them with generic concrete constructs for which grammar

rules are generated (cf. 2 in Figure 1). As shown in Fig-
ure 2, AnyGenericConstruct is an abstract class extended
by AnyGenericElement and AnyGenericText. Therefore,
a wildcard XML tag is represented by AnyGenericElement
and the text before or after an XML tag is represented
by AnyGenericText, thus, allowing mixed content. While
the former represents the notion of wildcards in terms of
xs:any, the latter allows representing mixed content ap-
pearing either prior or after an XML tag. The successful
application of this solution is depicted by lines 5-6 of List-
ing 3.

Properties

AnyGenericConstruct

AnyGenericElement AnyGenericText

AnyGenericAttribute
[0..*] anyGenericAttr

[0..*]childElem

[1..*]anyGenericElement

Figure 2. Explicit modeling structures replacing feature
maps

3.2 Data Types
As mentioned earlier, the Xtext Grammar Generator does
not create rules for metamodel data types. Therefore, both
the specification of terminal rules as well as calls to these
rules are missing. To overcome this limitation, we first con-
structed the Xtext Data Type Library defining terminal rules
for built-in XSD data types and secondly adapted transform-
ation 3 in Figure 1, such that these terminal rules are used
in the final language grammar.

3.3 Identifiers and Identifier References
In order to tackle the gap associated with identifiers and
identifier references, transformation 2 replaces model at-
tributes of type xs:IDREF with references to the metaclass
EObject, which is the uppermost class in the Ecore hier-
archy. While such a reference allows objects to reference
any kind of object, an xs:IDREF attribute can only refer-
ence elements having an xs:ID attribute. Thus, transforma-
tion 3 introduces a necessary refinement. In particular, for
an attribute of type xs:IDREF, we generate a grammar rule,
allowing only to refer to objects with xs:ID attribute. There-
fore, we define a new terminal rule (cf. example in Listing 4).
Hereby, the subsequently generated editor provides support
for referencing objects through content assist.

1 SourceElementType r e t u r n s SourceElementType
2 referencingAttribute=[ecore : : EObject | IDREF]) ? ;
3

4 IDREF r e t u r n s ecore : : EString :
5 ID ;

Listing 4. Xtext grammar for Identifiers and Identifier
References

3.4 Customizing Concrete Syntax
To overcome the major limitation imposed by inflexible
XML syntax, we provide an approach to construct a custom-
izable concrete syntax enabling the specification of human-

comprehensible and therefore increasingly maintainable in-
stances. Usually, changing the concrete syntax of a DSML
requires either to manually adapt the associated language
grammar or the Xtext Grammar Generator transformations.
The XMLText framework introduces a template mechanism
that allows to specify customizable template files defining
the concrete syntax of the target language. For example, as
depicted by Listing 5, VariableValueSpecification-
TerminalSymbol determines the terminal symbol used in
the language grammar to specify a variable’s value.

1 InterPackageReferenceTerminalSymbol = ’.’
2 VariableValueSpecificationTerminalSymbol = ’:’
3 PropertyMemberOpenTerminalSymbol = ’{’
4 PropertyMemberCloseTerminalSymbol = ’}’

Listing 5. Concrete syntax customization template file
(excerpt)

4. Evaluation
In the evaluation we aimed at answering the following re-
search question (RQ): Is the DSML generated by XMLText,
i.e., TOSCAXMLText, more complete as the DSML produced
by the Default Transformation Chain, i.e., TOSCADTC as
well as available hand-crafted DSLs?

Evaluation Procedure. First we operate the Default
Transformation Chain with the TOSCA XSD version 1.0
to generate TOSCADTC. Secondly, we employ the XML-
Text framework with the same TOSCA XSD to produce
TOSCAXMLText. Third, we gather language concepts and fea-
tures appearing in the TOSCA XSD-conforming Moodle
reference example [4], i.e., a complete definition of topology
and orchestration details for an open source course manage-
ment system, and correlate them with language concepts and
features available in (i) TOSCADTC, (ii) Cloudify DSL—the
only available textual DSL based on the TOSCA standard—,
and (iii) TOSCAXMLText.

Due to the fact that these languages have been implemen-
ted using different approaches, a common way of compar-
ing them in terms of their completeness to a common lan-
guage specification—the TOSCA standard [8] XSD version
1.0—is established. Therefore, our comparison takes into ac-
count language concepts and features occurring in the TO-
SCA XSD as well as in the individual language implement-
ations. In particular, to analyze the language concepts of the
Cloudify DSL, for which no language grammar is provided,
we examine its language parser3 on the existence of lan-
guage concepts and features as defined in the TOSCA XSD.
Furthermore, the unit of analysis in TOSCADTC as well as
TOSCAXMLText is represented by the DSML grammar.

Results. Table 2 depicts TOSCA language concepts and
features employed in the Moodle example and their avail-
ability in TOSCADTC, Cloudify DSL, and TOSCAXMLText. In
total the Moodle example uses 19 different language con-

3 The Cloudify DSL parser (version from April 1, 2015) examined during
this evaluation can be retrieved online at https://goo.gl/JzPL7U.

cepts and 35 features defined in the TOSCA XSD. When
looking for the availability of the combination of language
concepts and features in the different languages we found
that (i) TOSCADTC contains 17%, (ii) Cloudify DSL accom-
modates 37%, and (iii) TOSCAXMLText encloses 98% of the
TOSCA standard concepts and features found in the TOSCA
XSD-conforming Moodle instance.

Moodle
Example

TOSCADTC Cloudify DSL TOSCAXMLText

TOSCA
 Concepts 19 2 (~11%) 11 (~58%) 19 (100%)

TOSCA
 Features 35 7 (20%) 9 (~26%) 34 (~97%)

TOSCA
 Combined 54 9 (~17%) 20 (~37%) 53 (~98%)

Table 2. Availability of TOSCA standard concepts and fea-
tures in different languages based on the Moodle example

In summary, we conclude that (i) the language grammar
of TOSCADTC is missing essential concepts, such as, nodes
and relationships, and is therefore not sufficient to represent
the Moodle example. Furthermore, (ii) while the Cloudify
DSL parser contains more language concepts and features as
available in the TOSCADTC, it is still missing certain con-
cepts, such as, requirements and capabilities. Moreover, for
some missing concepts, such as TDefinitions, features
are scattered throughout different language concepts in the
Cloudify DSL. For example, their parser rule models.Plan
contains policies and relationships that are originally located
in TDefinitions. Therefore, the Cloudify DSL does not
fully conform to the TOSCA standard and hence requires the
user to map TOSCA XSD-conforming instances to Cloudify
DSL-conforming instances. Finally, (iii) TOSCAXMLText al-
lows to represent almost entirely the same information as de-
picted in the Moodle example. In more detail, TOSCAXMLText

is missing the representation of the xmlns feature which is
represented in the root element of the metamodel. Therefore,
except for the occurrence of xmlns, the XMLText frame-
work is able to perform round-trip transformations between
TOSCA XSD-conforming XML instances and modernized
TOSCA DSML-conforming models facilitating the re-use of
existing XMLware applications as well as advanced capab-
ilities of modern DSMLs.

Threats to Validity. We identified three threats of valid-
ity: (i) misinterpretation of language concepts and features
due to their naming differences in the Cloudify DSL and
the TOSCA standard, (ii) consideration of a subset of the
TOSCA language represented by the TOSCA Moodle ex-
ample, i.e., representing a subset of possible TOSCA lan-
guage concepts and features, and (iii) the consideration of
TOSCA as a representative for an XSD-based language, i.e.,
considering only a subset of all possible XML Schema lan-
guage concepts and features. As a countermeasure to (i), we
studied both the language concepts and features appearing
in the Cloudify DSL language parser as well as in the Cloud-
ify DSL language documentation. In order to act upon (ii),

we identified that several TOSCA-based examples can act
as a countermeasure. However, due to the lack of available
TOSCA-based open source examples, we did not act upon
it. Although, to encounter (iii) we selected TOSCA because
it is a relatively complex language which poses several chal-
lenges when turning it into a modern textual DSML, we can-
not claim any results outside of the TOSCA language.

5. Related Work
On a general level, we apply the ModelGen operator of
Atzeni et al. [2]. This operator defines a general pattern
which uses bridges on the meta-language level to derive
transformations on the language level and instance level.
This pattern also fits our architecture as presented in Fig-
ure 1. Traditionally, this pattern is proposed and used in the
database field for schema-independent transformations, but
it is of course also applicable in language engineering.

With respect to the complete transformation chain pro-
posed in this paper, there exist a set of related approaches
which cover certain aspects of this chain by focusing on
the transitions between the involved technical spaces: (i)
bridges between XMLware and modelware and (ii) bridges
between modelware and grammarware. To the best of our
knowledge, there exists only one approach [10] to bridge
XMLware and grammarware directly which focus on XSD
and Xtext. But of course, there are other efforts in different
contexts for bridging XSD and BNF-like languages such as
it is done in the context of grammar hunting [21].

XMLware and Modelware Several approaches for real-
izing either forward engineering from modelware to XML-
ware [5, 7] or reverse engineering from XMLware to mod-
elware [16, 18] exist. In previous work [18], we presented
an approach for generating MOF-based metamodels from
DTDs. Our work presented in this paper differs from the
previous approach in several ways, e.g., XSDs are used in-
stead of DTDs and the full transition to textual modeling
languages is done instead of stopping with the creation of
the language’s abstract syntax.

Modelware and Grammarware There exist grammar-
driven approaches [1, 15, 20] in which metamodels are
generated out of existing grammar definitions. In addition,
metamodel-driven approaches generate grammars out of ex-
isting metamodels [11, 17] or link metamodels with gram-
mars [13]. Especially, EMFText [12] seems to be an inter-
esting alternative to Xtext used in this paper, as there is also
the possibility to define several concrete textual syntaxes
for one metamodel. As opposed to our work, the user of
these approaches has to define its own transformation rules
between either individual grammar rules or terminal rules
and metamodel elements instead of relying on a generic and
automated transformation of XSDs as proposed in this work.

XMLware and Grammarware Eysholdt and Rupprecht
present a report [10] on the migration of a modeling envir-
onment from XML/UML to Xtext/GMF. Due to inefficiency
of XML in terms of verbose syntax and lack of tool support

they perform the modernization of a legacy modeling en-
vironment. In detail, they start by creating Ecore metamod-
els from XSDs, then perform changes as well as customiza-
tions of Xtext features, and finally end up with a modernized
language and workbench. Compared to our approach, they
manually perform metamodel changes as well as custom-
izations of Xtext features instead of building a generic and
automated transformation chain.

6. Conclusion and Future Work
In this work we aimed at highlighting currently existing lim-
itations in bridging XML-based languages with textual mod-
eling languages and overcoming them by means of several
improvements. This includes dealing with specific XSD con-
cepts, namely mixed content, wildcards, restrictions, identi-
fier and identifier references, and data types, as well as con-
crete syntax customization. The main principle that guided
our solution was to represent each XSD concept explicitly
in the modelware technical space. By this, important char-
acteristics of XML such as being able to represent semi-
structured data is now also better reflected in the correspond-
ing textual modeling languages.

The proposed improvements have been bundled into the
XMLText framework as well as evaluated regarding com-
pleteness. In particular, the evaluation has been carried out
based on the OASIS TOSCA standard. The evaluation res-
ults indicate that the proposed XMLText framework signific-
antly improves over existing solutions and generates a tex-
tual modeling language for TOSCA that is more complete
than the currently available hand-crafted Cloudify DSL.

With respect to future work, first, to fully exploit the be-
nefits of modernizing XSD-based languages with modeling
languages, we strive to extend the current framework by ad-
dressing currently unresolved challenges as well as eventu-
ally arising challenges when conducting further case studies.
In detail, we plan to conduct case studies based on different
examples of the TOSCA language as well as other XSD-
based languages covering different sets of XML Schema
concepts. Secondly, we plan to quantify the actual impact
of modernizing XSD-based languages by conducting user
studies focusing on human-comprehension.

Acknowledgments
This work is funded by the European Commission under
ICT Policy Support Programme, grant no. 317859 and by
the Christian Doppler Forschungsgesellschaft and the BM-
WFW, Austria.

References
[1] M. Alanen and I. Porres. A Relation Between Context-Free

Grammars and Meta Object Facility Metamodels. Technical
report, Turku Centre for Computer Science, 2003.

[2] P. Atzeni, P. Cappellari, and P. A. Bernstein. ModelGen:
Model Independent Schema Translation. In Proc. of ICDE,
pages 1111–1112, 2005.

[3] G. J. Badros. JavaML: A Markup Language for Java Source
Code. Computer Networks, 33(1):159–177, 2000.

[4] T. Binz, U. Breitenbücher, F. Haupt, O. Kopp, F. Leymann,
A. Nowak, and S. Wagner. OpenTOSCA – a runtime for
TOSCA-based cloud applications. Springer, 2013.

[5] L. Bird, A. Goodchild, and T. Halpin. Object Role Modelling
and XML-Schema. In Proc. of ER, pages 309–322. Springer,
2000.

[6] P. V. Biron and A. Malhotra. XML schema part 2: Datatypes
second edition. W3C recommendation, W3C, Oct. 2004.
http://www.w3.org/TR/2004/REC-xmlschema-2-20041028/.

[7] R. Conrad, D. Scheffner, and J. C. Freytag. XML Concep-
tual Modeling using UML. In Proc. of ER, pages 558–571.
Springer, 2000.

[8] Derek Palma, Thomas Spatzier. Topology and Orchestration
Specification for Cloud Applications Version 1.0, 2013.

[9] M. Eysholdt and H. Behrens. Xtext: Implement your Lan-
guage Faster than the Quick and Dirty Way. In Companion
Proc. of OOPSLA, pages 307–309. ACM, 2010.

[10] M. Eysholdt and J. Rupprecht. Migrating a Large Modeling
Environment from XML/UML to Xtext/GMF. In Companion
Proc. of OOPSLA, pages 97–104. ACM, 2010.

[11] F. Heidenreich, J. Johannes, S. Karol, M. Seifert, and
C. Wende. Derivation and Refinement of Textual Syntax for
Models. In Proc. of ECMDA-FA, pages 114–129. Springer.

[12] F. Heidenreich, J. Johannes, S. Karol, M. Seifert, and
C. Wende. Model-Based Language Engineering with EMF-
Text. In Proc. of GTTSE, pages 322–345. Springer, 2011.

[13] F. Jouault, J. Bézivin, and I. Kurtev. TCS: a DSL for the spe-
cification of textual concrete syntaxes in model engineering.
In Proc. of GPCE, pages 249–254. ACM, 2006.

[14] P. Klint, R. Lämmel, and C. Verhoef. Toward an engineering
discipline for grammarware. ACM Trans. Softw. Eng. Meth-
odol., 14(3):331–380, 2005.

[15] A. Kunert. Semi-Automatic Generation of Metamodels and
Models from Grammars and Programs. Electronic Notes in
Theoretical Computer Science, 211:111–119, 2008.

[16] M. Mani, D. Lee, and R. R. Muntz. Semantic Data Model-
ing using XML Schemas. In Proc. of ER, pages 149–163.
Springer, 2001.

[17] P.-A. Muller and M. Hassenforder. HUTN as a bridge between
modelware and grammarware-an experience report. In Proc.
of WISME Workshop, 2005.

[18] A. Schauerhuber, M. Wimmer, E. Kapsammer, W. Schwinger,
and W. Retschitzegger. Bridging WebML to model-driven
engineering: from document type definitions to meta object
facility. IET Software, 1(3):81–97, 2007.

[19] R. S. Wallace. The anatomy of ALICE. Springer, 2009.

[20] M. Wimmer and G. Kramler. Bridging Grammarware and
Modelware. In Proc. of Satellite Events at MoDELS, pages
159–168. Springer, 2006.

[21] V. Zaytsev. Grammar Zoo: A corpus of experimental gram-
marware. Sci. Comput. Program., 98:28–51, 2015.

