
Open Research Online
The Open University’s repository of research publications
and other research outputs

Issues in representing domain-specific concerns in
model-driven engineering
Conference or Workshop Item

How to cite:

Montrieux, Lionel; Yu, Yijun; Wermelinger, Michel and Hu, Zhenjiang (2013). Issues in representing domain-
specific concerns in model-driven engineering. In: Workshop on Modeling in Software Engineering @ ICSE 2013, 18-19
May 2013, San Francisco.

For guidance on citations see FAQs.

c© 2013 IEEE

Version: Accepted Manuscript

Copyright and Moral Rights for the articles on this site are retained by the individual authors and/or other copyright
owners. For more information on Open Research Online’s data policy on reuse of materials please consult the policies
page.

oro.open.ac.uk

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Open Research Online

https://core.ac.uk/display/82976191?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://oro.open.ac.uk/help/helpfaq.html
http://oro.open.ac.uk/policies.html


Issues in Representing Domain-Specific Concerns in
Model-Driven Engineering

Lionel Montrieux, Yijun Yu, Michel Wermelinger
Centre for Research in Computing

The Open University
Milton Keynes, UK

{Lionel.Montrieux,Yijun.Yu,Michel.Wermelinger}@open.ac.uk

Zhenjiang Hu
National Institute of Informatics

Tokyo, Japan
Hu@nii.co.jp

Abstract—The integration of domain-specific concepts in a
model-driven engineering (MDE) approach raises a number
of interesting research questions. There are two possibilities
to represent these concepts. The first one focuses on models
that contain domain-specific concepts only, i.e. domain-specific
modelling languages (DSML). The second one advocates the in-
tegration of domain-specific concepts in general-purpose models,
using what we will refer to in this paper as domain-specific
modelling annotation languages (DSMAL). In this position paper,
we argue that each approach is particularly suited for specific
activities and specific actors, and show how they can be developed
and used together. We also highlight the challenges created
by the use of two representations, such as the evaluation of
models OCL constraints and the synchronisation between the
two representations. As an illustration, we present rbacUML,
our approach for integrating role-based access control (RBAC)
concepts into an MDE approach.

Index Terms—MDE, RBAC, OCL, DSML, DSMAL, UML,
profile, transformation

I. INTRODUCTION

In the past twenty years, researchers have explored model-
driven engineering (MDE), a paradigm which makes use of
increasingly refined models until code is produced. UML [1] is
arguably the most widespread general-purpose modelling lan-
guage used in MDE. UML features an extension mechanism,
UML profiles [2], that allow one to extend the semantics of
some UML elements through annotations, called stereotypes,
and constraints written in OCL [3].

Some researchers have also focused their efforts on rep-
resenting and integrating domain-specific concepts in their
MDE approaches. This can be approached in two ways. The
first one advocates the creation of models that exclusively
contain domain-specific concepts. Such languages are called
domain-specific modelling languages (DSML), and they pro-
duce domain-specific models. The second way prefers to an-
notate general-purpose models by extending general-purpose
modelling languages. We call such extensions domain-specific
modelling annotation languages (DSMAL), and they produce
general-purpose models annotated with domain-specific con-
cepts.

In this paper, we argue that both approaches can be used
together, and that the use of one representation over the
other depends on both the activity being performed, and the
actor performing it. We present rbacUML, our approach for

modelling Role-based access control (RBAC) concepts on
models, and show how, from the same domain model, we have
derived two UML profiles: one for a DSML, and one for a
DSMAL. We discuss the relationships between DSMLs and
DSMALs, and make the case that bidirectional transformations
between the two representations are needed. We also discuss
OCL constraints: the translation of constraints between both
representations, as well as the ideal representation to evaluate
each single constraint. Furthermore, we describe how a single
UML model could be annotated with several DSMALs, and
what the implications are in terms of synchronisation and
potential conflicts.

The remainder of this paper is organised as follows: Sec-
tion II presents the background on MDE, DSMLs and RBAC.
We then present our solution for RBAC modelling, with
both the DSMAL and the DSML, in Section III. Section IV
discusses the transformations between the two representations,
whilst Section V discusses the place of OCL constraints.
Section VI concludes the paper.

II. BACKGROUND

A. Model-Driven Engineering

Model-driven engineering (MDE) is the software engineer-
ing approach that uses models to reason about software.
Models are defined according to a metamodel, but the growing
number of metamodels led to another higher level to describe
metamodels: meta-metamodels [4]. Arguably the most widely
used MDE framework is the OMG’s Model-driven architec-
ture approach [5], which includes UML (Unified Modeling
Language) models [1], OCL (Object Constraint Language)
constraints [3] and MOF (Meta-Object Facility) metamodels
and meta-metamodels [6].

In the security world, Fernandez-Medina et al. [7] point out
that “current approaches which take security into considera-
tion from the early stages of software development do not take
advantage of Model-Driven Development”, but it is a direction
that is currently being developed, including by Basin et al. [8],
who define model-driven security (MDS) as a specialisation
of MDE, where “a designer builds a system model along with
security requirements, and automatically generates from this
a complete, configured security infrastructure”.

978-1-4673-6447-8/13 c© 2013 IEEE MiSE 2013, San Francisco, CA, USA

Accepted for publication by IEEE. c© 2013 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/
republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

1



Fig. 1: RBAC model

B. Domain-Specific Modelling Languages

Domain-specific modelling languages (DSML) are the mod-
elling equivalent of domain-specific languages (DSL) [9], i.e.
they are modelling languages whose purpose is to efficiently
represent concepts from a particular domain. In the literature,
there are essentially two schools of thought when it comes
to representing DSMLs: either using “ad-hoc” representa-
tions, or using UML profiles, which are extensions of the
UML metamodel that add additional semantics to elements
via stereotypes and tagged values. UML profiles can also
embed OCL constraints that enforce some properties of the
domain. Selic proposes an excellent method to implement a
DSML using an UML profile [2], and many researchers have
studied the relationships between “ad-hoc” DSMLs and those
implemented using UML profiles. For example, Abouzahra et
al. use model transformations and model weaving to bridge
the two approaches [9], while Wimmer proposes a semi-
automated approach to generate a UML profile given a DSML
and a mapping from the DSML to the created profile [10].
Others, such as Giachetti et al., use a hybrid representation to
allow for the interchange between “ad-hoc” DSMLs and UML
profiles [11].

C. Role-Based Access Control

Traditional access control models [12] allow the admin-
istrator to assign permission directly to users. This makes
the maintenance of large access control directories difficult.
By contrast, role-based access control (RBAC) [13] forbids
the direct assignment of permissions to users, and introduces
the concept of roles between users and permissions. Roles
in RBAC are meant to match actual roles in an organisation.
Permissions are assigned to roles, which are assigned to users.

The RBAC standard also defines other constructs: role
hierarchies, where a role inherits its ancestors’ permissions,
and static (resp. dynamic) separation of duty, where two roles
cannot be assigned to (resp. simultaneously activated by) the
same user. Fig. 1 illustrates the RBAC model.

III. THE RBACUML APPROACH

rbacUML is our approach for integrating RBAC into ex-
isting MDE processes. It is implemented as a plugin [14] for
IBM Rational Software Architect [15], a well-known UML
modelling environment built on top of Eclipse. In this section
we focus on the parts of rbacUML most relevant to this paper.

We started out by defining the rbacUML DSMAL, which
we will present first after introducing the domain-specific

Fig. 2: rbacUML metamodel

metamodel. As we were expanding the features of the DS-
MAL, we realised that a DSML would be more suitable for
some activities or actors.

A. The Metamodel

Both representations stem from the same metamodel, shown
in Fig. 2. The top part represents the entire RBAC standard,
with users, roles, permissions and their assignments; role
hierarchies; static and dynamic separation of duty (SSoD and
DSoD) constraints. On the bottom right we have the resources
whose access needs to be restricted. To access a resource, one
needs all of its associated permissions. On the bottom left are
the scenarios. They are instances of requirements that the rest
of the model needs to satisfy. There are two types of scenarios
(represented on the figure as only one Scenario element):
the first one requires that a user, given a set of activated roles,
must be able to access a set of resources. The second one
requires that a user, given a set of activated roles must not be
able to access at least one of the resources in the set. From
this metamodel, we have derived, using Selic’s method [2],
both the DSMAL and the DSML.

B. The DSMAL

Although Selic’s method [2] focuses on the implementation
of DSMLs with UML profiles, we found that it also applies
to DSMALs. We followed it to implement the DSMAL for
rbacUML, whose extension of the UML metamodel is shown
in Fig. 3. For the DSMAL we want to annotate existing
elements with RBAC-related concepts at every place where
it is important for the designer to know that RBAC concepts
have an influence. Hence, there is some degree of redundancy.
Indeed, in a general purpose model in UML, it is likely that
the designer will have represented several views, or diagrams,
of the system to be built. RBAC concepts should appear
on each of the relevant diagrams. rbacUML annotations can
be divided in three categories. First is the configuration,
which defines the users, roles (which match the organisation’s
structure) and permissions as well as their assignments and the
SoD constraints. The elements are represented as classes and

2



Fig. 3: Extension of the UML metamodel for rbacUML

the assignments and constraints as associations. Second, the
policy, which defines the resources to be protected. Resources
are represented by operations in class diagrams, and message
calls in sequence diagrams. Third, the scenarios, represented
by activity diagrams. The actual scenario is represented by
an action, which sits in a partition that represents the user
performing the action. Figs. 4, 5 and 6 are an example of
a model built with the DSMAL. They represent a simple
grading application for a university where professors and
teaching assistants (TAs) can update their students’ marks,
and the students can consult their own marks. Fig. 4 is the
configuration, and shows the users, roles, permissions and
their assignments. There is also a role hierarchy relationship
between Professor and TA, and a static separation of duty
constraint between the Student and the Professor roles.
Fig. 5 is the class diagram, where resource whose access
must be restricted are represented by operations stereotyped
with Restricted. With the stereotype come associations
to each of the permissions that are required to execute the
operation. This diagram represents the policy. Finally, the
activity diagram in Fig. 6 represents two scenarios. Each
scenario is represented by an action that sits in an activity
partition that represents the user.

The separation between different views, as well as the
redundant elements, is quite obvious in this model. Two users
are represented twice: in the access control diagram, and in the
activity diagram. There is also a case of one concept from the
initial metamodel being split into several ones in the general
purpose annotations: the roles activation for a scenario. The
rbacUML DSMAL includes 34 OCL constraints.

The DSMAL is very well-suited for designers to integrate
RBAC into a software model. By mixing RBAC-specific
concepts with general-purpose concepts in UML, they can

Fig. 4: Access Control diagram (configuration)

Fig. 5: Class diagram (policy)

immediately see where authorisation constraints will affect the
software being built. However, we quickly came to realise
that such a level of detail isn’t always welcome. A system
administrator will typically maintain the RBAC configuration.
He doesn’t need to see the entire model, but only needs
to have access to the RBAC-specific concepts. Furthermore,
the DSMAL is complex, and when we started working on
automated fixing of errors in the model, we realised that a
model that only contains RBAC-specific concepts would be

Fig. 6: Activity diagram (scenarios)

3



Fig. 7: DSML metamodel

TABLE I: OCL constraints for the DSML. WF = well-formedness,
VAL = validation

Constraint type

No SSoD violations WF
No DSoD violations WF
Activated roles are assigned to the user WF
Granted scenarios are satisfied VAL
Forbidden scenarios are satisfied VAL

smaller, and hence easier and faster to fix automatically. We
then proceeded to create the DSML.

C. The DSML

We developed the DSML from the same initial domain-
specific metamodel. We did use UML in order to benefit from
existing tool capabilities, and Selic’s approach was used too.
Fig. 7 shows the extension of the UML metamodel for this pro-
file. All stereotypes are defined on UML classes, as it makes it
easy to express assignments using associations. Associations
between two roles are also stereotyped, to distinguish between
SSoD, DSoD and role hierarchies.

Five OCL constraints complement the DSML: three make
sure that the model itself is well formed, whilst the other two
validate the model against the scenarios (see Table I). This is
significantly less constraints than for the DSMAL, and they
are also less complex and therefore faster to evaluate.

Fig. 8 is the same marking system example as Figs. 4,
5 and 6, but represented with the DSML. On the top left
are the users, roles and permissions, and their assignments.
On the top right are the two resources that are protected,
Mark_getMark and Mark_setMark. At the bottom are
two Granted scenarios. The first one requires that the user
Smith, with the Professor role activated, must be able
to access the Mark_setMark resource. The second one
requires that the user Doe, with the Student role activated,
must be able to access the Mark_getMark resource.

Fig. 8: Sample model with rbacDSML

D. When to Use which Profile

Two things need to be considered when deciding which
representation is the most appropriate for a particular activity:
the activity itself, and the actor performing it. If the activity
involves exclusively domain-specific concepts, then the DSML
is preferable, as it is not cluttered with irrelevant constructs. If,
however, general-purpose concepts also need to be considered,
then the DSMAL is the only solution, because these do not
appear on the DSML.

The actor is another important factor: a system administrator
or a security expert may not be familiar with the UML
notation, or simply not interested. They will likely prefer
the DSML view. Developers, on the other hand, as well as
designers and customers with technical expertise, may want to
use the DSMAL to benefit from the context in which RBAC
concepts are applied.

IV. TRANSFORMATIONS

Both representations are derived from the same domain
metamodel. Since the choice of profile to use depends on
the circumstances, designers need transformations from one
profile to the other, and back. It must be possible to reflect
changes made to one representation on the other one, in
order to keep both models synchronised. Since changes could
happen in both representations, it is important to define a
bidirectional transformation that would allow designers to
transform a DSMAL model into a DSML, and back. Since
the DSML contains a subset of the information contained
in the DSMAL, tools such as GRoundTram [16] allow one
to define a transformation from the DSMAL to the DSML,
and the transformation from the DSML back to the DSMAL
comes “for free”. If both models can change before being
synchronised, then the problem is similar to model-code
synchronisation problems that MDE approaches face [17]. A
similar approach to what is needed in this case is Guerra and

4



de Lara’s use of triple graph transformations to derive views
from models [18]. However, their views are not editable.

A. The Problem with DSMALs

The transformations we call for in this paper differ from
transformations between “ad-hoc” DSMLs and DSMLs im-
plemented as UML profiles, such as those described by
Wimmer [10]. The latter are produced semi-automatically.
Wimmer assumes that a transformation can “destroy” the
target model and entirely replace it with the newly gener-
ated model. This is a fair assumption when dealing with
DSMLs only, as there is no more information in one repre-
sentation than in the other. But in the case of a DSMAL,
such an approach will destroy all the information in the
model that is not related to the DSML. In the example
in Fig. 5, a destructive approach would completely erase
the Student, Module, Professor and TA classes, as
well as the Mark::getDate() and Mark::setDate()
operations, in the class diagram (Fig. 5) alone. This problem
would not occur with bidirectional transformations defined
with GRoundTram, as it keeps track of the information that
was removed during the forward transformation between the
DSMAL and the DSML.

Yet, Wimmer’s approach can still partially apply here, espe-
cially his discussion of the mapping between both languages.
Since both languages stem from the same domain metamodel,
it is not unlikely that many concepts will have a one-to-one
mapping. However, the necessary redundancy in the DSMAL
means that some mappings will be one-to-many, which further
complicates the creation of the transformation.

B. Multiple Profiles

Annotating UML models with concepts from one domain
is already challenging, but what if we want to annotate it
with concepts from several domains? There may be many
interesting ways of using DSMLs to model some aspects of
the software: RBAC is one of them, but there are others,
such as performance, specific business rules, persistence, etc.
It would make sense to have a DSML as well as a DSMAL for
each of them. The same general-purpose model could then be
annotated with stereotypes from several profiles, which brings
new challenges to keep the general-purpose model and the
DSMLs in sync, and to prevent conflicts from happening.

1) Synchronisation Issues: If the same general-purpose
model is annotated with concepts from several profiles, there
is a chance that synchronisation problems will occur. Indeed,
if a model is annotated with both access control and per-
formance annotations, and changes are done concurrently to
their respective DSML views, then the transformation that
reflects these changes back to the general-purpose model will
be more difficult. This problem is similar to the model-code
synchronisation problem typically encountered in MDE [17].

2) Conflicts: It is possible that two DSMALs will bring
conflicting annotations, and therefore a mechanism will be
necessary to detect them. For example, let’s assume two
DSMALs, one for performance and one for persistence. If a

particular element is marked with a performance requirement,
and then marked with a persistence stereotype that involves
saving the element’s state in a database, the persistence will
have a negative effect on the performance. These potential
conflicts between stereotypes will have to be identified on a
case by case basis. OCL constraints could be used to detect
potential conflict and bring them to the designer’s attention.

V. OCL CONSTRAINTS

A. Where to Evaluate OCL Constraints

The distinction between DSML and DSMAL allows one
to choose the best representation for the evaluation of OCL
constraints. Indeed, the size of the model and the complexity
of the constraints will influence the duration of the evaluation.

The rbacUML DSML only contains 5 OCL constraints to
ensure well-formedness and conformance to the requirements.
The DSMAL contains 5 of these constraints as well, that
enforce the exact same properties, plus another 29 for consis-
tency, because the same concept in the DSML can be translated
into several concepts in the DSMAL. The 5 first constraints
can be evaluated on the DSML: the model is smaller and the
constraints are less complex, and hence the evaluation will
be faster. On the other hand, the other 29 constraints must
be evaluated on the DSMAL, as they simply do not exist on
the DSML level. In rbacUML, we have developed another
4 categories of OCL constraints that provide further analysis
on the model: scenario satisfiability, scenario coverage, model
completeness and redundancy detection. These constraints can
all be evaluated on the DSML representation because they are
only concerned with the domain-specific concepts themselves,
and thus one will benefit from faster evaluation times. Con-
straints that look at the boundary between the domain-specific
concepts, or at how the domain-specific concepts integrate into
the general-purpose model, must be evaluated on the DSMAL.

In rbacUML we are also developing automated correction
of models. This helps the designers in finding a solution
when well-formedness or verification constraints are violated.
This is a very time- and resource-consuming process, and the
computation time is greatly influenced by the size of the model
and by the number of OCL constraints to satisfy. Indeed, the
fixing engine tries to fix constraints one by one until a solution
is found. The DSML, with its smaller size and smaller number
of OCL constraints than the DSMAL, is a much more suitable
choice, especially since the process is only concerned with
RBAC-related concepts.

B. Translating OCL Constraints

In Section V-A we have argued that there is an ideal
representation on which to evaluate OCL constraints. While
this is true for constraints taken individually, it may still be
needed to evaluate a constraint on the DSMAL even though the
DSML would be a better fit, e.g. if the evaluation is part of a
bigger analysis feature. Since the same domain-level properties
need to be guaranteed, it is not unreasonable to expect that
one could create their OCL constraints on the DSML, which
is the simplest model and therefore requires relatively simple

5



constraints, and have them translated to be used with the
DSMAL. After all, there is already a mapping between the
concepts in the DSML and the concepts in the DSMAL.

However, the redundancy and the division of one concept
into several ones will make this process more difficult. Not
only is it necessary to create new OCL constraints to ensure
consistency between redundant and spread out concepts, but
the existing constraints may also have to take those into
account, which would make them even more complex. An
automated conversion process that would, given both profiles,
the mapping of concepts from one to the other, and the OCL
constraints for the DSML, produce the OCL constraints for the
DSMAL, would be incredibly useful, as it would save time and
reduce the occurrence of errors from the manual translation
process. With GRoundTram, we could do this automatic
conversion by giving a filter- promotion transformation for the
transformation language UnQL+ [19]. Let T be the mapping
from DSMAL to DSML in UnQL+ and C be a constraint
on DSML. The filter promotion transformation is to transform
filter C ◦ T to T ◦ filter C ′ to promote the condition C on
the output of T to a new condition C ′ on the input.

In rbacUML, there is a one-to-one mapping for most
concepts, which is relatively obvious from the two extensions
of the UML metamodel. Three concepts, however, require a
one-to-many mapping: the user, represented in the DSMAL
on one class in the access control diagram and on any number
of partitions in activity diagrams; the resources, represented
in the DSMAL on an operation in a class diagram, and on
any number of messages in a sequence diagram; the role
activation, spread in the DSMAL over the ActivateRoles
and DeactivateRoles on scenarios, and over partitions.

This makes translating the OCL constraints from the DSML
to the DSMAL quite difficult. For example, the split of the user
concept into several elements means that a new constraint must
be introduced to make sure that all user annotations that are
supposed to represent the same user are consistent, i.e. they
must have the same name. This also makes the OCL constraint
that checks that roles activated by a user are also assigned to
him more complicated. In the DSML, the constraint looks like:

context rbacDSML::Scenario inv:
self.user.rbacRole
->includesAll(self.rbacRole)

but in the DSMAL, it looks like:

context rbacUML::Granted inv:
self.base_Action.inPartition
.extension_RBACUser.aliasUser.rBACRole
->includesAll(self.rBACRole)

Because of the separation of the user in two concepts, another
OCL constraint is also necessary to ensure well-formedness:

context rbacUML::User inv:
(self.base_Partition <> null)
implies (self.name = self.user.name)

VI. CONCLUSION

In this position paper, we have argued for the need to further
explore the representation of domain-specific concepts, and
showed that both DSML- and DSMAL-based approach can be
used together. We have discussed the place of OCL constraints
evaluation, and argued that the choice of which representation
to work with depends on the activity to be performed, the
actor performing it as well as performance considerations. We
have called for effective bidirectional transformations between
both representations, and have also mentioned the issues that
are likely to be caused by the use of several DSMALs on
the same general-purpose language, turning it into a common
repository from which domain-specific views of the model
would be derived when necessary.

REFERENCES

[1] Unified Modeling Language (UML) 2.3, OMG Std.
[2] B. Selic, “A systematic approach to domain-specific language design

using UML,” in ISORC: Procs. Intl. Symp. Object and Component-
Oriented Real-Time Distributed Computing, may 2007, pp. 2 –9.

[3] Object Constraint Language 2.2, OMG Std.
[4] J. Bézivin, F. Jouault, and D. Touzet, “Principles, standards and tools

for model engineering,” in ICECCS: Procs. Intl. Conf. on Engineering
of Complex Computer Systems. IEEE, 2005, pp. 28–29.

[5] R. Soley and the OMG staff, “Model driven architecture,” white paper,
November 2000, http://www.omg.org/cgi-bin/doc?omg/00-11-05 (Last
accessed 14 June 2010).

[6] OMG, Meta Object Facility (MOF) 2.0, OMG Std.
[7] E. Fernández-Medina, J. Jurjens, J. Trujillo, and S. Jajodia, “Model-

driven development for secure information systems,” Information and
Software Technology, vol. 51, no. 5, pp. 809 – 814, 2009, sPECIAL
ISSUE: Model-Driven Development for Secure Information Systems.

[8] D. Basin, J. Doser, and T. Lodderstedt, “Model driven security for
process-oriented systems,” in SACMAT: Procs. Symposium on Access
Control Models and Technologies. ACM, 2003, pp. 100–109.

[9] A. Abouzahra, J. Bézivin, M. Del Fabro, and F. Jouault, “A practical
approach to bridging domain specific languages with uml profiles,”
in Procs. Best Practices for Model Driven Software Development at
OOPSLA, vol. 5, 2005.

[10] M. Wimmer, “A semi-automatic approach for bridging DSMLs with
UML,” International Journal of Web Information Systems, vol. 5, no. 3,
pp. 372 – 404, 2009.

[11] G. Giachetti, B. Marin, and O. Pastor, “Using UML profiles to in-
terchange DSML and UML models,” in RCIS: Procs. Intl. Conf. on
Research Challenges in Information Science. IEEE, 2009, pp. 385
–394.

[12] M. H. Klein, Department of Defense Trusted Computer System Evalu-
ation Criteria, Department of Defense Std. CSC-STD-001-83, August
1983, cSC-STD-001-83.

[13] D. F. Ferraiolo, R. S. Sandhu, S. I. Gavrila, D. R. Kuhn, and R. Chan-
dramouli, “Proposed NIST standard for role-based access control,” ACM
Trans. Inf. Syst. Secur., vol. 4, no. 3, pp. 224–274, 2001.

[14] “rbacUML tool,” 2009-2012, http://computing-
research.open.ac.uk/rbac/.

[15] IBM, “Rational Software Architect 8.0.4,” 2012.
[16] S. Hidaka, Z. Hu, K. Matsuda, and K. Nakano, “Bidirectionalizing

graph transformations,” in ICFP: Procs. Intl. Conf. on Functional
Programming. ACM, 2010, pp. 205–216.

[17] Y. Yu, Y. Lin, Z. Hu, S. Hidaka, H. Kato, and L. Montrieux, “Main-
taining invariant traceability through bidirectional transformations,” in
ICSE: Procs. Intl. Conf. on Software Engineering. IEEE, 2012, pp.
540–550.

[18] E. Guerra and J. Lara, “Model view management with triple graph
transformation systems,” in Graph Transformations, ser. Lecture Notes
in Computer Science. Springer, 2006, vol. 4178, pp. 351–366.

[19] S. Hidaka, Z. Hu, H. Kato, and K. Nakano, “Towards a compositional
approach to model transformation for software development,” in SAC:
Procs. Symposium on Applied Computing. ACM, 2009, pp. 468–475.

6


