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Abstract

In model-driven development (MDD), domain-specific modeling languages (DSMLs)
are used as tailor-made software languages targeting dedicated application domains.
Due to the narrow domain coverage of DSMLs, demands to integrate their indi-
vidual functionality into a consolidated DSML arise (e.g., developing a software
product combining two or more pre-existing DSMLs). However, in order to realize
the benefits of integrated DSMLs, it must be ensured that the integrated DSML is
correctly implemented and behaves as specified. To support the integration and the
test of DSMLs, this thesis presents an approach targeting the Meta Object Facility
(MOF) and the Unified Modeling Language (UML)—a metamodeling infrastructure
frequently employed for the MDD of software systems. The integration of DSMLs
is based on a rewriting technique for model-to-text (M2T) transformations. This
method allows for the reuse as well as for the automatic refactoring of M2T trans-
formation templates to fix important syntactical mismatches between templates and
the integrated DSML. To test an integrated DSML, scenarios are used to define
domain requirements on an abstract level (via structured text descriptions). In a
subsequent step, executable scenario tests are derived from the requirements-level
scenarios. These executable scenario specifications are then employed to test the
integrated DSML for compliance with corresponding domain requirements. Empir-
ical evaluations of the approach (case studies, controlled experiment) demonstrate
its successful application, collect evidence for its usefulness, and quantify its bene-
fits. The integrated proof-of-concept implementations build on the Eclipse Modeling
Framework (EMF), making use of and extending well-known Eclipse-based projects.
All accompanying developments are placed into the public domain as free/libre open
source software.

Within the framework of this thesis, research results were originally published as
individual contributions (workshop, conference, and journal articles). All research
contributions are results of applying a design science research approach.
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Zusammenfassung

In der modellgetriebenen Softwareentwicklung (engl. model-driven development;
MDD) werden domänenspezifische Sprachen (engl. domain-specific modeling lan-
guages; DSMLs) eingesetzt, die für eine bestimmte Anwendungsdomäne konzipiert
wurden. DSMLs decken einen engen Anwendungsbereich ab, weshalb der Bedarf
besteht, die Funktionalität verschiedener DSMLs miteinander zu integrieren (z.B.
um ein Softwareprodukt aus der Kombination von zwei oder mehreren bestehenden
DSMLs zu entwickeln). Um die Vorteile integrierter DSMLs zu realisieren, muss
sichergestellt werden, dass die integrierte DSML korrekt implementiert wurde und
sich wie spezifiziert verhält. Die vorliegende Arbeit präsentiert einen Ansatz, welcher
die Integration und den Test von DSMLs unterstützt, die auf den Spezifikationen der
Meta Object Facility (MOF) und der Unified Modeling Language (UML) beruhen –
eine Metamodellierungsinfrastruktur, die häufig für die modellgetriebene Software-
entwicklung eingesetzt wird. Die Integration von DSMLs basiert auf einer Technik
zur Adaption von Modell-zu-Text (engl. model-to-text; M2T) Transformationen. Die-
se Methode erlaubt die Wiederverwendung und die automatisierte Bearbeitung von
M2T Transformationsvorlagen, um syntaktische Unterschiede zwischen den Vorlagen
und der integrierten DSML zu beheben. Für das Testen einer integrierten DSML
werden Szenarien eingesetzt, welche die Anforderungen an eine Domäne auf einer
abstrakten Ebene beschreiben (mithilfe strukturierten Texts). Anschließend wer-
den von diesen Szenarienbeschreibungen auf Ebene der Anforderungen ausführbare
Szenarientests abgeleitet. Diese ausführbaren Szenarienspezifikationen überprüfen
die Konformität der integrierten DSML mit den entsprechenden Anforderungen der
Domäne. Durch empirische Evaluierungen des Ansatzes (Fallstudien, kontrolliertes
Experiment) werden erfolgreiche Anwendungen demonstriert, Belege zum Nachweis
der Nützlichkeit gesammelt und die Vorteile quantifiziert. Die integrierten proto-
typischen Implementierungen bauen auf das Eclipse Modeling Framework (EMF)
auf und benutzen sowie erweitern bekannte auf Eclipse basierende Projekte. Der
Quelltext der begleitenden Softwareentwicklungen ist offengelegt und frei verfügbar.

Die im Rahmen dieser Arbeit entstandenen Forschungsergebnisse sind ursprüng-
lich als individuelle Beiträge publiziert worden (Workshop-, Konferenz- und Zeit-
schriftenartikel). Alle Beiträge resultieren aus der Anwendung eines Design Science
Forschungsansatzes.
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Chapter 1

Introduction

1.1 Motivation

In recent years, model-driven development (MDD) emerged as a software engineering
technique for the systematic specification of software systems (see, e.g., [7, 78, 131]).
The modeling of domain artifacts helps to understand complex problems and poten-
tial solutions by raising the level of abstraction in the software engineering process—
comparable to high-level programming languages abstracting from a system’s instruc-
tion set architecture (i.e. machine code; see, e.g., [122, 123]). Generally, in MDD,
graphical or textual models residing on a higher-level of abstraction (and thereby
omitting computational details) are transformed into models rendering implemen-
tation details of a software system more concrete (e.g., to be directly executable
via a specific software platform). These model transformations are an integral part
of MDD approaches and benefit from a high degree of automation, such as, tool-
supported code generation (see, e.g., [123]).

In the context of MDD, domain-specific (modeling) languages (DSLs/DSMLs)
are special-purpose (modeling) languages tailored to a particular application domain.
DSMLs are a special kind of DSLs providing end users with a graphical/diagram-
matic concrete syntax—in contrast to textual or form-/table-based DSLs (see, e.g.,
[73, 84, 130, 137, 182]). The development of DSMLs based on the Meta Object
Facility (MOF [100]) and/or the Unified Modeling Language (UML [96]) are fre-
quently applied in MDD (see, e.g., [3, 25, 26, 41, 65, 66, 114]). A MOF/UML-based
DSML is characterized by utilizing the MOF/UML specifications where possible and
by extending their definitions where necessary. Thereby, DSMLs that are based on
the MOF/UML may directly benefit from standardized modeling extensions (see,
e.g., [93, 97, 98, 99]), maintenance through the Object Management Group (OMG),
and a variety of corresponding software tools (e.g., Sparx Systems Enterprise Ar-
chitect, IBM Rational Software Architect, Eclipse Model Development Tools etc.).
We have chosen the MOF/UML as the basis for our work because of its metamod-
eling infrastructure (e.g., the layers of abstraction resembles our MDD approach),
its extension possibilities (e.g., native, MOF-based), the wide range of tool support
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available (e.g., based on Eclipse), and because we build on former work which uses
the same metamodeling environment (see, e.g., [135]).

The advantages of DSMLs include reduced development times for DSML-based
software products, an improved time-to-market, as well as reductions in development
and delivery costs; for example, for developer or customer trainings (see, e.g., [6]).
However, the development of a DSML and corresponding tool support most often
requires substantial efforts that add to the overall costs of the underlying software
development project. Thus, benefits of a domain-specific development approach
usually realize over time (see, e.g., [74, 175]).

As a result, the costs of DSML development are strong drivers for reusing DSMLs
as design artifacts, both during the life cycle of a single software product and for
multiple software products (see, e.g., [74, 175]). To develop a software product
using two or more pre-existing DSMLs, with each DSML defining a subsystem of
the product, integrating the corresponding DSMLs into a new consolidated DSML
is an important design option (see, e.g., [161]). Consider, for example, modeling the
billing domain in a power supply company which covers company-specific accounting
and branch-specific schedule management. Provided that compatible DSMLs for
both tasks (i.e., accounting and schedule management) are available (e.g., based on
the same metamodeling infrastructure), their integration is a feasible strategy, for
example, via product line techniques (see, e.g., [175]).

However, in order to realize the benefits of (integrated) DSMLs, we must en-
sure that the (integrated) DSML is correctly implemented and behaves as specified.
Furthermore, because DSMLs evolve over time (see, e.g., [85]), we must be able to
efficiently test the evolving language artifacts (e.g., the integration of two or more
DSMLs into a new DSML). In the context of defining test cases, a semantic gap
exists between the human-level requirements and solution descriptions on the one
hand, and the technical platform that is used to implement the respective DSML on
the other. The wider this semantic gap, the more difficult is the task to correctly
specify and implement a DSML that behaves as desired by its human users. For this
task, scenarios are a natural means to describe (intended) system behavior both as
structured textual requirements (see, e.g., [17]) and as executable software test (see,
e.g., [63, 139, 159]) definitions.

In this context, this thesis presents an approach for the integration and the test of
MOF/UML-based DSMLs. The next section provides an overview of our approach.

1.2 Approach Synopsis

Regarding the integration of DSMLs, this thesis presents an approach based on
higher-order transformations for rewriting model-to-text (M2T) transformation spec-
ifications [53]. A higher-order transformation (HOT) is characterized by being “a
model transformation such that its input and/or output models are themselves trans-
formation models” [157]. This higher-order rewriting technique allows for the auto-
mated modification of transformation templates to fix important syntactical mis-
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matches between templates and the integrated DSML (see, e.g., [177]). Our DSML
integration approach uses techniques to combine two or more DSMLs which were not
necessarily intended for integration at design time of each DSML. The integration
process does not change the initial DSMLs, but provides techniques to transform and
to compose the different artifacts for the creation of a new DSML (with the help of
HOTs; see, e.g., [156, 157]). Therefore, reuse is facilitated in a way that all DSMLs
can be used in parallel—either as standalone DSMLs or via an integrated DSML.

Furthermore, in this thesis, we propose a scenario-driven DSML testing approach
to complement existing testing processes [57, 126]. In our work, scenarios (see, e.g,
[12, 13, 63, 139]) are used to define domain requirements (e.g., requirements for
the integration of DSMLs). The initial scenario descriptions can be defined at an
abstract level and are specified by (or in collaboration with) domain experts (e.g.,
via structured text descriptions or UML use case diagrams). In a subsequent step,
the requirements-level scenarios are refined and serve as input for the derivation of
executable scenario test scripts which closely resemble the narrative structure of the
scenarios at the requirements level. The executable scenario specifications are then
used to test the integrated DSML for compliance with the corresponding domain
requirements.

Knowledge about the development process and possible application scenarios of
MOF/UML-based DSMLs is a prerequisite for the creation of an integration and
test approach. Besides the theoretical background of an extensive literature study
[52, 54, 127], in the course of this thesis project, DSML experiences were also acquired
by developing two MOF/UML-based DSMLs [58, 59]. Hence, we successfully applied
our integration and testing approach on DSMLs developed by us and in combination
with DSMLs developed by third-parties (e.g., [36, 77]).

This thesis project builds on and integrates with former research results on model-
driven security engineering (see, e.g., [121, 134, 135]). As the two case studies for
developing DSMLs [58, 59] and the integration and testing approach [53, 57, 126]
complement former work, we have chosen security as application domain (e.g., to
demonstrate the applicability of our approach via security-related examples). How-
ever, our approach is independent of an application domain and can be applied to
other domains in an analogous manner (as long as the conceptual framework of the
DSML conforms to the MOF/UML). Furthermore, parts of our results can be gen-
eralized and transferred to non-MOF/UML-based DSMLs, as well (e.g., the formal
and generic metamodel definition for secure object flows [56]; for more information
see Chapter 6).

Figure 1.1 shows a simplified process model of the approach presented in this
thesis. It starts with the definition of domain requirements for the integration of two
DSMLs (DSML A and DSML B in Figure 1.1, respectively). The initial DSMLs to be
integrated are developed by DSML engineers, i.e. either by ourselves [58, 59] or by
other developers. Both DSMLs as well as the integration requirements serve as input
to our integration approach [53]. The integration is based on model merge definitions
for the core language model of DSMLs. We use these merge definitions (stored in
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DSML A DSML B

Requirements

DSML C (A+B)

Integration

Figure 1.1: Simplified process of the presented approach

a trace model) for the automatic creation of rewrite rules for M2T templates of the
individual DSMLs to support their platform-specific integration. The integration is
administered by a DSML engineer and produces an integrated DSML (DSML C in
Figure 1.1, composed of the individual DSMLs A and B). In order to test the correct
integration of the DSML (i.e. that it conforms to the requirements specified at the
time of integration), we apply our testing approach [57, 126]. The requirements
initially specified for the integration are defined via natural-language scenarios by
the domain expert. The DSML engineer creates transformations for these scenario
descriptions to automatically generate scenario tests for the integrated DSML. If
all scenario tests pass—i.e. the integrated DSML conforms to its requirements—,
the individual DSMLs have been correctly integrated. Otherwise, if at least one
scenario test fails, the domain expert in combination with the DSML engineer have
to review the scenario test protocol to find discrepancies in the integration definitions
with respect to the domain requirements and adjust the integration specifications
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accordingly. This iterative integration and testing process ends when all scenario
tests pass.

To sum up, Table 1.1 provides an overview of our research contributions for
the integration and test of MOF/UML-based DSMLs which were performed in and
are results of this thesis project. In particular, in [60], we discuss issues that may
arise when integrating MOF/UML-based DSMLs and present a process model for
the systematic integration of DSMLs to address some of these issues. We show-
case our integration process in a case study via an integrated model-driven approach
for the specification and the enforcement of secure object flows in process-driven
service-oriented architectures (SOAs [50, 56]). Our higher-order rewriting approach
for integrating M2T templates is presented in [53]; its feasibility and benefits are em-
pirically evaluated via a case study reported in Appendix B. With regard to testing
DSMLs, in [47], we review selected testing techniques for each phase of a MOF/UML-
based DSML integration process. We present an approach and framework for the
requirements-driven and scenario-based testing of DSMLs in [126] and provide for
an extension to specify structured natural-language scenarios in [57]. In [55], we
evaluate our testing approach via a controlled experiment to understand how differ-
ent scenario notations compare to each other with respect to accuracy and effort of
comprehending scenario-test definitions, as well as with respect to the detection of
errors in the models under test (MUT). All publications as well as accompanying
materials (software artifacts, experimental material etc.) are publicly available at
[48].

Table 1.1: Overview of research contributions for the integration and test of
MOF/UML-based DSMLs

DSML integration Integration process definition [60]; MDD-based integration case
study [50, 56]; M2T template rewriting approach [53]; rewriting
case study (see Appendix B)

DSML testing Integration testing techniques [47]; scenario-based testing [126];
natural-language scenario testing [57]; experiment comparing sce-
nario notations [55]

1.3 Structure of the Thesis

The remainder of this thesis is structured as follows. Chapter 2 elaborates on the ba-
sics of model-driven software development (Section 2.1), MOF/UML-based domain-
specific modeling (Section 2.2), higher-order model transformation (Section 2.3),
and scenario-based model testing (Section 2.4). The problem statements addressed
in this thesis, classified according to the two research areas (see above), are defined
in Chapter 3: DSML integration (Section 3.1) and DSML testing (Section 3.2). In
Chapter 4, our research approach applied in the course of this thesis is explained.
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Research results emerging from this thesis project are discussed in Chapter 5. In
particular, an overview of relevant publications is given (Section 5.1), the relations
of the individual research contributions are shown (Section 5.2), details about ac-
companying artifacts are provided (Section 5.3), adopted formal specifications and
mappings to developments constituting our integrated software support are explained
(Section 5.4), and closely related additional research contributions are listed (Sec-
tion 5.5). Chapter 6 concludes with a summary of the results of this thesis, discusses
limitations of our approach, and points to further research directions. After the
bibliography, the originally published individual research contributions (correspond-
ing workshop, conference, and journal articles) are listed in Appendix A. The case
study for evaluating our approach of higher-order rewriting of M2T templates [53] is
reported in Appendix B.
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Chapter 2

Background

2.1 Model-driven Software Development

In model-driven development (MDD), models are central artifacts and are frequently
employed for the design of complex software systems. In this sense, MDD uses
abstraction methods (i.e. models) familiar from traditional engineering disciplines,
such as, architecture, construction, or civil and mechanical engineering. We define a
domain model as a coherent set of formally specified elements describing (excerpts of)
a particular domain via conceptual entities and relationships between those entities
(see, e.g., [78, 123]). Concepts for the banking domain could be, for example, account
number, credit transfer, and booking date. These concepts could relate to each other
as, for example, a customer wants to transfer an amount of money from an account
(identified by a dedicated account number) and wants it booked on another account
on a specific date. These concepts as well as their relations can be defined in a
dedicated banking domain model.

For the purpose of creating models for MDD, modeling languages support the rep-
resentation of concepts and their relationships in a consistent and uniform way. Dif-
ferent modeling languages exist providing a formal syntax and semantics for the (tool-
supported) creation of models, such as, UML [96], MOF [100], or entity-relationship
(ER) models (see, e.g., [15]). We refer to a modeling language dedicated to a partic-
ular domain as domain-specific modeling language (DSML; see Section 2.2).

A model does not necessarily need to describe a domain completely. Rather, it
will focus on one particular aspect of a domain (e.g., modeling the workflow of a
bank customer’s transaction and thereby neglecting the organizational structure of
the bank). In doing so, models represent system viewpoints on a particular domain.
A view is a representation of a system from the perspective of a viewpoint. Each
view focuses on the elements relevant to that particular viewpoint, abstracting away
all irrelevant details (see, e.g., [92, 161]). Viewpoint modeling allows to reduce the
complexity of individual models, thereby increasing their readability, maintainability,
and flexibility. To model a software system completely, several viewpoint models
can be interwoven to represent all necessary domain aspects (see, e.g., [78]). The
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weaving of models is facilitated by using an integrated approach, i.e., by constructing
models compatible with each other, for instance, by describing them in one modeling
language (see, e.g., [56]). As an example, the UML provides 14 different structural as
well as behavioral diagram types which can be used not only in isolation but which
can also be combined with each other [96].

Furthermore, in MDD, models are used to describe a system from different ab-
straction levels (see, e.g., [78, 122, 123]). For example, the various UML diagram
types can be employed to model different abstraction levels and, therefore, can be
utilized for business process specifications (e.g., via activity diagrams) as well as
software system implementation descriptions (e.g., via class and object diagrams).
As a reference frame, the model-driven architecture (MDA) initiative of the Object
Management Group (OMG) defines three abstraction levels [92]:

• Computation independent model (CIM): A CIM (sometimes also referred to as
domain model) omits details of the structure of a system and uses vocabulary
familiar to the domain expert. The CIM plays an important role in bridging the
gap between domain experts (those that are experts on domain requirements)
on the one hand, and DSML engineers (those that are experts of the design and
construction of the artifacts that together satisfy the domain requirements), on
the other hand (see also Section 2.2). For example, a CIM can be provided as
a generic metamodel that can be used to extend arbitrary modeling languages.

• Platform independent model (PIM): A PIM exhibits a specified degree of plat-
form independence so as to be suitable for use with a number of different
platforms of similar type. For example, a PIM can be specified via technology-
neutral UML models.

• Platform specific model (PSM): The specification of the PSM may vary de-
pending on its application on the target platform (e.g., model interpretation,
source code generation [54]). In general, a PSM refines the specifications from
the PIM by adding details that specify how that system uses a particular type
of platform. If the PSM is not directly executable, platform-specific software
artifacts need to be generated (e.g., source code or configuration and deploy-
ment specifications; see, e.g., [131]). For example, a PSM can be provided as
a platform-specific UML profile used to generate Java source code.

One of the key challenges of MDD is the automated transformation of models
on higher abstraction levels (CIMs, PIMs) to executable software artifacts (PSMs,
source code etc.; see also Section 2.3). The objective is to increase productivity and
quality by enabling development and using concepts closer to the problem domain,
rather than those offered by programming languages. This is because models pro-
vide the benefit of being both, abstract and formal at the same time: the problem
domain can be specified in a compact and reduced form. In this case, models are
no longer only documentation, but parts of the software (i.e. constructing models
become semantically equivalent to writing source code; see, e.g., [78, 124, 131]).
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2.2 MOF/UML-based Domain-specific Modeling

In MDD, a domain-specific modeling language (DSML) is a tailor-made software lan-
guage for a specific problem domain. DSMLs are a special kind of domain-specific
languages (DSLs). In contrast to textual or form-/table-based DSLs, DSMLs provide
end users with a graphical or diagrammatic concrete syntax (see, e.g., [73, 84, 130,
137, 182]). DSLs/DSMLs are used as an abstraction layer to facilitate the commu-
nication between software engineers and domain experts. Here, a domain expert is
a human user who is a professional in a particular domain, such as a stock analyst
in the investment banking domain or a physician in the health-care domain. DSMLs
are built so that domain experts can understand and phrase domain-specific state-
ments (via models) that can be processed by an information system. Thus, DSMLs
(as DSLs in general) aim at increasing the number of people who can actively partic-
ipate in the specification, configuration, and management of software-based systems
(see, e.g. [122, 123]).

According to [137], the development of DSMLs can be divided into four main
tasks (see also Figure 2.1):

• Define DSML core language model : In this task, the DSML developer defines
an initial core language model and corresponding language model constraints for
the selected target domain. In particular, domain analysis methods (see, e.g.,
[23]) are used to identify abstractions and specify the core language model of a
DSML. Because the core language model often cannot capture all restrictions
and/or semantic properties of the DSML elements, language model constraints
are added, if necessary. This phase results in the DSML core language model
and an (optional) set of DSML language model constraints.

The core language model of a DSML is typically defined using metamodel-
ing and it is exposed to domain modelers in terms of a diagrammatic concrete
syntax (see task Define DSML concrete syntax below and, e.g., [124]). A meta-
model is a model of models; i.e. a metamodel is used to represent other models
(see, e.g., [27, 92]). The relationship between metamodels and models can
be illustrated via type/instance relations: models are instance specifications
of their metamodel definitions (types); i.e. the metamodel defines the refer-
ence frame to which its conforming models must adhere to. As metamodels
allow for classification abstraction mechanisms (models of metamodels are also
metamodels; i.e. instances of types are also types), an infinite metamodeling
hierarchy is derived from this recursive definition (see, e.g., [39]).

In the context of DSMLs, a metamodel (with optional behavior and constraint
specifications) defines the relationships among concepts in a domain and pre-
cisely specify the key semantics and constraints associated with these domain
concepts (see, e.g., [96, 161]). These three parts—the DSML core language
model (i.e. metamodel), language model constraints, and behavior specifica-
tions (see task Define DSML behavior below)—make up the language model of
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Figure 2.1: Language model driven DSML engineering process (adapted from [137])

a DSML which is also often referred to as the abstract syntax of a DSML.

• Define DSML concrete syntax : The concrete syntax serves as the DSML’s
interface. In this task, graphical/diagrammatic (for DSMLs) or textual/form-
/table-based (for DSLs) notation symbols as well as syntax-specific composition
and production rules are defined. The different syntax types are tailored to
the need of the modeler, for instance, different syntax styles may be chosen
depending on the modeler’s domain and/or software-technical proficiency. The
DSML core language model and the DSML language model constraints serve
as input to produce the DSML concrete syntax specification.

• Define DSML behavior : The behavior specification (also: dynamic semantics)
of a DSML determines how the DSML elements interact to produce the be-
havior intended by the DSML designer. Moreover, the behavior specification
defines how the DSML language elements can interact at runtime. Syntax and
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behavior of a DSML are usually defined in parallel. Again, the DSML core lan-
guage model and the DSML language model constraints serve as input. The
result of this task is the DSML behavior specification (e.g., by defining control
flow models or formal textual specifications).

• DSML platform integration: All artifacts defined for a DSML are mapped to
the features of a selected software platform by either extending an existing plat-
form or by developing a new tool set. Often, platform integration is achieved
by defining model transformations (see also Section 2.3 and, e.g., [81, 124]) to
convert one model into another model (also called: model-to-model transfor-
mation, M2M) or into executable software artifacts (also called: model-to-text
transformation, M2T). The DSML language model and the DSML concrete
syntax specification serve as input to this task.

The order of these four DSML development tasks largely depends on the DSML’s
development context. In [137, 182], the following process variants have been identi-
fied: 1) language model driven DSML development, 2) mockup language driven DSML
development, and 3) extracting the DSML from an existing system. In this thesis, all
DSMLs are developed according to (1). Thus, here, we provide a characterization of
the language model driven DSML development process variant only (see Figure 2.1):
The DSML engineering process is driven by the language model definition (abstract
syntax). First, the core language model with accompanying language model con-
straints is specified for the relevant domain concepts, then the concrete syntax and
corresponding behavior specifications are defined. Finally, the DSML is mapped to
a dedicated platform.

This thesis deals exclusively with MOF/UML-based DSMLs. The MOF “serves as
the platform-independent metadata management foundation for MDA” [100]. With
the metamodeling infrastructure provided by the MOF, the UML metamodel is de-
fined. For the specification, the MOF reuses common core packages from the UML
infrastructure library (via package imports/merges [95]) and extends it with addi-
tional packages. The UML infrastructure library defines a core language that can
be reused to define a variety of metamodels (including UML and MOF). The MOF
is described using both textual and graphic presentations. To precisely describe the
abstract syntax and semantics of the MOF, a combination of languages is used: a
subset of UML, the Object Constraint Language (OCL [99]), and precise natural
language. Two alternatives are defined in the MOF specification: the essential MOF
(EMOF) and the complete MOF (CMOF). They have different usage scenarios as
the “primary goal of EMOF is to allow simple metamodels to be defined using sim-
ple concepts while supporting extensions [. . . ] for more sophisticated metamodeling
using CMOF” [100]. For example, the UML metamodel is specified using CMOF.

The MOF is often referred to as a four-layered metamodel architecture, although
the reflection interfaces allow traversal across any number of metalayers recursively
(i.e. an infinite number).1 Four is the minimum number of layers (M3–M0; see

1The UML infrastructure library is defined reflective, i.e., it contains all the metaclasses required
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Figure 2.2 for an example) needed for the specification of the MOF as well as for
MOF-based modeling languages (e.g., the UML). The primary responsibility of the
M3 layer is to define the language (i.e. a meta-metamodel) for specifying a meta-
model. The MOF is an example of a metamodel on the M3 layer which is used to
define a metamodel on the M2 layer (e.g., the UML metamodel). A metamodel on
the M2 layer is an instance of a metamodel on the M3 layer, meaning that every
element of the M2 metamodel is an instance of an element in the M3 metamodel (see
Figure 2.2 and also Section 2.1). The primary responsibility of the M2 metamodel
layer is to define a language for specifying models (on the M1 layer). An M1 model is
an instance of an M2 metamodel. The primary responsibility of the M1 model layer
(i.e., a user-generated model) is to allow users to model different problem domains.
At the bottom of the metamodel hierarchy, the M0 layer contains runtime instances
of model elements defined in an M1 user model (for further information see [95]).

Figure 2.2: MOF four-layer metamodel hierarchy example (adapted from [95])

The UML is the de facto standard for modeling software-based systems and pro-
vides native support for all types of software models (structure, behavior, interaction
diagrams). The UML serves as a solid foundation for DSML engineering (e.g., stan-
dardized modeling extensions, extensive tool support; see also Section 1.1) and in
this thesis, we utilize the UML for DSML development in two ways: by 1) using
UML profiles (native extension [96]) and by 2) introducing new or altering existing

to define itself. As the MOF is based on the UML infrastructure library, it is also reflective [95].
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modeling concepts on the metamodel level (MOF-based extension).2 UML profiles
provide a mechanism for the extension of existing UML metaclasses to adapt them
for non-standard purposes (e.g., define more restrictive constraints, provide a graph-
ical icon as additional stereotype visualization). However, UML profiles are not a
first-class extension mechanism [96]. They extend existing metaclasses of the UML
metamodel, thereby being consistent with the semantics of the original UML meta-
classes. For this reason, more complex extensions are defined on the level of the
UML metamodel [96, 100]. A MOF-based extension allows to define new and specif-
ically tailored UML elements (by defining new metaclasses), and allows to define
a customized notation, syntax, and semantics for the new modeling elements. In
our DSMLs, we employ a combination of both methods to take advantage of each
mechanism. We have implemented our DSMLs via the Eclipse Modeling Framework
(EMF; see, e.g., [132, 146]). In this technology projection, MOF-compliant DSML
models are approximated by Ecore models.

2.3 Higher-order Model Transformation

MDD offers the potential for automatic transformations of concepts defined on an
abstract level into running software systems (see, e.g., [78]). In general, the term
model transformation is used when at least either the input or the output artifacts
are graphical or textual models. In the literature this is often contrasted to the
term program transformation (see, e.g., [109]), which indicates that input and/or
output artifacts of a transformation are programs (source code, byte code etc.).
However, executable program definitions (e.g., source code) can be seen as models,
as well, because they are abstracted representations of lower-level machine structures
and operations (see, e.g., [20, 81]). According to this definition, the term model
transformation encompass program transformation since “a model can range from
abstract analysis representations of the system, over more concrete design models,
to very concrete models of source code” [81]. As the concept of models is more
general than the concept of program code, we use the term model transformation to
refer to transformations operating on a more diverse set of artifacts than program
transformations (see, e.g., [20]). In this thesis, the term model refers to abstractions
above program code (e.g., requirements and design specifications, domain concepts;
see, e.g., [20]) as well as to different representations of program code (e.g., source code
specifications of a transformation language stored in the XML Metadata Interchange
format; XMI [101]). In the context of the MDD approach applied in this thesis
project, the input and output models of model transformations can take various
forms, for example, DSML core language models or model-to-text transformation
specifications (see also further below).

As sketched in Figure 2.3, the output of model transformations are either again
graphical models (in a model-to-model transformation; M2M) or text-based artifacts

2A more detailed discussion of the decision making process for customizing the UML is presented
in [10].
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(in a model-to-text transformation; M2T). According to the above definition, gener-
ated textual artifacts of a M2T transformation can represent models (e.g., program
code, XMI specifications), as well, but also aims at producing textual representa-
tions not adhering to a dedicated metamodel definition in the technical space of
MDD (e.g., reports, documents; see, e.g., [93]). A model transformation can take
one or multiple graphical/textual models as input and can generate one or multi-
ple graphical/textual models as output. A typical M2M transformation example is
the generation of PSMs from PIMs—a transformation from a more abstract to a
more concrete model. In a reverse engineering context, the transformation would
be inverted; i.e. a more abstract model would be generated from a more concrete
one (both are examples of vertical transformations, opposed to horizontal transfor-
mations; see, e.g., [81]). In a M2M transformation, the input and output instance
models must not necessarily conform to the same metamodel (endogenous vs. exoge-
nous transformation; see, e.g., [81]). As models are a means for abstraction, they
may not capture enough implementation details to be directly executable. In such a
case, M2T transformations may be used to generate textual models/artifacts (e.g.,
source code, configuration documents) which can be deployed and processed when
integrated in a specific platform.

Metamodel

Model 

transformation

refers to

source

target

Graphical model

Model

(graphical, textual)

instance of

instance of

generates
Textual artifactM2T

M2M

Figure 2.3: Model transformations in MDD-based engineering (adapted from [49])

Different methods exist to perform model transformations, such as, template-
based, visitor-based, graph-transformation-based, relational, or hybrid approaches
(see, e.g., [20]). Although we employ several model transformation methods, the
main contribution of this thesis focus on template-based M2T generators. M2T gen-
erator templates receive a transformation definition and a set of source models as the
input to produce a transformed representation of these models. In principle, a gener-
ator template consists of two kinds of code. On the one hand, there is template code
to access and to select source model data by quantifying over the model structure
that is specified in a metamodel. On the other hand, a template contains code to
expand and to wrap the selected model data into string fragments. Template-based
M2T transformations are a widely supported platform integration technique in con-
temporary MDD tool chains, and a variety of template language implementations
exist, such as, Xpand, MOFScript, Epsilon Generation Language (EGL), Java Emit-
ter Templates (JET), or Acceleo (see, e.g., [20, 70, 115, 116, 143, 150, 152])—the
latter being the reference implementation of OMG’s MOF Model to Text Transfor-
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mation Language specification (MOFM2T [93]).
A higher-order transformation (HOT) is distinguished from a “common” model

transformation as it “is a model transformation such that its input and/or output
models are themselves transformation models. [. . . ] This demands the representa-
tion of the transformation as a model conforming to a transformation metamodel”
[157] (see also Figure 2.3). In this way, transformation specifications (e.g., generator
templates) become first-class model entities, as well. In [156, 157], four transfor-
mation classes for HOTs are identified and characterized by their input and output
models:

• Transformation analysis: HOTs are employed to process other transformations
to extract meaningful data. They have at least one transformation as input
model and no transformations as output models.

• Transformation synthesis : HOTs are employed to create new transformations
from data modeled in other forms. They have no transformations as input
models and at least one transformation as output model.

• Transformation modification: HOTs are employed to manipulate the logic of an
input transformation to generate a modified version of the same transformation.
They have one transformation as input model and one transformation as output
model.

• Transformation (de)composition: HOTs are employed to merge or split other
transformations, according to a (de)composition criterion. They have at least
one transformation as input model, at least one as output model, and the input
and/or the output models contain more than one transformation.

Our approach of higher-order rewriting M2T templates for integrating DSMLs
[53] can be classified as a transformation modification. A model representation of a
M2T transformation specification is provided as input to a HOT. The HOT modifies
the input transformation model and generates an adapted transformation as output
model.

2.4 Scenario-based Model Testing

In software engineering, scenarios are used to specify user needs as well as to explore
and to define (actual or intended) system behavior (see, e.g., [12, 13, 63, 139, 159]).
In recent years, scenarios have become a popular means for capturing requirements
of software systems (see, e.g., [17, 129, 139]). Scenarios can be described in differ-
ent ways at various abstraction levels, for example, via natural language, (informal)
graphical models, or precise (and formal) textual specifications (see, e.g., [55]). In
particular, different approaches have been proposed to provide notations for speci-
fying scenarios, for example, in a table-based layout, as message sequence charts, or
via formal methods (see, e.g., [1, 17, 160]). No generally accepted standard notation
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exists and the different scenario notations vary with respect to the corresponding ap-
plication domain and with the professional background of the stakeholder involved
in a particular development project (see, e.g, [17]).

Evaluating requirements-level scenarios poses important challenges with respect
to, for instance, ambiguity, consistency, singularity, or traceability of defined re-
quirements (see, e.g., [62, 139]). Furthermore, scenario descriptions are often not
executable, thus, making the automatic validation of implemented software artifacts
difficult. These issues are influenced not only but also by the notation employed for
specifying scenarios. For example, consider the discrepancy of specifying scenarios
in a natural language (may be simple to formulate, but difficult to validate automat-
ically) or via formal methods (may be difficult to formulate, but simple to validate
automatically). Hence, the choice of selecting a notation significantly influences the
application of scenarios and trade-offs between different notation styles must be con-
sidered (e.g., scenarios as a means for documentation and communication purposes
or as a means for formal verification).

To effectively validate scenarios, the different action steps in a non-executable
scenario description (e.g., specified in a natural language) can be refined through de-
tailed, executable scenario tests. Detailed scenarios are used to depict the dynamic
runtime structures of a system, for instance, to show how a certain functionality is
realized on the level of interacting software components. Therefore, scenarios are a
natural source for behavior tests. Non-executable scenario descriptions for a DSML
can directly be defined by domain experts to serve as an (additional) input for soft-
ware engineers to implement integration and component tests at the implementation
level (see, e.g., [91]).

In general, it is almost impossible to completely test a complex software system
(see, e.g., [88, 133, 136]). Hence, the selection, description, maintenance, and au-
tomation of relevant test cases become an important factor. In this context, scenarios
can help to reduce the risk of omitting or forgetting relevant test cases, as well as the
risk of describing important tests insufficiently (see, e.g., [89, 118, 136]). Scenarios
can contribute to achieve a critical test coverage of relevant requirements by check-
ing each requirements-level scenario via corresponding scenario tests. Moreover, as
in a scenario-driven engineering approach, changing domain requirements are first
identified at the scenario level (see also [63, 139]), one can rapidly identify affected
scenario tests and propagate the changes into corresponding test specifications (see,
e.g., [57, 126, 133]).

In MDD, scenario specifications can be used to test models for compliance with
corresponding domain requirements (see, e.g., [9, 89, 126]). For a DSML, the core
language model, the behavior specification, or model transformations are examples
of artifacts which may be specified via models (e.g., via structural or behavioral
UML diagrams). Performing a scenario-based testing process for models involves
planning activities (e.g., deciding on a test procedure) and the creation of a number
of testing artifacts, such as, non-executable scenario descriptions and executable test
scenario specifications. An example notation for non-executable scenario descriptions
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would be the one-column table format as suggested by Cockburn [17]. This format
demands that a set of test scenarios is defined for every test case. Properties for
each test case and each test scenario are specified via natural language, such as, pre-
and postconditions, event triggers, or expected outcomes. These requirements-level
scenarios are non-executable and can be translated into model tests in a next step,
for example, into scenario tests specified in the Epsilon Unit Testing Framework
(EUnit [33]) which is designed to define tests for model-management tasks. EUnit is
a task-specific language provided by the extensible platform of integrated languages
for model management (Epsilon [70]) which is based on EMF (see, e.g., [132]). In
this way, the functionality for scenario-based model tests can be realized, including,
the distinction of test concepts via containment relationships (e.g., test case, test
scenario), the sequencing of test executions, or the support for guarding expressions
(i.e. pre-/postconditions) as well as for setup/cleanup operations (see also [126]).
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Chapter 3

Problem Areas and Related Work

In this chapter, we describe the research problems which are covered by this thesis.
The problem statements are discussed with respect to related work and are classified
according to the two categories this thesis provides research contributions for (see
also Section 1.2, especially Table 1.1).

3.1 DSML Integration

Problem Statement 1. When integrating two (or more) DSMLs, the reuse of M2T
transformation templates for the integrated DSML would yield a number of benefits,
such as, reduced testing and maintenance efforts. The automated and tool-supported
syntactical adaptation of individual M2T templates for their reuse in DSML integra-
tion scenarios is currently not provided by existing approaches.

In general, many issues relate to the integration of MOF/UML-based DSMLs,
such as, establishing a consolidated domain space, developing a compatible formal-
ization style, adapting core language model constraint sets, defining an executable
integration workflow, specifying the conflict-free composition of symbol sets, arrang-
ing the integration order with respect to the functional properties of the integrated
DSMLs, handling multiple host software platforms, providing integrated tool sup-
port, or adapting M2T generator templates (see, e.g., [14, 22, 52, 54, 60, 87, 137,
172, 182]).

The integration issues relate to the different phases of DSML development (define
DSML core language model, define DSML concrete syntax, define DSML behavior,
and DSML platform integration; see Section 2.2 and [137]). In this context, related
work does not discuss issues arising at each phase of DSML integration as interde-
pendent parts of a systematic integration process. In particular, research approaches
limit themselves to individual aspects of, for example, integrating DSML core lan-
guage models (see, e.g., [22, 28, 173]), integrating graphical concrete syntaxes (see,
e.g., [110]), integrating model transformations (see, e.g., [156, 157, 172]), or integra-
tion at the level of the software platform (see, e.g., [130, 138, 182]). We contribute to
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this research by discussing integration issues at each of the DSML integration phases
and drafting a systematic integration process for MOF/UML-based DSMLs [60].

In the context of a systematic DSML integration process, our integration ap-
proach presented in this thesis focuses on reuse aspects of M2T transformations.
Related work regarding the syntactical adaptation of M2T transformations is espe-
cially concerned with reuse techniques for generator templates (e.g., HOTs, generic
templates, adapter models [53]). For these M2T transformation templates, we iden-
tified problems with regard to their reuse when integrating DSMLs (related to the
phase of DSML platform integration) [50, 56, 60], primarily because related work
is mainly concerned with M2M transformations (e.g., transformation genericity has
not been documented for M2T generator templates so far; see, e.g., [18, 19, 168]).
Currently, the reuse and adaptation of metamodeling concepts for evolving M2T
templates is mostly performed by a combination of standard-tool-supported cloning
of existing templates (e.g., copy and paste) and manually identifying the concepts
to be rewritten step by step. Only after manual identification of the concepts, their
occurrences can automatically be searched and replaced across the generator tem-
plates via standard tools. Our approach benefits from recording traces from M2M
transformations on the metamodel level (i.e. from the integration of the DSML core
language models) and by using these traces to automatically rewrite the correspond-
ing M2T templates (in one bulk operation). In this way, our approach supports a
consistent evolution of M2M and M2T transformations. Furthermore, the evolution
process is explicitly documented via the definition of M2M transformations and via
the generated higher-order rewrite rules for the corresponding M2T transformations.
We provide integrated tool-support for the automatic rewriting of M2M templates
in MDD environments, thereby using native methods and tools (e.g., transforma-
tions represented as first-class models, applying M2M transformations on generator
template models). In our approach, DSML engineers can use tools they are familiar
with and the cognitive distance of the rewritten M2T templates is not increased, as
is the case, for example, for adapter models because the generated platform artifacts
do not reflect derived or newly introduced domain concepts (see, e.g., [113]). In this
context, a further disadvantage of adapter models is that they restrict the generation
of glue code using M2T transformations because concept correspondences between
the integrated DSML and the source DSMLs cannot be leveraged in code generation
(see, e.g., [113]).

Our approach is based on HOTs for the automatic rewriting of M2T templates
(see Section 2.3). Current HOT approaches lack generalizability and transferabil-
ity because they concentrate on specific transformation platforms only (e.g., Atlas
Transformation Language; ATL) rather than on HOTs in a technology-independent
manner (see, e.g., [156, 157]). To address this issue, we map the concepts of our ap-
proach to the MOFM2T specification [93] to facilitate transferability to other M2T
transformation languages and environments. However, to use HOTs on M2T trans-
formations, the generator templates need to be represented as first-class models. In
related work, we could not identify a M2T transformation language explicitly pro-
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viding both, a metamodel for its abstract syntax and an execution environment for
the instance M2T transformation models. Our approach provides a metamodel as
well as round-tripping functionality for EGL [70]—by adapting and extending work
from [174]. Hence, our solution is capable of translating textually specified EGL
templates into their model representation (and vice versa). The approach of not
executing model representations directly has the advantage that existing EGL tem-
plates can be reused as is and they can be specified in both formats: textually and
as models.

With regard to Problem Statement 1, results of our work concerning the integra-
tion of DSMLs are published as [50, 53, 56, 60] and are presented in Appendix B,
respectively.

3.2 DSML Testing

Problem Statement 2. In an integration scenario, the DSML core language models
are not static artifacts, but evolve according to the requirements defined in the inte-
gration process. The automated and tool-supported validation of the integrated core
language model for checking its conformance against corresponding DSML integra-
tion requirements specified via natural-language is currently not provided by existing
approaches.

In related work, different techniques are proposed for the testing of DSML ar-
tifacts, such as, model checking and verification (e.g., for the DSML core language
model; see, e.g., [11, 32, 42, 183]), graphical user interface testing (e.g., for the
DSML concrete syntax; see, e.g., [8, 79, 112]), or model transformation testing (e.g.,
for the DSML platform integration; see, e.g., [158, 162, 176]). However, existing test
approaches neither take the different DSML development phases into account nor
specifically target issues arising when integrating DSMLs (see, e.g., [47]).

In particular, this thesis presents a model testing approach based on scenario
specifications applied in a DSML integration process. In this context, related work
falls short with respect to providing requirements-driven and scenario-based testing
procedures for evolving DSML core language models (as required in a DSML inte-
gration scenario). Existing approaches consider a metamodel (e.g., a DSML core
language model) as a given artifact from (and for) which instance models, test mod-
els, or test oracles are generated (and provided). Therefore, existing approaches
usually fail in making changed metamodels testable against unchanged domain re-
quirements (see, e.g, [38, 83, 119]). In contrast, our test approach explicitly supports
the iterative development of language models. Every modification to the model under
test (MUT; e.g., a sequence of metamodeling actions as performed when integrating
DSML core language models) is validated by a set of corresponding test definitions
to check for requirements conformance. Iterative development and testing is also
facilitated in our approach via a seamless integration of the test infrastructure into
the environment used for MDD [57, 126].
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For evolving DSML core language models, requirements conformance is criti-
cal [126]. Current metamodel-testing approaches (e.g., modeling-space sampling,
metamodel-test models, metamodel validation; see, e.g., [16, 38, 82, 83, 119]) ad-
dress conformance checking differently. Shortcomings of related approaches are that
in the context of modeling-space sampling, an existing and sufficiently specified MUT
is required to generate potential instances (a requirement which is not always met in
the step-wise development of DSML models; see, e.g., [119]). Our approach differs as
it does not rely on sample model instantiations and can be employed to test complete
models as well as model fragments of any size. Furthermore, related work shows that
tool support for manual test reviews is currently not provided (see, e.g., [4]). In our
approach, before the actual domain modeling integration is performed, the domain
expert and the DSML engineer collaboratively review the executable test scenar-
ios. This review is facilitated by maintaining the domain/integration requirement
statements along with the corresponding test cases (i.e., trace links are established).

Moreover, to employ metamodel validation techniques, the translation of require-
ments (e.g., a narrative text, a requirements catalog, or variability models) into well-
defined constraint expressions is not trivial and existing approaches do consider the
structure of non-executable requirements specifications, such as, textual or diagram-
matic scenario descriptions, only to a certain extent (see, e.g., [17]). In our approach,
scenario-based requirements can be specified in a semi-structured natural-language
format. As in related work, in order to be able to correctly map to executable sce-
nario tests, the definition of natural-language scenarios in our approach must also
conform to a pre-defined schema providing a basic structural skeleton. However,
the concrete syntax of the scenario-based requirements specification language can
easily be adapted. We provide a natural-language scenario notation by following
related approaches to textual use-case modeling and acceptance testing (see, e.g.,
[37, 128, 180]). Nevertheless, this template syntax can be changed, for example, to
conform to the notation requirements of the domain expert.

In addition, requirements distinct to testing the integration of DSML core lan-
guage models, such as, to provide for the navigation between different metamodels
to capture model transformations via, for example, an integrated, model-driven tool
chain, are not met by related work in the context of testing against natural-language
requirements (see, e.g., [21, 35, 120, 181]). In contrast, navigation between meta-
models is supported by our approach, for instance, by mapping multi-metamodel re-
quirements into executable test scenarios involving individual and integrated DSML
core language models [57, 70].

In the context of testing DSMLs, research results concerning Problem Statement 2
are published as [47, 55, 57, 126].
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Chapter 4

Research Approach

In this thesis project, research is performed in the context of integrating and testing
MOF/UML-based DSMLs. The results of the research efforts manifest in the creation
of novel, innovative, and useful artifacts (e.g., methods, models, software). In this
sense, we apply a design science oriented research approach (see, e.g., [43, 44, 75,
111, 125]). In contrast to natural science which “tries to understand reality, design
science attempts to create things that serve human purpose” [75]. In information
system research, basically two complementary but distinct paradigms are recognized:
behavioral science and design science (see, e.g., [44, 75]). The behavioral-science
paradigm has its roots in natural science research methods and “seeks to develop
and verify theories that explain or predict human or organizational behavior” [44].
In contrast, the design-science paradigm has its roots in engineering and the sciences
of the artificial (see, e.g., [125]) and “seeks to extend the boundaries of human and
organizational capabilities by creating new and innovative artifacts” [44]. Design
science is fundamentally a problem-solving paradigm, technology-oriented, and its
products are assessed against criteria of value and/or utility (see, e.g., [44, 75]).

Concerning the design-science aspects discussed in [75], the authors distinguish,
on the one hand, two research activities: (build and evaluate). “Building is the pro-
cess of constructing an artifact for a specific purpose; evaluation is the process of
determining how well the artifact performs.” [75] On the other hand, four different
research outputs are presented: constructs (“constructs [...] constitute a conceptual-
ization used to describe problems within the domain and to specify their solutions.”
[75]), models (“a model is a set of propositions or statements expressing relation-
ships among constructs” [75]), methods (“a method is a set of steps (an algorithm or
guideline) used to perform a task” [75]), and instantiation (“an instantiation is the
realization of an artifact in its environment” [75]). To sum up, according to [75], de-
sign science is concerned with building and evaluating constructs, models, methods,
and instantiations. In addition, the authors identify the last two research activities
which make up their presented research framework (theorize and justify) as having
natural science intent.

By building on and being consistent with prior research, the authors of [111]
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propose a methodology and provide a framework for carrying out design science
research. In particular, a model for design science research processes is defined
consisting of six activities in a nominal sequence. For this thesis project, we base
our design science research approach on the process model presented in [111] (see
Figure 4.1):

Identify problem and motivate. In this phase, the research problems are defined
and the value of solutions are justified.

In this thesis, we are covering problems concerning the integration and testing
of MOF/UML-based DSMLs (see also Chapter 3). In particular, we deal with the
following two issues: Current approaches do not support the evolution of M2T gen-
erator templates as needed in an integration scenario (for details see Section 3.1)
and integration requirements cannot automatically be validated (for details see Sec-
tion 3.2).

Define objectives of a solution. In this phase, the objectives of solutions are
inferred from the problem definitions.

In this thesis, objectives for MOF/UML-based DSML solutions comprise the (ini-
tial) definition of a systematic integration process, the automatic adaptation of M2T
transformation templates for their reuse in an integration process, the discussion and
review of testing techniques for each phase of integration, and the validation support
for (natural-language) integration scenarios.

Design and development. In this phase, artifacts are created, such as, con-
structs, models, methods, or software.

In this thesis project, artifacts for MOF/UML-based DSMLs are designed to infer
an integration process model from experience and related work as well as to provide
integrated MDD-based tooling for the syntactical rewriting of M2T transformation
templates and for the validation of requirements-level scenarios (defined via different
scenario notations, such as, semi-structured natural-language scenario notation or
fully-structured textual scenario notation).

Demonstration. In this phase, the use of artifacts to provide for solutions to the
particular problems is demonstrated.

In this thesis, the use of MOF/UML-based DSML solutions is demonstrated by
conducting an integration case study, by proof-of-concept software artifacts, and
by example applications of developed methods and prototypes (e.g., an integration
scenario to demonstrate the M2T generator template adaptation technique).
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Communication

Research results are communicated via

- publications in scientific journals as well as in scientific conference and workshop proceedings,

- talks at scientific conferences and workshops, and

- placing all developed software artifacts, experimental material and data etc. into the public domain.

Evaluation

Demonstration

The use of MOF/UML-based DSML solutions is demonstrated by

- conducting an integration case study,

- proof-of-concept software artifacts, and

- example applications of developed methods and prototypes.

Design and development

Define objectives of a solution

Objectives for MOF/UML-based DSML solutions comprise the

- (initial) definition of a systematic integration process,

- automatic adaptation of M2T transformation templates for their reuse in an integration process,

- discussion and review of testing techniques for each phase of integration, and

- validation support for (natural-language) integration scenarios.

Identify problem and motivate

Problems for MOF/UML-based DSMLs are that

- support for the evolution of M2T generator templates as needed in an integration scenario is missing and

- integration requirements cannot automatically be validated.

Artifacts for MOF/UML-based DSMLs are designed to

- infer an integration process model from experience and related work, and

- provide integrated MDD-based tooling for the syntactical rewriting of M2T transformation templates and

for the validation of requirements-level natural-language/fully-structured scenarios.

Solutions for MOF/UML-based DSML artifacts are evaluated by

- experimentally comparing notations for defining scenario-based model tests and

- studying the feasibility as well as the benefits of automatically rewriting M2T transformation templates.

Figure 4.1: Process of the design science research approach applied in this thesis
(adapted from [111])
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Evaluation. In this phase, it is observed how well the artifacts support solutions
to the problems.

In this thesis, solutions for MOF/UML-based DSML artifacts are evaluated by
experimentally comparing notations for defining scenario-based model tests (em-
ployed for the validation of integration requirements) and by studying the feasibility
as well as the benefits of automatically rewriting M2T transformation templates (in
comparison with manual refactorings).

Communication. In this phase, the problems and their importance, the artifacts,
their utility and novelty, and the rigor of their designs are communicated to the
public.

Research results of this thesis are communicated via publications in scientific
journals as well as in scientific conference and workshop proceedings, via talks at
scientific conferences and workshops, and via placing all developed software artifacts
(e.g., tools, models, examples), experimental material and data etc. into the public
domain (as free/libre open source software).

In this thesis, a problem-centered approach is applied which is the basis of the
nominal sequence shown in Figure 4.1 (the phase of identifying the problems and jus-
tifying the value of solutions acts as research entry point [111]). However, the process
was not carried out strictly in a sequential order. Iterations occurred in one phase
and over different phases. For example, a prototypical implementation provided first
insights into a possible solution for a specific problem and, after further research,
the prototype was dismissed in favor of an improved design incorporating develop-
ment experiences and merging them with new knowledge (an example iteration in
the “design and development” phase). Furthermore, the evaluation of an artifact and
discussions with colleagues elicited weaknesses which were used as a starting point
for design improvements (e.g., optimizing the implementation, developing additional
features). Moreover, evaluations and discussions also led to amended and extended
objective definitions of a given solution which, in turn, also led to requests for, for
example, additional features (these are examples of iterations over different phases,
including “define objectives of a solution”, “design and development”, “evaluation”,
and “communication”; see Figure 4.1).
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Chapter 5

Discussion of Results

In this chapter, we discuss the research contributions and results which emerged from
this thesis project. We introduce the scientific publications, discuss the relations of
the individual research contributions, and mention accompanying software artifacts.
Moreover, we list further research contributions which emerged either as preparatory
work to or as additional results of our main research findings.

5.1 Overview of Publications

This section provides an overview of research contributions published in the course
of this thesis project.3 The contributions are listed in their chronological order of
publication and numbered accordingly. The full text of all papers is available in
Appendix A.

P1 Integrity and Confidentiality Annotations for Service Interfaces in
SoaML Models. This paper presents an approach for incorporating data integrity
and data confidentiality into the MDD of process-driven SOAs based on the SoaML
specification [98] (see Section A.1 and [50]). Definitions for service interfaces are
extended by UML activities to model invocation protocols. An invocation protocol
makes the control and the object flows between service invocations explicit. Integrity
and confidentiality attributes are used to annotate the object flows. The annotations
serve for generating security-aware execution artifacts. We applied the approach
prototypically in a web-services platform environment.

P2 Towards a Systematic Integration of MOF/UML-based Domain-
specific Modeling Languages. This paper discusses issues that may arise when
integrating MOF/UML-based DSMLs and present a process model for the system-
atic integration of DSMLs to address some of these problems (see Section A.2 and
[60]). In particular, different integration techniques as well as challenges that may

3Classification of contributions: P = Paper, C = Chapter (of this thesis).
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occur in the different phases of DSML integration are discussed. In addition, an
example for the integration of two DSMLs from the security domain is provided.

P3 Higher-Order Rewriting of Model-to-Text Templates for Integrat-
ing Domain-specific Modeling Languages. This paper proposes a technology-
independent approach to M2T generator template rewriting based on higher-order
model transformations in order to reuse the original templates for, for example, an
integrated DSML (see Section A.3 and [53]). In particular, the approach addresses
syntactical mismatches between the templates and an integrated metamodel and en-
ables syntactical template rewriting in an automated manner. To demonstrate the
feasibility of this rewriting technique, a prototype for EMF and the Epsilon model-
management toolkit was built.

P4 Towards Testing the Integration of MOF/UML-based Domain-specific
Modeling Languages. This paper reviews the suitability of selected testing tech-
niques for each phase of a MOF/UML-based DSML integration process (see Sec-
tion A.4 and [47]). Every test technique is exemplified by providing a motivating
example of its application to the integration of existing, security-related DSMLs. As
for evaluation, prototypical software implementations are provided.

P5 Requirements-driven Testing of Domain-specific Core Language Mod-
els using Scenarios. This paper presents an approach for the scenario-based test-
ing of core language models of DSMLs (see Section A.5 and [126]). The approach
uses domain scenarios at the requirements level as primary artifacts. These non-
executable, human-understandable scenario descriptions are refined into executable
scenarios test (in the paper exemplified via a DSML integration case). To demon-
strate the applicability of the approach, a scenario-based testing framework was
implemented for EMF and the Epsilon language family.

P6 Natural-language Scenario Descriptions for Testing Core Language
Models of Domain-Specific Languages. In this paper, a linguistic, rule-based
approach for an automatic and traceable translation of semi-structured natural-
language requirements into executable test scenarios is presented (see Section A.6
and [57]). In the approach, scenarios are used for the testing of structural properties
of DSML core language models (in the paper exemplified via a DSML integration
case). To demonstrate the feasibility of the approach, Eclipse Xtext [155] is employed
to implement a requirements language for the definition of semi-structured scenarios.
Transformation specifications generate executable test scenarios that run in a test
platform which is built on EMF and Epsilon.

P7 Modeling and Enforcing Secure Object Flows in Process-driven SOAs:
An Integrated Model-driven Approach. In this paper, an integrated model-
driven approach for the specification and the enforcement of secure object flows in
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process-driven SOAs is presented (see Section A.7 and [56]). In this context, a se-
cure object flow ensures the confidentiality and the integrity of important objects
that are passed between different participants in SOA-based business processes. A
formal and generic metamodel for secure object flows is specified that can be used
to extend arbitrary process modeling languages. To demonstrate the approach, a
UML extension for secure object flows is presented. Moreover, it is described how
platform-independent models are mapped to platform-specific software artifacts via
automated model transformations. In addition, the paper describes the integration
of the approach with the Eclipse Model Development Tools (MDT [149]).

P8 Comparing Three Notations for Defining Scenario-based Model Tests:
A Controlled Experiment. In this paper, three alternative notations to define
scenario-based tests on structural models are considered: a semi-structured natural-
language, a diagrammatic, and a fully-structured textual notation (see Section A.8
and [55]). A controlled experiment to understand how these three notations com-
pare to each other with respect to accuracy and effort of comprehending scenario-test
definitions, as well as with respect to the detection of errors in the MUT was per-
formed. The results show that the participants of our study spent comparatively
less time and completed the tasks more accurately when using the natural-language
notation compared to the other two notations. Moreover, the participants of the
study explicitly expressed their preference for the natural-language notation.

C1 Evaluating Higher-Order Rewriting of M2T Templates: A Case Study.
In Appendix B, we report on a case study performed in order to evaluate our ap-
proach of higher-order rewriting of M2T Templates [53]. In particular, we apply our
approach to a publicly available, Epsilon-based open-source project to evaluate its
feasibility. Via the case study, we show how our approach facilitates the reuse of
M2T templates and reduces the need of manually performed refactorings in meta-
model evolution scenarios. We measure the benefits of our approach, for example,
via the ratio of automatically to manually executed rewriting operations on EGL-
based templates. Furthermore, we present improvements and extensions as well as
discuss limitations of our approach and the corresponding software prototype which
resulted from the execution of the case study.

5.2 Relations of Research Contributions

In this section, we discuss the relations of the individual research publications con-
tributed to this thesis project. An overview of the established relations between
the publications is provided in Figure 5.1. Arrows denote that research contribu-
tions from the publication the arrow originates from are influencing contributions
to which the arrow is pointing, for example, research results (models, methods, or
software artifacts etc.) are used as input to subsequent publications. Research con-
tributions located in the gray filled rectangle contributed to answer the research
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Figure 5.1: Relations of individual research contributions
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problems identified in Chapter 3 and, therefore, are included in this thesis project
(see Appendix A). In contrast, research contributions framed by the dotted light
gray rectangle do not primarily target the research problems of this thesis and, thus,
are not considered essential parts of this thesis project (i.e. they represent additional
contributions). Nevertheless, these additional research contributions are briefly dis-
cussed in Section 5.5. Please note that solid and dashed arrows in Figure 5.1 have
identical meanings. The syntactic difference serves only as a visual cue to bet-
ter distinguish relations to additional research contributions. As Section 5.1 lists
the research contributions in their chronological order of publication, the ascending
numbering of contributions in Figure 5.1 indicates their publication date (please note
that this is not the case for additional research contributions). We classify individ-
ual research contributions according to the two research areas DSML integration and
DSML testing introduced in Section 1.2 and Chapter 3.

Regarding our research process, we started by designing a UML modeling exten-
sion for the support of security properties (i.e. confidentiality and integrity of object
flows for activity models; P9 [58]; see Section 5.5). Experiences and knowledge gained
from the development of the initial security-related MOF/UML-based DSML influ-
enced the design of a second DSML (i.e. UML extension for the specification of audit
rules; P10 [59]; see Section 5.5). For example, knowledge on how to define formal
constraints via the OCL or on how to benefit from the employment of different UML
extension methods in combination (e.g., MOF-based extension and UML profile def-
inition) was applied. Furthermore, all developed DSMLs are compatible with each
other, designed to be used in combination, and are based on and integrated in the
same MDD tool chain. This requires to build on former decisions and to incorporate
existing designs into development decisions of newly created DSMLs.

The two DSMLs served as first case studies and are considered preparatory work
for investigating DSML integration aspects (for more information on the DSMLs see
Section 5.5). In a second step, we extended our initially developed DSML (P9) to
be employed in process-driven SOAs by integrating it with an existing third-party
DSML. For this, we designed integration packages on the modeling-level to render
our DSML compatible with SOA-related specifications (P1 [50]). These early DSML
developments and prototypical applications matured into an integrated model-driven
approach covering all MDD layers via a generic metamodel definition, UML (SOA)
extensions (e.g., SoaML, UML4SOA [76]), formal specification and constraints (e.g.,
first-order logic, OCL), platform-specific artifacts (e.g., WSDL [179], WS-BPEL
[102], WS-SecurityPolicy [107]), model transformations (e.g., MDD4SOA [77]), and
corresponding tool support (P7 [56]). The case study allowed us to gain insights into
several MOF/UML-based DSML integration aspects (e.g., modeling-level integra-
tion with SoaML and UML4SOA specifications, integration with MDD4SOA model
transformations etc.).

Experiences gained from the development and the integration of DSMLs directed
us towards a first definition of a systematic MOF/UML-based DSML integration
approach (P2 [60]). By inferring a process model covering all phases of DSML inte-
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gration, we identified—besides other issues—problem areas concerning the reuse of
M2T transformation templates in an integration scenario. We address these short-
comings in P3 [53] and provide a solution to rewrite M2T generator templates by
employing HOTs. Our approach is demonstrated by integrating a DSML developed
by us (P10) with a generic applicable state/transition-pattern-based DSML. The
integrated MOF/UML-based DSML is capable of covering a reactive distributed
system with auditing support. An evaluation of the approach published as P3 is
performed via a case study presented in C1 (see Appendix B). In the case study, we
apply our approach to a third-party project to evaluate its feasibility and to show
how our approach facilitates the reuse of M2T templates as well as how it reduces
the demand of manually performed refactorings in metamodel evolution scenarios.

In order to support the testing of integrated DSMLs, we reviewed testing tech-
niques for each phase of a MOF/UML-based DSML integration process (as discussed
in P2). In P4 [47], we present our results towards testing methods for the integration
of MOF/UML-based DSMLs. In doing so, we identified problem areas concerning the
validation of DSML integration requirements. Therefore, we developed an approach
for the requirements-driven testing of DSML core language models using (integra-
tion) scenarios (P5 [126]). Again, we exemplified our approach with the same DSML
integration case as in P3. The developed prototype in P5 could validate require-
ments specified via fully-structured scenarios, but not via natural-language scenarios
(i.e. the transformation from natural-language scenarios into executable test scenar-
ios had to be performed manually). Thus, we built an extension to be capable of
validating DSML core language models against requirements-level natural-language
scenario descriptions (P6 [57]). As before, we motivated our work with the same
DSML integration case as in P3 and in P5. An empirical study was performed to
evaluate our approach published as P5 and as P6. We conducted a controlled exper-
iment to compare three notations for defining scenario-based model tests (P8 [55]).
The results of the experiment support our approach.

In addition to the main research contributions, we also documented our expe-
riences and lessons learned from the development, the integration, and the testing
of MOF/UML-based DSMLs in a structured manner (for more information see Sec-
tion 5.5). For this, we provide a catalog of structured decision descriptions (decision
records) to support the development of DSMLs. The first collection of extracted de-
sign decisions for MOF/UML-based DSMLs was predominantly influenced by lessons
learned from developing our own DSMLs. In P11 [52], we documented design deci-
sions and options as well as associations between options for the two phases of defin-
ing domain-specific language models (i.e. language model formalization and language
model constraints decision points). We expanded this initial collection into a first
version of a catalog of reusable decision records for MOF/UML-based DSMLs [51].
This catalog recorded additional DSML decision points and corresponding options
(e.g., for the phase of the concrete syntax definition, platform integration) as well
as updated decision associations. In addition, we performed a systematic literature
review (SLR) on design decisions in MOF/UML-based DSMLs (TR1 [127]). We en-
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coded design decisions gathered via the SLR according to our catalog. In doing so,
we were able to broaden our DSML project base and to revise, extend, and validate
the decision records in the catalog. The new version of the catalog was published
as TR2 [54]. Research results regarding reusable design decision extraction (via a
SLR) and documentation (via a catalog of decision records) for the development of
MOF/UML-based DSMLs are presented in P13 (the publication is forthcoming).

According to our design-science-oriented research approach (see Chapter 4), an
iterative development process for research artifacts was inherent. The evaluation
and communication of results triggered further developments of an artifact. For
example, our prototype for the scenario-based testing of models (P5) was extended
with capabilities to cope with natural-language scenario descriptions after receiving
feedback from the research community. Results which emerged from the extension
were communicated in a subsequent publication (P6).

5.3 Accompanying Artifacts

Research publications part of this thesis project (see Section 5.1) are accompanied by
software developments (e.g., models, examples, prototypes), experimental and case
study material, collected data, as well as calculated results. The following artifacts
are publicly available at [48]:

• P1

– The SOF UML profile (with accompanying OCL constraints) specified in
Eclipse Papyrus [34] providing EMF/XMI serializations of the UML mod-
els, graphical information, and tool metadata.

– The EMF/XMI serialization of the SOF::Services UML profile (with ac-
companying OCL constraints).

– The credit application example discussed in the paper as EMF/XMI se-
rializations for No Magic’s MagicDraw [90], for the EMF (created via a
MagicDraw export), and of intermediate object models (specific to the
MDD4SOA tool chain [77]) as well as WSDL/WS-BPEL specification
documents.

• P3

– The Eclipse projects org.eclipse.epsilon.eol.dom, org.eclipse.ep-
silon.eol.dom.ast2dom, and org.eclipse.epsilon.eol.dom.printer
which provides code/model round-tripping for the Epsilon Object
Language (EOL [70]). This is a branch of the EpsilonStaticAnalysis
project [174] hosted at EpsilonLabs. Changes made to the
EpsilonStaticAnalysis source code are provided as a patch.

– The Eclipse projects org.eclipse.epsilon.egl.dom, org.eclipse.ep-
silon.egl.dom.ast2dom, and org.eclipse.epsilon.egl.dom.printer
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which extends the org.eclipse.epsilon.eol.dom* projects (see above)
with code/model round-tripping functionality for EGL.

– The integration scenario discussed in the paper as an Eclipse project pro-
viding metamodels, instance models, EGL specifications (as textual and
model representations), and the generated Java source code for the two
individual DSMLs as well as an Apache Ant [141] orchestration workflow
definition, Epsilon Comparison Language (ECL [70]), Epsilon Transfor-
mation Language (ETL [70]), and Epsilon Merge Language (EML [70])
integration specifications, metamodels (generated core language model
of the integrated DSML, trace metamodel), instance models (of the in-
tegrated DSML core language model and the trace metamodel), EGL
rewrite specifications, generated ETL rewrite rules, rewritten EGL speci-
fications (as textual and model representations), and the generated Java
source code for the integrated DSML.

• P5

– The patch for the Epsilon Eclipse projects org.eclipse.ep-
silon.eol.engine and org.eclipse.epsilon.eunit.engine to extend
EUnit with scenario-based testing functionality.

– The integration scenario discussed in the paper (the same example as in
P3) as an Eclipse project providing metamodels (core language models of
two individual DSMLs, generated core language model of the integrated
DSML), an Apache Ant orchestration workflow definition, ECL, ETL, and
EML integration specifications, and EUnit scenario tests.

• P6

– The Eclipse Xtext grammar specification to define semi-structured
natural-language scenarios on the requirements level.

– The Eclipse project at.ac.wu.nm.dsml.sbt which, in combination with
an Eclipse Xtext project deployed with the grammar specification men-
tioned above, supports the definition of semi-structured natural-language
test scenarios. The project provides all software artifacts from the inte-
gration scenario discussed in P5 (as the paper exemplifies the prototype
with the same scenario as P5 does) and, additionally, a requirements
specification language metamodel (to be used with the Xtext grammar),
natural-language scenario definitions (conforming to the Xtext grammar),
the EGL specification for EUnit scenario test generation, the EOL step
definitions specification, and generated EUnit scenario tests.

– The Eclipse project at.ac.wu.nm.dsml.sbt.regexp which provides helper
functionality in Java to translate steps via regular-expression-based pat-
tern matching methods not natively supported in Epsilon.
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• P7

– The revised EMF/XMI serialization of the SecureObjectFlows UML
metamodel extension (with revised accompanying OCL constraints) from
P9.

– The OCL constraints for the SecureObjectFlows::Services UML meta-
model extension.

– The revised SOF UML profile (with revised accompanying OCL con-
straints) specified in Eclipse Papyrus from P1.

– The revised EMF/XMI serialization of the SOF::Services UML profile
(with revised accompanying OCL constraints) from P1.

– The patch for MDD4SOA [77] Eclipse projects (eu.mdd4soa.smm,
eu.mdd4soa.trans.smm2bpel, eu.mdd4soa.trans.uml2smm) to support
model transformations for secure object flows.

– The revised software artifacts from P1 for the credit application example
discussed in the paper.

• P8

– The materials used in the controlled experiment, including the experience
questionnaire, the introductory presentation, the notation references, ex-
ample tasks, and the ex-post questionnaire as PDF documents as well
as the Eclipse project at.ac.wu.nm.dsml.eval.sbt providing the Ecore-
based MUT, the scenario descriptions in the three different notations,
and the corresponding questions (with correct answers and, when appli-
cable, line/message numbers in the scenario descriptions responsible for a
failure) for the six tasks performed in the experiment.

– The collected data from the experience/ex-post questionnaires and from
the tasks conducted in the experiment as well as the calculated group
allocations (based on data gathered from the experience questionnaires)
and the analysis of data gathered from performing the experiment’s tasks
provided in the Open Document Format for Office Applications (i.e. Open-
Document [103, 104, 105, 106]).

• C1

– The Eclipse project com.googlecode.pongo.uml which provides the
rewritten UML-compliant M2T transformation specifications as Epsilon
scripts (i.e. the resulting files from performing the case study). For
comparison, the original Ecore-based M2T transformation definitions are
included in the project, as well. With the EGX (a coordination language
for EGL templates), EGL, and EOL files included in this project, an
Ecore/UML model can be transformed into Java classes for interacting
with MongoDB.
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– The Eclipse project com.googlecode.pongo.examples.miniblog.uml
which provides the UML-compliant Pongo tutorial files used in
the case study: a UML domain model and the generated Java
classes as well as a test Java application (i.e. the resulting files from
performing the case study). The UML model serves as input to the
com.googlecode.pongo.uml project for its transformation into Java
classes.

– The revised Eclipse projects org.eclipse.epsilon.egl.dom,
org.eclipse.epsilon.egl.dom.ast2dom, and org.eclipse.ep-
silon.egl.dom.printer from P3 which provide extended and improved
code/model round-tripping functionality for EGL.

– The Eclipse project at.ac.wu.nm.dsml.eval.hotm2t which provides the
case-study-specific files of our rewriting approach. This includes the
Ecore-to-UML M2M transformation definitions (ECL, EML, ETL, EOL),
the trace metamodel and its instance model, the UMLExcerpt metamodel,
the rewrite rule generator (EGL), the generated rewrite rules (ETL), the
original and the rewritten Pongo M2T transformation definitions (EGL
specifications as model representations), and the orchestrating Apache
Ant workflow definitions.

– The measured execution times (in milliseconds) of the different transfor-
mations repeatedly performed (ten times) during the case study provided
in the OpenDocument format.

5.4 Adopted Specifications and Software Support

This section describes the formal specifications the approach presented in this thesis
builds upon as well as the developed integrated tool support. Furthermore, we
show how concepts defined via formal specifications are mapped to our prototypical
proof-of-concept implementations.

Figure 5.2 sketches adopted formal specifications relevant to our approach of inte-
grating and testing MOF/UML-based DSMLs. All of the specifications are formally
published and maintained by the OMG with the exception of the scenario-based
testing domain model which is defined in [133] and the UML4SOA metamodel de-
fined in [76]. The UML Infrastructure specification (UML IS [95]) constitutes the
main structural modeling capabilities which are reused by the Essential Meta Ob-
ject Facility (EMOF [100]), the Complete Meta Object Facility (CMOF [100]), and
the UML Superstructure specifications (UML SS [96]). The MOF—which consists
of two main packages, EMOF (designed to match the concepts of object oriented
programming languages) and CMOF (providing the full metamodeling capabilities
of MOF)—as well as the UML Infrastructure specification are defined reflective;
i.e., they contain all the metaclasses required to define themselves. The complete
UML specification consists of all packages located in the UML Infrastructure and
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the UML Superstructure specifications which are defined using constructs from the
CMOF specification (i.e. both UML specifications are instances of the CMOF meta-
model). The definitions of the MOF and the UML metamodels are accompanied by
constraints specified in OCL [99] (again an instance of the CMOF). The MOFM2T
specification [93] reuses constructs from both, CMOF and OCL and is defined as a
CMOF-based model (i.e. an instance-of relationship exists). The XMI specification
[101] is also an instance of CMOF as well as the domain model [133] used as basis
for the scenario-based testing approach presented in this thesis project. The SoaML
specification [98] as well as the UML4SOA metamodel are defined in two ways, as
a CMOF-compliant model and as a UML profile, for which both provide mappings
between the two model representations.
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Figure 5.2: Adopted formal specifications (UML IS = UML Infrastructure specifica-
tion, UML SS = UML Superstructure specification)

Our approach of integrating and testing DSMLs builds on all specifications shown
in Figure 5.2. We define all models (e.g., DSML core language models, transforma-
tion models) using the MOF and the UML specifications (e.g., MOF-based models,
UML profiles). Language model constraints are expressed as OCL statements (ac-
companied by natural language). Our rewriting technique for integrating DSMLs is
applicable to M2T transformation languages which support a subset of the MOFM2T
specification. The conceptual model of our scenario-based testing approach is de-
fined in [133]. In a case study [50, 56], we employ the SoaML specification and
the UML4SOA modeling extension. The created modeling artifacts (all instances of
MOF models) are persistently stored in the XMI format.

The generally defined concepts (using the specifications shown in Figure 5.2)
are technically projected into proof-of-concept implementations. In particular, our
software artifacts are based on Eclipse to provide for an integrated development
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environment (see Figure 5.3). Table 5.1 summarizes the correspondences between the
specifications from Figure 5.2 and the software artifacts (i.e. technologies, projects)
used for their implementation (see Figure 5.3). In essence, we use Ecore (from
the EMF project [146]) to approximate EMOF models. The UML and the CMOF
specifications are defined as Ecore models in the UML2 project of Eclipse MDT [149].
Eclipse MDT provides also an implementation of the OCL specification. The EMF
project supports persistence storage of models by serializing to the XMI format.
We use EGL as a MOFM2T-compliant implementation of a M2T transformation
language for our rewriting approach [53]. The concepts of scenario-based testing
are transformed into a requirements language defined via Xtext (part of the Eclipse
Textual Modeling Framework, TMF [153]) as well as into an Epsilon-based syntax
by extending the EUnit testing framework [57, 126]. The UML4SOA metamodel
is specified as an Ecore model in the MDD4SOA project; the SoaML and UML4SOA
profiles are provided as Ecore-based UML models.

Table 5.1: Correspondences between specifications and implementations

Formal specification Implementation vehicle

EMOF EMF::Ecore
CMOF EMF::Ecore, MDT::UML2
UML IS, UML SS EMF::Ecore, MDT::UML2
OCL MDT::OCL
MOFM2T Epsilon::EGL
XMI EMF::XMI
Scenario testing TMF::Xtext, Epsilon::EUnit
SoaML EMF::Ecore, MDT:UML2
UML4SOA EMF::Ecore, MDT:UML2, MDD4SOA

Figure 5.3 provides an overview of implementation techniques employed for re-
alizing the integrated software support for our approach of integrating and testing
MOF/UML-based DSMLs presented in this thesis. Central to our implementation is
the EMF project with its Ecore modeling infrastructure and XMI persistence stor-
age support. We developed our approach of higher-order rewriting of M2T transfor-
mations on top of Epsilon using a variety of Epsilon-based language dialects (e.g.,
the Epsilon Validation Language; EVL [70]). For our approach, we had to extend
the EpsilonStaticAnalysis project [174] to provide code/model round-tripping for
EGL-based M2T templates. The EGL models are stored as Ecore models and are
accessible from Epsilon via the Epsilon Model Connectivity (EMC) layer [70]. Our
approach for scenario-based testing implements the semi-structured natural-language
notation in Xtext [155] and executable scenario tests by extending the EUnit test-
ing framework. The grammar definitions for both syntaxes are using the ANTLR
parser generator [108]. Our MDD-based integration case study [50, 56] is based on
the MDD4SOA project and generates WS-BPEL and WSDL documents as platform-
specific artifacts (using the Eclipse BPEL Designer [144] as well as the Web Standard
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Figure 5.3: Integrated software support based on Eclipse

Tools project; WST [154]). Ecore models were created using editors provided by the
EMF project and, for the evaluation of our rewriting approach (see Appendix B), also
by using EMFatic—“a textual syntax for EMF Ecore (meta-)models” [148]—from the
Eclipse Modeling Framework Technology project (EMFT [147]). For UML models,
we employed Eclipse Papyrus [34] (from the MDT project) as well as No Magic’s
MagicDraw [90] (e.g., to design UML sequence diagrams as one of the three al-
ternative scenario notations used in [55]) both allowing for an EMF/XMI conform
serialization export. A console for the interactive evaluation of OCL expressions
on models is provided by the MDT project. Orchestration workflows are defined
using Apache Ant [141] (e.g., for Epsilon-based model management tasks) and the
Modeling Workflow Engine (MWE [151]) from the EMFT project (e.g., to configure
the Xtext code generator). The Eclipse integrated development environment (IDE)
as well as Eclipse-based projects are implemented, to a large extent, using Java as
programming language. Our developments also significantly rely on Java and we
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generate Java-based platform-specific artifacts in our demonstrator examples and
case studies, as well.

5.5 Additional Research Contributions

In addition to the papers presented in Section 5.1, the following closely related con-
tributions emerged during the course of this thesis project.4 However, the contribu-
tions are not included in this thesis because they do not primarily target the research
problems identified in Chapter 3.

P9 Modeling Support for Confidentiality and Integrity of Object Flows in
Activity Models. This paper is concerned with confidentiality and integrity of ob-
ject flows [58]. In particular, a UML extension to model confidentiality and integrity
of object flows in activity models is presented (named SecureObjectFlows). More-
over, the semantics of secure object flows with respect to control nodes is discussed
and a formal definition of the corresponding semantics via the OCL is provided.

P10 A UML Extension for the Model-driven Specification of Audit Rules.
This paper presents a UML extension for the specification of audit properties [59].
The extension is generic and can be applied to a wide variety of UML elements. In
this sense, the approach supports the definition of structural and behavioral per-
spectives to model different aspects of system audits. In addition to graphical model
elements, a fully equivalent textual syntax is provided, as well. In a MDD approach,
the extension can be used to generate corresponding audit rules by employing model
transformations.

P11 A Catalog of Reusable Design Decisions for Developing UML- and
MOF-based Domain-Specific Modeling Languages. This paper documents
some of our experiences gathered from developing then MOF/UML-based DSMLs
and presents our experiences in a reusable manner via decision templates [52]. In
particular, this paper focuses on design decisions for the initial phase of the DSML
development process, i.e. the definition of the DSML core language model.

P12 Towards Co-Evolution in Model-driven Development via Bidirec-
tional Higher-Order Transformation. This paper presents first ideas towards
an approach to overcome MDD-based problems of co-evolution [49]. In MDD, meta-
models, models, and model transformations are interdependent. A change in one arti-
fact must be reflected in all other related artifacts. Regardless of their dependencies,
(meta)models and transformations can evolve autonomously rendering referenced ar-
tifacts invalid. Coupling the evolution of models to their corresponding metamodels
tries to prevent such mismatches, but is currently limited to one-way adaptations

4Classification of contributions: P = Paper, TR = Technical Report.
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and does not take model transformations into account. To eliminate these short-
comings, the paper discusses the combination of first-class transformation models
with bidirectional transformations (BX; see, e.g., [45, 46]). A generic approach is
proposed by integrating BX into well-established Eclipse-based MDD tools, thereby
neither being restricted to a specific modeling nor model transformation language.

P13 Developing UML-based Domain-specific Languages: A Systematic
Literature Review for Extracting Reusable Design Decisions. This pa-
per reports on a research effort to compile and to empirically validate a catalog
of structured decision descriptions (decision records) for MOF/UML-based DSMLs
(the publication is forthcoming). The catalog (TR2) is based on design decisions ex-
tracted from 90 DSML projects. These projects were identified—among others—via
an extensive SLR (TR1). The extracted data were evaluated quantitatively (e.g. by
running a frequent-item-set analysis to obtain characteristic combinations of design
decisions) and qualitatively (e.g. to document recurring documentation issues for
UML-based DSMLs).

TR1 Protocol for a Systematic Literature Review on Design Decisions for
UML-based DSMLs. This technical report5 records the process of conducting a
SLR of scientific publications documenting the design of MOF/UML-based DSML
development projects [127]. The aim of this systematic review is to collect a data
set on actual design decisions and decision sequences, to document them, and to
evaluate the catalog of decision records (TR2). Results of the SLR are published as
P13 and are incorporated into the catalog of decision records. The protocol of the
SLR (TR1) as well as the corresponding catalog (TR2) are provided as supplemental
materials to P13.

TR2 A Catalog of Reusable Design Decisions for Developing UML/MOF-
based Domain-specific Modeling Languages. This technical report docu-
ments recurring design decisions collected from 90 MOF/UML-based DSML projects
[54]. The findings were gained, on the one hand, from developing ten DSML projects
by ourselves. On the other hand, a SLR on the development of MOF/UML-based
DSMLs was performed (TR1) to complement and to validate our design decisions.
The design decisions are presented in the form of reusable decision records, with each
decision record corresponding to a decision point in DSML development processes.
The decision records documented in the catalog serve as data basis for analyses con-
ducted in P13. The catalog of decision records (TR2) as well as the corresponding
protocol of the SLR (TR1) are provided as supplemental materials to P13.

5Please note that technical reports were not subject to an independent peer-review process
(i.e. colleagues within the same organization reviewed and revised the reports).
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Accompanying Artifacts

These additional research contributions are also accompanied by software develop-
ments. The following artifacts are publicly available at [48], as well:

• P9

– The EMF/XMI serialization of the SecureObjectFlows UML metamodel
extension (with accompanying OCL constraints). The model was cre-
ated with the EMF-based implementation of the UML metamodel for the
Eclipse platform (provided by Eclipse MDT).

• P12

– The Eclipse project org.biglab.groundtram.bx.unqlplus providing an
Ecore-based UnQL+ metamodel and an Eclipse Xtext grammar speci-
fication for the UnQL+ textual syntax. With this, the development of
UnQL+ BX is supported via textual and model-based syntax editors.6

6The accompanying software artifact is publicly available at both, [48] and [142].
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Chapter 6

Conclusion

In this thesis, an approach for the integration and the testing of MOF/UML-based
DSMLs is presented. The integration of DSMLs is based on a rewriting technique
for M2T transformations and allows for the automatic refactoring of EGL generator
templates to fix important syntactical mismatches between templates and the inte-
grated DSML. The approach is based on HOTs applied on model representations of
generator templates and uses trace information generated from metamodel transfor-
mations. In this sense, reuse is facilitated in a way that all DSMLs can be used in
parallel—either as standalone DSMLs or as an integrated DSML. For our approach
of testing an integrated DSML, we use scenarios to define domain requirements on an
abstract level (via structured text descriptions). In a subsequent step—by employing
refinements and automatic transformations via step definitions—executable scenario
tests are derived from the requirements-level scenarios. These executable scenario
specifications are then used to test the integrated DSML for compliance with the
corresponding domain requirements. Our approach of DSML integration and testing
builds on Eclipse EMF and makes use of as well as extends Eclipse-based projects,
such as, Epsilon or Xtext.

As a prerequisite for integrating and testing DSMLs, we developed two security-
related MOF/UML-based DSMLs. Furthermore, we report our experiences and
lessons learned from the development, the integration, and the testing of DSMLs in
a structured manner; i.e. in the form of a catalog of reusable decision records to sup-
port the development of MOF/UML-based DSMLs. The collected decision options
as well as associations between options of one and between options of two decision
points in the different phases of the DSML development process were complemented
and validated by incorporating results from a SLR. These additional research contri-
butions emerged during the course of this thesis project and are closely related to the
presented results (e.g., as preparatory work or as further findings). However, as the
publications do not primarily target the research problems this thesis is concerned
with (see Chapter 3), they are not included in Appendix A.

This thesis is composed of individual scientific contributions (workshop, con-
ference, and journal articles; P1–P8; see Appendix A). Via the combined research
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contributions of these individual publications, we identify the problem this thesis is
concerned with, define objectives of a solution, present the design and the develop-
ment of our approach, demonstrate and evaluate its feasibility and usefulness, and
communicate the results. The case study report for the evaluation of our higher-order
rewriting approach for M2T templates is the only exception, as it was not published
besides this thesis, but in Appendix B. All research contributions—whether indi-
vidually published or as part of this thesis—are results of applying a design science
research approach as presented in Chapter 4 and relate to each other as shown in
Section 5.2.

In addition, research results are accompanied by software developments (e.g.,
models, examples, prototypes), experimental and case study material, including col-
lected data as well as calculated results. We placed all accompanying artifacts into
the public domain as free/libre open source software (available at [48]).

To summarize the findings of this thesis project, with the development and
the evaluation of our approach for rewriting generator templates, we could demon-
strate that the reuse of M2T transformation definitions is satisfactory supported by
our approach and facilitates the integration of DSMLs (addressing Problem State-
ment 1; see Chapter 3). Similarly, we showed the feasibility of our approach of
using requirements-level scenarios for testing integrated DSMLs. The results of the
experimental evaluation indicates that the natural-language-based notation of our
approach is recommended as well as most favored by the users who worked with it
(by comparing it with two alternative notations; addressing Problem Statement 2;
see Chapter 3).

However, this thesis deals exclusively with—and thus, the findings mentioned
in the former paragraph are primarily applicable to—MOF/UML-based DSMLs and
their technological projection as approximated Ecore-based models, respectively. Al-
though a limiting factor (by definition), we argue that to some extent our research
results can be generalized and are transferable to other (non-MOF/UML-based)
modeling languages, as well. As the theoretical underpinning of our approach is nei-
ther based nor relies on any characteristic implementation—we have chosen suitable
development environments for demonstration purposes only—, we could abstract
the problem and the solution domains from the concrete software artifacts in our
research contributions. For example, we can sufficiently transfer the formalization
of the DSML’s core language model to generic object-oriented modeling constructs,
such as classes, inheritance relationships between classes, references, and attributes,
thereby, completely suppressing the MOF/UML as a modeling language.7 As an
example, we provide a definition for a formal and generic metamodel for secure ob-
ject flows in [56]. This generic metamodel can be used to extend arbitrary modeling
languages. Although in the paper we instantiate the generic metamodel as a UML
extension, in principle, it is neither specific to the UML nor the MOF. Regarding
particular implementation details, for instance, the EMC layer provides abstraction

7Of course, some concepts, such as UML profiles, are specific to a modeling language and corre-
sponding equivalents may not exist in other modeling environments.
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facilities over concrete modeling technologies (such as, EMF, XML) allowing to in-
teract with models conforming to these technologies in a uniform manner [70]. Thus,
our developments can be based on different modeling technologies without any prob-
lems. Furthermore, our approach does not rely on any characteristics implied by
the chosen domain (here: security). As the domain serves demonstration purposes
only, our approach can be applied to other domains in an analogous manner. In
addition, we have detailed in Appendix B that the scenario of DSML integration is
a special case of model-driven software evolution. Thus, we generalized the problem
statement and showed that our rewriting approach supports further (evolutionary)
scenarios, as well. Please note in this context that our approach for testing core
language models of DSMLs is not limited to any application scenario per se.

In the course of this thesis, we conducted research to achieve objectives derived
from the problems identified at the beginning of the project. Beyond that, we rec-
ognized various additional areas of research to extend our work. Albeit already
partially discussed in other sections of this thesis (and in the individual research
contributions) further research directions might also include, but are not restricted
to the following.

The current rewriting prototype implementing our approach for DSML integra-
tion does neither address semantic heterogeneity in metamodel-model relations nor
types of syntactical heterogeneity between source and target metamodels which can-
not be resolved in an automated manner. In this context, the limitations of the
currently employed HOTs as well as recorded transformation trace information must
be evaluated. In a further step, the refactoring support may be extended to cover not
only M2T generators, but also parts of the generated code (e.g., by adopting concepts
from language workbenches; see, e.g., [30, 170, 171]), for instance, for the generation
of glue code. Quality aspects of our prototype neglected so far, such as, usability or
stability, need empirical evaluation, for example, by conducting experiments and/or
case studies.

In the area of requirements-driven DSML testing, our approach uses semi-
structured text artifacts defined via natural-language as scenario notation. The
development of an equivalent graphical notation (e.g., similar to UML use cases)
may be a benefit. Currently, no established repository of step definitions exists
to map natural-language scenarios to executable scenario tests. Such a repository
may facilitate the uptake of requirements-driven and natural-language-based test
approaches for DSML core language models. In this context, the review and devel-
opment of additional test techniques to cover other artifacts than the DSML core
language model (e.g., to test generated code) is also a candidate for further research.
To deepen the understanding on how different scenario notations compare to each
other, a replication study of [55] with participants from a different professional back-
ground may be conducted to be able to draw more general conclusions (including
extended quantitative and qualitative analyses of obtained data).

In this thesis, we focus on a language model driven DSML engineering process
[137, 182], thereby factoring out other development variants (e.g., mockup language
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driven DSML development or extracting the DSML from an existing system). Study-
ing the implications and consequences of employing variants of DSML engineering
processes on all research areas discussed in this thesis project is a candidate for
further research, as well.
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Appendix A

Publications

Within the scope of this thesis, research results were originally published as indi-
vidual contributions (see Table A.1). The main research findings were published
as one workshop article, six conference articles, and one journal article (see Sec-
tions A.1–A.8).8 This chapter lists the individual research contributions in their
chronological order of publication.

Table A.1: Overview of publications

# Section Publication

P1 A.1 B. Hoisl and S. Sobernig. Integrity and Confidentiality Annotations for
Service Interfaces in SoaML Models. In Proceedings of the International
Workshop on Security Aspects of Process-aware Information Systems,
pages 673–679. IEEE, 2011 (see [50]).

P2 A.2 B. Hoisl, M. Strembeck, and S. Sobernig. Towards a Systematic Inte-
gration of MOF/UML-based Domain-specific Modeling Languages. In
Proceedings of the 16th IASTED International Conference on Software
Engineering and Applications, pages 337–344. ACTA Press, 2012 (see
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8In addition, one main research contribution (C1) was not submitted to any scientific workshop,
conference, or journal and is published in Appendix B.

62



# Section Publication

P5 A.5 S. Sobernig, B. Hoisl, and M. Strembeck. Requirements-driven Testing
of Domain-specific Core Language Models using Scenarios. In Proceed-
ings of the 13th International Conference on Quality Software, pages
163–172. IEEE, 2013 (see [126]).

P6 A.6 B. Hoisl, S. Sobernig, and M. Strembeck. Natural-language Scenario
Descriptions for Testing Core Language Models of Domain-Specific
Languages. In Proceedings of the 2nd International Conference on
Model-Driven Engineering and Software Development, pages 356–367.
SciTePress, 2014 (see [57]).

P7 A.7 B. Hoisl, S. Sobernig, and M. Strembeck. Modeling and Enforcing Se-
cure Object Flows in Process-driven SOAs: An Integrated Model-driven
Approach. Software & Systems Modeling, 13(2):513–548, 2014 (see [56]).

P8 A.8 B. Hoisl, S. Sobernig, and M. Strembeck. Comparing Three Notations
for Defining Scenario-based Model Tests: A Controlled Experiment. In
Proceedings of the 9th International Conference on the Quality of In-
formation and Communications Technology, pages 95–104. IEEE, 2014
(see [55]).

63



A.1 Integrity and Confidentiality Annotations for Ser-
vice Interfaces in SoaML Models

The following paper was published as:

B. Hoisl and S. Sobernig. Integrity and Confidentiality Annotations for Service
Interfaces in SoaML Models. In Proceedings of the International Workshop on Secu-
rity Aspects of Process-aware Information Systems, pages 673–679. IEEE, 2011 (see
[50]).
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Abstract—This paper presents an approach for incorporating
data integrity and data confidentiality into the model-driven
development (MDD) of process-driven service-oriented archi-
tectures (SOAs) based on the OMG SoaML. Specifications for
service interfaces are extended by UML activities to model invo-
cation protocols. An invocation protocol makes the control and
the object flows between service invocations explicit. Integrity
and confidentiality attributes are used to annotate the object
flows. The annotations serve for generating security-aware
execution artefacts (e.g., interface description documents, de-
ployment descriptors, and middleware configurations). We
applied the approach prototypically in a Web Services platform
environment (WS-BPEL, WSDL, WS-SecurityPolicy).

Keywords-Service-Oriented Architecture, Security Engineer-
ing, UML, Web Services, SoaML, Model-Driven Development

I. INTRODUCTION

A service-oriented architecture (SOA) is an architectural
style which organises a software system as a composition
of distributed software components, or services. Services
require and provide callable functions at announced net-
work endpoints. Processable interface descriptions serve
for implementing the service interfaces in consumer and
provider applications; independent from the communication
middleware, the invocation protocols, and the transport
protocols used. Modelling support for systems adhering to
the SOA architectural style is provided, e.g., by the UML
extension SoaML [1]. In a process-driven SOA, one or more
components act as process engines and orchestrate service
interactions in order to implement business processes [2].

Business processes executed by a process-driven system
involve data assets (e.g., personnel or financial records) re-
quiring protection against, e.g., unauthorized or inadvertent
disclosure and modification. The need for enforcing security
properties required by data assets (e.g., data confidentiality,
data integrity) arises also from compliance requirements
with legislation (e.g., privacy laws), with industry regulations
(e.g., the Basel II Accord), and with security engineering
frameworks (e.g., the SOA Security Compendium). There-
fore, representing security properties explicitly in business
process models based on EPCs [3], BPMN [4], and UML
([5]–[7]) have been proposed. In an earlier contribution [8],
we introduced first-class support for expressing integrity and
confidentiality properties of object flows in UML activities.

Nevertheless, business process models including security
properties must be integrated with design and implementa-
tion models of the process-executing software system. For
the scope of this paper, we look at the various invocation
data processed for realising interactions among services and
process engines: endpoint references, the operation names,
as well as input and output parameters [9]. Process execution
turns data assets into serialised invocation data exchanged
between service endpoints. For example, if data assets in a
business process require the integrity property, a modeller
must express corresponding message integrity constraints
over service interfaces. With this, integrity-verifying code
(e.g., message interceptors for fingerprinting and signing)
and/or configuration data (e.g., for a security component)
can be generated. Such a multi-stage mapping helps maintain
consistency with corresponding business process models and
contributes to a compliant system implementation.

To facilitate the complex mapping task, model-driven
development (MDD) approaches ([3]–[7]) have combined
modelling support for security properties in business process
models, model integration with structural and behavioural
views of a process-driven SOA, and automated generation
of execution models (and code). However, many existing
MDD approaches fall short in two respects:

Common multi-view meta-model — The support for SOA,
process, and security property modelling is not based on
a meta-modelling environment providing several modelling
views (e.g., a process flow view, a composition view, a
data flow view) for reducing the overall mapping complexity
[10]. Even if adopting a multi-view environment based on a
common meta-model, such as the UML, standard extensions
providing or refining these views are not adopted; e.g., the
SoaML for the UML.

View accuracy — Security concerns are orthogonal to
concerns such as service composition, transport handling
etc. [9]. Modelling data integrity and data confidentiality
properties should not lead to model interactions violating
this separation of concerns. For instance, expressing security
properties of invocation data at the level of process execution
models (e.g., service activities [11]) bears the risk to inter-
weave process flow and invocation handling details which
are otherwise orthogonal to each other.

In this paper, we present an approach for modelling
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integrity and confidentiality properties of invocation data
for standard SoaML models. For this, we constrain ser-
vice interfaces through UML activities. These activities
specify invocation data dependencies as object flows with
integrity and confidentiality annotations [8]. By adopt-
ing the standard UML and the SoaML extension, ex-
isting tool support can be reused for generating execu-
tion models (WS-BPEL, WSDL). For the integration of
the UML package SecureObjectFlows [8] with the
SoaML, we provide both, a UML meta-model extension
(SecureObjectFlows::Services) and a profile ex-
tension (SOF::Services), with bi-directional mappings
available.1

The paper is structured as follows: In Section II, we
give an overview of MDD for process-driven SOAs and the
UML extensions used. The integration steps necessary for
modelling secure flows of invocation data in SoaML are
elaborated on in Sections III and IV. We proceed by con-
trasting our approach with closely related work on model-
driven security in Section V. In Section VI, we conclude
by summarising our contribution and by pointing to future
work.

II. OVERVIEW

In relevant MDD approaches ([3]–[7]) computational in-
dependent models (CIMs) are considered first (e.g., informal
process descriptions, structured architectural descriptions,
and security engineering guidelines). In a next step, CIMs
are formalised into platform independent models (PIMs),
providing structural and behavioural views on the technical
services and their process-driven composition. PIMs offer
different, yet integrated views to capture a SOA, a process
description, and security properties. From these different
views, model transformations produce a set of platform-
specific models (PSMs).

In our approach, we employ the UML for modelling
various PIM views on a process-driven SOA. A SOA’s
structure (e.g., services, service interfaces) is depicted as
a set of SoaML/UML models (see Section II-A). Data
dependencies between invocations, including their integrity
and confidentiality properties, are defined for a given service
interface by secure object flows [8] (see Section II-B).
Rule-based PIM-to-PSM translation is achieved by operating
on the models’ XMI representations. The XMI documents
are processed into an intermediate object model, to bridge
between the graph-based PIMs and the block-based PSMs
[12]. Process-oriented transformation steps are supported
by the existing Eclipse-based MDD4SOA plugin [13]. The
targeted PSMs are interface descriptions (i.e., WSDL) and
process execution descriptions (i.e., WS-BPEL 2.0).

1All modelling and implementation artefacts are available from http://
nm.wu.ac.at/bhoisl.

For the transformation of the security property elements,
we extended the MDD4SOA plugin. Additional transfor-
mation steps add WS-SecurityPolicy fragments to the gen-
erated interface descriptions and deployment descriptors.
In addition, our approach allows for specifying parts of
invocation data (e.g., single parameters or message elements)
to be annotated. These parts turn into selection expres-
sions over messages in WS-SecurityPolicy descriptions (e.g.,
EncryptedElements, SignedParts). The attributes
of secure property elements specifying the integrity and
confidentiality details map to identifiers for algorithm suites
as defined by the WS-SecurityPolicy specification. Due to
the space limitations, we do not elaborate further on PSM
generation in this paper.
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*
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{subsets 
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0..1
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CentralBufferNode

(from IntermediateActivities)

ActivityParameterNode
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DataStoreNode

(from CompleteActivities)

SecurePinSecureDataStoreNodeSecureActivityParameterNode

Classifier

(from Kernel)

Figure 1: Relevant excerpts from the SoaML and Secure-
ObjectFlows meta-models

A. SoaML Concepts

The Service-oriented architecture Modeling Language
(SoaML) extends the UML to model SOAs from struc-
tural and behavioural viewpoints (see Figure 1). As for
the composition of service consumers and providers, the
SoaML describes a SOA as a set of interacting components
referred to as Participants, each announcing interaction
capabilities and needs by means of Service and Request
ports, respectively. For this, Service and Request ports
expose required and provided Interfaces realising the
port’s protocol. This port protocol can be further specified by
a ServiceInterface. Participants are connected
via their protocol-compliant ports. Protocol compliance is
expressed by either sharing a ServiceInterface be-
tween corresponding Request and Service ports; or by
mating their required and provided Interfaces directly.
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ServiceInterfaces allow the modeller to express be-
havioural details of port protocols explicitly. Protocol roles
taken by two or more interacting ports for realising a Ser-
viceInterface can be modelled, along with behavioural
specifications such as UML activities. An excerpt of a
SoaML model is depicted in Figure 3 for later reference.

B. SecureObjectFlows Concepts

The SecureObjectFlows meta-model extends UML
activity models with abstract syntax and semantics for
modelling data integrity and data confidentiality properties
for object flows. Essentially, the SecureObjectFlows
package specialises three types of ObjectNodes with
integrity and confidentiality properties: SecurePin, Se-
cureDataStoreNode, and SecureActivityParam-
eterNode (see also Figure 1). These specialised nodes in-
herit all behaviour from their corresponding ObjectNodes
and the SecureNode classifier. The abstract Secure-
Node meta-class allows for specifying additional properties
(e.g., cryptographic hash functions, encryption algorithms,
encryption key lengths) for its indirect instances and pro-
vides model integrity constraints.

III. A PROFILE FOR SECURE OBJECT FLOWS

In [8], the SecureObjectFlows package is introduced
as a UML meta-model extension to the UML Complete-
Activities package. For integration with the SoaML,
it is necessary to provide a UML profile variant of the
SecureObjectFlows meta-model. This is because, on
the one hand, the SoaML is provided both as a meta-
model and as a profile, with explicit correspondences defined
for them. Both variants are binding compliance points for
modellers, CASE tool providers, and extension engineers
[1]. On the other hand, a UML profile extension provides
immediate advantages. Most importantly, the CASE tool
integration available for SoaML can be reused.

<<profile>> SOF

<<metaclass>>

ObjectNode
(from BasicActivities, CompleteActivities)

/ isConfidentialityEnsured:Boolean
/ isIntegrityEnsured:Boolean
+ confidentialityAlgorithm:Classifier
+ confidentialityKeyLength:Integer
+ integrityAlgorithm:Classifier

<<stereotype>>

secure

Figure 2: The «secure» stereotype

The profile variant of the SecureObjectFlows pack-
age provides a single stereotype «secure» extending the
ObjectNode meta-class (see Figure 2). This stereotype
provides all integrity and confidentiality attributes available
for the SecureNode meta-class. The OCL constraints
originally defined for the SecureObjectFlows meta-
model were adapted for the context of the «secure» stereo-
type. The correspondences between the meta-model and the
profile are depicted in Table I as instance specifications at
the UML level M1.

M1 model (profile extension) M1 model (meta-model
extension)

:Pin :secure

extension_secure

base_ObjectNode

:SecurePin

:DataStoreNode :secure

extension_secure

base_ObjectNode

:SecureDataStoreNode

:ActivityParameterNode :secure

extension_secure

base_ObjectNode

:SecureActivityParameterNode

Table I: Mappings between the SOF profile and the Se-
cureObjectFlows meta-model extension

IV. SECURE INTERFACES IN SOAML

The SecureObjectFlows extension permits mod-
elling the integrity and confidentiality properties as an-
notations for object nodes in UML activities. We aim at
modelling invocation data (e.g., input and output parameters)
requiring the integrity and the confidentiality property. In
the compositional view of a SoaML model, service in-
vocations are represented by ServiceInterfaces. In
Figure 3, AService stipulates the permissible service
invocations (e.g., OperationB1) between a Request
port (requestor) and a Service port (provider).
To describe the behavioural pattern of service invocations
between two (or more) ports, a ServiceInterface as a
kind of BehavioredClassifier can hold instances of
Behavior and, hence, instances of Activities (see the
UML excerpt in Figure 1 and AnInvocationProtocol
in Figure 3).

<<Participant>>

B
<<Participant>>

A

<<ServiceInterface>>

AService

<<Request>>

requestor:AService
<<Service>>

provider:AService

<<type>><<type>>

+OperationA1()
+OperationA2(p5:String):String

<<interface>>

InterfaceA
+OperationB1(p1:String,p2:String):String
+OperationB2(p4:String):String

<<interface>>

InterfaceB

<<use>> roleA:InterfaceA roleB:InterfaceB

roleA roleB

ad: AnInvocationProtocol

Figure 3: Activities on ServiceInterfaces

The availability of an Activity as owned behaviour of
a ServiceInterface provides an important extension
point2 for defining security properties in invocation proto-
cols:

• Invocation data as object nodes: An Activity, with
its actions denoting invocations, allows for object flows
to reflect input and output parameter streams for invoca-
tions. This is the major representational prerequisite for

2Note that the SoaML specification points to the usage of Activities
for modelling control flows between operations which are required or
provided by Interfaces defined on a ServiceInterface [1].
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applying the concepts of the SecureObjectFlows
package.

• Protocol roles: ActivityPartitions can be used
for modelling protocol roles. Each ActivityParti-
tion represents an interface-realising role, abstracting
from the actual Participants using or implement-
ing the interfaces. Their compositional correspondences
are the parts defined for the activity-owning Servi-
ceInterface (see roleA and roleB in Figure
3). ServiceInterfaces may refer to more than
two parts (or protocol roles) and can so model multi-
directional invocation flows.

• Duality of invocations: The roles are typed by the
Interfaces required and implemented by the Ser-
viceInterface (i.e., InterfaceA and Inter-
faceB in Figure 3). With ActivityPartitions
denoting these roles, ActivityPartitions reflect
the provider and consumer sides of invocations in
a single model element. The integrity and confiden-
tiality annotations in the Activity can so capture
consumer- and provider-side capabilities (e.g., signature
mechanisms).

• Standalone invocation protocol: A refined Activity
owned by a ServiceInterface and the security
properties specified for its object flows are modelled
independently from the concrete Participants con-
suming or implementing the service endpoints. In Fig-
ure 3, for instance, AService and so AnInvoca-
tionProtocol apply to any pair of Partici-
pants, whether process engines or service providers.

<<metamodel>> 

SecureObjectFlows::Services

<<metaclass>>

ServiceInterface
(from SoaML::Services)

+ isStrict:Boolean = false

<<metaclass>> 

SecureInterface

<<metaclass>> 

SecureActivityParameterNode

<<metaclass>> 

SecurePin

<<metaclass>> 

SecureDataStoreNode

<<profile>> 

SOF::Services

<<metaclass>>

Class
(from Kernel)

+ isStrict:Boolean = false

<<stereotype>>

SecureInterface

<<stereotype>>

secure

<<stereotype>>

ServiceInterface
(from SoaML)

Figure 4: The UML packages for integration

To connect the SecureObjectFlows extension
to ServiceInterfaces in SoaML, we
provide two UML packages (see Figure 4). The
SecureObjectFlows::Services package applies to
the SecureObjectFlows meta-model extension. The
SOF::Services package glues the SOF profile package
and the SoaML profile. In the following, we outline their
additions to the abstract syntax and to the semantics of
secure object flows.

A. Abstract Syntax

As for the abstract syntax, we introduce a specialised
ServiceInterface named SecureInterface. A
SecureInterface adds to the ServiceInterface’s
capabilities by requiring exactly one Activity to be
set as owned behaviour. At the SoaML meta-model level,
SecureInterface extends the ServiceInterface
meta-class. In the profile mapping, the SecureInter-
face meta-class is represented as a distinct stereotype
specialising the ServiceInterface stereotype; and ex-
tending the Class meta-class (see Figure 4; see also OCL
Constraint 1 in the Appendix).

A SecureInterface contracts either a strict or a
permissive mode. In strict mode, all object flows qualifying
as invocation data flows (as specified further below) must
be annotated. The permissive mode, the default, does not
impose a minimum number of secured object flows. The
reader is referred to OCL Constraint 2 for the profile
realisation of the strict/permissive mode.

B. Constraints

The following constraints impose integrity requirements
upon the Activity owned by a SecureInterface.
In addition, they add semantics to model flows of
invocation data more accurately. For the meta-model
integration, the OCL constraints are defined over the meta-
classes SecureDataStoreNode, SecurePin, and
SecureActivityParameterNode. As for the profile,
they apply to the context of the «secure» stereotype. The
OCL constraints for the SOF profile package are given as
listings in the Appendix.

1) Traceability between Invocations and Interfaces: An
Activity may only contain Actions representing Op-
erations owned by the Interfaces implemented or
used by a given ServiceInterface. We realise this
by requiring all Actions to be instances of CallOp-
erationAction. In addition, all CallOperationAc-
tions in an ActivityPartition must link to an
Operation of the Interface represented by this Ac-
tivityPartition (see OCL Constraint 3).

2) Cross-Interface Invocations only: Depending on the
partitioning of an Activity, object flows may occur
within a single partition or between two partitions. In Figure
5, for instance, the object flow between OperationB1
and OperationB2 depicts an output/input dependency
between operations owned by the same Interface. Such
service invocations are traded within the same Service
or Request port and do not travel between two service
endpoints (see also Figure 3). We consider such service
invocations bypassing most steps of invocation processing
and being served within process or machine boundaries [9].

Therefore, we limit the applicability of secured object
nodes to cross-interface invocations (see OCL Constraint
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4). To distinguish between inner- and cross-interface object
flows throughout an invocation protocol activity, all object
nodes must be assigned to a single partition (see OCL
Constraint 5). According to these constraints, the object flow
between OperationB2 and OperationA2 in Figure 5
can be annotated, for instance.

3) Activity Parameters for Initial and Intermediary In-
bound Data: An invocation protocol activity captures data
dependencies between invocations, i.e., output data of one
invocation serving as input data for a subsequent invocation.
In two important cases, however, input data originates from
the outside. These cases are initial and intermediary inbound
data.

Initial inbound data is provided by the consumer trigger-
ing the execution of the Activity (see e.g. p1 in Figure
5). Intermediary inbound data is not the result of previous
invocations within the same protocol. The input is rather
provided from the outside, such as from a process engine
holding process control data (see, e.g., p5).

For specifying secure object flows, however, it is manda-
tory to model pairs of secure object nodes [8]. This is
because the security properties required at either end of an
object flow might deviate from each other. Consider, for
instance, two Participants providing different confi-
dentiality algorithm suites. In order to model this hetero-
geneity while maintaining consistency between endpoints,
an additional object node as an explicit counterpart must be
modelled (see OCL Constraint 6). By using ActivityPa-
rameterNodes as counterparts, external input and output
dependencies of the Activity are expressed.

4) Activity Parameters for Intermediary and Final Out-
bound Data: Analogous to initial and intermediary inbound
data, output data can describe external data dependencies,
i.e., dependencies which do not manifest within the in-
vocation protocol. For instance, an invocation’s output is
to be stored as a process-persistent variable by a process
engine. If secured, such object nodes require a corresponding
object node, e.g., an ActivityParameterNode (see
OCL Constraint 6).

5) Streaming-only Activity Parameters: As a result of
the prior two constraint sets, the ActivityParame-
terNodes used to depict the counterparts of intermediary
inbound data (e.g., AInParam2 in Figure 5) and output
data must stand for streaming activity parameters (see OCL
Constraint 7). Streaming parameters represent data which
become available in the context of a given activity, or which
leave this context, during execution of the Activity. Note
that the streaming mode is only mandatory for cases of
secure intermediary Input- and OutputPins (in the
sense of OCL Constraint 6). Corresponding object nodes
of Pins (e.g., AnInParam1) held by the first and the last
CallOperationActions are exempted so that they can
model global start and stop conditions for the invocation
protocol activity.

6) Same Origin for Input Data Flows: Input data for
service invocations, represented by InputPins on Call-
OperationActions, must have corresponding object
nodes which all reside in the same ActivityPartition.
By corresponding, we mean the initial source nodes of an
object flow. Different partitions as origins for input data
for an operation are invalid (see OCL Constraint 8). In
Figure 5, for example, we find that the InputPins of
OperationA2 have corresponding object nodes in the
roleB partition.

OperationB1

OperationA2 OperationB2

roleA roleB

p1
p2

p3
p4

p5

<<secure>>

<<secure>>

<<secure>>

(roleA)

<<secure>>

AInParam1

<<secure>> (roleB)

<<secure>>

AInParam2

{stream}

{ integrityAlgorithm = Sha256 }

{ integrityAlgorithm = Sha256 }

Figure 5: An invocation protocol activity with secure object
flows

V. RELATED WORK

In [3], Jensen and Feja extend a proprietary MDD soft-
ware tool for modelling SOA security properties (access
control, data integrity, and confidentiality). The target PSMs
are WS-SecurityPolicy specifications. EPCs are used at the
business process modelling level. The security model view,
while sharing the EPC meta-model, is separate from the
process model view. Both are maintained separately and
mapped to each other to form an amalgam model. As for
view accuracy, the security properties are only captured for
the scope of a single process engine (rather than for a
collaboration of service partners).

Wolter et al. present in [4] an approach for modelling
security goals visually, including model transformations
into corresponding security policy specifications. Security-
annotated BPMN process models are mapped to WS-BPEL
service descriptions and WS-Security policies. As the secu-
rity models are specified in the UML, model transformations
must be applied between the UML and the BPMN process
description. A common meta-model for all views is, there-
fore, not realised. The security properties covered are access
control (authentication and authorisation), confidentiality,
and integrity at a per-message level.

Another approach is presented by Basin and Doser [5].
Basing the work on UML 1.4 class models, the authors
integrate their security modelling language (SecureUML)
with a custom defined process language. The SecureUML is
extended to adopt an RBAC scheme, with RBAC constraints
being expressed over process model instances. The PSM
target is code for Java Servlet containers, instrumenting
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the container’s access control mechanisms. The approach is
limited in its extensibility because UML M1 class models
define the shared meta-model. The state-transition semantics
of the process models only cover a single view on a process-
driven system. SOA-related views are not provided at all.

Nakamura et al. describe in [6] a toolkit for generating
web services security configurations, covering properties
such as authentication, integrity, non-repudiation, and con-
fidentiality. UML class models provide a structural view
on a SOA, with stereotypes representing selected security
properties. Although using the UML meta-model has poten-
tial for adopting existing UML extensions, the authors limit
themselves to a custom, ad hoc profile definition. Process
views are not considered. The target PSMs are IBM WS-
Security specifications.

In [7], Hafner et al. present a model-driven security
approach for incorporating security requirements (integrity,
confidentiality, and non-repudiation) into PIMs. The UML
is used, on the one hand, to model process descriptions as
activity diagrams and, on the other hand, to add security
annotations to ObjectNodes using OCL-like statements.
Two orthogonal views are presented: a workflow and an
interface view. Although the PIMS are based on a common,
i.e., the UML, meta-model, SOA-related extensions are not
reused. Secure document flows between two participants can
be expressed in the workflow view only, security properties
of object flows between service invocations are not covered.
From the PIMs, transformations generate BPEL, WSDL, and
XACML artefacts.

VI. CONCLUDING

In this paper, we outlined an approach for model-driven
security of invocation data in process-driven SOAs. With an
extension of SoaML service interfaces based on UML activi-
ties, we provide means to model integrity and confidentiality
in invocation protocols. We emphasise the reuse of existing
modelling extensions (SoaML, SecureObjectFlows), as well
as existing MDD software artefacts (MDD4SOA). A UML
profile (SOF::Services), formally described by a suite
of OCL constraints, is available for adoption.

In contrast to likeminded MDD approaches, we provide
separate views for security properties of invocation data, on
the one hand, and process descriptions, on the other hand. As
security requirements are orthogonal to, for instance, service
orchestration requirements, these views should not interfere
with each other. This separation of concerns is achieved for
the UML as a common meta-model.

Future work will focus on integrating the invocation data
view with the process flow and business process views.
Candidates are service activities in UML4SOA [11] and
the process flow models in [14]. Moreover, we plan to
mature and document our adaptations of the Eclipse plugin
MDD4SOA; and then place them into the public domain.
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APPENDIX

CONSTRAINTS FOR THE
SOF::SERVICES PROFILE

The following OCL expressions are specific to the Eclipse
3.6.2 MDT/OCL engine.

OCL Constraint 1: A SecureInterface must own an
Activity instance as its owned behaviour.
context SOF::Services::SecureInterface
inv: self.base_Class.ownedBehavior->one(oclIsKindOf(Activity))

OCL Constraint 2: In strict mode all cross-interface object
flows must be secured.
context SOF::Services::SecureInterface
def: allPredecessors(objNode : ActivityNode) : Set(ActivityNode) =

objNode.incoming.source->collect(x |
allPredecessors(x))->asSet()->union(objNode.incoming.source)

inv: self.isStrict implies
self.base_Class.ownedBehavior.oclAsType(Activity).node->select(
oclIsKindOf(ObjectNode))->forAll(objNode |

allPredecessors(objNode)->select(incoming->isEmpty())->forAll(s |
s.inPartition <> objNode.inPartition implies

s.getAppliedStereotype(’SOF::Services::secure’) <> null and
objNode.getAppliedStereotype(’SOF::Services::secure’) <> null))

OCL Constraint 3: All Actions must be instances of
CallOperationAction and each CallOperation-
Action’s operation enclosed by a given partition must
correspond to an Operation owned by the Interface
denoted by this partition.
context SOF::Services::SecureInterface
inv: self.ownedBehavior.oclAsType(Activity).node->

select(oclIsKindOf(Action))->forAll(a |
a.oclIsKindOf(CallOperationAction) and
self.part->any(name = a.inPartition->any(true).name).type.
oclAsType(Interface).ownedOperation->
includes(a.oclAsType(CallOperationAction).operation))

OCL Constraint 4: Only corresponding object nodes residing
in different partitions may be tagged by the «secure»
stereotype.
context SOF::Services::secure
def: allPredecessors(objNode : ActivityNode) : Set(ActivityNode) =

objNode.incoming.source->collect(x | allPredecessors(x))->asSet()->
union(objNode.incoming.source)

inv: allPredecessors(self.base_ObjectNode)->select(
incoming->isEmpty() and
oclIsKindOf(ObjectNode) and
getAppliedStereotype(’SOF::Services::secure’) <> null)->forAll(s |

s.inPartition <> self.inPartition)

OCL Constraint 5: All activity nodes must be assigned to
and must be contained by exactly one and only one activity
partition.
context SOF::Services::SecureInterface
inv: self.base_Class.ownedBehavior.oclAsType(Activity).node->forAll(

inPartition->size() = 1)

OCL Constraint 6: All secured InputPins must have an
incoming object flow; all secured OutputPins must have
an outgoing object flow.
context SOF::Services::secure
inv: self.base_ObjectNode.oclIsKindOf(InputPin) implies

self.base_ObjectNode.incoming->notEmpty()
inv: self.base_ObjectNode.oclIsKindOf(OutputPin) implies

self.base_ObjectNode.outgoing->notEmpty()

OCL Constraint 7: All ActivityParameterNodes
which are not initial or final nodes in a control and data
flow but counterparts of intermediary Input- and Out-
putPins must refer to a streaming Parameter.
context SOF::Services::SecureInterface
def: isFirstNode(a : ActivityNode) : Boolean =

a.owner.oclAsType(Activity).node->select(
oclIsKindOf(InitialNode))->exists(outgoing.target->any(true) = a) or

a.owner.oclAsType(Activity).node->select(
oclIsKindOf(ActivityNode) and incoming->isEmpty())->includes(a)

def: isLastNode(a : ActivityNode) : Boolean =
a.owner.oclAsType(Activity).node->select(
oclIsKindOf(ActivityFinalNode))->exists(
incoming.source->any(true) = a) or

a.owner.oclAsType(Activity).node->select(
oclIsKindOf(ActivityNode) and outgoing->isEmpty())->includes(a)

def: allSuccessors(objNode : ActivityNode) : Set(ActivityNode) =
objNode.outgoing.target->collect(x |
allSuccessors(x))->asSet()->union(objNode.outgoing.target)

inv: self.base_Class.ownedBehavior.oclAsType(Activity).node->select(
oclIsKindOf(ActivityNode))->forAll(an |
(not isFirstNode(an) implies

an.input->forAll(ipin |
allPredecessors(ipin)->select(
oclIsKindOf(ActivityParameterNode))->forAll(
oclAsType(ActivityParameterNode).parameter.isStream))) and

(not isLastNode(an) implies
an.output->forAll(opin |

allSuccessors(opin)->select(
oclIsKindOf(ActivityParameterNode))->forAll(
oclAsType(ActivityParameterNode).parameter.isStream))))

OCL Constraint 8: All source object nodes of a set of
InputPins owned by a CallOperationAction must
be assigned to the same activity partition.
context SOF::Services::secure
inv: self.base_ObjectNode.oclIsKindOf(InputPin) implies

self.base_ObjectNode.oclAsType(InputPin).owner.oclAsType(
CallOperationAction).input->forAll(ipin |

allPredecessors(ipin)->select(
incoming->isEmpty() and
oclIsKindOf(ObjectNode) and
getAppliedStereotype(’SOF::Services::secure’) <> null)->forAll(
inPartition = self.inPartition))
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A.2 Towards a Systematic Integration of MOF/UML-
based Domain-specific Modeling Languages

The following paper was published as:

B. Hoisl, M. Strembeck, and S. Sobernig. Towards a Systematic Integration of
MOF/UML-based Domain-specific Modeling Languages. In Proceedings of the 16th
IASTED International Conference on Software Engineering and Applications, pages
337–344. ACTA Press, 2012 (see [60]).

72



TOWARDS A SYSTEMATIC INTEGRATION OF
MOF/UML-BASED DOMAIN-SPECIFIC MODELING

LANGUAGES
Bernhard Hoisl1,2, Mark Strembeck1,2, Stefan Sobernig1

1 Institute for Information Systems and New Media, WU Vienna, Austria
2 Secure Business Austria Research (SBA Research), Austria

{firstname.lastname}@wu.ac.at

ABSTRACT

In model-driven development (MDD), UML-based
domain-specific modeling languages (DSMLs) are fre-
quently used for specifying software systems. The inte-
gration of corresponding DSMLs is an important part
of model-driven software evolution and maintenance.
However, due to a wide variety of DSML design op-
tions, integrating DSMLs is a non-trivial task. In this
paper, we discuss issues that may arise when integrat-
ing MOF/UML-based DSMLs and present a process
model for the systematic integration of DSMLs to ad-
dress some of these issues. In particular, we discuss
different composition techniques as well as challenges
that may occur in the different phases of DSML in-
tegration. In addition, we provide an example for
the integration of two DSMLs from the security do-
main. With our process model we aim to provide a
conceptual framework for the systematic integration
of MOF/UML-based DSMLs.

KEY WORDS

Model-driven development, domain-specific modeling
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1 Introduction

In recent years, model-driven software development
(MDD) emerged as a software engineering technique
for the specification of tailored domain-specific soft-
ware systems (see, e.g., [1, 2]). The modeling of com-
plex domain artifacts helps to understand these prob-
lems and potential solutions through abstraction [3].
In this sense, MDD raises the level of abstraction in the
software engineering process—as high-level program-
ming languages have done in the past [4]. Thereby,
MDD helps to enhance the understanding of a problem
and solution domain and benefits from a high degree
of automation (e.g., tool-supported code generation)
[3].

In the context of MDD, domain-specific (mod-
eling) languages (DSLs/DSMLs) are special-purpose
(modeling) languages tailored for a particular domain
(see, e.g., [5, 6, 7]). The development of DSMLs based

on the Meta Object Facility (MOF, [8]) and/or the
Unified Modeling Language (UML, [9]) are commonly
applied in MDD, for instance, for the specification
of security-related properties (see, e.g., [10, 11]). A
MOF/UML-based DSML is characterized by utilizing
the MOF/UML specifications where possible and by
extending their definitions where necessary. Thereby,
DSMLs that are based on the MOF/UML can directly
benefit from maintenance through the Object Man-
agement Group (OMG), standardized modeling exten-
sions, and a variety of corresponding software tools.

Software systems are frequently subject to chang-
ing requirements and evolve over time [12]. Thus,
the composition of DSMLs becomes an integral part
of model-driven software evolution and maintenance.
DSML composition refers to techniques to combine
two or more DSMLs which were not intended for inte-
gration at design time of each DSML. The integration
process does not change the initial DSMLs, but pro-
vides techniques to transform and to compose the dif-
ferent artifacts for the creation of a new DSML. There-
fore, reuse is facilitated in a way that all DSMLs can be
used in parallel. However, DSML integration is a non-
trivial task due to the variety of design options (even if
we focus on MOF/UML-based DSMLs) and a number
of composition issues (e.g., composition order).

The many facets of DSL/DSML development
(such as, development guidelines and patterns, devel-
opment processes, design decisions) are discussed by a
number of recent publications (see, e.g., [5, 7, 13, 14].
Fewer publications contribute to evolutionary aspects
of DSL development, such as, model versioning (see,
e.g., [15]), composition of metamodels (see, e.g., [16]),
composition of DSLs (see, e.g., [17, 18]), or composi-
tion of transformation rules (see, e.g., [19, 20]). Al-
though these publications discuss selected DSML in-
tegration techniques, (1) they do not take the overall
DSML development process into account and (2) they
do not target on MOF/UML-based DSML composi-
tion in particular.

In order to integrate DSMLs, the composition
process must ensure the correct integration of all as-
pects a DSML consists of (e.g., language model, behav-

 Proceedings of the IASTED International Conference
 ( A 2012)

November 12 - 14, 2012 Las Vegas, USA
Software Engineering and Applications SE

DOI: 10.2316/P.2012.790-045 337

73



ior, concrete syntax). In this paper, we adopt the lan-
guage model-driven process model from [14] to struc-
ture the integration of MOF/UML-based DSMLs. We
discuss composition decisions and techniques, inputs
and outputs, as well as challenges that may occur in
each DSML integration phase. We provide a process
model for DSML composition which can be used as a
template when integrating MOF/UML-based DSMLs.
An example shows the integration of two security-
related DSMLs.

The remainder of this paper is structured as fol-
lows. Section 2 discusses issues at the various stages of
DSML integration. Section 3 presents a process model
for the systematic integration of DSMLs. An example
DSML composition is sketched in Section 4. Related
work is reviewed in Section 5 and Section 6 concludes
the paper.

2 DSML Integration Issues

In the process of DSML integration a couple of is-
sues arise. In this section, we briefly review im-
portant challenges of integrating MOF/UML-based
DSMLs which we extracted from the literature (see,
e.g., [7, 13, 14, 16, 17, 20, 21, 22]).
Consolidated domain space. If the DSMLs do not
only need to reference each other, but aim at a tighter
integration (e.g., one DSML refining the other), their
concepts must be aligned. It must be assured that, for
instance, equally named metaclasses are representing
the same domain concepts. Thus, a transformation
into a consolidated solution domain space is essential
(e.g., via a composition of MOF-compliant metamod-
els).
Compatible formalization. The MOF/UML-based
language models of DSMLs can be formalized using
different modeling techniques (see, e.g., [13, 21]). A
common formalization style is a prerequisite for a con-
sistent composition (e.g., if both language models are
described as UML extensions or as profiles). This can
be achieved, for instance, with automatic model trans-
formations (see, e.g., [23, 24]); e.g., via transforma-
tion languages, such as, the Atlas Transformation Lan-
guage (ATL [25]) or the Epsilon Transformation Lan-
guage (ETL [26]). In this context, rule-based trans-
formation templates provide implicit trace links to the
original metamodels (which can be used, for example,
to adjust platform integration templates).
Constraint adaptation. According to the integra-
tion strategy and to the composition purpose, the con-
straint sets defined over the DSML models must be
adapted. For instance, refinements of a metaclass can
be further restricted using explicit constraint expres-
sions; e.g., via Object Constraint Language (OCL [27])
or Epsilon Validation Language (EVL [26]) expres-
sions.
Composition workflow. The composition process

for the elements of the language models can include
several composition techniques and a number of inter-
dependent composition tasks (e.g., selecting the ele-
ments, choosing the composition operation, and adapt-
ing the constraints). It is essential to apply suitable
means to define an executable composition workflow;
e.g., via build files, such as, Apache Ant scripts for the
Epsilon Merge Language (EML [26]).

Packaging. Composition-specific constructs (e.g.,
merge and import references, new metaclasses, OCL
constraints) should be defined in a way which pre-
serves the modeling artifacts of the integrated DSMLs.
With this, the DSMLs remain usable both in their un-
composed and in their composed forms. The UML
provides constructs for grouping and for qualifying
composition-only model elements (i.e., packages, pro-
files, the containment relationship).

Symbol composition. The integrated DSMLs might
come with symbol additions to the UML symbol set
[21]. Under composition, the symbol sets must be in-
tegrated. If two metaclasses were merged into a sin-
gle one, one of the diagram symbols would have to
be dropped. This symbol composition is non-trivial.
The combined symbol set must be consistent with the
original ones (e.g., unchanged concepts continue to
be represented by one icon) and the resulting sym-
bol set must not suffer from cognition-critical deficien-
cies (e.g., synographs [22]). This challenge is amplified
because the UML specification does not provide stan-
dardized means for extending the base UML symbol
set.

Composition order. The order in which the source
DSML models enter the composition operation is of
utmost importance. This order must avoid any contra-
dictory composition results in terms of the functional
properties of both integrated DSMLs. Constraints on
the composition ordering must also be addressed in the
behavioral formalization of the composed DSML (as
represented by, e.g., UML M1 behavioral models, such
as, state machines or sequence diagrams). The compo-
sition ordering must also be enforced at the platform
integration stage (e.g., by instrumenting an appropri-
ate language-level composition technique accordingly).

Host platform. The target platform of the composed
DSML is crucial. Both DSMLs are integrated either
into one of the two already targeted platforms or into
a new, third platform specific to the composed DSML.
Alternatively, pipelining [6] can be used to operate be-
tween different platforms.

Generator adaptation. In MDD, model-to-text
(M2T) transformations are commonly applied using
generator templates (see, e.g., [28]). A composition
of two DSMLs requires the adaption of these tem-
plates. Depending on the technology, this can be
achieved in various ways, for instance, with aspect ori-
entation, higher-order templates, or automatic evalu-
ation of trace links (see, e.g., [19]).
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Modeling tool support. If two DSMLs serve mod-
eling purposes only, it is needed to integrate or pro-
vide a new tool which supports the composed DSML;
e.g., by creating a graphical editor for the composed
DSML based on the Eclipse Graphical Editing Frame-
work (GEF).

Composition times. The stages of DSML compo-
sition are performed at different times. Examples are
the generation time of an intermediate model (if an
indirect model transformation is applied), the direct
M2T transformation time (irrespective of the transfor-
mation technique used; e.g., API-based), and the run-
time (e.g., by using pipelining between DSML-derived
programs).

3 DSML Integration Process

In this section, we present a process model for the in-
tegration of MOF/UML-based DSMLs (see Figure 1).
The process model identifies the four core phases of
DSML composition. In the language model-driven en-
gineering process, “first the core language model is de-
fined to reflect all relevant domain abstractions, then
the concrete syntax is defined along with the DSL’s
behavior, and finally the DSL is mapped to the plat-
form/infrastructure on which the DSL runs” [14] (see
Figure 1). Below, we discuss how the issues docu-
mented in Section 2 are addressed in our integration
process.

Platform integration

spec. C

DSML core language

model composition

DSML concrete

syntax composition

DSML behavior

composition

Language

model spec. C

Composition spec.

DSML platform integration composition

Language 

model spec. C

Syntax

spec. C

Behavior

spec. C

Composition

spec.

Language

model spec. C
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Composition

spec.

Language

model spec. A

Language

model spec. B

Syntax

spec. A

Syntax

spec. B

Behavior

spec. A

Behavior

spec. B

Composition

spec.

Language

model spec. C

Platform integration

spec. A

Platform integration

spec. B

Behavior

spec. C

Behavior

spec. C

Syntax

spec. C

Syntax

spec. C

Figure 1. DSML integration process (based on [14]).

3.1 Language Model and Constraints

For UML-based DSMLs, the language model is speci-
fied via a MOF-compliant metamodel and, if needed,
via accompanying invariant constraints. In the context
of DSML integration, both language model specifica-
tions act as the inputs for the core language model
composition phase (see Figure 1). Composing the core
language model and its constraints is divided into sev-
eral sub-activities, as indicated with the rake in Figure
1. These include selecting the elements from the core
language models to be integrated, choosing a compo-
sition method, defining the composition workflow etc.
Outputs of this phase are, on the one hand, composed
language model specifications (i.e., the composed core
language model and its constraints), and, on the other
hand, composition specifications. The form of the
composed language model specifications relies on the
applied composition technique. The composition spec-
ifications can, for instance, have a rule-based format
(e.g., model-to-model (M2M) transformation rules) or
composition traces can be stored in a separate model
(e.g., as a weaving model). The subsequent integration
phases depend on all outputs from this first phase.

There are several techniques for integrating el-
ements from two different metamodels which can be
used exclusively or in combination. Elements from
both metamodels can be merged into a third (existing)
element or into a new one (created as an output ele-
ment of the composed language model specification).
This technique is favorable if both metamodels overlap
and partly provide the same functionality. A refine-
ment of a metaclass (to be preserved) using another
metaclass is implemented as a specialization. That is,
DSML 1 refines the functionality from DSML 2, for in-
stance, with platform-specific methods (e.g., modeled
as a generalization relationship). DSML 1 can also
extend features from DSML 2. Thereby, DSML 1 pro-
vides new functionality that does not exist in DSML
2. Another composition method extends DSML 1 by
referencing features from DSML 2 (e.g., via new as-
sociations or via a separate weaving model). Func-
tionality from DSML 1 can also act as an alternative
to features from DSML 2, with the modeler having to
choose between one of the two, finally. Furthermore,
language model constraints must be adapted accord-
ingly: Constraints can be rendered more restrictive,
they can be declared as refinements or as extensions
to existing constraints, or they can establish explicit
and navigable links between metamodels.

3.2 Concrete Syntax

The concrete syntax of the DSML acts as the interface
presented to the user. Therefore, the symbols must re-
flect their underlying concepts (from the core language
model; see Section 3.1) as clearly as possible. Inputs
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to the phase of the DSML concrete syntax composi-
tion are the individual syntax specifications coming
from the two DSMLs, the composed language model,
and the composition specifications resulting from the
core language model composition phase (see Figure 1).
The composed DSML’s syntax is developed in paral-
lel with the DSML behavior specification (see Section
3.3). This is because details of the behavior specifica-
tion can be reflected in the concrete syntax (e.g., states
of a language model element become cues in the sym-
bol design). Output of this phase is a composed syn-
tax specification, comprising symbolic elements (in any
form, e.g., diagrammatic or textual) and their mapping
to elements of the core language model.

For composing different graphical elements there
are basically two options: syntax extension and syntax
integration1. The graphical syntax of DSML 1 can be
extended by elements of DSML 2 (e.g., when language
model elements were composed using reference or ex-
tend techniques). Elements from DSML 1 can also
be fully integrated into DSML 2. This means that
new graphical elements are created which combine the
syntactical styles of both DSMLs (e.g., when language
model elements were composed using merge or refine
techniques).

3.3 Behavior Specification

The behavior specification of the composed DSML
must conform to the integration purpose and is critical
for defining a composition order. The composition or-
der dictates the enforcement of properties provided by
each DSML and so contributes to a sound composition
by, e.g., respecting functional dependencies between
the concerns covered by the DSMLs. The composed
language model and composition specifications as well
as the two behavior specifications from the integrated
DSMLs are input to the phase of behavior composition
(see Figure 1). The phase of composing the DSMLs’
behaviors is performed in parallel with the composition
of the concrete syntaxes (see Section 3.2). Output is
the behavior specification of the composed DSML.

Behavior definitions can be created, for instance,
informally using text artifacts, formal or informal
(control-flow) models (e.g., petri nets or UML state
machines), examples (e.g., usage or model examples),
and executable code specifications (e.g., algorithms).
Depending on the specification of the composed lan-
guage model, the behavior definition represents a re-
finement, an extension, a restriction, or an execution
order on the integrated DSMLs.

1For this paper, we do not elaborate on further concrete syn-
tax options, such as, non-diagrammatic, tree-based, tabular, or
hybrid forms (see, e.g., [21]).

3.4 Platform Integration

Platform integration is not only determined by the in-
tegration purpose, but also by the feasibility and by
the effort needed to compose the DSMLs at the sys-
tem level. Again, the language model and composi-
tion specifications as well as the two platform integra-
tion specifications serve as inputs to this composition
phase. Output is a specification for the composed plat-
form integration of the DSMLs (see Figure 1). This
specification can take the form of mere textual integra-
tion descriptions, M2T transformation specifications,
or code artifacts in the host language.

The composition techniques are loosely depen-
dent on the integration strategy applied in the phase
of composing the core language model. Approaches
for the platform implementation range from pipelin-
ing, piggybacking, language extension, to front-end
integration. A pipeline takes the output from one
DSML-derived program and feeds it into the second
DSML-derived program for further processing without
structurally integrating both code bases. The piggy-
back approach reuses the capabilities of two DSML-
derived programs for building a new DSML-derived
program. Using an extension, the DSML-derived pro-
grams are extended by means of the host language
(e.g., class hierarchy). Front-end integration provides
a common interface and facade for both DSMLs, with
instruction calls being forwarded to the freestanding
DSML-derived programs (see, e.g., [6, 7]).

4 Example DSML Integration

In this section, we apply the process model presented
in the former Section 3 for integrating two security-
related DSMLs (see [11, 29]). The first DSML [29]
models system audits (referred to as DSML A, here-
after). Therein, a domain-specific UML extension is
defined for the specification of audit events, audit
rules, and notifications that are triggered via audit
events. With this generic extension, audit require-
ments can be modeled from multiple views. The sec-
ond DSML project (DSML B, [11]) presents an ap-
proach for the specification and the enforcement of
secure object flows in process-driven service-oriented
architectures (SOAs). In this context, a secure ob-
ject flow (SOF) ensures the confidentiality and the in-
tegrity of important objects (e.g., business contracts)
that are passed between different participants in SOA-
based business processes. While DSML B provides
means for message security in SOAs, DSML A sup-
ports accountability of event data via audit trails.

Audit logging in distributed environments, such
as in Web-Service-based infrastructures, is a challenge
and is not sufficiently supported by current approaches
(only via limited specifications of context-insensitive
log levels of runtime engines). Moreover, many se-
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curity standards for Web Services exist (e.g., WS-
Security, WS-Trust, SAML), but they all lack exten-
sions to audit logging [30]. Thus, integrating message-
level security and event-based audit log facilities at the
model and at the application level presents a benefit.

Table 1 summarizes the techniques applied for
both DSMLs at each development phase. At the
stage of defining the DSML core language model, both
DSMLs provide new packages at the level of the UML
metamodel. For DSML A, the package consists of
both, a UML stereotype specialization (contained in
a UML profile) and MOF-based extensions. Besides
the UML metamodel extension, DSML B provides also
a complete mapping to a UML profile. Both DSMLs
provide new diagrammatic elements (i.e., novel graph-
ical notations) and UML stereotypes as their con-
crete syntaxes. The stereotype definition of DSML
A is complementing the newly defined graphical ele-
ments; a textual notation is provided as an alternative
visualization option. In contrast, the UML stereo-
types of DSML B can be used as a replacement of
the novel diagrammatic elements. The behavior spec-
ifications of both DSMLs are provided as textual de-
scriptions with accompanying example models. For
the DSML platform integration, DSML A provides di-
rect M2T transformations into Java code using Epsilon
Generator Language (EGL [26]) templates. In con-
trast, API-based generators are defined in DSML B.
A first transformation generates an intermediate ob-
ject model, which is transformed into BPEL, WSDL,
and WS-SecurityPolicy documents in a second step.

Development
phase

DSML A [29] DSML B [11]

DSML core lan-
guage model and
constraints

UML metamodel
extension & UML
profile, OCL con-
straints

UML metamodel
extension, UML
profile, OCL con-
straints

DSML concrete
syntax

New diagram-
matic elements &
UML stereotype,
textual notation

New diagram-
matic elements,
UML stereotypes

DSML behavior Textual descrip-
tions, example
models

Textual descrip-
tions, example
models

DSML platform
integration

EGL generator
templates; direct
transformation;
Java code

API-based gen-
erator; indirect
transforma-
tion; BPEL,
WSDL, WS-
SecurityPolicy
specifications

Table 1. Applied techniques at each DSML develop-
ment phase.

4.1 Language Model and Constraints

The core language model for both DSMLs are de-
fined at the level of the UML metamodel (consoli-

dated domain space2; see Table 1). Additionally, for
DSML B, mappings to a UML profile exist. This is
to comply with the SoaML specification and to facili-
tate tool support (see [11, 31]). Thus, conceptual com-
position is performed via a metamodel-based integra-
tion; UML/SoaML compliance can be achieved at the
level of a profile integration (compatible formalization).
As there exists a consolidated domain space (MOF-
constructs), we provide mappings for all DSML A ele-
ments to UML stereotypes (see [11] and Figure 2). The
composition is done via a dedicated integration profile
named SOF::Services+SecurityAudit which merges
the corresponding profiles from both DSMLs (packag-
ing, see Figure 2). In addition to the integration of the
DSML language models, the profile merge also implies
the application of corresponding language model con-
straint specifications (as defined in [11, 29]). Moreover,
the integration profile provides the following OCL con-
straint as a composition refinement (constraint adapta-
tion): Every «secure» stereotyped ObjectNode must
also be tagged as an «AuditEventSource».

context SOF:: Services +SecurityAudit::secure inv:

self.base_ObjectNode.getAppliedStereotype(’SOF::
Services +SecurityAudit::AuditEventSource ’) <>

null

«profile»

SOF::Services

«metaclass»

Class
(from Kernel)

+ isStrict:Boolean = false

«stereotype»

SecureInterface

«stereotype»

ServiceInterface
(from SoaML)

«metaclass»

ObjectNode
(from BasicActivities, CompleteActivities)

/ confidentialityEnsured:Boolean
/ integrityEnsured:Boolean
+ confidentialityAlgorithm:Classifier
+ integrityAlgorithm:Classifier

«stereotype»

secure

«profile»

SOF

«merge»

«profile»

SecurityAudit

«metaclass»

Element

(from Kernel)

«metaclass»

Classifier

(from Kernel, ...)

«metaclass»

BehavioredClassifier
(from BasicBehaviors, ...)

«stereotype»

AuditEventSource
+ isNested:Boolean = false

«stereotype»

Condition
+ operator:OperatorKind

«stereotype»

AuditRule

«enumeration»

OperatorKind

equal

notEqual

greater

greaterEqual

less

lessEqual
*

1..*

«merge»

«merge»

«profile»

SOF::Services+SecurityAudit

Figure 2. Example language model composition via
UML profile merges.

4.2 Concrete Syntax

The concrete syntaxes are provided as UML stereo-
types with accompanying icons for the defined profiles
(Figure 2). The concrete syntax specifications for the
SOF and SOF::Servicesprofiles (i.e., DSML B) are de-
fined in [11]. Figure 3 specifies the corresponding icons
for the stereotypes of the SecurityAudit profile (i.e.,
DSML A; symbol composition). Icons can be used as
full replacements of stereotyped elements (see [9]). A

2Italic phrases indicate the DSML integration issues dis-
cussed in Section 2.
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sample application of a stereotyped classifier is shown
in Figure 3. On the left hand side, textual stereotypes
are written inside guillemets, on the right hand side,
the same stereotypes are applied using corresponding
symbols. As several stereotypes (and icons) can be
applied to an element (see [9]), we do not need to de-
fine extra graphical specifications for the integration
profile SOF::Services+SecurityAudit.

«profile»

SOF

«profile»

SecurityAudit
Application

«secure»

name
AES«AuditEventSource»

«secure»

name«AuditEventSource» «AuditRule» «Condition»

AR CAES

Figure 3. Stereotype and icon definitions for the con-
crete syntax.

4.3 Behavior Specification

For the integration profile (see Section 4.1), we spec-
ify a UML state machine to define the composed be-
havior and the behavioral composition order of the
integrated security-related DSML aspects (Figure 4).
For each individual DSML, OCL constraints formally
specify their semantics (see [11, 29]). The integra-
tion profile SOF::Services+SecurityAudit merges
these constraints as well as the language mod-
els (see Section 4.1). We define that for the
SOF::Services+SecurityAudit profile, first, the con-
straints from the composed profiles are enforced; i.e.,
constraints from the «SOF», «SOF::Services», and
«SecurityAudit» profiles—in this order (see Figure
4). Then, the incoming/outgoing secure object flows
are processed, and, last, the audit is performed (details
are shown in Figure 4).

SOF::Services+SecurityAudit

«secure» tagged

«AuditEventSource»

tagged

enfore constraints

(from «SOF» and

«SOF::Services»)

enfore «SOF::Services»

constraints

enfore «SOF»

constraints

enfore constraints

(from «SecurityAudit»)

execute audit (from «SecurityAudit»)

audit

event

[«AuditRule» true]

invoke

notificationAction

enforce «AuditRule»

do / evaluate all «Condition»

process secure object flows (from «SOF»)

[incoming

object]

[outgoing

object]

receive object

encrypt data

decrypt data

send object

publish signal

Figure 4. Integrated DSML behavior specification as
a UML state machine.

4.4 Platform Integration

As can be seen in Figure 5, we use a pipeline approach
by calling audit features of a program derived from
DSML A within a program generated by DSML B

(host platform). Auditing is done via the facilities of
DSML A and respective calling routines are added to
DSML B. Therefore, we adapted the API-based gener-
ator of DSML B to issue a Web Service call every time
a secure object flow is instantiated (see Figure 53).
This meant changing the generator to include audit-
based service endpoints in the WSDL as well as the
pipeline audit logic in the BPEL process (generator
adaptation). Another approach would have been, for
instance, using tools such as Java2WSDL to migrate
the output of the M2T transformation from DSML A
to be Web Service compliant and to integrate it into
DSML B specifications (different composition times).
Native UML modeling tool support is provided for all
aspects of the composed DSML.

«receive»

submitApplication
«send&receive»

checkApplicationForm

bclerk

appId

content

bclerk

appId

content

statusId
«secure»

«AuditEventSource»
«secure»

«AuditEventSource»

«send»

performAudit

bclerk

appId

content

«secure»

«AuditEventSource»
«secure»

«AuditEventSource»

...

Figure 5. Example of a pipeline call to the audit DSML
A within the DSML B workflow.

5 Related Work

In [14], we present an approach for developing DSLs
systematically. In particular, we propose a process
model for DSL development. The different phases can
be tailored to the respective DSL engineering project.
This process model forms the basis of the flow of
DSML integration tasks presented in this paper. The
reusable architectural decisions on designing DSLs in
[7] influenced the discussion of the integration issues as
well as the process model for DSML integration. How-
ever, the reflection on DSL design decisions in [7] re-
lates primarily to programmatic DSLs (and so, e.g., to
concrete textual syntaxes) and we extend their reach to
MOF/UML-based embedded DSMLs (e.g., their con-
crete graphical syntaxes).

The composition of DSML models (i.e., of meta-
models) has been frequently addressed. Emerson and
Sztipanovits [16] review current metamodel compo-
sition methods (e.g., merge, refinement, interfacing).
This research strand is limited to the phase of integrat-
ing the language model, the remaining phases (e.g.,
DSML behavior specification or platform integration)
and their interdependence are not covered.

Another group of researchers (see, e.g.,
[20]) investigates composing model transformation

3The other stereotypes are coming from the SoaML and
UML4SOA profiles and are not of interest in this context (for
details see [11]).
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templates—an important instrument for DSML inte-
gration at the platform integration stage. Tisi et al.
[19], to name just one, present transformation tem-
plates as first-class models themselves. These models
can then be used as inputs for templates defined using
the same transformation language (i.e., higher-order
model transformation). While mostly applied to M2M
transformations (i.e., at the level of the DSML lan-
guage model), higher-order transformations can be
adopted for M2T, as well.

Reuse strategies for DSLs/DSMLs are discussed
by a number of contributions (for instance, through
software product-line techniques; see, e.g., [17, 18]).
Taentzer et al. [15] present an approach for model
versioning based on graph transformations. Al-
though composition techniques are the key factor,
each of these contributions either discusses a specific
DSL/DSML development phase (i.e., the core lan-
guage model) or system-level, textual DSLs only.

6 Conclu

In this paper, we discussed composition aspects for
MOF/UML-based DSMLs in the context of MDD. We
reflected on the issues arising during DSML composi-
tion and presented a process model for the systematic
integration of DSMLs. Moreover, we discussed an in-
tegration of two security-related DSMLs to provide a
practical example.

Our approach explicitly focuses on MOF/UML-
based DSMLs, although the overall integration pro-
cess and its composition aspects may be applicable to
other DSML formats, as well. For instance, the core
composition phases with their inputs and outputs (see
Section 3) are most likely the same for every DSML
and are not MOF/UML-specific. Furthermore, several
composition decisions and techniques as well as inte-
gration challenges can be applied to non-MOF/UML-
based DSMLs or—when not directly applicable—can
be transferred to other modeling languages.

Both DSMLs used for the composition examples
were developed by the authors of this paper. Although
they were not built for integration, a methodical and
technological bias may exist. This bias may also had
an influence on the critical discussion of the compo-
sition aspects. Due to the page limitations, we were
restricted to one integration example for every phase
of the process model. In our future work, we will con-
sider more composition options.

This contribution is a first step towards the def-
inition of a systematic DSML integration approach.
Still, there is need for abstracting and expanding the
findings presented in this paper. Hence, as an out-
look, we will extend our work, collect more evidence,
and provide for an evaluation.
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Abstract: Domain-specific modeling languages (DSMLs) are commonly used in model-driven development projects. In
this context, model-to-text (M2T) transformation templates generate source code from DSML models. When
integrating two (or more) DSMLs, the reuse of such templates for the composed DSML would yield a number
of benefits, such as, a reduced testing and maintenance effort. However, in order to reuse the original templates
for an integrated DSML, potential syntactical mismatches between the templates and the integrated metamodel
must be solved. This paper proposes a technology-independent approach to template rewriting based on
higher-order model transformations to address such mismatches in an automated manner. By considering
M2T generator templates as first-class models and by reusing transformation traces, our approach enables
syntactical template rewriting. To demonstrate the feasibility of this rewriting technique, we built a prototype
for Eclipse EMF and Epsilon.

1 INTRODUCTION

A domain-specific modeling language (DSML) pro-
vides modeling abstractions and notations to describe
the concepts and activities in a business domain (e.g.,
health care or banking) or a technical domain (e.g.,
access control or workflow specification). DSMLs
commonly focus on narrow domain fragments and
system concerns only, such as schedule management
for power suppliers or security properties of business
process data (Spinellis, 2001).

The benefits of DSMLs include reduced develop-
ment times for DSML-based software products, an
improved time-to-market, as well as reductions in de-
velopment and delivery costs; e.g., for developer or
customer trainings (Bettin, 2002). However, the de-
velopment of a DSML and corresponding tool support
most often requires substantial efforts that add to the
overall costs of the underlying software development
project (White et al., 2009; Krueger, 1992). Thus,
benefits of a domain-specific development approach
only realize over time.

As a result, the costs of DSML development are
strong drivers for reusing DSMLs as design artifacts,
both during the life cycle of a single software prod-
uct and for multiple software products (White et al.,

2009; Krueger, 1992). For a single software product,
the development of a tailored DSML can be justified if
the underlying software product is subject to frequent
modifications or if the respective project demands for
multiple and rapidly available prototypes. While a
DSML would generate significantly more benefits if
it was used in the development of different software
products, this reuse is often barred by the narrow do-
mains covered by DSMLs. In this situation, one op-
tion is to start from a joint metamodel and to refine
this metamodel, the corresponding structural and be-
havioral semantics, as well as the DSML notation to
cover an extended domain.

To develop a software product using two or more
pre-existing DSMLs, with each DSML defining a
subsystem of the product, integrating the correspond-
ing DSMLs into a new consolidated DSML is an im-
portant design option (Vallecillo, 2010). Consider,
for example, modeling the billing domain in a power
supply company which covers company-specific ac-
counting and branch-specific schedule management.
Provided that compatible DSMLs for both tasks (i.e.,
accounting and schedule management) are available
(e.g., based on the same metamodeling infrastruc-
ture), their integration is a viable strategy; e.g., via
product line techniques (White et al., 2009). Simi-
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larly, in security-critical domains integrating security-
related DSMLs can support the systematic composi-
tion of different security concerns (Hoisl et al., 2012).

In addition to reusing the domain-specific lan-
guage models through metamodel composition
(Kalnina et al., 2010; Object Management Group,
2008), the model-to-text (M2T) transformations
available for the source DSMLs could be applied to
models of the new DSML. This way, generator ar-
tifacts (such as platform code, configuration specifi-
cations, and deployment descriptors) could be reused
for the new DSML.

From a DSML integration perspective, however,
there are major barriers to reusing model transforma-
tions (Wimmer et al., 2012). One barrier for M2T
generator templates, in particular, is the conformance
relation between M2T transformations and a given
metamodel. Consider the template sketch in Figure
1. The transformation template which accompanies
class B contains a variable assignment expression,
with the right-hand side calling onpropertyB of an
instance ofB (assuming thaty stores an instance of
B). This way, the template is confined to a metamodel
containing a corresponding classB.

Class A
-propertyA

Class C

-propertyA

-propertyB

(a)

«transform»

(c)

Class B
-propertyB

(b)

Class A
-propertyA

Class C
-propertyC

«transform»

Class B
-propertyB

Class A
-propertyA

Class B
-propertyB

Class C'

-propertyA

-propertyB

Class C''
-propertyB

var x = y.propertyB;

Figure 1: Syntactical metamodel conformance.

This conformance relation is affected by the meta-
model composition applied for DSML integration. In
the model composition scenarios (a) and (b) in Fig-
ure 1, classB is composed into new classes, using
different composition operations. In scenario (a) the
conformance relation is preserved by the composition
operation; e.g., a full-property-preserving composi-
tion (Herrmann et al., 2007). Hence, the template still
applies and can be reused over instances of classC. In
scenario (b), however, the naming difference between
propertyB andpropertyC, while structurally equiv-
alent, breaks the conformance relation. The template
cannot be applied to instances of classC. Refactoring
a template clone would be required, for example.

Existing reuse techniques for M2T generator tem-
plates fall short on addressing such syntactical mis-
matches. For example, language-level reuse tech-
niques for M2T transformation languages only pro-

vide reuse capabilities at the block level (e.g. for
entire template or function blocks) rather than at
the expression level. Furthermore, most M2T trans-
formation languages lack the ability to use generic
transformations to abstract from different, but struc-
turally compatible metamodels. Generic transfor-
mation techniques, as available for some model-
to-model (M2M) transformation languages, require
an upfront definition in terms of parametric tem-
plates and explicit bindings (Cuadrado et al., 2011).
However, the demand for such an upfront definition
also adds to the development overhead of a DSML.
Adapter models mimic the metamodels of the source
DSMLs. This, however, impedes the definition of ad-
ditional M2T transformations that are specific to the
integrated DSML. Yet, additional transformations are
required to glue the different artifacts that are gener-
ated for the integrated DSML.

In this paper, we suggest an approach to over-
come the above limitations of M2T transformation
templates for DSML integration. Ourtransformation
rewriting techniqueallows for the automated modi-
fication of transformation templates to fix important
syntactical mismatches between templates and the
composed DSML (Wimmer et al., 2010). In scenario
(b) from Figure 1, for example, the naming difference
would be tackled by rewriting the template expression
based on tracing data of the class composition, using
the new property namepropertyC.

Our current prototype supports three higher-order
rewriting operations (retyping, association retarget-
ing, and property renaming). Note, however, that
our approach allows for arbitrary rewriting opera-
tions. Semantic heterogeneity in metamodel-model
relations (Wimmer et al., 2010) and types of syntac-
tical heterogeneity between source and target meta-
models which cannot be resolved in an automated
manner are currently not addressed by our approach.
This is, for instance, the case for m:n source/tar-
get cardinality in scenario (c) in Figure 1. Our
rewriting technique is applicable to M2T transfor-
mation languages which support a subset of the
meta object facility (MOF) M2T transformation lan-
guage (OMG MOFM2T), higher-order transforma-
tions (HOTs), and basic model transformation trac-
ing (Object Management Group, 2008; Tisi et al.,
2009). All implementation artifacts are available from
http://nm.wu.ac.at/modsec.

In Section 2, we give an overview on DSML in-
tegration, M2T transformations, and generator tem-
plates. Subsequently, we introduce our generic tem-
plate rewriting approach in Section 3. In Section 4,
we describe how our approach is then mapped to the
EMF and Epsilon infrastructures. A proof-of-concept

83



implementation for the Epsilon Generation Language
(EGL) is introduced. Section 5 gives an example of
how our prototype environment can be applied. We
discuss limitations as well as the pros and cons of our
approach when compared to alternative techniques in
Section 6. Section 7 provides an overview of related
work and Section 8 concludes the paper.

2 TRANSFORMATIONS AND
TRACES FOR DSML
INTEGRATION

In general, the process of integrating two or more
sourceDSMLs involves four major activities which
may be repeated a number of times to derive an
integratedtarget DSML (Hoisl et al., 2012). The
language model compositionactivity uses the lan-
guage models (e.g., the MOF or Ecore metamod-
els including corresponding metamodel-level con-
straints) of the source DSMLs as input for the def-
inition of a target metamodel. An important out-
put of this activity is a composition specification that
includes, for instance, correspondence rules and/or
M2M transformations. In thebehavior composi-
tion activity the behavioral semantics attached to the
source metamodels are composed to match the tar-
get metamodel. Depending on the behavior defi-
nition corresponding composition operations are ap-
plied (such as M2M transformations or code-to-code
transformations). Theconcrete syntax composition
activity integrates the concrete syntaxes (e.g., textual,
tree-based, tabular, or diagrammatic) of the source
DSMLs. Finally, theplatform integration composi-
tion activity integrates the software platforms of the
source DSMLs. In particular, this activity integrates
artifacts such as M2M and M2T transformations or
model interpreters of the source DSMLs. The output
of this activity is a set of platform integration spec-
ifications which conform to the target metamodel.
Sometimes this composition step requires the gener-
ation of glue artifacts to realize a system-level com-
position; e.g., via pipelining, language extension, or
front-end integration (Spinellis, 2001).

The artifacts defined in the language model com-
position activity serve as the input for platform in-
tegration. In the remainder of this paper, we focus
on M2T generator templates, M2M transformations,
and transformation traces. Below, we discuss each of
these artifact types in more detail.

M2T Generator Templates as Models. Platform
integration as described above (Hoisl et al., 2012)
includes the generation of platform-specific artifacts

(such as, platform-specific source code or platform
configuration and deployment documents; see Figure
2). The generation of these artifacts can be supported
via M2T generators which receive a transformation
definition and a set of source models as the input to
produce a transformed representation of these mod-
els. For the remainder of this paper, we especially fo-
cus on template-based M2T generators and the corre-
sponding generator templates (Czarnecki and Helsen,
2006). In principle, a generator template consists of
two kinds of code. On the one hand, there is tem-
plate code to access and to select source model data
by quantifying over the model structure that is speci-
fied in a metamodel (see also Figure 2). On the other
hand, a template contains code to expand and to wrap
the selected model data into string fragments.

...
...

Metamodel
(M2, language model)

Meta-metamodel
(M3)

instance-of

instance-of

define

platform integration

refers to M2T metamodel

(M2, template model)

instance-of

instance-of

M2T model instance

(M1, template)

Model

(M1, specification) Platform artifacts

(code, config, ...)

define

DSML

engineer

Domain

modeler define

DSML

engineer

ap
pl

ie
s 

to

generates

Figure 2: M2T template models.

Template-based M2T transformations are a
widely supported platform integration technique in
contemporary MDD tool chains, and a variety of
template language implementations exist, such as,
Eclipse Xpand, Xtend2, EGL, JET, or Acceleo (Rose
et al., 2012; Czarnecki and Helsen, 2006). For each
of these languages, M2T generators and generator
templates can be implemented in different ways. For
example, one option is to use specification documents
with a textual abstract syntax and a tree-based
intermediate representation which is interpreted by
the generator. In an alternative approach, we can use
a DSL for M2T transformations that is embedded in a
general-purpose scripting engine to realize generator
templates via scripts. Such “generator template
scripts” are then evaluated by the language interpreter
(Zdun, 2010).

To abstract from such implementation details and
to benefit from generator templates as first-class mod-
eling elements, our approach focuses on the model
representations of generator templates. In other
words, we consider generator templates as instances
of a conceptual M2T template metamodel (see Figure
2). Rather than including all features that are avail-
able in different template languages, our approach re-
quires only a generic subset of the features defined
through the MOFM2T specification (Object Manage-
ment Group, 2008). In this way, the approach is
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portable to contemporary M2T template languages.

M2M Transformations. In our approach we con-
sider M2M transformations at the M1 and M2 mod-
eling levels (see Figure 3). First, we compose the
core language models of two (or more) source meta-
models into a target metamodel. This composition is
achieved via transformations that refer to the corre-
sponding metamodel structures (M3). Second, M1
models of respective generator templates (see also
Figure 2) are transformed into new M1 template mod-
els to adapt them to metamodel changes that result
from the DSML integration. These M2M transforma-
tions are higher-order model transformations (HOTs):
Transformations receiving input/output models which
are themselves model representations of transforma-
tions; probably even expressed in the same transfor-
mation language (Tisi et al., 2010).

Note that the programming model that is used by a
certain M2M transformation language (e.g. relational,
operational mappings, hybrid) is transparent to our
approach (Czarnecki and Helsen, 2006). Neverthe-
less, to demonstrate our approach we use hybrid trans-
formation rules as supported by, for instance, the At-
las Transformation Language (ATL) and the Epsilon
Transformation Language (ETL) in our examples.
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Figure 3: M2M transformations and traces.

Transformation Traces. Even though our approach
is generic and does not require a specific variant of
M2M transformations, we assume that a transforma-
tion history is available. This history includes trans-
formation traces that document the M2M transforma-
tions between language models (the M2 level in Fig-
ure 3). In particular, each transformation trace estab-
lishes a persistent link between a source and a tar-
get model element which are connected via a model
transformation operation (merging, extension, renam-
ing). Moreover, each transformation trace refers to a
corresponding transformation rule. In order to intro-
spect on these traces (for example, to identify the kind
of transformation operation performed), transforma-
tion traces must be represented as first-class mod-
els. In other words, each trace must be an instance
of a dedicated trace metamodel that complies with

the transformed models at the M3 level (see Figure
3). Note, however, that we neither define restrictions
on the time the traces are recorded (allowing, for ex-
ample, partial evaluation of transformation rules, and
runtime tracing) nor do we require a specific tracing
engine: Built-in tracing, traces generated by trans-
formation rules, as well as internal or external trace
stores are supported.

3 TEMPLATE SYNTAX
REWRITING

Before introducing our template rewriting approach,
we must first review the types of potential mismatch
between different DSML metamodels in more detail.
We consider MOF-compliant metamodels. Regarding
M2T template language concepts, we use the corre-
sponding MOFM2T terminology for explanatory pur-
poses (Object Management Group, 2008).

Figure 4 provides a sketch of DSMLA and DSML
B being composed into DSMLC using an M2M trans-
formation definition. The mismatch problem can then
be restated as question:How can we make the gen-
erator templatesA and B apply to instances of the
composed metamodelC rather than to instances of
metamodelsA and B, respectively?To answer this
question, we must establish some background: First,
it is important to identify the types of structural dif-
ferences encountered during metamodel composition.
More specifically, we must collect the details about
the structural differences and make them accessible to
the template transformation. Then, the elements of a
generator template which are affected by these struc-
tural differences must be highlighted. Finally, corre-
sponding transformations of the generator templates
must be defined. The objective of template rewriting
is the transformation of the source templates (A, B)
into derivatives (A’, B’) which refer to metamodelC
directly (see Figure 4).
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Figure 4: M2T template rewriting for DSML integration.

Metamodel Composition. When composing the
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source metamodels (A andB in Figure 4), the DSML
engineer can choose from a variety of model com-
position operations when defining the transformation,
only limited by the M2M transformation language’s
capacity (Vallecillo, 2010). These includemodel
mergersusing merge operators with different prece-
dence and conflict resolution schemes, operating at
different granularity levels (package, metaclass). In
a model extension, subsets of either language model
enter the new metamodel as disjoint sets to comple-
ment each other.Model refinementsrealize is-kind-
of dependencies between all or selected elements of
the source metamodels.Model interfacinginvolves
introducing model elements specific to the new meta-
model as a structural glue between elements merged
from the source metamodels. Ahybrid composition
can involve any combination of the above operations.

In our approach, we restrict the composition oper-
ations so that structural semantics of the source meta-
models are preserved. Thus, it is assured that the code
artifacts generated based on the composed metamodel
are semantically equivalent to the code artifacts gen-
erated with M2T templates of the individual source
metamodels. The source-target cardinality can be ei-
ther 1:1 or n:1: Either the element (class, attribute
etc.) is preserved in the target model or a set of ele-
ments is merged into one new element.

Our template rewriting approach considers the ef-
fects of metamodel composition as changes between
two model states across predefined model correspon-
dences, rather than as a sequence of transformation
operations. State-based differentiation refers to com-
puting the changes between the source and target
models after the completed composition, by contrast-
ing the source and target metamodels at the M2 level.
Listing 1 presents two examples of state-based differ-
entiation to identify element name changes, defined
as OCL expressions over two couples of source and
target elements of two MOF-compliant metamodels.
The two introspection definitionsisRenamedClass
andisRenamedProperty reflect important cases for
M2T template rewriting, to be reconsidered later in
this section.

Listing 1: State-based differentiation.
1 def: isRenamedClass (source : NamedElement ,
2 target : NamedElement ) : Boolean
3 = source.oclIsKindOf (Class) and
4 target.oclIsKindOf (Class) and
5 target.name != source.name
6
7 def: isRenamedProperty (source : NamedElement ,
8 target : NamedElement ) : Boolean
9 = source.oclIsKindOf (Property ) and

10 target.oclIsKindOf (Property ) and
11 target.name != source.name

A state-based technique has a number of advan-

tages. To begin with, it is minimalistic and imple-
mentable for several M2M transformation engines. In
addition, it turns our template rewriting approach ag-
nostic about the actual composition operations used.

Trace Models. To make state differences between
source and target metamodels computable, the corre-
spondences between metamodel elements established
during the metamodel composition must be preserved
at metamodel composition time (Paige et al., 2011).
Alternative tracing techniques, such as, implicit trac-
ing or model annotation (Drivalos et al., 2008), are not
suitable for state-based differentiation. The tracing
scheme can be achieved by storing the transformed el-
ement couples as instances of a simplistic trace model
(see Figure 5). Instances ofTrace refer to asource
metamodel element and atarget metamodel element
which is paired during metamodel composition. In
addition, a reference to theTransformation is stored
along with the element couple. TheTrace concept
provides the context for the introspection expressions
in Listing 1. This tracing scheme is suitable for de-
tecting unsupported heterogeneity situations in the
context of model composition (i.e., composition op-
erations violating defined structural semantic preser-
vation conditions, such as, m:n cardinality of source/-
target element mappings). Traces can be used to inter-
rupt the rewriting process and to aid the debugging of
allowed composition operations (Amar et al., 2008).
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Figure 5: Excerpts from MOF and MOFM2T.

Template Models. Based on the transformation data
gained from introspecting the transformation traces,
the templates are to be adapted (e.g., a templateA’ is
to be derived from templateA in Figure 4). To rep-
resent M2T generator templates as first-class mod-
els, we consider them instances of a subset of the
MOFM2T reference language (see Figure 5).

In MOFM2T, transformations are structured in
Modules (e.g., for namespace or public/private part
definitions) which can contain a number ofTem-
plates (see Figure 5). ATemplate as a special-

86



ized Block contains string production expressions
(TemplateExpressions) with placeholders for data
to be extracted from models.Templates can be in-
voked withParameters and can returnParameters.
They realize function-style language elements (Wim-
mer et al., 2012). ATemplate can override other
templates, with the overriding template being invoked
in place of the shadowed template. ATemplateEx-
pression, among others, represents expressions for
calls to model elements, for declaring and managing
variables, for declaring control statements, and for ex-
panding to strings. ATemplateInvocation specifies
an invocation of aTemplate. As TemplateInvoca-
tion is a specializing classifier ofTemplateExpres-
sion, Templates can be invoked from within other
Templates. A TypedModel specifies an input model
(aPackage) to be referenced and accessed throughout
theTemplateExpressions. TheTypes contained by
thePackage represent the domain of model element
types available to theTemplates. These type refer-
ences are primary rewriting targets.

Template Model Transformations. Metamodel
changes as identified by state-based differentiation
(isRenamedClass andisRenamedProperty in List-
ing 1) affect the M2T generator templates syntacti-
cally in two ways. First, block expressions (variants
of OclExpressions) maintain references toTypes
(as can be learned from Figure 5). This is the case
for Parameters of Templates and for type-aware
template expressions, in particular type annotations
in VariableDeclarations and type annotations for
parameters of operation calls (OperationCallExp).
Second, navigatingOclExpressions, such as,Mod-
elPropertyCallExp may refer to renamed meta-
model elements (e.g.,Property). From these syntac-
tical dependencies, three rewriting requirements fol-
low for pairs of source and target metamodel ele-
ments, which are represented by a set ofTrace in-
stances (see Figure 5):

Retyping: References to aType named after a re-
named sourceClass must be replaced by the target
Class name.

Association Retargeting:When anAssociation be-
tween twoClasses is redirected and receives another
target (i.e., aProperty owned by anotherClass), the
correspondingendTypes must be modified. Thus, the
returnType of the expression must be adapted and set
to the newendType. Note that the name of a corre-
sponding navigation reference (e.g., a property call to
retrieve an element) in navigatingOclExpressions
is not affected.

Property Renaming: A renamed Property
(isRenamedProperty) affects navigatingOclEx-

pressions as the navigation path in these expres-
sions changes. To rewrite these navigation paths
according to the renaming, theproperty attributes
of theseOclExpressions are adjusted.

All three rewriting operations may occur repeat-
edly for identical pairs of transformed source and tar-
get metamodel element types, depending on the num-
ber of state-based differences computed from the set
of Traces. Corresponding transformations must be
defined in an M2M transformation definition which
operates on the source templates (A, B) based on a set
of Traces to produce syntactically adapted template
model instances (A’, B’; see Figure 4).

4 EPSILON/EMF PROTOTYPE

Based on our notion of template rewriting (see Sec-
tion 3), we introduce a prototypical realization of this
rewriting technique for the EMF and the Epsilon fam-
ily of model transformation languages. In this tech-
nology projection, MOF-compliant DSML models
are approximated by Ecore metamodels. To perform
language model composition, as described in Sec-
tion 3, we use transformation definitions expressed
in Epsilon task languages. M2T generator templates
are represented by EGL transformations. To obtain
model representations of EGL templates, we map the
respective MOFM2T concepts to their correspond-
ing language concepts in the Epsilon language fam-
ily. The Epsilon language runtime provides a built-
in tracing facility for capturing transformation cor-
respondences between Ecore metamodels as required
for our rewriting approach (Kolovos et al., 2012).

Ecore Metamodel Composition. In the EMF/Ep-
silon toolkit, metamodel composition is divided into
three tasks: (1) matching, (2) copying, and (3) merg-
ing metamodels. The first task (matching) is per-
formed via the Epsilon Comparison Language (ECL)
and has the source metamodels, as well as compari-
son rules provided by the DSML engineer as inputs.
During copying, the unmodified metamodel elements
(i.e., which do not match any comparison rule) are
copied into the target metamodel of the composed
DSML. This can be achieved using the ETL. The third
step in an Epsilon-specific DSML composition ap-
plies merge rules defined by the DSML engineer on
element triples of the source metamodels and the tar-
get metamodel. The output of this 3-pass transforma-
tion is a composed DSML metamodel and transfor-
mation traces, to be used for state-based differentia-
tion (see Section 3).

The introspection operationsisRenamedClass
and isRenamedProperty translate into the Epsilon
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Object Language (EOL) equivalents for Ecore meta-
models in Listing 2, to compute the state-based differ-
ences between the source and the target metamodels.

Listing 2: State-based differentiation for Ecore metamod-
els.
1 operation isRenamedClass (source : Ecore!EObject ,
2 target : Ecore!EObject) :

Boolean {
3 return source.isKindOf (Ecore!EClass) and
4 target.isKindOf (Ecore!EClass) and
5 target.name <> source.name;
6 }
7
8 operation isRenamedProperty (source : Ecore!EObject ,
9 target : Ecore!EObject ) :

Boolean {
10 return source.isKindOf (Ecore!EReference ) and
11 target.isKindOf (Ecore!EReference ) and
12 target.name <> source.name;
13 }

Minimal Ecore Trace Model. To provide a model
representation of transformation traces (as sketched
in Figure 5 in Section 3), we realized a custom trace
metamodel for our prototype. Listing 3 gives the
metamodel definition.CompositionLink is the cor-
responding concept ofTrace in Figure 5.

Listing 3: Trace metamodel in EMFatic textual syntax.
1 @namespace(uri ="CompositionTrace ", prefix ="

CompositionTrace ")
2 package CompositionTrace ;
3
4 class CompositionLink {
5 ref EObject source;
6 ref EObject target;
7 }

During the metamodel composition step (see above),
transformation correspondences obtained from the
Epsilon tracing machinery are stored asComposi-
tionLink instances. EachCompositionLink stores
a pair of source and targetEObjects extracted from
the Epsilon tracing sources (ECL match, ETL trans-
formation, and EML merge traces). In this custom
metamodel, references to the respective merge and
transformation rules are omitted for brevity.

Ecore Metamodel for EGL Templates. EGL tem-
plates are natively processed by an ANTLR-based
parser and transformed into an abstract syntax tree
(AST) structure. Currently, Epsilon neither provides
EMF metamodel representations of its language fam-
ily, nor the tooling to perform round-tripping between
ASTs and any model representation. Therefore, we
extended an early prototype for EOL model represen-
tations (Wei, 2012) to cover EGL language concepts.
We extracted the language abstractions from (Kolovos
et al., 2012) and by screening the Epsilon code base
for missing details.

Figure 6 presents an excerpt of the extended
Ecore metamodel. In this technology projection, the
M2T template model concepts introduced in Figure
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Figure 6: Excerpt from the Ecore metamodel for the Epsilon
language family.

5 must be mapped to their Epsilon correspondences
in Figure 6. Some Epsilon concepts such asMod-
ule andBlock are directly compliant with MOFM2T.
Nevertheless, some EGL concepts deviate from the
MOFM2T metamodel structure: For example, Ep-
silon distinguishes betweenStatements and Ex-
pressions. In contrast, the MOFM2T specification
(Object Management Group, 2008) summarizes text
production rules ofTemplates as specialized expres-
sions (TemplateExpression). Generally speaking,
the complete EOL/EGL metamodel exceeds the do-
main coverage of the MOFM2T metamodel because
Epsilon provides an integrated collection of several
task-specific languages. For our prototype, however,
only a subset of the Epsilon metamodel was relevant
(see Figure 6). The resulting concept mapping used
for our prototype is shown in Table 1.

Table 1: Mappings between MOFM2T and Epsilon.

MOFM2T Epsilon
Association EReference
Block Block
Class EClass
ModelPropertyCallExpr PropertyCallExpression
Module Module
NamedElement ENamedElement
OperationCallExpr MethodCallExpression
Parameter FormalParameter
Property EAttribute
Template OperationDefinition
TemplateExpression Statement, Expression
TemplateInvocation FeatureCallExpression
Type Type, EDataType
TypedModel Model, ModelElementType
VariableDeclaration VariableDeclaration-

Expression

ETL Transformations on EGL Template Models.
Finally, assuming the availability of model repre-
sentations of source EGL templates and of transfor-
mation traces (CompositionLink instances), equiv-
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alents to the template-to-template transformations as
defined in Section 3 must be defined based on the
mappings shown in Table 1. Note that these transfor-
mations apply to any occurrence of EGL templates to
be adapted. The definitions below are generic in this
sense and must be bound to the concrete templates un-
der transformation. These M2M transformations are
expressed in ETL.

Retyping, Association Retargeting.In Epsilon, the
type of a model element acting as an input to a trans-
formation is represented by theModelElementType
metaclass. To change the type reference owned by
a template element (e.g., an expression) or to retar-
get an association (i.e., anEReference in Ecore), the
respectivetype attribute of the correspondingMod-
elElementType element must be changed to match
the name of the target metamodel metaclass (see Fig-
ure 6). The corresponding ETL rule is depicted in
lines 10–20 of Listing 4.

Property Renaming.An EReference in Ecore repre-
sents a navigation axis from oneEClass to another
by pairing the opposite metaclasses. Therefore, to re-
flect a renamedEReference in the template model,
the property attribute of aPropertyCallExpres-
sion element must be adapted (see Figure 6). The
ETL rule for this transformation is defined in lines
22–32 of Listing 4.

Listing 4: EGL snippet creating ETL rewrite rules.
1 for (l in links) {
2 var src : Ecore!EObject ; var trgt : Ecore!EObject ;
3 src = l.source;
4 trgt = l.target;
5 if (src.name <> trgt.name) {
6 etl = etl + TemplateFactory .prepare(renameElement (

src , trgt)).process ();
7 }
8 }
9

10 @template
11 operation renameElement (src : Ecore!EClass , trgt : Ecore

!EClass) { %]
12 rule retype [%= src.name%]2[%= trgt.name%]
13 transform s : egl_in!ModelElementType
14 to t : egl_out!ModelElementType
15 extends Type
16 {
17 guard : s.type == "[%=src.name%]"
18 t.type = "[%=trgt.name%]";
19 }
20 [% }
21
22 @template
23 operation renameElement (src : Ecore!EReference , trgt :

Ecore!EReference ) { %]
24 rule rename [%= src.name%]2[%= trgt.name%]
25 transform s : egl_in!PropertyCallExpression
26 to t : egl_out!PropertyCallExpression
27 extends FeatureCallExpression
28 {
29 guard : s.property == "[%=src.name%]"
30 t.property = "[%=trgt.name%]";
31 }
32 [% }

As mentioned above, the two M2M transforma-
tion rules must be instantiated for a concrete set of
EGL template models (e.g., to reflect the concrete el-

ement names). As shown in Listing 4, the ETL rules
are themselves generated by instantiating an M2T
EGL template for a given set of transformation traces.
For demonstration purposes, the top-level EGL script
processes the available traces retrieved from the pre-
ceeding metamodel composition in lines 1–8, to dis-
patch to the expanded ETL transformation rules for
each pair of source and target elements with name
mismatches (see line 5 in Listing 4).

Epsilon Composition and Rewriting Procedure.A
process flow view of the overall composition and
transformation steps is presented in Figure 7. This
Eclipse-specific process flow realizes the abstracted
scheme shown in Figure 4. Two activities must
be performed as the prerequisites for applying the
actual rewriting to the M2T EGL templates: 1)
The DSML metamodel composition in three Epsilon-
specific steps (matching, copying, merging) and 2)
the transformation of M2T EGL templates into their
model representations—that is, the instances of the
metamodel depicted in Figure 6. The trace model
generated during the metamodel composition and
the instantiated ETL rewrite rules enter the actual
template-to-template transformation along with the
EGL template models. The rewritten EGL template
models are finally serialized into EGL script repre-
sentations to be applied to the composed metamodel
at the end of this process (this last step is not shown
in Figure 7).

This process flow can be automated in Epsilon
by providing a specific build script which turns the
flow into a sequence of Epsilon-specific Apache Ant
tasks (Kolovos et al., 2008). Such anOrchestra-
tionWorkflow defines the sequence of tasks, such as,
Model loading orModule invocation (see Figure 6).
Alternatively, such a process flow can be realized by
instrumenting the Epsilon and EMF APIs in a piece
of Java glue code.

5 AN INTEGRATION SCENARIO

In this section, we describe a composition scenario of
two DSMLs to exemplify the integration process. We
run through the whole process of applying one higher-
order rewrite rule1. The first DSML models system
audits (referred to as DSMLA, hereafter) by provid-
ing abstractions for audit events and audit rules. The
second DSML (DSMLB, hereafter) allows for mod-
eling generic state machines. The scenario integrates
the two DSMLs into a composed DSMLC capable of

1All software artifacts as well as the complete example
can be obtained from http://nm.wu.ac.at/modsec.
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modeling a reactive distributed system with auditing
support. Both DSMLs provide M2T generator tem-
plates written in EGL to generate Java code. The ob-
jective is to reuse these EGL templates for models of
DSML C through syntax rewriting. For this scenario,
we explain the application of a particular higher-order
rewriting rule to a template specific to DSMLA.

In DSML A for system audits, anAuditRule sub-
scribes to aSignal type and, when anAuditEvent
is triggered, checks the correspondingConditions
against the publishedSignal occurrence (see Figure
8). If all Conditions evaluate to true, a notification
action will be executed to perform audit-related tasks,
such as generating an entry in an audit trail or notify-
ing the system administrator—not displayed in Figure
8; for details see (Hoisl and Strembeck, 2012).
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NamedElement
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Figure 8: DSMLA—auditing in event-based systems.

For DSML B, we have chosen a state/transition
pattern (see Figure 9) for its communicability in an
example. In a state machine,Transitions model the
change from oneState to another. ATransition is
triggered by anEvent.

StateMachine State Transition

Event
NamedElement

name : String

states

0..*

transition

0..1

events0..*

target

1

Figure 9: DSMLB—a state/transition behavioral system.

DSML Metamodel Composition. In this step, we
merge theAuditEvent element from DSMLA and
theEvent element from DSMLB into a unifiedAu-
ditElement’ element of the composed DSMLC
(see Figure 10). Thereby, we connect both DSMLs
structurally by merging these two core concepts into
one concept of DSMLC. Otherwise, the metamodel
composition preserves all structural semantics present
in the source DSMLs (inheritance, attributes, refer-
ences).

AuditEvent'

DSML C

AuditEvent

DSML A

Event

DSML B

«merge» «merge»
:CompositionLink:CompositionLink

target target

source source

Figure 10: DSML composition via element merge.

This concept merge is defined by the ECL com-
parison rule shown in Listing 5. Therein, a match is
defined iff the corresponding metamodel elements of
the two DSMLs are namedAuditEventandEvent, re-
spectively (line 5)2.

Listing 5: ECL comparison rule forAuditEvent’.
1 rule AuditEventandEvent2AuditEvent ’
2 match l : EventSystem !EClass
3 with r : StateMachine !EClass {
4 compare :
5 l.name = ’AuditEvent ’ and r.name = ’Event ’
6 }

For all elements missed by the rule in Listing 5,
a direct copy operation into the target metamodel is
defined via an ETL transformation (not shown). All
elements matching the above ECL rule are processed

2Please note that we show only relevant code parts in the
example listings (excerpts).
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by the merge operation in Listing 6. Therein, a new
element name is constructed (line 5) and all proper-
ties, references, and inheritance relations (lines 6–7)
from both the DSMLA and the DSMLB metamodels
are transferred into the newly created element in the
target metamodel. This preserves the n:1 source/tar-
get cardinality (see Section 3).

Listing 6: EML merge rule forAuditEvent’.
1 rule MergeAuditEvent
2 merge l : EventSystem !EClass
3 with r : StateMachine !EClass
4 into t : EventSystemStateMachine !EClass {
5 t.name = l.name + "’";
6 t.eStructuralFeatures ::= l.eStructuralFeatures +

r.eStructuralFeatures ;
7 t.eSuperTypes ::= l.eSuperTypes + r.eSuperTypes ;
8 }

Ecore-based Trace Model.The merge and the trans-
formation yield an instance of the trace metamodel
(see Listing 3, Section 4). In Figure 10, the two re-
sulting instances ofCompositionLink are illustrated,
recording pairs of transformation sources and trans-
formation targets: (AuditEvent, AuditEvent’) and
(Event, AuditEvent’).

Ecore-based Template Model.Listing 7 shows an
example code snippet of an EGL template. For now,
only line 1 is of interest: A loop is defined iterating
over allAuditEvents in anEventSystem. The return
type of the referenceEventSystem.auditEvents is
defined asAuditEvent. In the composed DSMLC,
the corresponding concept isAuditEvent’. To reuse
this snippet for DSMLC, the type annotation of the it-
erator variableae must be modified toAuditEvent’.

Listing 7: EGL code snippet with typed iterator.
1 [% for (ae : AuditEvent in EventSystem .auditEvents ) {
2 for (signal in ae.publish) {
3 out.println(’private Signal ’ + signal.name + ’;’);
4 }
5 } %]

For applying syntactical rewrite rules, the EGL
template (Listing 7) needs to be transformed into its
model representation. Listing 8 shows the corre-
sponding instance model representation of line 1 of
Listing 7 (simplified).

Listing 8: EGL model representation.
1 <statements xsi:type="dom:ForStatement ">
2 <iterator name="ae">
3 <type xsi:type="dom:ModelElementType " type="AuditEvent

"/>
4 </iterator >
5 <iterated xsi:type="dom:PropertyCallExpression "

property ="auditEvents ">
6 <target xsi:type="dom:NameExpression " name="

EventSystem "/>
7 </iterated >

EGL Template Model Transformation. The ab-
stracted higher-order rewrite rules documented in

Listing 4, Section 4, must be instantiated using the
trace model shown in Figure 10. The ETL rewrite
rule generated by this template instantiation for the
DSML A elementAuditEvent is reproduced in List-
ing 9. All other rewrite rules are omitted due to space
limitations. The rule in Listing 9 resets thetype prop-
erties ofModeElementType instances, which equal to
AuditEvent, to the valueAuditEvent’.

Listing 9: ETL higher-order rewrite rule.
1 rule renameAuditEvent2AuditEvent ’
2 transform s : egl_in!ModelElementType
3 to t : egl_out!ModelElementType
4 extends Type {
5 guard : s.type == "AuditEvent "
6 t.type = "AuditEvent ’";
7 }

Applying this rule to the EGL model as shown in
Listing 8 results in an EGL model which is corrected
for the changed type name. Line 3 of Listing 10 shows
that the type of the iterator variable namedae was
effectively changed toAuditEvent’.

Listing 10: Rewritten EGL model representation.
1 <statements xsi:type="dom:ForStatement ">
2 <iterator name="ae">
3 <type xsi:type="dom:ModelElementType " type="AuditEvent

’"/>
4 </iterator >
5 <iterated xsi:type="dom:PropertyCallExpression "

property ="auditEvents ">
6 <target xsi:type="dom:NameExpression " name="

EventSystem "/>
7 </iterated >

To be able to execute the rewritten EGL template,
in a last step, the EGL model representation in List-
ing 10 is serialized back into EGL template code (see
Listing 11). Line 1 shows the changed type of the
loop iterator namedae. This type conforms to the
composed DSML metamodelC (see Figure 10). The
rewritten EGL code template can be executed over
models of DSMLC.

Listing 11: EGL snippet with changed iterator type.
1 [% for (ae : AuditEvent ’ in EventSystem .auditEvents ) {
2 for (signal in ae.publish) {
3 out.println(’private Signal ’ + signal.name + ’;’);
4 }
5 } %]

6 DISCUSSION

Our approach to rewriting M2T generator templates
syntactically is motivated by examining barriers to
reusing DSMLs, in general, and to reusing DSML-
based M2T transformations for platform integration,
in particular. An important barrier results from M2T
transformation languages lacking the capacity of ab-
stracting from certain structural conditions of a con-
crete metamodel (Wimmer et al., 2012).
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While variants of template genericity (Cuadrado
et al., 2011; Varró and Pataricza, 2004) help decouple
from early bound references to concrete model ele-
ment types, naming differences affecting navigational
axes are not addressed, for example. Therefore, our
approach can complement M2T template genericity.
Given that generic transformations can also be imple-
mented using HOTs on M2T templates, there is even
a shared implementation vehicle.

In addition, our approach contributes to capturing
M2T transformation logic independently from a par-
ticular transformation language or engine. This plat-
form abstraction (Wimmer et al., 2012) contributes to
the reusability of M2T transformations, as they can be
migrated to another language environment. By pro-
viding a precise definition of our approach in terms of
the MOFM2T specification (see Sections 3 and 4), we
establish such an M2T platform abstraction.

Another barrier to M2T transformation reuse is
the lack of contextual information about the con-
ditions and requirements of reuse (Wimmer et al.,
2012). While not fully elaborated in this paper, we
enumerate working assumptions on the structural se-
mantics of metamodel transformations (e.g., cardinal-
ity classes supported) in Section 3. These working
assumptions can be formalized into executable pre-
and post-conditions (e.g., OCL expressions) stored at
the model-level. The conditions can then be evalu-
ated based on the transformation traces generated dur-
ing metamodel composition to establish whether the
rewriting transformations are applicable.

One critique of using HOTs (Tisi et al., 2009)
is that they expose the engineer to the internals of
the transformation language (Tisi et al., 2010) and
thus hinder reuse. In the case of M2T transformation
models, this model complexity bears the risk of de-
railing the widely opaque text production expressions
so that the platform artifacts are emitted malformed.
In our approach, the M2T generator templates are
represented by comparatively small metamodel do-
mains (i.e., subsets of MOFM2T and the correspond-
ing EGL mapping). On top, the HOTs remain com-
pletely hidden from the DSML engineer because they
are themselves generated by template instantiation on
the tracing data (see Section 3). This is a compromise
balancing between automation and a limited support
for metamodel heterogeneity.

The degree of DSML and M2T transformation
reuse is directly related to the relative effort caused
by the generative environment (transformation adjust-
ments, manual configuration, automation of the gen-
eration tasks). To improve the reuse degree, this ex-
tra effort must be minimal. In our approach, most of
the artifacts are only specified or generated once upon

composing a DSML (e.g., the rewrite rules). Only
when the source DSMLs are modified, the compos-
ing transformation definition must be updated. M2T
transformations specific to the integrated DSML can
vary independently from the generated M2T transfor-
mations. This allows for generating different kinds
of patch code; e.g., pipelining or language extension
(Spinellis, 2001).

7 RELATED WORK

The approach presented in this paper relates to exist-
ing work in two areas. First, we distinguish between
three relevant language- and model-levelreuse tech-
niques for generator templates.
Higher-Order Transformation (HOT).Our syntax
rewriting approach takes two M2T transformation
models (EGL templates) as input and produces two
modified M2T transformations (EGL templates) by
applying an M2M transformation (via ETL) over
these two transformation models. Hence, we apply
HOTs for transformation modifications(Tisi et al.,
2009). In recent years, a variety of alternative HOT
application scenarios have attracted attention, includ-
ing transformation analysis, transformation gener-
ation, and transformation composition (Tisi et al.,
2009). In addition, language-level support for HOTs
has been improved (Oldevik and Haugen, 2007; Tisi
et al., 2010). However, related work has concen-
trated on specific transformation platforms, for in-
stance, ATL (Tisi et al., 2010), rather than on HOTs
in a technology-independent manner.

Generic Templates.Generic templates abstract from
the underlying metamodel and contain transformation
rules which refer to abstracted metamodel types in
terms of type variables (Cuadrado et al., 2011; Varró
and Pataricza, 2004). The type variables are then late-
bound to specific model element types at transforma-
tion runtime. This form of type parametrization must
be employed by the DSML engineer right from the
beginning to construct the generator templates in a
reusable manner. Some approaches also require the
explicit definition of bindings for type variables and
structural adapters against a concrete metamodel to
cope with types of structural heterogeneity in meta-
models. This certainly adds to the initial effort of con-
structing the supporting transformations for a DSML.
Our approach differs as we do not base the rewrit-
ing of templates on placeholder variables or adapters,
but we rather extract the changes from a trace model.
This offers the benefit of automation and of unantici-
pated reuse of generator templates. At the same time,
our approach is limited in its expressiveness to handle
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metamodel heterogeneity (see Section 3). Because
both approaches use HOTs as implementation vehi-
cle, they can complement each other. Transformation
genericity has not been documented for M2T genera-
tor templates so far.

Adapter Models. To establish metamodel confor-
mance for generator templates, another strategy is the
use of intermediate models which adapt model ac-
cesses by the generator template to match the origi-
nal metamodel structure. To mimic the original meta-
model, an adapter model consists of relational expres-
sions which bind to the transformed metamodel and
return model values according to the declared corre-
spondences (Morin et al., 2009). Adapter models pro-
vide for unanticipated template reuse, however, as for
M2T transformations the generated platform artifacts
would not reflect the derived or newly introduced do-
main concepts. This increases the cognitive distance
for the integrating DSML engineer. The generation
of glue code using M2T transformations is restricted
because concept correspondences between the inte-
grated DSML and the source DSMLs can not be lever-
aged in code generation.

The second related area is theencoding of tracing
data to be used in model transformations.

Modeled Traces. Traces captured along the trans-
formation process can be stored in aseparatetrace
model or can beattachedto the source/target model,
e.g., via model annotations (Paige et al., 2011; Amar
et al., 2008). The complexity of traces depends on
their scope (e.g., only selected or all rules) and the
tracing data needed. For our approach, it is suffi-
cient to store trace links between source and target el-
ements. Besides, the trace metamodel can be defined
for more general or very specific purposes, such as our
template rewriting scenario (Drivalos et al., 2008).

Delta Models. Delta models are generated by com-
paring the input and output models of an M2M trans-
formation (ex-post). The creation of delta models (or
difference models) is comparable to diff tools for text
artifacts. In contrast to model traces, delta models
are an indirect method. Traces are not directly cap-
tured at transformation time, the actual transforma-
tion correspondences at the element level cannot be
reconstructed. This black-box encoding of tracing
data (Diskin et al., 2011) is not suitable for a rewriting
approach which requires exact knowledge of source
and target correspondences.

8 CONCLUSIONS

In this paper, we present an approach to rewriting
M2T generator templates syntactically for reusing
them in DSML integration. By considering M2T
generator templates as first-class models and reusing
M2M transformation traces, we developed a rewrit-
ing approach based on higher-order model transfor-
mations (HOTs). This approach is independent from a
concrete transformation platform and the documenta-
tion in terms of the MOFM2T specification facilitates
uptake in MOFM2T-compliant transformation lan-
guages. To demonstrate the feasibility of this rewrit-
ing technique, we provide a prototype implementa-
tion and a DSML integration example based on the
Eclipse EMF project and the Epsilon language family.
As a side product, we so contributed to constructing a
metamodel for the M2T-specific parts of the Epsilon
language infrastructure.

In our future work, we will extend our prototype
to support a wider range of metamodel-level compo-
sition operations (e.g., extends, alternatives). More-
over, we will evaluate the applicability of our ideas
to other transformation languages with HOT support
(e.g., ATL).
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ABSTRACT

Domain-specific modeling languages (DSMLs) are com-

monly employed in the model-driven development (MDD)

of software systems. As DSMLs are tailored for a narrow

application domain, a software system needs to integrate

multiple DSMLs for its complete specification. In this pa-

per, we review the suitability of selected testing techniques

for each phase of an MOF/UML-based DSML integration

process. We exemplify every test technique by providing

a motivating example of its application to the composition

of existing, security-related DSMLs. As for evaluation, we

provide for prototypical software implementations.

KEY WORDS
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tion, integration test, model-driven development, UML

1 Introduction

In recent years, the model-driven development (MDD) of

information systems attracts attention as an software en-

gineering technique (see, e.g., [1]). In MDD, models are

central artifacts and are used for the abstraction and de-

scription of the problem domain (e.g., requirements) as well

as the solution techniques (e.g., implementation specifica-

tions) [2]. In the context of MDD, domain-specific (mod-

eling) languages (DSLs/DSMLs) are frequently employed

for the specification, GUI definition, and implementation

of software systems for tailored application domains (see,

e.g., [3]). Furthermore, model transformations provide for

mappings of abstract high-level specifications (e.g., busi-

ness process models) to system-level implementation arti-

facts (e.g., executable source code) [4].

DSMLs based on the Unified Modeling Language

(UML [5]) are commonly applied, for instance, for the spec-

ification of security-related properties (see, e.g., [6]). A

DSML that is based on the UML extends its specification

with domain-specific constructs (notation, behavior, seman-

tics). A UML-based DSML benefits from an integrated

metamodeling architecture (defined via the Meta Object Fa-

cility, MOF [7]), standardized modeling extensions, and

corresponding tool support.

Software systems are frequently subject to changing

requirements and evolve over time (e.g., as a result of sys-

tem maintenance, consolidation, or migration) [8]. In this

context, the composition of DSMLs becomes an integral

part of model-driven software evolution. As DSMLs are

covering—by definition—a narrow problem domain, soft-

ware systems may need to integrate multiple DSMLs for

their full implementation [9]. DSML composition can be

performed for all or selected language artifacts (e.g., lan-

guage model, concrete syntax, or platform integration). For

each composition task, one can pick from a broad range

of integration techniques available as an informed decision

(e.g., merging metamodels, extending concrete syntaxes, or

pipelining DSML outputs on the host platform) [10].

The process of composing DSMLs puts special de-

mands on testing the artifacts which produce an integrated

DSML. The purpose of testing is to show that a certain

software artifact operates as intended [11]. Thereby, the

challenge of testing integrated DSMLs results from the vast

number of DSML artifacts involved (e.g., different meta-

models, model transformations, varying host platforms)

[12]. For integrated DSMLs, we consider the individual

DSML artifacts as having been tested at the unit and com-

ponent levels. Thus, the composed artifacts of an integrated

DSML need to be tested in combination by employing ad-

equate integration and system testing techniques (see, e.g.,

[11]). Testing of composed DSMLs must be incorporated

into all critical DSML development phases and, therefore,

testing techniques should cover all process artifacts relating

to an integrated DSML [10].

In this paper, we discuss the testing of composed

MOF/UML-based DSMLs on the basis of the integration

process defined in [10] (Section 2). We review a selected

testing technique for each phase of the DSML integration

process (by instrumenting integration test methods; Section

3, especially Sections 3.1–3.5). We further exemplify the

system testing of model- and platform-level compliance of

security properties for a complete MDD transformation pro-

cess (Section 3.6). In addition, Section 4 discusses ben-

efits, limitations, and transferability of our approach. At

last, Section 5 classifies our work with respect to related

approaches and Section 6 concludes the paper.

2 Background: DSML Integration Process

In [10], we define an integration process for MOF/UML-

based DSMLs (Figure 1) which is adapted from [12].

The process results from our experiences in DSML
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engineering—over the past years we conducted 10+

MOF/UML-based DSML development projects—as well as

from related literature [13, 14]. From the identified design

decisions and corresponding decision options, we distilled

commonly used integration techniques for MOF/UML-

based DSMLs [10]. In this paper, the integration techniques

are revisited and serve as the basis for evaluating testing

techniques presented in Section 3.

Figure 1 shows the four main steps with accompany-

ing input and output artifacts which form the DSML inte-

gration process. The DSML integration approach follows

the language model-driven engineering process adopted

from [12]: “first the core language model is defined to re-

flect all relevant domain abstractions, then the concrete syn-

tax is defined along with the DSL’s behavior, and finally the

DSL is mapped to the platform/infrastructure on which the

DSL runs”.

Platform integration
spec. C

DSML core language
model composition

DSML concrete
syntax composition

DSML behavior
composition

Language
model spec. C

Composition spec.

DSML platform integration composition

Language 
model spec. C

Syntax
spec. C

Behavior
spec. C

Composition
spec.

Language
model spec. C

[DSMLs selected]

Composition
spec.

Language
model spec. A

Language
model spec. B

Syntax
spec. A

Syntax
spec. B

Behavior
spec. A

Behavior
spec. B

Composition
spec.

Language
model spec. C

Platform integration
spec. A

Platform integration
spec. B

Behavior
spec. C

Behavior
spec. C

Syntax
spec. C

Syntax
spec. C

Figure 1: DSML integration process [10].

DSML core-language-model composition. The language

model for UML-based DSMLs is defined via a MOF-

compliant metamodel and via accompanying invariant con-

straints. As indicated by the rake in Figure 1, composing

the core language model and its constraints is divided into

several sub-activities (e.g., choosing the elements to be in-

tegrated, selecting a composition method).

DSML concrete-syntax composition. The concrete syntax

serves as the user interface of a DSML. Thus, its representa-

tion must reflect the underlying concepts from the core lan-

guage model as clearly as possible. The composed DSML’s

syntax is developed in parallel with the composed DSML

behavior specification.

DSML behavior composition. The behavior specifications

from each individual DSML need to be orchestrated to de-

fine a composition order which conforms to the integration

purpose. The composition order dictates the enforcement

of properties provided by each DSML and so contributes to

a sound composition by, for instance, respecting functional

dependencies between the concerns covered by the DSMLs.

DSML platform-integration composition. Platform inte-

gration is mainly driven by the feasibility and by the effort

needed to compose the DSMLs at the system level. Hence,

the platform integration specifications from the two source

DSMLs establish the requirements on a composition tech-

nique (e.g., model-to-text (M2T) transformation specifica-

tions, glue-code artifacts in the host language).

3 DSML Testing Techniques

In this section, we discuss test methods which cover the four

DSML composition stages introduced in Section 2. Our

approach explicitly targets MOF/UML-based DSMLs and

we limit the scope of testing techniques to the ones ap-

plicable according to the DSML design options identified

in [13, 14]. In the context of DSML integration, the in-

dividual DSMLs represent parts of the whole system the

composed DSML should cover. Our integration process

focuses on pre-existing DSMLs. This means that the in-

put DSMLs implement a specific encapsulated functional-

ity and can be used in isolation. As these individual DSMLs

are software systems on their own, we consider them in-

dependently tested using unit, component, integration, and

system tests [11]. In the context of DSML composition,

the input DSMLs represent subsystems and, thus, unit and

component testing are already covered via the pre-existing

tests of the individual DSMLs. Hence, we do only elab-

orate on testing methods relevant for DSML composition:

integration and system testing. On the one hand, integra-

tion testing covers potential sources of defect which arise

due to combining components. On the other hand, system

testing is concerned with issues and behaviors that can only

be exposed by testing the entire integrated system (i.e., the

whole composed DSML) [11].

As can be seen in Figure 2, we perform integration

testing for the individual composition steps separately. This

means, the integrated artifacts of the input DSMLs are

tested in combination for every phase of the composition

process (Sections 3.1–3.5). If all integration tests succeed,

the composed DSML will be tested system-wide (Section

3.6). Therefore, tests have to prove that all integrated arti-

facts work in combination and that the behavior of the com-

posed DSML is as intended. Besides the testing process,

Figure 2 displays required inputs and generated outputs of

each employed testing technique as pins attached to the cor-

responding actions. A comment note shows, for each step,

the presented testing technique which is discussed and ex-

emplified in detail in the following sections.

3.1 Testing Core-Language-Model Composition

With their interwoven MDD specifications, the OMG pro-

vides the basis for an integrated model-driven architecture

approach. All language-specific metamodels (such as the
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Figure 2: Integration and system testing of composed DSML artifacts.

UML) are defined via the MOF, facilitating interoperabil-

ity and integration between different standards. A charac-

teristic of MOF/UML-based DSMLs is that their core lan-

guage model is formalized via diagrammatic MOF/UML

constructs (e.g., UML profile definition, metamodel exten-

sion/modification; see [13]).

The method for composing core language models

coming from different DSMLs is driven by the integra-

tion purpose and conceptual relationship of the two DSMLs

(e.g., merge, refinement, alternative; see, e.g., [15]). For

the purpose of model-to-model (M2M) transformations—

regardless of the composition method used and the form

of the produced output model—rule-based transformation

languages are commonly employed: they are standard tool

supported (e.g., Epsilon Transformation Language, ETL)

and are loosely based on a common specification (i.e., MOF

Query/View/Transformation, QVT). With these transforma-

tion languages, an M2M transformation is described by a set

of declarative rules with optional imperative statements.

Testing the phase of the core language model integra-

tion is concerned with two software artifacts: (1) the trans-

formation statements and (2) the composed output model.

Testing the transformation language for syntactical correct-

ness is tool supported, for instance, in the corresponding

Eclipse-based ETL editor by providing syntax and error

highlighting. Functional testing of transformation rules can

be performed, for example, by providing test models and by

predicting the expected outcome (specification- and model-

based testing [16]).

To discuss the requirements of this testing phase, we

look at an exemplary testing technique for M2M transfor-

mations based on model verification. By inspecting the

applied transformation statements (Epsilon-based), a set of

constraint expressions (defined via the Epsilon Validation

Language, EVL [17]) are derived which are then evaluated

in the context of the output language model of the composed

DSML. With this, we want to establish whether the gener-

ated output model complies with the applied transformation

rules.

To give an example, we illustrate the composition of

two DSMLs for the generation of a new integrated DSML.

The first source DSML models system audits (referred to

as DSML A, hereafter) by providing abstractions for audit

events and audit rules. The second input DSML (DSML B,

hereafter) allows for modeling generic state machines. The

example combines the two DSMLs into a composed DSML

C capable of modeling a reactive distributed system with au-

diting support. Figure 3 illustrates the composition of these

two DSMLs (DSML A and B, respectively) into the target

DSML C via metamodel element merges. The elements Au-

ditEvent and Event from DSMLs A and B are merged into

the composed element AuditEvent’ in the target DSML C

(for more details see [18]). The newly generated element

in the target DSML represents the union of all properties

and features coming from both elements of the two source

DSMLs. Figure 3 shows also the recording of transforma-

tion traces by associating corresponding merged source and

target elements (via a dedicated composition trace model;

see [18]).

AuditEvent'

DSML C

AuditEvent

DSML A

Event

DSML B

«merge» «merge»
:CompositionLink:CompositionLink

target target

source source

Figure 3: DSML composition via element merges [18].

Listing 1 shows an Epsilon Comparison Language

(ECL [17]) statement which checks for the correspondent

input elements to be merged (DSML A = EventSystem;

DSML B = StateMachine). We compare the two names

of the elements from both metamodels of DSMLs A and B

and, if these names match the compare clause, the dedi-

cated merge rule is invoked (shown in Listing 2).

Listing 1: Comparison of input elements to be merged.

1 rule Event2AuditEvent

2 match l : EventSystem!EClass

3 with r : StateMachine!EClass {

4 compare : l.name = "AuditEvent" and r.name = "Event"

5 }
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Listing 2 merges the elements identified by the former

ECL rule into a new EClass (because we base our de-

velopments on the Ecore metamodel) of DSML C (named

EventSystemStateMachine). As can be seen in List-

ing 2, the merged element of the composed DSML C is

named AuditEvent’ and unions all properties and meth-

ods (eStructuralFeatures) as well as all inheritance re-

lationships (eSuperTypes) from the source DSMLs.

Listing 2: EML merge rule for matched elements.

1 rule MergeAuditEvent

2 merge l : EventSystem!EClass

3 with r : StateMachine!EClass

4 into t : EventSystemStateMachine!EClass {

5 t.name = "AuditEvent'";

6 t.eStructuralFeatures ::= l.eStructuralFeatures + r.eStructuralFeatures;

7 t.eSuperTypes ::= l.eSuperTypes + r.eSuperTypes;

8 }

While executing the transformation process (compari-

son, transformation, merge), traces are recorded via a com-

position trace model (not displayed; for details see [18]).

We use these traces to automatically generate EVL-based

constraint expressions which verify the model transforma-

tion. We adopted EVL because it supports inter-model con-

sistency checks [17]. Hence, we can base the evaluation

of the correct merge behavior in the context of the output

model (the composed DSML) on guards formulated for the

two input models (the DSMLs to be merged).

Listing 3 shows the Epsilon Generation Language

(EGL [17]) code which is used to automatically create EVL

statements from the transformation traces. Therein, it is

looped over the stored transformation traces (paired links

of source and target elements; line 1). In our example (see

Figure 3) the name of the merged source and target elements

differ. Thus, we check if target and source names of the

paired object links in the transformation trace do not match

(line 2). If so, the corresponding EVL validation constraint

is generated (saved as variable evl; lines 4–12) and printed

to the Eclipse console (line 13).

Listing 3: EGL snippet for the creation of EVL constraints.

1 for (link in links) {

2 if (link.source.name <> link.target.name) {

3 if (targets->exists(t | t == link.target) == false) {

4 var evl = 'context EventSystemStateMachine!EPackage {\n' +

5 'constraint Verify' + link.target.name + ' {\n' +

6 'guard : ';

7 for (link in links->select(l | l.target == link.target)) {

8 evl = evl + 'EventSystem!EClass.all->exists(c | c.name = "' + link.source.name +

'") and\n';

9 }

10 evl = evl.substring(0, evl.length - 5) + '\n';

11 evl = evl + 'check : self.eClassifiers->exists(c | c.name = "' + link.target.name +

'")\n' +

12 'message : "In the composed DSML there exist no merged classifier named ' +

link.target.name + '!"\n';

13 evl.print();

14 }

15 targets.add(link.target);

16 }

17 }

The so-generated EVL constraint is shown in List-

ing 4. As the DSML composition is based on element

merges, we check for the existence of the elements named

AuditEvent and Event (lines 3–4) in the corresponding

DSMLs A and B (EventSystem and StateMachine). If

the guard condition is satisfied, the check clause (line 5)

is invoked. A successful merge implies the existence of

an element named AuditEvent’ in the target DSML C

(EventSystemStateMachine); otherwise a warning mes-

sage is printed to the console. The EGL code in Listing 3

could be extended to generate additional EVL constraints

for validating the existence of all merged properties, meth-

ods, and inheritance relationships (see Listing 2) from the

input DSMLs in the metamodel of the target DSML.

Listing 4: EVL constraint validating the metamodel merge.

1 context EventSystemStateMachine!EPackage {

2 constraint VerifyAuditEvent {

3 guard : EventSystem!EClass.all->exists(c | c.name = "AuditEvent") and

4 StateMachine!EClass.all->exists(c | c.name = "Event")

5 check : self.eClassifiers->exists(c | c.name = "AuditEvent'")

6 message : "In the composed DSML there exist no merged classifier named AuditEvent'!"

7 }

8 }

3.2 Testing Language-Model-Constraint Composition

The core language model of a DSML may not capture all

restrictions which apply to the DSML. For the additional

definition of semantics, constraints accompany a DSML’s

metamodel. These constraints can be expressed in various

forms, for instance, via explicit expressions, via code anno-

tations, or via constraining model transformations [13]. At

the time of DSML composition, language model constraints

must be adapted accordingly: Constraints can be rendered

more restrictive, they can be declared as refinements or as

extensions to existing constraints, or they can establish ex-

plicit and navigable links between metamodels [10]. The

Object Constraint Language (OCL [19]) is commonly em-

ployed to describe explicit expressions (e.g., invariant con-

straints) on MOF/UML models.

We extend the example from the former Section 3.1

where a metaelement merge is applied for composing

DSML A (AuditEvent element) and B (Event element)

into DSML C (AuditEvent’ element). We assume that

both elements of the two input DSMLs are constrained by

the OCL expressions defined in Listing 5. In case of an Au-

ditEvent (from DSML A), a signal containing audit infor-

mation is published for subscribed consumers to be received

and processed (for more details see [20]). The first invariant

constraint in Listing 5 requests that the data of the published

signal must not be empty (lines 1–2). The second constraint

concerns the Event element of DSML B and states that its

name must be set (lines 4–5). The merge of the two DSMLs

(as described in Section 3.1) implies an OCL refinement as

shown in the third constraint in Listing 5 (lines 7–9). In

essence, the metamodel merge requires that both individual

constraints are combined (i.e., the constraint is more restric-

tive) and are always true for the AuditEvent’ element.

Listing 5: Language model OCL expression refinement.

1 context AuditEvent inv:

2 self.publish->forAll(signal | signal.data->notEmpty())

3

4 context Event inv:

5 self.name->notEmpty()

6

7 context AuditEvent' inv:

8 self.publish->forAll(signal | signal.data->notEmpty()) and

9 self.name->notEmpty()

For testing the refined language model constraints, we

use a variant of a regression test. Regression tests are used
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to validate modified software parts and to ensure that no

new errors are introduced into previously tested code—a

technique frequently used during maintenance of evolving

software [21]. As we assume that the constraints from the

two input DSMLs are already tested (see Section 1), these

constraints are considered free of errors when being evalu-

ated over instance models of DSMLs A and B, respectively.

We can now test the refined constraint for DSML C by pro-

viding an instance model of the composed DSML and by

predicting the return value of the evaluated OCL statement.

The test-case oracle must match the combined return val-

ues of the individual constraints and the evaluation must

not abort due to any syntax errors. As invariant conditions

must always hold for the system being modeled [19], the

predicted return value must always be true when evaluat-

ing a composed DSML instance model. If a tested con-

straint returns false or aborts, either the model itself or the

evaluated constraint expression are erroneous. But as test-

ing the DSML core language model composition precedes

constraint composition tests, failure in the language model

composition and instantiation can be excluded.

By allowing a false return value when evaluating a

constraint, the invariant condition’s return value in our ex-

ample must match the values given in Table 1 (due to the

logical conjunction of the individual constraints in the com-

posed OCL statement; line 8 in Listing 5).

Table 1: Return-value matrix for negative tests.

DSML A constraint true true false false

DSML B constraint true false true false

DSML C constraint true false false false

This setup can be used for expressing negative tests

[11] on the composed language-model constraints. Figure

4 shows an excerpt from an exemplary, non-conforming in-

stance model of DSML C. As the DSML C is composed

via a full merge of DSMLs A and B (for details see [18]),

their OCL constraints can be evaluated in the context of the

displayed instance model. The evaluation of the constraint

from DSML A (line 2 in Listing 5) returns false because

the data attribute of the Signal occurrence is empty. The

constraint from DSML B (line 5) returns true as the object

of type AuditEvent’ has a non-empty name attribute. Fi-

nally, evaluating the constraint from DSML C (lines 8–9)

will result in a false return value (because of the logical

conjunction of the two first constraints). Therefore, the neg-

ative test succeeds as all return values match the truth table

(column 4 in Table 1).

: AuditEvent': Signal

data : String = "" publish

0..*

name : String = "CheckApp"

Figure 4: Non-conforming instance model of DSML C.

3.3 Testing Concrete-Syntax Composition

The concrete syntax definition of a DSML visualizes the

abstract elements coming from the core language model for

the end-user to be able to interact with the language [12]. It

so visualizes the interface presented to the user. A DSML

can have multiple concrete syntaxes and these can have vari-

ous formats, for instance, text/table-based or graphical [14].

A MOF/UML-based DSML extends the UML symbol

vocabulary with domain-specific visual notations (either via

native methods defined in the UML specification [5] or via

custom visual extensions [14]). Here, we consider only di-

agrammatic concrete syntaxes as the most widely used no-

tational option for MOF/UML-based DSMLs (as their pri-

mary application area is the creation of models [5]).

As an example, we introduce a testing technique for

visual DSML concrete-syntax composition which is agnos-

tic about the DSML integration method used (e.g., syntax

extension or integration; see [10]). We present a testing

method based on the GUI which suits MOF/UML-based

DSMLs and works with any diagrammatic model editor.

In this context, we use an image-based testing approach to

check for the symbol composition of two integrated con-

crete syntaxes of DSMLs. Hence, we test for the visual

application of symbols coming from two different DSMLs

and their usage in an integrated model.

For our example, we utilize a small symbol set taken

from two existing MOF/UML-based DSMLs. These two

DSMLs are both defined via UML profiles with accom-

panying stereotype and icon specifications (see the sym-

bols on the right-hand side of Figure 5). The first DSML

(«profile» SOF) supports the modeling of confidentiality

and integrity properties for important objects that are passed

between different participants in business processes [22].

The second DSML («profile» SecurityAudit) is con-

cerned with the modeling of system audits and was already

introduced in Section 3.1 (DSML A [20]).

These two DSMLs are integrated in a way that the

symbols from both DSMLs can be used in combination (for

details see [10]). If we extend a UML model with prop-

erties from these DSMLs, we want to test if the concrete

syntax represents the defined specifications. For instance,

in the UML activity diagram on the left-hand side of Figure

5, the action Check application form requests features from

both DSMLs (a secure input pin and object flow as well as

audit support); i.e., both profiles must be applied in order

for the integration to be fulfilled. These demands must be

reflected via the symbols defined in each individual DSML

(i.e., the key and AES symbols; see Figure 5). If any of these

symbols is missing, the integration of the concrete syntax

will be considered incorrect because it does not mirror the

concrete-syntax specification of the composed DSML.

To test for the occurrence of symbol sets coming from

different DSMLs, we deploy an image-based GUI testing

technique. The output of the test is (1) a boolean flag if all

requested DSML symbols are applied in the diagram and

(2) a model in which the occurrences of the symbols found
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SOF
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SecurityAudit

AES

Figure 5: Image-based concrete syntax testing.

are marked (see the UML activity diagram in Figure 5). For

this purpose, we utilize a GUI test automation tool named

Ranorex [23] which is based on the .NET framework and

which provides, amongst others, image-based testing capa-

bilities. Hence, our testing technique is independent from

any modeling tool support and works with any model editor

(i.e., we do not need to trace tool- and vendor-specific APIs

for object recognition and the programmatic identification

of user interface elements).

Listing 6 shows an excerpt from the C# code to iden-

tify the key and AES symbols in a given model. First, we

save a snapshot of the diagram representation under test

taken from the employed modeling tool (lines 1–2). Then,

we check whether the two symbols from Figure 5 are con-

tained in this snapshot (lines 3–4). If the image compari-

son method does not find the right number of symbol oc-

currences, an error is logged in the test report (lines 7–8).

Additionally, lines 10–19 draw a dotted ellipse around all

found occurrences of the two symbols and append the im-

age (Figure 5) to the test report. In Listing 6, we only check

whether both symbols are at least used once in the diagram

(lines 7–8). This test can, of course, be extended to more so-

phisticated checks (e.g., only an even number of key sym-

bols is allowed or, when multi-model tests are employed,

whether the audit-specific elements are tagged in all model

representations, for instance, in a UML activity and corre-

sponding class diagram).

Listing 6: C# snippet for integrated GUI testing in Ranorex.

1 var elem = repo.SecureCreditAppExampleWindows.ElementModel;

2 var model = elem.CaptureCompressedImage().Image;

3 var key_matches = Imaging.Find(model, ElementModel_key1);

4 var aes_matches = Imaging.Find(model, ElementModel_aes1);

5 var matches = key_matches; matches.AddRange(aes_matches);

6

7 if (key_matches.Count == 0 || aes_matches.Count == 0)

8 Report.Log(ReportLevel.Error, "The model does not contain both integrated symbols!");

9

10 using (var g = Graphics.FromImage(model)) {

11 var pen = new Pen(Color.Black, 3);

12 pen.DashPattern = new float[]{3.5F, 1.5F};

13 foreach (var match in matches) {

14 var rect = new Rectangle(match.Location, match.Size);

15 rect.Inflate(8, 8);

16 g.DrawEllipse(pen, rect);

17 }

18 }

19 Report.LogData(ReportLevel.Info, "FoundSymbols", model);

3.4 Testing Behavior-Specification Composition

The behavior specification of a DSML defines its dynamic

characteristics at runtime. It can be defined in multiple

ways, for instance, via control-flow diagrams (e.g., UML

state machines), via process definitions (e.g., WS-BPEL),

or via source code statements [10]. For the integration of

DSMLs, the behavior specification is especially important

for establishing a composition order between the individ-

ual DSMLs when deployed in combination. The behavior

composition is used to define a timely order of event occur-

rences for properties of the integrated DSML.

Figure 6 shows an exemplary behavior composition

of an integrated MOF/UML-based DSML via a UML state

machine. The two merged DSMLs are defined via UML

profiles and are already known: (1) the «SOF» profile (with

a SOA-based extension: profile «SOF:Services»; see [22]

for details) and (2) the «SecurityAudit» profile (see [20]

for details).

SOF::Services+SecurityAudit

«secure» tagged

«AuditEventSource»
tagged

enforce constraints
(from «SOF» and
«SOF::Services»)

enforce «SOF»
constraints

enforce constraints
(from «SecurityAudit»)

execute audit (from «SecurityAudit»)

audit
event

[«AuditRule» true]

enforce «AuditRule»

do / evaluate all «Condition»

process secure object flows (from «SOF»)

[incoming
object]

[outgoing
object]

receive object

encrypt data

decrypt data

send object

publish signal

enforce «SOF::Services»
constraints

invoke
notificationAction

[false]

Figure 6: Integrated DSML behavior specification [10].

Here, we discuss a model-based testing technique for

validating the composition order for the integrated DSML

as defined in Figure 6. For this purpose, we utilize the

UML Testing Profile (UTP [24]) for defining test aspects.

We have opted for the UTP because it seamlessly inte-

grates with our DSML specifications (all are UML profiles).

Furthermore, the UTP is eligible to map models onto exe-

cutable testing platforms (e.g., JUnit) [24].

Figure 7 shows a class diagram of relevant elements of

the composed DSML under test. For our example, we con-

sider a software subsystem managing credit applications of

bank customers (see also Figure 5) which is integrated into a

larger company-wide ERP system (packages CreditSys-

tem and ERP-System). The credit system makes use of a

SecurityLayer package for data confidentiality function-

ality. Interactions with the system are stored in an audit

trail (package «AuditSystem») which is designed for dis-

tributed event-based systems. Our example consists of one

test case (see Figure 9) which is used to check the correct-

ness of the composition order as specified in Figure 6: After

receiving a secured object flow, data are decrypted and pro-

cessed; then an audit event is triggered.

Figure 8 shows the CreditApplicationTest pack-

age which contains all elements necessary to fully spec-

ify our test. We define emulator components for the

test simulation as well as one test case. The test case

(incompleteAppForm) checks the system behavior of han-

dling incomplete credit application forms (this event should
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application : CreditApplication
timestamp : TimeExpression
appComplete : Boolean
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AppStatus
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setCreditApp(application : CreditApplication)
checkApplicationForm() : Boolean

ApplicationSystem

ERP-System

SecurityLayer

«import»

«interface»
IBusinessProcessManagement

«interface»
IDataConfidentiality

decrypt(data, key) : Object

Figure 7: Elements of the composed DSML to be tested.

be logged; see Figure 7). We use this example to demon-

strate the validation of the DSML composition order.

CreditApplicationTest

«import»
CreditSystem

«testComponent»
DataConfidentialityEmulator

IDataConfidentiality

«testComponent»
AuditTrailEmulator

IAuditTrail

«testCase» incompleteAppForm() : Verdict 

«testContext»
CreditAppliationTestSet

verdict : Verdict

IBusinessProcessManagement

IApplicationSystem

«testComponent»
BusinessProcessManagementEmulator

Figure 8: The CreditApplicationTest package.

The test case (Figure 9) is specified in terms of in-

teractions between the test components (Figure 8). The

system under test (SUT; ApplicationSystem) is stimu-

lated via its public interface operations and signals by the

test components. For testing the right composition order,

the test case incompleteAppForm (Figure 9) must pass

successfully. As the security-related functionality is inher-

ently called at the time of receiving a credit application

(setCreditApp(app)), the audited method checkAppli-

cationForm() must be invoked afterwards. Although we

do not check for successful audit logging, these two mes-

sage sequences are sufficient for testing the composition or-

der.

sd incompleteAppForm

setCreditApp(app)
decrypt(app, key)

decrypt : Object

checkApplicationForm()

checkApplicationForm : Boolean
AppStatus(application, timestamp, appComplete)

[ AppStatus::appComplete == false ]

log()
«validationAction»

pass

: BusinessProcess
ManagementEmulator

: DataConfidentiality
Emulator

«sut»
: ApplicationSystem

: AuditTrailEmulator

Figure 9: Test case for the DSML composition order.

3.5 Testing Platform-Integration Composition

The platform integration phase maps the various DSML ar-

tifacts to a dedicated software platform. This is achieved

by defining, for instance, M2T transformations to convert a

model into executable software artifacts (e.g., Java source

code) or configuration specifications (e.g., web-service def-

initions) [14]. Approaches for the platform implementation

range from pipelining, piggybacking, language extension,

to front-end integration (see, e.g., [10]).

In MDD, M2T transformations are commonly applied

using generator templates [25]. A composition of two

DSMLs requires the adaption of these templates. In this

section, we discuss a test technique applicable for com-

posed M2T generator templates presented in [18]. Therein,

M2T templates are considered as first-class models and, by

reusing transformation traces, the approach enables syntac-

tical template rewriting (see Figure 10). The representation

of the M2T generator templates as models allows for an

M2M transformation of these models (higher-order trans-

formation, HOT [26]). The higher-order rewriting of M2T

templates facilitates a platform integration composition via

generator adaptations of DSMLs A and B by allowing for a

certain level of reuse of each DSML’s platform artifacts.
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Figure 10: M2T template rewriting for DSML integration.

Listing 7 shows an example code snippet of an EGL

template (from the system audit DSML introduced in Sec-

tion 3.1; see [20]). By considering the composition scenario

from Figure 3, the iterator variable ae must be modified to

be of type AuditEvent’ (line 1).

Listing 7: EGL code snippet with typed iterator.

1 [% for (ae : AuditEvent in EventSystem.auditEvents) {

2 for (signal in ae.publish) {

3 out.println('private Signal ' + signal.name + ';');

4 }

5 } %]

Rewriting the template shown in Listing 7 is achieved

by creating a model representation of the EGL code and

by applying M2M transformations (Listing 8). These ETL-

based higher-order rewrite rules are automatically generated

from the composition traces available for the composed lan-

guage model (see Figure 10 and [18]). Listing 8 shows the

so-created rewrite rule for altering the type properties of

ModelElementType instances (from AuditEvent to Au-

ditEvent’).

Listing 8: ETL higher-order rewrite rule.

1 rule renameAuditEvent2AuditEvent'

2 transform s : eglIn!ModelElementType

3 to t : eglOut!ModelElementType

4 extends Type {

5 guard : s.type == "AuditEvent"

6 t.type = "AuditEvent'";

7 }

Applying this rule to the EGL model results in a

rewritten EGL model which is corrected for the changed
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type name. Line 3 of Listing 9 shows that the type of the

iterator variable named ae was effectively changed to Au-

ditEvent’.

Listing 9: Rewritten EGL model representation.

1 <statements xsi:type="dom:ForStatement">

2 <iterator name="ae">

3 <type xsi:type="dom:ModelElementType" type="AuditEvent'"/>

4 </iterator>

5 <iterated xsi:type="dom:PropertyCallExpression" property="auditEvents">

6 <target xsi:type="dom:NameExpression" name="EventSystem"/>

7 </iterated>

To validate the rewriting of EGL models, we apply

EUnit tests [17] to the process of ETL model transforma-

tions (Listing 10). After an EGL model rewrite (line 3), the

output model (eglOut) is tested against the expected out-

put model (eglExp). If any inconsistencies emerged from

the model transformation, the test would fail signalling the

error message shown in line 4.

Listing 10: Testing rewritten EGL model (EUnit).

1 @test

2 operation testTemplateRewrite() {

3 runTarget("templateRewrite");

4 assertEqualModels("Rewritten EGL model differs from expected!", "eglExp", "eglOut");

5 }

3.6 Testing Model- and System-Level Conformance

In this section, we exemplify the system testing of model-

and platform-level compliance of security properties for a

complete MDD transformation process. Thus, we rely on

consistency checks between output artifacts at the modeling

and at the system levels (functional testing [11]) rather than

assessing every single DSML composition step.

Figure 11 shows the involved MDD-related artifacts

and transformations of our example. At the modeling level,

we compose two DSMLs to specify secure object flows for

SOAs (packages SecureObjectFlows and Services; for

more details see [22]). We provide M2M transformations

to generate an intermediate object model (IOM) represen-

tation out of the merged SOF::Services package. The

IOM structure can be mapped to multiple host platforms via

M2T transformations. For our example, we generate web-

service specification documents (i.e., WS-BPEL, WSDL,

WS-SecurityPolicy).

SOF::Services

«merge» «merge»

Services
SecureObject

Flows

UML diagrams Intermedia object model Web-services

WS-SecurityPolicy

WSDL

WS-BPEL
M2M

transformation

M2T

transformation

... ...

... ...

... ...

Figure 11: MDD artifacts and transformations.

Figure 12 shows the equivalences between concepts of

the XMI-represented UML diagrams at the modeling level

and the XML-expressed WS-* specifications at the system

level. In this excerpt, the CallOperationAction sub-

mitApplication is mapped to a WSDL operation (a).

The argument content represents an object of type string

which should be secured. In the WS-* specification, this

content element is identified in a SOAP message via an

XPath expression (b). In the UML activity diagram, the

content element is tagged via a stereotype (SOF:secure;

c). This stereotype specifies an integrityAlgorithm

attribute referencing a class which implements a specific

cryptographic hash function (here: Sha1; d). The WS-

SecurityPolicy standard [27] groups security-related prop-

erties into algorithm suites (here: Basic192). An attribute

of the hash function element in the UML activity diagram

references this algorithm suite (e) and it is mapped to the

WS-* specification (f). The policy, which contains the

XPath expression identifying the elements to be signed and

the security-related algorithm suite, is referenced from the

input object of the corresponding operation in the WS-*

specification (g). In this way, security-enhanced UML dia-

grams at the modeling level are turned into WS-* specifica-

tions at the system level which can be deployed in a runtime

engine (e.g., Apache ODE).

<node xmi:type="uml:CallOperationAction" xmi:id="4528" name="submitApplication">

  <argument name="content" visibility="public" xmi:id="1667">

    <type xmi:type="uml:PrimitiveType" href="#String"/>

  </argument>

</node>

[...]

<packagedElement xmi:type="uml:Class" xmi:id="2053" name="Sha1">

  <ownedAttribute xmi:id="3200" type="2789" association="3198"/>

</packagedElement>

[...]

<packagedElement xmi:id="2789" xmi:type="uml:Class" name="Basic192"/>

[...]

<SOF:secure xmi:id="PxGBg" integrityAlgorithm="2053" base_ObjectNode="1667"/>

<wsp:Policy wsu:Id="sp_submitApplication_input_content">

  <sp:SignedElements>

    <sp:XPath>/Envelope/Body//content</sp:XPath>

  </sp:SignedElements>

[...]

  <sp:AlgorithmSuite>

    <sp:Basic192/>

  </sp:AlgorithmSuite>

</wsp:Policy>

[...]

<operation name="submitApplication">

  <input name="submitApplication_input">

    <wsp:PolicyReference URI="#sp_submitApplication_input_content"/>

  </input>

</operation>

XMI WS-*

a

b

c

de
f

g

Figure 12: Equivalences between XMI and WS-* concepts.

Listing 11 shows an XQuery [28] snippet to test the

output XML documents for their conformance. First, we

loop over all «secure» stereotypes in the UML diagram

(line 1) and declare a couple of helper variables. In lines

2–4, the «secure» tagged argument object node with its

applied integrity algorithm and referenced algorithm suite

are stored. Lines 5–6 find the corresponding WSDL op-

eration and Policy nodes according to the UML Cal-

lOperationAction. We define two test cases (lines 7–8):

(1) The XPath expression in the WS-* specification must

identify the correct SOAP element by matching the name

of the UML «secure» stereotyped object node; (2) the se-

curity property of the «secure» stereotyped object node

must be enforced via the WS-* algorithm suite (i.e., de-

clared algorithm suites in both XML definitions must be

identical). The tests pass if the security definitions stated in

the XMI and WS-* specifications conform to each other. If

the tests fail, the transformation of security properties from

the modeling- to the system-level is signalled incorrect.

Listing 11: XQuery snippet for XML conformance testing.

1 for $uml_sec in doc("uml.xmi")//SOF:secure

2 let $uml_arg := doc("uml.xmi")//node/argument[@xmi:id eq $uml_sec/@base_ObjectNode],

3 $uml_int := doc("uml.xmi")//packagedElement[@xmi:id eq $uml_sec/@integrityAlgorithm

],

4 $uml_alg := doc("uml.xmi")//packagedElement[@xmi:id eq $uml_int/ownedAttribute/

@type],

5 $ws_op := doc("ws.xml")//operation[@name eq $uml_arg/../@name],

6 $ws_pol := doc("ws.xml")//wsp:Policy[@wsu:Id eq substring($ws_op/input/wsp:

PolicyReference/@URI, 2)],

7 $test_path := ends-with($ws_pol/sp:SignedElements/sp:XPath, $uml_arg/@name),

8 $test_alg := $uml_alg/@name eq string(node-name($ws_pol/sp:AlgorithmSuite/*))

9 return if ($test_path = true() and $test_alg = true())

10 then concat("Test SOF:secure[@id=", $uml_sec/@xmi:id, "] passed!")

11 else concat("Test SOF:secure[@id=", $uml_sec/@xmi:id, "] failed!")
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4 Discussion

The testing approach for language integration presented

in this paper explicitly targets MOF/UML-based DSMLs.

Nevertheless, the overall testing process for DSML inte-

gration applies to non-MOF/UML-based DSMLs, as well.

We concentrate on testing DSML integration using dynamic

techniques to validate their composition (inputs, outputs,

transformations).

By providing testing techniques for the different

phases of the MOF/UML-based DSML integration process,

we contribute to preventing common DSML integration is-

sues pertaining to constraint adaptation (Section 3.2), sym-

bol composition (Section 3.3), composition order (Section

3.4), and generator adaptation (Section 3.5; for details see

[10]).

All software prototypes—except the image-based

concrete-syntax testing with Ranorex—are implemented

using the Eclipse Modeling Framework, such as, the Ecore

metamodel, the Epsilon language family, or the MDT OCL

console. Furthermore, testing techniques can be transferred

to other technologies, for instance, different metamodel

implementations, transformation and constraint languages,

modeling tools, or host-platform representations.

All DSMLs used for the composition test examples

were developed by the author of this paper. Although the

DSMLs were not built for this specific purpose, a methodi-

cal and technological bias may exist. This might have also

influenced the selection of testing techniques.

5 Related Work

We identified research related to each testing technique pre-

sented above, falling into the categories of model verifica-

tion, regression and GUI testing as well as model-based and

transformation testing.

Model verification. Approaches to model verification re-

semble each other in the way models are translated into the

native language of some model verification tool. For one,

[29] presents a framework supporting formal verification

of UML class, state, and communication diagrams. UML

models are transformed into a formal specification language

which supports model checking using linear temporal logic.

Our model verification differs from these approaches as the

objective is not to verify any correctness properties of finite-

state systems, but to validate the correspondence of an out-

put model with given composition specifications.

Regression testing. Our approach for testing the evolved

language model constraints in the process of DSML com-

position is a variant of regression testing [21]. It differs

from related work by testing OCL refinements at the time

of integrating DSMLs.

GUI testing. In this paper, we employ image-based test-

ing of the UML concrete syntax. This technique facilitates

model evolution as it does not rely on object recognition

strategies for identifying user interface elements [23].

Model-based testing. The UTP is frequently utilized for

model-based testing. One related approach [30] presents a

technique to automatically generate UTP models from sys-

tems described in the UML via QVT transformations. In

a final step, these UTP models are transformed into JUnit

tests. This generative approach can be combined with ours

by running the QVT transformations for creating UTP mod-

els against the DSML behavior models under composition.

Model transformation testing. Various approaches ex-

ist to test model transformations including directly testing

executable output models/source code, defining pre- and

post-conditions for the transformation, establishing model-

transformation contracts, and comparing generated with ex-

pected output models/files [31]. As for M2T transforma-

tions, testing the created artifacts (e.g., source code) is com-

monly employed via platform-specific frameworks (e.g.,

JUnit). Our approach differs from these by processing

model representations of generator templates to test M2T

transformations.

6 Conclusion

This paper presents an approach towards a definition of

a testing process for each individual step of composing

DSML artifacts. We discuss different methods and provide

examples of integration and system testing for security-

related, MOF/UML-based DSMLs. We base our work on

existing DSMLs and so contribute to understand testing re-

quirements for model-based software evolution in general

as well as for DSML integration in particular.

As future work, we will refine and extend the pre-

sented techniques, to cover, for instance, platform-specific

behavior tests via transformations from UTP models into

JUnit code artifacts (to name just one example). We will

review additional test techniques for inclusion to cover fur-

ther DSML integration issues. Moreover, we will evaluate

how our software prototypes can be transferred to alterna-

tive software technologies and platforms.
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Abstract—In this paper, we present an approach for the
scenario-based testing of the core language models of domain-
specific modeling languages (DSML). The core language model is
a crucial artifact in DSML development, because it captures all
relevant domain abstractions and specifies the relations between
these abstractions. In software engineering, scenarios are used
to explore and to define (actual or intended) system behavior
as well as to specify user requirements. The different steps
in a requirements-level scenario can then be refined through
detailed scenarios. In our approach, we use scenarios as a primary
design artifact. Non-executable, human-understandable scenario
descriptions can be refined into executable test scenarios. To
demonstrate the applicability of our approach, we implemented a
scenario-based testing framework based on the Eclipse Modeling
Framework (EMF) and the Epsilon model-management toolkit.

Keywords—Domain-specific modeling, scenario-based testing,
language engineering, metamodel testing

I. INTRODUCTION

In model-driven software development (see, e.g., [1]–[3]),
a domain-specific modeling language (DSML) is a tailor-made
software language for a specific problem domain. DSMLs
are used as an abstraction and communication layer targeting
software engineers and domain experts. Here, a domain expert
is a human user who is a professional in a particular domain,
such as a stock analyst in the investment banking domain
or a physician in the health-care domain. DSMLs are built
so that domain experts can understand and phrase domain-
specific statements that can be processed by an information
system. Thus, DSMLs aim at increasing the number of people
who can actively participate in the specification, configuration,
and management of software-based systems (see, e.g., [2]).
However, in order to realize the benefits of DSMLs, we must
ensure that the DSML is correctly implemented and behaves
as specified. Moreover, because DSMLs evolve over time (see,
e.g., [4]), we must be able to efficiently test the evolving
language artifacts such as the core language model.

The DSML core language model captures all relevant
domain abstractions and specifies the relations between these
abstractions (see, e.g., [5]). Changes of the core language
model often result from the iterative and collaborative DSML
development process. Another example for DSML changes
is the integration of two or more DSMLs (and their core
language models) into a new DSML. In such an integration

procedure, the derived DSML remains dependent on the source
DSMLs (e.g., in terms of model transformations) because they
represent system viewpoints or optional domain features such
as security concerns (see [6] for some background).

In principle, any change to the core language model may
result in defects. Because the core language model is a central
DSML artifact and because many other artifacts depend on the
core language model (such as model-transformation definitions
or model constraints; see, e.g., [4], [6]) an undetected error
in the core language model may have severe effects on all
corresponding software artifacts. As many of such dependent
artifacts are created late in the DSML development process
(e.g., during platform integration, see, e.g., [5]), the cost-
escalation factor of such defects can be considered significant.

In this context, the core language model of a DSML is
defined as a metamodel compliant with, e.g., the Meta Object
Facility (MOF) or Ecore. Recently, metamodel-testing ap-
proaches have been presented (see, e.g., [7]–[9]) to assist in the
systematic development of DSMLs and to minimize the risk
of late or post-release defects. While such approaches cover
important metamodel-testing tasks, they fall short with respect
to providing a testing procedure for evolving metamodels.
Most importantly, existing approaches consider a metamodel
as a given artifact from (and for) which instance models,
test models, or test oracles are generated (and provided).
Therefore, existing approaches usually fail in making changed
metamodels testable against unchanged domain requirements.

In the context of software (systems) engineering, we often
find the situation that requirements as well as corresponding
solutions are best defined at a human-understandable, non-
executable level of abstraction. In contrast to that, the software-
based solution is designed and implemented at an executable
level, using frameworks and programming languages. This re-
sults in a semantic gap between the human-level requirements
and solution descriptions on the one hand, and the technical
platform that is used to implement the respective software
services on the other. The wider this semantic gap, the more
difficult is the task to correctly specify and implement a system
that behaves as desired by its human users. Scenarios are a
natural means to describe (intended) system behavior both as
a structured textual requirements definition (see, e.g., [10]) and
as a source-code implementation for a software test (see, e.g.,
[11]–[13]).
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To complement existing testing processes, we propose
a scenario-driven metamodel-testing approach. In our work,
scenarios (see, e.g, [11], [12], [14], [15]) are used to define
domain requirements. The initial scenario descriptions can
be defined at an abstract level and are specified by (or in
collaboration with) domain experts (e.g., via structured text
descriptions or UML use case diagrams). In a subsequent step,
the requirements-level scenarios are refined and serve as input
for the derivation of executable scenario test scripts which
closely resemble the narrative structure of the scenarios at
the requirements level. The executable scenario specifications
are then used to test the evolving core language model for
compliance with the corresponding domain requirements. In
our approach, the specification and execution of the scenario-
based tests of core language models are supported by a testing
framework based on the Eclipse Modeling Framework (EMF)
and the Epsilon model-management toolkit. The benefits of our
approach are three-fold: First, it provides support for testing
of changing core language models in different phases of a
DSML life-cycle. Second, it facilitates the early establishment
of an initial and requirements-based test library. Third, the ex-
ecutable scenario scripts provide an executable documentation
of critical application scenarios.

The remainder is structured as follows: In Section II,
we provide an overview of the drivers for language-model
evolution and a synthesis of metamodel-testing approaches.
Against the background on scenario-based testing in Section
III, we lay out the notion of scenario-based test procedures
and present the design of our prototypical testing framework
in Section IV. Subsequently, we demonstrate our approach and
prototype via a DSML integration example (see Section V).
Finally, we discuss related work in Section VI and provide a
concluding outlook in Section VII.

II. TESTING EVOLVING CORE LANGUAGE MODELS

The language model of a DSML consists of a core language
model to define its abstract syntax, constraint specifications to
define additional static semantics, and behavior specifications
for dynamic semantics (see, e.g., [5]). In DSML development,
the core language model is defined as a metamodel which is
specified using a metamodeling language (such as MOF or
EMF Ecore). A domain engineer derives the metamodel from
domain requirements established during a domain analysis
and from the corresponding requirements artifacts (e.g., a
variability model, a mockup language, or an existing system
implementation). In the following, such a core language model
is referred to as the Metamodel Under Test (MUT). The MUT
is subject to continued change to maintain the high coupling
between the DSML and the corresponding application domain
(see, e.g., [4]). As a result, models can be instances of the
changed MUT (MUT’ in Fig. 1) and violate the DSML’s do-
main requirements. Such requirement violations can result, for
example, from both under-constraining and over-constraining
an MUT (e.g., by tightening or loosening multiplicity con-
straints). At the same time, new domain requirements may con-
tradict pre-existing requirements (requirements inconsistency,
see, e.g., [16]).

Additionally, the step-wise and iterative development of a
DSML language model ([4], [5]) may also result in require-
ments violations. Each development phase (e.g., the definition

Fig. 1. Metamodel evolution, requirements violation, and metamodel testing.

of language-model constraints or behavior specifications) can
require changes to an initially constructed MUT. The multi-
phase procedure is often performed repeatedly, for example,
in case of changing requirements or when applying a perfec-
tive metamodel refactoring by following metamodeling best-
practices (see, e.g., [17]). Likewise, the phase of defining
the MUT itself is also split into smaller, interrelated, and
non-trivial working steps (see [5], [18], [19]), for example:
1) identifying the domain concepts and, subsequently, their
relationships using canonical naming schemes; 2) mapping the
domain onto metamodeling-language constructs including the
concept-internal design (e.g., metaclass properties), concept
partitioning (e.g., packaging, namespaces), or concept refac-
toring via auxiliary concepts (e.g., abstract metaclasses).

DSML integration enables the reuse of DSMLs by com-
posing two or more languages into an integrated DSML to
implement a new domain or to integrate domain viewpoints
(see, e.g., [18], [20]). Integration should apply to all parts
of the language model (e.g., core language model, model
constraints; see [21]) as well as model transformations (see,
e.g., [6]). When reusing and integrating DSML concepts to
meet domain requirements, the DSML engineer must address
syntactic and semantic mismatches between the source core
language models (the core language models of the DSMLs
that are to be integrated) that may cause conceptual defects
in the target model (the core language model of the new,
integrated DSML). In a coupled DSML integration, we first
identify candidate concepts in the source DSML model(s), and
then define links between the corresponding concepts in the
source and target DSML models, for instance to propagate
changes either way. If those links between source and target
DSMLs are defined via model transformations, inter-model
inconsistencies can easily emerge because of subtle changes
to transformation definitions. Moreover, after integrating two
DSMLs a domain expert must (re)validate the reused DSML
concepts according to the source-domain and target-domain
requirements. Finally, a DSML integration procedure (see [21])
resembles the characteristics of DSML development (several
iterations, multiple steps per iteration; see above).

Testing metamodels that define the abstract syntax of
DSMLs has a number of objectives (see, e.g., [22]). For a
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DSML, the requirements conformance of the corresponding
metamodel is critical. This conformance relation, however,
can only be verified by the domain experts (see [7], [22]).
Another important testing objective is assessing the specifica-
tion consistency of the interrelated metamodel specifications,
for example, consisting of a meta-metamodel instantiation and
metamodel constraints expressed using a constraint language
such as the Object Constraint Language (OCL) or the Epsilon
Validation Language (EVL). An exemplary consistency defect
is the risk of contradicting constraint expressions, such as con-
flicting invariant expressions in boundary cases (see [9]). An
inconsistency defect, however, may also hint at requirements
inconsistencies (see [16]). In the remainder, we concentrate on
the requirements-conformance objective for evolving MUTs.
Current metamodel-testing approaches address conformance
checking differently (see also Fig. 1) and exhibit limitations
concerning MUT evolution:

Modeling-space sampling: These approaches (see, e.g.,
[7], [8]) adopt techniques of model-based testing, testing of
model transformations, and model simulation (see [23]) to
generate a sample of potential MUT instantiations. Such a
sample is produced in an automated manner by traversing
the metamodel and creating metamodel instances according to
the metamodel specification and pre-defined sampling criteria
(e.g., coverage in terms of metamodel fragments, dissimilarity,
boundary cases, custom structural constraints) to find both
minimal and representative sets of instances. To verify the
conformance relation, the generated models are then reviewed
by the domain experts (see [7]) or processed via platform-
specific, application-level input/output data to be tested against
corresponding applications (see [8]). A first shortcoming with
respect to evolving MUTs is the requirement of an existing
and sufficiently specified MUT (see [9]) to generate potential
instances. This requirement is not always met in the step-
wise development of DSML models. A second barrier is
that the derived models, at the time of model generation,
cannot be considered requirements-conforming anymore. The
sampling procedure operates on the changed MUT and so risks
presenting the domain expert with a non-representative sample
for review. Third, the sampling procedures (see [7]) have to
be calibrated for an MUT to obtain both representative and
manageable samples. Finally, there is the risk of perceptual
misjudgements by the reviewers, for example, due to relatively
large sample sizes or a high similarity between sampled
models. Tool support for manual reviews is lacking, as well
(see [24]).

Metamodel-test models: A second research direction (see,
e.g., [9], [25]) is based on ideas from model simulation (see
[26]) and aims at the manual definition of potential MUT
instantiations by domain experts and DSML engineers (see
Fig. 1). Such a procedure requires a generic, proxy metamodel
from which the test models are instantiated. In practice, most
often custom defined test metamodels (TMM in [9]) and ex-
tended UML object models are used for this task. Alternatively,
the test specifications can be created as, for instance, external
code models [25]. During test execution, the test models
are bound late to the actual MUT (e.g., through just-in-time
instantiation of the metamodel or entity resolution according
to the test model details). Moreover, to limit the test-modeling
effort, groups of related test models with some variation
points can be defined (referred to as test specifications in [9]).

Test models are suitable for deriving testable requirements
specifications early. However, each test model must not only
reflect the metamodel fragment relevant to the requirement
tested, but also the context of this metamodel fragment to
represent a bindable instance of the MUT (e.g., also auxiliary
model types must be resolvable). This makes test models
vulnerable to metamodel changes which do not directly affect
the tested requirements (such as metamodel refactorings). This,
again, requires the active maintenance of test models. Finally,
establishing variation points for a test model manually (e.g.,
facing a complex multiplicity configuration) is not trivial.

Metamodel validation: A testing approach using model-
constraint expressions (e.g., defined via OCL or EVL) specifies
test cases in terms of collections of model constraints on
MUTs (e.g., specified as invariants), defined at the level of the
corresponding meta-metamodel (see [22]). The specification
of metamodel constraints requires expertise in both the meta-
modeling language and the underlying constraint language.
However, the translation of requirements (e.g., a narrative
text, a requirements catalog, or variability models) into well-
defined constraint expressions is not trivial. Nevertheless, as
the expressions are defined over the meta-metamodel instan-
tiation structure (e.g., MOF or Ecore repository viewpoint)
of the MUT, the resulting tests are widely decoupled from
details of the evolving MUTs (e.g., navigation axes between
model types, the domain of model-types). Model-constraint
expressions are typically organized according to the built-in
constructs of the specification languages (e.g., via operations,
invariants, and query blocks). While the need for structuring
of model constraints, for example, to match a certain testing
level, has been acknowledged (see [27]), existing approaches
do not consider the structure of non-executable requirements
specifications, such as semi-structured textual or diagrammatic
scenario descriptions (see, e.g., [10]). Such abstraction mis-
matches complicate the co-maintenance of the requirements
description and the corresponding model constraints.

III. SCENARIO-BASED TESTING

In software engineering, scenarios are used to specify
user needs as well as to explore and to define (actual or
intended) system behavior (see, e.g., [11]–[15]). Scenarios can
be described in different ways at various abstraction levels,
for example, via structured text, graphical models, or precise
(and formal) textual specifications. For specifying a software
system, they are typically defined using different types of
models, such as UML interaction or activity models.

The different action steps in a non-executable scenario
description can then be refined through detailed, executable
scenario tests. Detailed scenarios are used to depict the dy-
namic runtime structures of a system, for instance, to show how
a certain functionality is realized on the level of interacting
software components. Therefore, scenarios are a natural source
for behavior tests. Non-executable scenario descriptions for a
DSML can directly be defined by domain experts to serve
as an (additional) input for software engineers to implement
integration and component tests at the implementation level
(see, e.g., [28]).

As it is almost impossible to completely test a complex
software system, effective means are needed to select relevant
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tests, to express and to maintain them, and to automate test
procedures whenever possible. Scenarios can help to reduce the
risk of omitting or forgetting relevant test cases, as well as the
risk of describing important tests insufficiently. If each design-
level scenario is checked via a corresponding scenario test, a
critical test coverage of the most relevant requirements on the
MUT can be achieved. Moreover, in a thorough engineering
approach, changing domain requirements are first identified at
the scenario level (see also [11], [12]). Hence, one can rapidly
identify affected scenario tests and propagate the changes into
the corresponding test specifications.

IV. LANGUAGE-MODEL TESTING USING SCENARIOS

Performing a scenario-based testing and development pro-
cess for metamodels involves planning activities (e.g., deciding
on a test procedure) and the creation of a number of testing
artifacts, such as non-executable scenario descriptions and ex-
ecutable test scenario specifications. To support such a testing
process, we developed a prototype infrastructure as a scenario-
oriented extension of the Epsilon EUnit testing framework
[29]. The prototype is based on a scenario-test metamodel
from [30] and realizes a concrete syntax to define scenario-
based test specifications. Furthermore, it provides runtime and
reporting support. Metamodel testing is so available for several
metamodel types (e.g., EMF/Ecore, XML).

A. Metamodel-Testing Procedures with Scenarios

Several testing procedures can be supported by scenarios,
including regression tests. Fig. 2 shows a process for the
definition of an existing MUT. The collected scenario tests are
then used to validate the MUT which is modified by a sequence
of meta-modeling actions. Before a new action is performed,
the scenario tests validate the changed MUT’ for requirements
conformance and a test report is issued. Upon successful
completion of the corresponding test scenario, the next action
can be performed by the DSML engineer. Otherwise, the
MUT must be adjusted to comply with the test scenarios.
Such a testing procedure is suitable for metamodel refactoring
tasks (e.g., partitioning into sub-packages, restructuring of
relationship representations; see [17]). This procedure may
be repeated for the MUT’, for example, when creating a
revised metamodel version due to new domain requirements
(see Fig. 2).

�������	�
��
����������

�������	�
���
����������

��������������

�������	�
���
����������

MUT

�����
����������
��

����������	���

��������
��������������

MUT'����������� ����������� �����������

MUT' MUT''

��������������

ite
ra

tio
n
 1

ite
ra

tio
n
 2

...

ite
ra

tio
n
 n

... ... ...

Fig. 2. Iterative language-model development and scenario-based testing.

Fig. 3 shows how a domain expert and the DSML engineer
collaborate to complete the above testing and development

procedure. Note that in some domains (e.g., software testing),
the roles of the domain expert (e.g., the software tester) and
of DSML engineer can be shared by single subjects (e.g., a
software tester who develops and employs a testing DSML).
The domain expert defines a guiding scenario description
which is then mapped onto a suitable testing infrastructure by
the DSML engineer. After having the domain expert and the
DSML engineer collaboratively review the executable scenario
test, the DSML engineer takes on the actual meta-modeling
action (e.g., a refactoring or a DSML language-definition step).
The results are then fed into the scenario tests relevant for
the corresponding part of the core language model. If the
tests fail, this part of the core language model does not meet
the respective requirements and must be adjusted. If the tests
succeed, the next action can be performed by the DSML
engineer (see Fig. 2).

ad: A scenario-based testing activity

(domain expert)

Create scenario

descriptions

(DSML engineer)

Translate  scenario

descriptions into tests

(domain expert, DSML engineer)

Review scenario tests

(DSML engineer)

Perform 

meta-modeling action

(DSML engineer)

Run scenario tests

[tests succeed] [tests fail]

Fig. 3. Scenario-based testing for language-model fragments.

In an alternative procedure, there might be no pre-existing
MUT. Each meta-modeling action adds to the incomplete MUT
and creates a testable scenario specification (or fragments
thereof). After having completed the last meta-modeling ac-
tion, an initial MUT and a set of scenario tests are available.
This procedure leans itself towards the initial and step-wise
definition of a DSML model (see, e.g., story boarding in
[31]). These two procedures and variants thereof can also be
combined.

The non-executable scenario descriptions provided by the
domain expert can be defined in different ways. For demon-
stration purposes, we adopt the one-column table format as
found in [10]. Content-wise, a scenario description should
establish the conditions under which it runs, i.e. a trigger
and preconditions. In addition, the scenario goal which is to
be achieved (e.g., testable postconditions) should be given.
Finally, a set of validation or action steps which form the
scenario body must be provided.

The conceptual model of the executable scenario-test spec-
ification available to the DSML engineer is depicted in Fig. 4.
The corresponding specification syntax as realized by our
EMF/Epsilon prototype is shown in Listing 1. A test scenario
tests one particular facet of a system, here the MUT. In the first
place, it represents one particular action and event sequence
which is specified through the test body of the respective
scenario. In addition to the test body, each test scenario
includes an expected result and may include a number of
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preconditions and postconditions, as well as a setup sequence
and a cleanup sequence (see Fig. 4). When a test scenario is
executed, it first executes the corresponding setup sequence.
A setup sequence includes an action sequence that is executed
to set up an evaluation environment for the corresponding
scenario, for example, a setup sequence may load and create
several models as well as define helper operations required
by the test body. Next, the preconditions of the scenario are
checked. If at least one precondition fails, the test scenario
is aborted and marked as incomplete. If all preconditions are
fulfilled, the test body is executed. In particular, the action
sequence in the test body produces a test result. This test result
is then checked against the expected result using appropriate
matcher and comparison operations. If the check fails, the test
scenario is aborted and marked as incomplete. If the check
is successful, the postconditions of the scenario are checked.
Again, if at least one postcondition fails, the test scenario is
aborted and marked as incomplete. If all postconditions are
fulfilled, the cleanup sequence is called and the scenario is
marked as complete. A cleanup sequence includes an action
sequence that is executed to undo actions that were made
during the test scenario. For example, the cleanup sequence
can delete intermediate models and model elements created by
the setup sequence. Note that the cleanup sequence is executed
each time the respective test scenario is executed, even if the
scenario is marked as incomplete.

Test caseTest suite Test scenario

Precondition Postcondition

Expected result Test result

Test body

Setup sequence

Cleanup sequence

*1..
*1..

0..1

0..1 0..1

0..1

0..1

* *

*

*

1

checked against

returns

0..1

0..1

Fig. 4. Scenario-based testing domain model [30].

Each test scenario is part of a test case. In particular, a test
case consists of one or more test scenarios and may include
a number of preconditions and postconditions, as well as a
setup sequence and a cleanup sequence (see Fig. 4). When a
test case is run, it first executes the respective setup sequence.
The runtime structures produced by the setup sequence are then
available to all test scenarios of the corresponding test case.
Subsequently, the preconditions of the test case are checked.
Similar to test scenarios, a test case is aborted and marked
as incomplete if one of its preconditions or postconditions
fails. Next, each test scenario of the test case is executed as
described above. If at least one test scenario is incomplete, the
including test case is also marked as incomplete. After the test
scenarios, the postconditions are checked before the test case
cleanup sequence is executed. The test case cleanup sequence
is executed each time the corresponding test case is performed.

Each test case is part of a test suite (see Fig. 4) and a test
suite includes one or more test cases. Furthermore, a test suite

may have a setup sequence and a cleanup sequence, as well.
Again, the runtime structures produced by the test-suite setup
sequence are available to all test cases of the corresponding
suite.

1 @TestSuite
2 $setup -- test suite A setup sequence
3 $cleanup -- test suite A cleanup sequence
4 operation TestSuite_A() {
5 @TestCase
6 $pre -- test case A precondition
7 $post -- test case A postcondition
8 $setup -- test case A setup sequence
9 $cleanup -- test case A cleanup sequence
10 operation TestCase_A() {
11 @TestScenario
12 $pre -- test scenario A precondition
13 $post -- test scenario A postcondition
14 $setup -- test scenario A setup sequence
15 $cleanup -- test scenario A cleanup sequence
16 operation TestScenario_A() {
17 -- test scenario A specification
18 }
19 @TestScenario
20 $pre -- test scenario B precondition
21 -- ... -- further pre-/postconditions, setup/cleanup sequences
22 operation TestScenario_B() {
23 -- test scenario B specification
24 }
25 }
26 @TestCase
27 operation TestCase_B() {
28 -- test scenario specifications for test case B
29 }
30 }

Listing 1. A concrete syntax for scenario-test specifications.

B. Scenario-based Metamodel-Testing Infrastructure

Our approach for scenario-based metamodel testing is
implemented as an Eclipse-based prototype.1 The prototype
provides support for authoring, execution, and reporting of
scenario-based test specifications as introduced in Section
IV-A. Our prototype leverages the capabilities of the Epsilon
family of model-management languages (see [32]). Among
others, Epsilon provides the Epsilon Unit Testing Framework
(EUnit, see [29]) which is designed to define tests for model-
management tasks. EUnit itself is an embedded language
which reuses constructs of the core Epsilon Object Language
(EOL) to implement test-specific functionality (e.g., special
annotations to define test operations). In our prototype, we
developed a language extension of EOL. In this way, we
reuse important EUnit and EOL features such as the built-in
test annotations, guarding expressions, and the setup/cleanup
operations while providing our own extensions to support
scenario-based test specifications (see Fig. 4).

Our extension tackles four requirements which result
from the conceptial metamodel introduced in Section IV-A:
Scenario-based test specifications can include test suites, test
cases, and test scenarios (see Sections III and IV). Therefore,
our EUnit extension for scenario-based testing must be able
to explicitly distinguish between these test concepts (R1). Fur-
thermore, a test case includes one or more test scenarios and
a test suite groups one or more test cases. These containment
relationships must unfold into a particular sequencing of test
execution, as explained in Section IV-A (R2). Test suites, test
cases, and test scenarios each include setup as well as cleanup

1All software artifacts are publicly available at http://nm.wu.ac.at/modsec.
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sequences (R3). Finally, test cases and test scenarios must
support guard conditions which are evaluated before and after
test-case and test-scenario executions, respectively (R4).

Language-model extensions: To address the four require-
ments defined above, we adapted the EOL model (i.e., the
abstract syntax) and its behavioral specification accordingly.
Fig. 5 shows an excerpt from the EOL language model as
a UML class diagram. At the topmost level, EUnit tests are
grouped into modules (EOL Modules) which are containers
for Statements (e.g., any EOL logical expressions, condi-
tional expressions) as well as annotation and operation defi-
nitions (OperationDeclarationOrAnnotationBlock). Anno-
tations (grouped into AnnotationBlocks) add orthogonal
metadata to OperationDeclarations and can be subdivided
in two categories: An ExecutableAnnotation contains an
EOL statement for evaluation while a SimpleAnnotation
simply marks operations. Each EUnit test is implemented
as a unit pair of an EOL operation and an attached @test
annotation (see [29]). Operations and annotations are the
only named structuring techniques available for EOL and
EUnit, a notion of objects is not available. Test-implementing
operations (OperationDeclaration) can contain an arbitrary
EOL StatementBlock as test and operation body. In the op-
eration and test bodies, a number of built-in assertion/matcher
primitives of EUnit can be used along with model-management
helpers (see [29]). The return value (ReturnStatement) of a
test (i.e., an annotated OperationDeclaration; see Fig. 5)
must be evaluated against an expected result to establish
whether a test passes or fails. These return values can be of an
Epsilon-internal type (e.g., PrimitiveType, Collection etc.),
of an element type of a loaded model (ModelElementType), or
of any Java type. For example, the return value can be accessed
in postcondition blocks ($post) via the built-in result
variable (see [32]).

EOL Module

Block
OperationDeclaration-

OrAnnotationBlock

OperationDeclaration AnnotationBlock

Annotation

SimpleAnnotation
Executable-

Annotation

StatementBlock

Statement AnyType

ModelElement-

Type
PrimitiveType

1 *

1..*

1

*

returnType0..1

...

Return-

Statement

Fig. 5. Excerpt of the building blocks of our Epsilon prototype.

As an embedded EOL extension, EUnit makes heavy use
of the Annotation feature (see [29], [32]). Therefore, we also
used Annotations to extend the abstract syntax and the se-
mantics (e.g., the composite execution modes). To provide test
suites, test cases, and test scenarios as language constructs (see
requirement R1), we defined three SimpleAnnotation kinds.
Similarly, annotations to specify setup/cleanup sequences at
all three test levels (see requirement R3) are provided. More-
over, by declaring additional ExecutableAnnotations, pre-
and postconditions can be evaluated for all test levels (see
requirement R4).

To fully comply with requirement R1 and to provide
containment relationships between test suites, test cases, and
test scenarios (see requirement R2), we used nested EOL
operations, with the following restrictions: EOL Statements
which form operation bodies have been extended to allow for
declaring OperationDeclarationOrAnnotationBlocks, i.e.
nested operation declarations. Operations which are declared
as nested operations have limited visibility and accessibility.
For example, there is no lexical scoping at the script level,
they cannot be called explicitly even from within the enclosing
operation. Rather, the EUnit engine internally collects the
nested operation declarations and performs their evaluation
upon execution of the enclosing operation. Thus, it was
necessary to alter both the EOL grammar specification and
the EOL execution engine. We modified the corresponding
ANTLR grammar to accept nested operation declarations
and their attached annotations. The corresponding changes
to the dispatcher of operations and (executable) annotations
are implemented via refined methods which operate on the
respective abstract-syntax-graph representations accordingly
(see requirement R2).

To sum up, Table I shows the correspondences between
scenario-based testing domain concepts from Fig. 4, the ex-
tended EUnit concrete syntax (see also Listing 1), and the
underlying EOL language-model entities (see also Fig. 5).

TABLE I. CORRESPONDENCES BETWEEN SCENARIO-TESTING

CONCEPTS, EUNIT CONCRETE SYNTAX, AND EOL ABSTRACT SYNTAX.

Domain concept Epsilon syntax construct Epsilon object
Test suite @TestSuite SimpleAnnotation
Setup sequence $setup ExecutableAnnotation
Cleanup sequence $cleanup ExecutableAnnotation
Test case @TestCase SimpleAnnotation
Precondition $pre ExecutableAnnotation
Postcondition $post ExecutableAnnotation
Test scenario @TestScenario SimpleAnnotation
Test body operation’s body Statement
Test result operation’s return value ReturnStatement
Expected result as defined (data, model etc.) of type AnyType

Concrete-syntax extensions: The concrete syntax for
scenario-based test specifications as shown in Listing 1 pro-
vides the textual interface for domain experts and DSML
engineers. With respect to requirements R1–R4, the ANTLR
grammar specification of EOL was adapted slightly, in a fully
backward-compatible way. These adaptations allow for nested
operation declarations (see Listing 2, lines 14–15)2. Besides
this small modification, the EOL grammar is reused as is.

1 OperationDeclarationOrAnnotationBlock
2 = AnnotationBlock | OperationDeclaration;
3 AnnotationBlock
4 = Annotation { Annotation };
5 Annotation
6 = SimpleAnnotation | ExecutableAnnotation;
7 OperationDeclaration
8 = ("operation"|"function") [Type] Name
9 "(" [FormalParameterList] ")" [":" Type] StatementBlock;
10 StatementBlock
11 = "{" Block "}";
12
13 (* Allowing for nested operation and annotation declarations: *)
14 Block
15 = { OperationDeclarationOrAnnotationBlock | Statement };
16

2Please note that only the modified grammar rules are shown, syntax entities
relating to, for instance, model loading or model transformation are omitted
for brevity. See [32] for the grammar details.
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17 SimpleAnnotation
18 = "@", Name [Value {"," Value}];
19 ExecutableAnnotation
20 = "$", Name LogicalExpression;
21
22 (* The rules below are reused from the standard EOL grammar *)
23 Statement = ? ... ?;
24 Name = ? ... ?;
25 Value = ? ... ?;
26 LogicalExpression = ? ... ?;
27 Type = ? ... ?;
28 FormalParameterList = ? ... ?;

Listing 2. Excerpt from the extended EUnit grammar specification, in EBNF.

Advanced features: Non-executable scenario descriptions
can include cross-references within the same scenario and
between two or more scenarios (see [10]). For example, a
scenario fragment or an extension scenario may refer to a
superordinate scenario’s goal as their end condition. Similarly,
domain requirements may map to the equal pre- and postcon-
ditions in scenario tests, to establish the intention of invariance.
To avoid code redundancy in scenario-based test specifications,
constraint expressions and, more generally, EOL statements
can be specified in two ways for reuse between scenario tests
and/or between different testing levels (suite, case, scenario).

First, they can be defined as freestanding, helper EOL
operations. This is possible because conditions ($pre, $post)
and sequences ($setup, $cleanup) can refer to arbitrary
EOL LogicalExpressions including operation-call state-
ments (see Listing 2 and [32]). Second, to share state-
ments for setup and cleanup sequences between test op-
erations of an entire test level, helper operations can
be associated with the following annotations @SuiteSe-
tup/@SuiteCleanup, @CaseSetup/@CaseCleanup, and @Sce-
narioSetup/@ScenarioCleanup. These annotations register
the annotated operations as the authoritative setup and cleanup
sequences with the corresponding test level (i.e. test suite, test
case, test scenario). Note that these global setup and cleanup
sequences can be combined with local ones: During a test
run, when executing setup sequences, the global sequences
take precedence over the local ones. For cleanup sequences
the precedence is inverse, with the global sequences being run
after the local ones.

V. SCENARIO-BASED TESTING PROCEDURE FOR A DSML
INTEGRATION CASE

To demonstrate our approach, we now discuss a case for the
integration of two DSMLs A and B which represent two narrow
domains: system auditing and reactive distributed systems (see
Figs. 6 and 7). The integrated DSML should cover a new
and an integrated domain (i.e., auditable distributed systems).
While a more detailed background on this application case is
given in previous work (see [6]), it is important to note that
this application case is about a coupled DSML integration.
The derived DSML remains backward-dependent on the source
DSMLs (e.g., to track perfective changes in the source lan-
guages). In this paper, we walk through a small case fragment.

This fragment allows us to demonstrate a testing procedure
as depicted in Fig. 8. This procedure resembles one of the char-
acteristic procedures described in Section IV-A, with scenario
tests being specified upfront. The new, derived DSML C is
created in three meta-modeling steps: 1) defining entities and
their internal structure, 2) establishing entity relationships, and

AuditEvent
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data : EString

AuditRuleCondition EventSystem

NamedElement

name : EString
publish

0..*

subscribe 0..*

conditions

0..*

auditEvents 0..*

auditRules

0..*

Fig. 6. Auditing event-based systems (DSML A).

StateMachine State Transition

Event
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events0..*

target

1

Fig. 7. State/transitional behavioral system (DSML B).

3) enforcing new domain-specific language-model constraints.
During and between each step, the scenario tests are executed
to check the requirements conformance.
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Fig. 8. A step-wise, scenario-assisted DSML integration process using model
transformations.

Following a scenario-driven test plan (see Figs. 8 and
9), the main domain actors (e.g., a security-audit expert and
the distributed-systems expert) draft non-executable scenario
descriptions based on the agreed domain requirements. Table II
exemplifies an excerpt from the resulting scenario descriptions
in a one-column table format [10].

(DSML engineer)

Translate scenario

descriptions into tests
see Listing 3

(auditor, systems operator,

DSML engineer)

Review scenario tests

(DSML engineer)

Run scenario tests
see Listing 3

[tests succeed] [tests fail]

Metamodel

DSML 1

Metamodel

DSML 2

Match elements
ECL

Comparison

rules

Match trace

Copy elements
ETL

Merge elements
EML; see Listings 4 and 5 

Transformation

rules

Merge

rules

Composed metamodelMatch trace

Metamodel

DSML 1

Metamodel

DSML 2

Metamodel DSML 1
Metamodel DSML 2

Load models

(DSML engineer)

Perform meta-modeling action

ad: Activity for testing the MUT

(auditor, systems operator)

Create scenario

descriptions
see Table II 

Fig. 9. Scenario-based DSML integration via model transformations.
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TABLE II. REQUIREMENTS-LEVEL SCENARIO DESCRIPTION.

Test case 1 In order to support auditable events in a reactive distributed
system, DSMLs A and B must be integrated. An auditable
distributed system must be fully integratable into the current
target software platforms, using existing code-generation
templates. Therefore, a complete and structure-preserving
DSML composition must be performed.

Primary actors System auditor, distributed-systems operator

Trigger/Setup The model-transformation workflow to integrate the meta-
models of DSML A & DSML B is executed.

Test scenario 1 The central concept are AuditableEvents to be propagated
and monitored. The new concept AuditableEvent must
share all features of the Event (DSML A) and AuditEvent
(DSML B) concepts.

Preconditions The source concepts Event and AuditEvent must be avail-
able in the DSMLs A and B.

Expected result A metaclass named C::AuditableEvent with the combined
structural features of A::Event and B::AuditEvent.

Test scenario 2 In DSML C, each AuditableEvent publishes Signals.

Expected result AuditableEvents must maintain a reference named pub-
lish to Signal.

Test case 2 Ascertain that each triggered AuditableEvent can be sensed
by the monitoring facility.

Primary actors System auditor, distributed-systems operator

Preconditions All metamodel constraints for the source DSMLs must hold
for DSML C.

Trigger/Setup The model-transformation workflow to integrate the meta-
models of DSML A & DSML B is executed.

Test scenario 1 An AuditableEvent issued by a Transition must publish
at least one Signal.

Preconditions AuditableEvent has all structural features of AuditEvent
and Event.

Expected result Instances of AuditableEvent must refer to at least one
Signal instance.

Scenario descriptions: In our example, the metamodels of
the DSMLs A and B should be fully composed. The conceptual
weaving is to be achieved by turning Events propagated
in a distributed system into AuditableEvents that can be
tracked for auditing purposes (e.g., through an appropriate
system-monitoring facility). Furthermore, the domain requires
all events to be audited, without exception. Also, each au-
dited event must issue a Signal to the monitoring facility.
These three goals are clearly documented in terms of the
three scenario sections of Table II. In addition, the domain
experts document the prerequisites for achieving these goals
(e.g., presence conditions of certain entities in the source
metamodels).

Scenario-test specifications: In a next step, the DSML
engineer specifies the test cases based on the scenario descrip-
tions. The DSML engineer maps certain document sections to
selected parts of an EUnit scenario-based test structure (e.g.,
preconditions in the document become $pre annotations) and
operationalizes the requirements by translating them into con-
straint expressions over the source and the target metamodels
(e.g., specific bound checks for multiplicity elements). One
possible scenario-test specification is shown in Listing 3.

1 @TestSuite
2 $setup runTarget("merge")
3 operation TestSuite_1() {
4 @TestCase
5 operation TestCase_1() {
6 @TestScenario
7 $pre EventSystem!EClass.all->exists(c | c.name = "AuditEvent")
8 $pre StateMachine!EClass.all->exists(c | c.name = "Event")
9 operation TestScenario_1() {
10 assertTrue("Missing composed classifier.", EventSystemStateMachine

!EClass.all->exists(ae | ae.name = "AuditableEvent"));
11 }
12 @TestScenario
13 operation TestScenario_2() {

14 assertTrue("Firing event of a transition must be capable of
publishing signals.", EventSystemStateMachine!EClass.all->
selectOne(c | c.name = "Transition").eStructuralFeatures->
selectOne(tsf | tsf.name = "events").eType.
eStructuralFeatures->exists(aesf | aesf.name = "publish"));

15 }
16 }
17 @TestCase
18 $pre verifyEntities(StateMachine!EClass)
19 $pre verifyEntities(EventSystemStateMachine!EClass)
20 operation TestCase_2() {
21 @TestScenario
22 $pre EventSystemStateMachine!EClass.all->selectOne(ae | ae.name = "

AuditableEvent").eStructuralFeatures.isEmpty() = false
23 operation TestScenario_1() {
24 assertFalse("An AuditableEvent in the context of a transition must

publish at least one signal.", EventSystemStateMachine!
EClass.all->selectOne(c | c.name = "Transition").
eStructuralFeatures->selectOne(sf | sf.name = "events").
eType.eStructuralFeatures->first().lowerBound = 0);

25 }
26 }
27 }
28 operation verifyEntities(eClass) {
29 -- Check for valid composition candidates (Note: details are omitted)
30 }

Listing 3. A possible mapping of the scenario descriptions to scenario tests.

The top-level test suite groups the two corresponding test
cases and three test scenarios (lines 1–27). The first test case
(lines 4–16) includes two scenarios. The first scenario (lines 6–
11) requires two preconditions to be fulfilled (lines 7–8). The
second test scenario (lines 12–15) verifies whether an event
triggered by a transition is capable of publishing signals. The
event must be of type AuditableEvent. The second test case
(lines 17–26) utilizes the helper verifyEntities (lines 28–
30) for the evaluation of two preconditions (lines 18–19), with
each running the test on a different metamodel. The third test
scenario (lines 21–25) checks for the mandatory signaling by
system events (see above). At this stage, when executed, all
tests will be reported failed.

Initial composition specifications: Once having the EUnit
scenario-test specifications reviewed collaboratively by the
domain experts and the DSML engineer, the DSML engineer
specifies the actual metamodel composition. In this application
case, this is achieved by devising an Epsilon-based compo-
sition workflow [6]3. To provide an impression, Listing 4
shows the Epsilon Merging Language (EML [32]) rule for the
creation of AuditableEvent. The merge procedure creates an
EClass of the required name (line 5), establishes inheritance
relationships, and incorporates the structural features from both
source DSMLs (lines 6–7). Once performed, all except for one
scenario test defined in Listing 3 pass. Fig. 10 shows the EUnit
console reporting the failing test scenario.

1 rule MergeAuditEvent
2 merge l : EventSystem!EClass
3 with r : StateMachine!EClass
4 into t : EventSystemStateMachine!EClass {
5 t.name = "AuditableEvent";
6 t.eSuperTypes ::= l.eSuperTypes + r.eSuperTypes;
7 t.eStructuralFeatures ::= l.eStructuralFeatures + r.

eStructuralFeatures;
8 }

Listing 4. EML merge rule for DSML composition.

Patching composition specifications: Based on the test
report, the DSML engineer reviews jointly with the domain

3See also the meta-modeling action in Fig. 9.
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Fig. 10. Scenario-test reports in EUnit.

experts the failing test scenario to exclude an erroneous
specification. Once verified, the DSML engineer investigates
the initial composition specification (Listing 4). The DSML
engineer realizes that the source metaclass A::AuditEvent
for the composed AuditableEvent does not conform to the
requirement of the targeted domain because A::AuditEvent
does not necessarily have to contain a Signal given the lower
multiplicity bound of 0 of the publish EReference. To fix
this, the DSML engineer adds a statement to the EML merge
rule which modifies the lower bound accordingly (see line 9
in Listing 5). With this, all scenario tests pass (see Fig. 10).
Fig. 11 documents the critical metamodel fragment of the final
composed DSML.

1 rule MergeAuditEvent
2 merge l : EventSystem!EClass
3 with r : StateMachine!EClass
4 into t : EventSystemStateMachine!EClass {
5 t.name = "AuditableEvent";
6 t.eSuperTypes ::= l.eSuperTypes + r.eSuperTypes;
7 t.eStructuralFeatures ::= l.eStructuralFeatures +
8 r.eStructuralFeatures;
9 t.eStructuralFeatures->selectOne(sf | sf.name = "publish").

lowerBound = 1;
10 }

Listing 5. Refinement of EML merge rule.

C

AuditableEvent
[A::AuditEvent@B::Event]

Signal
[A::Signal]

publish

1..*

Transition
[B::Transition]

0..*

events

Fig. 11. Relevant excerpt from the final metamodel C.

VI. FURTHER RELATED WORK

In Section II, we have already iterated over closely related
work on metamodel testing which falls into three categories:
modeling-space sampling ([7], [8], [23]), metamodel-test mod-
els ([9], [25]), and metamodel validation [22].

Tort et al. ([16], [33]) have investigated testing support for
conceptual modeling. In their approach, conceptual schemas
are defined using UML models (at the M1 level) and OCL
model constraints. We consider MUTs at the M2 level. Con-
ceptual schemas cover both structural (entities, entity rela-
tionships) and behavioral aspects (events) while we look at

an MUT as the structural specification of a core language
model. Assisted by a dedicated Conceptual Schema Testing
Language (CSLT) and runtime, executable test specifications
can exercise a conceptual schema under test. State changes
and state-based assertion checking as well as the temporal
validation of event creation and occurrence can be tested. In
a test-first application of the approach [16], test instantiations
are specified to guide the development process. The runtime
for model and test execution allows for testing UML models
and the corresponding OCL model constraints to identify
consistency defects and requirement inconsistencies.

The application case in Section V demonstrates that a
testing facility which can refer to several metamodels at once
is suitable for expressing test cases on model transformations
[24]. For example, in our scenario-test format, preconditions
expressed over the source metamodels and postconditions on
the target metamodels establish a transformation contract. This
closely resembles the idea of partial test oracles for model
transformations (see, e.g., the basic precondition and postcon-
dition contracts in [34]). Besides assertion checking, such con-
tractual constraints can also be used as criteria for generating
input test models (see, e.g., [35]). Moreover, requirements-
level testing including non-executable requirements descrip-
tions was also explored for model transformations [36].

Approaches to metamodel testing as ours apply to test-
ing support of language-model and abstract-syntax design in
isolation. A systematic alignment of testing activities to other
phases is widely missing. Sadilek et al. [37] touch on all phases
and their testing requirements, however, they do not analyze
testing techniques other than their metamodel-testing approach
(MMUnit [9]) in detail. Recently, one of the authors [38]
evaluated the adequacy of general-purpose testing techniques
for the various phases of DSML integration, including visual-
syntax testing and testing of composed platform-integration
artifacts (e.g., rewritten generator templates [6]). Neverthe-
less, metamodel testing affects indirectly other phases and
language-model artifacts dependent on the MUTs: Merilinna
et al. [8] provide for indirect testing of the platform-specific
artifacts by generating and deploying them during metamodel
testing. As metamodels can also be systematically derived
from or transformed into corresponding grammar definitions
(see, e.g., [39]), test-based validation can so extend partially
to the grammar-based textual concrete syntaxes. The case of
dependent model transformations is mentioned above.

VII. CONCLUSION

In this paper, we presented an approach for the scenario-
based testing of core language models. The core language
model is a metamodel that defines the abstract syntax of a
DSML. Because the core language model is central to the
proper implementation of a DSML, it is very important to
ensure the correctness and consistency of this metamodel.
Moreover, in case two (or more) DSMLs are integrated to de-
fine a composite DSML, it is also important to systematically
check the corresponding composed core language model.

Our approach uses domain scenarios at the requirements
level as primary artifacts. These non-executable scenario de-
scriptions are refined into executable scenario tests. In this way,
our approach integrates scenario descriptions on different ab-
straction layers. This is a first step towards providing forward-
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and backward-traceability for DSML test scenarios (also fu-
ture work). To demonstrate our approach, we implemented a
corresponding extension to the Eclipse Modeling Framework
and Epsilon model-management toolkit.
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Abstract: The core language model is a central artifact of domain-specific modeling languages (DSMLs) as it captures
all relevant domain abstractions and their relations. Natural-language scenarios are a means to capture require-
ments in a way that can be understood by technical as well as non-technical stakeholders. In this paper, we
use scenarios for the testing of structural properties of DSML core language models. In our approach, domain
experts and DSML engineers specify requirements via structured natural-language scenarios. These scenario
descriptions are then automatically transformed into executable test scenarios providing forward and backward
traceability of domain requirements. To demonstrate the feasibility of our approach, we used Eclipse Xtext to
implement a requirements language for the definition of semi-structured scenarios. Transformation specifica-
tions generate executable test scenarios that run in our test platform which is built on the Eclipse Modeling
Framework and the Epsilon language family.

1 INTRODUCTION

A domain-specific language (DSL) provides
tailored development support for a specific do-
main (Stahl and Völter, 2006). In model-driven
development (MDD), a domain-specific modeling
language (DSML) allows for developing tailored,
platform-independent models. Their abstract syntax
is typically defined using metamodeling and it is ex-
posed to domain modelers in terms of a diagrammatic
concrete syntax (Sendall and Kozaczynski, 2003).

The process of developing a DSML, either from
scratch or by reusing existing DSMLs, involves an
initial phase of domain analysis (Lisboa et al., 2010;
Czarnecki and Eisenecker, 2000). A domain anal-
ysis aims at documenting the domain knowledge in
terms of the domain vocabulary and the domain re-
quirements (e.g., rules of applying the domain terms,
normative procedural guidelines). In the domain mod-
eling step, the data sources (e.g., code bases and ap-
plication documentation available for the domain) are
collected and reviewed to identify domain-specific
entities, operations, and entity relationships. In a
model-driven approach, this step yields a number of
model artifacts (e.g., the core language model with
accompanying optional constraints).

The core language model of a DSML captures
the abstracted domain entities and their relationships
(Strembeck and Zdun, 2009). This way, it defines the
abstract syntax of a DSML. A DSML’s core language
model is often defined as a metamodel conforming
to standards, such as the Meta Object Facility (Ob-
ject Management Group, 2013) or as an extension
to MOF-based general-purpose modeling languages
such as the Unified Modeling Language (Object Man-
agement Group, 2011). Supplementary models can
describe the commonalities and variations between
domain entities defined by the core language model
(variability models) and domain operations (e.g., rel-
evant business processes). After domain modeling is
finished, the resulting models are reviewed to validate
the conformance of these domain models with the do-
main vocabulary and domain requirements.

In a domain modeling activity, domain require-
ments are frequently documented using natural-
language descriptions (Neill and Laplante, 2003; Di-
ethelm et al., 2005). This is due to the fact that
domain requirements emerge and are often elicited
during interviews, discussions, and meetings where
different stakeholders are involved (Sutcliffe, 2002).
Whereas such natural-language requirements descrip-
tions are more accessible to non-technical stake-
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holders and stakeholders of diverse professional
backgrounds (Dwarakanath and Sengupta, 2012), a
natural-language description raises important issues
when it comes to validating model artifacts such as
the core language model against the domain require-
ments. A corresponding issue is, for example, the
ambiguity of natural-language descriptions (Sutcliffe,
2002; Institute of Electrical and Electronics Engi-
neers, 2011). This ambiguity can be caused by con-
textual details not being made explicit in the require-
ments narrative and/or by not being representable in
a core language model, for instance, due to lacking
expressiveness of the respective modeling language.

Adding to these issues, the core language model
is typically created in several iterations and is there-
fore not a static artifact. Changes of the domain re-
quirements trigger the evolution of the core language
model (Wimmer et al., 2010). Requirements can
change, for instance, due to additional functionality,
a modified legal situation in the corresponding appli-
cation domain, or the refactoring of software systems.

While the core language model is the primary arti-
fact of a DSML, there are other DSML artifacts (such
as model transformations or model constraints) which
directly depend on the core language model (Strem-
beck and Zdun, 2009; Hoisl et al., 2013). An un-
detected requirement violation in the core language
model may have severe effects on all dependent soft-
ware artifacts.

The creation of a DSML and its core language
model involves DSML engineers and domain experts.
Here, a domain expert is a professional in a particu-
lar domain, such as a stock analyst in the investment
banking domain or a physician in the health-care do-
main. While the domain expert provides the domain-
specific knowledge, the DSML engineer is responsi-
ble for the domain model specification and implemen-
tation (e.g., the creation of model artifacts, their at-
tributes, relationships). The challenge in the phase of
domain analysis and modeling is the establishment of
a common body of knowledge for both, the domain
expert, and the DSML engineer (i.e., a shared vocab-
ulary) and the correct abstraction and mapping of do-
main knowledge to a target modeling language.

A testing technique for evolving and heavily cou-
pled language models would offer a means for se-
lecting relevant, requirements-driven tests, to express
and to maintain these tests, and to automate the
testing procedure. Current testing approaches for
metamodels fall short in a number of ways: For
modeling-space sampling (Gomez et al., 2012; Mer-
ilinna et al., 2008), a sufficiently specified model un-
der test is needed, which is not available in an it-
erative development and evolution of domain mod-

els. The same holds true for metamodel-test models
(i.e., simulating a set of valid instance model alter-
natives), which require the full domain model under
test to be specified (Sadilek and Weißleder, 2008; Cic-
chetti et al., 2011). Metamodel validation approaches
(e.g., model-constraint evaluations) employ formal
expression languages (e.g., OCL), but do not consider
the structure of non-executable requirements spec-
ifications (Merilinna and Pärssinen, 2010). More-
over, approaches exist for tracing requirements (Win-
kler and Pilgrim, 2010) and testing natural-language
statements (Gervasi and Nuseibeh, 2002; Yue et al.,
2013), but lack an integrated model-driven tool-chain
to combine both, domain modeling capabilities and
requirements specification/validation.

We propose a testing approach that employs sce-
narios to describe system behavior, as well as to
bridge the gap between informal natural-language re-
quirements on the one hand and formal models (in-
cluding source code implementations) on the other
hand (Sutcliffe, 2002; Jarke et al., 1998; Uchitel et al.,
2003). Thus, in our approach, domain requirements
can directly serve as a normative specification for the
core language model of a DSML. The paper makes
the following contributions:

� Semi-structured domain-requirements language:
We specify a semi-structured requirements lan-
guage that can be used by domain experts to
define scenarios via structured natural language.
These natural-language scenario descriptions are
then transformed into an executable scenario for-
mat. The executable test scenarios check the
conformance of (evolving) DSML core language
model definitions against the scenario-based re-
quirements specification.

� Traceable mapping of domain requirements: In
this way, our approach supports a systematic,
semi-automated, and traceable mapping of do-
main requirements documented in natural lan-
guage to executable test scenarios for require-
ments validation. The mapping conventions are
defined in a reusable form applicable to different
scenarios.

� Participatory requirements validation: In our ap-
proach, the domain expert uses scenarios to define
domain requirements (Sutcliffe, 2002; Jarke et al.,
1998). This way, the domain expert actively con-
tributes to defining and to validating the DSML
core language model, in close cooperation with
the DSML engineer.

As a proof-of-concept prototype, we implemented
a complete MDD-based tool chain in which the def-
inition of natural-language requirements, scenario-
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based tests, and DSML model transformations are
supported. The prototype builds on top of the Eclipse
Modeling Framework (EMF) and the Epsilon lan-
guage family. It is publicly available at http://nm.
wu.ac.at/modsec.

The remainder of the paper is structured as fol-
lows: Section 2 presents a motivating example of
DSML integration. DSML integration exemplifies
the reuse of existing artifacts from two or more in-
dividual source DSMLs to implement a new DSML
(Hoisl et al., 2012). Section 3 introduces our ap-
proach for transforming requirements into executable
test scenarios. Section 4 specifies a language for
requirements-level scenarios, whose applicability—
in combination with transformation definitions—is
shown in a DSML integration case in Section 5. Sec-
tion 6 discusses how our approach contributes to ad-
dress the issues of natural-language requirements test-
ing raised in Section 2. At last, related work is re-
viewed in Section 7 and Section 8 concludes the pa-
per.

2 MOTIVATING EXAMPLE

When modeling a domain, textual use-case scenar-
ios are commonly employed for documenting domain
requirements. Consider the example of story-driven
modeling (Diethelm et al., 2005). First, use-case nar-
ratives are collected textually which are then refined
into diagrammatic models. During so-called object-
game sessions, the team of developers (e.g., DSML
engineers analyzing the domain) draw up sketches of
object diagrams cooperatively (e.g., using a white-
board). These diagrams are then translated into UML
collaboration diagrams and grouped into model se-
quences, the so-called story boards. From these story
boards, structural and behavioral specifications (e.g.,
unit tests) can be derived (see Figure 1).

Create natural-language

scenario descriptions
(e.g., use cases)

Run executable

tests
(e.g., unit tests)

Translate

scenarios
(e.g., object games, story boards)

Figure 1: Translating requirements into executable tests.

The transitions between different types of require-
ment descriptions (e.g., text and collaboration dia-
grams), as well as between requirement descriptions

and executable specifications (e.g., collaboration dia-
grams and unit tests) provide the opportunity to con-
tinuously elicit the requirements, by adding miss-
ing or by clarifying ambiguous details. At the same
time, however, each transition risks introducing in-
consistency between the requirements in their differ-
ent representations (see also Figure 1). For exam-
ple, a requirements detail documented in textual form
in a use-case description, might be simply omitted
accidentally when drawing up the collaboration dia-
grams. Then, once certain details have been clarified
in terms of UML collaboration, a diagrammatically
documented requirement might turn out to be con-
flicting with the early, textually recorded ones. Con-
sequently, each requirements representation must be
constantly maintained to reflect changes to other rep-
resentations.

The risk of inconsistency between multiple re-
quirements representations and the maintenance over-
head, as exemplified for story-driven modeling above,
motivated us to investigate means of automati-
cally transforming natural-language scenarios at the
requirements level into executable test scenarios.
Throughout the paper, we will look at the develop-
ment of a language model from existing ones, the case
of DSML integration (Hoisl et al., 2012).

Consider the DSMLs A and B representing two
technical domains: system auditing and distributed
state-transition systems (see Figures 2 and 3). The
integrated DSML C should cover a new and an
integrated domain (i.e., auditable distributed state-
transition systems). This example is taken from an
integration case which is described in full detail in
(Hoisl et al., 2013).

AuditEvent
Signal

data : EString

AuditRuleCondition EventSystem

NamedElement

name : EString
publish

0..*

subscribe 0..*

conditions

0..*

auditEvents 0..*

auditRules

0..*

Figure 2: Auditing event-based systems (DSML A).

StateMachine State Transition

Event
NamedElement

name : EString

states

0..*

transition

0..1

events0..*

target

1

Figure 3: State/transitional behavioral system (DSML B).

The integration of the core language models of the
DSMLs A and B is achieved by turning Events propa-
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gated in a distributed system into AuditableEvents
that can be tracked for auditing purposes (e.g.,
through a corresponding system-monitoring facility).
Table 1 shows an excerpt of a natural-language sce-
nario description for the integrated DSML C which
resulted from eliciting domain requirements during a
domain analysis (see also Figure 1). The description
is structured according to a one-column table format
as suggested by (Cockburn, 2001). From the descrip-
tion of test scenario 1 follows that the domain re-
quires all events to be audited and each audited event
shall issue a signal to the monitoring facility (see Ta-
ble 1).

Table 1: Example requirements-level natural-language sce-
nario description (excerpt).

Test case 1 Ascertain that each triggered AuditableEvent can be
sensed by the monitoring facility.

Primary actors System auditor, distributed-systems operator
Preconditions All metamodel constraints for the source DSMLs

shall hold for DSML C.
Trigger/Setup The model-transformation workflow to integrate the

metamodels of DSML A & DSML B is executed.
Test scenario 1 An AuditableEvent issued by a Transition shall

publish at least one Signal.
Preconditions AuditableEvent has all structural features of Au-

ditEvent and Event.
Expected result Instances of AuditableEvent shall refer to at least

one Signal instance.

From this natural-language requirements descrip-
tion, a DSML engineer then derives concrete com-
position steps which are performed manually or
via model-to-model transformations (Czarnecki and
Helsen, 2006). The resulting relevant core language
model fragment of the merged DSML C is shown in
Figure 4.

C

AuditableEvent
[A::AuditEvent@B::Event]

Signal
[A::Signal]

publish

1..*

Transition
[B::Transition]

0..*

events

Figure 4: Excerpt from merged DSML C core language
model.

When turning non-executable requirements de-
scriptions into executable specifications (e.g., soft-
ware tests, transformation definitions; see also Fig-
ure 1), evaluating the natural-language requirements
against these evolving software artifacts poses impor-
tant challenges (Sutcliffe, 2002; Institute of Electrical
and Electronics Engineers, 2011).

Ambiguity of Requirements: In contrast to formal
specifications, natural language is prone to misinter-
pretation (Sutcliffe, 2002). The ambiguity of natural-
language statements may lead to erroneous or incom-
plete requirement implementations. For instance, the
definition of the scenario trigger in Table 1 can lead to
misinterpretations. It is ambiguous whether the sce-
nario is meant to be enacted either at the beginning,
at the end, or anywhere in between the integration of
the two core language models.

Consistency of requirements: A DSML core lan-
guage model may have to comply to a number of dif-
ferent requirements. When defining scenarios in nat-
ural language, it is difficult to check that the require-
ments are free of conflicts. Natural language allows
for expressing identical requirements differently, for
instance, the expected result from test scenario 1 in
Table 1 can be rephrased: The first structural fea-
ture of the metaclass AuditableEvent must never
have a lower bound of zero.

Singularity of Requirements: To allow for an easy
to understand and testable requirements specification,
a requirement statement should ideally include only
one requirement with no use of conjunctions. For ex-
ample, the test case 1 precondition from Table 1 de-
mands that the constraints for the composed DSML
C reference back to the individual constraint sets of
DSMLs A and B. This backward-dependent relation-
ship adds to the complexity of the requirements vali-
dation (i.e., constraints have to be checked twice for
the two source core language models and a third time
when applied in the context of the composed DSML
C).

Traceability of Requirements: Requirements
should be forward traceable (e.g., to DSML core lan-
guage model source code artifacts; in our example the
implemented metamodels of Figure 2 and Figure 3)
and backward traceable (e.g., to specific stakeholder
statements a requirement originates from; in our ex-
ample the requirements described in Table 1). That is,
all forward and backward relationships for a require-
ment are identified and recorded (Institute of Electri-
cal and Electronics Engineers, 2011). This way, a re-
quirement can be navigated from its source (e.g., the
expected result in Table 1) to its implementation (e.g.,
a corresponding assertion statement in an automatable
test specification); and vice versa. Tracing of natural-
language requirements to their respective DSML ar-
tifact implementations (and vice versa) is non-trivial
because of different abstraction levels and specifica-
tion formats, for instance, natural language vs. source
code (Marcus et al., 2005).

Validation of requirements: Requirements have
to be validated in order to prove that they are satis-
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fied by a corresponding DSML core language model
implementation. Acceptance testing is a common
method for the validation of software systems require-
ments (Institute of Electrical and Electronics Engi-
neers, 2011). Nevertheless, tool-supported and auto-
mated testing of natural-language statements is diffi-
cult due to their ambiguity and the lack of a formal
structure. Without adequate tool support, the valida-
tion of requirements from Table 1 in the context of the
merged DSML C core language model (Figure 4) can
only be done manually—a tedious and error-prone
task whose complexity increases with the amount of
involved metamodel elements, transformation state-
ments, and requirement specifications.

These challenges increase with the number of re-
quirements and scenario descriptions to be satisfied,
the transformation rules involved, and the DSML ar-
tifacts created.

3 FROM REQUIREMENTS TO
EXECUTABLE SCENARIO
TESTS

Our approach of mapping natural-language require-
ments to executable scenario descriptions is sketched
in Figure 5. In this process, the primary actors are
the domain expert and the DSML engineer. In cer-
tain domains (e.g., software testing), both roles can
be taken by one subject at the same time. First, the
domain expert and the DSML engineer must agree on
a requirements specification format (Sutcliffe, 2002).
This is to assure that the requirements are captured
in a format which can be further processed. For
the specification of system behavior on the require-
ments level, natural-language scenarios are a suitable
choice (Sutcliffe, 2002; Jarke et al., 1998; Uchitel
et al., 2003). Scenarios can help to reduce the risk
of omitting or forgetting relevant test cases, as well
as the risk of describing important tests insufficiently.
A requirements-level scenario description establishes
the conditions under which it runs (Cockburn, 2001;
Strembeck, 2011): A trigger corresponds to the event
which sets off the scenario. Preconditions announce
the system state expected by the use case before start-
ing. The objective of the scenario defines the goal
which should be achieved. Important persons in-
volved are named as primary actors. Finally, a set
of validation or action steps specifies the scenario’s
expected outcome. Examples of two semi-structured
natural-language scenario descriptions on the require-
ments level are provided in Table 1 and in Listing 3.

Based on the scenario descriptions of the domain

Create natural-language

scenario descriptions
Run scenario

tests
Step definitions

Figure 5: Transforming requirements into executable test
scenarios via step definitions.

expert, the DSML engineer has to translate these sce-
narios into executable tests (see Figure 5). Executable
tests allow for the automatic validation of DSML core
language models against requirement-level scenarios.
If each requirement-level scenario is checked via one
(ore more) executable test scenario(s), a critical test
coverage of the most relevant requirements can be
achieved. The scenario tests are reviewed by the do-
main expert and the DSML engineer. This ensures
that the executable scenario descriptions reflect the re-
quirements sufficiently.

Each natural-language description of a scenario is
called a step. In order to translate natural-language
requirements into executable tests, for each scenario-
step a corresponding step definition (Wynne and
Hellesøy, 2012) must be defined (see Figure 5; an ex-
ample is shown in Listing 4). We transform natural-
language requirements into executable test scenar-
ios via linguistic rule-based step definitions (Win-
kler and Pilgrim, 2010). A rule-based step defini-
tion deduces traces by applying rules to steps (in con-
trast to, e.g., approaches based on information re-
trieval). Linguistic rules overcome the limitation of
structural approaches by extending the analysis of a
step’s structure to the analysis of its language (via
natural-language processing techniques). In doing so,
step definitions serve as the connecting link between
the domain expert’s vocabulary and the DSML engi-
neer’s vocabulary.

After the step definitions have been defined, the
DSML engineer performs the domain modeling ac-
tivity; i.e., the DSML engineer constructs (fragments
of) the DSML core language model in a way that the
design decisions comply with the requirement speci-
fications. The test scenarios are then checked against
the core language model (fragments). If all tests suc-
ceed, the core language model (part) adheres to the
requirements. If a test fails, the domain expert and
the DSML engineer review the respective test scenar-
ios for their validity and iterate over the core language
modeling artifacts.

This process facilitates the step-wise refinement
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of requirements as well as an iterative development
of DSML core language models. At first, a require-
ment specification may not capture all needs for the
whole DSML core language model (Sutcliffe, 2002).
Nevertheless, by performing domain modeling ac-
tions, the DSML engineer constructs a requirements-
conforming DSML core language model fragment.
As the requirements evolve, so does the DSML core
language model, for example, when integrating two
DSMLs (Hoisl et al., 2012). This test-driven method
of step-wise development and refinement of DSML
core language models helps detect requirements vio-
lations at an early stage. Furthermore, step definition
patterns are designed for reuse (e.g., in other core lan-
guage modeling scenarios; see Figure 5).

4 A LANGUAGE FOR
REQUIREMENTS-LEVEL
SCENARIOS

To specify natural-language requirements via scenar-
ios, we define a model-based scenario-description
language. Using this language, the domain expert
can express domain requirements on DSML core lan-
guage models via semi-structured natural-language
scenarios. At the same time, each scenario descrip-
tion can so be represented as a well-defined model to
facilitate further-processing of the scenario descrip-
tion. Figure 6 shows the metamodel of our scenario-
description language. The main concepts and con-
cept relationships were identified by studying related
work on requirements metamodels (Goknil et al.,
2008; Somé, 2009) and acceptance testing (Wynne
and Hellesøy, 2012).

given : String [0..*]

when : String [0..*]

then : String [1..*]

RequirementsSpecification
NamedElement

name : String [1]

ScenarioFeature

in_order_to : String [0..1]

as_a : String [0..1]

i_want : String [0..1]

features 0..*

scenarios

0..*

Figure 6: Scenario-based requirements specification lan-
guage metamodel.

Abstract syntax: Requirements are specified in
terms of characteristic functionality (Features) the
stakeholders request and the DSML shall implement.
A Feature is described textually via four proper-
ties: A Feature has a name, is specified in order to
meet a certain goal (in order to), defines participat-
ing stakeholders (as a), and describes the feature’s

purpose (i want). A structural Feature of core lan-
guage models may describe relationships of domain
concepts or metaclass properties (e.g., inheritance re-
lationships, metaclass attributes).

Scenarios describe important action and event
sequences characteristic to a given Feature. We
use Scenarios to determine the details of language
model compositions. In addition to its name, a Sce-
nario is associated with one or more conditions that
trigger the scenario (given), define when alterna-
tive paths are chosen (when), and specify expected
outcomes (then). A RequirementsSpecification
has a name and documents as many Features as re-
quested and a Feature consists of as many Scenario
descriptions as needed.

Concrete syntax: Following related approaches
to textual use-case modeling and acceptance test-
ing (Wynne and Hellesøy, 2012; Goknil et al., 2008;
Somé, 2009), we provide a textual concrete-syntax
for the domain user of the requirements language. In
this way, the domain expert is able to define scenario-
based requirements via natural-language statements
(an example is shown in Listing 1). The syntax rules
allow for using synonyms for steps (e.g., And, But;
see Listing 2). This way, the domain expert can,
on the one hand, phrase requirements in a natural
and readable way and, on the other hand, concate-
nate multiple steps into composite statements (i.e.,
adding multiple steps to each Given, When, or Then
section). This allows the domain expert to define sce-
narios which are expressed over multiple, interrelated
models.

Listing 1: A textual concrete syntax.
1 RequirementsSpecification: "..."

2 Feature: "..."

3 In order to "..."

4 As a "..."

5 I want "..."

6 Scenario: "..."

7 Given "..."

8 When "..."

9 Then "..."

In our proof-of-concept implementation, this tex-
tual concrete syntax is specified using an Eclipse
Xtext grammar (see Listing 2). The style of the tex-
tual concrete syntax can easily be adjusted to the
needs of a particular domain—we aligned our exem-
plary grammar definition with (Wynne and Hellesøy,
2012). Also note that this textual concrete syntax is
just one option to define instance models of the re-
quirements metamodel (Figure 6). Viable alternatives
can be realized for our implementation with small ef-
fort, including tree-based views (e.g., via the Sample
Reflective Ecore Model Editor), diagrammatic views
(e.g., via the Eclipse Graphical Modeling Frame-
work), or further textual views (e.g., via XML). In
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this way, our implementation allows, on the one hand,
that the requirements specification document can be
tailored to the best suitable format for the domain
and, on the other hand, that formats and views can
be switched interchangeably.

Listing 2: Xtext grammar definition for semi-structured
scenario-based requirements.

1 grammar at.ac.wu.nm.dsml.sbt.SRL with org.eclipse.xtext.

common.Terminals

2

3 import "http:// requirementsspecification /0.1"

4 import "http://www.eclipse.org/emf/2002/Ecore" as ecore

5

6 RequirementsSpecification returns RequirementsSpecification

:

7 {RequirementsSpecification}

8 ’RequirementsSpecification:’ name=EString

9 (features+=Feature)*

10 ;

11

12 Feature returns Feature:

13 {Feature}

14 ’Feature:’ name=EString

15 (’In order to’ in_order_to=EString)?

16 (’As a’ as_a=EString)?

17 (’I want ’ i_want=EString)?

18 (scenarios+=Scenario)*

19 ;

20

21 Scenario returns Scenario:

22 {Scenario}

23 ’Scenario:’ name=EString

24 (’Given ’ given+=EString

25 ((’Given ’|’And ’|’But ’) given+=EString)*)?

26 (’When ’ when+=EString

27 ((’When ’|’And ’|’But ’) when+=EString)*)?

28 ’Then ’ then+=EString

29 ((’Then ’|’And ’|’But ’) then+=EString)*

30 ;

31

32 EString returns ecore::EString:

33 STRING | ID;

Platform integration: The requirements meta-
model as shown in Figure 6 and the correspond-
ing tool support provide the means to define non-
executable, requirements-level scenarios which are
independent from any metamodeling infrastructure
(Ecore, MOF) and from a test-execution frame-
work. To validate core language models against
these descriptions in a systematic and automated
manner, they must be transformed into executable
test cases by the DSML engineer using step defi-
nitions. Scenario-based testing approaches (Strem-
beck, 2011; Sobernig et al., 2013) provide the neces-
sary abstractions (e.g., test cases, test scenarios, pre-
and post-conditions, setup and cleanup sequences)
to represent scenario descriptions directly as exe-
cutable tests. For our proof-of-concept implemen-
tation, we use our scenario-based testing framework
published in (Sobernig et al., 2013) as test-execution
platform. This execution platform for scenario tests
is built on top of EMF and extends the Epsilon EU-
nit testing framework (Kolovos et al., 2013). In
the step of platform integration, instance models of

the requirements metamodel (see Figure 6) are trans-
formed into executable scenario tests supported by
this test framework. Table 2 shows the exemplary
correspondences between the metamodel concepts,
the scenario-based testing domain concepts (Strem-
beck, 2011), and the syntactical equivalents as pro-
vided by the test-execution platform (Kolovos et al.,
2013; Sobernig et al., 2013). Note that integra-
tion with alternative validation platforms for the sce-
nario descriptions (e.g., an OCL engine, a model-
transformation engine) can be achieved by provid-
ing a dedicated set of step definitions. We adopted
the scenario-based test framework (Sobernig et al.,
2013) because of its matching test abstractions and
for demonstration purposes.

Table 2: Correspondences between requirements language,
scenario-testing concepts, and EUnit concrete syntax.

Requirements lan-
guage

Test concept Epsilon syntax con-
struct

RequirementsSpeci-

fication

Test suite @TestSuite

Feature Test case @TestCase

Scenario Test scenario @TestScenario

Scenario.Given Precondition $pre

Scenario.When Test body operation’s body
Scenario.Then Expected result EUnit assertion

5 SCENARIO-BASED TESTING
EXEMPLIFIED: A DSML
INTEGRATION CASE

We demonstrate the scenario-based testing of DSML
core language models via a DSML integration case.
We build on the motivating example introduced in
Section 2 and show how the transformation from
natural-language requirements into executable sce-
nario tests is achieved via our software prototype.

To recall, in our integration scenario from Sec-
tion 2 we want to fully compose the core language
models of two DSMLs A and B (Figures 2 and 3).
The resulting merged DSML C covers an integrated
domain established through the conceptual weaving
of AuditEvents (from DSML A) and Events (from
DSML B) into AuditableEvents. The process steps
involved in this DSML integration are shown in Fig-
ure 7.

To scenario-test the DSML core language model
composition, the domain expert and the DSML engi-
neer first determine a requirements specification for-
mat (in our case through an Xtext grammar; see List-
ing 2). After the requirements specification format
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ad: Scenario testing a DSML core language model composition

(domain expert)

Create natural-language

scenario descriptions
see Listing 3

(DSML engineer)

Transform scenario

descriptions into tests

(domain expert, DSML engineer)

Review scenario tests

(DSML engineer)

Run scenario tests
see Listing 5

[tests succeed] [tests fail]

(domain expert, DSML engineer)

Determine requirements

specification format
see Listing 2
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Match trace
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definitions
see Listing 4

[apply step definitions]

[reuse step
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Figure 7: Scenario testing of DSML core language model integration.

has been determined, the domain expert can define
natural-language scenarios tackling the domain re-
quirements. Listing 3 shows an excerpt of such a re-
quirements specification conforming to the syntax of
our grammar. To support the domain expert in elab-
orating requirements, Xtext generates an editor sup-
porting, for example, syntax highlighting, auto com-
pletion, or error reporting. Due to space limitations,
we define a brief requirements-level scenario for only
one DSML integration feature (more examples can be
obtained from http://nm.wu.ac.at/modsec). List-
ing 3 shows a refinement from the initial Table 1 sce-
nario and requires that all audited events shall issue a
signal to the monitoring facility.

Listing 3: Scenario-based semi-structured requirements ex-
ample.

1 RequirementsSpecification: "DSMLs A and B integration"

2 Feature: "Monitor AuditableEvent"

3 In order to "ascertain that each triggered

AuditableEvent can be sensed by the monitoring

facility"

4 As a "system auditor and distributed -systems operator"

5 I want "that AuditableEvents shall publish Signals"

6

7 Scenario: "AuditableEvent shall publish at least one

Signal"

8 Given "that EventSystemStateMachine.AuditableEvent

has all features of EventSystem.AuditEvent and

StateMachine.Event"

9 When "in metamodel EventSystemStateMachine metaclass

AuditableEvent references metaclass Signal"

10 Then "instances of EventSystemStateMachine.

AuditableEvent shall refer to at least 1 Signal

instance"

11 ...

After this, the DSML engineer defines corre-
sponding step definitions for every requirements-level
scenario to allow for the translation into executable
test scenarios (an example is shown in Listing 4).
Our software prototype supports the specification of
step definitions by employing token-matching pat-
terns, i.e., string-sequences are recognized via regular

expressions—a linguistic rule-based approach (Win-
kler and Pilgrim, 2010). In addition, a step definition
can be composed of a unique and unordered collec-
tion of regular expression patterns (see lines 3–5 in
Listing 4). This is to aid the DSML engineer in the
process of matching steps which are not easily rec-
ognizable via a single regular expression statement.
In this context, a step definition can match multi-
ple scenario-steps of identical or different types (e.g.,
steps of types Given and When).

Listing 4: A scenario-transforming step definition.
1 var stepDef : Map = Map {

2 -- tests if multiplicity >= 1 between two classifiers

3 Set {

4 "ˆinstances of (\\S+)\\.(\\S+) (?:shall|must) refer to

at least (\\d+) (\\S+) instances?$"

5 }

6 = "assertFalse(\"An $1 shall publish at least $2 $3.\",

$0!EClass.all->selectOne(c | c.name = \"$1\").

eStructuralFeatures ->first().lowerBound < $2);"

7 -- more step definitions

8 };

Our software prototype implements an EGL-
based (Epsilon Generation Language) transformation
from requirements-level scenarios into executable
tests deployable in our extended EUnit testing frame-
work (Kolovos et al., 2013; Sobernig et al., 2013).
The transformation evaluates step definitions (Listing
4) against the requirements specification (Listing 3).
The generated EUnit test scenario resulting from the
requirement specification transformation is shown in
Listing 5.

Listing 5: Generated EUnit scenario tests.
1 --DSMLs A and B integration

2 @TestSuite
3 operation dsmls_a_and_b_integration() {

4 --Monitor AuditableEvent:

5 --In order to ascertain that each triggered

AuditableEvent can be sensed by the monitoring

facility

6 --As a system auditor and distributed -systems operator
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7 --I want that AuditableEvents shall publish Signals

8 @TestCase
9 operation monitor_auditableevent() {

10 --AuditableEvent shall publish at least one Signal

11 @TestScenario
12 --Given that EventSystemStateMachine.AuditableEvent

has all features of EventSystem.AuditEvent and

StateMachine.Event

13 $pre EventSystemStateMachine!EClass.all->selectOne(ae |

ae.name = "AuditableEvent").eStructuralFeatures.

size() = EventSystem!EClass.all->selectOne(ae |

ae.name = "AuditEvent").eStructuralFeatures.size

() + StateMachine!EClass.all->selectOne(ae | ae.

name = "Event").eStructuralFeatures.size()

14 operation
auditableevent_shall_publish_at_least_one_signal

() {

15 --When in metamodel EventSystemStateMachine metaclass

AuditableEvent references metaclass Signal

16 if (EventSystemStateMachine!EClass.all->selectOne(c |

c.name = "AuditableEvent").eStructuralFeatures

->first().eType.name = "Signal") {

17 --Then instances of EventSystemStateMachine.

AuditableEvent shall refer to at least 1

Signal instance

18 assertFalse("An AuditableEvent shall publish at

least 1 Signal.", EventSystemStateMachine!

EClass.all->selectOne(c | c.name = "

AuditableEvent").eStructuralFeatures ->first()

.lowerBound < 1);

19 }

20 }

21 }

22 ...

23 }

Before the actual domain modeling composition
is performed, the domain expert and the DSML en-
gineer collaboratively review the executable test sce-
narios. This review is facilitated by maintaining the
requirement statements along with the corresponding
test cases (i.e., established trace links). For our exam-
ple, the core language model integration is executed
via an Epsilon-based workflow (e.g., matching, copy-
ing, merging core language model elements; see Fig-
ure 7).

Afterwards, the scenario tests (Listing 5) are run
against the integrated DSML C core language model.
If a test fails, the domain expert and the DSML engi-
neer review the corresponding test scenario accord-
ing to the error message shown via the EUnit re-
porting console to exclude an erroneous specifica-
tion. Figure 8 shows a failing test scenario because of
non-conforming multiplicity requirements in the inte-
grated DSML C core language model. In order to get
all scenario tests pass (Figure 9), the DSML engineer
needs to patch the composition specification until it
fully complies to the specified requirements (details
are omitted here for brevity).

6 DISCUSSION

In Section 2, we argue that natural-language scenarios
are useful to capture requirements, but have serious

Figure 8: EUnit scenario-test report: one test fails.

Figure 9: All scenario tests pass.

drawbacks when it comes to evaluating them against
DSML software artifacts. In this section, we discuss
how our work contributes to (partly) overcome this
shortcomings.

Ambiguity of Requirements: Step definitions pro-
vide for the transformation of natural-language re-
quirements into formal specifications. Those formal
specifications render ambiguous natural-language re-
quirements explicit. In this sense, DSML engineers
play an important role as they serve as the inter-
face of mapping natural-language requirements to ex-
ecutable scenarios. A correct mapping (i.e., accurate
step definitions) can only be ensured in close collab-
oration with the domain expert. Still, the ambiguity
of natural-language requirements remains, but formal
specifications help to reduce the number of semantic
variation points.

Consistency of requirements: Executable scenario
tests add to the conflict-free definition of require-
ments. All test scenarios of a requirements specifica-
tion document are executed in the same context of one
test suite. This ensures, that each scenario is tested
against identical language model artifacts. Inconsis-
tent tests fail and are reported back to the DSML en-
gineer. Consequently, the requirements need to be re-
viewed by the domain expert.

Singularity of Requirements: If a scenario step
conjugates other steps of the requirements specifica-
tion, this can be recognized in a pattern-based step
definition approach. Composite steps match more
than one step definition pattern which indicates that
requirements singularity may not be satisfied.
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Traceability of Requirements: In our approach, on
the one hand, requirements are forward traceable via
transforming step definitions. With this, it is possi-
ble to keep track of the requirements-level scenarios
to their executable test counterparts. On the other
hand, we provide support for the backward traceabil-
ity of executable test scenarios. In our transforma-
tion routines, the natural-language scenario steps are
copied as comments besides their corresponding ex-
ecutable test scenarios (see Listing 5). Furthermore,
the EUnit reporting console pairs passed/failed tests
to their respective executable scenario implementa-
tions. This allows to trace the natural-language re-
quirements from the scenario-test report.

Validation of requirements: In this paper, exe-
cutable scenario tests are employed to collect evi-
dence that proves that the system can satisfy the spec-
ified requirements. A test report is generated which
shows the conformance status of the DSML core lan-
guage model against the requirements specification.
In this sense, the requirements specification serves as
a documentation of the core language model devel-
opment activities which can be validated. Further-
more, step definitions are an important documentation
source as they provide for the generation of validation
specifications (i.e., executable test scenarios) from the
natural-language requirements.

7 RELATED WORK

Related work falls into three categories: testing of
1a) natural-language requirements and 1b) evolving
metamodels, requirements 2a) metamodeling and 2b)
traceability, and 3) available tool support.

Testing against natural-language requirements:
In order to test natural-language statements, they
need to be processed and transformed into an an-
alyzable representation. Several natural-language
processing techniques exists—keyword extraction,
part of speech tagging etc. (Winkler and Pilgrim,
2010)—for instance, to derive model-based (Santi-
ago Júnior and Vijaykumar, 2012) or functional test
cases (Dwarakanath and Sengupta, 2012), to check
model properties (Gervasi and Nuseibeh, 2002),
and to generate analysis models from textual use
cases (Yue et al., 2013). Our approach benefits
from these documented experiences on processing
natural-language requirements into processable and
executable artifacts, in particular linguistic rule-based
transformations (Winkler and Pilgrim, 2010). We re-
alize this processing, in contrast to related work, using
an integrated, model-driven tool chain. At the same
time, testing DSML core language models and their

integration has distinct requirements, for example,
navigating between different metamodels to capture
model transformations. Navigation between meta-
models is supported by our approach, for instance,
via a mapping of multi-metamodel requirements (e.g.,
line 8 in Listing 3) into executable test scenarios in-
volving individual and integrated DSML core lan-
guage models (e.g., precondition on line 13 in Listing
5).

Testing evolving metamodels: We distinguish be-
tween three current metamodel-testing approaches to
test requirements-conformance objectives for evolv-
ing metamodels: 1) modeling-space sampling, 2)
metamodel-test models, and 3) metamodel valida-
tion. Modeling-space sampling (1) adopts techniques
of model-based testing, testing of model transforma-
tions, and model simulation to generate a sample of
potential metamodel test instantiations (Gomez et al.,
2012; Merilinna et al., 2008). Such a sample is pro-
duced in an automated manner by traversing the meta-
model and creating metamodel instances according
to the metamodel specification and pre-defined sam-
pling criteria. Metamodel-test models (2) aim at the
manual definition of potential metamodel instantia-
tions by domain experts and DSML engineers. Such a
procedure requires a generic, proxy metamodel from
which the test models are instantiated. Metamodel
validation approaches (3) employ model-constraint
expressions (e.g., specified via the OCL) to express
test cases on metamodels (e.g., specified as invari-
ants), defined at the level of the corresponding meta-
metamodel (Merilinna and Pärssinen, 2010). Our ap-
proach primarily extends metamodel validation tech-
niques to provide an explicit scenario abstraction,
both at the requirements and the testing level. In-
dividual steps (e.g., Given) are transformed, for in-
stance, into constraint-expressed preconditions evalu-
ated over the metamodels under test.

Requirements metamodels: The requirements
metamodel defined in Section 4 could be extended by
integrating it with closely related metamodels (Goknil
et al., 2008; Somé, 2009). A consolidated require-
ments metamodel using the proposal by (Goknil et al.,
2008) would benefit from additional concepts such as
requirements relations, status, and priority. In addi-
tion, there is a first SysML integration available for
the metamodel in (Goknil et al., 2008). The require-
ments metamodel in (Somé, 2009) would allow for an
alignment with UML-compliant use cases and a cor-
responding, alternative textual concrete syntax.

Requirements traceability: Requirements are
traced, for example, to prove system adequateness, to
validate artifacts, or to test a system (Winkler and Pil-
grim, 2010). Using traceability links in MDD has its
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purpose, for instance, in supporting design decisions,
in managing artifacts’ dependencies, or in validat-
ing requirements via end-to-end traceability of MDD
processes (Winkler and Pilgrim, 2010). Recent ap-
proaches (e.g., based on structural rules or informa-
tion retrieval techniques) try to overcome the issues of
tracing natural-language requirements (as discussed
in Section 2). We contribute to the field of require-
ments traceability via a linguistic rule-based approach
for testing DSML core language models (and their in-
tegration) and provide for accompanying tool support.

Tool support: Acceptance test approaches provide
tool support for specifying executable test cases in
the domain expert’s language (Wynne and Hellesøy,
2012; Mugridge and Cunningham, 2005). These test
cases are commonly defined via structured text or ta-
ble formats. While our approach shares these design
decisions, we built our proof-of-concept implementa-
tion on top of an existing model-management toolkit
and a previously developed, general-purpose unit- and
scenario-testing framework (Sobernig et al., 2013) to
reuse their model management capabilities.

8 CONCLUSION

In this paper, we presented a linguistic, rule-based ap-
proach for a traceable translation of semi-structured
natural-language requirements into executable test
scenarios. This is motivated by the observed need to
foster the cooperation of the domain expert and the
language engineer when refining and validating the
core language models, i.e., the abstract syntaxes of
domain-specific modeling languages (DSMLs), iter-
atively. We exemplified the usage of our approach
by presenting a case for the scenario-based testing of
DSML integration. The feasibility of our approach is
demonstrated via a dedicated software prototype. We
discussed how our work can help to cope with prob-
lems that emerge when validating DSMLs against
their requirements recorded in natural language.

A benefit of our work is its design for reuse (see
also Figures 5 and 7). Step definitions provide a map-
ping convention for translating natural-language re-
quirements into executable test scenarios. These map-
ping conventions are separated from the transforma-
tion routines. In order to provide for further scenario-
based DSML core language model tests, the transfor-
mation routines do not change (as they are only de-
pendent on the requirements specification language).
The linguistic patterns as part of the step definitions
can be reused, as well.

In future work, we plan to extend the requirements
specification language (e.g., scenario outlines, nested

steps), in particular to cover (iterative) metamodel de-
velopment which differs from the coupled metamodel
evolution under DSML integration. In addition, we
will establish a repository of step definitions for test-
ing DSML core language models and their integra-
tion.
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Abstract In this paper, we present an integrated model-
driven approach for the specification and the enforcement of
secure object flows in process-driven service-oriented archi-
tectures (SOA). In this context, a secure object flow ensures
the confidentiality and the integrity of important objects
(such as business contracts or electronic patient records)
that are passed between different participants in SOA-based
business processes. We specify a formal and generic meta-
model for secure object flows that can be used to extend
arbitrary process modeling languages. To demonstrate our
approach, we present a UML extension for secure object
flows. Moreover, we describe how platform-independent
models are mapped to platform-specific software artifacts
via automated model transformations. In addition, we give a
detailed description of how we integrated our approach with
the Eclipse modeling tools.
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1 Introduction

1.1 Motivation

Business processes define an organization’s operational
procedures and are performed to reach operational goals.
In recent years, service-oriented architectures (SOA; see,
e.g., [29,62,64]) are increasingly used in the area of busi-
ness process management. In this context, a process-driven
SOA (see, e.g., [96]) is specifically built to support the defi-
nition, the execution, and monitoring of intra-organizational
and cross-organizational business processes. The widespread
use of service-oriented technologies also led to demands for a
thorough integration of security features in the development
process of service-oriented systems.

In particular, IT systems must comply with certain laws
and regulations, such as the Basel II Accord, the International
Financial Reporting Standards (IFRS), or the Sarbanes-
Oxley Act (SOX). For example, adequate support for the
definition and the enforcement of process-related security
policies is one important part of SOX compliance (see, e.g.,
[7,9,43]). Corresponding compliance requirements also arise
from security recommendations and standards, such as the
NIST security handbook [45], the NIST recommended secu-
rity controls [49], or the ISO 27000 standard family [16–18]
(formerly ISO 17799). Legally binding agreements, such as
business contracts, or company-specific (internal) rules and
regulations do also have a direct impact on corresponding
information systems (see, e.g., [87]).
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Yet, modeling process-related security properties yields
different types of problems. First, contemporary modeling
languages such as Business Process Model and Notation
(BPMN, [52]), Event-driven Process Chain (EPC, [70]), or
Unified Modeling Language (UML) activity models [59] do
not provide native language constructs to model security
features. A second problem is that the language used for
process modeling is often different from (or not integrated
with) the system modeling language that is used to specify
the corresponding software system. This, again, may result
in problems because different modeling languages provide
different language abstractions that cannot easily be mapped
to each other. In particular, such semantic gaps may involve
significant efforts when conceptual models from different
languages need to be integrated and mapped to a software
platform (see, e.g., [4,34,95]). However, a complete and cor-
rect mapping of process definitions and related security prop-
erties to the corresponding software system is essential in
order to assure consistency between the modeling-level spec-
ifications on the one hand, and the software system that actu-
ally manages corresponding process instances and enforces
the respective security properties, on the other hand.

In this paper, we are especially concerned with the confi-
dentiality and the integrity of object flows in process-driven
systems. Confidentiality ensures that important/classified
objects (such as court records, business contracts, or elec-
tronic patient records) which are used in a business process
can only be read by designated subjects (see, e.g., [8,49]).
Integrity ensures that important objects are in their origi-
nal/intended state, and enables the straightforward detection
of accidental or malicious changes (see, e.g., [45,50,69]).
At the modeling-level, an object flow defines that an object
is passed from one node in a business process model to
another. In a process-driven SOA, the corresponding object
flow is then implemented via different messages that are
passed between different software services. In the remain-
der of this paper, we use the term secure object flow to refer
to an object flow whose confidentiality and/or integrity is
ensured via cryptographic mechanisms.

1.2 Approach synopsis

We use model-driven development (MDD) techniques (see,
e.g., [77,79,82]) to provide an integrated, tool-supported
approach for the definition, for the deployment, and for the
execution of secure object flows in process-driven SOAs.
In the context of MDD, a computation-independent model
(CIM) defines a certain domain (or sub-domain) at a generic
level. The CIM is independent of a particular modeling lan-
guage or technology. A CIM can be used to build a platform-
independent model (PIM) of the corresponding domain.
While it is independent of any platform, and thereby neutral
from an implementation point of view, the PIM is typically

Generic Meta-Model for
Secure Object Flows

WS-SecurityPolicyWSDLWS-BPEL

UML SOA Extensions

UML Extension for
Secure Object Flows

PIM
Platform-independent Model

CIM
Computation-independent Model 

PSM
Platform-specific Model

Fig. 1 The secure object flows approach covers the CIM, PIM,
and PSM layers

specified in a particular modeling language (such as BPMN
or UML) and describes the structure of a system, the ele-
ments/results that are produced by a system, or the con-
trol and object flow in a system. Finally, a platform-specific
model (PSM) describes the realization/implementation of a
software system via platform-specific technologies and tools.

Our work on secure object flows presented in this paper
is an integrated approach which covers the CIM, PIM, and
PSM layers (see Fig. 1). At the CIM layer, we provide a
generic metamodel for secure object flows that can be used
to extend arbitrary process modeling languages. At the PIM
layer, we provide a UML extension that allows to model
secure object flows via extended activity diagrams. More-
over, we integrate our extension with the SoaML [58] and
UML4SOA [38] to enable the definition of secure object
flows for process-driven SOAs. At the PSM layer, we gen-
erate WS-BPEL [61], WSDL [92], and WS-SecurityPolicy
[63] specifications from the PIMs.

To enable the specification and the implementation of
secure object flows in process-driven SOAs, we provide
an integrated tool support for our approach based on the
Eclipse IDE [10]. Figure 2 gives an overview of our tool sup-
port on different abstraction levels for the definition and for
the implementation of secure object flows. In particular, we
apply model transformations [42,80] to automatically gen-
erate executable, platform-specific service descriptions that
are deployed in a SOA process engine. At the topmost layer,
our tool supports the definition of security-enhanced Busi-
ness Process models via UML activity diagrams (see Fig. 2).
At the SOA Models level, the service-oriented architecture is
modeled via component structures, service activities, mes-
sage types, as well as service and invocation protocols.
Web Service Artifacts (such as WS-BPEL, WSDL, or WS-
SecurityPolicy specifications) are derived from SOA models
through automatic model transformations. Finally, these arti-
facts are deployed for execution in a process-driven Runtime
Environment.

Our contribution is based on previous publications con-
cerning the modeling of secure object flows [27] and its adop-
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    xmlns:types="http://www.mdd4"

    xmlns:xs="http://www.w3\"])
    name="applicant"

    targetNamespace="http://ww">
</definitions>

<?xml version="1.0" encoding="UTF-8">
<definitions

    xmlns="http://sche"
    xmlns:corr="http://www.m"

    xmlns:plnk="http://schem""])
    xmlns:soap="http://sc"

    xmlns:this="http://www.mdd4s"
    xmlns:types="http://www.mdd4"

    xmlns:xs="http://www.w3\"])
    name="applicant"

    targetNamespace="http://ww">
</definitions>

Fig. 2 Integrated tool support for the definition and implementation of secure object flows

tion for SOA modeling [26]. These previous contributions do,
however, only discuss specific and limited modeling options
at the PIM level. They do neither provide a generic CIM
nor integrated PIM models, or tool support. In this paper,
we extend our previous contributions via MDD techniques
to build an integrated approach (see Figs. 1, 2) for the spec-
ification and for the enforcement of secure object flows in
process-driven SOAs. We provide a thorough description of
the capabilities of our approach to model secure object flows
in SOAs, both at a generic and at the modeling language
level. In addition, we present our tool support (including auto-
mated model transformations) for the specification and for
the deployment of secure object flows.

The remainder of this paper is structured as follows.
Section 2 discusses the general characteristics of secure
object flows and Sect. 3 defines a formal and generic CIM.
Next, we describe our PIM which consists of a generic UML
extension for secure object flows (see Sect. 4) as well as an
integration of secure object flows with SOA-based model-
ing primitives (see Sect. 5). Subsequently, Sect. 6 presents
tool support for our approach and describes automated model

transformations that produce PSM artifacts from correspond-
ing PIMs. Finally, Sect. 7 discusses related work and Sect. 8
concludes the paper.

For the sake of readability, we moved the formal
constraints that define the semantics of our UML extension
to Appendices A and B.

2 Characteristics of secure object flows

Process models typically have (implicit or explicit) token
semantics, and object tokens are passed along object flow
edges. Thus, to ensure the consistency of the correspond-
ing process models, it is especially important to thoroughly
specify the semantics of secure object flows with respect to
control nodes (such as fork, join, decision, and merge nodes).

In general, a secure object flow consists of one or more
arcs in a business process model that transport important,
security-sensitive workflow objects (e.g., electronic patient
records or business contracts) between two secure nodes of
the respective process model. In particular, we have to ensure
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(a) (c)(b)

Fig. 3 Secure object flows with decision and merge nodes

that the security attributes determined by the source node of a
secure object flow (such as the confidentiality algorithm used
to encrypt the corresponding objects) are understood by the
respective target node(s). In this context, control nodes (fork,
join, decision, merge) are of special importance because they
influence the semantics of secure object flows. Below, we
give an overview of the impact that different configurations
of control nodes have on the corresponding secure object
nodes. Subsequently, Sect. 3 provides generic definitions that
formally define the semantics of secure object nodes at the
CIM level.

Figure 3 shows examples for the different configuration
options of secure object flows that include decision or merge
nodes.1 In the subsequent figures, a rectangle including a
key symbol represents a secure object node, while a blank
rectangle represents an ordinary object node.

Figure 3a shows a configuration in which a decision node
has an incoming secure object flow and presents the cor-
responding object tokens to multiple outgoing edges. As the
source of the incoming object flow is a secure node both target
nodes must also be secured. Otherwise, a secure object flow
could have a secure node as its source and an ordinary object
node as its target, which would result in an inconsistency
because ordinary object nodes cannot ensure the confiden-
tiality or the integrity of object tokens. Furthermore, target
nodes of a secure object flow must support the same secu-
rity properties as the respective source node. This constraint
ensures that (1) security properties cannot be lost when tra-
versing a decision node and that (2) the target node(s) are able
to check and to ensure the corresponding security properties.

Figure 3b shows a configuration where a merge node
brings together different flows, one of which is a secure object
flow. For such a configuration, we define that if a merge node
receives at least one secure object flow, the target node of this
merge node must also be a secure node. This constraint guar-
antees that each secure object token passing a merge node
can be checked and processed by the corresponding target
node.

1 For the sake of simplicity, Figs. 3 and 4 show only two
incoming/outgoing flows for the respective control nodes. However,
the corresponding discussion equally applies to an arbitrary number of
incoming/outgoing edges, of course.

(a) (c)(b)

Fig. 4 Secure object flows with fork and join nodes

Figure 3c shows a configuration where a merge node
brings together different secure object flows. In this case, the
target must also be a secure node. Furthermore, we define
that all source nodes must provide compatible security prop-
erties, i.e., the nodes must support the same confidential-
ity and/or integrity algorithms. In addition, the target node
must support all security properties of the respective source
nodes. Otherwise, incompatibilities could emerge if the secu-
rity properties supported by the source nodes are different
from the security properties supported by the target node.

Figure 4 shows examples for the different configuration
options of secure object flows that include fork or join nodes.
Figure 4a shows a configuration where a fork node splits a
secure object flow into multiple concurrent flows. Because
the tokens arriving at a fork node are duplicated, all target
nodes must be secure nodes. Furthermore, the target nodes
must support the same security properties as the correspond-
ing source node. This constraint ensures (1) that security
properties cannot be lost when traversing a fork node and
(2) that the target node(s) are able to check and ensure the
corresponding security properties.

Figure 4b shows a configuration where a join node
synchronizes multiple object flows, one of which is a secure
object flow. We define that if a join node receives at least one
secure object flow, then the target node of this join node must
also be a secure node. This constraint guarantees that each
secure object token passing a join node can be checked and
processed by the corresponding target node.

Figure 4c shows a configuration where a join node
synchronizes multiple secure object flows. In such a situ-
ation, the target must also be a secure node. Furthermore, all
source nodes and the target node must support compatible
security properties. Otherwise, inconsistencies could emerge
if the security properties supported by the source nodes are
different from the security properties supported by the target
node.

The examples from Figs. 3 and 4 only include a single con-
trol node, respectively. However, in principle, the path from
one secure object node to another secure object node may
include an arbitrary number of control nodes. Figure 5 shows
examples of such configurations. In case a path between two
secure object nodes includes two or more intermediate con-
trol nodes, we also have to ensure that the source and the
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Fig. 5 Secure object flows with an arbitrary number of intermediate control nodes
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Fig. 6 Conceptual overview: main elements of Business Activity process flows (see also [85])

target nodes of the respective path provide compatible secu-
rity features.

After discussing the constraints for secure object flows
on the above examples, Sect. 3 now provides a formal and
generic metamodel (CIM) for secure object flows.

3 A formal and generic metamodel for secure object
flows

Figure 6 shows the basic elements of Business Activity
process flows [85] and the main relations between these ele-
ments as a MOF-compliant structural diagram [53]. While
this graphical model only gives an overview, we now pro-

vide a formal specification of the process flow model. The
formal definitions below complement the definitions from
[85].

Definition 1 (Business Activity Process Flow Model)
A Process Flow Model P F M = (N , A, S, Y ) where N =
TT ∪ CF ∪ CJ ∪ CD ∪ CM ∪ O ∪ OSec ∪ {start, end} and
A = AC ∪ AO refer to pairwise disjoint sets of the meta-
model, A ⊆ N × N refers to a set of arcs that connect
nodes, S = SC ∪SI refers to pairwise disjoint sets of security
attributes, and Y = in ∪ out ∪ source ∪ target ∪ of path ∪
successors ∪ predecessors ∪ ca ∪ ia refers to mappings
that establish relationships such that
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• an element of N is called node and an element of A is
called arc;

• an element of AC is called control flow and an element
of AO is called object flow;

• an element of SC is called confidentiality algorithm and
an element of SI is called integrity algorithm;

• an element of TT is called task type;
• an element of O is called object node and an element of

OSec is called secure object node with OSec ⊆ O;
• an element of C = CF ∪CJ ∪CD ∪CM is called control

node. An element of CF is called fork, an element of CJ

join, an element of CD decision, and an element of CM

merge;
• start is called start node and end is called end node;
• all nodes n ∈ N are on a path from start to end.

Below, we iteratively define the partial mappings of the
Business Activity Process Flow Model and provide corre-
sponding formalizations (P refers to the power set):

1. The mapping in : N �→ P(A) is called incoming arc.
For in(n) = Ain with n ∈ N and Ain ⊆ A we call each
a ∈ Ain an incoming arc of node n.

2. The mapping out : N �→ P(A) is called outgoing arc.
For out (n) = Aout with n ∈ N and Aout ⊆ A we call
each a ∈ Aout an outgoing arc of node n.

3. The mapping source : A �→ N is called source node.
For source(a) = n with a ∈ A and n ∈ N we call n the
source node of arc a.

4. The mapping target : A �→ N is called target node.
For target (a) = n with a ∈ A and n ∈ N we call n the
target node of arc a.

5. The mapping of path : (O × O) �→ P(AO) is called
object flow path. For of path(os, ot ) = Apath with
os, ot ∈ O and Apath ⊆ AO we call os source node,
ot target node, and each a ∈ Apath is an arc on the
path from os to ot . Thus, an object flow path between
two object nodes os and ot must only include arcs or
control nodes, it must not include intermediary tasks
or (other) object nodes. Therefore, the following con-
sistency requirements must hold for each object flow
path:

• An object flow path connects the source node os and
the target node ot via an arbitrary number of arcs and
intermediary control nodes, therefore: ∀a ∈ Apath :
source(a) = os ∨ source(a) ∈ C and ∀a ∈ Apath :
target (a) = ot ∨ target (a) ∈ C .

• The first arc a f irst in an object flow path is an out-
going arc of the source node os , therefore: ∃a f irst ∈
Apath : source(a f irst ) = os .

• Each object flow path includes exactly one outgoing
arc of the source node os , therefore:∀a1, a2 ∈ Apath :
a1 ∈ out (os) ∧ a2 ∈ out (os) ⇒ a1 = a2.

• In an object flow path, the source node os has no
incoming arcs, therefore: ∀a ∈ Apath : a /∈ in(os).

• The last arc alast in an object flow path is an incoming
arc of the target node ot , therefore: ∃alast ∈ Apath :
target (alast ) = ot .

• Each object flow path includes exactly one incoming
arc of the target node ot , therefore: ∀a1, a2 ∈ Apath :
a1 ∈ in(ot ) ∧ a2 ∈ in(ot ) ⇒ a1 = a2.

• In an object flow path, the target node ot has no out-
going arcs, therefore: ∀a ∈ Apath : a /∈ out (ot ).

6. The mapping successors : O �→ P(O) is called
succeeding object nodes. For successors(os) = Osucc

with os ∈ O and Osucc ⊆ O we call os source node
and each ot ∈ Osucc a direct successor of os . In par-
ticular, Osucc is the set of object nodes for which a
path exists between os and each ot ∈ Osucc. Formally:
∀os ∈ O, ot ∈ successors(os) : of path(os, ot ) �= ∅.

7. The mapping predecessors : O �→ P(O) is called
preceding object nodes. For predecessors(ot ) = Opre

with ot ∈ O and Opre ⊆ O we call ot target node and
each os ∈ Opre a direct predecessor of ot . In particular,
Opre is the set of object nodes for which a path exists
between each os ∈ Opre and ot . Formally: ∀ot ∈ O, os ∈
predecessors(ot ) : of path(os, ot ) �= ∅.

8. The mapping ca : OSec �→ SC is called confidentiality
algorithm. For ca(os) = sc with os ∈ OSec and sc ∈ SC

we call sc the confidentiality algorithm used by os .
9. The mapping ia : OSec �→ SI is called integrity algo-

rithm. For ia(os) = si with os ∈ OSec and si ∈ SI we
call si the integrity algorithm used by os .

A direct object flow consists of a single arc that directly
connects two object nodes without intermediary control
nodes, i.e., ADO = {a ∈ AO |source(a) ∈ O ∧ target (a) ∈
O}. A transitive object flow consists of two or more arcs
which connect two object nodes via an object flow path, i.e.,
AT O = {a ∈ AO |a ∈ of path(os, ot )} with os, ot ∈ O . If
the source of a (direct or transitive) object flow is a secure
object node, i.e., a ∈ AO ∧ source(a) ∈ OSec, we call this
object flow a secure object flow.

Definition 2 Let P F M = (N , A, S, Y ) be a Business
Activity Process Flow Model. P F M is said to be correct
if the following requirements hold:

1. Each secure object node ensures either or both confiden-
tiality and integrity: ∀os ∈ OSec : ca(os) ∪ ia(os) �= ∅.

2. The successor of a secure object node must also be a
secure object node: ∀os ∈ OSec, ot ∈ successors(os) :
ot ∈ OSec.

3. The successor of a secure object node must support the
same confidentiality algorithm as the respective source
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Package SecureObjectFlows
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Fig. 7 UML metamodel extension for secure object flows

node: ∀os ∈ OSec, ot ∈ successors(os) : ca(os) =
ca(ot ).

4. The successor of a secure object node must support the
same integrity algorithm as the respective source node:
∀os ∈ OSec, ot ∈ successors(os) : ia(os) = ia(ot ).

5. The security attributes of two secure object nodes
os1, os2 ∈ OSec may influence each other, even if they
are not connected via a direct or via a transitive object
flow. In particular, this is the case if os1 and os2 are pre-
decessors of a common target object node ot ∈ OSec. In
other words, if a secure object node ot has two or more
predecessors that are also secure object nodes, then each
predecessor must support the same confidentiality algo-
rithm as the respective target node: ∀ot ∈ OSec, os ∈
predecessors(ot ) : os ∈ OSec ⇒ ca(ot ) = ca(os).

6. If a secure object node ot has two or more predecessors
that are also secure object nodes, then each predecessor
must support the same integrity algorithm as the respec-
tive target node: ∀ot ∈ OSec, os ∈ predecessors(ot ) :
os ∈ OSec ⇒ ia(ot ) = ia(os).

4 UML extension for secure object flows

To provide modeling support for confidentiality and integrity
properties of object flows at the PIM level, we define a new
package called SecureObjectFlows as an extension to the
UML metamodel (see Fig. 7). In particular, we introduce
SecureNode,SecurePin,SecureDataStoreNode,

and SecureActivityParameterNode as new model-
ing elements. A secure object flow is defined as an object flow
between two of the above mentioned secure object nodes.
The SecureNode element is defined as an abstract node,
and the SecurePin, SecureDataStoreNode, and
SecureActivityParameterNode represent special-
ized secure nodes. In particular, these three node types inherit
the properties from their corresponding parent object nodes
as well as the security related properties from SecureNode
(see Fig. 7).

Below, we specify the attributes of the SecureNode
elements defined via the metamodel extension. In addition,
we use the Object Constraint Language (OCL, [57]) to for-
mally specify the semantics of the SecureObjectFlows pack-
age. For the sake of readability, we decided to move the
associated OCL constraints to Appendix 8. However, these
OCL constraints are a significant part of our UML exten-
sion, because they formally define the semantics of the new
modeling elements. Therefore, each UML model that uses
the SecureObjectFlows package must conform to these OCL
constraints.2

2 For some of our OCL constraints, Appendix A provides two optional
OCL statements expressing identical constraints, where each of these
optional constraints complies with a different version of the OCL
standard. OCL Constraints 4a and 6a comply with OCL version
2.2 [56], while OCL Constraints 4b and 6b use new language con-
structs from the OCL 2.3.1 standard [57]. The changes affect only the
allSuccessors() and allPredecessors() definitions which
are interchangeable.
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Table 1 Notation of elements for modeling secure objects

Node type Notation Explanation

SecurePin (attached to an action) A SecurePin attached to an action
is shown as a UML Pin element that
includes a key symbol

SecureDataStoreNode A SecureDataStoreNode is
shown as a UML DataStoreNode
element with a key symbol in the lower
right corner surrounded by a small
rectangle

SecureActivityParameterNode A SecureActivityParameter
Node is shown as a UML
ActivityParameterNode ele-
ment with a key symbol in the lower
right corner surrounded by a small
rectangle

• confidentialityAlgorithm : Classifier [0..1]

– References a classifier that provides methods to
ensure confidentiality properties of the object tokens
that are sent or received by a SecureNode, e.g., a
class implementing Data Encryption Standard (DES,
[46]) or Advanced Encryption Standard (AES, [47])
functionalities.

• confidentialityEnsured : Boolean [0..1]

– This attribute is derived from the attribute con-
fidentialityAlgorithm. It evaluates to “true” if a
SecureNode supports confidentiality-related secu-
rity properties (see OCL Constraint 1 in Appendix A).

• integrityAlgorithm : Classifier [0..1]

– References a classifier that provides methods to
ensure integrity properties of the object tokens that
are sent or received by a SecureNode, e.g., a class
implementing SHA-1 or SHA-384 (Secure Hash
Algorithm, [48]) functionalities.

• integrityEnsured : Boolean [0..1]

– This attribute is derived from the attribute integrityAl-
gorithm. It evaluates to “true” if aSecureNode sup-
ports integrity-related security properties (see OCL
Constraint 2).

With respect to the attributes defined above, we specify
that a secure object node supports either or both confiden-
tiality and integrity properties (see OCL Constraint 3).
Table 1 shows the graphical elements for SecureNodes.
Table 2 gives an overview of how each of the generic (CIM)

definitions from Sect. 3 is mapped to our UML extension
(PIM) for secure object flows.

4.1 Example processes with secure object flows

Below, we show two examples that model secure object
flows. In Sect. 4.1.1, we present a radiological image read-
ing process that is conducted in a hospital. In Sect. 4.1.2, we
show a simple credit application process in a bank.

4.1.1 Radiological examination process

Figure 8 shows a radiological examination process, modeled
via a UML activity diagram that uses elements of the Secure-
ObjectFlows package. The process starts with a Radiological
examination action that produces images which are read in
a next step. The corresponding SecurePins enforce the
security properties defined in Table 3 for all Image object
tokens traveling between the Radiological examination and
Image reading actions. The attributes are derived from the
SecureNode classifier defined via the SecureObjectFlows
package. Note that the different attributes are properties of
the corresponding SecureNodes and exist independent of
their visualization in a model.3 If the images are of sufficient
quality, the activity continues with two concurrent flows: the
images are annotated and the patient record is fetched. Both
actions produce output tokens of type Image and Patient

3 For example, an alternative visualization of SecureObjectFlows
attributes would use comments/constraints attached to secure object
nodes directly in an activity diagram.
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Table 2 Consistency of the generic metamodel and the SecureObjectFlows UML extension

Generic definitions Covered through

Definition 1.1: in : N �→ P(A) Implicitly defined via our metamodel extension and the specification of
UML activity models (see Fig. 7; [59])

Definition 1.2: out : N �→ P(A) Implicitly defined via our metamodel extension and the specification of
UML activity models (see Fig. 7; [59])

Definition 1.3: source : A �→ N Implicitly defined via our metamodel extension and the specification of
UML activity models (see Fig. 7; [59])

Definition 1.4: target : A �→ N Implicitly defined via our metamodel extension and the specification of
UML activity models (see Fig. 7; [59])

Definition 1.5: of path : (O × O) �→ P(AO ) Implicitly defined via our metamodel extension, the specification of
UML activity models (see Fig. 7; [59]), as well as the usage of the OCL
quantifiers collect (see [56,57]) or closure (see [57])

Definition 1.6: successors : O �→ P(O) Implicitly defined via our metamodel extension, the specification of
UML activity models (see Fig. 7; [59]), and helper OCL operations
(see, e.g., allSuccessors in Constraints 4a and 4b in Appendix A)

Definition 1.7: predecessors : O �→ P(O) Implicitly defined via our metamodel extension, the specification of
UML activity models (see Fig. 7; [59]), and helper OCL operations (see,
e.g., allPredecessors in OCL Constraints 6a and 6b in Appendix
A)

Definition 1.8: ca : OSec �→ SC Metamodel extension SecureNode and corresponding sub-types (see
Fig. 7)

Definition 1.9: ia : OSec �→ SI Metamodel extension SecureNode and corresponding sub-types (see
Fig. 7)

Definition 2.1: ∀os ∈ OSec : ca(os) ∪ ia(os) �= ∅ OCL Constraints 1, 2, and 3 in Appendix A

Definition 2.2: ∀os ∈ OSec : ∀ot ∈ successors(os) : ot ∈ OSec OCL Constraints 4a and 4b in Appendix A

Definition 2.3: ∀os ∈ OSec : ∀ot ∈ successors(os) : ca(os) =
ca(ot )

OCL Constraint 5 in Appendix A

Definition 2.4: ∀os ∈ OSec : ∀ot ∈ successors(os) : ia(os) =
ia(ot )

OCL Constraint 5 in Appendix A

Definition 2.5: ∀ot ∈ OSec : ∀os ∈ predecessors(ot ) : os ∈
OSec ⇒ ca(ot ) = ca(os)

OCL Constraints 6a and 6b in Appendix A

Definition 2.6: ∀ot ∈ OSec : ∀os ∈ predecessors(ot ) : os ∈
OSec ⇒ ia(ot ) = ia(os)

OCL Constraints 6a and 6b in Appendix A

Radiological examination process
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Write report Validate report
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Patient data
Fetch patient

record

Archive report
«datastore»

Report archive

Report
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OK]

[Image
not OK]

[Report OK]

[Missing information]

Image Annotate image

Fig. 8 Radiological examination process with secure object flows

record, respectively. Note that Image and Patient record are
specialized classifiers of type Patient data (see Fig. 9) and,
therefore, support the same SecureObjectFlows attributes as
defined in Table 3.

After the report has been written, it is validated by a senior
physician. If the report is incomplete, the corresponding
actions have to be repeated. Otherwise, the report is archived
via a SecureDataStoreNode (see Fig. 8).
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Table 3 SecureObjectFlows
attributes for the radiological
examination process

Object type SecureObjectFlows attributes

Patient data confidentialityAlgorithm = Aes256; integrityAlgorithm = Sha512

Report confidentialityAlgorithm = Aes256; integrityAlgorithm = Sha512

Patient data

Patient recordImage

Fig. 9 Patient data object types

4.1.2 Credit application process

Figure 10 shows a credit application process that uses the
elements of the SecureObjectFlows package. The model con-
tains swimlanes representing a customer and a bank clerk.
Figure 11 shows a UML class diagram that describes the
data items used in the credit application process. In addi-
tion, Table 4 documents the attribute-value pairs of the cor-
responding secure object nodes. The activity starts when
the SecureActivityParameterNode named Credit
application passes an object token to the Check application
form action (see Fig. 10). In this example, the Credit applica-
tion SecureActivityParameterNode is ensuring the
data confidentiality and the data integrity of the correspond-
ing object tokens via the AES-192 and SHA-1 algorithms,
respectively (see Table 4). Remember that the formal seman-
tics of the respective modeling elements are defined via the
OCL constraints from Appendix A.

CreditApplication

- appId : Integer
- statusId : Integer
- content : String

Contract

- contractId : Integer
- creditSum : Integer
- content : String

Fig. 11 Data items of the credit application process

After completing the Check application form action, the
creditworthiness of the applicant is checked. If the check
fails, the credit application is rejected and the process ends
(see Fig. 10). If the creditworthiness check is passed, how-
ever, the bank offers a contract to the respective customer. If
the credit sum does not exceed the amount of 5000, the appli-
cant is offered a standard contract. Otherwise, a customized
contract is negotiated with the client. Because the contents
of this contract are confidential, both output pins of the Stan-
dard contract and Negotiate contract actions as well as the
input pin of the subsequent action Approve contract support
confidentiality properties (see also Table 4). In Sects. 5 and 6,
we use the credit application example to describe the mod-
eling of (secure) process-driven SOAs and to illustrate our
tool support for secure object flows.

5 Modeling process-driven SOAs with UML

In the context of (Web) service modeling, identifying and
categorizing services that are based on business process arti-
facts is an important modeling task. It provides the input for

Credit application process

Check 
application form

[else]

[Form Ok]

[else]

Check credit
worthiness

Credit
application

Negotiate
contract

Standard
contract

Contract

Approve contract

Contract

Contract

[else]

[approved]

[Check
passed]

[creditSum > 5000]

[creditSum
<= 5000]

Reject
application

Customer Bank clerk

Credit 
application

Fig. 10 Credit application process with secure object flows
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Table 4 SecureObjectFlows
attributes for the credit
application process

Object type SecureObjectFlows attributes

Credit
application

confidentialityAlgorithm = Aes192; integrityAlgorithm = Sha1

Contract confidentialityAlgorithm = Aes192

specifying the services, the service architecture, and the tech-
nical (i.e., executable) process descriptions. In the remainder
of this paper, we focus on the specification of services and
a corresponding service architecture using extended UML
activities (see Sect. 4) and other UML models. Below, we
describe how we derive the structural specification of a SOA
(in terms of a distributed system architecture) from a busi-
ness process modeled as a UML activity model. The exam-
ples given below refer to the credit application process from
Fig. 10. For the sake of simplicity, we make the following
assumptions:4

• Business units and actors involved in a process are mod-
eled as ActivityPartitions (swimlanes). Thus,
each swimlane indicates task ownership by a single unit
or by an actor. In the service modeling step, units and
actors may be modeled as SOA participants that provide
and consume services. For example, the credit applica-
tion activity from Fig. 10 contains two swimlanes (and
thereby two task owners): TheBankClerk receives and
evaluates the credit application filed by the Customer.

• A process model identifies the object flows between
tasks. This means that the model specifies the data items
(objects) that serve as the input for and as the output
of the tasks. For example, the credit application process
describes object flows for a credit application and for the
respective contract (see Figs. 10, 11). The corresponding
data items (objects) enter a service model as the invoca-
tion data that are exchanged between the services (e.g.,
via messages, see [81]).

• A process model may define object flows between tasks
owned by a single actor as well as object flows which
occur between tasks owned by two (or more) distinct
actors. Thus, an object flow within the same swimlane is
executed by a single actor (i.e., it does not involve inter-
action between actors). In a service architecture, such
an actor becomes a SOA participant which is responsi-
ble for executing a macroflow or a microflow (see also
[25]). On the other hand, object flows crossing swimlane
boundaries identify interactions between services that are
provided and consumed by two (or more) actors (SOA
participants). Such interactions effectively turn into

4 Note, however, that we only make these assumptions to simplify the
following explanations, our approach is independent of these assump-
tions, of course.

service invocations, and the object flow details (such as
object types and security attributes) are contracted via
respective service interfaces.

• The data integrity and data confidentiality properties
expressed via our SecureObjectFlows extension apply
to both intra-swimlane and inter-swimlane object flows
(of course). In the subsequent step of modeling a ser-
vice architecture, the secure object flows therefore map
to either or both the macroflow/microflow specifications
and the service interfaces.

A service specification includes the definition of structural
and behavioral views of a service architecture. In particu-
lar, we use the Service-oriented architecture Modeling Lan-
guage (SoaML, [58]) and the SoaML extension UML4SOA
(see [38]). The SoaML provides essential modeling primi-
tives for structural views of a service architecture (including
participants, collaborations, service contracts and interfaces,
as well as messages). The UML4SOA extension is used for
modeling macroflow/microflow specifications for the partic-
ipants of a service architecture. Moreover, we describe how
we integrated the SecureObjectFlows extension (see Sect. 4)
with the SoaML and UML4SOA, respectively. Thereby, we
provide a seamless mapping of integrity and confidential-
ity properties specified at the business process level to the
structural and behavioral views of a service architecture.

5.1 Modeling the structure of a process-driven SOA

The SoaML offers an extension of the UML composite struc-
ture metamodel: Fig. 12 shows an excerpt from the SoaML
metamodel extension. This extension enables a composition
of service consumers and providers via a set of interact-
ing entities, referred to as Participants. A partici-
pant announces its interaction capabilities and requirements
through Service and Request ports, respectively (see
Fig. 12). Because the Service and Request elements
are derived from the UML Port metaclass, they specify
required and provided Interfaces.
Interfaces can directly be attached to Service and

Request ports or they can be specified for a port via an
intermediary construct: a so called ServiceInterface
(see also [14]). A SoaML ServiceInterface is derived
from the Class metaclass (see Fig. 12) and can be used
to define a port protocol. Participants are connected
via ports. The context of such a connection is modeled
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Fig. 12 Excerpt from the SoaML metamodel extension (see [58])

Table 5 Selected SoaML modeling elements

SoaML::Services
metaclass

SoaML stereotype Specialized/Extended
metaclass

Description

Participant «Participant» Class Represents a software system, component, or application
which provides or consumes services (including process
engines)

Request «Request» Port Defines the service interaction point of a participant for con-
suming services offered by other participants, according to
the port’s required interfaces

Service «Service» Port Defines the service interaction point of a participant for pro-
viding services to other participants, according to the port’s
provided interfaces

ServiceInterface «ServiceInterface» Class Defines the structural (e.g., the operational interface) and
behavioral properties (e.g., the invocation protocol) of a ser-
vice. It is shared between a pair of request and service ports

as a ServiceChannel. A SoaML ServiceChannel
ensures protocol compliance between a pair of Service
and Request ports. In the structural view, protocol compli-
ance is either expressed by sharing aServiceInterface
between corresponding Request and Service ports, or
by directly connecting their required and provided
Interfaces. Table 5 gives an overview of selected SoaML
elements for the definition of composite structures (see also
Fig. 12).

Figure 13 shows an example of a composite SOA struc-
ture modeled using the SoaML. The example includes two
Participants (A andB) which define interacting subsys-
tems of the SOA. Participant B acts as the service provider.
This is modeled via its «Service» port. Participant A is

a service consumer modeled via a «Request» port. The
requestor and consumer ports are connected through
a service channel. The structural dependency realized by
the two ports via mutually provided and required opera-
tions is specified by the service interface AService (see
Fig. 13). This service interface describes two participating
roles (roleA and roleB) with each role referring to a cor-
responding Interface. In the context of the given ser-
vice channel, the requestor port binds roleA while the
provider port binds roleB. This binding indicates that
the «Service» port implements the provided interfaces
(i.e., InterfaceB) and uses the required interfaces (i.e.,
InterfaceA; see Fig. 13). The «Requestor» port of
participant A is also typed by the AService interface and
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Fig. 13 Example of a composite SOA structure in the SoaML

because it is defined as a conjugated port, the meaning of the
required and provided interfaces linked to the port is inversed
(see Fig. 13). The requestor port provides an interface
realization for InterfaceA and expects InterfaceB to
be implemented by its port provider (for further details
see [58]).

5.2 Modeling the behavior of a process-driven SOA

After defining a SoaML structure model, we require means
to express the object flows resulting from service invoca-
tions (as well as their integrity and confidentiality properties).
In general, we can distinguish two types of object flows in
a process-driven SOA. First, object flows occurring during
execution of macroflows/microflows (see [25]). These object
flows are internal to a process engine and will be referred to
as process execution data in the following. Second, object
flows resulting from service invocations. Note, however, that
neither business nor control data are exclusive to one of these
object flow categories. They may rather be involved in both
types of object flows. Consider, for example, that the credit
application data from Fig. 10 are first reified as a data struc-
ture that is associated with a certain process instance and
stored by the respective process engine. In a subsequent step,
the data are marshaled into a message which is then delivered
to a remote service endpoint. Because of this dual character
of business and control data in a process-driven SOA, we
require two different, yet complementary, behavioral view-
points to specify secure object flows for these data assets. In
particular, it is necessary to incorporate secure object flows in
service orchestration specifications as well as service chore-
ography specifications.

The SoaML provides explicit extension points for attach-
ing behavioral specifications to elements of a composite SOA
structure. As far as participants and service interfaces are
concerned, the SoaML recommends the use of UML activi-

ties and interactions (see, e.g., [13,58]). However, the SoaML
does not provide any normative guidance for specifying SOA
behaviors such as service choreography and service orches-
tration (see, e.g., [19]).

5.2.1 Specifying a choreography via UML activities

Object flows that realize service invocations across ports are
constrained by the ports’ protocol. This also applies for object
flows between correspondingService andRequestports
that are provided through the same Participant. The
behavioral part of a port protocol stipulates the choreog-
raphy of service invocations between the Interfaces
and it defines the respective service invocation patterns
(such as “fire and forget” or “result callbacks”). While
the structural part of a port protocol is specified by a
ServiceInterface, the ServiceInterface can be
extended via an owned Behavior to express the details
of a corresponding behavioral protocol. To represent secure
object flows at the level of such a choreography specifi-
cation, we use an extended UML activity. For example,
the use of UML activities allows us to integrate the proto-
col viewpoint with the orchestration viewpoint in terms of
ServiceActivityNodes (see Fig. 14).

In particular, we use UML activities as owned behavior
of ServiceInterfaces to model flows of invocation
objects. This choice permits us to model the characteristics of
service invocation data (see, e.g., [81]) through UML object
flows:

• Invocation data as object nodes: An Activity can
model input and output parameter streams of service
invocations. This is a prerequisite for applying the
SecureObjectFlows extension to invocation data at this
level.
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Fig. 14 Activities as
behavioral specifiers

Fig. 15 Example of
a choreography activity

• Choreography roles: ActivityPartitions can be
used for modeling choreography roles.5 Thus, each
ActivityPartition represents an “interface-
realizing role” and thereby abstracts from the
Participants that use or implement the interfaces.
In the compositional view, they correspond to the respec-
tive ServiceInterfaces (see roleA and roleB
in Figs. 13 and 14). Note that ServiceInterfaces
may refer to more than two parts (or choreography roles)
and can be used to model multi-directional invocation
flows.

• Duality of invocations: Choreography roles are typed
through the Interfaces that are required and imple-
mented by the corresponding ServiceInterface
(for example InterfaceA and InterfaceB in
Fig. 13). ActivityPartitionsmodel the providers
and consumers of invocations. Thus, the SecureObject-
Flows elements in an Activity model consumer-side
and provider-side security properties (such as signature
mechanisms for messages).

5 Note that such “choreography roles” do only model which partici-
pant provides and/or requests specific functions/interfaces. They do not
model access control roles. For the definition of process-related access
control models, the SecureObjectFlows extension is integrated with the
extension presented in [85].

• Standalone choreography specification: An Activity
that is owned by a ServiceInterface and the secu-
rity properties that are specified for its object flows are
modeled independently of the Participants which
consume or implement the respective service endpoints.
For example, in Fig. 13 AService applies to any pair
of ParticipantsA and B, regardless of whether they
act as process engine or service providers.

Figure 15 shows an example choreography activity,
where AChoreographyActivity further specifies the
AService interface from Fig. 14. Through itsrequestor
port, participant A consumes the AService interface (rep-
resented via roleA, see Figs. 13, 14). Thus, the activity
defines the operation calls between the Interfaces via
actions and a corresponding control flow. Object flows model
the flow of input and output parameters between the opera-
tion calls (see parameters p1–p4 in Fig. 15).

SecureObjectFlows are independent of different types of
invocation patterns. Therefore, we do not further elaborate
on the definition of invocation patterns for distributed sys-
tems in general (see, e.g., [81]), or for process-driven SOAs
(see, e.g., [97]). Note, however, that UML activities can be
used to model service invocation patterns such as fire-and-
forget invocations, sync-with-server invocations, request-
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Fig. 16 Excerpt from the UML4SOA metamodel (see [38])

reply invocations, or result callbacks, of course (see, e.g.,
[97]).

5.2.2 Specifying service orchestrations via UML activities

We use the UML4SOA [38] to model object flows as
an integral part of service orchestrations. UML4SOA is a
SoaML extension to model process-driven service compo-
sitions through orchestration specifications that are defined
with UML activities. In a process-driven SOA, one or more
Participants act as process engines that invoke the
functions of service providers to execute tasks. The cor-
responding tasks are defined via a composite activity. In
UML4SOA, such a composite activity (controlled by a sin-
gle, orchestrating Participant) is modeled through a
ServiceActivityNode (also referred to as a “service
activity”). A ServiceActivityNode is owned by the
orchestrating Participant (see Fig. 16 and the example
from Fig. 14).

In particular, a service activity defines the control flow
through ServiceInteractionActions and corres-
ponding UML protocol state machines. For example,
a fire-and-forget invocation is modeled using a
ServiceSendAction. Accessing and changing the
process engine’s state can be modeled viaDataHandling-
Actions. The internal data flow and data dependencies
of a service activity (e.g., the process engine state or the
invocation data) are expressed using a set of refined object
nodes (SendPins and ReceivePins) that are linked

to ServiceInteractionActions. These SendPins
and ReceivePins represent the object nodes which form
object flows (see Fig. 16). Table 6 provides an overview of the
UML4SOA model elements that are relevant for the remain-
der of this paper.

Figure 17 shows an example of a
ServiceActivityNode. The orchestration specifica-
tionAServiceActivity (see also Fig. 14) is modeled via
a ServiceActivityNode that is registered as an owned
behavior of the corresponding Participant (participant
A from Fig. 14). Process execution starts by sending a call
request to an operation OperationB1 via the consumer
port (requestor) of participant A. The process instance
must provide two input parametersp1 andp2 asSendPins
to the call request (see Fig. 17). The call request does not
return out parameters to the process instance (i.e., it models
a fire-and-forget invocation). The participant then enters a
waiting state, until an inbound call request for the operation
OperationA2 is signalled through the requestor port.
This inbound call request provides invocation data (p4) via
a ReceivePin (see Fig. 17).

The examples from Figs. 15 and 17 show the comple-
mentary nature of the invocation activities and the service
activities. Service invocations that are issued or expected by
the orchestration specification (see Fig. 17) are reflected in
the corresponding choreography specification (see Fig. 15)
as the required or the provided operations. While the orches-
tration specification only considers consuming or providing
roles (i.e., the required or implemented Interfaces) of a
single participant, the choreography specification integrates
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Table 6 Selected UML4SOA/SoaML modeling elements

SoaML::Services metaclass SoaML/UML4SOA stereotype Specialized/Extended metaclass Description

ServiceActivityNode «ServiceActivity» Activity A service orchestration specification; spe-
cific to a single SoaML participant

SendPin «Snd» Pin Represents outbound invocation data pro-
vided to a service in a send action

ReceivePin «Rcv» Pin Represents inbound invocation data
received from a service in a receive action

ServiceSendAction «Send» CallOperationAction Models a non-blocking service invocation

ServiceReceiveAction «Receive» AcceptCallAction Models a blocking message listener

ServiceReplyAction «Reply» ReplyAction Represents an invocation which completes
a receive action; i.e., the provider-side of a
result-callback invocation

ServiceSend&ReceiveAction «Send&Receive» ServiceSendAction,
ServiceReceiveAction

Models a blocking request-reply invoca-
tion

LinkPin «Lnk» Pin A reference to a service endpoint (i.e., a
service or a request port)

Fig. 17 Example of a service
activity

the consuming and providing roles of two or more partici-
pants for the scope of a single service channel.

5.3 A SoaML extension for secure object flows

Security concerns such as message confidentiality and
message integrity are crosscutting in nature and must be
addressed in different types of SOA models (see, e.g.,
[25,81]). Business process data (e.g., business and control
objects) are exchanged in terms of invocation data. Invo-
cation data include service endpoint references, operation
names, input and output parameters, as well as exception
data (see, e.g., [81]). At runtime, a process engine controls
process instances that include corresponding data objects.
Confidentiality and integrity properties of invocation data
and process execution data affect data transformation steps at
various layers of a SOA. As a result, the invocation process-
ing infrastructure as well as the respective transport han-
dling must be adapted. For example, if we need to ensure the
integrity of data assets in a business process, a modeler must
define message integrity constraints over the corresponding
service interfaces. Afterwards, corresponding source code
(such as message interceptors for message signing) and/or

configuration data (e.g. for a security component) can be
generated. Therefore, multiple views must be considered to
support the definition of secure object flows in a SOA context.
In this context, the choreography specifications for service
interfaces and the corresponding orchestration specifications
are of special importance:

• Choreography specifications for secure flows of invoca-
tion data: This view includes modeling support for invo-
cation data (such as input and output parameters) which
require integrity and/or confidentiality properties. In the
compositional view of a SoaML model, the structural
characteristics (e.g., the interface signature) of service
invocations are specified via ServiceInterfaces
(see also Fig. 12).

• Orchestration specifications for secure flows of process
execution data: This view includes modeling support
for secure object flows of process execution data
as well as invocation data. A UML4SOA
ServiceActivityNode allows to model specifying
flows of process execution and invocation data for a sin-
gle entity, e.g., a Participant or a role in the sense
of a ServiceInterface (see also Fig. 16).
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Fig. 18 The
SecureObjectFlows::Services
package

Modeling integrity and confidentiality properties in the
choreography specifications of SecureInterfaces and
ServiceActivityNodes is complementary. If the
SecureInterface view was not available, the
modeling effort would have to be duplicated for
the ServiceActivityNodes of all Participants
which share one or more ServiceInterfaces. This is
because aServiceActivityNode captures service invo-
cations as patterns of ServiceInteractionActions
from either the consumer or provider side only (see also
Sect. 5.2). Moreover, a Participant may represent a
process engine as well as simple service providers. As a con-
sequence, the ServiceActivityNode element may not
be available for all Participants.

To integrate the SecureObjectFlows extension with the
SoaML, we provide a UML integration package (see Fig. 18).
Our SecureObjectFlows::Services package adds SoaML-
specific constraints for secure object flows.

5.3.1 SecureObjectFlows::Services abstract syntax

The SecureObjectFlows::Services package introduces a
specialized ServiceInterface called Secure-
Interface. At the SoaML metamodel level, Secure-
Interface extends the ServiceInterfacemetaclass
(see Fig. 18; and OCL Constraint 7 in Appendix B). A
SecureInterface contracts either a strict or a permis-
sive mode. The permissive mode is the default mode (i.e.,
isStrict is set to false) which allows to include secure
object flows as well as ordinary object flows. In contrast, the
strict mode (i.e., isStrict is set to true) defines that all
invocation data flows (as specified further below) must be
secure object flows (see OCL Constraint 8).

To model secure object flows in UML4SOA
ServiceActivityNodes, we provide two additional

metaclasses:SecureSendPin andSecureReceivePin
(see Fig. 18). They integrate the capabilities of the
SecureNodemetaclass (see Sect. 4) and theReceivePin
and SendPin, respectively. For all metaclasses provided by
the SecureObjectFlows::Services package, the notation for
the SecureNode metaclass applies (see Sect. 4; [27]).

5.3.2 Constraints for the SecureObjectFlows::Services
package

In this section, we discuss constraints for an Activity
that is owned by a SecureInterface and for
ServiceActivityNodes of the Participants
which are connected by SecureInterfaces. The OCL
constraints for the SecureInterface metaclass are
defined over the metaclasses SecurePin and
SecureActivityParameterNode. The OCL
constraints for ServiceActivityNodes refer to the
SecureSendPin andSecureReceivePinmetaclasses
(see Figs. 12, 16, 18).

Explicit links between invocations and interfaces: An
Activity that specifies a choreography must only describe
service invocations betweenOperations that are provided
or required by the Interfaces referenced by the cor-
responding SecureInterface (see OCL Constraint 9).
This allows the modeler to express explicit links between
Actions in a choreography activity and the Operation
repository represented by these Interfaces.

Cross-interface invocations only: ActivityParti-
tions represent “interface-realizing” and “interface-
providing” roles with respect to a SecureInterface
(see also Sect. 5.2). Object flows may occur within a sin-
gle partition or between two partitions. Thus, an object
flow between two CallOperationActions, which are
modeled in different ActivityPartitions, depicts an
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output/input dependency between operations which repre-
sent an actual service invocation (see Figs. 12, 16, 18). If
two adjacent CallOperationActions reside within the
same ActivityPartition, they are required and pro-
vided by the same Interface. Thus, secure object flows
in the SecureObjectFlows::Services package apply to cross-
interface invocations (see OCL Constraint 10), and each
activity node is assigned to exactly one partition (see OCL
Constraint 11).

Activity parameters for initial and intermediary inbound
data: A choreography activity captures data dependencies
between invocations, i.e., the output data of one invocation
serve as the input data for a subsequent invocation. In two
important cases, however, the input data may originate from
the outside. These cases are initial and intermediary inbound
data.

Initial inbound data are provided through the required
Interface of the consumer role. These data are contracted
by the operation of a SecureInterface that triggers the
execution of an Activity (see Figs. 12, 16, 18). Inter-
mediary inbound data are not the result of previous invo-
cations within the same choreography. The input is rather
provided from the outside, such as from a process engine
holding process control data which are then used as the input
parameters for an operation call.

For specifying secure object flows, however, it is manda-
tory to model pairs of secure object nodes (see Sect. 4; [27]).
This is because the security properties required at either end
of an object flow must be compatible (see also Sect. 3). Thus,
each secure pin and each secure activity parameter node must
be connected to (at least) one object flow (see OCL Constraint
12).

Activity parameters for intermediary and flow-final out-
bound data: Analogous to initial and intermediary inbound
data, output data can describe external data dependencies,
i.e., dependencies which do not manifest within the choreog-
raphy activity alone. For instance, an invocation’s output may
be stored in a process-persistent variable by a process engine.
In this context, each secure pin and each secure activity para-
meter node must be connected to (at least) one corresponding
object flow (see OCL Constraint 12).

Streaming-only intermediary activity parameters:
ActivityParameterNodes that are used to model
intermediary inbound data, and output data represent stream-
ing activity parameters (see OCL Constraint 13). Streaming
parameters model data which become available in the context
of an activity, or which leave this context during execution
of the Activity. Note that the streaming mode is only
mandatory for cases of secure intermediary InputPins
and OutputPins (in the sense of OCL Constraint 12).

Same origin for input data flows: Input data for service
invocations, which are represented by InputPins on
CallOperationActions, must have related object nodes

which reside in the same ActivityPartition. Differ-
ent partitions as the origins for input data of an operation
are not valid (see OCL Constraint 14). This requirement fol-
lows from the intention to model input/output data depen-
dency along a path of operation calls. The input parame-
ters of an operation, i.e., the InputPins modeled for a
CallOperationAction, must either be related to out-
put parameters (OutputPins) of the preceding operation
call, or to (initial or intermediary) inbound parameters of
the choreography activity. In either case, these source object
nodes must share their ActivityPartition origin.

Explicit links between orchestration and choreography
activities: The overlap between the views provided by chore-
ography activities for SecureInterfaces and
ServiceActivityNodes becomes evident through the
dual appearance of business and control data—once in terms
of process execution data items and once as invocation data
items. On the one hand, data returned from service invoca-
tions, e.g., out-parameter values, enter the process execution
view as input data (e.g., for result callbacks). On the other
hand, process execution data that are passed as parameter to
invocation requests become in-parameters traveling across
object flows in the choreography view. To avoid inconsis-
tent models, it is important to verify these dependencies in
the model specification phase. Therefore, OCL constraints
15 and 16 define consistency constraints between the two
model views (see also Figs. 12, 16, 18).

5.4 UML profiles for secure object flows

Sections 4 and 5.3 introduced the SecureObjectFlows pack-
age and the SecureObjectFlows::Services package, respec-
tively. Both packages specify UML metamodel extensions
at the PIM level and provide native UML elements for the
definition of secure object flows in general, and for secure
object flows in SOAs in particular. An extension of the UML
metamodel allows to define new and specifically tailored
UML elements (defined via new metaclasses), and it allows
to define a customized notation, syntax, and semantics for
the new modeling elements. However, the integration of a
metamodel extension with software tools most often results
in a significant development effort. Therefore, a metamodel
extension can be seen as a medium-term and long-term option
to extend the UML (or another modeling language) as well
as corresponding software tools.

In contrast, UML profiles provide a mechanism for the
extension of existing UML metaclasses to adapt them for
non-standard purposes. However, UML profiles are not a
first-class extension mechanism (see [59, p. 660]) and are
less powerful than metamodel extensions. In particular, UML
profiles do not allow for modifying existing metamodels.
Nevertheless, most UML tools directly support the definition
of profiles. Therefore, it is comparatively easy to integrate
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Fig. 19 The UML profile packages SOF and SOF::Services

Table 7 Mappings between the SOF::Services profile and the SecureObjectFlows::Services metamodel extension

UML profiles in a software tool. For this reason, we introduce
two UML profiles for secure object flows. By these means,
we provide both a long-term option based on metamodel
extensions and a short-term option based on UML profiles.

Below, we describe the UML profile packages Secure
Object Flows (SOF) and SOF::Services (see Fig. 19). In
Sect. 6, we present our tool support for the definition of secure
object flows in process-driven SOAs based on these two pro-
file packages.

The SOF package provides a profile for a (simplified)
variant of the SecureObjectFlows package (see Sect. 4), and
the SOF::Services package provides a (simplified) variant
of the SecureObjectFlows::Services package (see Sect. 5.3).

The secure stereotype provides the integrity and confi-
dentiality attributes of the SecureNode metaclass (see
Fig. 19). The OCL constraints for the SecureObjectFlows
metamodel (see Appendix A) were adapted for the con-
text of the secure stereotype. Table 7 shows mappings
between the SOF::Services profile and the SecureObject
Flows::Services metamodel extension. In particular, the
following transformation rules exist: Instances of
Pin, ActivityParameterNode, SendPin, and
ReceivePin tagged with the «secure» stereotype
map to instances of SecurePin,
SecureActivityParameterNode, SecureSendPin,
and SecureReceivePin, respectively.
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Fig. 20 The metamodel and profile packages for secure object flows

The SecureInterface metaclass is represented
via the SecureInterface stereotype (see Fig. 19).
In particular, this stereotype identifies a tagged
ServiceInterface as a secure interface, and allows for
specifying the strict or the permissive mode (see Sect. 5.3.1).
The SecureReceivePin and SecureSendPin meta-
classes are included in the SOF profile. However, an impor-
tant limitation applies: ServiceActivitiyNodes may
also contain LinkPins for identifying the ports of a given
ServiceInteractionAction. Because they also rep-
resent ObjectNodes which are in principle extensible via
the «secure» stereotype, we define that the «secure»
stereotype must not be applied to object nodes tagged as
«lnk» pins:

1 context SOF:: Services :: secure
2 inv: self.base_ObjectNode .getAppliedStereotype (’UML4SOA :: Services

::lnk ’) = null

The definition of secure object flows for the UML and
their integration with the SoaML/UML4SOA via a meta-
model extension as well as two profiles open up two integra-
tion paths (see Fig. 20). If we use the metamodel extension
to define secure object flows, we essentially instantiate the
corresponding metamodel (see “instanceOf” relation from
PackageA to the SecureObjectFlows::Services package in
Fig. 20). In contrast, if we use the profile extension to define
secure object flows, we apply the profile to the correspond-
ing UML model (see “apply” relation fromPackageB to the
SecureObjectFlows::Services package in Fig. 20). For details
concerning the “instanceOf” and “apply” relations see [60].

5.5 An integrated example

Figure 21 shows an example that uses the SOF and
SOF::Services profile packages—it extends the example
from Sects. 5.1 and 5.2. Remember that in this exam-

ple, participant A acts as process engine and is specified
via AServiceActivity. The service channel between
the process engine and the service provider (participant
B) is defined through the AService interface which
owns AChoreographyActivity (see also Figs. 13, 14,
15, 17).
AChoreographyActivity is tagged with the

«SecureInterface» stereotype, requesting the permis-
sive mode (see Fig. 21). Thus, not all invocation object
flows in the choreography activity need to be specified as
secure object flows (see also Sect. 5.3.1). The choreogra-
phy activity defines that the object flow pointing towards
OperationB1 realizes a secure object flow that uses
the Aes192 as confidentiality mechanism. Moreover, the
choreography activity specifies another secure object flow
between OperationB2 and OperationA2. This invo-
cation object flow establishes end-to-end message integrity
via the Sha256 integrity algorithm.
AServiceActivity defines the orchestration speci-

fication of participant A (see Fig. 21). It includes the cor-
responding secure object flows from the perspective of the
process engine (participant A). The two SendPins from
the orchestration specification map to the input parameters
p1 and p2 defined on OperationB1 in the choreogra-
phy activity. Moreover, the input parameter p4 from the
choreography activity matches the respective ReceivePin
on the ServiceReceiveAction in the orchestration
specification.

6 Tool support for secure object flows in SOAs

Our tool support for the definition of secure object flows
in process-driven SOAs is based on the Eclipse 3.6 Model
Development Tools (MDT; [11]) and the Eclipse Papyrus
visual UML editor [12]. Moreover, we use the SoaML and
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Fig. 21 Integrated views on secure object flows: orchestration and choreography specifications

UML4SOA profile definitions for MagicDraw 17.0 [51] to
define service specifications. Model integrity checking based
on the OCL constraints for our UML packages (see Appen-
dices A, B) is performed in the Eclipse MDT environ-
ment.6

Our tool support enables automated model transforma-
tions for secure object flows that are defined via platform-
independent models (PIMs). The model transformations
produce corresponding platform-specific models (PSMs).
The generated PSM artifacts include WSDL interface descrip-
tions [92] and WS-BPEL process descriptions [61]. A major
challenge of this model transformation step was to bridge the
gap between the graph-based PIMs (defined via extended
UML activities; see Sect. 5) and the block-based PSMs
(defined via BPEL specifications; see, e.g., [41]). In par-
ticular, we extended the MDD4SOA Eclipse plugin [36]
to support the corresponding model transformations for
secure object flows. Additional transformation steps add
WS-SecurityPolicy statements [63] to the generated inter-
face descriptions and deployment descriptors. Moreover, our
approach allows to add security properties to invocation data

6 All modeling and implementation artifacts are available from http://
nm.wu.ac.at/modsec.

(e.g., single parameters or message elements). These security
properties are transformed into WS-SecurityPolicy descrip-
tions (e.g., EncryptedElements, SignedParts).
Modeling elements that specify integrity and confidentiality
requirements of object flows map to identifiers for algorithm
suites (as defined by the WS-SecurityPolicy specification
[63]).

In the following, we use the credit application example
from Sect. 4.1 to describe our extension for the Eclipse MDT
tool chain in detail. Figure 22 gives an overview of the dif-
ferent steps and the resulting artifacts.

For the sake of simplicity, and in order to emphasize the
details relevant for this paper, we focus on the object flow
which triggers the processing of a credit application (see
Sect. 4.1.2). The corresponding object flow is also depicted
in the topmost diagram of Fig. 22 (PIM, Business Level,
Business Activity). This object flow is defined as a secure
object flow and models the submission of a credit applica-
tion document, that is, it specifies integrity and confidentiality
properties for the transferred document.

6.1 Modeling the SOA structure

The credit application is submitted by a customer software
component and received by a bank clerk software component
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Fig. 22 Different modeling levels supported by the tool chain

Fig. 23 Static structure of the credit application SOA

(see Fig. 22). In the structural viewpoint of a SOA, this trans-
lates into two interacting participants named BankClerk
and Customer. A corresponding SoaML composite struc-
ture model is shown in Fig. 23.

The Customer and BankClerk participants are con-
nected through a ServiceChannel which carries credit
application submissions. The channel connects the two
participants through their Request and Service ports.
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Fig. 24 Business objects as SoaML message types

The customer request port represents the Customer’s
consuming interaction point. The bclerk service port rep-
resents the corresponding providing interaction point of the
BankClerk participant (see Fig. 23).

The details of service invocations for submitting
credit applications are negotiated by the ports’
protocol, i.e., via an instance of a SecureInterface
named CreditApplicationService. This
SecureInterface defines the required and provided
interfaces for service invocations traveling through the
customer and bclerk ports. The structural part of a
respective protocol identifies a single operation
submitApplication that is defined via the
CreditApplication interface. This operation realizes
the application submission and must be implemented by the
BankClerk participant via its bclerk port (see Fig. 23).

While this section highlights the specification of one
secure object flow only, the composite structure model from
Fig. 23 includes additional ServiceInterfaces that
result from other tasks of the credit application process (see
Fig. 10). For example, the BankClerk participant pro-
vides the CreditCheckService interface via its check
service port.

The CreditApplicationInterface is defined as
a SecureInterface. Corresponding confidentiality and
integrity properties are specified via a UML activity attached
to the SecureInterface. The «SecureInterface»
slot value for isStrict is set to false (see Fig. 23).
Therefore, the SecureInterface is said to be per-
missive (see also Sect. 5.3.1). This is necessary because
service invocations other than the secured application sub-
mission are specified via the same service interface (e.g.,
the updateApplicationStatus function provided
through the CustomerStatus interface,
see Fig. 23).

In addition, we must define a structural model of the busi-
ness objects via SoaML message type specifications. In the
credit application example, we have two types of business
objects (the CreditApplication and the Contract,
see also Sect. 4.1.2). Figure 24 shows the respective SoaML
message type specification for these object types. Note that
in the subsequent steps of our example, we do not use a
document-centric service invocation style, but rather a pro-
cedural invocation style (also referred to as RPC-style). As a
result, message type features (such asappIdorstatusId)

are included in the operation signatures rather than in the
messages.

6.2 Modeling the SOA behavior

After defining the structural model, the control flow and the
object flow for processing credit applications are added to the
SoaML model. In Sect. 6.2.1, we specify the choreography
of the CreditApplicationService interface. Subse-
quently, Sect. 6.2.2 defines the corresponding orchestration
specification.

6.2.1 Choreography specification

ServiceInterface instances can include behavioral
protocol specifications for the corresponding ports (see also
Sect. 5). A behavioral protocol specification defined through
a UML activity can describe various characteristics of a ser-
vice channel. It identifies the Interfaces (grouped by a
ServiceInterface) which depend on each other, the
order and the targets of consecutive operation calls, as well
as the respective invocation patterns (i.e., the choreography).
In addition, input and output dependencies between the oper-
ation calls can be specified via object flows.

For the CreditApplicationService, we must
define a choreography over four Interfaces and their
operations: CreditCheck, CreditApplication,
CustomerStatus, and CreditApplicant (see
Fig. 23). Figure 25 shows a UML activity that mod-
els the corresponding choreography. The choreography
identifies five data-level dependencies in terms of object
flows between the call operation actions. When invok-
ing the newCreditApplication operation, the appId
and content parameters must be provided. Furthermore,
the output parameters of the newCreditApplication
(content and appId) are expected as input parame-
ters for the subsequent submitApplication call. The
fifth dependency specifies that the output parameter of the
checkApplicationForm (statusId) is expected as
the input parameter for theupdateApplicationStatus
action.

To model secure object flows, we tag the corresponding
input and output pins of newCreditApplication and
of submitApplication (see Fig. 25). The other object
flows in the example are ordinary object flows. According
to the constraints for the SecureObjectFlows package (see
Appendix A), any secure target node must support the same
security properties as its source node(s) (see OCL Constraint
5). Therefore, both secure object flows from Fig. 25 (and
all four secure object nodes) support the same confidential-
ity and integrity algorithms (in this example AES-192 and
SHA-1).
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Fig. 25 Secure choreography activity

Fig. 26 Consumer (customer) service activity

Fig. 27 Provider (bank clerk) service activity

6.2.2 Orchestration specification

A ServiceActivityNode models the behavior of
a Participant across all service and request ports
(see Sect. 5; [38]). While the choreography for
ServiceInterfaces lays out the order of service invo-
cations for a service channel, a ServiceActivityNode
orchestration specification defines the control and object flow
between service invocations that are controlled by a par-
ticular Participant. In Figs. 26 and 27, we show the
ServiceActivities (i.e., the orchestration specifica-
tions) of the BankClerk and Customer participants.

The Customer service activity is triggered through the
newCreditApplication operation call (see Fig. 26).
As a result of the call request, two variables are stored in
the correspondingReceivePins (appId andcontent).
After receiving the newCreditApplication call, the
Customer executes the submitApplication oper-
ation. The submitApplication action specifies two

SendPins (appId and content) which hold the input
parameters that are transmitted in the corresponding opera-
tion call. The participant then enters a waiting state, until
it receives the updateApplicationStatus request
through its customer port (see Fig. 26).

To ensure consistency between the models, the Secure
ObjectFlows extension requires that SendPins and
ReceivePins, which modelSecureNodes in the chore-
ography (see Fig. 25), also include corresponding security
properties in the respective service activity (see Fig. 26).
Therefore, the SendPins of the submitApplication
action (appId and content) include confidentiality and
integrity properties which refer to the OutputPins of the
newCreditApplication action in the associated invo-
cation protocol (see Figs. 25, 26).

The orchestration specification for the BankClerk
participant is shown in Fig. 27. This specification
stipulates a blocking Send&ReceiveAction on the
checkApplicationForm operation. Thus, after sending
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the request data (i.e., the appId and content), the action
waits for a response which is then stored in theReceivePin
(statusId). Note that the submitApplication
ReceiveAction includes secure object flow annota-
tions (see Fig. 27). Again, the security properties for the
submitApplication action establish a consistency link
between the choreography activity and the respective service
activity (see Figs. 25, 27).

6.3 Intermediary model transformations

After modeling the SOA structure and behavior (see Sects.
6.1, 6.2), the respective models are transformed into an inter-
mediary PIM. We extended the MDD4SOA Eclipse plug-in
[36,39] to automate this step for models that include secure
object flows.

The corresponding processing steps perform model-to-
model transformations via customized rule-based transla-
tions (see, e.g., [42]). In particular, the XMI representation
(XML Metadata Interchange [55]) of the SoaML models
is transformed into an intermediate object model (IOM).
The primary objective of the SoaML-to-IOM transforma-
tion is to bridge between the graph-based UML PIMs (i.e.,
extended UML activities, see Sects. 4, 5) and the block-based
PSMs defined via WS-BPEL (see, e.g., [41]). For example,
in the UML-based PIMs loops are modeled via specific con-
trol nodes and control flow edges between nodes. However,
because our PSM process execution format (WS-BPEL) does
not allow for the definition of graphs that contain cycles, con-
trol flow loops at the PIM-level must be translated to block-
structured loops in the PSMs (see, e.g., [35]).

The XMI representation of the SoaML structure and
behavior models (see Sects. 6.1, 6.2) serves as input for
the intermediary model transformation. Listing 1 shows
an excerpt from the XMI representation for the secure
choreography from Fig. 25. In particular, it shows the
assignment of the activity as ownedBehavior to the
CreditApplicationService class. In addition,
Listing 1 includes the appID and content
ActivityParameterNodes (lines 12–17). An exam-
ple of a «secure» stereotype instance and the respec-
tive slot values are shown in line 30. It refers to the
ActivityParameterNode named content (refer-
enced via id = 4149, see lines 15–17).

The transformation maps the XMI representation of the
SoaML model to the IOM which is implemented on top of
Eclipse’s Ecore facility. The Ecore metamodel is based on
the essential meta object facility (EMOF, [53]) standard and
supported by the Eclipse Modeling Framework (EMF, [83])
project.

The Ecore model of the MDD4SOA IOM provides all
stereotypes that are required by the UML4SOA profile
via Ecore classes (EClass). The MDD4SOA infrastruc-

ture defines three Ecore packages for the intermediary
metamodel: Statik, Behaviour, and Data (see [37]).
The Statik Ecore package contains intermediary abstrac-
tions corresponding to SoaML’s composite structure meta-
model. The structural abstractions include Ecore classes for
participants, service endpoints, and so on. Similarly, the
Behaviour Ecore package provides an EClass for service
activities. In order to transform SecureInterfaces (see
Sects. 5.3, 5.4) and their choreography specifications into any
IOM representation we had to extend the Statik package.
The Data and Behaviour Ecore packages did not need
to be changed. In particular, we had to address the following
requirements to integrate the SOF package (see Sect. 5) into
the IOM.

1 <xmi:XMI [...] >
2 [...]
3 <packagedElement xmi:type="uml:Class" xmi:id="3709" name="

CreditApplicationService" clientDependency="7807"
classifierBehavior="3841">

4 <ownedBehavior xmi:type="uml:Activity" xmi:id="3841" name="
SecureInvocationProtocol" isReentrant="true" partition="
1975">

5 [...]
6 <ownedParameter xmi:id="4081" name="appId" visibility="public

" isStream="true">
7 <type xmi:type="uml:PrimitiveType" href="pathmap: //

UML_LIBRARIES/JavaPrimitiveTypes.library.uml#int"/>
8 </ownedParameter >
9 <ownedParameter xmi:id="4150" name="content" visibility="

public" isStream="true">
10 <type xmi:type="uml:PrimitiveType" href="pathmap: //

UML_LIBRARIES/UMLPrimitiveTypes.library.uml#String"/>
11 </ownedParameter >
12 <node xmi:type="uml:ActivityParameterNode" xmi:id="4080" name

="appId" visibility="public" outgoing="1817"
inPartition="3917" parameter="4081">

13 <type xmi:type="uml:PrimitiveType" href="pathmap: //
UML_LIBRARIES/JavaPrimitiveTypes.library.uml#int"/>

14 </node>
15 <node xmi:type="uml:ActivityParameterNode" xmi:id="4149" name

="content" visibility="public" outgoing="1801"
inPartition="3917" parameter="4150">

16 <type xmi:type="uml:PrimitiveType" href="pathmap: //
UML_LIBRARIES/UMLPrimitiveTypes.library.uml#String"/>

17 </node>
18 <node xmi:type="uml:InitialNode " xmi:id="4295" name=""

visibility="public" outgoing="1831" inPartition="3917"/
>

19 [...]
20 <node xmi:type="uml:CallOperationAction" xmi:id="1593" name="

" visibility="public" outgoing="1767" inPartition="3917
" operation="4236">

21 <argument xmi:id="1604" name="statusId" visibility="public"
incoming="2359" inPartition="3917">

22 <type xmi:type="uml:PrimitiveType" href="pathmap: //
UML_LIBRARIES/JavaPrimitiveTypes.library.uml#int"/>

23 </argument >
24 </node>
25 [...]
26 </ownedBehavior >
27 [...]
28 </packagedElement >
29 [...]
30 <SOF:secure xmi:id="q1kQ" confidentialityAlgorithm="2366"

confidentialityEnsured="true" integrityAlgorithm="2053"
integrityEnsured="true" base_ObjectNode ="4149"/>

31 [...]
32 </xmi:XMI >

Listing 1 XMI excerpt from a secure choreography activity

Transformation Requirement 1 Make all UML stereotypes
defined in the SOF profile package available as model ele-
ments in the Ecore-based IOM.

To meet this requirement, we added the EClass Secure
to the Statik Ecore package (see Fig. 28). The Secure
EClass represents the «secure» stereotype (see Sect. 5.4).
Instances of the Secure EClass describe instances of
the IOM’s InterfaceParameter (see Fig. 28). The
InterfaceParameter EClass represents input and out-
put parameters for InterfaceOperations. Because
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Fig. 28 Ecore-based IOM of
the SOF extension

Fig. 29 Excerpt from the IOM object model for the credit application example

the Pin types used in ServiceActivityNodes and
SecureInterface choreography activities map to the
input and output parameters of the corresponding UML oper-
ations, the InterfaceParameter EClass qualifies as an
appropriate extension point for attaching secure object flow
properties at the IOM level.

Transformation Requirement 2 Define transformation
rules for converting an XMI-based into an IOM-based rep-
resentation of secure object flows.

We implemented a converter component to transform
secure object flows into an IOM structure. Figure 29 shows
an excerpt from the IOM model that the converter produced
for the credit application example. In principle, the conver-
sion from SoaML/XMI artifacts into IOM instances involves
three steps: First, we identify theSecureInterfaces and
their owned activities (i.e., the choreography specifications)
from the SoaML/XMI document. Second, the secure object
flows from the choreography specifications that involve an
invocation between two entities (e.g., two distinct ports) are
selected for further processing. Then, the SecureNodes
included in these object flows are mapped to IOM instances
(in particular instances of type InterfaceParameter,
see also Fig. 28). Third, the resulting IOM is serialized into
its Ecore/XMI representation.

6.4 Platform-specific model transformations

After the intermediary model transformations, our extended
MDD4SOA plug-in creates platform-specific models (PSMs)
for a selected execution platform. While our approach is
not limited to this platform family, the MDD tool chain
described in this paper integrates with Web services com-
munication middleware. In particular, the IOM represen-
tations of the SOA composite structure (i.e., the service
interfaces and message type specifications) are transformed
into WSDL interface descriptions [92], and the behavioral
parts (i.e., the service activities) are translated into WS-
BPEL execution specifications [61]. For our credit appli-
cation example, we generate WS-BPEL specifications for
the Apache orchestration director engine (ODE, [2]). The
corresponding secure object flow properties are transformed
into WS-SecurityPolicy statements [63]. Finally, supplemen-
tal artifacts such as deployment descriptors for Apache ODE
are created.

Transformation Requirement 3 Secure object flow prop-
erties of the PIM must be mapped to the PSM.

The WS-SecurityPolicy standard [63] allows to define a
number of security binding properties. In particular, it pro-
vides a list of security algorithm suites for cryptographic
operations with symmetric or asymmetric encryption mech-
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Table 8 Examples for WS-SecurityPolicy algorithm suites

Encryption Aes128 Aes192 Aes256 TripleDes
Digest Sha1 Sha1 Sha1 Sha1

Algorithm suite Basic128 Basic192 Basic256 TripleDes

anisms. To be compliant with the WS-SecurityPolicy stan-
dard, Web service communication middleware must provide
software support for these security bindings (message-level
encryption). Each algorithm suite specifies the actual algo-
rithm and the respective key lengths [63]. Table 8 shows
encryption algorithms and hash functions which can be
applied in the credit application example.

Thus, our extended MDD4SOA plug-in must perform
an automated mapping of secure object flow properties
(i.e., confidentiality and integrity attributes) to the algo-
rithm suites specified by the WS-SecurityPolicy standard.
In the credit application example, the following secu-
rity properties have been defined (see also Figs. 25,
26, 27): confidentialityAlgorithm = Aes192
and integrityAlgorithm = Sha1. Both, encryption
algorithm and integrity algorithm, correspond to the Basic192
algorithm suite of the WS-SecurityPolicy standard (see
Table 8).

Transformation Requirement 4 Implement transformation
rules for converting the IOM/XMI representation into the
PSMs.

Because our PSMs are Web service artifacts, we map
the Ecore representation of the Statik IOM package
(e.g., the EClasses Service, InterfaceOperation,
InterfaceParameter; see Sect. 6.3) to WSDL
descriptions. The artifacts from the Behaviour
package are translated to WS-BPEL definitions (e.g.,
ServiceActivityNode or ServiceProtocol; see
[37]). The EClass from our security extension in the IOM
SOF package is transformed into WS-SecurityPolicy frag-
ments.

The WS-SecurityPolicy specification allows to define
nested policy assertions (see [94]). In principle, the WS-
SecurityPolicy standard defines three attachment points for
policies (called policy subjects, see [93]):

Endpoint policy subject A policy that applies to the ser-
vice at the endpoint level.
WSDL attachment points: wsdl:binding and
wsdl:port.

Operation policy subject A policy on a per-operation
basis. WSDL attachment points: wsdl:binding/
wsdl:operation.

Message policy subject A policy at the message level.
WSDL attachment points:
wsdl:binding/wsdl:operation/wsdl:input,
wsdl:binding/wsdl:operation/wsdl:output,
and
wsdl:binding/wsdl:operation/wsdl:fault.

A benefit of the SecureObjectFlows extension is its abil-
ity to model data security properties at the level of individual
object flows. Therefore, we are able to model confidentiality
and integrity requirements of single invocation parameters,
if necessary. This level of detail can be expressed through the
Message Policy Subject of the WS-SecurityPolicy specifica-
tion (see above).

We implemented a converter which adds WS-
SecurityPolicy statements to the WSDL interface descrip-
tions (see Listing 2 for an example). In particular, we need
to find all InterfaceParameters from the IOM which
include confidentiality and integrity properties.
For every secured InterfaceParameter, we must
identify the corresponding WS-SecurityPolicy algorithm
suite (see Table 8). Next, we have to generate
a policy assertion for each interface parameter with the cor-
respondingSignedElements, EncryptedElements,
ContentEncryptedElements, and
AlgorithmSuite (see Listing 2, lines 3–22). Subse-
quently, each message parameter in the binding definition
of the WSDL document is extended to contain a refer-
ence to the corresponding policy assertion in terms of a
PolicyReference statement (see Listing 2, line 30).

1 <definitions [...] name="bclerk" [...] >
2 [...]
3 <wsp:Policy wsu:Id="sp_submitApplication_input_appId ">
4 <wsp:ExactlyOne >
5 <wsp:All >
6 <sp:SignedElements >
7 <sp:XPath >/Envelope/Body// appId </sp:XPath >
8 </sp:SignedElements >
9 <sp:EncryptedElements >

10 <sp:XPath >/Envelope/Body// appId </sp:XPath >
11 </sp:EncryptedElements >
12 <sp:ContentEncryptedElements >
13 <sp:XPath >/Envelope/Body// appId </sp:XPath >
14 </sp:ContentEncryptedElements >
15 <sp:AlgorithmSuite >
16 <wsp:Policy >
17 <sp:Basic192/>
18 </wsp:Policy >
19 </sp:AlgorithmSuite >
20 </wsp:All >
21 </wsp:ExactlyOne >
22 </wsp:Policy >
23 [...]
24 <binding name="bclerk_binding" type="this:bclerk">
25 <soap:binding style="rpc" transport="http: // schemas.xmlsoap.org

/soap/http"/>
26 <operation name="submitApplication">
27 <soap:operation soapAction="submitApplication"/>
28 <input name="submitApplication_input">
29 <soap:body namespace="http: //www.mdd4soa.eu/generated/

BankClerk/" use="literal"/>
30 <wsp:PolicyReference URI="#sp_submitApplication_input_appId

" required="true"/>
31 [...]
32 </input >
33 </operation >
34 [...]
35 </binding >
36 [...]
37 </definitions >

Listing 2 Excerpt from a WSDL document with WS-SecurityPolicy
assertions
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Transformation Requirement 5 Execution of generated
PSMs in a selected environment.

The credit application example was deployed in the
Apache ODE 1.3.5. Apache Axis2 [1] serves as the integra-
tion layer for the communication over Web services. Apache
Rampart (the security module of Axis2; [3]) enforces the
corresponding WS-SecurityPolicy specifications. With the
automated creation of deployment descriptors, we realize
the integrated model-driven specification of secure object
flows from the CIM and PIM levels down to the execution
of the PSM in a specific platform environment (here: a SOA
environment).

7 Related work

We use three main characteristics to review related app-
roaches: 1) whether a formal and generic metamodel (CIM)
is provided, 2) whether modeling support (for PIMs) is pro-
vided, and 3) whether an integrated tool chain is available
(including automated model transformations into PSMs). For
each of these characteristics, we further consider multiple
sub-criteria. Table 9 shows an overview of related work on
modeling of secure object flows for process-driven SOAs.
With respect to the concepts and artifacts specified in Sects.
3–6, we use a

√
if a related approach provides similar or com-

parable support for a certain concept; and a � if a related
approach provides at least partial support for a particular
concept.

Wolter et al. [89,90] presented an approach to model
security goals in business processes. The security goals are
mapped to a workflow model, and finally to executable Web
service specifications. Wolter et al. provide generic meta-
models for security properties that are expressed via con-
cept diagrams which loosely resemble UML class diagrams,
whereas the workflow models use BPMN (see also [91]).
Informal semantics can be derived from UML-like secu-
rity policy diagrams and the assisting comments. However,
they do not provide an integrated metamodel for the busi-
ness process view and crosscutting security views (neither
at the CIM nor at PIM level). As a result, Wolter et al.
only sketch their model transformation framework. In par-
ticular, they do not describe how the model transformations
actually merge the security goals and the BPMN process
descriptions to produce platform-specific Web service arti-
facts. Furthermore, the behavioral model view (BPMN) only
provides model annotations for security properties without
processable or formalized semantic constraints. Therefore,
the approach does not support the specification of security
properties for object flows at various abstraction levels (such
as process assets, process execution data, invocation data,
messages). Regarding tool support, the authors provide an
overview of a transformation framework based on annotated

XMI representations of BPMN models. However, a detailed
discussion of how the security properties are integrated with
the XMI representation is missing.

Gilmore et al. [20] discuss modeling of non-functional
aspects for service-oriented systems. They define a UML pro-
file based on the SoaML that supports the definition of non-
functional properties (performance, reliable messaging, and
security). Similar to our work, the approach of Gilmore et al.
uses the UML4SOA extension [36,38,39]. However, in con-
trast to [20] our work is based on a formal and generic meta-
model (CIM) that integrates the process flow view with our
security extension (see also [85]). Thus, in principle, our CIM
for secure object flows can be used to extend arbitrary process
modeling languages. Moreover, Gilmore et al. treat security
specifications along with non-functional properties such as
QoS and emphasize a (predominantly) structural view on
security properties. The structural view especially includes
non-functional contracts that are associated with SoaML
interfaces. However, this design choice also limits the expres-
siveness, in particular, security properties cannot be specified
at different abstraction levels (such as message parts, scope of
single invocations, or context dependencies). Gilmore et al.
define non-functional properties as part of a service interface.
Therefore, a contract specifies requirements for every inter-
action between the corresponding participants. Thus, it is not
possible to define security properties at the level of individual
service invocations or at the level of separate message para-
meters. In contrast, our secure object flows provide means for
a much more fine-grained specification of security properties
from the CIM to the PSM level. However, the approach from
[20] could be integrated with our approach. The level of ser-
vice contracts could add an additional, global specification
scope for integrity and confidentiality properties.

Jürjens et al. present UMLsec [32,33], a UML pro-
file that supports the definition of various security prop-
erties. For example, UMLsec is used to define and verify
cryptographic protocols. Moreover, data confidentiality and
integrity stereotypes can define dependencies in static struc-
ture or component diagrams. While UMLsec does not explic-
itly target SOAs, it could be integrated with other UML-
based approaches such as the SoaML with moderate effort.
Jürjens et al. offer tool support for running static and behav-
ioral checks and a permission analyzer for access control
mechanisms (see [78]). The original UMLsec approach was
defined using UML 1.5 [32]. Recently, they introduced a cor-
responding UML 2.3 profile [78] as well as Eclipse-MDT-
based tool support [88]. However, regarding model-driven
development UMLsec does not (yet) provide a model trans-
formation framework and, consequently, does not address
platform integration issues. Therefore, UMLsec is well-
suited to be integrated with our approach. For example,
UMLsec models can be supported by our model transfor-
mation framework to target other (non-SOA) platforms.
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The SECTET framework [21–24,40] aims at support-
ing the design and implementation of security-critical inter-
organizational workflows based on Web services. The
approach includes a metamodel consisting of multiple UML
class diagrams. However, SECTET is not based on a formal
CIM. Yet, because SECTET is based on the UML, the respec-
tive PIMs are (implicitly) based on a common metamodel
(i.e., the UML metamodel). Nevertheless, SECTET does not
use SOA-related UML extensions (such as the SoaML). For-
mal semantics for SECTET models are specified via a cus-
tom, OCL-like constraint language. A global workflow view
is used for specifying message exchange contracts between
service providers and service consumers. However, security
properties of object flows between service invocations are
not covered.

In [31], Jensen and Feja extend a proprietary MDD soft-
ware tool for modeling SOA-based security properties. The
approach uses event-driven process chains (EPCs), but does
not provide a formal and generic CIM. Security models are
defined separately from process models and add security-
related notation elements to different workflow elements.
Security and process models are integrated via a model trans-
formation step. However, the approach does not provide for-
mal semantics for the process-related security properties. In
addition, the security properties are defined for the scope of
a single process engine (rather than for a collaboration of
service partners).

Rodríguez et al. [66,67] present a UML profile to model
security requirements via UML activities. Separation of con-
cerns and multi-level specification of security properties
are not supported. The approach provides a single process-
related view, yet, it could be extended with additional views
provided in our approach. Rodríguez et al. describe PIM
transformations to use case and class diagrams. However,
they do not define PSM transformations. The PIM transfor-
mation rules are specified via QVT [54], but they are not inte-
grated with the overall tool chain. In [67], they describe the
modeling of security requirements in BPMN and the corre-
sponding model-to-model transformations into UML activ-
ity diagrams. Rodríguez et al. do not provide a formal and
generic metamodel (CIM).

Reznik et al. [65] address the automatic generation of
security-critical applications for different middleware plat-
forms. The approach defines a UML profile for an adapted
subset of the UML metamodel. Corresponding PIMs are
mapped to a security-extended CORBA component model.
While their PIMs are based on a UML subset, Reznik et al.
redefine some parts of the UML metamodel. As a result, the
corresponding subset it is not compliant with the UML stan-
dard. Moreover, because their UML profile is based on the
adapted UML subset it is not supported by standard UML
tools. The approach of Reznik et al. does neither provide a

CIM nor does it discuss multi-view modeling or refinement
of security properties.

In [68], Sanchez et al. present a model-driven approach for
the definition of different security properties. The approach
is based on multi-stage, automatic model transformations.
The generic metamodel of the approach is defined as a UML
M1 class diagram. Sanchez et al. do not provide a CIM, they
emphasize that their approach is limited to a specific model-
ing language. In [68], they describe a custom modeling lan-
guage that uses the Eclipse Ecore facility. Hence, regarding
syntax and semantic, their generic UML-based metamodel
does not integrate seamlessly with their custom modeling
language.

Nakamura et al. [44] and Tatsubori et al. [86] present a
toolkit for generating Web service security configurations.
UML class models are applied to provide a structural view
on a SOA. In addition, they provide stereotypes to define
selected security properties. However, the corresponding
UML profile is defined in an ad-hoc fashion and does not
conform to the UML standard. Process views are not consid-
ered, but could be added via an extension of their approach.
Nakamura et al. and Tatsubori et al. neither define a formal or
generic metamodel (CIM) nor do they discuss formal seman-
tics or issues regarding separation of concerns.

In addition to the approaches described above, multiple
other model-driven security approaches exist that do not
address the modeling of secure object flows but focus on
other process-related security aspects. For example, Fink et
al. [15] propose to generate access control specifications from
MOF-based models, and Basin et al. [5] specify access con-
trol properties via domain-specific UML profiles.

8 Conclusion

In this paper, we presented an integrated approach to model
and to enforce secure object flows in process-driven SOAs. In
particular, we provide a generic metamodel (CIM) for secure
object flows, a corresponding UML extension to define
platform-independent models (PIM), a model transformation
framework for PIM-to-PSM transformations for Web service
artifacts, as well as corresponding tool support. Our approach
enables the continuous specification and the enforcement of
confidentiality and integrity properties for object flows in
business processes that are executed in a distributed sys-
tem. Moreover, secure object flows are a part of the Busi-
ness Activities framework and are thereby directly integrated
with extensions for the specification, for checking, and for
the enforcement of other security properties, such as access
control or audit rules (see, e.g., [6,28,30,71–76,84,85]).

Our approach follows the model-driven development
paradigm. At the PIM level, we provide both a metamodel
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extension for secure object flows (see Sect. 4) as well as a cor-
responding UML profile (see Sect. 5). For both extensions,
we provide OCL constraints that define consistency require-
ments for the corresponding modeling artifacts. Therefore,
each valid secure object flow must conform to the respective
OCL constraints. Our metamodel extension provides specif-
ically tailored UML elements. It can be used to extend future
versions of UML tools with native modeling support for
secure object flows. In contrast, a UML profile adapts exist-
ing UML metaclasses for non-standard purposes. In our case,
it extends the SoaML/UML4SOA with modeling support for
secure object flows. Because most UML tools directly sup-
port the definition of profiles, it is comparatively easy to inte-
grate UML profiles in a software tool. Our tool support for
secure object flows in process-driven SOAs is based on the
Eclipse Model Development Tools (see Sect. 6). Our model
transformation framework generates WS-BPEL, WSDL, and
WS-SecurityPolicy artifacts. The generated artifacts were
deployed in the Apache orchestration director engine (ODE).
Apache Axis2 serves as the integration layer for the commu-
nication over Web services. Apache Rampart enforces the
corresponding WS-SecurityPolicy specifications. However,
note that our approach is generic and does neither depend on
the UML nor on a specific software tool or runtime environ-
ment. Thus, it can also be applied to extend other modeling
languages or other software tools.

In addition to the main contributions of this paper,
we also gained numerous other experiences and insights.
Some of which are specific to certain design artifacts. For
example, during the tool integration, it turned out that the
UML4SOA extension [38] deviates from the UML standard
by using an AcceptCallAction with the «Receive»
stereotype for defining an event or message listener (i.e., a
ServiceReceiveAction). Moreover, it demands that a
specific stereotype is defined on the corresponding input pins.
However, the resulting constraint is not compliant with the
UML standard. This small yet important anomaly directly
influenced the tool integration and corresponding PIM-to-
PSM transformations. In general, such small anomalies may
always occur if one integrates different modeling extensions
in a consolidated tool environment.

In our future work, we will extend the Business Activ-
ities framework to provide an integrated environment for
the model-driven specification, checking, deployment, and
enforcement of secure business processes in distributed sys-
tems.

Appendix A: Constraints for the SecureObjectFlows
package

This section provides the complete list of OCL-expressions
for the UML extension specified in Sect. 4.

OCL Constraint 1 The confidentialityEnsured attribute of the
SecureNode classifier is derived from the confidentialityAlgorithm
attribute and evaluates to true if a confidentiality-related security prop-
erty is supported.

1 context SecureObjectFlows :: SecureNode :: confidentialityEnsured :
Boolean

2 derive: confidentialityAlgorithm ->notEmpty ()

OCL Constraint 2 The integrityEnsured attribute of the
SecureNode classifier is derived from the integrityAlgorithm attribute.
It evaluates to true if an integrity-related security property is supported.

1 context SecureObjectFlows :: SecureNode :: integrityEnsured : Boolean
2 derive: integrityAlgorithm ->notEmpty ()

OCL Constraint 3 A secure object node must ensure either or both
the confidentiality and the integrity.

1 context SecureObjectFlows :: SecureNode
2 inv: self.confidentialityEnsured or
3 self.integrityEnsured

OCL Constraint 4a The successor object node of a secure object flow
must also be a secure object node.7

1 context SecureObjectFlows :: SecureNode
2 def: allSuccessors(node : ActivityNode) : Set(ActivityNode) =

node.outgoing.target ->collect(x |
3 allSuccessors(x))->asSet ()->union(node.outgoing.target)
4 inv: allSuccessors(self)->select(oclIsKindOf(ObjectNode))->

forAll(node |
5 node.oclIsKindOf(SecureNode))

OCL Constraint 4b The successor object node of a secure object flow
must also be a secure object node.8

1 context SecureObjectFlows :: SecureNode
2 def: allSuccessors(node : ActivityNode) : Set(ActivityNode) =

node.outgoing.target ->closure(x |
3 x.outgoing.target)->asSet ()->union(node.outgoing.target)
4 inv: allSuccessors(self)->select(oclIsKindOf(ObjectNode))->

forAll(node |
5 node.oclIsKindOf(SecureNode))

OCL Constraint 5 The successor secure object nodes must support
the same security properties as the corresponding source secure object
node.

1 context SecureObjectFlows :: SecureNode
2 inv: allSuccessors(self)->select(oclIsKindOf(SecureNode))->

forAll(node |
3 node.oclAsType(SecureNode).confidentialityEnsured implies
4 node.oclAsType(SecureNode).confidentialityAlgorithm =

self.confidentialityAlgorithm)
5 inv: allSuccessors(self)->select(oclIsKindOf(SecureNode))->

forAll(node |
6 node.oclAsType(SecureNode).integrityEnsured implies
7 node.oclAsType(SecureNode).integrityAlgorithm = self.

integrityAlgorithm)

OCL Constraint 6a All secure object nodes having the same target
secure object node must support identical security properties. 9

1 context SecureObjectFlows :: SecureNode
2 def: allPredecessors (node : ActivityNode) : Set(ActivityNode) =

node.incoming.source ->collect(x |
3 allPredecessors (x))->asSet ()->union(node.incoming.source)
4 inv: allPredecessors (self)->select(oclIsKindOf(SecureNode))->

forAll(node |
5 node.oclAsType(SecureNode).confidentialityEnsured implies
6 node.oclAsType(SecureNode).confidentialityAlgorithm =

self.confidentialityAlgorithm)
7 inv: allPredecessors (self)->select(oclIsKindOf(SecureNode))->

forAll(node |
8 node.oclAsType(SecureNode).integrityEnsured implies
9 node.oclAsType(SecureNode).integrityAlgorithm = self.

integrityAlgorithm)

OCL Constraint 6b All secure object nodes having the same target
secure object node must support identical security properties. 10

7 This constraint conforms to the OCL standard version 2.2 [56].
8 This constraint conforms to the OCL standard version 2.3.1 [57].
9 This constraint conforms to the OCL standard version 2.2 [56].
10 This constraint conforms to the OCL standard version 2.3.1 [57].
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1 context SecureObjectFlows :: SecureNode
2 def: allPredecessors (node : ActivityNode) : Set(ActivityNode) =

node.incoming.source ->closure(x |
3 x.incoming.source)->asSet ()->union(node.incoming.source)
4 inv: allPredecessors (self)->select(oclIsKindOf(SecureNode))->

forAll(node |
5 node.oclAsType(SecureNode).confidentialityEnsured implies
6 node.oclAsType(SecureNode).confidentialityAlgorithm =

self.confidentialityAlgorithm)
7 inv: allPredecessors (self)->select(oclIsKindOf(SecureNode))->

forAll(node |
8 node.oclAsType(SecureNode).integrityEnsured implies
9 node.oclAsType(SecureNode).integrityAlgorithm = self.

integrityAlgorithm)

Appendix B: Constraints for the SecureObjectFlows::
Services package

This section provides the complete list of OCL constraints
for the UML extension specified in Sect. 5.

OCL Constraint 7 ASecureInterfacemust own anActivity
instance as its owned behavior.

1 context SecureObjectFlows :: Services :: SecureInterface
2 inv: self.ownedBehavior ->one(oclIsKindOf(Activity))

OCL Constraint 8 In strict mode all cross-interface object flows must
be secured.11

1 context SecureObjectFlows :: Services :: SecureInterface
2 def: allPredecessors (node : ActivityNode) : Set(ActivityNode) =

node.incoming.source ->collect(x |
3 allPredecessors (x))->asSet ()->union(node.incoming.source)
4 inv: self.isStrict implies
5 self.ownedBehavior.oclAsType(Activity).node ->select(

oclIsKindOf(ObjectNode))->forAll(node |
6 allPredecessors (node)->select(incoming ->isEmpty ())->

forAll(s |
7 s.inPartition <> node.inPartition implies
8 s.oclIsKindOf(SecureNode) and node.oclIsKindOf(

SecureNode)))

OCL Constraint 9 All Actions must be instances of
CallOperationAction and each CallOperationAction’s
operation enclosed by a given partition must correspond to an
Operation owned by the Interface denoted by this partition.

1 context SecureObjectFlows :: Services :: SecureInterface
2 inv: self.ownedBehavior.oclAsType(Activity).node ->select(

oclIsKindOf(Action))->forAll(a |
3 a.oclIsKindOf(CallOperationAction ) and
4 self.part ->any(name = a.inPartition ->any(true).name).type

.oclAsType(Interface).ownedOperation ->
5 includes(a.oclAsType(CallOperationAction).operation))

OCL Constraint 10 Corresponding secure object nodes must reside
in different partitions.12

1 context SecureObjectFlows :: Services :: SecureNode
2 def: allPredecessors (node : ActivityNode) : Set(ActivityNode) =

node.incoming.source ->collect(x |
3 allPredecessors (x))->asSet ()->union(node.incoming.source)
4 inv: allPredecessors (self)->select(incoming ->isEmpty () and
5 oclIsKindOf(SecureNode))->forAll(s | s.inPartition <> self

.inPartition)

OCL Constraint 11 All activity nodes must be assigned to and must
be contained by exactly one and only one activity partition.

11 Here, an OCL 2.3.1 compliant definition is omitted. For an OCL 2.3.1
compliant definition of allPredecessors() see OCL Constraint
6b in Appendix A.
12 Here, an OCL 2.3.1 compliant definition is omitted. For an OCL 2.3.1
compliant definition of allPredecessors() see OCL Constraint
6b in Appendix A.

1 context SecureObjectFlows :: Services :: SecureInterface
2 inv: self.ownedBehavior.oclAsType(Activity).node ->forAll(

inPartition ->size() = 1)

OCL Constraint 12 Only InputPins, OutputPins, and
ActivityParameterNodes can be secured. All secured Input-
Pins must have an incoming object flow; all secured OutputPins
must have an outgoing object flow. Secured ActivityParameter-
Nodes must either be connected to an incoming object flow, to an
outgoing object flow, or to both; depending on the parameter direction.

1 context SecureObjectFlows :: Services :: SecureNode
2 inv: self.oclIsKindOf(InputPin) or self.oclIsKindOf(OutputPin)

or self.oclIsKindOf(ActivityParameterNode )
3 inv: self.oclIsKindOf(InputPin) implies self.incoming ->notEmpty

()
4 inv: self.oclIsKindOf(OutputPin) implies self.outgoing ->

notEmpty ()
5 inv: self.oclIsKindOf(ActivityParameterNode ) implies
6 (self.oclAsType(ActivityParameterNode ).parameter.

direction = ParameterDirectionKind ::in or
7 self.oclAsType(ActivityParameterNode ).parameter.direction

= ParameterDirectionKind :: inout implies
8 self.incoming ->notEmpty ()) and
9 (self.oclAsType(ActivityParameterNode ).parameter.

direction = ParameterDirectionKind ::out or
10 self.oclAsType(ActivityParameterNode ).parameter.direction

= ParameterDirectionKind :: inout or
11 self.oclAsType(ActivityParameterNode ).parameter.direction

= ParameterDirectionKind :: return implies
12 self.outgoing ->notEmpty ())

OCL Constraint 13 All ActivityParameterNodes which are
not initial or final nodes in a control and data flow but counterparts of
intermediary InputPins and OutputPins must refer to a stream-
ing Parameter.13

1 context SecureObjectFlows :: Services :: SecureInterface
2 def: isFirstNode(a : ActivityNode) : Boolean =
3 a.owner.oclAsType(Activity).node ->select(oclIsKindOf(

InitialNode))->exists(outgoing.target ->any(true) =
a) or

4 a.owner.oclAsType(Activity).node ->select(oclIsKindOf(
ActivityNode) and incoming ->isEmpty ())->includes(a)

5 def: isLastNode(a : ActivityNode) : Boolean =
6 a.owner.oclAsType(Activity).node ->select(oclIsKindOf(

ActivityFinalNode))->exists(incoming.source ->any(
true) = a) or

7 a.owner.oclAsType(Activity).node ->select(oclIsKindOf(
ActivityNode) and outgoing ->isEmpty ())->includes(a)

8 def: allSuccessors(node : ActivityNode) : Set(ActivityNode) =
node.outgoing.target ->collect(x |

9 allSuccessors(x))->asSet ()->union(node.outgoing.target)
10 inv: self.ownedBehavior.oclAsType(Activity).node ->select(

oclIsKindOf(ActivityNode))->forAll(an |
11 (not isFirstNode(an) implies
12 an.input ->forAll(ipin | allPredecessors (ipin)->select(

oclIsKindOf(ActivityParameterNode ))->forAll(
13 oclAsType(ActivityParameterNode ).parameter.isStream))

) and
14 (not isLastNode(an) implies
15 an.output ->forAll(opin | allSuccessors(opin)->select(

oclIsKindOf(ActivityParameterNode ))->forAll(
16 oclAsType(ActivityParameterNode ).parameter.isStream))

))

OCL Constraint 14 All source object nodes of a set of InputPins
owned by a CallOperationAction must be assigned to the same
activity partition.

1 context UML:: ObjectNode
2 inv: self.activity.owner.oclIsKindOf(SecureInterface ) and
3 self.oclIsKindOf(InputPin) implies
4 self.oclAsType(InputPin).owner.oclAsType(

CallOperationAction ).input ->forAll(ipin |
5 allPredecessors (ipin)->select(incoming ->isEmpty () and

oclIsKindOf(ObjectNode))->forAll(on1 ,on2 |
6 on1.inPartition = on2.inPartition))

OCL Constraint 15 If provided for a Participant, the
ServiceActivityNode must contain a corresponding and com-
patible SecureSendPin for each secured InputPin in a chore-
ography activity; provided that a) there is a choreography activity in

13 Here, an OCL 2.3.1 compliant definition is omitted. For an OCL 2.3.1
compliant definition of allSuccessors() see OCL Constraint 4b
in Appendix A.
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the first place, and that b) the CallOperationAction owning the
InputPin and the ServiceInteractionAction owning the
SecureSendPin share the Operation (required from the same
Interface).

1 context UML4SOA :: ServiceActivityNode
2 inv: self.node ->select (( oclIsKindOf(ServiceSendAction) or

oclIsKindOf(ServiceReplyAction)) and
3 oclAsType(ServiceInteractionAction).input ->select(

oclIsKindOf(SecureSendPin)))->forAll(sa |
4 let p : Port =
5 if oclIsKindOf(ServiceSendAction)
6 then sa.oclAsType(ServiceSendAction).target.oclAsType(

Port)
7 else sa.oclAsType(ServiceReplyAction).returnInformation

.oclAsType(Port)
8 endif
9 in

10 p.type.oclAsType(SecureInterface ) and
11 p.type.oclAsType(SecureInterface ).ownedBehavior.

oclAsType(Activity).node ->select(
12 let op : Operation =
13 if oclIsKindOf(ServiceSendAction)
14 then sa.oclAsType(ServiceSendAction).operation
15 else sa.oclAsType(ServiceReplyAction).replyToCall.

oclAsType(CallEvent).operation
16 endif
17 in
18 oclIsKindOf(CallOperationAction ) and
19 oclAsType(CallOperationAction ).operation = op)->

forAll(
20 oclAsType(CallOperationAction ).input ->select(

oclIsKindOf(SecureNode))->forAll(i |
21 sa.input ->exists(
22 name = i.name and
23 type = i.type and
24 (i.oclAsType(SecureNode).integrityEnsured =

oclAsType(SecureNode).integrityEnsured)
implies

25 i.oclAsType(SecureNode).integrityAlgorithm
= oclAsType(SecureNode).
integrityAlgorithm and

26 (i.oclAsType(SecureNode).
confidentialityEnsured = oclAsType(
SecureNode).confidentialityEnsured)
implies

27 i.oclAsType(SecureNode).
confidentialityAlgorithm = oclAsType(
SecureNode).confidentialityAlgorithm)
)))

OCL Constraint 16 If provided for a Participant, the
ServiceActivityNode must contain a corresponding and com-
patible SecureReceivePin for each secured OutputPin in a
choreography activity; provided that a) there is a choreography activity
in the first place, and that b) the CallOperationAction own-
ing the OutputPin and the ServiceReceiveAction owning
the SecureReceivePin share the Operation (required from the
same Interface).

1 context UML4SOA :: ServiceActivityNode
2 inv: self.node ->select(oclIsKindOf(ServiceReceiveAction ) and
3 oclAsType(ServiceReceiveAction ).output ->select(oclIsKindOf

(SecureReceivePin)))->forAll(sa |
4 sa.oclAsType(ServiceReceiveAction ).returnInformation.

oclAsType(Port).type.oclAsType(SecureInterface ) and
5 sa.oclAsType(ServiceReceiveAction ).returnInformation.

oclAsType(Port).type.oclAsType(SecureInterface ).
ownedBehavior.oclAsType(

6 Activity).node ->select(
7 oclIsKindOf(CallOperationAction ) and
8 oclAsType(CallOperationAction ).operation = sa.

oclAsType(ServiceReceiveAction ).trigger ->
9 any(true).oclAsType(CallEvent).operation)->forAll(

10 oclAsType(CallOperationAction ).input ->select(
oclIsKindOf(SecureNode))->forAll(i |

11 sa.output ->exists(
12 name = i.name and
13 type = i.type and
14 (i.oclAsType(SecureNode).integrityEnsured =

oclAsType(SecureNode).integrityEnsured)
implies

15 i.oclAsType(SecureNode).integrityAlgorithm
= oclAsType(SecureNode).
integrityAlgorithm and

16 (i.oclAsType(SecureNode).
confidentialityEnsured = oclAsType(
SecureNode).confidentialityEnsured)
implies

17 i.oclAsType(SecureNode).
confidentialityAlgorithm = oclAsType(
SecureNode).confidentialityAlgorithm)
)))
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Abstract—Scenarios are an established means to specify re-
quirements for software systems. Scenario-based tests allow for

validating software models against such requirements. In this pa-
per, we consider three alternative notations to define such scenario
tests on structural models: a semi-structured natural-language
notation, a diagrammatic notation, and a fully-structured textual
notation. In particular, we performed a study to understand
how these three notations compare to each other with respect to
accuracy and effort of comprehending scenario-test definitions,
as well as with respect to the detection of errors in the models
under test. 20 software professionals (software engineers, testers,
researchers) participated in a controlled experiment based on
six different comprehension and maintenance tasks. For each of
these tasks, questions on a scenario-test definition and on a model
under test had to be answered. In an ex-post questionnaire, the
participants rated each notation on a number of dimensions (e.g.,
practicality or scalability). Our results show that the choice of a
specific scenario-test notation can affect the productivity (in terms
of correctness and time-effort) when testing software models for
requirements conformance. In particular, the participants of our
study spent comparatively less time and completed the tasks more
accurately when using the natural-language notation compared to
the other two notations. Moreover, the participants of our study
explicitly expressed their preference for the natural-language
notation.

I. INTRODUCTION

In model-driven development (MDD), models are used
to define a software system’s problem domain as well as
corresponding solutions. Thereby, models abstract from the
underlying implementation technology (see, e.g., [1], [2]). In
this context, models are not only used for documentation
purposes, but are first-class artifacts from which executable
code is generated. Consequently, the quality of a software
product considerably relies on the quality of the corresponding
models. To ensure such high quality models, the predominantly
code-centric testing strategies must be complemented with
approaches for testing at the model-level. Such model-level
tests help detect errors at an early development stage (see,
e.g., [3], [4]).

In recent years, scenarios have become a popular means for
capturing a software system’s requirements (see, e.g., [5]–[7]).
In MDD, scenario specifications can be used to test models
for compliance with corresponding domain requirements (see,
e.g., [3], [4], [8]). Different approaches have been proposed
to provide notations for specifying scenarios, for example

in a table-based layout, as message sequence charts, or via
formal methods (see, e.g., [7], [9], [10]). However, no generally
accepted standard notation exists and the different scenario no-
tations vary with respect to the corresponding application do-
main and with the professional background of the stakeholder
involved in a particular development project (see, e.g., [7]).
Nevertheless, independent of the visualization technique, three
cognitive activities are fundamental to determine the usability
and quality of different notations: learnability, understandabil-
ity, and changeability (see, e.g., [11]). These aspects have a
significant influence on the productivity (see, e.g., [12]): the
costs increase the longer a domain expert or software engineer
needs to understand a scenario and the less software errors
are corrected. Hence, by ensuring easy-to-understand scenario
tests, the software-development costs can be decreased.

In this paper, we report on a controlled experiment for
the comparison of three frequently used alternatives for sce-
nario notations (see, e.g., [7]) to test Ecore-based structural
models1. In particular, we compare a semi-structured natural-
language notation, a diagrammatic notation, and a fully-
structured textual notation. As the comprehension of a notation
is a cognitive process, it cannot be observed directly (see
[13]). Therefore, we compare the three notations with respect
to the accuracy and the required effort for comprehending
scenario-test definitions, as well as with respect to the detection
of errors in the models under test (MUT). The evaluation
consists of comprehension (learnability, understandability) and
maintenance (changeability) tasks (see, e.g., [14]). As concrete
measures, we use the response time and the correctness of a
solution (see, e.g., [12]). We report our experiment according
to the guidelines for empirical software studies defined by
Jedlitschka et al. [15] and by Kitchenham et al. [16].

The remainder of this paper is structured as follows. In
Section II, we describe the three notations that we compare
in our study. Subsequently, Section III gives an overview of
related work, before Section IV explains the planning and
design of the experiment. Section V describes the execution
of the experiment and Section VI provides an analysis of the
study’s results. Next, Sections VII and VIII interpret the results
and discuss threats to validity. Section IX concludes the paper
and points to future work. In the Appendix, we showcase a

1All materials used in the experiment as well as collected data, calculations,
and computed results can be downloaded from http://nm.wu.ac.at/modsec.
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complete task actually performed during the experiment.

II. THREE NOTATIONS FOR SCENARIO-BASED TESTING

In this section, we provide an overview of the three
scenario notations. In particular, we show an example how the
same test scenario is described in each of the three notations.
The example is taken from the introductory tutorial given to the
participants of our study at the beginning of each experiment
session.

For the experiment, each scenario test consists of three
parts: (1) preconditions setting up the scenario context, (2)
events triggering an action, and (3) expected outcomes of the
action (see, e.g., [7], [17]). All three parts of a scenario test
must evaluate to true in order to make a scenario test pass as
a whole. In the example, and as required by the design of our
experiment, the MUT is an Ecore model2.

N-notation: The semi-structured natural-language notation
is adopted from Cucumber’s set of syntax rules for scenario
tests (called Gherkin; see [17]). The natural-language state-
ments follow a declarative sentence structure. In Listing 1, line
1 initializes a new scenario (Scenario). The keywords Given,
When, and Then define the start of a precondition, an event,
and an expected outcome, respectively (lines 2–4). This natural
language scenario definition can be automatically transformed
into executable test scenarios which can be processed by the
framework presented in [19]. The scenario test passes iff all
test expressions are fulfilled, otherwise it fails.

1 Scenario:

2 Given "that ClassH owns exactly three structural features"

3 When "all supertype classes of ClassB are abstract"

4 Then "in ClassJ there shall be at least one attribute of type EnumA

with an upper bound multiplicity of -1"

Listing 1. Semi-structured natural-language scenario notation (N-notation)
exemplified.

D-notation: The second scenario-test notation is based on
UML sequence diagrams [20]. It is inspired by related model-
based scenario-test approaches (see, e.g., [9], [21]). Fig. 1
shows the example scenario test defined via this diagrammatic
representation—it is semantically equivalent to the natural-
language representation in Listing 1. Lifelines represent in-
stances of a test runner, a test component, the MUT, and classes
contained in the MUT which collaborate to realize the tested
scenario. Interactions are shown as sequences of call and return
messages between the corresponding instances on the lifelines.
Events and expected outcomes are declared optional (see the
CombinedFragments with opt InteractionOperatorKind in
Fig. 1 [20]). The different scenario-test expressions are nested,
so that an event can only be triggered iff the precondition(s) are
fulfilled (see InteractionConstraint guards of Combined-

Fragments in Fig. 1). In the same way, an expected outcome
is only tested iff all preconditions and events are fulfilled.

E-notation: The third notation defines scenario tests
through an extension to a fully-structured language for model
management tasks (see Listing 2), called Epsilon [22]. In
Epsilon, model testing is supported by the Epsilon unit testing

2In this paper, we do not provide a background on Ecore models; for the
remainder, it is sufficient to refer to generic object-oriented modeling con-
structs such as classes, inheritance relationships between classes, references,
and attributes. For details on Ecore, see, e.g., Steinberg et al. [18].

Fig. 1. Diagrammatic scenario notation (D-notation) exemplified.

framework (EUnit) which we extended to define scenario tests
(see [4]). With this notation, scenario tests are imperatively
defined via textual sequences of commands. Listing 2 shows
our scenario-test example (again, semantically equivalent to
Listing 1 and Fig. 1) including a precondition (line 6), an event
(lines 8–10), and an expected outcome (line 11). Epsilon shares
similarities with OCL [23]. For example, regarding operations
on collections, a universal quantification can be expressed
identically (forAll(); see line 9 in Listing 2).

1 @TestSuite

2 operation testSuite() {

3 @TestCase

4 operation testCase() {

5 @TestScenario

6 $pre Model!EClass.all().selectOne(x|x.name="ClassH").

eStructuralFeatures.size() = 3

7 operation testScenario() {

8 if (

9 Model!EClass.all().selectOne(x|x.name="ClassB").closure(x|x.
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eSuperTypes).forAll(x|x.abstract=true)

10 ) {

11 assertTrue(Model!EClass.all().selectOne(x|x.name="ClassJ").

eStructuralFeatures.exists(x|x.isTypeOf(EAttribute) and x.

eType.name="EnumA" and x.upperBound=-1));

12 } else {

13 assertTrue(false);

14 }

15 }

16 }

17 }

Listing 2. Fully-structured textual scenario notation (E-notation) exemplified.

III. RELATED WORK

For this paper, we consider two categories of related work:
(1) studies regarding the comprehension of the three notation
types used in our experiment and (2) (empirical) evaluations
of requirements-driven scenario notations.

Our first notation uses a text-based format that closely
resembles natural-language expressions. Studies to measure
text comprehension via problem solving tasks—comparable to
the tasks performed in the experiment reported in this paper—
have a long history (see, e.g., [24]). Emerging from this back-
ground, program comprehension experiments try to measure
factors influencing the understandability of source code, such
as scenario tests defined via EUnit. For instance, Kosar et
al. [11] compare the accuracy and efficiency of domain-specific
languages with general-purpose languages and Feigenspan et
al. [12] evaluate the improved correctness in the development
of software-product lines by introducing background-color-
enhanced preprocessor directives. In both studies, a family
of experiments was conducted in which participants had to
perform comprehension-related tasks. As an example of a
model-based notation, Mendling et al. [25] examine factors
influencing how model viewers comprehend the syntactical
information in process models (UML sequence diagrams fall
in this category) in a four-part series of experiments. All re-
lated studies have in common that comprehension-influencing
factors (i.e. dependent variables) are measured via response
time and correctness of a solution.

As a representative for a non-empirical evaluation of
requirements-driven scenario notations, Amyot and Eberlein
[10] define evaluation criteria (e.g. decomposition and ab-
straction) and review fifteen scenario notations with respect
to their suitability for the telecommunication domain. Ricca et
al. [26] performed two controlled experiments to empirically
evaluate a table-based notation for defining scenario tests. In
particular, they investigate whether the notation contributes
to the clarification of domain requirements and whether any
additional comprehension effort is required. For requirements
elicitation, scenarios are frequently documented via use cases.
Gemino and Parker [27] explore the effectiveness of integrating
use case models [20] with a set of textual use case descriptions
(see, e.g., [7]). A study is conducted including comprehension,
retention, and problem solving tasks measuring the level of
understanding developed by the participants who either used
textual uses cases or textual use cases with a supporting
use case diagram. Likewise, Ottensooser et al. [28] report
on an experiment for comparing the success of participants
in interpreting business process descriptions for a graphical
notation (BPMN) and for a textual notation (based on written
use cases).

Our study complements existing contributions with a
systematic comparison of three notations for scenario-based
model testing.

IV. EXPERIMENT PLANNING

A. Goals and Variables

As mentioned above, the objective of our experiment is
to compare three notations (see Section II) regarding their
applicability for the scenario-based testing of models. For this
task, we selected three notations from the body of previously
screened literature on model-testing notations (see, e.g., [4],
[17], [19], [20], [22]). The MUTs were defined using Ecore,
a metamodeling language that provides the foundation of the
Eclipse Modeling Framework (EMF; see, e.g., [18]).

Results obtained in related studies indicate that different
scenario notations have an influence on the accuracy and
effort of fulfilling model-testing tasks. For our experiment, the
participants had to solve tasks which were identical except
for the alternate usage of different scenario notations (our
independent variable). Similar to related studies (see Section
III), we use the response time and the correctness of the
solution as dependent variables to measure the comprehension
of a particular notation. A change in the independent variable is
expected to have a measurable effect on one or both dependent
variables.

To ensure that the scenario notation is the only independent
variable, we had to control important confounding variables. In
particular, we focused on maximizing the internal validity of
our experimental setting to be able to draw sound conclusions
from our results. Prior to the experiment, we asked all partici-
pants to fill in a questionnaire regarding their experience with
topics that could have an influence on the tasks performed in
the experiment (e.g., experience with different testing methods
and testing notations relevant to the experiment). In addition,
we collected the basic demographic profile of the participants.
The process of building homogeneous groups was based on
these information to keep the influence of confounding param-
eters on notation comprehension constant (see Section IV-B).

B. Participants of the Study

For the experiment, we contacted 30 software professionals
(software engineers, testers, researchers) from different soft-
ware companies, universities, and research institutions. For
their participation, we offered a small reward in the form of a
voucher for a well-known e-commerce company. 24 individu-
als agreed to contribute to the experiment, the remaining six
did not respond to our request. We selected three participants
to take part in a pilot study to pre-test the experimental setting
(see also [12]). From the remaining 21, one participant could
not take part due to illness. As we conducted the experiment
at companies in different cities in Austria, we had to exclude
the ill participant due to travel requirements. Hence, our data
set consisted of 20 participants.

In our study we had five female and 15 male participants
with an average age of 30.5±2.953 years. Each participant
has obtained a computer-science degree or a related academic

3The value after ± shows the standard deviation (σ) from the arithmetic
mean (x̄).

9797

170



degree and currently works in the IT industry. The experience
questionnaire consisted of five demographic and ten experience
questions. To measure the level of confounding parameters,
participants had to estimate their own experience level on a six-
point Likert scale4. The ten questions collected evidence about
the participants’ experiences with regard to: scenario-based
testing, Ecore modeling, natural-language testing, model-based
testing, and test-case programming. We grouped and classi-
fied the questions according to a pre-defined schema (five
groups, one to three questions per group). In a discussion
with colleagues, we allocated weights to each question in a
group. We classified general questions to be less important than
specific ones. For example, experience in writing software in
any programming language counted less than experience with
the Epsilon language or model constraint/validation languages
(such as OCL or EVL). The reason for this weighting was
that we explicitly used dialects of the Epsilon language for
validating models in our experiment. We assume, for instance,
that general programming knowledge does not help as much
in comprehending EUnit scenario tests as does knowledge in
a language specifically designed for model management tasks
(e.g. model navigation or element selection).

Our research design required to divide the participants into
three groups (see Section IV-E). According to the participants’
self estimations on the Likert scale, zero to six points (“no
experience” to “very high experience”) were allocated per
question. Then, questions were grouped and weighted accord-
ing to the schema explained above. The group building process
homogeneously spread the participants so that the combined
score of the weighted experience questions in each of the five
question groups was similar. After the allocation, each group
contained seven participants5.

Via the experience questionnaire, we informed the partici-
pants that the collected data will be used solely for the process
of conducting the experiment. Furthermore, we guaranteed that
all published results will be anonymized and that personal
data is neither made public nor given to any third-parties. In
order to ask clarification questions after the experiment, we
needed to know the participants’ names as well as the name
of their employer. As the collected data can be linked to the
participants, we consulted the Center of Empirical Research
Methods of WU Vienna which approved the ethical correctness
of our design. The participants could opt-out of the experiment
at any time, but no one did so.

C. Experimental Material

For the experiment, we prepared six different scenarios6.
For each scenario, we provide an Ecore-based MUT, a sce-
nario description specified in each of the three notations,
and questions to be answered (see also the example task
in the appendix). All materials were printed and fitted on
one A4 sheet respectively. The Ecore models were created
using the EMF project of Eclipse 4.2 [18]. The models
were taken from real-world examples (e.g., the ATL code

4Self estimation is expected to be a reliable way to judge experiences and
is recommended, for example, in Siegmund et al. [29].

5Note that the group allocation was done before we learned that one of the
individuals was not able to participate because of illness.

6All materials used in the experiment as well as collected data, calculations,
and computed results can be downloaded from http://nm.wu.ac.at/modsec.

generator metamodel, the Ant metamodel), were obtained
from the AtlanMod Metamodel Zoo7, and adapted to fit the
experimental setting (in terms of size and naming conventions).
The adapted size of the six models were similar to each other
and had been chosen to ensure a certain degree of complexity.
In particular, it was intended that the participants should
frequently consult the models during their tasks and should
not be able to memorize their structure easily. Regarding model
measures, on average, each model contained 23±1.17 classes,
8±1.03 of them declared abstract. These classes contained
on average 44±3.21 structural features consisting of 18±3.51
attributes and 26±2.1 references. 12±1.67 of these references
were defined as containment references. In a model, 19±3.14
inheritance relationships between classes were specified on
average.

All scenario descriptions included the definition of two
preconditions, two events, and two expected outcome speci-
fications. The creation of all scenarios was supported by tools.
The natural-language notation was defined via the infrastruc-
ture described in Hoisl et al. [19], the fully-structured notation
via the infrastructure described in Sobernig et al. [4], and
the diagrammatic notation by utilizing the UML sequence
diagram editor of No Magic’s MagicDraw 17.05. Each line
of the two textual scenario descriptions were numbered on the
left-hand side (see Listings 1 and 2 in Section II). The UML
sequence diagram shows scenario interactions via messages
passed between object instances. All call and return messages
were sequentially numbered from top to bottom and these
message numbers were displayed in front of each message
expression (see Fig. 1 in Section II).

The experimental material also included language refer-
ences for each of the three scenario notations as well as
for Ecore models. The language references explained the
syntactical format and the semantics of each notation and
served as a documentation for the study participants (e.g., for
the fully-structured notation, method calls and return values
were explained).

For each scenario, five questions were asked with “yes”,
“no”, and “don’t know” answer choices. For each question,
the possibility to insert line and message numbers was given.
At the top of the answer sheet, participants had to insert their
start time. An equivalent field was provided at the bottom for
the end time. The task, the participants had to carry out, was
explained on the sheet. At the bottom, space was reserved for
comments.

To correctly answer the questions in the experiment the
participants had to understand whether a scenario test passes or
fails when elements in the corresponding model are changed.
We classified the model changes referred to by the questions
according to Wimmer et al. [30]. On the one hand, solu-
tions to the questions required changes to existing modeling
concepts: attributes (context, multiplicity, datatype), references
(context, multiplicity, direction, containment), and inheritance
relationships (concreteness, depth, inheritance type). On the
other hand, we also asked for creation and deletion of classes,
attributes, references, and inheritance relationships (source-
target-concept cardinality differences).

7http://www.emn.fr/z-info/atlanmod/index.php/Zoos
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At the end of the experiment, an ex-post questionnaire had
to be filled out. The participants should rate different criteria on
a five point scale (1=worst, 5=best) for all three scenario-test
notations. In particular, we asked the participants to evaluate
the notations according to eight different criteria:

• Clarity: Is the notation understandable regarding its
syntax and semantics?

• Completeness: Does the notation describe all neces-
sary information to review the scenario test without
consulting other information sources (e.g., the notation
reference)?

• Conciseness: Are the resulting scenario tests precise
(e.g., no ambiguities in the description, no misinter-
pretations when reviewing the description)?

• Expressiveness: Is the notation eligible to express
model tests (e.g., tests on Ecore-based models)?

• Generalizability: Is the notation eligible to express
tests other than model tests (e.g., code-unit tests)?

• Practicality: Does the notation require specific prepa-
ration (e.g., an extensive tutorial) and/or auxiliary
materials (e.g., frequent use of notation reference)?

• Scalability: Does the notation support increasingly
complex scenario tests well (e.g., increasing test
and/or model size, increasing number of test condi-
tions)?

• General rating: Overall, how did you like working
with the notation?

Furthermore, participants should elaborate on their ratings
(e.g. why did they favor a particular notation). Finally, we
asked if they would like to add anything else (related to the
scenario tests, improvements to the experiment etc.).

D. Tasks performed by the Participants

In total, each participant had to perform six tasks: one
comprehension and one maintenance task per notation (i.e. for
each of the three notations). All participants worked on the
same six scenarios, but each group received a different sam-
pling of scenario notations (according to the groups built
via the experience questionnaire; see Section IV-B). Every
task consisted of a scenario as described in Section IV-C:
an Ecore-based MUT, a scenario description in one of the
three notations, and five questions to be answered (see also
the example task in the appendix). For every notation, the
participants worked on the comprehension task first, followed
by the maintenance task for the same notation.

Both tasks measure the participants’ understanding of a
scenario. The questions were designed in a way such that they
could only be answered correctly if a subject fully understood
the scenario. For the comprehension task, the participants were
faced with a correct (i.e. passing) scenario test. We asked the
participants to look at the scenario description and the corre-
sponding MUT in order to answer five questions (“Does the
scenario test fail if . . . ”). The second task was a maintenance
task—here we provided an incorrect (i.e. failing) scenario test.
The participants were asked to look at the scenario description

and the corresponding MUT and find the line/message numbers
which are responsible for the failure of the scenario test (for
the maintenance task, an additional line/message number field
was inserted in the answer sheet). After the initial error was
found, the MUT had to be corrected in order for the scenario
test to pass. To achieve this, the participants had to answer five
questions whether changes in the model made the scenario test
pass (“Does the scenario test pass if . . . ”). All questions were
independent from each other (i.e. the participants had to answer
each question on its own).

The process and the design of the tasks resemble the
usual workflow of developing model-based software systems
via scenarios. In a first step, requirements-based scenario
descriptions are developed and executed to validate the MUT.
When the requirements change, so do the scenario tests. Now,
a discrepancy exists between the new scenario tests and the
unchanged MUT. As a consequence, the scenario tests fail. To
solve the problem, the MUT needs to be adapted in order
to meet the new requirements. Again, the conformance of
the (new) requirements is ensured via correct (i.e. passing)
scenario tests.

E. Design of the Experiment

Our controlled experiment has a between-subject design
(see, e.g., [31]). In particular, every participant worked with
all three notations (our independent variable) and on all six
scenarios, but not with every notation alternative on every
scenario (to exclude learning effects). The three homogeneous
groups built via the experience questionnaire determined the
notations which where given to each participant for a particular
task. For instance, Group 1 used the natural-language notation
for comprehension Task 1.1 and maintenance Task 1.2, Group
2 the diagrammatic notation, and Group 3 the fully-structured
notation for the same tasks. For the remaining tasks (2.1, 2.2,
3.1, 3.2) the notations alternated between the groups so that
every participant in each group worked with every notation
and that every task had to be solved with every notation.

Every scenario was independently designed and did not
reuse any elements from another scenario (i.e. different model,
scenario description, and questions). To reduce potential learn-
ing effects, none of the participants worked on the same
scenario twice. Weariness effects were eliminated by random-
izing the order in which participants had to work on the
different tasks. For further control, the questions per task were
also randomly arranged for each participant individually. As
domain knowledge has been shown beneficial for comprehen-
sion tasks (see, e.g., [32]), we factored out any domain bias
by neutrally naming all model elements (e.g. ClassA, refB,
attC). Hence, all participants had to use the same bottom-up
approach (increasing the internal validity of our experiment),
which means that the participants had to analyze the scenario
descriptions statement by statement. Thus, the participants first
had to understand a scenario statement and then gradually build
up to an understanding of groups of statements until the whole
scenario was understood completely (see, e.g., [12], [32]).

Before the participants worked on the different tasks, an in-
troductory presentation was given. The introduction explained
the objectives of scenario-based testing, the structure of the
scenario tests, and the syntax and semantics of Ecore models
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TABLE I. PARTICIPANTS’ TIME SPENT AND ANSWERS GIVEN PER TASK AND PER NOTATION.

Task 1.1 Task 1.2 Task 2.1 Task 2.2 Task 3.1 Task 3.2

N D E N D E N D E N D E N D E N D E

Number of participants 6 7 7 6 7 7 7 6 7 7 6 7 7 7 6 7 7 6

Mean response time (in min.) 8.67 13.43 15.43 7.00 11.00 11.43 9.14 11.17 12.00 11.14 10.33 13.57 7.86 20.57 12.00 9.71 15.43 8.50

Standard deviation (in min.) 2.25 6.80 6.73 0.89 3.32 5.38 3.80 3.71 5.03 5.05 4.68 5.59 3.13 7.14 3.03 5.38 6.05 2.66

Min./max. response time (in min.) 7/13 7/24 8/27 6/8 7/16 6/20 6/16 8/18 6/20 6/22 5/16 8/24 5/13 10/28 8/16 5/19 9/24 4/12

Median response time (in min.) 8 9 14 7 9 9 8 10.5 11 10 10 12 6 23 11.5 7 12 8.5

Lower quartile (in min.) 7.25 8.5 10.5 6.25 9 7.5 6 8.5 9 9.5 6.5 10 5.5 15 10.25 5.5 11 8

Upper quartile (in min.) 8.75 18.5 19 7.75 13.5 15 11 11.75 14.5 10.5 14.25 15.5 10 26.5 14.25 13 20.5 9.75

Number of correct answers 29 29 32 27 21 28 35 26 30 27 23 22 29 28 26 26 27 19

Number of incorrect answers 1 5 1 3 5 7 0 4 5 8 7 8 5 4 4 7 8 11

Number of don’t know answers 0 1 2 0 9 0 0 0 0 0 0 5 1 3 0 2 0 0

Percentage of correct answers 96.67 82.86 91.43 90.00 60.00 80.00 100.00 86.67 85.71 77.14 76.67 62.86 82.86 80.00 86.67 74.29 77.14 63.33
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Fig. 2. Box plots of participants’ time spent per notation and per task. Please note that the dashed horizontal line indicates the mean response time and the
solid horizontal line the median response time.

as well as of the three notations. To train the participants, three
example tasks were presented—one for each notation (see
Section II). Two questions were asked per task, the participants
were motivated to answer the questions, and the solutions were
presented. At the end of the introduction, we explained what
the participants had to do for the experiment (see Section
IV-D).

V. EXECUTION AND DEVIATIONS

To evaluate our experimental setting (time needed, diffi-
culty of tasks etc.), we conducted a pilot study on March
4, 2014 (one participant) and on March 11, 2014 (two par-
ticipants), respectively. In each round, we received feedback
from the participants and revised the experimental material
and the process. The experience questionnaires for building
groups were submitted as editable PDFs to the participants on
March 9, 2014 via e-mail. The participants had to return the
questionnaires by e-mail until March 12, 2014 (the participants
were assigned to groups on the same day). As we conducted
the study at different locations and due to participants’ time
constraints, we had to execute the experiment multiple times
(between March, 14 and March, 28 2014). The dates were
arranged via e-mail communication. However, in every install-
ment the experimental setting was identical (i.e. amount of
introductory information presented, room with enough space
for all participants and a projector for the introductory presen-
tation etc.)—the experimental process did not differ as well.
First, the participants were seated and told that they only

need a pen to write and a clock for measuring time. After all
participants had arrived, we gave the introductory presentation
and performed the three warming up tasks which together took
about 20 minutes. Then, each participant received a copy of
their personal experimental material (according to the groups
they belonged to and with randomized task and question
orders; see Sections IV-D and IV-E) and were told that they had
to work on the tasks in their predefined order. No supporting
material or additional equipment was allowed. Subsequently,
the participants worked on their tasks as explained above.
Finally, each participant filled out the ex-post questionnaire
and handed-in the material.

After the experiment, we had to contact four participants
via e-mail and two personally because of ambiguous answers
and were able to clarify all issues (e.g., problems reading the
handwriting, unclear answer selections). After we evaluated
the experiment’s data, we informed the participants via e-mail
that they could review their personal and, for comparison,
the average results (correct answers, time needed etc.). Six
participants responded and we transmitted the results to them.

Deviations from the plan occurred as one participant was
ill and thus Group 1 consisted only of six participants instead
of seven. Furthermore, it was hard to find suitable time-slots
for the participants. Some participants took the experiment in
the morning, some in the afternoon, and some in the evening.
Although, the time of the day may influence the attention and
concentration of participants, the different groups as well as the
randomized tasks should compensate this deviation. The UML
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Fig. 3. Percentage of participants’ correct, incorrect, and don’t know answers
per task and per notation.

sequence diagrams needed the most space of all notations, but
we fitted each of the diagrams on one A4 page (otherwise
participants would have had to turn pages which would have
required additional time). Five participants commented that
the font sizes of the diagrammatic notation were too small
and hard to read. This deviation could have an effect on the
comprehension of the diagrammatic scenario notation.

VI. ANALYSIS

Table I as well as Figs. 2 and 3 summarize our collected
data in terms of the participants’ time spent on the individual
tasks and the answers given per task and per notation. The
participants measured their time to complete a task in minutes
(see Section IV-C). The correctness of a solution is derived
from the ratio of correct answers to the sum of all answers
(correct, incorrect, don’t know answers). Table II shows the
participants’ average ratings per notation and per dimension
from the ex-post questionnaire. The average least task-solving
time and highest percentage of correct answers per task as
well as the highest average rating per criterion are underlined
in Tables I and II, respectively.

On average (arithmetic mean) the participants spent the
following times for completing the six tasks: 53.52 min. for the
natural-language notation (N), 81.93 min. for the diagrammatic
notation (D), and 72.93 min. for the fully-structured notation
(E). Furthermore, the percentage of correct answers over all
tasks is 86.5% for the natural-language notation, 77% for the
diagrammatic notation, and 78.5% for the fully-structured no-
tation. On average, the participants spent 70.05±17.06 min. on
the six tasks. As each task contained five questions, each
participant had to answer 30 questions in total. On average,
each participant answered 80.67% of the questions correctly
(24.2±3.55 questions), 15.5% of the questions incorrectly
(4.65±2.18 questions), and the participants did not know the
answer to 3.83% of the questions (1.15±2.21 questions).

VII. INTERPRETATION

Table I and Fig. 2 show that, except for Tasks 2.2 and 3.2,
the participants required the least time to solve a task using the

TABLE II. EX-POST AVERAGE RATING PER NOTATION (1–5, 5=BEST).

N D E

Clarity 4.30±0.80 3.10±1.02 3.05±1.10

Completeness 4.40±0.82 3.45±0.89 3.15±1.04

Conciseness 4.00±0.79 3.35±1.14 3.80±1.15

Expressiveness 3.85±1.09 3.10±1.25 3.35±1.09

Generalizability 3.40±1.05 3.05±0.94 3.95±1.10

Practicality 4.65±0.59 3.00±0.97 2.50±1.00

Scalability 4.15±0.93 2.30±1.03 3.35±0.81

General 4.40±0.60 2.85±1.14 3.00±0.97

natural-language notation. Regarding these two tasks, the task-
solving times of the natural-language notation were close to
the times of the other notations: the diagrammatic notation in
Task 2.2 (participants required on average 0.81 min. less time;
an improvement by 7.27%) and the fully-structured notation in
Task 3.2 (participants required on average 1.21 min. less time;
an improvement by 12.46%). By using the natural-language
notation, the participants required on average 28.4 min. less
time to finish all six tasks than with the diagrammatic notation
(an improvement by 34.7%) and 19.4 min. less time than
with the fully-structured notation (an improvement by 26.6%).
Using the fully-structured notation, it took the participants 9
min. less time than working on the tasks in diagrammatic
notation (an improvement by 11%).

For the four Tasks 1.1–2.2, the participants reached most
correct answers by using the natural-language notation (see
Table I and Fig. 3). The fully-structured and the diagrammatic
notations are comparable regarding answer correctness (78.5%
and 77%). There was one participant who had a very low
score of only 14 correct answers (46.7%). When removing
this outlier from the data set, the natural-language notation
accounts for the highest amount of correct answers in all tasks,
including Tasks 3.1 and 3.2. The respective notation of the least
response time remains unchanged, both per task and overall.

In total, participants using the natural-language notation
required the least time to solve the tasks and answered the
most questions correctly. These results in favor of the natural-
language notation are also supported by the participants ex-
post rating (see Table II). Except for its generalizability, the
participants ranked the natural-language notation first in all
remaining dimensions.

Via the ratings and comments in the ex-post question-
naire (see Table II), the study participants criticized the poor
scalability of the diagrammatic notation (quote: “just over-
head”, “bloated”). Both the structure of the diagrammatic
notation and the general syntax of UML sequence diagrams
need comparably more space than the other two notations.
Thus, for complex scenarios, the diagrammatic notation might
incur the risk of comparatively large scenario-test definitions
which, thereby, become hard to comprehend. Furthermore, the
participants stated that the fully-structured notation requires
the most specific preparation and/or auxiliary materials to be
understood. Its practicality was therefore rated lowest (see
Table II). However, despite its lower ranked practicality, the
task-solving time was improved by 11% and the percentage
of correct answers by 1.5% when using the fully-structured
rather than the diagrammatic notation.
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VIII. THREATS TO VALIDITY

Some threats to internal validity are caused by the devi-
ations that occurred (see Section V). Furthermore, our group
building process focused on a homogeneous distribution of
participants with the same experience level. We tried to equally
distribute demographic characteristics as well, and managed to
do so for the participants’ education and their age. Neverthe-
less, the data set did not allow for a homogeneous distribution
of female participants (n=5) which is also a threat to internal
validity. Our focus on internal validity limits external validity.
The participants were all software professionals working with
a selection of notations on a set of neutralized Ecore models to
solve specific scenario tasks. In order to generalize our results
and to improve external validity, we would need to repeatedly
conduct the experiment with different participants from diverse
professional backgrounds, different notation alternatives, dif-
ferent scenario descriptions and so forth.

IX. CONCLUSION AND FUTURE WORK

In this paper, we presented an experiment to evaluate
three notations for their applicability to describe scenario-
based model tests. In particular, the experiment compared
the comprehensibility of three scenario-based notations and
showed that the choice of a specific notation has an effect
on the productivity when testing models for requirements
conformance. The results of our experiment indicate that
a natural-language-based approach for scenario-based model
tests is recommended, as it required the least task-solving time
and was the most accurate alternative as well as most favored
by the participants who worked with it.

As future work, we will repeat the experiment with par-
ticipants from a different professional background to be able
to draw more general conclusions. For the replication study,
we will revise the experimental setting and materials based on
the feedback collected so far (e.g., conducting the experiment
in one session, increasing the font size of the diagrammatic
notation). Furthermore, we will run extended quantitative
and qualitative analyses. For example, we will evaluate the
line/message numbers recorded for the failing scenario tests
by the participants.

APPENDIX

EXPERIMENT TASK 2.1

To illustrate the actual tasks performed during the exper-
iment, we present the comprehension Task 2.1 of our exper-
iment. For completing a task, we provided each participant
with an Ecore-based MUT (for Task 2.1 the MUT is shown
in Fig. 4) and a scenario-test definition in one of the three
notations. For Task 2.1, the scenario was either specified as
in Listing 3, as in Listing 4, or as in Fig. 5. Five questions
were to be answered on each task, the ones about Task 2.1 are
shown later in this section.

The MUT of Task 2.1 (see Fig. 4) is based on the Ant
metamodel and was adapted to fit the experimental setting (in
terms of size and naming conventions). The MUT of Task
2.1 contains 24 classes, 8 of them declared abstract. These
classes contain 46 structural features consisting of 22 attributes
and 24 references. 15 of theses references are defined as

containment references. In the MUT of Task 2.1, 19 inheritance
relationships between classes are specified.

The scenario descriptions of Task 2.1 for each notation are
shown in Listing 3, Listing 4, and Fig. 5, respectively. Please
note that all three scenario-test definitions are semantically
equivalent; i.e. all three scenario representations per task
describe the same scenario-based model test. Each participant
of the experiment was provided with exactly one of these
notations, depending on their group affiliation.

1 Scenario:

2 Given "that it is possible to navigate from ClassO to ClassA via

containment references refQ and refJ"

3 And "that ClassY includes ClassF, ClassP, and ClassE in its hierarchy

of supertypes"

4 When "ClassD, ClassR, and ClassV are not abstract"

5 And "exactly two attributes of ClassA are of type EString with a

multiplicity of 0..1"

6 Then "ClassY shall own exactly six structural features"

7 And "ClassG shall have any kind of reference pointing to ClassR named

refG"

Listing 3. Natural-language scenario notation of Task 2.1.

1 @TestSuite

2 operation testSuite() {

3 @TestCase

4 operation testCase() {

5 @TestScenario

6 $pre Model!EClass.all().selectOne(x|x.name="ClassO").

eStructuralFeatures.selectOne(x|x.name="refQ").eType.

eStructuralFeatures.selectOne(x|x.name="refJ").eType.name="

ClassA"

7 $pre Model!EClass.all().selectOne(x|x.name="ClassY").closure(x|x.

eSuperTypes).includesAll(Model!EClass.all().select(x|x.name="

ClassF" or x.name="ClassP" or x.name="ClassE"))

8 operation testScenario() {

9 if (Model!EClass.all().select(x|x.name="ClassD" or x.name="ClassR"

or x.name="ClassV").forAll(x|x.abstract=false)

10 and

11 Model!EClass.all().selectOne(x|x.name="ClassA").

eStructuralFeatures.select(x|x.isTypeOf(EAttribute) and x.

eType.name="EString" and x.lowerBound=0 and x.upperBound

=1).size() = 2

12 ) {

13 assertTrue(Model!EClass.all().selectOne(x|x.name="ClassY").

eStructuralFeatures.size() = 6);

14 assertTrue(Model!EClass.all().selectOne(x|x.name="ClassG").

eStructuralFeatures.selectOne(x|x.name="refG").eType.name

= "ClassR");

15 } else {

16 assertTrue(false);

17 }

18 }

19 }

20 }

Listing 4. Fully-structured scenario notation of Task 2.1.

For the comprehension Task 2.1, the participants had to
answer the following five questions with either “yes”, “no”, or
“don’t know” (please note that the questions were randomly
ordered for each participant):

1) Does the scenario test fail if ClassF, ClassT, and
ClassD are declared abstract?

2) Does the scenario test fail if the reference refG of
ClassG is not a containment reference and has a
multiplicity of 1..1?

3) Does the scenario test fail if in ClassI the navigability
of reference refJ is inverted?

4) Does the scenario test fail if in ClassA the lower
bound of attribute attR is changed to 1?

5) Does the scenario test fail if the reference refB of
ClassY is inverted?
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Fig. 4. Ecore-based MUT of Task 2.1.

If a scenario test was deemed failed (i.e. a question was
answered with “yes”), the participant had to mention the line
number(s) (in case of the natural-language or fully-structured
notation) or message number(s) (in case of the diagrammatic
notation) in the scenario description considered responsible for
failing the test. Furthermore, the participants had to fill in their
start and end time per task (in minutes). At the end of the
answer sheet, space was reserved for comments.
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Appendix B

Evaluating Higher-Order
Rewriting of M2T Templates: A
Case Study

In this chapter, we report on a case study performed in order to evaluate our approach
to higher-order rewrite M2T templates developed in this thesis project to support the
integration of MOF/UML-based DSMLs (see Section A.3 and [53]). In particular,
we apply our approach to a publicly available, Epsilon-based open-source project
(Pongo; see Section B.1.2) to evaluate its feasibility. Via the case study, we show how
our approach facilitates reusing M2T templates and reducing the need of manually
performed refactorings in metamodel-evolution scenarios (we apply our rewriting
technique for the evolution of the Pongo project to support not only Ecore-, but
also UML-based models). We measure the benefits of our approach, for example, via
the ratio of automatically to manually executed rewriting operations on EGL-based
templates. Furthermore, we present improvements and extensions as well as discuss
limitations of our approach and the corresponding software prototype which resulted
from conducting the case study.9

In this chapter, we apply the guidelines for conducting and documenting case
study research in software engineering [117] which adapt the proposed reporting
structure for empirical software studies defined in [64] and in [68]. Accordingly,
the subsections cover the design of the case study (problem statement, research
objectives, case selection, conceptual framing, methods; see Section B.1), its results
(case description, execution, analysis, interpretation; see Section B.2), limitations
and threats (see Section B.3), as well as a concluding summary (Section B.4).

9All software artifacts used in and developed for the case study as well as the improved proto-
typical implementation of our approach for higher-order rewriting of M2T templates are publicly
available at [48].
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B.1 Case Study Design

The context of the case study is set by the definition of the problem statement
and the research objectives (including the definition of two research questions; Sec-
tion B.1.1). We explain the process of selecting a suitable case for answering the
research questions in Section B.1.2. The theoretical frame of reference of this study
and the study methods (e.g., data collection and analysis procedures) are detailed
in Sections B.1.3 and B.1.4, respectively.

B.1.1 Problem Statement and Research Objectives

To recap, in Section A.3 (see also [53]) we present an approach to rewriting M2T
generator templates syntactically for reusing them for evolving metamodels (e.g., as
in DSML integration scenarios). By considering M2T templates as first-class mod-
els and by reusing M2M transformation traces, we developed a rewriting approach
based on higher-order model transformations (HOTs) for transformation modifica-
tions [156, 157]. To demonstrate the feasibility of this rewriting technique, we provide
a prototype implementation and a DSML integration example based on the EMF
project and the Epsilon language family. Hence, with our rewriting approach of M2T
templates, we provide a solution to deal with structural mismatches between differ-
ent DSML metamodels in an integration scenario. In [53], we defined the mismatch
problem as a question specifically targeting the case of integrating DSMLs: “How
can we make the generator templates TA and TB apply to instances of the composed
metamodel MC rather than to instances of metamodels MA and MB, respectively?”

DSML integration is a special case of model-driven software evolution and main-
tenance (see, e.g., [14, 22, 60, 140, 172, 175]). For example, in [53], the integrated
DSML C is fully composed of both DSMLs A and B (i.e. C=̂A ∪ B). Both individual
DSML metamodels are connected structurally by merging two concepts (one from
each DSML) into a single concept of DSML C. Otherwise, the integration preserves
all structural semantics present in the two source metamodels (e.g., inheritance, at-
tributes, references). From the perspective of DSML A, an integration with DSML B
into DSML C conforms to an evolution of DSML A into DSML A∪ B (equally, DSML
B evolves into DSML B ∪ A). In this sense, we can generalize the problem statement
of [53] and reformulate it as the following question: “How can we make the generator
template TX apply to instances of an evolved metamodel MY rather than to instances
of the original metamodel MX?”

Rewriting M2T generator templates to conform to a different metamodel requires
dealing with structural heterogeneity of these metamodels [177]. Problems for the
automatic rewriting emerge from the considerable amount of potential metamodel
change operations (e.g., conflicting source-target-concept cardinalities; multiplicity,
direction, and containment differences of references; or context, order, and datatype
differences of class attributes). Our current approach supports three syntactical
higher-order rewriting operations (retyping, association retargeting, and property re-
naming [53]), however, it allows for arbitrary rewriting operations. This case study
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was performed in order to (1) evaluate the feasibility of our approach in a real-
life context10 and to (2) quantify the alleged benefits from applying the proposed
rewriting technique. Hence, our case study was guided by the following two research
questions indicating its exploratory and improving characteristics:

Research Question 1. To which extent can our current approach be used in a
real-life MDD-based software development project?

Research Question 2. What are the observable and quantifiable advantages of ap-
plying our approach?

B.1.2 Case Selection

The two guiding research questions establish different requirements on the case to
be selected—especially with regard to technical requirements. Our approach for
higher-order rewriting of M2T templates builds on EMF and the Epsilon language
family. In particular, we employ Ecore-based models, perform M2M transforma-
tions with ECL, EML, and ETL, define rewrite rules over model representations of
EGL templates, and provide helper operations in EOL. In principle, our approach
does not depend on any of these implementation techniques and models as well as
model-management languages are exchangeable (e.g., ATL-based rewrite rules can
be generated instead of ETL-based ones or via the EMC layer [70], it can be switched
between concrete modeling technologies). Regardless of the chosen implementation
technique, the application of our approach demands that the source code of the
software artifacts the case study is based on is accessible (e.g., M2T transformation
templates). We also require that all artifacts are publicly available to make our case
study and its results reproducible. Furthermore, the case must be non-trivial and
fit our generalized definition of an evolutionary scenario as outlined in Section B.1.1
(i.e. the evolution process should not be too simplistic, e.g., not only a change of one
or two metamodel elements, and the M2T transformation templates should not be
too short, e.g., contain not only a couple of source lines of code; SLOC).

In order to find a suitable case, we asked the MDD community via postings in
relevant Eclipse sub-forums for hints [145] and contacted research and industry peers.
One of our colleagues at the Department of Computer Science at the University of
York (Dimitris Kolovos) pointed us to the Pongo project [71] which describes itself
as “a template-based Java POJO11 generator for MongoDB [86]. Instead of using
low-level DBObjects to interact with your MongoDB database, with Pongo you can
define your data/domain model using EMFatic and then generate strongly-typed
Java classes you can then use to work with your database at a more convenient
level of abstraction” [71]. In Pongo, the M2T transformations from Ecore models to
Java source code is implemented in Epsilon (EGL templates with EOL helper opera-
tions and EGX as coordination language for EGL templates). As the Pongo project

10For an overview and discussion of evaluation methods in design science research, see, e.g.,
[43, 44].

11Plain Old Java Object [31].
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fulfilled our requirements (open-source, publicly available, non-trivial M2T transfor-
mation definitions), we selected it for our case study. Currently, Pongo supports
Ecore-based domain models only (e.g., specified via the EMFatic textual syntax or
via Ecore model/diagram editors). For the definition of an evolutionary process,
we adopted a scenario to migrate Pongo to be able to work with UML models (in
particular, class diagrams), as well.12 The case study was performed with data (do-
main model, test application) obtained from the Pongo tutorial (a blogging system)
published on the project’s website [69].

B.1.3 Conceptual Framing

Our work adopts the notion of HOTs as presented for ATL by Tisi et al. [156, 157].
We employ HOTs to rewrite M2T templates (transformation modifications [156, 157])
for their reuse in evolutionary MDD-based scenarios (e.g., for the integration of
DSMLs [53]). Our template syntax rewriting technique allows for reusing transfor-
mation logic independently from the scenario [178]. It is applicable to M2T transfor-
mation languages which support a subset of the MOFM2T specification [93], HOTs,
and basic model transformation tracing (e.g., as is the case for EGL [53]). Our ap-
proach implements three syntactical higher-order rewriting operations to deal witch
structural heterogeneity between metamodels [177]: retyping, association retarget-
ing, and property renaming [53]. Other approaches using HOTs as implementation
vehicle (e.g., generic templates [18, 19, 168]), differ, for instance, in their expres-
siveness to handle metamodel heterogeneity as well as in their level of automation
and of unanticipated reuse of generator templates. The case study was designed to
qualitatively evaluate our approach with regard to its observed practical feasibility
in a real-life context and to provide for quantitative evidence of the advantages of its
application (methods employed in the case study are detailed in the next section).

B.1.4 Methods

We do not only want to apply our rewriting approach in a real-life setting, but
also gain insights to develop possible extensions and improvements (see Research
Question 1). This requires in-depth knowledge of our rewriting approach (struc-
ture, functionality, limitations) as well as of the employed technology stack (EMF,
Epsilon). Therefore, the author himself designed, planned, and conducted the case
study. This way, corrections, extensions, and improvements emerging from the case
study can be integrated into our approach in a timely manner.

To answer both research questions, we need to collect qualitative (Research Ques-
tion 1) and quantitative data (Research Question 2). Qualitative data is gathered
based on the observations while applying our approach (e.g., rewrite problems, miss-
ing functionality etc.; see Section B.2.2). We base our definition for obtaining quanti-
tative data on a goal-oriented measurement technique by adopting the Goal Question

12The scenario was inspired by the discussion at https://www.eclipse.org/forums/index.php/t/
488742/.
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Metric (GQM) method (see, e.g., [2, 167]). In the GQM method, goals are formu-
lated first (conceptual level). Then, a set of questions is defined to characterize the
way the assessment of a specific goal is going to be performed (operational level).
At last, metrics are specified and associated with every question in order to answer
it in a quantitative way (quantitative level). Table B.1 shows our GQM model for
quantifying the advantages of our approach from the viewpoint of a DSML engineer.
By applying the GQM method, we defined four questions with corresponding met-
rics which all contribute to answer Research Question 2 (our goal). Please note that
Table B.1 serves only as an overview of questions and metrics which are going to be
explained in detail in the following paragraphs.

Table B.1: GQM model for measuring advantages of our approach

Goal Purpose Quantifying
Issue the advantages of
Object applying our rewriting approach
Viewpoint from the DSML engineer’s viewpoint.

Question To which extent does our approach reduce the need to man-
ually perform template-rewriting operations?

Metrics 1. Number of automatically/manually rewritten concepts
with/without employing our approach.

Question Is it feasible to employ standard-tool-supported refactor-
ings?

Metrics 2. Number of unique concepts (frequent patterns).

Question Are additional helper operations used and/or does the
amount of calls to helper operations increase/decrease?

Metrics 3. Number of called helper operations.
4. Number of calls to helper operations.

Question Does the size of rewritten generator template(s) differ when
compared with the original one(s)?

Metrics 5. Transformation size in SLOC.

As introduced in Section B.1.1, in a metamodel evolution scenario, generator
templates must be adapted to apply to instances of the evolved metamodel (e.g.,
to conform to changed metamodel elements). However, these adaptations must not
change the semantics of M2T transformations and, thus, the functionality of the
generated code stays the same (i.e. behavior of generator templates are reused as-is).
Hence, in our metamodel evolution scenario, we apply structural refactorings to the
initial generator template(s) to establish conformance with the evolved metamodel
(e.g., retyping or property renaming). In this thesis, we adopt the definition of refac-
toring code as “to restructure software by applying a series of refactorings without
changing its observable behavior” [29].

Our case study consists of refactoring the M2T transformations of the Pongo
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project to work not only with Ecore, but also with UML models. Therefore, we focus
on one observable part of Pongo’s software artifacts only: the EGL-based generator
templates (and accompanying Epsilon scripts used for the M2T transformation, such
as, included in EGX and EOL files). In order to answer Research Question 2 (and
all questions defined in Table B.1 accordingly), we need to define metrics for mea-
suring the amount of refactorings applied on the generator templates to conform to
the evolved UML metamodel. In general, a (software/quality) metric “is a term that
embraces many activities, all of which involve some degree of software measurement”
[24]; it is “a quantitative measure of the degree to which a system, component, or pro-
cess possesses a given attribute” [61]. For the case study, we adopt metrics inspired
by related work on model transformation metrics, such as, for MOF Query/View/-
Transformation (MOF QVT [94]) or ATL (see, e.g., [67, 164, 165, 166, 169]):

1. Number of rewritten concepts: This metric counts every adapted concept (e.g.,
types, expressions) required to render M2T transformations compliant with the
evolved metamodel (see, e.g., [24]). The metric measures both, concepts that
are automatically rewritten by our approach and concepts which need manual
adaptation.

2. Number of unique concepts (frequent patterns): This metric counts the unique
concepts rewritten in M2T transformations (see, e.g., [67]).

3. Number of called helpers: This metric counts the number of helper operations
(e.g., in EOL files) which are used (i.e. called at least once) during M2T trans-
formation (see, e.g., [165, 169]).

4. Number of calls to helpers: This metric sums up the total number of calls to
helper operations during a M2T transformation (see, e.g., [165, 169]).

5. Transformation size: This metric counts the SLOC of M2T transfromation
definitions; i.e. of EGL templates and accompanying Epsilon scripts (see, e.g.,
[24, 67]).

The metric (1.) number of rewritten concepts (and, thus, the corresponding
question defined in Table B.1) is the main source for providing an answer to Re-
search Question 2. A high number of automatically rewritten concepts performed
via our approach would establish evidence for the advantage of fewer manual adap-
tations. The other three questions with their corresponding four metrics (2.–5.)
provide additional insights into the rewriting process and are operationalized as a
means of control. For example, if only a few (2.) unique concepts are found dur-
ing template rewriting, employing other approaches not relying on transformation
traces (e.g., tool-specific search-and-replace functionality) may be a viable option.
However, as no explicit trace information between source and target concepts of in-
volved metamodels would be available, the correct rewriting operations have to be
discovered manually (e.g., establishing links between metamodel elements by finding
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equally named model instance specifications). Furthermore, the (3. and 4.) number
of called/calls to helpers are metrics to check if a potentially high number of auto-
matically rewritten concepts are not based on extensive use of (newly defined) helper
operations. Additional helper operations would also increase the (5.) transformation
size of the generator templates. Thus, at last, we want to know if and how much the
transformation size of the rewritten generator templates differ when compared with
their original versions.

All five metrics are measuring internal attributes of a M2T transformation (see,
e.g., [24, 163]). The last three metrics (3.–5.; number of called helpers, number of
calls to helpers, and transformation size) can be measured directly. In contrast, the
first two metrics (1. and 2.; number of rewritten concepts and number of unique
concepts) can only be measured indirectly by comparing the original generator tem-
plates with the rewritten ones (see, e.g., [24]). The measurement of the various
metrics is tool-supported, for example, by the profiling mechanism of the Epsilon
language (see, e.g., [72, 116]).

B.2 Results

Results of the case study are reported by describing the studied software artifacts
(Section B.2.1), by explaining the process of executing the study (Section B.2.2), as
well as by a detailed analysis (Section B.2.3) and interpretation (Section B.2.4) of
observations and collected data.

B.2.1 Case Description

As explained in Section B.1.2, our case study is based on the Pongo project [71]
and utilizes on data obtained from its introductory tutorial (a blogging system [69]).
For the evolutionary scenario of migrating from Ecore to UML class models, the case
study explores the refactoring process of the Epsilon-based M2T transformation defi-
nitions. The rewritten M2T templates are applied on the evolved UML-based domain
model of the blogging system to compare the generated platform-specific software
artifacts (i.e. Java classes) with the ones originally created from the Ecore domain
model to evaluate the successful transformation. Regarding software artifacts, the
case study combines the following Eclipse projects:13

• com.googlecode.pongo: This project provides the M2T transformation defini-
tions as Epsilon scripts. With the EGX, EGL, and EOL files included in this
project, an Ecore model can be transformed into Java classes for interacting
with MongoDB (the project can be obtained from [71]).

• com.googlecode.pongo.examples.miniblog: This project provides the Pongo
tutorial files used in the case study: an EMFatic-specified domain model, the

13Please note that we only describe the Eclipse projects directly involved in the case study and
that some of the projects depend on additional resources.
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generated Java classes as well as a test Java application. The Ecore model
serves as input to the com.googlecode.pongo project for its transformation
into Java classes. The Pongo tutorial covers a scenario for defining a blogging
system including authors, posts, and comments as data entities (the project
can be obtained from [71]).

• com.googlecode.pongo.uml: This project provides the rewritten UML-
compliant M2T transformation specifications as Epsilon scripts (i.e. the
resulting files from performing the case study). For comparison, the original
Ecore-based M2T transformation definitions are included in the project, as
well (i.e. the same files as in com.googlecode.pongo; the project can be
obtained from [48]).

• com.googlecode.pongo.examples.miniblog.uml: This project provides the
UML-compliant Pongo tutorial files used in the case study: a UML domain
model and the generated Java classes as well as a test Java application (i.e. the
resulting files from performing the case study; the project can be obtained
from [48]).

• org.eclipse.epsilon.egl.dom, org.eclipse.epsilon.egl.dom.ast2dom, and
org.eclipse.epsilon.egl.dom.printer: In combination, these projects pro-
vide code/model round-tripping functionality for EGL. They extend (and de-
pend on) the org.eclipse.epsilon.eol.dom* projects which provide code/-
model round-tripping for EOL (see Section 5.3; the projects can be obtained
from [48]).

• at.ac.wu.nm.dsml.eval.hotm2t: This project provides the case-study-specific
files of our rewriting approach. This includes the Ecore-to-UML M2M trans-
formation definitions (ECL, EML, ETL, EOL), the trace metamodel and the
instance model, the UMLExcerpt metamodel (see below), the rewrite rule gener-
ator (EGL), the generated rewrite rules (ETL), the original and the rewritten
Pongo M2T transformation definitions (EGL specifications as model represen-
tations), and the orchestrating Apache Ant workflow definitions (the project
can be obtained from [48]).

The domain model of the blogging system used as tutorial for the Pongo project
and also for this case study is specified in the EMFatic textual syntax (see List-
ing B.1).14 The model defines four EClasses (Blog, Post, Comment, and Author) as
well as corresponding attributes and references to represent the blogging domain.
At execution time of the M2T transformation, an Ecore model is generated from
the EMFatic representation which is further processed by the generator components
(see Figure B.1). Please note that the EMFatic textual syntax (Listing B.1) and

14Please note that the EMFatic specification shown in Listing B.1 is a corrected version of the
definition originally provided at [69] (see lines 14 and 19).
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the Ecore diagram (Figure B.1) specifications are fully interchangeable and—in this
case—define identical domain models for the blogging system.

Listing B.1: EMFatic-specified model of the blogging system tutorial
1 package com.googlecode.pongo.examples.miniblog.model;
2
3 @db
4 class Blog {
5 val Post[*] posts;
6 val Author[*] authors;
7 }
8
9 class Post {

10 @searchable
11 attr String title;
12 attr String body;
13 ref Author author;
14 val Comment[*] comments;
15 }
16
17 class Comment {
18 attr String from;
19 attr String text;
20 val Comment[*] replies;
21 }
22
23 class Author {
24 @searchable
25 attr String name;
26 attr String email;
27 }

Blog

Post

title : EString

body : EString

Comment

from : EString

text : EString

Author

name : EString

email : EString

posts

0..*

authors0..*author 0..1comments0..*
replies

0..*

Figure B.1: Ecore model of the blogging system tutorial

The definition of the M2T transformations for the blogging system are based
on EGX, EGL, and EOL files. By executing the transformations, six Java files are
generated. These Java classes represent the domain model (see Listing B.1 and
Figure B.1) and define helper methods (e.g., getter and setter) to conveniently work
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with the MongoDB database (e.g., for reading and writing data). The Pongo tutorial
[69] provides a Java application used for testing the generated Java classes (see
Listing B.2).15 If the M2T transformation from the Ecore-based domain model into
Java classes was successfully, the application should execute without any errors.

Listing B.2: Test application for the generated Java classes
1 package com.googlecode.pongo.examples.miniblog;
2
3 import java.util.*;
4 import com.mongodb.*;
5 import com.googlecode.pongo.runtime.*;
6 import com.googlecode.pongo.examples.miniblog.model.*;
7
8 public class App {
9

10 public static void main(String[] args) throws Exception {
11 App app = new App();
12 app.writeStuff();
13 app.readStuff();
14 }
15
16 public void writeStuff() throws Exception {
17 Mongo mongo = new Mongo();
18 mongo.dropDatabase("blog");
19 Blog blog = new Blog(mongo.getDB("blog"));
20
21 Post post = new Post();
22 post.setTitle("A post");
23
24 Author author = new Author();
25 author.setName("Joe Doe");
26 blog.getAuthors().add(author);
27 post.setAuthor(author);
28
29 Comment comment = new Comment();
30 comment.setText("A comment");
31 post.getComments().add(comment);
32
33 Comment reply = new Comment();
34 reply.setText("A reply");
35 comment.getReplies().add(reply);
36
37 blog.getPosts().add(post);
38
39 // Syncs with the underlying database
40 blog.sync(true);
41 }
42
43 public void readStuff() throws Exception {
44

15Please note that the originally provided App Java class [69] contains a typing error in line 1
which is corrected in Listing B.2.
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45 Mongo mongo = new Mongo();
46 Blog blog = new Blog(mongo.getDB("blog"));
47
48 System.out.println(blog.getPosts().size());
49
50 for (Post post : blog.getPosts()) {
51 System.out.println(post.getTitle() + " - " + post.getAuthor().getName());
52 System.out.println(post.getComments().size() + " comment(s)");
53 }
54
55 // Generated from the @searchable title attribute of Post
56 System.out.println(blog.getPosts().findOneByTitle("A post").getAuthor().getName

());
57 }
58
59 }

B.2.2 Execution

This section details how we proceeded with the case study by applying our approach
to rewrite M2T transformations to provide Pongo with the functionality to operate
on UML models. During the case study, we applied our rewriting approach in two
iterations (UML-Pv1 and UML-Pv2 ). Issues which emerged from the first itera-
tion were handled by improving and extending our approach and by executing the
evolutionary scenario a second time.

First Iteration (UML-Pv1)

In order to allow for automatic rewriting of generator templates, we have to specify
the evolutionary process from the Ecore to the UML metamodel in terms of M2M
transformations. To show the necessary transformation operations, we adopt the no-
tion of mapping diagrams from [40]. Mapping diagrams provide “a high-level design
view” [40] on transformations, thereby abstracting from concrete transformation lan-
guages. Figure B.2 shows the Ecore2UML transformation operations implemented
while performing the case study.16

16The notation of mapping diagrams defined in this thesis can be summarized as follows: vertical
rectangles on the left and right with a gray background color represent the Ecore and UML meta-
models; the vertical rectangle in the middle with a slightly darker gray background color groups
the transformation rules; model elements are represented as rectangles; transformation rules are
represented as hexagons; the transformation is executed in the direction of the arrow; arrow ends
represent input and output elements; a label near an arrow represents a property of an element
(i.e. the value of the property named as the label is set to the corresponding element the arrow
points to); a rectangle with a dashed border represents conditions (defined as simplified Epsilon
statements); a guard constraints output elements; a set-condition defines values for properties of
output elements where the value type is neither an element of the Ecore or the UML metamodel
(e.g., boolean types specified in a dedicated model omitted for clarity; the semantics of a labeled
arrow is identical for elements defined in either the Ecore or the UML metamodel).
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Ecore Ecore2UML UML

Element ownership
An owning element is referenced via EClassifier.ePackage

and transformed to NamedElement.namespace.

NamedElement.namespace :

EReference

eType

Namespace : EClass

EClassifier.ePackage :

EReference

Types
Element typing is realized via ETypedElement.eType

and transformed to TypedElement.type.

eType

Type : EClass

ETypedElement.eType :

EReference

TypedElement.type :

EReference

Literals
Enumeration literals are modeled via EEnum.eLiterals

and transformed to Enumeration.ownedLiteral.

Enumeration.ownedLiteral :

EReference

set: ownedLiteral.containment = eLiterals.containment

set: ownedLiteral.upperBound = eLiterals.upperBound

eType

EnumerationLiteral :

EClass

EEnum.eLiterals :

EReference

Structural features
Structural features can be both, attributes and

references/associations.

StructuredClassifier.ownedAttribute :

EReference

set: ownedAttribute.containment = true

set: ownedAttribute.upperBound = *

eType

EClass.eStructuralFeatures :

EReference

EClass.eAllStructuralFeatures :

EReference

Attributes
Attributes are distinguished from associations by lacking

an association reference.

guard: ownedAttribute.select(oa |

               not oa.association.isDefined())

set: ownedAttribute.containment = true

set: ownedAttribute.upperBound = *

eType

EClass.eAttributes :

EReference

EClass.eAllAttributes :

EReference

Associations
Associations are distinguished from attributes by defining

an association reference.

guard: ownedAttribute.select(oa |

               oa.association.isDefined())

set: ownedAttribute.containment = true

set: ownedAttribute.upperBound = *

eType

EClass.eReferences :

EReference

EClass.eAllReferences :

EReference

Property : EClass

Figure B.2: Mapping diagram of the Ecore2UML metamodel transformation opera-
tions
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Please note that, in general, we focus only on those software artifacts which are
essential for the successful execution of the case study. By doing so, we filter out
irrelevant details, such as, potential further Ecore2UML transformation rules or an-
alyzing additional EGL templates which are included in the com.googlecode.pongo
project (e.g., for drawing charts). Disruptive factors for the measurement of metrics
are factored out, as well. For example, the metric (2.) number of called helpers count
only helper operations called at least once during M2T transformation, even though
additional operations exist in the accompanying EOL files (but are insignificant for
the execution of our case study). By manually analyzing the M2T transformation
definitions in the com.googlecode.pongo project, we concluded that six transforma-
tion rules are required to represent the Ecore2UML metamodel evolution sufficiently
to rewrite all relevant parts of the EGL templates (see also Figure B.2). The transfor-
mations are employed to deal with syntactical heterogeneity between the Ecore and
UML metamodels, in particular, differences according to the source-target-concept
cardinality (1:1 and n:1) as well as naming, context, multiplicity, and containment
differences of the same metamodeling concept (EReference) [177]. The mapping
diagram (see Figure B.2) summarizes the six transformation operations as follows:

• Structural features: The first three rules transform six different elements of
type EReference in the Ecore metamodel into one and the same UML::Struc-
turedClassifier.ownedAttribute element. In Ecore, EClass.e(All)Struc-
turalFeatures references attributes and references, while EClass.e(All)At-
tributes and EClass.e(All)References allow access to the individual types.
In contrast, in UML, attributes and associations are represented by the same
ownedAttribute Property of a StructuredClassifier (they can be distin-
guished by querying additional properties; see below). Please bear in mind
that the Ecore2UML M2M transformation operates on the M2 layer and that
the Ecore as well as the UML metamodel are defined (reflective) via Ecore
(see Section 2.2). Hence, the same metamodeling infrastructure is employed
for both metamodels (e.g., UML::StructuredClassifier.ownedAttribute is
also of type Ecore::EReference). The transformation rule for structural fea-
tures (as well as for attributes and associations; see below) defines that the
eType property of UML::StructuredClassifier.ownedAttribute references the
EClass UML::Property. Additionally, UML::StructuredClassifier.ownedAt-
tribute is defined as a containment reference and the upper bound is unlimited.

• Attributes: The same transformation rules as for structural features apply, with
the exception that attributes are distinguished from associations by querying
the association property of UML::StructuredClassifier.ownedAttribute el-
ements. For matching an attribute, the association reference must not be
defined.

• Associations: The same transformation rules as for structural features ap-
ply, with the exception that associations are distinguished from attributes by
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querying the association property of UML::StructuredClassifier.ownedAt-
tribute elements. For matching an association, the association reference
must be defined.

• Element ownership: The equivalent modeling construct for the EReference
Ecore::EClassifier.ePackage was identified as the EReference UML::Type-
dElement.type. Both EReferences point to the corresponding owning ele-
ment (Ecore::EPackage, UML::Namespace). The eType property references the
EClass UML::Namespace.

• Types: The EReference Ecore::ETypedElement.eType is transformed to the
EReference UML::TypedElement.type. The eType property references the
EClass UML::Type.

• Literals: The Ecore EReference EEnum.eLiterals is transformed in its UML
equivalent Enumeration.ownedLiteral. The eType property references the
EClass UML::EnumerationLiteral; containment and upper bound properties
are preserved.

We designed the Ecore2UML M2M transformation in a way that all model
elements resemble the original Ecore-specified UML metamodel. For this pur-
pose, we define a factory in the corresponding ETL file (as a pre named block
of Epsilon statements executed before the transformation operations) for creating
non-equivalent UML elements not generated by matching transformation rules (see
project at.ac.wu.nm.dsml.eval.hotm2t). Thereby, we constructed a smallest pos-
sible subset of the UML metamodel with which the case study can be performed,
as well. Thus, for the case study, the UML metamodel can be fully replaced by
its subset metamodel (named UMLExcerpt). We use the UMLExcerpt metamodel
solely to improve readability and navigability aspects. For instance, the UMLEx-
cerpt metamodel consists of only 32 EClasses compared to 242 EClasses contained
in the whole Ecore-based UML metamodel implementation (a reduction by ∼87%).
Please note that the rewritten M2T transformation templates are equally applicable
on model instances of the whole UML metamodel and on its subset (UMLExcerpt)
without any modifications.

Our approach uses traces collected from the execution of the Ecore2UML
M2M transformation for the generation of rewriting rules for the model rep-
resentations of EGL templates (we omit the source code of the extended and
improved EGL-based generation of ETL rewrite rules for brevity; see project
at.ac.wu.nm.dsml.eval.hotm2t). The generated rewrite rules target syntactical
heterogeneity in EGL models. Structural differences are tackled via 1:1 source-
target-concept cardinality adaptations of the same metamodeling concepts (refer-
ences). In particular, the transformations correct naming and constraint differences
of model references resulting from the diverse Ecore and UML metamodel definitions
(implicitly changing the context of the references, as well) [177]. An excerpt from
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the ETL file covering the rewriting rules created from the six transformation oper-
ations is shown in Listing B.3. All of our Ecore2UML M2M transformations target
EReferences exclusively (see Figure B.2). Therefore, in the Pongo EGL template
models, the property attribute of matching PropertyCallExpression elements must
be adapted correspondingly (see lines 6–14 in Listing B.3).

Listing B.3: Generated rewrite rules from the Ecore2UML transformation
1 rule PropertyCallExpression
2 transform s : egl_in!PropertyCallExpression
3 to t : egl_out!PropertyCallExpression
4 extends FeatureCallExpression {
5 switch (s.property) {
6 case "eReferences": t.property = "ownedAttribute.select(oa | oa.association.

isDefined())";
7 case "eAllReferences": t.property = "ownedAttribute.select(oa | oa.association.

isDefined())";
8 case "eAttributes": t.property = "ownedAttribute.select(oa | not oa.association.

isDefined())";
9 case "eAllAttributes": t.property = "ownedAttribute.select(oa | not oa.association

.isDefined())";
10 case "eStructuralFeatures": t.property = "ownedAttribute";
11 case "eAllStructuralFeatures": t.property = "ownedAttribute";
12 case "ePackage": t.property = "namespace";
13 case "eType": t.property = "type";
14 case "eLiterals": t.property = "ownedLiteral";
15 default: t.property = s.property;
16 }
17 t.extended = s.extended;
18 }

With the generated rewrite rules from Listing B.3, we can now adapt the model
representations of the Pongo EGL templates created with our approach to work
with UML models as well (code/model round-tripping functionality is provided by
the org.eclipse.epsilon.egl.dom* projects). To test the rewritten EGL templates,
we converted the Ecore-based domain model of the blogging system to a UML class
diagram via the functionality provided in the Sample Ecore Model Editor of EMF.17

By generating EGL template code from the rewritten model representations and
by executing the corresponding M2T transformations over the UML instance model
(representing the blogging system domain), we encountered two issues: 1) Methods
specific to the Ecore (metamodel) implementation are not present when working with
the UML metamodel and 2) our approach does not target EGX and EOL files which
accompany the M2T transformation definitions in our case study (i.e. structural
mismatches in EGX/EOL files resulting from the metamodel evolution cannot be
tackled via automatic rewrites). We handled these issues by improving and extending
our approach and by executing the evolutionary scenario a second time (UML-Pv2).

17We omit showing the resulting UML class model, as its diagram representation is almost iden-
tical to the Ecore model presented in Figure B.1 (except that all EString types would be replaced
by String types).
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Second Iteration (UML-Pv2)

Regarding the first problem encountered during the initial iteration (UML-Pv1), in
particular, two attributes are queried (isMany and isContainment) which are spe-
cific to the Ecore metamodel implementation (and, thus, are not present in the
UML metamodel implementation).18 Attribute isMany indicates whether more than
one value may appear in a valid instance and attribute isContainment indicates
whether a reference represents by-value content. In order to deal with this dis-
crepancy, we define temporary proxy elements in the Ecore metamodel which are
transformed to proxy elements in the UML metamodel by additional transformation
rules. These proxy elements are deleted from the metamodels right after the corre-
sponding transformation operation was performed and the associated transformation
data was stored in the trace model. Hence, the proxy elements are not persisted and
used solely for the purpose of generating rewrite rules to handle attributes specific
to the Ecore implementation.

As both Ecore-specific attributes (isMany and isContainment) can equally be
expressed as Epsilon statements, we define two EOL helper operations (isMany()
and isContainment()) to be called instead (see Listing B.4). With the proxy el-
ements and corresponding transformation traces, we can generate rules rewriting
the Ecore-specific attribute queries to UML-specific helper operation calls. For
this purpose, we define two additional Ecore2UML M2M transformation operations
(see Figure B.3). They transform the proxy EAttribute elements Ecore::isMany
and Ecore::isContainment into the proxy EOperation elements UML::isMany() and
UML::isContainment(). Thus, the transformations tackle syntactical heterogeneity
of the introduced proxy elements via 1:1 source-target-concept cardinality adapta-
tions of naming and structural differences between different metamodeling concepts
(EAttribute and EOperation) [177]. The traces collected from the execution of the
two transformation operations are used to generate the additional rewriting expres-
sions as shown in Listing B.5. In the actual implementation of our approach, these
two lines are included in the ETL file responsible for defining the rewrite rules (the
insertion place corresponds to line 12 in Listing B.3).

Listing B.4: Epsilon helper operations for Ecore-specific attributes
1 @cached
2 operation Any isMany() {
3 return (self.upper > 1 or self.upper == -1);
4 }
5
6 @cached
7 operation Property isContainment() {
8 return (self.aggregation.name == "composite");
9 }

18The Ecore implementation provides also corresponding getter methods for both attributes via
the ETypedElement interface (isMany()) and the EReference interface (isContainment()).
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Ecore Ecore2UML UML

... ... ...

Multi-values
Attribute isMany indicates whether more than one value

may appear in a valid instance.

isMany : EAttribute isMany() : EOperation

Containments
Attribute isContainment indicates whether a reference

represents by-value content.

isContainment :

EAttribute

isContainment() :

EOperation

Figure B.3: Mapping diagram of the Ecore2UML metamodel transformation opera-
tions for proxy model elements

Listing B.5: Additionally generated rewrite expressions from the Ecore2UML proxy
elements transformations

1 case "isContainment": t.property = "isContainment()";
2 case "isMany": t.property = "isMany()";

Regarding the second issue which emerged from the first iteration (i.e. our ap-
proach does not target EGX and EOL files which accompany the M2T transformation
definitions in the case study), our current approach works with EGL templates only.
Therefore, refactorings in EGX and EOL files have to be performed manually (see
also Section B.2.3).

After we dealt with the Ecore-specific problems, we re-executed the Ecore2UML
M2M transformation, received a new set of rewrite rules, applied these rewrite rules
to the Pongo EGL models, transformed the models back to their initial EGL-based
template form, and performed the M2T transformation for the UML-based blogging
system once again. This time, the M2T transformation finished without any errors.
We compared the Java classes generated from the UML class model with the original
Java classes generated from the Ecore model (by using diff). As the output artifacts
of both M2T transformations were identical, the refactorings had been successful.
In the following analysis section, we report on the quantitative data obtained from
employing our approach (for each of the two iterations separately: with and without
proxy elements; i.e. UML-Pv1 and UML-Pv2) as well as on qualitative aspects not
discussed so far.

B.2.3 Analysis

In order to provide a comparative analysis of the evolution of the Pongo project to
be UML compliant, we collected the following quantitative data (see Section B.1.4):
(1.) Number of manually/automatically rewritten concepts and (2.) number of
unique concepts for the refactorings performed when employing our approach—once
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neglecting Ecore-specific methods (UML-Pv1 ), once with our solution of proxy el-
ements (UML-Pv2 ). We compare these data to the (manual) refactorings required
without employing our approach (UML-NoP). Furthermore, we look at differences
between the evolved Pongo M2T transformations and the original definitions (Ecore-
Orig) with respect to the number of called helpers, number of calls to helpers, and
the transformation size (metrics 3.–5.; see Section B.1.4). In addition, we report on
the frequency of EGL model elements as well as on average execution times of M2T
transformations, analyze manually performed refactorings in EGX and EOL files,
and discuss how to deal with diverging modeling concepts between the Ecore and
UML metamodels.

Table B.2 shows the number of manually/automatically rewritten concept occur-
rences in the Pongo EGL templates/models without as well as with employing our
approach (distinguished by using proxy elements or not). As our current approach
does not support other Epsilon dialects than EGL, necessary refactorings in EGX
and EOL files had to be performed manually for each of the three configurations.
As these figures are identical for every presented variant, they do not add any rel-
evant information for the comparison and, thus, are omitted. In total, 60 rewriting
operations had to be performed to refactor the M2T transformations to work with
UML class models. Table B.2 shows that we could automate all EGL-based rewrit-
ing operations in the UML-Pv2 iteration. As the Ecore-specific attributes (isMany
and isContainment) are not handled in the UML-Pv1 iteration, only ∼68% of the
necessary rewriting operations could be automatically refactored via the preliminary
implementation of our approach.

Table B.2: Number of manually/automatically rewritten concepts and unique con-
cepts with/without our approach

Metric UML-NoP UML-Pv1 UML-Pv2

1. Number of manually rewritten con-
cepts

60/60 (100%) 19/60 (32%) 0/60 (0%)

1. Number of automatically rewritten
concepts

0/60 (0%) 41/60 (68%) 60/60 (100%)

2. Unique concepts 10 10 (8) 10

The total of 60 rewriting operations are based on ten unique concepts (see Ta-
ble B.3). On average (arithmetic mean), every refactored concept occurs six times in
the corresponding EGL templates. For the UML-Pv1 iteration, eight of these unique
concepts are automatically rewritten (see Table B.2)—the other two being isMany
and isContainment. These two Ecore-specific attributes are among the top three
frequently found concepts (only eType occurred more frequently).

Table B.4 shows the number of called helpers, the number of calls to helpers,
and the transformation sizes (SLOC) divided into EGX, EGL, and EOL files for the
original Ecore- and the evolved UML-based M2T transformations. The increase of
two helper operations (to twelve) as well as in the number of calls to helpers (305;
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Table B.3: Rewrite frequency of Ecore-based model concepts

Ecore concept Rewrite frequency

eType 22
isMany 12
isContainment 7
eReferences 5
ePackage 4
eAllReferences 3
eAttributes 3
eStructuralFeatures 2
eAllAttributes 1
eLiterals 1∑

60

metrics 3. and 4.) for all UML-based refactorings has its cause in the additional
EOL helper operations isMany() and isContainment() required to reproduce the
Ecore-specific implementation.

Table B.4: Number of called/calls to helpers and transformation sizes for original
Ecore- and evolved UML-based M2T transformations

Metric Ecore-Orig UML-NoP UML-Pv1 UML-Pv2

3. Number of called helpers 10 12 12 12
4. Number of calls to helpers 289 305 (352) 305 (352) 305 (352)
5. Transformation size (SLOC)

EGX 60 60 60 60
EGL 237 237 272 272
EOL 153 173 173 173∑

450 470 505 505

To optimize the execution of operations, Epsilon supports caching the results
of parameter-less operations using the @cached annotation [70]. As we define the
two helper operations as cached (see lines 1 and 6 in Listing B.4), they are only
executed once for each distinct object and subsequent calls on the same target return
the cached result. Therefore, the bodies of the two operations are called eleven
(isMany()) and five times (isContainment()), respectively, compared to the 48 and
15 times, they would be called when the operations are not declared cached (summing
up to a total number of 352 calls to helpers; see Table B.4). In contrast, queries to
the Ecore attributes isMany and isContainment do not add to the number of calls
to helpers of the Ecore-Orig variant.

Regarding the transformation sizes, all EGX files have the same amount of SLOC
(see Table B.4). EGL parts are optimized in the refactorings of UML-NoP (please
note that 237 SLOC for both, the Ecore-Orig and the UML-NoP configurations is

196



a coincidence). The higher amount of SLOC of EGL files for the UML-Pv1 and
UML-Pv2 iterations (272) are due to the output formatting of M2T transformations
of our implementation (provided by the code/model round-tripping functionality).
The increase of SLOC of EOL files in all three evolved versions (173) are caused by
refactorings necessary to work with the UML metamodel (e.g., the definition of the
additional two helper operations). All four M2T transformation definitions generate
the identical set of Java files consisting of a total of 282 SLOC.

As our approach provides code/model round-tripping functionality for EGL, we
can measure M2T transformation specifications also in terms of model elements. Ta-
ble B.5 shows the frequency of model elements of the UML-Pv2 Pongo M2T trans-
formations (more information on specific model elements can be found in [53]). Our
rewriting operations target model element PropertyCallExpressions exclusively (see
Section B.2.2). In the case study, our approach needs to automatically rewrite 60
(see Table B.2) of the total 153 PropertyCallExpressions (∼39%) to render the
EGL templates UML compliant. The remaining PropertyCallExpressions can be
reused as-is (e.g., the attribute name is contained in both, Ecore::ENamedElement
and UML::NamedElement).

Table B.5: Frequency of EGL model elements of the UML-Pv2 M2T transformations

Model element Frequency

DomElement 2868
Expression 2209

FeatureCallExpression 863
FLOMethodCallExpression 14
MethodCallExpression 696
PropertyCallExpression 153

LiteralExpression 500
PrimitiveExpression 500

NameExpression 804
OperatorExpression 13

BinaryOperatorExpression 6
UnaryOperatorExpression 7

VariableDeclarationExpression 29
Import 6
Program 4
Statement 649

ExpressionStatement 628
ForStatement 15
IfStatement 6

Table B.6 provides an overview of the average execution times (in milliseconds;
ms) of the different transformations performed during the case study.19 We em-

19Execution times are measured on the following hardware and with the following software spec-
ifications: Intel Core i5-3320M CPU 2.6 GHz, 12 GB RAM, 64-bit Ubuntu 13.04, Eclipse 4.2.
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ployed the Epsilon profiling mechanism [72, 116] as well as Java’s System.nanoTime()
method for measuring the time needed to execute a particular transformation. We
report the arithmetic mean of executing every transformation ten times.20

Table B.6: Average execution times of the different transformation phases

Transformation Average execution time (in ms)

Pongo EGL templates to EGL models 1266±45
Rewriting EGL models 4263±42
Rewritten EGL models to EGL templates 1051±23
Ecore/UML model to Java code

EMFatic-based model 1974±43
Ecore-based model 1861±54
UML-based model 3058±69
UMLExcerpt-based model 3022±46

The actual rewriting of the EGL models (i.e. executing the generated ETL rules)
requires 2520±32ms; that is ∼59% of the total execution time of 4263±42ms. The
remaining time is required by loading needed models, performing Ecore2UML M2M
transformations (comparing, merging, transforming elements) etc. The time re-
quired for generating the ETL rewrite rules from the recorded trace data is negligible
(28±2ms; ∼0.7% of the total 4263±42ms).

For the Java code generation from Ecore/UML-based models (defining the blog-
ging system), the Ecore-Orig variant works with either an EMFatic specification
(which has to be transformed into an Ecore model first) or with Ecore models directly.
Hence, by defining models in the EMFatic textual syntax the average execution time
of generating Java code slightly increases to 1974±43ms compared to using Ecore
models directly (1861±54ms; see Table B.6). Regardless of basing UML instance
models on the whole UML metamodel or only on a small subset of it (UMLEx-
cerpt), the average execution time of generating Java classes increases to nearly the
same amount of 3058±69ms and 3022±46ms, respectively (an increase of ∼53–64%
compared to using EMFatic/Ecore models).

We could identify the relevant factor responsible for the execution time differ-
ences being the respective metamodel registering statements in the orchestrating Java
class of the M2T transformation (file PongoGenerator.java in project com.google-
code.pongo.uml). Registering the metamodels requires 557±11ms (Ecore) and
1603±43ms (UML/UMLExcerpt), respectively. The difference of 1046ms in the
average numbers almost matches the average time gap of 1161–1197ms when com-
paring the whole execution times of the Ecore and the UML/UMLExcerpt model
to Java code transformations. The remaining execution times of the model to Java
code transformations without the phase of registering the corresponding metamodels
account for 1305±57ms (Ecore) and 1455±69ms (UML/UMLExcerpt). Please note
that the increase of up to ∼64% when comparing the execution times of the Ecore-

20The value after ± shows the standard deviation (σ) from the arithmetic mean (x̄).
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with the UML-based M2T transformations is not caused by the application of our
approach (i.e. the rewritten EGL templates), but solely by the different times needed
to register the corresponding metamodels.

In total, the average execution time of the complete case study sums up to 9638ms
(UML-based instance model) and 9602ms (UMLExcerpt-based instance model), re-
spectively.

As mentioned earlier, our current approach does not support the automatic adap-
tation of EOL and EGX files, although, for the case study, Epsilon code written in
both dialects needed refactorings. The required EGX-induced changes were marginal
(e.g., model element type changes, such as, from Ecore::EClass to UML::Class) and
are, in principle—with slight modifications—covered through our approach and the
already generated rewrite rules (e.g., structural features and types; see Figure B.2).
Adaptations to existing EOL helper operations primarily targeted PropertyCallEx-
pressions and model element types, as well. In addition to the two new helper oper-
ations, comparatively larger changes had to be performed for three operations. These
changes proved necessary to handle UML-specific data types (i.e. PrimitiveTypes).
As in our case study we only deal with PrimitiveTypes of type String (see List-
ing B.1 and Figure B.1), we commented out the respective source code lines handling
the remaining types to keep the adaptations to a minimum.

During the conversion of the Ecore-based domain model of the blogging system
into a UML class diagram via the functionality provided in the Sample Ecore Model
Editor of EMF, eAnnotations were not preserved. As these annotations contain rel-
evant information (e.g., @db, @searchable; see Listing B.1), we manually re-included
them into the UML class model in a different way. In order to refactor the domain
model fully UML compliant, we mapped Ecore::EAnnotations to UML::Comments, al-
though the EMF-based implementation of the UML metamodel root Element inherits
from Ecore::EModelElement which contains the reference eAnnotations responsible
for annotating model elements. Therefore, in principle, all UML models can also
be annotated by using the inherited EReference Ecore::EModelElement.eAnnota-
tions having Ecore::EAnnotation as its eType attribute. This change, induced by
mapping Ecore to UML class models, was also reflected in the EOL files (adapt-
ing Ecore::EModelElement.eAnnotations to UML::Element.ownedComment) as well
as the diverging inheritance relationship concepts between Ecore::EClass.eSuper-
Types and UML::Class.generalization.

B.2.4 Interpretation

In this section, we interpret the data collected and discuss our observations made
during the case study in order to answer the two guiding research questions defined
in Section B.1.1.

Regarding Research Question 1 (To which extent can our current approach be
used in a real-life MDD-based software development project? ), we could successfully
facilitate the reuse of M2T transformation definitions in an evolving metamodel
scenario. However, it was required to extend our approach (e.g., to handle metamodel
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implementation specific characteristics) and—although the rewriting of the target
Epsilon dialect (EGL) could be fully supported (see Table B.2)—the case study
results showed that further improvements would be beneficial (e.g., support for other
Epsilon dialects).

We interpret the execution times of the individual transformations and the overall
process as satisfactory (see Table B.6). After all, the rewriting of M2T transforma-
tions and their execution are not time-critical as an evolutionary scenario is not
considered to be performed on a daily basis. The implementation of our approach
could handle models containing a combined number of almost 3000 elements (see
Table B.5) in a moderate time frame.21 A first experiment on basing the rewrite
rules on ATL [156, 157] instead of ETL indicates the potential of faster execution
times. Changing the M2M transformation language for rewriting EGL models (e.g.,
to ATL) can be implemented with a few SLOC by adapting the EGL-based rewrite
rule generator. Please note that these aspects affect only the technical implementa-
tion (i.e. the prototype), but not the general concepts of our rewriting approach.

Extensions to our approach were developed to support implementation-specific
properties of the Ecore metamodel (i.e. proxy elements). An alternative implementa-
tion for the additional helper operations would have been to encode the functionality
of the helpers directly into the rewrite rules. For this case study, the alternative im-
plementation would have also been a possible option because of the short Epsilon
statements spanning only one line (see Listing B.4). The benefit of this alterna-
tive implementation being fewer number of called helpers, fewer number of calls to
helpers, and a reduction in the transformation size (metrics 3.–5.). However, the in-
ternal caching mechanism of Epsilon (@cached annotation for operations) could then
not be utilized and may result in a potential increase of the execution time of the
UML model to Java code transformation. Furthermore, as the Epsilon statements
query properties of model elements, their instance variable names used in the EGL
templates need to be known at the time of rewriting. The variable names would
also need to be homogenized (e.g., by defining naming conventions upfront) which
is not realistic for an evolutionary scenario as the M2T transformations already ex-
ist. Moreover, the encapsulation of generically applicable functionality into explicitly
defined helper operations facilitate their reuse in other scenarios and prevents the
replication of statements providing one and the same functionality (which would
then also be scattered across the code base). In addition, more complex statements
(spanning over multiple lines)—although technically possible—risks decreasing the
comprehensibility of the EGL code.

We also improved the EGL-based operations for generating rewrite rules to be
more generically applicable (e.g., to facilitate the definition of new rewrite rules)
and enabled the support for Epsilon’s profiling mechanism. Regarding code/model
round-tripping, the methods responsible for the individual transformations (code to
model and model to code) were optimized and can now be individually executed (the

21In fact, we successfully performed an experimental rewriting of an EGL model containing
∼15.000 elements.
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execution time is recorded, as well). The creation of EGL template code from its
model representation was enhanced, however, further improvements to preserve the
layout during round-tripping might have the potential to reduce the SLOC of the
output EGL code (see Table B.4).

Regarding Research Question 2 (What are the observable and quantifiable ad-
vantages of applying our approach? ), we can summarize the measured benefits of
applying our approach as follows. We were able to fully automate the evolution of
EGL templates to support UML models in the UML-Pv2 iteration (metric 1.). In
contrast, without proxy elements, ∼32% of EGL concepts needed manual adapta-
tions (see Table B.2). The rewriting operations are based on a moderate number
of unique concepts (ten; metric 2.). Thus, for this case study, employing other ap-
proaches not relying on transformation traces (e.g., tool-specific search-and-replace
functionality) may be a potential option, as well. However, then, concepts used in
M2T transformations would need to be matched manually with their original and
evolved metamodeling concepts to establish the necessary rewriting operations—
a tedious and error-prone task. To execute the rewriting operations, all concept
occurrences would need to be identified. Although supported by tools (e.g., search-
and-replace functionality of text editors), executing all necessary rewrite operations
in one bulk operation may not be available, rendering the rewriting process as a
sequence of multiple steps each requiring individual execution. Thus, even for sce-
narios with only a few unique concepts, our rewriting approach may be a time-saving
option as it facilitates the reuse of rewriting operations and can easily be adapted to
changed evolution requirements. Furthermore, the evolutionary process is explicitly
documented by defining M2M transformations and by generating rewrite rules for
the corresponding M2T transformations.

The application of our approach caused a moderate increase of additional con-
trol metrics. The number of called helpers increased by 20% (metric 3.). We could
not find an appropriate solution to reduce this number (see above). The number
of calls to helper operations (metric 4.) slightly increased by nearly 6% due to the
benefits gained by the internal caching mechanism of the Epsilon language. With-
out cached operations (as may be the case when using other model management
languages and technologies), the increase of the number of calls to helpers would
be almost 22%. However, the difference in the number of calls to helpers between
the original Ecore-based and all UML-based variants is only caused by the employed
measurement method (as queries to Ecore internal attributes are not counted). Fur-
thermore, regarding execution times, calling the helper operations and executing the
short Epsilon statements included in their bodies is not computation expensive. The
two helpers do not have a significant effect on the overall execution time, especially,
as the EGL code/model round-tripping and the rewriting of EGL models as well as
registering the UML/UMLExcerpt metamodel during the UML model to Java code
transformation require significantly more time (see Table B.4). For instance, the
EGL code/model round-tripping including the rewriting of EGL models account for
more than 68% of the overall execution time and registering the UML/UMLExcerpt
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metamodel accounts for more than 52% of the whole execution time of the UML
model to Java code transformation step.

The increase in the SLOC of the M2T transformations (∼4% for UML-NoP,
∼12% for UML-Pv1 and UML-Pv2; metric 5.) is partly due to the additional helper
operations included in the EOL files and partly caused by the formatting instructions
implemented in the model-to-code part of the code/model round-tripping for EGL.
We already argued why we opted for introducing additional helpers (see above), thus,
the SLOC of EOL files cannot be decreased. On the contrary, a layout-preserving
round-tripping functionality for EGL may be beneficial for reducing the transforma-
tion size (see above).

B.3 Limitations and Threats

The particular definition of an evolutionary scenario in combination with the require-
ments for the software artifacts the case study is based on (open-source, publicly
available, non-trivial M2T transformation definitions; see Section B.1.2) narrowed
the potential candidate cases. The range of suitable, realistic cases to choose from
was small and we had to select a case based on availability (which, in practice, is not
exceptional for performing exploratory case studies [5]).

As one of the authors of the evaluated approach performed the case study, control
was increased. Although required by the design of our study (see Section B.1.4), this
might have introduced personal bias.

By complying to technological requirements, we draw conclusions particularly
targeting Epsilon (e.g., cached helper operations) and EMF (e.g., Ecore-based mod-
els). Although we discuss implications independent of the implementation (see, e.g.,
Sections B.2.3 and B.2.4), the generalization of results may be limited. For example,
we have a clear understanding on how to extend the implementation of our approach
to handle other Epsilon dialects, as well (e.g., EGX, EOL), but currently we have no
empirical evidence of its application to non-EGL-based languages.

In our case study, we measured certain metrics in order to evaluate specific ad-
vantages of our approach, thereby neglecting other quality aspects (e.g., usability,
stability etc.). As our metrics are adopted from related work (see, e.g., [67, 164, 165,
166, 169]), we relied on the authors’ demonstration that the metrics are acceptable
for their intended use (in the context of model transformations). It was not the goal
of the case study to validate the adopted metrics as a representative quantitative
measurement for a given attribute (for a discussion on validating software metrics,
see, e.g., [80]).

Our case study collects qualitative and quantitative data for a MDD-based sce-
nario of evolving metamodels (i.e. Ecore to UML). Although the EMF-based imple-
mentation of these two metamodels differ, they share similar concepts (e.g., classes,
attributes, generalizations). This overlap influenced the required refactorings and in
a replication case study (to validate our results) the extent of metamodel concept
heterogeneity could be increased.
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B.4 Summary of Results

The case study was performed in order to evaluate our approach of higher-order
rewriting of M2T templates developed in this thesis project. The design of the
case study was guided by two research questions: A qualitative assessment of the
feasibility of our approach in a real-life MDD-based scenario (Research Question 1)
and measurements to quantify the benefits of the application (Research Question 2).
To answer Research Question 2, adequate metrics have been identified by adopting
the GQM method.

A suitable case was selected based on availability of existing projects to meet
the requirements for the case study (open-source, publicly available, non-trivial M2T
transformation definitions). In particular, the study was based on the Pongo project,
a Java POJO generator for MongoDB, and an evolutionary scenario to migrate Pongo
to be able to work with UML class models in addition to already supported Ecore
models.

By analyzing and interpreting the results obtained from executing the case study,
we collected evidence that our current approach can be employed in a real-life project
and that expected advantages materialize and can be observed, measured, and quan-
tified. In particular, we could automatically rewrite all EGL-based concepts for their
reuse in evolved M2T transformations of the Pongo project. However, to eliminate
the need for manual refactorings in EGL generator templates completely, we had to
handle attributes characteristic to the Ecore implementation of EMF. We came up
with a solution of defining temporary proxy elements in the Ecore metamodel which
are transformed into temporary proxy elements in the UML metamodel.

We could observe that the application of our rewriting approach did not signif-
icantly influence defined control metrics. From this perspective, we can conclude
that the benefits of applying our approach from the viewpoint of a DSML engineer
(i.e. fully reusing generator templates by rewriting EGL concepts) implies no sub-
stantial negative aspects. Hence, with regard to the studied case, the achievable
reuse of M2T transformation definitions is satisfactory.

While performing the case study, we evaluated our rewriting approach and
demonstrated the feasibility of our prototype. During the execution, we identi-
fied extension points (e.g., to handle proxy elements) and potential improvements
(e.g., with regard to the generation of rewrite rules, to code/model round-tripping
functionality) of our prototypical implementation. Inline with our design-science-
research approach, the extensions and improvements resulted in a revised design
of our software artifact (i.e. our prototype) which was released as a new version
(publicly available at [48]).
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